WO2012034746A1 - Method for calibrating a measuring station for vehicle measurement - Google Patents

Method for calibrating a measuring station for vehicle measurement Download PDF

Info

Publication number
WO2012034746A1
WO2012034746A1 PCT/EP2011/062498 EP2011062498W WO2012034746A1 WO 2012034746 A1 WO2012034746 A1 WO 2012034746A1 EP 2011062498 W EP2011062498 W EP 2011062498W WO 2012034746 A1 WO2012034746 A1 WO 2012034746A1
Authority
WO
WIPO (PCT)
Prior art keywords
measuring
panels
measurement
transducers
rsl
Prior art date
Application number
PCT/EP2011/062498
Other languages
German (de)
French (fr)
Inventor
Christian Wagmann
Volker Uffenkamp
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to US13/821,046 priority Critical patent/US20130342686A1/en
Priority to EP11755282.8A priority patent/EP2616767B1/en
Priority to CN201180043808.2A priority patent/CN103109155B/en
Publication of WO2012034746A1 publication Critical patent/WO2012034746A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/14Measuring arrangements characterised by the use of optical techniques for measuring distance or clearance between spaced objects or spaced apertures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
    • G01B11/275Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing wheel alignment
    • G01B11/2755Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing wheel alignment using photoelectric detection means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/02Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
    • G01B21/04Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness by measuring coordinates of points
    • G01B21/042Calibration or calibration artifacts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2210/00Aspects not specifically covered by any group under G01B, e.g. of wheel alignment, caliper-like sensors
    • G01B2210/10Wheel alignment
    • G01B2210/12Method or fixture for calibrating the wheel aligner

Definitions

  • the invention relates to a method for calibrating a measuring station for vehicle measurement, in particular a method for calibrating a measuring station, which is equipped with two transducers.
  • images of the vehicle to be measured or images of measuring points (targets) attached to the vehicle to be measured are recorded with transducers, each of which has at least two camera systems.
  • one sensor each is positioned to the left and right of the vehicle to be measured.
  • the system In order to avoid errors in the chassis measurement and in particular the track determination, the system must be calibrated so that the coordinate systems defined by the sensors on the left and on the right side of the vehicle are identical.
  • An inventive method for calibrating a measurement system for vehicle measurement with a measurement plane which is designed to receive a vehicle to be measured, and two transducers, each of the transducers having at least two camera systems and a calibrated reference system comprises the following steps:
  • Performing a second measuring step comprising taking pictures of the measuring panels with the camera systems
  • the correction value thus determined is stored and taken into account in the subsequent vehicle measurement during the evaluation in order to correct the measurement results.
  • the parameters of the vehicle geometry and in particular the track values of the vehicle to be measured can be determined with high accuracy, since errors that result from a not completely parallel alignment of the camera systems are taken into account and corrected.
  • the two transducers used form a common measuring system and can only be operated in combination with one another. If one of the transducers is replaced by another, recalibrate the newly formed measuring system.
  • the serial numbers of the transducers By saving the serial numbers of the transducers during calibration and comparing the stored serial numbers with the current serial numbers for each measurement, it is possible to check whether the currently stored correction value is still valid. Faulty measurements made with a non-calibrated measuring system can thus be reliably prevented.
  • the correction value is determined by solving a linear system of equations.
  • the required correction value can easily be determined with good accuracy.
  • the correction value for one of the transducers is set (eg to zero) to determine the correction value of the other transducers.
  • the linear equation system to be solved comprises two equations with two unknowns; therefore there is no clear solution. For the wheel alignment, however, it is sufficient that the lane directions on the left and right sides of the vehicle are relative to each other, that is, that the left and right lane directions are parallel to each other.
  • the correction value of the other transducers can be determined by solving the linear system of equations.
  • the normal vectors of two measurement boards are compared. By comparing the normal vectors of two measuring panels, the accuracy of the correction value and thus also the accuracy of the following vehicle measurement can be increased.
  • the correction values for two pairs of measurement boards are determined and a final correction value is determined by averaging the two correction values.
  • the accuracy of the determined correction value can be further increased.
  • the measurement is performed on a leveled (lifting) stage with the stage and the measuring panels aligned with respect to the gravitational field. On a leveled stage, the method is feasible using simple measuring panels. In one embodiment, at least one of the measuring panels has at least two
  • Measuring points whose orientation with respect to the orientation of a foot of the measuring board is known. Such a measuring board can be easily and accurately aligned.
  • at least one of the measuring panels is rotatably mounted.
  • a rotatably mounted measuring board can be aligned independently of the orientation of the measuring station, there is therefore no requirement for the flatness and / or orientation of the measuring station.
  • the measurements can be carried out on any measuring station with high accuracy.
  • the measuring panel has at least one level or spirit level that is suitable for determining the spatial orientation of the measuring panel.
  • the Measuring board With the aid of a dragonfly attached to the measuring board, the Measuring board can be easily and precisely aligned in the desired position.
  • Figure 1 shows a schematic plan view of a measuring station for carrying out a method according to the invention with two transducers
  • FIG. 2 shows a schematic plan view of a measuring station for carrying out a method according to the invention, wherein the measuring sensors are interchanged with respect to the configuration shown in FIG. 1;
  • FIG. 3 shows a transformation of the images of the measuring panels recorded in the first and second measured value sensor arrangement
  • FIG. 4 shows a first exemplary embodiment of a measuring panel
  • Figure 5 shows a second embodiment of a measuring board
  • FIG. 1 shows a measuring station 2 for carrying out a method according to the invention with a measuring plane 4, which is provided for receiving a vehicle to be measured.
  • the measuring plane 4 is in the form of a rectangle with a front side 6, a rear side 8, a left side 5 and a right side 7.
  • each a measuring panel VL, VR, HL, HR is arranged.
  • the measuring panels VL, VR, HL, HR are aligned substantially parallel to the front and rear sides 6, 8 at a substantially right angle to the left and right sides 5, 7 of the measuring plane 4.
  • the measuring panels VL, VR, HL, HR are not necessarily exactly parallel to the front 6 or to the rear 8 of the measuring plane 4 and not necessarily arranged in the form of a rectangle.
  • the positions and orientations of the measuring panels VL, VR, HL, HR generally have unknown deviations from the idealized configuration shown in FIG.
  • the positions of the measurement boards VL, VR, HL, HR must not change during the entire calibration and measuring process, as described below.
  • the measuring panels VL, VR, HL, HR can be placed at the bottom of the measuring plane 4, fixed to a suitable frame, not shown in the figures, or fastened to the vehicle to be measured, which is not shown in the figures.
  • each measuring transducer MW1, MW2 On the left and right of the measuring level 4, in each case one measuring transducer MW1, MW2 is arranged.
  • Each of the transducers MW1, MW2 has in each case a calibrated reference system R1, R2 and two camera systems KV1, KH1, KV2,
  • the camera systems KV1, KH1, KV2, KH2 are aligned such that their respective measurement and image recording direction (viewing direction) is aligned substantially parallel to the longitudinal sides 5, 7 of the measuring plane 4 or of the vehicle to be measured.
  • one of the measuring devices KV1, KH1, KV2, KH2 of each of the two transducers MW1, MW2 is in the direction of the
  • Each of the two transducers MW1, MW2 has been calibrated by a known method before performing the actual measurement, so that the local coordinate systems of the two imaging devices KV1, KH1, KV2, KH2 of a transducer MW1, MW2 are aligned parallel to each other or the deviations from the parallelism are known and can be taken into account in the evaluation of the measurements. Measurement errors that result from the deviation of the recording directions of the image recording devices KV1, KH1, KV2, KH2 within a transducer MW1, MW2 from the parallelism are corrected in this way.
  • the coordinate systems of the two transducers MW1, MW2 are designated in the figures 1 and 2 with X- ⁇ and x2.
  • the measuring panels VL1, HL1, VR1, HR1 shown by dashed lines in FIG. 1 symbolize the positions in which the measuring panels VL, HL, VR, HR appear from the view of the respective measuring transducer MW1, MW2.
  • n V i_i, nvRi, n HLI n HRI n V i_2, n V R2, n H i_2, n H R2 denote associated normal vectors, ie vectors which are arranged at a right angle to the plane of the respective measuring table VL1, HL1, VR1, HR1.
  • the measuring panels VL1, HL1 symbolize the position of the left measuring panels VL and HL, as determined by the left measuring sensor MW1.
  • the measuring panels VR1 and HR1 symbolize the positions of the right measuring panels VR and HR, as determined by the right-hand sensor MW2.
  • the first measuring transducer MW1 arranged on the left of the measuring plane 4 in FIG. 1 is arranged on the right side of the measuring plane 4 and the second measuring transducer MW2 arranged on the right of the measuring plane 4 in FIG. 1 is arranged to the left of the measuring plane 4 as shown in FIG.
  • Detect measuring panels HL and HR take in the arrangement shown in Figure 2 images of the front panels VL and VR on.
  • the coordinates of the measuring tables VL, HL, VR, HR which have been determined in the two measuring steps, are transformed one on the other. If the measurement system formed by the two transducers MW1, MW2 is calibrated, the coordinates of the measurement boards VL, HL, VR, HR determined in the two measurement steps performed are identical in a global coordinate system and the images of the measurement boards VL, HL, VR, HR become imaged identically to each other.
  • the two transducers MW1 and MW2 are not calibrated to each other from the beginning, so that the coordinates of the measuring tables VL, HL, VR, HR in the global coordinate system determined in the two measuring steps performed are not identical.
  • FIG. 3 shows by way of example the result of such a transformation.
  • mappings VL1 and HR2 of the measurement table VL were chosen as reference of the transformation and mapped to each other. Since decalibrated camera systems KV1, KH1, KV2, KH2 only ever make themselves noticeable on one side, the images HL1 and VR2 of the measuring panel HL are then also imaged identically on one another.
  • the images VR1 and HL2 as well as HR1 and VL2 are not congruent, but differ from each other, if the receiving directions of the camera systems KV1, KH1, KV2, KH2 are not exactly aligned parallel to each other but decalibrated.
  • both transducers MW1, MW2 have an equal decalibration, the errors cancel each other out and the calculation of a calibration correction value is not necessary.
  • At least one correction value RSL, RSR is calculated in order to correct the measurement results.
  • the choice of the limit value determines the accuracy of the calibration and thus also the maximum possible accuracy of the following measurements.
  • the linear equation system comprises two equations with two unknowns; it is therefore not uniquely solvable.
  • the individual errors of the two transducers MW1 and MW2 can therefore not be calculated with this method.
  • the wheel alignment it is sufficient for the wheel alignment that the lane directions on the left and right sides of the vehicle are relative to each other, i.e. that is, the left and right lane directions are parallel to each other.
  • RSL (W1 + W2) / 4.
  • the consideration of the thus determined correction value RSL in the evaluation of the measurements has the effect that deviations of the measuring directions of the two transducers MW1, MW2 from the parallelism are compensated and the track of the vehicle can be measured with high accuracy.
  • the coordinates of the measurement boards VL1 and HL1 can be jointly transformed to the coordinates of the measurement boards HR2 and VR2 in order to minimize noise and / or other residual errors, and the Accuracy to increase further.
  • a further increase in accuracy is possible by additionally performing the transformation for the measuring boards of the other side (transformation of VR1 and HR1 to HL2 and VL2) and calculating the corresponding deviations on the left side of measuring station 2. The correction value thus determined is averaged with the correction value previously determined with the measurement boards of the first page.
  • the correction value RSL or RSR determined in the method described above is stored and taken into account in each subsequent measurement. Due to the calibration, the two transducers MW1, MW2 form a measuring system and can only be operated together. If one of the two transducers MW1, MW2 is replaced, a new calibration must be carried out in order to determine a new correction value RSL or RSR for the newly formed measuring system.
  • FIG. 4 shows, by way of example, a measuring panel VL for use on a measuring plane 4, as described, for example, in FIG. B. is provided by a lift.
  • the measuring panel VL has at least two measuring points 10, 12 and three feet 14 (three-point mounting).
  • the spatial orientation of the straight lines g 2 (zero direction) defined by the feet 14 with respect to the straight line g-1 defined by the at least two marks 10, 12 on the measuring panel VL is known.
  • these two straight lines are g- ⁇ drawn g 2 in the figure 4 in parallel.
  • parallelism is not mandatory; Rather, it is sufficient that the angle between the two straight lines g- 1 , g 2 is known.
  • the measurement of the marks 10, 12 on the panel VL takes place after the panel VL has been parked with the feet 14 on the measurement plane 4, which defines a straight line g 3 .
  • the measuring panel VL has a level (spirit level) which is defined in a defined orientation g with respect to the straight line g-1, which is defined by at least two measuring points 10, 12 arranged on the measuring panel VL 4 is arranged.
  • the lines gi and g 4 are shown parallel to each other. However, this is not absolutely necessary, but it is sufficient that the orientation of the dragonfly 16 with respect to the defined by the measuring points 10, 12 straight line g- ⁇ is known.
  • the measuring panel VL is connected to the feet 14 via a hinge 18 such that the measuring panel VL with the level 16 and the measuring points 10, 12 is pivotable about an axis A of the joint 18.
  • the measuring panel VL Before the measurements are taken, the measuring panel VL, after it has been placed on the measuring station 4, pivoted about the axis of rotation A of the joint 18 and in a desired position, which can be read on the dragonfly 16 arrested.
  • the detection of the marks 10, 12 on the measuring panel VL by one of the image pickup devices KH1, KV1, KH2, KV2 of the transducers MW1, MW2 takes place after the described alignment of the measuring panel VL has been made.
  • the spatial orientation of the measuring panel VL is defined by means of the level 16 and the orientation of the level 16 with respect to the measuring points 10, 12 is known, the calibration and the measurement with such a measuring panel VL, regardless of the spatial orientation and flatness of the Level 4 are carried out.
  • the measuring method can be performed flexibly anywhere with high accuracy.
  • the fall correction is a correction of the error resulting from the combination of an imaging system KH1, KV1, KH2, KV2 and the associated reference system R1, R2.
  • two marks 10, 12 on the measurement boards VL, VR, HL, HR are sufficient if the two marks 10, 12 are arranged on an exactly horizontal line. If the assignment of the cameras to each other is not known or if only one (mono) camera is used, then at least three marks 10, 12 are required on each of the measuring panels VL, HL, VR, HR. Also for determining the track, at least three marks 10, 12 are required on each of the measuring tables VL, HL, VR, HR.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

