WO2012033240A1 - Method for purifying organic solvents - Google Patents

Method for purifying organic solvents Download PDF

Info

Publication number
WO2012033240A1
WO2012033240A1 PCT/KR2010/006100 KR2010006100W WO2012033240A1 WO 2012033240 A1 WO2012033240 A1 WO 2012033240A1 KR 2010006100 W KR2010006100 W KR 2010006100W WO 2012033240 A1 WO2012033240 A1 WO 2012033240A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic solvent
paragraph
titanium
potassium
sodium
Prior art date
Application number
PCT/KR2010/006100
Other languages
French (fr)
Korean (ko)
Inventor
정현철
문재웅
정진배
배은형
강도순
이명호
Original Assignee
주식회사 이엔에프테크놀로지
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 이엔에프테크놀로지 filed Critical 주식회사 이엔에프테크놀로지
Priority to JP2013528095A priority Critical patent/JP5637470B2/en
Priority to CN201080068890.XA priority patent/CN103080067B/en
Priority to PCT/KR2010/006100 priority patent/WO2012033240A1/en
Publication of WO2012033240A1 publication Critical patent/WO2012033240A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/48Separation; Purification; Stabilisation; Use of additives
    • C07C67/60Separation; Purification; Stabilisation; Use of additives by treatment giving rise to chemical modification
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B63/00Purification; Separation; Stabilisation; Use of additives

Definitions

  • the present invention relates to a method for recovering propylene glycol monomethyl ether acetate in high yield by purifying waste organic solvents generated in the display manufacturing process.
  • Background Art Lithography is widely used to manufacture electronic circuits, pixels, and the like in the manufacturing process of displays such as semiconductors and TFT-LCDs. This lithography is a method used to create a fine pattern on a substrate, and irradiates light through a mask on which a desired pattern is printed on a substrate on which a photoresist, a photosensitive material, is applied, to convert a circuit pattern of a mask into a substrate.
  • the photoresist generally refers to a process of transferring, and the photoresist is generally composed of a binder component resins, photoinitiators, organic solvents, various pigments, dispersants, and other additives.
  • the waste organic solvent from which the photoresist is removed includes components of the photoresist, that is, resins, photoinitiators, pigments, organic solvents, and additives as impurities.
  • Waste organic solvents contaminated with impurities may be incinerated. Since the incineration process not only generates harmful chemicals but also reduces the useful value of the waste organic solvent itself, recently, a process of regenerating the waste organic solvent with a high-purity organic solvent is performed so that it can be reused in the display manufacturing process. Regeneration of such waste organic solvents is usually carried out using fractional distillation using the difference in boiling point for each component, similar to the general method for purifying organic solvents. However, many other organic solvent impurities contained in the waste organic solvent have similar boiling points to the organic solvent to be recovered. Such similar boiling point impurities are not easy to be separated by distillation by organic solvent components and distillation, and thus require a very high number of distillation columns, low productivity, high loss of organic solvents to be recovered, and high purity.
  • RO 'H 2 0 R 1 OH wherein R, R 1 and R 2 is a hydrocarbon group of aliphatic or aromatic.
  • the waste organic solvent treatment method is described in Korean Patent Registration Nos. 10-0446165, 10—0304373 and Korean Patent Application No. 10-2004-0074649, but these are mainly devices for distilling and recovering waste organic solvents. Or it relates to a method of treating with an electrolyte in order to separate the water contained in the waste organic solvent, it does not provide a solution for the treatment of waste organic solvent containing an organic solvent with similar boiling point as described above.
  • Korean Patent Registration No. 10—0763504 discloses a method of saliva-based removal of crosslinkable photoresist components in a waste organic solvent by adding an alkaline component to the waste organic solvent. As it is used to remove solids such as pigments, it does not solve the problem of separation of organic solvent impurities such as MMP.
  • the Republic of Korea Patent Registration No. 10-0869333 relates to the regeneration method of the waste PGMEA solvent, it proposes a distillation method for separating the MMP and cyclonucleanone having a close boiling point, it is just a general distillation process As described above, it is no different from the general distillation process using the boiling point difference of PGMEA, MMP, and PGMEA and cyclonuclinon. Therefore, the recovery rate is high for the high purity of PGMEA. . SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to purify high organic solvents in high yield by effectively removing similar boiling point impurities from organic solvent mixtures based on propylene glycol monomethyl ether acetate (PGMEA). Is to provide a way.
  • PGMEA propylene glycol monomethyl ether acetate
  • the present invention is an organic solvent mixture containing propylene glycol monomethyl ether acetate (PGMEA) as a main component and at least one of propionate and ketone compounds as impurities, d- Provided is a method for purifying an organic solvent, which comprises adding 20 alkoxide compounds and reacting to remove impurities.
