WO2012034481A1 - 一种并联电池组 - Google Patents

一种并联电池组 Download PDF

Info

Publication number
WO2012034481A1
WO2012034481A1 PCT/CN2011/079227 CN2011079227W WO2012034481A1 WO 2012034481 A1 WO2012034481 A1 WO 2012034481A1 CN 2011079227 W CN2011079227 W CN 2011079227W WO 2012034481 A1 WO2012034481 A1 WO 2012034481A1
Authority
WO
WIPO (PCT)
Prior art keywords
batteries
battery
battery pack
backflow device
backflow
Prior art date
Application number
PCT/CN2011/079227
Other languages
English (en)
French (fr)
Inventor
张同邦
Original Assignee
华为终端有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为终端有限公司 filed Critical 华为终端有限公司
Publication of WO2012034481A1 publication Critical patent/WO2012034481A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4207Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to the field of power supplies, and more particularly to a parallel battery pack. Background technique
  • the current supplied by the single cell cannot meet the demand, and the battery pack needs to be replaced by a battery pack.
  • the battery pack includes two batteries a, a charge and discharge port b, and a ground terminal c, wherein the positive poles of the two batteries a and the charge and discharge port b Connected, the negative poles of the two batteries a are connected to the ground terminal c.
  • the two batteries a are connected in parallel to increase the supply current.
  • the prior art has at least the following problems: In the existing parallel battery pack, the positive pole of each single cell is connected to the charge and discharge port, when the voltage of the battery in the battery pack exists When the difference or the battery discharge curve is inconsistent, the high-voltage battery will impact the low-voltage battery through the charging and discharging port, and the current inversion will cause a large safety hazard.
  • the present invention provides a parallel battery pack.
  • the technical solution is as follows:
  • a parallel battery pack comprising:
  • a plurality of batteries a plurality of anti-backflow devices, an input end, an output end, and a ground end;
  • An anti-backflow device is disposed between the input end and each of the batteries, an anode of each anti-backflow device is connected to the input end, and a cathode is connected to a positive electrode of the corresponding battery;
  • each anti-backflow is connected to the positive electrode of the corresponding battery, and the cathode is connected to the output terminal; the negative electrode of each battery is connected to the ground terminal.
  • FIG. 1 is a schematic diagram of a parallel battery pack provided by the prior art
  • FIG. 2 is a schematic diagram of a parallel battery pack according to Embodiment 1 of the present invention.
  • FIG. 3 is a schematic diagram of a parallel battery pack composed of two batteries according to Embodiment 1 of the present invention
  • FIG. 4 is a schematic diagram of a parallel battery pack composed of three batteries provided in Embodiment 1 of the present invention.
  • an embodiment of the present invention provides a parallel battery pack, including:
  • an anti-backflow device 2 is disposed between the input terminal 3 and each of the batteries 1, and an anode of each anti-backflow device 2 Connected to the input terminal 3, the cathode is connected to the positive electrode of the corresponding battery 1;
  • An anti-backflow device 2 is disposed between the output terminal 4 and each of the batteries 1.
  • the anode of each anti-backflow device 2 is connected to the positive electrode of the corresponding battery 1, and the cathode is connected to the output terminal 4;
  • each battery 1 is connected to the ground terminal 5.
  • the power source is connected to the input terminal 3, so that the parallel battery pack can be charged, and the load is connected to the output terminal 4, so that the parallel battery pack can be discharged.
  • an anti-backflow device 2 is disposed between each of the batteries 1 and the input terminal 3, and the anode of each anti-backflow device 2 is connected to the input terminal 3, and the cathode is connected to the positive electrode of the corresponding battery 1.