A method for calibrating a measuring system for vehicle measurement, with a measuring plane (5) for receiving a vehicle to be measured and two measuring sensors (MW1, MW2), wherein each of the measuring sensors (MW1, MW2) has at least two camera systems (KV1, KH1, KV2, KH2), comprises the steps of: positioning at least four measuring panels (VL, VR, HL, HR) on the measuring plane (4); orienting the measuring sensors (MW1, MW2) in such a manner that at least one of the measuring panels (VL, VR, HL, HR) is respectively in the field of vision of each camera system (KV1, KH1, KV2, KH2) and each of the measuring panels (VL, VR, HL, HR) is in the field of vision of at least one of the camera systems (KV1, KH1, KV2, KH2); carrying out a first measuring step which involves recording images of the measuring panels (VL, VR, HL, HR) using the camera systems (KV1, KH1, KV2, KH2); interchanging the two measuring sensors (MW1, MW2); carrying out a second measuring step which involves recording images of the measuring panels (VL, VR, HL, HR) using the interchanged camera systems (KV1, KH1, KV2, KH2); determining and comparing positions of the measuring panels (VL, VR, HL, HR) from the images recorded in the first and second measuring steps; calculating at least one correction value (RSL, RSR) from the difference between the positions of the measuring panels (VL, VR, HL, HR) which have been determined from the images recorded in the first and second measuring steps.