  • PGMEA propylene glycol monomethyl ether acetate
  • the step of removing the impurity olol preferably comprises a fractional distillation step.
  • the organic solvent purification method of the present invention converts impurities of propionates or ketones with boiling points similar to those of propylene glycol monomethyl ether acetate to materials having different boiling points, thereby facilitating separation by distillation or the like, thereby increasing the purity of the organic solvent. Makes it possible to purify in high yield.
  • FIG. 1 shows the results of gas chromatography analysis of an organic solvent before reaction with an alkoxide in Example 1.
  • Figure 2 is a result of analyzing the organic solvent after reacting with alkoxysaad in Example 1 by gas chromatography.
  • DETAILED DESCRIPTION OF THE INVENTION Hereinafter, the present invention will be described in more detail.
  • the present inventors reacted by adding alkoxide compounds to an organic solvent mixture containing PGMEA as a main component and containing impurities of propionates and ketones, thereby producing propionates and ketones.
  • the invention was completed to effectively remove impurities.
  • the removal mechanism of propionate and ketones according to the present invention is estimated to be the same as the following reaction formula 2, but is not limited to such a mechanism.
  • esters and ketones undergo nucleophilic substitution of ketones with hydroxide ions through alkali reactions. Through this reaction, the ester compound is decomposed into alcohol and acetic acid as shown in Scheme 2 below.
  • MMP methyl 3- methoxypropionate
  • MMP has alpha hydrogen
  • these esters produce beta-keto esters through condensation.
  • the reaction forms an enolate of the ester by an acid-base reaction with alkoxide ions, and the addition of the enolate is completed as the resulting enolate reacts with the carbonyl group to remove alcohol. do.
  • R 1 to R 5 are an aliphatic or aromatic hydrocarbon group.
  • MMP and cyclonucleus stanones similar in boiling point to PGMEA are converted into high boiling point compounds, and are easily separated from PGMEA through fractional distillation, thereby recovering high-purity PGMEA with high separation efficiency.
  • impurities can be removed by adding alkoxide compounds to the organic solvent containing PGMEA and impurities, and mixing the same.
  • the mixing method is not particularly limited and the reaction temperature and reaction time are not particularly limited, for example, it is possible to perform for 0.1 to 100 hours at a temperature of -10 to 200 ° C.
  • the organic solvent that has been treated according to the present invention as described above it is possible to add a process of removing impurities and separating the PGMEA as needed.
  • a process of removing impurities and separating the PGMEA there is no particular limitation on the separation method and it is preferable to use fractional distillation using a non-point difference, but such a treatment step is only one example, and the present invention is not limited thereto.
  • reaction step and the separation step may be performed simultaneously.
  • alkoxide is added to an organic solvent containing PGMEA and impurities, such as reactive distillation, which proceeds with distillation, and the reaction is carried out while distilling to separate high purity PGMEA from the organic solvent. It's fun to retrieve.
  • Alkoxide compounds that can be used in the present invention is preferably selected from the compounds represented by the following formula (1) alone or in combination of two or more.
  • M is Na, K, Co, Ga, Ge, Hf, Fe, Ni, Nb, Mo, La, Re, Sc, Si, Ti, Ta, W, Y or Zr, and R * is carbon Linear, branched, or cyclic alkyl groups, n is an integer from 1 to 6; mxn is an integer of 1-20.
  • Preferred alkoxide compounds include sodium meroxide, sodium epoxide, sodium propoxide, sodium isopropoxide, sodium butoxide, sodium methbutoxide, potassium methoxide, potassium eoxide, potassium propoxide Side, Potassium Isopropoxide, Potassium Butoxide, Potassium-Axoxide, Titanium Methoxide, Titanium Eoxide, Titanium Propoxide, Titanium Isopropoxide, Titanium Sub-side, Titanium Iso-side Side , Titanium-2-ethyl nucleoside, aluminum epoxide, aluminum propoxide, aluminum isopropoxide, aluminum prooxide, aluminum ⁇ -butoxide, and combinations thereof, but are not limited thereto. no.
  • More preferred examples include sodium methoxide (NaOCH 3 ), sodium ethoxide (NaOC 2 H 5 ), potassium-butoxide (KOC 4 H 9 ), titanium isopropoxide (Ti (OiPr) 4 ), aluminum Isopropoxide (Al (OiPr) 3 ), and mixtures thereof.
  • the alkoxide compound is preferably added in an amount of 1 to 500 parts by weight based on 100 parts by weight of the total content of propionates and ketone compounds to be removed in an organic solvent.