  • the anti-backflow device 2 is disposed at each of the battery 1 and the output terminal, and each The anode of the anti-backflow device 2 is connected to the positive electrode of the corresponding battery 1, and the cathode is connected to the output terminal 4, so that current cannot flow from the output terminal 4 to each battery 1, and thus the current discharged from each battery 1 cannot be made. From the output terminal 4, it flows into the other battery 1 to prevent the occurrence of current backflow.
  • the anti-backflow device 1 can be a diode.
  • the parallel battery pack includes two batteries, namely batteries 11 and 12, and four diodes are diodes 21, 22, 23, and 24, respectively, and input terminal 3, output. End 4 and ground 5;
  • the input terminal 3 is connected to the anodes of the two diodes 21 and 22, respectively, and the cathodes of the diodes 21 and 22 are respectively connected to the anodes of the two batteries 11 and 12;
  • the anodes of the batteries 11 and 12 are respectively connected to the anodes of the remaining two diodes 23 and 24, and the cathodes of the diodes 23 and 24 are connected to the output terminal 4;
  • the negative electrodes of the batteries 11 and 12 are connected to the ground terminal 5.
  • the current at the input terminal 3 can flow from the anodes of the diodes 21 and 22, respectively, and flow from the cathodes of the diodes 11 and 12 to the anodes of the batteries 11 and 12, respectively, and the currents of the batteries 11 and 12 cannot be respectively from the diode 21
  • the cathodes of the 22 and 22 flow from the anodes of the diodes 21 and 22 to the input terminal 3, respectively, so that the current of the battery 11 cannot flow into the battery 12 through the input terminal 3, and the current of the battery 12 cannot flow into the input terminal 3 as well.
  • the currents of the batteries 21 and 22 can flow from the anodes of the diodes 23 and 24, respectively, and flow from the cathodes of the diodes 23 and 24 to the output terminal 4, respectively, and the current at the output terminal 4 cannot flow from the cathodes of the diodes 23 and 24, respectively.
  • the anodes of the diodes 23 and 24 flow into the batteries 11 and 12, respectively, so that the current of the battery 11 cannot flow into the battery 12 through the input terminal 3, and the current of the battery 12 cannot flow into the battery 11 through the input terminal 3.
  • the parallel battery pack includes three batteries 11, 12 and 13, six diodes 21, 22, 23, 24, 25 and 26, and an input terminal 3, Output terminal 4 and ground terminal 5;
  • the input terminal 3 is connected to the anodes of the three diodes 21, 22 and 23, respectively, and the cathodes of the diodes 21, 22 and 23 are respectively connected to the anodes of the three batteries 11, 12 and 13;
  • the anodes of the batteries 11, 12 and 13 are respectively associated with the remaining three diodes 24, 25 and 26
  • the poles are connected, and the cathodes of the diodes 24, 25 and 26 are connected to the output terminal 4;
  • the negative electrodes of the batteries 11, 12 and 13 are connected to the ground terminal 5.
  • the current at the input terminal 3 can flow from the anodes of the diodes 21, 22, and 23, respectively, and from the cathodes of the diodes 21, 22, and 23 to the anodes of the batteries 11, 12, and 13, respectively, and the batteries 11, 12, and 13
  • the current cannot flow from the cathodes of the diodes 21, 22, and 23, respectively, and flows from the anodes of the diodes 21, 22, and 23, respectively, to the input terminal 3, so that the current of the battery 11 cannot flow into the batteries 12 and 13 through the input terminal 3.
  • the current of the battery 12 or 13 cannot flow from the input terminal 3 to other batteries.
  • the currents of the batteries 11, 12 and 13 can flow from the anodes of the diodes 23, 24 and 25, respectively, and then flow from the cathodes of the diodes 23, 24 and 25 to the output terminal 4, respectively, and the current at the output terminal 4 cannot be separately from the diode.
  • the cathodes of 23, 24 and 25 flow in, and then flow from the anodes of the diodes 23, 24 and 25 to the batteries 11, 12 and 13, respectively, so that the current of the battery 11 cannot flow into the batteries 12 and 13 through the output terminal 4, and the battery 12
  • the current of 13 or 13 cannot flow from the output terminal 4 to other batteries.
  • the current of each battery is prevented from flowing into the input end and the output end.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Battery Mounting, Suspending (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Description