Description

Beschreibung Titel  Description title
Verfahren zum Kalibrieren eines Messplatzes zur Fahrzeuqvermessunq Method for calibrating a measuring station for vehicle measurement
Die Erfindung betrifft ein Verfahren zum Kalibrieren eines Messplatzes zur Fahrzeugvermessung, insbesondere ein Verfahren zum Kalibrieren eines Messplatzes, der mit zwei Messwertaufnehmern ausgestattet ist. The invention relates to a method for calibrating a measuring station for vehicle measurement, in particular a method for calibrating a measuring station, which is equipped with two transducers.
Stand der Technik State of the art
Zur Fahrzeug- bzw. Fahrwerksvermessung werden Bilder des zu vermessenden Fahrzeugs bzw. Bilder von an dem zu vermessenden Fahrzeug angebrachten Messpunkten (Targets) mit Messwertaufnehmern, welche jeweils wenigstens zwei Kamerasysteme aufweisen, aufgenommen. In der Regel wird je ein Messwertaufnehmer links und rechts von dem zu vermessenden Fahrzeugs positioniert. Um Fehler bei der Fahrwerksvermessung und insbesondere der Spurbestimmung zu vermeiden, muss das System so kalibriert werden, dass die von den Messwertaufnehmern auf der linken und auf der rechten Seite des Fahrzeugs definierten Koordinatensysteme identisch sind. For vehicle or chassis measurement, images of the vehicle to be measured or images of measuring points (targets) attached to the vehicle to be measured are recorded with transducers, each of which has at least two camera systems. As a rule, one sensor each is positioned to the left and right of the vehicle to be measured. In order to avoid errors in the chassis measurement and in particular the track determination, the system must be calibrated so that the coordinate systems defined by the sensors on the left and on the right side of the vehicle are identical.
Offenbarung der Erfindung Disclosure of the invention
Es ist eine Aufgabe der Erfindung, ein zuverlässiges und kostengünstiges Verfahren zum Kalibrieren eines Messplatzes zur Fahrzeugvermessung mit zwei Messwertaufnehmern bereit zu stellen. It is an object of the invention to provide a reliable and inexpensive method for calibrating a measuring station for vehicle measurement with two transducers.
Ein erfindungsgemäßes Verfahren zum Kalibrieren eines Messsystems zur Fahrzeugvermessung mit einer Messebene, die zur Aufnahme eines zu vermessenden Fahrzeugs ausgebildet ist, und zwei Messwertaufnehmern, wobei jeder der Messwertaufnehmer wenigstens zwei Kamerasysteme und ein kalibriertes Referenzsystem hat, weist die folgenden Schritte auf: An inventive method for calibrating a measurement system for vehicle measurement with a measurement plane which is designed to receive a vehicle to be measured, and two transducers, each of the transducers having at least two camera systems and a calibrated reference system, comprises the following steps:
Positionieren von wenigstens vier Messtafeln auf der Messebene;  Positioning at least four measuring panels on the measuring plane;
Ausrichten der Messwertaufnehmer derart, dass sich jeweils wenigstens eine der Messtafeln im Blickfeld jedes Kamerasystems befindet und sich jede der Messtafeln im Blickfeld wenigstens eines der Kamerasysteme befindet ist; Durchführen eines ersten Messschrittes, der das Aufnehmen von Bildern der Messtafeln mit den Kamerasystemen umfasst; Aligning the transducer so that in each case at least one of the measuring panels is in the field of view of each camera system and each of the measuring panels is located in the field of view of at least one of the camera systems; Performing a first measuring step comprising taking pictures of the measuring panels with the camera systems;
Vertauschen der beiden Messwertaufnehmer (Umschlagsmessung);  Interchange of the two transducers (transshipment measurement);
Durchführen eines zweiten Messschrittes, der das Aufnehmen von Bildern der Messtafeln mit den Kamerasystemen umfasst;  Performing a second measuring step comprising taking pictures of the measuring panels with the camera systems;
Bestimmen der Positionen der Messtafeln aus den im ersten und in zweiten Messschritt aufgenommenen Bildern;  Determining the positions of the measurement boards from the images taken in the first and second measurement steps;
Berechnen wenigstens eines Korrekturwertes aus der Differenz der Positionen der Messtafeln, die aus den im ersten und im zweiten Messschritt aufgenomme- nen Bildern bestimmt worden sind.  Calculating at least one correction value from the difference between the positions of the measurement tables which have been determined from the images recorded in the first and in the second measurement step.
Der so bestimmte Korrekturwert wird gespeichert und bei der folgenden Fahrzeugvermessung bei der Auswertung berücksichtigt, um die Messergebnisse zu korrigieren. Durch die Berücksichtigung eines derartigen Korrekturwertes lassen sich die Parameter der Fahrzeuggeometrie und insbesondere die Spurwerte des zu vermessenden Fahrzeugs mit hoher Genauigkeit bestimmen, da Fehler, die sich aus einer nicht vollständig parallelen Ausrichtung der Kamerasysteme ergeben, berücksichtigt und korrigiert werden. The correction value thus determined is stored and taken into account in the subsequent vehicle measurement during the evaluation in order to correct the measurement results. By taking into account such a correction value, the parameters of the vehicle geometry and in particular the track values of the vehicle to be measured can be determined with high accuracy, since errors that result from a not completely parallel alignment of the camera systems are taken into account and corrected.
Durch die erfindungsgemäße Kalibrierung bilden die beiden verwendeten Messwertaufnehmer ein gemeinsames Messsystem und können nur in Kombination miteinander betrieben werden. Wird einer der Messwertaufnehmer durch einen anderen ersetzt, so ist eine erneute Kalibrierung des neu gebildeten Messsystems vorzunehmen. Durch Abspeichern der Seriennummern der Messwertaufnehmer bei der Kalibrierung und Vergleichen der gespeicherten Seriennummern mit den aktuellen Seriennummern bei jeder Messung kann überprüft werden, ob der aktuell gespeicherte Korrekturwert noch gültig ist. Fehlerhafte Messungen, die mit einem nicht kalibrierten Messsystem vorgenommen werden, können so zuverlässig verhindert werden. As a result of the calibration according to the invention, the two transducers used form a common measuring system and can only be operated in combination with one another. If one of the transducers is replaced by another, recalibrate the newly formed measuring system. By saving the serial numbers of the transducers during calibration and comparing the stored serial numbers with the current serial numbers for each measurement, it is possible to check whether the currently stored correction value is still valid. Faulty measurements made with a non-calibrated measuring system can thus be reliably prevented.
In einer Ausführungsform wird der Korrekturwert durch Lösen eines linearen Gleichungssystems bestimmt. Durch Lösen eines linearen Gleichungssystems ist der gesuchte Korrekturwert einfach mit guter Genauigkeit bestimmbar. In one embodiment, the correction value is determined by solving a linear system of equations. By solving a linear system of equations, the required correction value can easily be determined with good accuracy.
In einer Ausführungsform wird der Korrekturwert für einen der Messwertaufnehmer (z.B. auf Null) festgelegt, um den Korrekturwert des anderen Messwertaufnehmers zu bestimmen. Das zu lösende lineare Gleichungssystem umfasst zwei Gleichungen mit zwei Unbekannten; es existiert daher keine eindeutige Lösung. Für die Achsvermessung ist es jedoch ausreichend, dass die Spurrichtungen auf der linken und der rechten Seite des Fahrzeugs relativ zueinander passen, d. h., dass die linken und rechten Spurrichtungen parallel zueinander sind. Dadurch, dass der Korrekturwert für einen der Messwertaufnehmer festgelegt wird, kann der Korrekturwert des anderen Messwertaufnehmers durch Lösen des linearen Gleichungssystems bestimmt werden. In einer Ausführungsform werden die Normalenvektoren von zwei Messtafeln miteinander verglichen. Durch Vergleichen der Normalenvektoren von zwei Messtafeln lässt sich die Genauigkeit des Korrekturwerts und damit auch die Genauigkeit der folgenden Fahrzeugvermessung erhöhen. In einer Ausführungsform werden die Korrekturwerte für zwei Paare von Messtafeln bestimmt und ein endgültiger Korrekturwert wird durch Mitteln der beiden Korrekturwerte bestimmt. Dadurch lässt sich die Genauigkeit des bestimmten Korrekturwerts noch weiter erhöhen. In einer Ausführungsform wird die Messung auf einer nivellierten (Hebe-)Bühne ausgeführt, wobei die Bühne und die Messtafeln in Bezug auf das Gravitationsfeld ausgerichtet sind. Auf einer nivellierten Bühne ist das Verfahren unter Verwendung einfacher Messtafeln durchführbar. In einer Ausführungsform weist wenigstens eine der Messtafeln wenigstens zweiIn one embodiment, the correction value for one of the transducers is set (eg to zero) to determine the correction value of the other transducers. The linear equation system to be solved comprises two equations with two unknowns; therefore there is no clear solution. For the wheel alignment, however, it is sufficient that the lane directions on the left and right sides of the vehicle are relative to each other, that is, that the left and right lane directions are parallel to each other. By determining the correction value for one of the transducers, the correction value of the other transducers can be determined by solving the linear system of equations. In one embodiment, the normal vectors of two measurement boards are compared. By comparing the normal vectors of two measuring panels, the accuracy of the correction value and thus also the accuracy of the following vehicle measurement can be increased. In one embodiment, the correction values for two pairs of measurement boards are determined and a final correction value is determined by averaging the two correction values. As a result, the accuracy of the determined correction value can be further increased. In one embodiment, the measurement is performed on a leveled (lifting) stage with the stage and the measuring panels aligned with respect to the gravitational field. On a leveled stage, the method is feasible using simple measuring panels. In one embodiment, at least one of the measuring panels has at least two