  • the amount of the alkoxide compound is in the above range, the decomposition of propionate and ketones is further improved, and the economic efficiency can be further improved by reducing the decomposition of unnecessary PGMEA.
  • Such a purification method of the present invention can be usefully used to purify organic solvents and organic solvent mixtures derived from waste organic solvents generated in semiconductor and display manufacturing processes.
  • Impurities that can be effectively removed through the purification method of the present invention include methyl 3-methoxypropionate as the progoonate compounds. Cyclonucleanone, 2-heptanone, these mixtures, etc. are mentioned as a ketone compound.
  • EXAMPLES Hereinafter, the present invention will be described in more detail based on the following examples. However, the following examples are only for illustrating the present invention, and the scope of the present invention is not limited thereto.
  • Preparation Example 1 Preparation of Mixed Organic Solvent Sample: Each component of S1 was mixed in a composition as shown in Table 2 below to prepare an organic solvent sample S1. TABLE 2
  • step a) Each semi-coal water obtained in step a) was placed in a 100 mL round bottom flask and heated by a heater to be distilled, followed by fractional distillation using a 30 mm inner column equipped with a 30-sieve tray. PGMEA was recovered. Comparative Examples 5 and 6 PGMEA was recovered in the same manner as in Example 1, except that the mixed organic solvent sample (S1) prepared in Preparation Example 1 was directly distilled without any reaction with any additives. . At this time, Comparative Example 5 confirmed the PGMEA purity at a similar recovery rate to Comparative Examples 1 to 4, Comparative Example 6 confirmed a decrease in the yield when the PGMEA was recovered with high purity of 99.0% or more.
  • Test Example Test Example 1 Evaluation of Degradation Rate for Each Component in the Organic Solvent The semi-aungmul obtained in steps a) of Examples 1 to 5 and Comparative Examples 1 to 6 above. The decomposition rate of each component in the solution was evaluated according to the following equation, and the results are shown in Table 3 below:
  • Degradation rate (%) (Amount of each component before treatment-Amount of each component after treatment) I (Amount of each component before treatment) X 100 Table 3
  • Example 2 In addition, in Example 1, before and after the reaction with the alkoxide, the organic solvent sample was analyzed by gas chromatography, and the results are shown in FIGS. 1 and 2. As can be seen in Figures 1 and 2, the MMP and cyclonuxanone present in the sample before the reaction, it can be seen that after the reaction 'to be completely removed, it can be seen that other substances are produced as a result of the reaction. When analyzing organic solvents by gas chromatography, the order of the peaks generally has some similarities to the non-pointing order of materials, so MMP and cyclonuxanone are changed to materials with different boiling points. It can be seen. Test Example 2 Evaluation of Purity and Recovery Rate of Recovered PGMEA The purity and recovery rate of PGMEA recovered in Examples b) and Steps b) of Comparative Examples 1 to 6 were evaluated as follows. I showed up.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

The present invention relates to a method for purifying waste organic solvents. An alkoxide-based compound is added to waste organic solvents containing propylene glycol monomethylether acetate produced in a display manufacturing process and the like and the obtained mixture is reacted, thereby recovering purified products of a high purity in a high yield through the change in the boiling points of impurities such as propionates and ketones.

Description

유기용제의 정제방법 발명의 분야 본 발명은 디스플레이 제조공정 둥에서 생성되는 폐유기용제를 정제하여 프로필렌글리콜 모노메틸에 테르 아세테이트를 고수율로 회수하는 방법에 관한 것이다. 배경기술 반도체 및 TFT-LCD 등과 같은 디스플레이의 제조공정에는 전자회로, 화소 등을 제작하기 위하여 리소그래피 (lithography)가 널리 이용된다. 이 러 한 리소그래피는 기판 상에 미세 패턴을 생성하는데 사용되는 방법으로서, 감광성 물질인 포토레지스트가 도포되어 있는 기판에 원하는 패턴이 인쇄되어 있는 마 스크를 통해 빛을 조사하여 마스크의 회로 패턴을 기판으로 전사하는 공정을 말하며,포토레지스트는 일반적으로 바인더 성분인 수지류, 광개시 제, 유기용제, 각종 안료, 분산제 , 및 기타 첨가제 등으로 구성된다.  Method for Purifying Organic Solvents Field of the Invention The present invention relates to a method for recovering propylene glycol monomethyl ether acetate in high yield by purifying waste organic solvents generated in the display manufacturing process. Background Art Lithography is widely used to manufacture electronic circuits, pixels, and the like in the manufacturing process of displays such as semiconductors and TFT-LCDs. This lithography is a method used to create a fine pattern on a substrate, and irradiates light through a mask on which a desired pattern is printed on a substrate on which a photoresist, a photosensitive material, is applied, to convert a circuit pattern of a mask into a substrate. The photoresist generally refers to a process of transferring, and the photoresist is generally composed of a binder component resins, photoinitiators, organic solvents, various pigments, dispersants, and other additives.