一种并联电池组 本申请要求 2010 年 9 月 19 日递交中国专利局, 申请号为 201020540356.1 , 名称为 "一种并联电池组" 的中国专利申请的优先权, 该 申请的全文通过引用结合于本申请中。
技术领域
本发明涉及电源领域, 特别涉及一种并联电池组。 背景技术
在大功率应用场景中, 单体电池提供的电流无法满足需求, 需要用电 池组取代单体电池。 将多个电池并联成电池组, 以提高供电电流。
例如, 如图 1 所示, 将两个电池并联成一个电池组, 该电池组包括两 个电池 a、 充放电端口 b和接地端 c, 其中, 两个电池 a的正极都与充放电 端口 b相连, 两个电池 a的负极都连接在接地端 c上。 其中, 将两个电池 a 并联, 提高了供电电流。
在实现本发明的过程中, 发明人发现现有技术至少存在以下问题: 在现有的并联电池组中每个单体电池的正极都与充放电端口相连, 当 电池组中的电池的电压存在差异时或电池放电曲线不一致时, 会造成高电 压的电池通过充放电端口冲击低电压的电池, 而发生电流倒灌, 存在艮大 的安全隐患。
发明内容
为了防止电流倒灌, 提高安全性, 本发明提供了一种并联电池组。 所 述技术方案如下:
一种并联电池组, 所述并联电池组包括:
多个电池、 多个防倒灌装置、 输入端、 输出端和接地端;
在所述输入端与每个电池之间设置一个防倒灌装置, 每个防倒灌装置 的阳极与所述输入端相连, 阴极与对应的电池的正极相连;
在所述输出端与所述每个电池之间设置一个防倒灌装置, 每个防倒灌 装置装置的阳极与对应的电池的正极相连, 阴极与所述输出端相连; 所述每个电池的负极都与所述接地端相连。
通过在输入端与每个电池之间设置防倒灌装置以及在每个电池与输出 端之间设置防倒灌装置, 阻止每个电池的电流从阳极流入到输入端以及阻 止输出端的电流流入到每个电池中, 从而防止每个电池通过输入端和 /或输 出端流入到其他的电池中而发生倒灌现象, 提高了安全性。 附图说明
图 1是现有技术提供的一种并联电池组示意图;
图 2是本发明实施例 1提供的一种并联电池组示意图;
图 3是本发明实施例 1提供的两个电池组成的并联电池组示意图; 图 4是本发明实施例 1提供的三个电池组成的并联电池组示意图。 具体实施方式
为使本发明的目的、 技术方案和优点更加清楚, 下面将结合附图对本 发明实施方式作进一步地详细描述。 在本申请当中, "多个" 一词系指至少 两个。 实施例 1
如图 2所示, 本发明实施例提供了一种并联电池组, 包括:
多个电池 1、 多个防倒灌装置 2、 输入端 3、 输出端 4和接地端 5; 在输入端 3与每个电池 1之间设置一个防倒灌装置 2,每个防倒灌装置 2的阳极与输入端 3相连, 阴极与对应的电池 1的正极相连;
在输出端 4与每个电池 1之间设置一个防倒灌装置 2,每个防倒灌装置 2的阳极与对应的电池 1的正极相连, 阴极与输出端 4相连;
每个电池 1的负极都与接地端 5相连。
其中, 将电源与输入端 3相连, 可以实现对并联电池组充电, 将负载 与输出端 4相连, 可以实现对并联电池组放电。
其中, 在防倒灌装置 2 中电流只能从阳极流入阴极, 阻断电流从阴极 流入阳极。 因此, 在每个电池 1与输入端 3之间设置防倒灌装置 2, 且每个 防倒灌装置 2的阳极与输入端 3相连, 阴极与对应的电池 1的正极相连, 从而使得每个电池 1放出的电流无法流入到输入端 3并从输入端 3流入到 其他的电池 1 中, 防止电流倒灌现象发生; 在每个电池 1与输出端设置防 倒灌装置 2, 且每个防倒灌装置 2的阳极与对应的电池 1的正极相连, 阴极 与都与输出端 4相连,从而使得电流无法从输出端 4流入到每个电池 1 , 进 而使得每个电池 1放出的电流无法从输出端 4流入到其他的电池 1中, 防 止电流倒灌现象的发生。