Messpunkte auf, deren Ausrichtung in Bezug auf die Ausrichtung eines Fußes der Messtafel bekannt ist. Eine solche Messtafel kann einfach und genau ausgerichtet werden. In einer Ausführungsform ist wenigstens eine der Messtafeln drehbar gelagert.Measuring points whose orientation with respect to the orientation of a foot of the measuring board is known. Such a measuring board can be easily and accurately aligned. In one embodiment, at least one of the measuring panels is rotatably mounted.
Eine drehbar gelagerte Messtafel kann unabhängig von der Ausrichtung des Messplatzes ausgerichtet werden, es bestehen daher keine Anforderung an die Ebenheit und/oder Ausrichtung des Messplatzes. Die Messungen können so auf beliebigen Messplätzen mit hoher Genauigkeit durchgeführt werden. A rotatably mounted measuring board can be aligned independently of the orientation of the measuring station, there is therefore no requirement for the flatness and / or orientation of the measuring station. The measurements can be carried out on any measuring station with high accuracy.
In einer Ausführungsform weist die Messtafel wenigstens eine Libelle bzw. Wasserwaage auf, die zur Bestimmung der räumlichen Ausrichtung der Messtafel geeignet ist. Mit Hilfe einer an der Messtafel angebrachten Libelle kann die Messtafel besonders einfach und genau in die gewünschte Position ausgerichtet werden. In one embodiment, the measuring panel has at least one level or spirit level that is suitable for determining the spatial orientation of the measuring panel. With the aid of a dragonfly attached to the measuring board, the Measuring board can be easily and precisely aligned in the desired position.
Die Erfindung wird im Folgenden anhand der beigefügten Figuren näher erläutert. The invention will be explained in more detail below with reference to the attached figures.
Figur 1 zeigt eine schematische Draufsicht auf einen Messplatz zur Durchführung eines erfindungsgemäßen Verfahrens mit zwei Messwertaufnehmern; Figure 1 shows a schematic plan view of a measuring station for carrying out a method according to the invention with two transducers;
Figur 2 zeigt eine schematische Draufsicht auf einen Messplatz zur Durchführung eines erfindungsgemäßen Verfahrens, wobei die Messwertaufnehmer gegenüber der in der Figur 1 gezeigten Konfiguration vertauscht sind; FIG. 2 shows a schematic plan view of a measuring station for carrying out a method according to the invention, wherein the measuring sensors are interchanged with respect to the configuration shown in FIG. 1;
Figur 3 zeigt eine Transformation der in der ersten und zweiten Messwertauf- nehmeranordnung aufgenommenen Bilder der Messtafeln; FIG. 3 shows a transformation of the images of the measuring panels recorded in the first and second measured value sensor arrangement;
Figur 4 zeigt ein erstes Ausführungsbeispiel einer Messtafel; FIG. 4 shows a first exemplary embodiment of a measuring panel;
Figur 5 zeigt ein zweites Ausführungsbeispiel einer Messtafel; Figure 5 shows a second embodiment of a measuring board;
Figur 1 zeigt einen Messplatz 2 zur Durchführung eines erfindungsgemäßen Verfahrens mit einer Messebene 4, die zur Aufnahme eines zu vermessenden Fahrzeugs vorgesehen ist. 1 shows a measuring station 2 for carrying out a method according to the invention with a measuring plane 4, which is provided for receiving a vehicle to be measured.
In dem in der Figur 1 gezeigten Ausführungsbeispiel eines Messplatzes 2 ist die Messebene 4 in Form eines Rechtecks mit einer Vorderseite 6, einer Hinterseite 8, einer linken Seite 5 und einer rechten Seite 7 ausgebildet. An den vier Ecken der rechteckigen Messebene 4 ist jeweils eine Messtafel VL, VR, HL, HR angeordnet. Die Messtafeln VL, VR, HL, HR sind im Wesentlichen parallel zur Vorder- und Hinterseite 6, 8 in einem im Wesentlichen rechten Winkel zur linken und rechten Seite 5, 7 der Messebene 4 ausgerichtet. In the exemplary embodiment of a measuring station 2 shown in FIG. 1, the measuring plane 4 is in the form of a rectangle with a front side 6, a rear side 8, a left side 5 and a right side 7. At the four corners of the rectangular measuring plane 4 each a measuring panel VL, VR, HL, HR is arranged. The measuring panels VL, VR, HL, HR are aligned substantially parallel to the front and rear sides 6, 8 at a substantially right angle to the left and right sides 5, 7 of the measuring plane 4.
Die Messtafeln VL, VR, HL, HR sind dabei jedoch nicht unbedingt exakt parallel zur Vorderseite 6 bzw. zur Hinterseite 8 der Messebene 4 und auch nicht zwingend in Form eines Rechtecks angeordnet. Die Positionen und Ausrichtungen der Messtafeln VL, VR, HL, HR weisen im Allgemeinen unbekannte Abweichungen von der in der Figur 1 dargestellten idealisierten Konfiguration auf. Die Positionen der Messtafeln VL, VR, HL, HR dürfen sich während des gesamten Kalibrier- und Messvorgangs, wie er im Folgenden beschrieben wird, nicht verändern. Die Messtafeln VL, VR, HL, HR können am Boden der Messebene 4 aufgestellt, einem geeigneten, in den Figuren nicht gezeigten Rahmen fixiert oder an dem zu vermessenden Fahrzeug, das in den Figuren nicht gezeigt ist, befestigt sein. However, the measuring panels VL, VR, HL, HR are not necessarily exactly parallel to the front 6 or to the rear 8 of the measuring plane 4 and not necessarily arranged in the form of a rectangle. The positions and orientations of the measuring panels VL, VR, HL, HR generally have unknown deviations from the idealized configuration shown in FIG. The positions of the measurement boards VL, VR, HL, HR must not change during the entire calibration and measuring process, as described below. The measuring panels VL, VR, HL, HR can be placed at the bottom of the measuring plane 4, fixed to a suitable frame, not shown in the figures, or fastened to the vehicle to be measured, which is not shown in the figures.
Links und rechts von der Messebene 4 ist jeweils ein Messwertaufnehmer MW1 , MW2 angeordnet. Jeder der Messwertaufnehmer MW1 , MW2 weist jeweils ein kalibriertes Referenzsystem R1 , R2 und zwei Kamerasysteme KV1 , KH1 , KV2,On the left and right of the measuring level 4, in each case one measuring transducer MW1, MW2 is arranged. Each of the transducers MW1, MW2 has in each case a calibrated reference system R1, R2 and two camera systems KV1, KH1, KV2,
KH2 auf. Die Kamerasysteme KV1 , KH1 , KV2, KH2 sind so ausgerichtet, dass ihre jeweilige Mess- und Bildaufnahmerichtung (Blickrichtung) im Wesentlichen parallel zu den Längsseiten 5, 7 der Messebene 4 bzw. des zu vermessenden Fahrzeugs ausgerichtet ist. Jeweils eine der Messvorrichtungen KV1 , KH1 , KV2, KH2 jedes der beiden Messwertaufnehmer MW1 , MW2 ist in Richtung auf dieKH2 on. The camera systems KV1, KH1, KV2, KH2 are aligned such that their respective measurement and image recording direction (viewing direction) is aligned substantially parallel to the longitudinal sides 5, 7 of the measuring plane 4 or of the vehicle to be measured. In each case one of the measuring devices KV1, KH1, KV2, KH2 of each of the two transducers MW1, MW2 is in the direction of the
Vorderseite 6 bzw. Hinterseite 8 der Messebene 4 ausgerichtet, so dass jede der Aufnahmevorrichtungen KV1 , KH1 , KV2, KH2 eine der Messtafeln VL, HL, VR, HR optisch erfasst und jede der Messtafeln VL, HL, VR, HR von einer der Aufnahmevorrichtungen KV1 , KH 1 , KV2, KH2 optisch erfassbar ist. Front 6 and rear 8 of the measuring plane 4 aligned so that each of the receiving devices KV1, KH1, KV2, KH2 optically detects one of the measuring panels VL, HL, VR, HR and each of the measuring panels VL, HL, VR, HR of one of the receiving devices KV1, KH 1, KV2, KH2 is optically detectable.
Jeder der beiden Messwertaufnehmer MW1 , MW2 ist vor der Durchführung der eigentlichen Messung für sich mit einem bekannten Verfahren kalibriert worden, so dass die lokalen Koordinatensysteme der beiden Bildaufnahmevorrichtungen KV1 , KH1 , KV2, KH2 eines Messwertaufnehmers MW1 , MW2 parallel zueinan- der ausgerichtet sind bzw. die Abweichungen von der Parallelität bekannt sind und bei der Auswertung der Messungen berücksichtigt werden können. Messfehler, die sich aus der Abweichung der Aufnahmerichtungen der Bildaufnahmevorrichtungen KV1 , KH1 , KV2, KH2 innerhalb eines Messwertaufnehmers MW1 , MW2 von der Parallelität ergeben, werden so korrigiert. Each of the two transducers MW1, MW2 has been calibrated by a known method before performing the actual measurement, so that the local coordinate systems of the two imaging devices KV1, KH1, KV2, KH2 of a transducer MW1, MW2 are aligned parallel to each other or the deviations from the parallelism are known and can be taken into account in the evaluation of the measurements. Measurement errors that result from the deviation of the recording directions of the image recording devices KV1, KH1, KV2, KH2 within a transducer MW1, MW2 from the parallelism are corrected in this way.
Die Koordinatensysteme der beiden Messwertaufnehmer MW1 , MW2 sind in den Figuren 1 und 2 mit X-ι und X2 bezeichnet. The coordinate systems of the two transducers MW1, MW2 are designated in the figures 1 and 2 with X-ι and x2.
Die in der Figur 1 durch gestrichelte Linien dargestellten Messtafeln VL1 , HL1 , VR1 , HR1 symbolisieren die Positionen, in denen die Messtafeln VL, HL, VR, HR aus der Sicht des jeweiligen Messwertaufnehmers MW1 , MW2 erscheinen. nVi_i , nvRi , n HLI n HRI nVi_2, nVR2, nHi_2, nHR2 bezeichnen zugehörige Normalenvektoren, d.h. Vektoren, die in einem rechten Winkel zu Ebene der jeweiligen Messtafel VL1 , HL1 , VR1 , HR1 angeordnet sind. The measuring panels VL1, HL1, VR1, HR1 shown by dashed lines in FIG. 1 symbolize the positions in which the measuring panels VL, HL, VR, HR appear from the view of the respective measuring transducer MW1, MW2. n V i_i, nvRi, n HLI n HRI n V i_2, n V R2, n H i_2, n H R2 denote associated normal vectors, ie vectors which are arranged at a right angle to the plane of the respective measuring table VL1, HL1, VR1, HR1.