이와 같이 포토레지스트를 이용한 리소그래피 공정을 진행함에 있어서, 원하지 않는 부분, 즉 포토레지스트 도포공정에서 의 포토레지스트 도포 노즐, 도포 주변설비 또는 기판의 가장자리와 같은 부분에 포토레지스트가 묻게 되는 데, 이들은 이후 진행되는 포토레지스트 도포 공정에 불량을 유발할 수 있어 반드시 제거되어 야 한다. 이 때, 원하지 않는 포토레지스트를 제거하는데 이용 되는 것이 유기용제이다. 따라서 포토레지스트를 제거하고 난 폐유기용제는 포토레지스트의 성분, 즉 수지류, 광개시제, 안료,유기용제, 첨가제 등을 불순물 로서 포함하게 된다.  In the lithography process using photoresist, photoresist is deposited on unwanted portions, such as photoresist application nozzles, photocoating peripherals, or edges of the substrate in the photoresist application process. This may cause defects in the photoresist application process, which must be removed. At this time, an organic solvent is used to remove unwanted photoresist. Therefore, the waste organic solvent from which the photoresist is removed includes components of the photoresist, that is, resins, photoinitiators, pigments, organic solvents, and additives as impurities.
이와 같이 불순물로 오염 된 폐유기용제는 소각 처 리되는 경우도 있지만, 소각과정에서 유해화학물질이 생성될 뿐만 아니라 폐유기용제 자체의 이용가치 가 떨어지게 되므로, 최근에는 발생한 폐유기용제가 디스플레이 제조공정에 재 사용될 수 있도록 고순도의 유기용제로 재생 처리하는 공정이 수행되고 있다. 이러한 폐유기용제의 재생은 통상적으로 일반적인 유기용제의 정제방법 과 유사하게 성분별 비점의 차이를 이용한 분별증류를 이용하여 분리를 하고 있다. 그러나 폐유기용제에 포함된 기타 유기용제 불순물 중에는 회수하려고 하는 유기용제와 유사한 비점을 갖는 것들이 많이 있다. 이러한 유사한 비점 의 불순물들은 회수하고자 하는 유기용제 성분과 증류에 의한 분라가 용이하지 않아 매우 높은 단수의 증류탑을 필요로 하며 생산성이 낮고 회수하고자 하는 유기용제의 손실이 크며 고순도화가 어렵다. Waste organic solvents contaminated with impurities may be incinerated. Since the incineration process not only generates harmful chemicals but also reduces the useful value of the waste organic solvent itself, recently, a process of regenerating the waste organic solvent with a high-purity organic solvent is performed so that it can be reused in the display manufacturing process. Regeneration of such waste organic solvents is usually carried out using fractional distillation using the difference in boiling point for each component, similar to the general method for purifying organic solvents. However, many other organic solvent impurities contained in the waste organic solvent have similar boiling points to the organic solvent to be recovered. Such similar boiling point impurities are not easy to be separated by distillation by organic solvent components and distillation, and thus require a very high number of distillation columns, low productivity, high loss of organic solvents to be recovered, and high purity.
최근 디스플레이 제조공정 등에서 유기용제로서 많이 사용되고 있는 프 로필렌글리콜 모노메틸에테르 아세테이트 (propylene glycol monomethyl ether acetate, 이하 'PGMEA'라 약칭)의 폐유기용제를 정제하여 고순도의 PGMEA를 얻기 위해서는, 폐유기용제에 포함되어 있는 각종 고형분과 알콜류, 에스테르류 및 케톤류 등의 유기용제를 제거하여야 한다. 하지만 이 중 특히 메틸 3-메록 시프로피오네이트 (methyl 3ᅳ methoxy propionate, 이하 'MMP'라 약칭) 및 싸 이클로핵사논 (cyclohexanone)은 하기 표 1에서 볼 수 있듯이 PGMEA와 비점 의 차이가 크지 않아 증류로서 제거하는 것이 용이하지 않다. 따라서 고순도 의 PGMEA를 얻기 위해서는 MMP 등과 함께 제거되는 PGMEA의 손실분이 크게 되어 전체적인 PGMEA의 회수율이 낮아지며 경우에 따라서는 고순도의 PGMEA를 경제적으로 얻는 것이 불가능할 수도 있다.  In order to obtain high purity PGMEA by purifying waste organic solvent of propylene glycol monomethyl ether acetate (hereinafter abbreviated as 'PGMEA'), which is widely used as an organic solvent in display manufacturing process, waste organic solvent Various solids and organic solvents such as alcohols, esters and ketones should be removed. However, among these, methyl 3-methoxy propionate (hereinafter, abbreviated as 'MMP') and cyclohexanone (cyclohexanone) are not significantly different from PGMEA as shown in Table 1 below. It is not easy to remove as distillation. Therefore, in order to obtain high purity PGMEA, the loss of PGMEA which is removed together with MMP becomes large, and the overall recovery rate of PGMEA is low. In some cases, it may be impossible to economically obtain high purity PGMEA.