其中, 防倒灌装置 1可以为二极管。
例如, 参见图 3 , 将两个电池并联成并联电池组, 该并联电池组包括两 个电池分别为电池 11和 12, 四个二极管分别为二极管 21、 22、 23和 24, 输入端 3 , 输出端 4和接地端 5;
输入端 3分别与两个二级管 21和 22的阳极相连, 二极管 21和 22的 阴极分别与两个电池 11和 12的正极相连;
电池 11和 12的正极分别与剩下的两个二极管 23和 24的阳极相连, 二极管 23和 24的阴极都与输出端 4相连;
电池 11和 12的负极都与接地端 5相连。
其中, 输入端 3的电流可以分别从二极管 21和 22的阳极流入, 再分 别从二极管 11和 12的阴极流到电池 11和 12的正极,而电池 11和 12的电 流无法分别从二级管 21和 22的阴极流入, 再分别从二极管 21和 22的阳 极流到输入端 3 , 因此, 电池 11的电流无法通过输入端 3流入到电池 12 , 同样电池 12的电流也无法通过输入端 3流入到电池 11。
其中, 电池 21和 22的电流可以分别从二极管 23和 24的阳极流入, 再分别从二极管 23和 24的阴极流入到输出端 4,而输出端 4的电流无法分 别从二极管 23和 24的阴极流入, 再分别从二极管 23和 24的阳极流入到 电池 11和 12 , 因此, 电池 11的电流无法通过输入端 3流入到电池 12 , 同 样电池 12的电流也无法通过输入端 3流入到电池 11。
再如, 参见图 4, 将三个电池并联成并联电池组, 该并联电池组包括三 个电池 11、 12和 13 , 六个二极管 21、 22、 23、 24、 25和 26, 输入端 3 , 输出端 4和接地端 5;
输入端 3分别与三个二级管 21、 22和 23的阳极相连, 二极管 21、 22 和 23的阴极分别与三个电池 11、 12和 13的正极相连;
电池 11、 12和 13的正极分别与剩下的三个二极管 24、 25和 26的阳 极相连, 二极管 24、 25和 26的阴极都与输出端 4相连;
电池 11、 12和 13的负极都与接地端 5相连。
其中, 输入端 3的电流可以分别从二极管 21、 22和 23的阳极流入, 再分别从二极管 21、 22和 23的阴极流到电池 11、 12和 13的正极, 而电 池 11、 12和 13的电流无法分别从二级管 21、 22和 23的阴极流入, 再分 别从二极管 21、 22和 23的阳极流到输入端 3 , 因此, 电池 11的电流无法 通过输入端 3流入到电池 12和 13 ,同样电池 12或 13的电流也无法从输入 端 3流入到其他的电池。
其中, 电池 11、 12和 13的电流可以分别从二极管 23、 24和 25的阳 极流入, 再分别从二极管 23、 24和 25的阴极流入到输出端 4, 而输出端 4 的电流无法分别从二极管 23、 24和 25的阴极流入, 再分别从二极管 23、 24和 25的阳极流入到电池 11、 12和 13 , 因此, 电池 11的电流无法通过 输出端 4流入到电池 12和 13 , 同样电池 12或 13的电流也无法从输出端 4 流入到其他的电池。
在本发明实施例中, 通过在输入端与每个电池之间设置防倒灌装置以 及在每个电池与输出端之间设置防倒灌装置, 阻止每个电池的电流从流入 到输入端以及输出端的电流流入到每个电池中, 从而防止每个电池通过输 入端和 /或输出端流入到其他的电池中而发生倒灌现象, 提高了安全性。 以上所述仅为本发明的较佳实施例, 并不用以限制本发明, 凡在本发 明的精神和原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在 本发明的保护范围之内。