Insbesondere symbolisieren die Messtafeln VL1 , HL1 die Position der linken Messtafeln VL und HL, wie sie durch den linken Messwertaufnehmer MW1 bestimmt worden sind. Entsprechend symbolisieren die Messtafeln VR1 und HR1 die Positionen der rechten Messtafeln VR und HR, wie sie durch den rechten Messwertaufnehmers MW2 bestimmt worden sind. Nachdem die Positionen der Messtafeln VL, HL, VR, HR in einem ersten Messschritt in der in der Figur 1 gezeigten Konfiguration, in welcher der erste Messwertaufnehmer MW1 links und der zweite Messwertaufnehmer MW2 rechts von der Messebene 4 angeordnet ist, aufgenommen und die Positionen der Messtafeln VL, HL, VR, HR aus der Sicht des jeweiligen Messwertaufnehmers MW1 , MW2 bestimmt worden sind, werden die beiden Messwertaufnehmer MW1 , MW2 vertauscht. D. h., der in der Figur 1 links von der Messebene 4 angeordnete erste Messwertaufnehmer MW1 wird auf der rechten Seite der Messebene 4 angeordnet und der in der Figur 1 rechts von der Messebene 4 angeordnete zweite Messwertaufnehmer MW2 wird links von der Messebene 4 angeordnet, wie in der Figur 2 gezeigt. In particular, the measuring panels VL1, HL1 symbolize the position of the left measuring panels VL and HL, as determined by the left measuring sensor MW1. Accordingly, the measuring panels VR1 and HR1 symbolize the positions of the right measuring panels VR and HR, as determined by the right-hand sensor MW2. After the positions of the measuring panels VL, HL, VR, HR in a first measuring step in the configuration shown in Figure 1, in which the first transducer MW1 left and the second transducer MW2 is located to the right of the measurement plane 4, recorded and the positions of Measuring panels VL, HL, VR, HR have been determined from the perspective of the respective transducer MW1, MW2, the two transducers MW1, MW2 are reversed. That is to say, the first measuring transducer MW1 arranged on the left of the measuring plane 4 in FIG. 1 is arranged on the right side of the measuring plane 4 and the second measuring transducer MW2 arranged on the right of the measuring plane 4 in FIG. 1 is arranged to the left of the measuring plane 4 as shown in FIG.
Beim Vertauschen werden die Messwertaufnehmer MW1 , MW2 auch um ihre jeweilige Hochachse, die senkrecht zur Zeichenebene der Figuren 1 und 2 ausgerichtet ist, gedreht, so dass auch die der Vorderseite 6 bzw. der Hinterseite 8 der Messebene 4 zugewandten Bildaufnahmeeinrichtungen KH2, KV2, KH 1 und KV1 miteinander vertauscht werden. Dass heißt, diejenigen Bildaufnahmeeinrichtungen KV1 , KV2, die in der in der Figur 1 gezeigten Anordnung die vorderen Messtafeln VL und VR erfassen, nehmen in der in der Figur 2 gezeigten Anordnung Bilder der hinteren Messtafeln HL und HR auf, und diejenigen Bildaufnahmeein- richtungen KH1 , KH2, die in der in der Figur 1 gezeigten Anordnung die hinterenWhen interchanging the transducers MW1, MW2 are also rotated about their respective vertical axis, which is aligned perpendicular to the plane of Figures 1 and 2, so that the front side 6 and the rear 8 of the measuring plane 4 facing image pickup devices KH2, KV2, KH 1 and KV1 are interchanged. That is, those image pickup devices KV1, KV2 which detect the front measurement boards VL and VR in the arrangement shown in Fig. 1 take pictures of the rear measurement boards HL and HR in the arrangement shown in Fig. 2, and those image pickup devices KH1 , KH2, which in the arrangement shown in Figure 1, the rear
Messtafeln HL und HR erfassen, nehmen in der in der Figur 2 gezeigten Anordnung Bilder der vorderen Messtafeln VL und VR auf. Detect measuring panels HL and HR, take in the arrangement shown in Figure 2 images of the front panels VL and VR on.
Auch in der in der Figur 2 gezeigten Anordnung der Messwertaufnehmer MW1 , MW2 werden in einem zweiten Messschritt Bilder der Messtafeln VL, HL, VR, HR aufgenommen und die Positionen der Messtafeln VL, HL, VR, HR werden aus Sicht des jeweiligen Messwertaufnehmers MW1 , MW2 bestimmt. Die in der Figur 2 durch gestrichelte Linien dargestellten Messtafeln VL2, HL2, VR2, HR2 symbolisieren die Position, in der die Messtafeln, VL, HL, VR, HR aus Sicht des jeweiligen Messwertaufnehmers MW1 , MW2 erscheinen. In the arrangement of the transducers MW1, MW2 shown in FIG. 2, in a second measuring step, images of the measuring panels VL, HL, VR, HR are recorded and the positions of the measuring panels VL, HL, VR, HR are viewed from the respective measuring transducer MW1, MW2 determined. The measuring panels VL2, HL2, VR2, HR2 shown by dashed lines in FIG. 2 symbolize the position in which the measuring panels, VL, HL, VR, HR appear from the perspective of the respective measuring transducer MW1, MW2.
In einem folgenden Schritt werden die Koordinaten der Messtafeln VL, HL, VR, HR, die in den beiden Messschritten bestimmt worden sind, aufeinander transformiert. Wenn das von den beiden Messwertaufnehmern MW1 , MW2 gebildete Messsystem kalibriert ist, sind die in den beiden durchgeführten Messschritten bestimmten Koordinaten der Messtafeln VL, HL, VR, HR in einem globalen Koordinatensystem identisch und die Bilder der Messtafeln VL, HL, VR, HR werden identisch aufeinander abgebildet. In a following step, the coordinates of the measuring tables VL, HL, VR, HR, which have been determined in the two measuring steps, are transformed one on the other. If the measurement system formed by the two transducers MW1, MW2 is calibrated, the coordinates of the measurement boards VL, HL, VR, HR determined in the two measurement steps performed are identical in a global coordinate system and the images of the measurement boards VL, HL, VR, HR become imaged identically to each other.
Im Allgemeinen sind die beiden Messwertaufnehmer MW1 und MW2 jedoch nicht von vornherein aufeinander kalibriert, sodass die in den beiden durchgeführten Messschritten bestimmten Koordinaten der Messtafeln VL, HL, VR, HR im globalen Koordinatensystem nicht identisch sind. In general, however, the two transducers MW1 and MW2 are not calibrated to each other from the beginning, so that the coordinates of the measuring tables VL, HL, VR, HR in the global coordinate system determined in the two measuring steps performed are not identical.
Figur 3 zeigt beispielhaft das Ergebnis einer derartigen Transformation. FIG. 3 shows by way of example the result of such a transformation.
Die Abbildungen VL1 und HR2 der Messtafel VL wurden als Referenz der Transformation gewählt und aufeinander abgebildet. Da sich dekalibrierte Kamerasysteme KV1 , KH1 , KV2, KH2 immer nur auf einer Seite bemerkbar machen, werden die Abbildungen HL1 und VR2 der Messtafel HL dann ebenfalls identisch aufeinander abgebildet. The mappings VL1 and HR2 of the measurement table VL were chosen as reference of the transformation and mapped to each other. Since decalibrated camera systems KV1, KH1, KV2, KH2 only ever make themselves noticeable on one side, the images HL1 and VR2 of the measuring panel HL are then also imaged identically on one another.
Die Abbildungen VR1 und HL2 sowie HR1 und VL2 sind nicht deckungsgleich, sondern weichen voneinander ab, wenn die Aufnahmerichtungen der Kamerasysteme KV1 , KH1 , KV2, KH2 nicht exakt parallel zueinander ausgerichtet sondern dekalibriert sind. The images VR1 and HL2 as well as HR1 and VL2 are not congruent, but differ from each other, if the receiving directions of the camera systems KV1, KH1, KV2, KH2 are not exactly aligned parallel to each other but decalibrated.
Weisen beide Messwertaufnehmer MW1 , MW2 eine gleichgroße Dekalibrierung auf, so heben sich die Fehler gegenseitig auf und die Berechnung eines Korrekturwerts zur Kalibrierung ist nicht erforderlich. If both transducers MW1, MW2 have an equal decalibration, the errors cancel each other out and the calculation of a calibration correction value is not necessary.
Überschreitet die Abweichung einen vorgegebenen Grenzwert, wird wenigstens ein Korrekturwert RSL, RSR berechnet, um die Messergebnisse zu korrigieren. Durch die Wahl des Grenzwertes wird die Genauigkeit der Kalibrierung und damit auch die maximal mögliche Genauigkeit der folgenden Messungen bestimmt. Die Korrekturwerte RSL, RSR ergeben sich aus den Abweichungen W1 = VR1 - HL2 und W2 = HR1 - VL2 der Positionen der Messtafeln VL, HL, VR, HR zwischen den beiden in den Figuren 1 und 2 gezeigten Anordnungen der Messwertaufnehmer MW1 , MW2: If the deviation exceeds a predetermined limit value, at least one correction value RSL, RSR is calculated in order to correct the measurement results. The choice of the limit value determines the accuracy of the calibration and thus also the maximum possible accuracy of the following measurements. The correction values RSL, RSR result from the deviations W1 = VR1-HL2 and W2 = HR1-VL2 of the positions of the measurement boards VL, HL, VR, HR between the two arrangements of the transducers MW1, MW2 shown in FIGS.
W1 = VR1 - HL2 = 2 RSL - 2 RSR W1 = VR1 - HL2 = 2 RSL - 2 RSR
W2 = HR1 - VL2 = 2 RSL - 2 RSR. W2 = HR1 - VL2 = 2 RSL - 2 RSR.
Das lineare Gleichungssystem umfasst zwei Gleichungen mit zwei Unbekannten; es ist daher nicht eindeutig lösbar. Die Einzelfehler der beiden Messwertaufnehmer MW1 und MW2 können daher mit diesem Verfahren nicht berechnet werden. The linear equation system comprises two equations with two unknowns; it is therefore not uniquely solvable. The individual errors of the two transducers MW1 and MW2 can therefore not be calculated with this method.
Für die Achsvermessung ist es jedoch ausreichend, dass die Spurrichtungen auf der linken und der rechten Seite des Fahrzeugs relativ zueinander passen, d. h., dass die linken und rechten Spurrichtungen parallel zueinander sind. However, it is sufficient for the wheel alignment that the lane directions on the left and right sides of the vehicle are relative to each other, i.e. that is, the left and right lane directions are parallel to each other.
Das lineare Gleichungssystem wird daher unter der Annahme RSR = 0 gelöst, d.h., die Kalibrierung wird auf die Korrektur der Kamerasysteme KV1 , KH1 des linken Messwertaufnehmers MW1 reduziert. Alternativ können unter der Annahme RSL = 0 auch die Kamerasysteme KV2, KH2 des rechten Messwertaufnehmers MW2 kalibriert werden. The linear equation system is therefore solved under the assumption RSR = 0, that is, the calibration is reduced to the correction of the camera systems KV1, KH1 of the left transducer MW1. Alternatively, assuming RSL = 0, the camera systems KV2, KH2 of the right-hand transducer MW2 can also be calibrated.