표 1
Figure imgf000004_0001
Table 1
Figure imgf000004_0001
MMP와 같은 에스테르를 가지는 화합물을 분리하기 위하여 하기 반응식 1과 같이 산 또는 알칼리 촉매에 의한 가수분해를 통하여 다른 물질로 변환하 여 제거하는 것을 고려할 수도 있지만, 이 경우 다량 존재하는 PGMEA도 에스 테르 화합물인 관계로 쉽 게 분해되어 PGMEA의 회수율이 떨어지는 문제점 이 발생한다. In order to separate a compound having an ester such as MMP, Although it may be considered to convert to other materials through hydrolysis by an acid or alkali catalyst as shown in Fig. 1, in this case, PGMEA, which is a large amount of ester, is also easily broken down due to the ester compound. Occurs.
반웅식 1 Banungsik 1
O H* or OH" O OH * or OH " O
Bi R 2 ,人 + 2OH B i R 2 , 人+ 2 OH
R O' H20 R1 OH 상기 식에서 , R1 및 R2는 지방족 또는 방향족의 탄화수소기 이다. RO 'H 2 0 R 1 OH wherein R, R 1 and R 2 is a hydrocarbon group of aliphatic or aromatic.
폐유기용제의 처리방법 이 대한민국 특허등록 제 10-0446165호, 제 10—0304373호 및 대한민국 특허출원 제 10-2004-0074649호 등에 기 재되어 있으나, 이들은 주로 폐유기용제를 증류시켜 회수하는 장치 이거나 또는 폐유기 용제 내에 함유된 수분을 분리하기 위해 전해질을 이용하여 처리하는 방법 등 에 관한 것으로서, 상기와 같이 비 점이 유사한 유기용제를 포함하는 폐유기용 제의 처 리에 대해서는 그 해결책을 제시하지 못하고 있다.  The waste organic solvent treatment method is described in Korean Patent Registration Nos. 10-0446165, 10—0304373 and Korean Patent Application No. 10-2004-0074649, but these are mainly devices for distilling and recovering waste organic solvents. Or it relates to a method of treating with an electrolyte in order to separate the water contained in the waste organic solvent, it does not provide a solution for the treatment of waste organic solvent containing an organic solvent with similar boiling point as described above.
또한, 대한민국 특허등록 제 10—0763504호는 폐유기용제에 알칼리 성분 을 가하여 폐유기용제 중의 가교성 포토레지스트 성분을 침 전시 켜 제거하는 방 법을 개시하고 있는데, 이 방법은 포토레지스트 성분 중 바인더와 안료 등의 고형분의 제거에 활용되는 것으로서 MMP와 같은 유기용제 불순물의 분리문제 를 해결하지 못한다.  In addition, Korean Patent Registration No. 10—0763504 discloses a method of saliva-based removal of crosslinkable photoresist components in a waste organic solvent by adding an alkaline component to the waste organic solvent. As it is used to remove solids such as pigments, it does not solve the problem of separation of organic solvent impurities such as MMP.
또한, 대한민국 특허등록 제 10-0869333호는 폐 PGMEA 용제의 재생방 법에 관한 것으로서, 비 점 이 근접 한 MMP와 싸이클로핵사논을 분리하기 위한 증류방법을 제시하고 있으나, 이는 단지 일반적 인 증류공정을 서술한 것에 지 나지 않으며, 결국은 PGMEA와 MMP 및 PGMEA와 싸이클로핵사논의 비 점 차 이를 이용한 일반적 인 증류공정과 다름이 없으므로 PGMEA의 고순도화를 위 해서는 회수율이 낮아질 수 밖에 없다. . 발명의 요약 따라서, 본 발명의 목적은 프로필렌글리콜 모노메틸에테르 아세테이트 (PGMEA)를 주성분으로 하는 유기용제 흔합물에서 비점이 유사한 불순물올 효 과적으로 제거시켜 고^도의 유기용제를 높은 수율로 정제할 수 있는 방법을 제공하는 것이다. In addition, the Republic of Korea Patent Registration No. 10-0869333 relates to the regeneration method of the waste PGMEA solvent, it proposes a distillation method for separating the MMP and cyclonucleanone having a close boiling point, it is just a general distillation process As described above, it is no different from the general distillation process using the boiling point difference of PGMEA, MMP, and PGMEA and cyclonuclinon. Therefore, the recovery rate is high for the high purity of PGMEA. . SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to purify high organic solvents in high yield by effectively removing similar boiling point impurities from organic solvent mixtures based on propylene glycol monomethyl ether acetate (PGMEA). Is to provide a way.