Claims

权利要求
1、 一种并联电池组, 其特征在于, 所述并联电池组包括:
多个电池、 多个防倒灌装置、 输入端、 输出端和接地端;
在所述输入端与每个电池之间设置一个防倒灌装置, 每个防倒灌装置 的阳极与所述输入端相连, 阴极与对应的电池的正极相连;
在所述输出端与所述每个电池之间设置一个防倒灌装置, 每个防倒灌 装置的阳极与对应的电池的正极相连, 阴极与所述输出端相连;
所述每个电池的负极都与所述接地端相连。
2、 如权利要求 1所述的并联电池组, 其特征在于, 所述防倒灌装置使 电流从阳极流入阴极, 并阻断电流从阴极流入到阳极。
3、 如权利要求 1或 2所述的并联电池组, 其特征在于, 所述防倒灌装 置为二极管。
PCT/CN2011/079227 2010-09-19 2011-09-01 一种并联电池组 WO2012034481A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201020540356.1 2010-09-19
CN2010205403561U CN201797020U (zh) 2010-09-19 2010-09-19 一种并联电池组

Publications (1)

Publication Number Publication Date
WO2012034481A1 true WO2012034481A1 (zh) 2012-03-22

Family

ID=43851920

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/079227 WO2012034481A1 (zh) 2010-09-19 2011-09-01 一种并联电池组

Country Status (2)

Country Link
CN (1) CN201797020U (zh)
WO (1) WO2012034481A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201797020U (zh) * 2010-09-19 2011-04-13 华为终端有限公司 一种并联电池组
CN103838339B (zh) 2012-11-21 2016-08-17 华硕电脑股份有限公司 功率整合模块及电子装置
CN106300321A (zh) * 2016-08-31 2017-01-04 四川升华电源科技有限公司 电源防倒灌电路

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0225767A2 (en) * 1985-12-04 1987-06-16 Powerplex Technologies, Inc. A silicon diode looping element for protecting a battery cell
CN200990518Y (zh) * 2006-12-26 2007-12-12 天津华云自控股份有限公司 蓄电池组充、放电的隔离电路
CN101505066A (zh) * 2009-03-04 2009-08-12 上海闻泰电子科技有限公司 一种手机的涓流充电电路
CN101572426A (zh) * 2009-03-13 2009-11-04 温州市创力电子有限公司 一种蓄电池充放电控制系统
CN201365130Y (zh) * 2008-12-12 2009-12-16 天津力神电池股份有限公司 磷酸铁锂电池的应用电路
CN201797020U (zh) * 2010-09-19 2011-04-13 华为终端有限公司 一种并联电池组

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0225767A2 (en) * 1985-12-04 1987-06-16 Powerplex Technologies, Inc. A silicon diode looping element for protecting a battery cell
CN200990518Y (zh) * 2006-12-26 2007-12-12 天津华云自控股份有限公司 蓄电池组充、放电的隔离电路
CN201365130Y (zh) * 2008-12-12 2009-12-16 天津力神电池股份有限公司 磷酸铁锂电池的应用电路
CN101505066A (zh) * 2009-03-04 2009-08-12 上海闻泰电子科技有限公司 一种手机的涓流充电电路
CN101572426A (zh) * 2009-03-13 2009-11-04 温州市创力电子有限公司 一种蓄电池充放电控制系统
CN201797020U (zh) * 2010-09-19 2011-04-13 华为终端有限公司 一种并联电池组

Also Published As

Publication number Publication date
CN201797020U (zh) 2011-04-13

Similar Documents

Publication Publication Date Title
CN200990518Y (zh) 蓄电池组充、放电的隔离电路
CN201113407Y (zh) 一种锂离子电池保护装置
WO2012034481A1 (zh) 一种并联电池组
CN102136750B (zh) 一种单体充放尾补均衡模块及其电池组均衡保护管理系统
CN107370195A (zh) 一种锂离子电池的主动均衡方法
CN103269099B (zh) 电池充放电电路
CN103023116B (zh) 一种移动通讯终端以及用于保护移动通讯终端充电的电路
WO2017219359A1 (zh) 多极耳电池
CN203086117U (zh) 一种蓄电池放电机的防反接保护电路
CN105826992A (zh) 一种锂离子电池的主动均衡系统
CN202076822U (zh) 一种手机电池的过放电激活电路
CN204577532U (zh) 一种防爆特殊型铅酸蓄电池
CN204334056U (zh) 一种均衡充电的锂电池组保护板
CN105162235B (zh) 节能母线的充放控制方法
CN203536996U (zh) 一种给串联锂电池组中的单体电池充电装置
CN204794196U (zh) 电池组主动均衡控制系统
CN209298295U (zh) 一种蓄电池维护-充电一体系统
CN207282624U (zh) 新型蓄电池载流板
CN214543742U (zh) 一种智能高电压充电与低压用电系统
CN103683210A (zh) 充放电保护电路及应用其的防爆灯具
CN220653028U (zh) 低功耗锂电池组均衡控制电路
CN208386166U (zh) 一种大型锂离子电池储能系统
CN102447280A (zh) 汇流式太阳能充放电控制器
CN207743739U (zh) 一种锂离子电池应用于ups电源的充放电同口设计装置
CN203812999U (zh) 一种电池充放电连接装置及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11824551

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11824551

Country of ref document: EP

Kind code of ref document: A1