Aus dem linearen Gleichungssystem ergibt sich unter der beschriebenen Annahme RSR = 0: From the linear system of equations results under the assumed assumption RSR = 0:
RSL = (W1 + W2) / 4. RSL = (W1 + W2) / 4.
Die Berücksichtigung des so bestimmten Korrekturwertes RSL bei der Auswertung der Messungen bewirkt, dass Abweichungen der Messrichtungen der beiden Messwertaufnehmer MW1 , MW2 von der Parallelität ausgeglichen werden und die Spur des Fahrzeugs mit hoher Genauigkeit gemessen werden kann. The consideration of the thus determined correction value RSL in the evaluation of the measurements has the effect that deviations of the measuring directions of the two transducers MW1, MW2 from the parallelism are compensated and the track of the vehicle can be measured with high accuracy.
Da sich dekalibrierte Kamerasysteme KV1 , KH1 , KV2, KH2 immer nur auf einer Seite bemerkbar macht, können die Koordinaten der Messtafeln VL1 und HL1 gemeinsam auf die Koordinaten der Messtafeln HR2 und VR2 transformiert werden, um Rauschen und/oder andere Restfehler zu minimieren und die Genauigkeit weiter zu steigern. Eine weitere Steigerung der Genauigkeit ist möglich, indem die Transformation zusätzlich auch für die Messtafeln der anderen Seite durchführt (Transformation von VR1 und HR1 auf HL2 und VL2) und die entsprechenden Abweichungen auf der linken Seite des Messplatzes 2 berechnet werden. Der so ermittelte Korrekturwert wird mit dem zuvor mit den Messtafeln der ersten Seite ermittelten Korrekturwert gemittelt. Since decalibrated camera systems KV1, KH1, KV2, KH2 are always noticeable on only one side, the coordinates of the measurement boards VL1 and HL1 can be jointly transformed to the coordinates of the measurement boards HR2 and VR2 in order to minimize noise and / or other residual errors, and the Accuracy to increase further. A further increase in accuracy is possible by additionally performing the transformation for the measuring boards of the other side (transformation of VR1 and HR1 to HL2 and VL2) and calculating the corresponding deviations on the left side of measuring station 2. The correction value thus determined is averaged with the correction value previously determined with the measurement boards of the first page.
Der in dem zuvor beschriebenen Verfahren bestimmte Korrekturwert RSL bzw. RSR wird gespeichert und bei jeder folgenden Messung berücksichtigt. Durch die Kalibrierung bilden die beiden Messwertaufnehmer MW1 , MW2 ein Messsystem und können nur gemeinsam betrieben werden. Wird einer der beiden Messwertaufnehmer MW1 , MW2 ausgetauscht, so muss eine erneute Kalibrierung durchgeführt werden, um einen neuen Korrekturwert RSL bzw. RSR für das neu gebildete Messsystem zu bestimmen. The correction value RSL or RSR determined in the method described above is stored and taken into account in each subsequent measurement. Due to the calibration, the two transducers MW1, MW2 form a measuring system and can only be operated together. If one of the two transducers MW1, MW2 is replaced, a new calibration must be carried out in order to determine a new correction value RSL or RSR for the newly formed measuring system.
Figur 4 zeigt beispielhaft eine Messtafel VL zum Einsatz auf einer Messebene 4, wie sie z. B. von einer Hebebühne zur Verfügung gestellt wird. FIG. 4 shows, by way of example, a measuring panel VL for use on a measuring plane 4, as described, for example, in FIG. B. is provided by a lift.
Die Messtafel VL weist wenigstens zwei Messpunkte 10, 12 und drei Füße 14 (Drei-Punkt-Lagerung) auf. The measuring panel VL has at least two measuring points 10, 12 and three feet 14 (three-point mounting).
Die räumliche Ausrichtung der durch die Füße 14 definierten Geraden g2 (Null- Richtung) in Bezug auf die durch die wenigstens zwei Marken 10, 12 auf der Messtafel VL definierte Gerade g-ι ist bekannt. Der Einfachheit halber sind diese beiden Geraden g-ι, g2 in der Figur 4 parallel zueinander gezeichnet. Eine solche Parallelität ist jedoch nicht zwingend erforderlich; es ist vielmehr ausreichend, dass der Winkel zwischen den beiden Geraden g-ι, g2 bekannt ist. The spatial orientation of the straight lines g 2 (zero direction) defined by the feet 14 with respect to the straight line g-1 defined by the at least two marks 10, 12 on the measuring panel VL is known. For simplicity, these two straight lines are g-ι drawn g 2 in the figure 4 in parallel. However, such parallelism is not mandatory; Rather, it is sufficient that the angle between the two straight lines g- 1 , g 2 is known.
Die Messung der Marken 10, 12 auf der Tafel VL erfolgt, nachdem die Tafel VL mit den Füßen 14 auf der Messebene 4, welche eine Gerade g3 definiert, abgestellt worden ist. The measurement of the marks 10, 12 on the panel VL takes place after the panel VL has been parked with the feet 14 on the measurement plane 4, which defines a straight line g 3 .
Figur 5 zeigt ein alternatives Ausführungsbeispiel, bei dem die Messung auf einem beliebigen Messplatz (z. B. einem Hallenboden) erfolgen kann, wobei keine Anforderungen an die Ebenheit und Ausrichtung der Messebene 4 bestehen. In dem in der Figur 5 gezeigten Ausführungsbeispiel weist die Messtafel VL eine Libelle (Wasserwaage) auf, die in Bezug auf die Gerade g-ι , die durch wenigstens zwei auf der Messtafel VL angeordneten Messpunkte 10, 12 definiert wird, in einer definierten Ausrichtung g4 angeordnet ist. In der Figur 5 sind die Geraden g-i und g4 parallel zueinander dargestellt. Dies ist jedoch nicht zwingend erforderlich, es ist vielmehr ausreichend, dass die Ausrichtung der Libelle 16 im Bezug auf die durch die Messpunkte 10, 12 definierte Gerade g-ι bekannt ist. 5 shows an alternative exemplary embodiment, in which the measurement can be performed on any measuring station (eg a hall floor), wherein there are no requirements for the flatness and orientation of the measuring plane 4. In the exemplary embodiment shown in FIG. 5, the measuring panel VL has a level (spirit level) which is defined in a defined orientation g with respect to the straight line g-1, which is defined by at least two measuring points 10, 12 arranged on the measuring panel VL 4 is arranged. In the figure 5, the lines gi and g 4 are shown parallel to each other. However, this is not absolutely necessary, but it is sufficient that the orientation of the dragonfly 16 with respect to the defined by the measuring points 10, 12 straight line g-ι is known.
Die Messtafel VL ist über ein Gelenk 18 derart mit den Füßen 14 verbunden, dass die Messtafel VL mit der Libelle 16 und den Messpunkten 10, 12 um eine Achse A des Gelenks 18 schwenkbar ist. The measuring panel VL is connected to the feet 14 via a hinge 18 such that the measuring panel VL with the level 16 and the measuring points 10, 12 is pivotable about an axis A of the joint 18.
Bevor die Messungen durchgeführt werden, wird die Messtafel VL, nachdem sie auf dem Messplatz 4 platziert worden ist, um die Drehachse A des Gelenks 18 geschwenkt und in einer gewünschten Position, welche an der Libelle 16 abgelesen werden kann, arretiert. Die Erfassung der Marken 10, 12 auf der Messtafel VL durch eine der Bildaufnahmevorrichtungen KH1 , KV1 , KH2, KV2 der Messwertaufnehmer MW1 , MW2 erfolgt, nachdem die beschriebene Ausrichtung der Messtafel VL vorgenommen worden ist. Before the measurements are taken, the measuring panel VL, after it has been placed on the measuring station 4, pivoted about the axis of rotation A of the joint 18 and in a desired position, which can be read on the dragonfly 16 arrested. The detection of the marks 10, 12 on the measuring panel VL by one of the image pickup devices KH1, KV1, KH2, KV2 of the transducers MW1, MW2 takes place after the described alignment of the measuring panel VL has been made.
Da die räumliche Ausrichtung der Messtafel VL mit Hilfe der Libelle 16 definiert ist und die Ausrichtung der Libelle 16 in Bezug auf die Messpunkte 10, 12 bekannt ist, können die Kalibrierung und die Messung mit einer derartigen Messtafel VL unabhängig von der räumlichen Ausrichtung und Ebenheit der Messebene 4 durchgeführt werden. Das Messverfahren kann flexibel an beliebigen Orten mit hoher Genauigkeit durchgeführt werden. Since the spatial orientation of the measuring panel VL is defined by means of the level 16 and the orientation of the level 16 with respect to the measuring points 10, 12 is known, the calibration and the measurement with such a measuring panel VL, regardless of the spatial orientation and flatness of the Level 4 are carried out. The measuring method can be performed flexibly anywhere with high accuracy.
Aus der Abweichung der durch die Marken 10, 12 definierten Richtung g-ι von der Null-Richtung g2 bzw. g4 kann eine absolute Sturzkorrektur abgeleitet werden. Die Sturzkorrektur ist eine Korrektur des Fehlers, der aus der Kombination eines Bildaufnahmesystems KH1 , KV1 , KH2, KV2 und dem zugehörigen Referenzsystem R1 , R2 resultiert. From the deviation of the direction g- 1 defined by the marks 10, 12 from the zero direction g 2 or g 4 , an absolute fall correction can be derived. The fall correction is a correction of the error resulting from the combination of an imaging system KH1, KV1, KH2, KV2 and the associated reference system R1, R2.
Wenn mehr als eine Kamera verwendet wird und die Zuordnung der Kameras zueinander bekannt ist, sind je zwei Marken 10, 12 auf den Messtafeln VL, VR, HL, HR ausreichend, wenn die beiden Marken 10, 12 auf einer exakt waagerechten Linie angeordnet sind. Ist die Zuordnung der Kameras zueinander nicht bekannt oder wird nur eine (Mono-)Kamera verwendet, so sind auf jeder der Messtafeln VL, HL, VR, HR mindestens drei Marken 10, 12 erforderlich. Auch zur Bestimmung der Spur sind wenigstens drei Marken 10, 12 auf jeder der Messtafeln VL, HL, VR, HR erforder- lieh. If more than one camera is used and the assignment of the cameras to each other is known, two marks 10, 12 on the measurement boards VL, VR, HL, HR are sufficient if the two marks 10, 12 are arranged on an exactly horizontal line. If the assignment of the cameras to each other is not known or if only one (mono) camera is used, then at least three marks 10, 12 are required on each of the measuring panels VL, HL, VR, HR. Also for determining the track, at least three marks 10, 12 are required on each of the measuring tables VL, HL, VR, HR.