상기 목적을 달성하기 위하여, 본 발명은 프로필렌글리콜 모노메틸에테 르 아세테이트 (PGMEA)를 주성분으로 포함하고 프로피오네이트류와 케톤류의 화합물 중 적어도 하나를 불순물로서 포함하는 유기용제 흔합물에, d-20 알콕 사이드류 화합물을 첨가하고 반응시켜 불순물을 제거하는 과정을 포함하는, 유 기용제의 정제방법을 제공한다.  In order to achieve the above object, the present invention is an organic solvent mixture containing propylene glycol monomethyl ether acetate (PGMEA) as a main component and at least one of propionate and ketone compounds as impurities, d- Provided is a method for purifying an organic solvent, which comprises adding 20 alkoxide compounds and reacting to remove impurities.
본 발명의 유기용제 정제방법에 있어서, 상기 불순물올 제거하는 과정은 분별증류 공정을 포함하는 것이 바람직하다.  In the organic solvent purification method of the present invention, the step of removing the impurity olol preferably comprises a fractional distillation step.
본 발명의 유기용제 정제방법은, 프로필렌글리콜 모노메틸에테르 아세테 이트와 비점이 유사한 프로피오네이트류 또는 케톤류의 불순물을 비점이 다른 물질로 변환시킴으로써, 증류 등에 의한 분리를 용이하게 하여 고순도의 유기 용제를 높은 수율로 정제하는 것을 가능하게 한다. 도면의 간단한설명 도 1은 실시예 1에서 알콕사이드와 반웅시키기 전의 유기용제를 가스 크로마토그래피로 분석한 결과이다. ' The organic solvent purification method of the present invention converts impurities of propionates or ketones with boiling points similar to those of propylene glycol monomethyl ether acetate to materials having different boiling points, thereby facilitating separation by distillation or the like, thereby increasing the purity of the organic solvent. Makes it possible to purify in high yield. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows the results of gas chromatography analysis of an organic solvent before reaction with an alkoxide in Example 1. FIG. '
도 2는 실시예 1에서 알콕사아드와 반웅시킨 후의 유기용제를 가스 크 로마토그래피로 분석한 결과이다. 발명의 상세한 설명 이하 본 발명을 보다 구체적으로 설명 한다. 앞서 제시된 문제를 해결하기 위해서, 본 연구자들은 PGMEA를 주성분 으로 하고 프로피오네이트류 및 케톤류의 불순물을 함유하는 유기용제 흔합물 에 알콕사이드류 화합물을 첨가하여 반웅시 킴으로써, 프로피오네이트류 및 케 톤류의 불순물을 효과적으로 제거할 수 있는 발명을 완성하였다. Figure 2 is a result of analyzing the organic solvent after reacting with alkoxysaad in Example 1 by gas chromatography. DETAILED DESCRIPTION OF THE INVENTION Hereinafter, the present invention will be described in more detail. In order to solve the above-mentioned problems, the present inventors reacted by adding alkoxide compounds to an organic solvent mixture containing PGMEA as a main component and containing impurities of propionates and ketones, thereby producing propionates and ketones. The invention was completed to effectively remove impurities.
본 발명쎄 의 한 프로피오네이트 및 케톤류의 제거 메카니즘은 하기 반웅 식 2와 같은 것으로 추정되고 있으나 이 러 한 메카니즘에 한정되는 것은 아니다. 일반적으로 에스테르 및 케톤은 알칼리 반응올 통해 수산화이온이 케톤의 탄소 에 대한 친핵성 치환반응을 한다. 이 러 한 반웅을 통해 에스테르 화합물은 하 기 반응식 2와 같아 알코을과 아세트산으로 분해가 일어난다. 하지만 메틸 3- 메록시프로괴오네이트 (MMP)는 알파 수소 (alpha hydrogen)를 가지고 있으며 , 이 러한 에스테르는 축합반응 (condensation)을 통해 베타 -케토 에스테르 (β-keto ester)를 생성한다. 이 러 한 반웅은 알콕사이드 이온이 수반된 산―염 기 반응에 의해 에스테르의 에놀레이트 (enolate)를 형성하고, 생성된 에놀레이 트가 카보닐기와 반웅하여 알코을이 제거되면서 에놀레이트의 첨가반응이 완결 된다.  The removal mechanism of propionate and ketones according to the present invention is estimated to be the same as the following reaction formula 2, but is not limited to such a mechanism. In general, esters and ketones undergo nucleophilic substitution of ketones with hydroxide ions through alkali reactions. Through this reaction, the ester compound is decomposed into alcohol and acetic acid as shown in Scheme 2 below. However, methyl 3- methoxypropionate (MMP) has alpha hydrogen, and these esters produce beta-keto esters through condensation. The reaction forms an enolate of the ester by an acid-base reaction with alkoxide ions, and the addition of the enolate is completed as the resulting enolate reacts with the carbonyl group to remove alcohol. do.