Claims

Patentansprüche claims
1 . Verfahren zum Kalibrieren eines Messsystems zur Fahrzeugvermessung mit 1 . Method for calibrating a measuring system for vehicle measurement with
einer Messebene (4), die zur Aufnahme eines zu vermessenden Fahrzeugs ausgebildet ist, und  a measuring plane (4), which is designed to receive a vehicle to be measured, and
zwei Messwertaufnehmern (MW1 , MW2), wobei jeder der Messwertaufnehmer (MW1 , MW2) wenigstens zwei Kamerasysteme (KV1 , KH1 , KV2, KH2) und ein Referenzsystem (R1 , R2) aufweist,  two transducers (MW1, MW2), each of the transducers (MW1, MW2) having at least two camera systems (KV1, KH1, KV2, KH2) and a reference system (R1, R2),
wobei das Verfahren die Schritte aufweist:  the method comprising the steps of:
Positionieren von wenigstens vier Messtafeln (VL, VR, HL, HR) an der Messebene (4);  Positioning at least four measuring panels (VL, VR, HL, HR) at the measuring plane (4);
Ausrichten der Messwertaufnehmer (MW1 , MW2) derart, dass sich jeweils wenigstens eine der Messtafeln (VL, VR, HL, HR) im Blickfeld jedes Kamerasys- tems (KV1 , KH1 , KV2, KH2) befindet und sich jede der Messtafeln (VL, VR, HL, Aligning the transducers (MW1, MW2) such that in each case at least one of the measuring panels (VL, VR, HL, HR) is in the field of view of each camera system (KV1, KH1, KV2, KH2) and each of the measuring panels (VL, VR, HL,
HR) im Blickfeld von wenigstens einem der Kamerasysteme (KV1 , KH1 , KV2, KH2) befindet; HR) is within the field of vision of at least one of the camera systems (KV1, KH1, KV2, KH2);
Durchführen eines ersten Messschrittes, der das Aufnehmen von Bildern der Messtafeln (VL, VR, HL, HR) mit den Kamerasystemen (KV1 , KH 1 , KV2, KH2) umfasst;  Performing a first measuring step comprising taking pictures of the measuring boards (VL, VR, HL, HR) with the camera systems (KV1, KH 1, KV2, KH2);
Vertauschen der beiden Messwertaufnehmer (MW1 , MW2);  Interchange of the two transducers (MW1, MW2);
Durchführen eines zweiten Messschrittes, der das Aufnehmen von Bildern der Messtafeln (VL, VR, HL, HR) mit den Kamerasystemen (KV1 , KH 1 , KV2, KH2) umfasst;  Performing a second measuring step comprising taking pictures of the measuring boards (VL, VR, HL, HR) with the camera systems (KV1, KH 1, KV2, KH2);
Bestimmen der räumlichen Positionen der Messtafeln (VL, VR, HL, HR) aus den im ersten und in zweiten Messschritt aufgenommenen Bildern;  Determining the spatial positions of the measurement boards (VL, VR, HL, HR) from the images taken in the first and second measurement steps;
Berechnen wenigstens eines Korrekturwertes (RSL, RSR) aus der Differenz der räumlichen Positionen der Messtafeln (VL, VR, HL, HR), die aus den im ersten und im zweiten Messschritt aufgenommenen Bildern bestimmt worden sind.  Calculating at least one correction value (RSL, RSR) from the difference between the spatial positions of the measurement boards (VL, VR, HL, HR) determined from the images taken in the first and second measurement steps.
2. Verfahren nach Anspruch 1 , wobei das Bestimmen des Korrekturwertes (RSL, RSR) das Lösen eines linearen Gleichungssystem einschließt. The method of claim 1, wherein determining the correction value (RSL, RSR) includes solving a linear equation system.
3. Verfahren nach Anspruch 2, wobei der Korrekturwert (RSL, RSR) für ei- nen Messwertaufnehmer (MW1 , MW2) auf einen vorgegebenen Wert gesetzt wird, um den Korrekturwert (RSR, RSL) für den anderen Messwertaufnehmer (MW2, MW1 ) zu berechnen. 3. The method of claim 2, wherein the correction value (RSL, RSR) for a transducer (MW1, MW2) is set to a predetermined value to the correction value (RSR, RSL) for the other transducer (MW2, MW1) to calculate.
4. Verfahren nach einem der vorangehenden Ansprüche, welches einschließt, die Normalenvektoren (nVi_, nVR, ηΗι_, n HR) von wenigstens zwei Messtafeln (VL, VR, HL, HR) miteinander zu vergleichen. 4. The method according to any one of the preceding claims, which includes the normal vectors (n V i_, n V R, η Η ι_, n HR) of at least two measuring panels (VL, VR, HL, HR) to compare.
5. Verfahren nach Anspruch 4, wobei Korrekturwerte (RSL, RSR) für zwei Paare von Messtafeln (VL, VR, HL, HR) bestimmt werden und ein endgültiger Korrekturwert (RSM) durch Mitteln der beiden Korrekturwerte (RSL, RSR) bestimmt wird. 5. The method of claim 4, wherein correction values (RSL, RSR) are determined for two pairs of measurement tables (VL, VR, HL, HR) and a final correction value (RSM) is determined by averaging the two correction values (RSL, RSR).
6. Verfahren nach einem der vorangehenden Ansprüche, wobei die Messung auf einer nivellierten Bühne (4) ausgeführt wird, wobei die Bühne (4) und die Messtafeln (VL, VR, HL, HR) in Bezug auf das Erdgravitationsfeld ausgerichtet sind. A method according to any one of the preceding claims, wherein the measurement is carried out on a leveled stage (4), the stage (4) and the measuring boards (VL, VR, HL, HR) being aligned with respect to the earth's gravitational field.
7. Verfahren nach einem der vorangehenden Ansprüche, wobei wenigstens eine der Messtafeln (VL) wenigstens zwei Messpunkte(10, 12) aufweist, deren Ausrichtung in Bezug auf die räumliche Ausrichtung wenigstens eines Fußes (14) der Messtafel (VL) bekannt ist. Method according to one of the preceding claims, wherein at least one of the measuring panels (VL) has at least two measuring points (10, 12) whose orientation with respect to the spatial orientation of at least one foot (14) of the measuring panel (VL) is known.
8. Verfahren nach einem der vorangehenden Ansprüche, wobei wenigstens eine der Messtafeln (VL) drehbar gelagert ist. 8. The method according to any one of the preceding claims, wherein at least one of the measuring panels (VL) is rotatably mounted.
9. Verfahren nach einem der vorangehenden Ansprüche, wobei wenigstens eine Messtafel (VL) wenigstens eine Libelle (16) aufweist, die zum Bestimmen der räumlichen Ausrichtung der Messtafel (VL) geeignet ist. 9. The method according to any one of the preceding claims, wherein at least one measuring panel (VL) has at least one dragonfly (16), which is suitable for determining the spatial orientation of the measuring panel (VL).
10. Verfahren nach einem der vorangehenden Ansprüche, wobei zusätzlich die Seriennummern der Messwertaufnehmer (MW1 , MW2) ermittelt und zusammen mit dem Korrekturwert (RSL, RSR) abgespeichert werden. 10. The method according to any one of the preceding claims, wherein additionally determines the serial numbers of the transducers (MW1, MW2) and stored together with the correction value (RSL, RSR).
PCT/EP2011/062498 2010-09-13 2011-07-21 Method for calibrating a measuring station for vehicle measurement WO2012034746A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/821,046 US20130342686A1 (en) 2010-09-13 2011-07-21 Method for calibrating a measuring station for measuring a vehicle
EP11755282.8A EP2616767B1 (en) 2010-09-13 2011-07-21 Method for calibrating a measuring station for vehicle measurement
CN201180043808.2A CN103109155B (en) 2010-09-13 2011-07-21 To the method that the test desk measured for automobile corrects

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010040626A DE102010040626A1 (en) 2010-09-13 2010-09-13 Method for calibrating a measuring station for vehicle measurement
DE102010040626.0 2010-09-13

Publications (1)

Publication Number Publication Date
WO2012034746A1 true WO2012034746A1 (en) 2012-03-22

Family

ID=44645660

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/062498 WO2012034746A1 (en) 2010-09-13 2011-07-21 Method for calibrating a measuring station for vehicle measurement

Country Status (5)

Country Link
US (1) US20130342686A1 (en)
EP (1) EP2616767B1 (en)
CN (1) CN103109155B (en)
DE (1) DE102010040626A1 (en)
WO (1) WO2012034746A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010062696A1 (en) * 2010-12-09 2012-06-14 Robert Bosch Gmbh Method and device for calibrating and adjusting a vehicle environment sensor.
DE102015112368A1 (en) 2015-07-29 2017-02-02 Hella Gutmann Solutions GmbH Method and device for calibrating vehicle assistance systems
US10365355B1 (en) * 2016-04-21 2019-07-30 Hunter Engineering Company Method for collective calibration of multiple vehicle safety system sensors

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009056392A1 (en) * 2007-10-29 2009-05-07 Corghi S.P.A. A device and a method for checking an attitude of a vehicle
DE102008042018A1 (en) * 2008-09-12 2010-03-18 Robert Bosch Gmbh Method for adjusting or calibrating a vehicle surroundings sensor and vehicle surroundings sensor adjustment or calibration arrangement
DE102008042024A1 (en) * 2008-09-12 2010-03-18 Robert Bosch Gmbh Method and device for optical wheel alignment of motor vehicles
DE102009028796A1 (en) * 2008-09-12 2010-04-15 Robert Bosch Gmbh Chassis measuring device with homing device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5142648A (en) * 1990-08-02 1992-08-25 General Motors Corporation Method and apparatus for paint inspection
DE102005063051A1 (en) * 2005-12-29 2007-07-05 Robert Bosch Gmbh Motor vehicle`s e.g. car, chassis measuring method, involves disposing coordinate system for image recording device e.g. camera, and/or measuring unit to determine chassis data of evaluation unit independent of reference objects
JP4139853B2 (en) * 2006-08-31 2008-08-27 松下電器産業株式会社 Image processing apparatus, image processing method, and image processing program
DE102008045841A1 (en) * 2008-09-05 2010-03-11 Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG Method for operating a measuring point

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009056392A1 (en) * 2007-10-29 2009-05-07 Corghi S.P.A. A device and a method for checking an attitude of a vehicle
DE102008042018A1 (en) * 2008-09-12 2010-03-18 Robert Bosch Gmbh Method for adjusting or calibrating a vehicle surroundings sensor and vehicle surroundings sensor adjustment or calibration arrangement
DE102008042024A1 (en) * 2008-09-12 2010-03-18 Robert Bosch Gmbh Method and device for optical wheel alignment of motor vehicles
DE102009028796A1 (en) * 2008-09-12 2010-04-15 Robert Bosch Gmbh Chassis measuring device with homing device

Also Published As

Publication number Publication date
EP2616767B1 (en) 2014-05-14
EP2616767A1 (en) 2013-07-24
CN103109155B (en) 2016-03-16
US20130342686A1 (en) 2013-12-26
DE102010040626A1 (en) 2012-03-15
CN103109155A (en) 2013-05-15

Similar Documents

Publication Publication Date Title
EP3586080B1 (en) Device and method for calibrating vehicle assistance systems
DE60119708T2 (en) DEVICE AND METHOD FOR CALIBRATING THE RELATIVES OF TWO MEASURING DEVICES OF A MEASURING SYSTEM
EP2260263B1 (en) Chassis-measuring system and method for determining the position parameters of probes of a chassis-measuring system
EP2166510B1 (en) Method for calculating the position and orientation of a camera in a vehicle
EP3329294A1 (en) Method and device for calibrating assistance systems of vehicles
WO2019025062A1 (en) Method and apparatus for calibrating a reference target
WO2012019877A1 (en) Method for calibrating a measurement system and device for carrying out the method
DE102008019373A1 (en) Method for calibrating a measuring device of a crane comprises acquiring the surface of the container using sensors, determining the orientation of the surface of the container in reference systems and equilibrating the reference systems
WO2019110156A1 (en) Method for determining a bending angle of a vehicle combination, determining device and vehicle combination
EP2616767B1 (en) Method for calibrating a measuring station for vehicle measurement
DE102017206625A1 (en) Method and device for wheel alignment
DE102017126495B4 (en) Calibration of a stationary camera system for position detection of a mobile robot
DE112015002764T5 (en) Mounting angle adjustment method and on-board camera mounting angle detection device
DE102014219423B4 (en) Dynamic model to compensate for windshield distortion
DE102014219428B4 (en) Self-calibration of a stereo camera system in a car
DE102010040625A1 (en) Method for calibrating measurement system to measure parameters and gauge of vehicle, involves positioning instrument panels at plane of measurement, and computing correction values for sensors from difference of spatial positions of panels
DE102019113441A1 (en) Method for assigning the intrinsic coordinate system of a first unit of a vehicle for recording the space to the side of the vehicle relative to a vehicle-related coordinate system and device for carrying out the method
EP3631351B1 (en) Base for measuring a vehicle with a reference system
BE1027090B1 (en) Method for assigning the intrinsic coordinate system of a first unit of a vehicle for recording the space to the side of the vehicle relative to a vehicle-related coordinate system and device for carrying out the method
EP3002551A1 (en) Reference system and measuring sensor for use in the vehicle measurement
DE102021123201A1 (en) Method and control arrangement for the extrinsic calibration of a camera arranged on a vehicle
DE102014221074A1 (en) Method for monitoring rectification of images
EP2724118A1 (en) Apparatus and method for positioning an external device with respect to a motor vehicle
DE102018206351A1 (en) Method and controller for determining an orientation of a trailer
DE102020212142A1 (en) Procedure for calibrating a calibration sensor, controller and use of the controller

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180043808.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11755282

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011755282

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13821046

Country of ref document: US