반웅식 2 Banungsik 2
Figure imgf000007_0001
Figure imgf000007_0001
상기 식에서, R1 내지 R5는 지방족 또는 방향족의 탄화수소기 이다. 이러한 축합반응을 통해 PGMEA와 비점이 유사한 MMP 및 싸이클로핵 사논 등이 고비점 화합물로 변환되어, 분별증류 등을 통해 PGMEA와 쉽게 분 리되므로, 고순도의 PGMEA를 높은 분리효율로 회수할 수 있다. In the above formula, R 1 to R 5 are an aliphatic or aromatic hydrocarbon group. Through this condensation reaction, MMP and cyclonucleus stanones similar in boiling point to PGMEA are converted into high boiling point compounds, and are easily separated from PGMEA through fractional distillation, thereby recovering high-purity PGMEA with high separation efficiency.
본 발명의 유기용제 정제방법에 따르면, PGMEA 및 불순물을 포함하는 유기용제에 알콕사이드류 화합물을 첨가하여 서로 흔합 반웅시킴으로써 불순물 을 제거할 수 있다. 이 때, 흔합방법에는 특별한 제한이 없고 반웅 온도 및 반 웅 시간도 특별한 제한은 없으나, 예를 들어 -10 내지 200 °C의 온도에서 0.1 내지 100 시간 동안실시하는 것이 가능하다. According to the organic solvent purification method of the present invention, impurities can be removed by adding alkoxide compounds to the organic solvent containing PGMEA and impurities, and mixing the same. At this time, the mixing method is not particularly limited and the reaction temperature and reaction time are not particularly limited, for example, it is possible to perform for 0.1 to 100 hours at a temperature of -10 to 200 ° C.
또한, 상기와 같이 본 발명에 의한 처리를 거친 유기용제는, 필요에 따라 불순물을 제거하고 PGMEA를 분라하는 과정을 추가하는 것이 가능하다. 분리 방법에는 특별한 제한이 없으며 비점차이를 이용한 분별증류를 이용하는 것이 바람직하나, 이와 같은 처리단계는 하나의 예시일 뿐 본 발명이 여기에 국한되 는 것은 아니다.  In addition, the organic solvent that has been treated according to the present invention as described above, it is possible to add a process of removing impurities and separating the PGMEA as needed. There is no particular limitation on the separation method and it is preferable to use fractional distillation using a non-point difference, but such a treatment step is only one example, and the present invention is not limited thereto.
또는, 반응공정과 분리공정을 동시에 진행하는 형태로도 가능하다. 예를 들어, 반응과 함께 증류를 진행하는 반웅증류 (reactive distillation)와 같이, PGMEA 및 불순물을 포함하는 유기용제에 알콕사이드를 첨가하고 반웅을 진 행시킴과 동시에 증류하여 유기용제로부터 고순도의 PGMEA를 분리 회수할 수밌다. 본 발명에 사용될 수 있는 알콕사이드류 화합물은 하기 화학식 1로 표시 되는 화합물 중에서 단독 또는 둘 이상의 흔합물로 선택되는 것이 바람직하다. 화학식 1  Alternatively, the reaction step and the separation step may be performed simultaneously. For example, alkoxide is added to an organic solvent containing PGMEA and impurities, such as reactive distillation, which proceeds with distillation, and the reaction is carried out while distilling to separate high purity PGMEA from the organic solvent. It's fun to retrieve. Alkoxide compounds that can be used in the present invention is preferably selected from the compounds represented by the following formula (1) alone or in combination of two or more. Formula 1
M-(OR')n 상기 식에서, M은 Na, K, Co, Ga, Ge, Hf, Fe, Ni, Nb, Mo, La, Re, Sc, Si, Ti, Ta, W, Y 또는 Zr이고, R* 은 탄소수 m의 직 쇄, 분지 쇄 또는 고리 형의 알킬 기 이며, n은 1 내지 6의 정수이고; m x n 은 1 내지 20의 정수이다. 바람직 한 알콕사이드류 화합물로서, 소듐메록사이드, 소듐에록사이드, 소 듐프로폭사이드, 소듐이소프로폭사이드, 소듐부톡사이드, 소듐 ᅳ부톡사이드, 포 타슘메톡사이드, 포타슘에특사이드, 포타슘프로폭사이드, 포타슴이소프로폭사이 드, 포타슘부톡사이드, 포타슴 -부록사이드, 티타늄메톡사이드, 티타늄에록사이 드,티타늄프로폭사이드, 티타늄이소프로폭사이드, 티타늄부특사이드, 티타늄이 소부특사이드, 티타늄 -2-에 틸핵속사이드, 알루미늄에록사이드, 알루미늄프로폭 사이드, 알루미늄이소프로폭사이드, 알루미늄부록사이드, 알루미늄 ί-부톡사이드, 및 이의 흔합물을 예시할 수 있으나, 이에 국한되는 것은 아니다. M- (OR ') n Wherein M is Na, K, Co, Ga, Ge, Hf, Fe, Ni, Nb, Mo, La, Re, Sc, Si, Ti, Ta, W, Y or Zr, and R * is carbon Linear, branched, or cyclic alkyl groups, n is an integer from 1 to 6; mxn is an integer of 1-20. Preferred alkoxide compounds include sodium meroxide, sodium epoxide, sodium propoxide, sodium isopropoxide, sodium butoxide, sodium methbutoxide, potassium methoxide, potassium eoxide, potassium propoxide Side, Potassium Isopropoxide, Potassium Butoxide, Potassium-Axoxide, Titanium Methoxide, Titanium Eoxide, Titanium Propoxide, Titanium Isopropoxide, Titanium Sub-side, Titanium Iso-side Side , Titanium-2-ethyl nucleoside, aluminum epoxide, aluminum propoxide, aluminum isopropoxide, aluminum prooxide, aluminum ί-butoxide, and combinations thereof, but are not limited thereto. no.
더욱 바람직 한 예로는, 소듐메톡사이드 (NaOCH3), 소듐에톡사이드 (NaOC2H5), 포타슘 -부록사이드 (KOC4H9), 티타늄이소프로폭사이드 (Ti(OiPr)4), 알루미늄이소프로폭사이드 (Al(OiPr)3), 및 이의 흔합물을 들 수 있다. More preferred examples include sodium methoxide (NaOCH 3 ), sodium ethoxide (NaOC 2 H 5 ), potassium-butoxide (KOC 4 H 9 ), titanium isopropoxide (Ti (OiPr) 4 ), aluminum Isopropoxide (Al (OiPr) 3 ), and mixtures thereof.
알콕사이드류 화합물은, 유기용제쎄서 제거할 프로피오네이트류 및 케톤 류 화합물의 총 함량을 100중량부로 기준하였을 때, 1 내지 500 중량부의 양 으로 첨가시 키는 것 이 바람직하다. 알콕사이드 화합물의 양이 상기 범위 내일 때 프로피오네이트 및 케톤류의 분해가 더욱 향상되며 불필요한 PGMEA의 분 해를 감소시 켜 경제성을 더욱 높일 수 있다.  The alkoxide compound is preferably added in an amount of 1 to 500 parts by weight based on 100 parts by weight of the total content of propionates and ketone compounds to be removed in an organic solvent. When the amount of the alkoxide compound is in the above range, the decomposition of propionate and ketones is further improved, and the economic efficiency can be further improved by reducing the decomposition of unnecessary PGMEA.
이와 같은 본 발명의 정제방법은 반도체 및 디스플레이 제조공정에서 발 생하는 폐유기용제로부터 기 인하는 유기용제 및 유기용제 흔합물을 정제하는데 유용하게 사용돨 수 있다. Such a purification method of the present invention can be usefully used to purify organic solvents and organic solvent mixtures derived from waste organic solvents generated in semiconductor and display manufacturing processes.
본 발명의 정제 방법을 통하여 효과적으로 제거할 수 있는 불순물은, 프 로괴오네이트류 화합물로서는 메틸 3-메록시프로피오네이트를 들 수 있으며 , 케톤류 화합물로서는 싸이클로핵사논, 2-헵타논, 및 이들의 흔합물 등을 들 수 있다. 실시예 이하, 본 발명을 하기 실시예에 의거하여 좀 더 상세하게 설명하고자 한 다. 단, 하기 실시예는 본 발명을 예시하기 위한 것일 뿐, 본 발명의 범위가 이 들만으로 제한되는 것은 아니다. 제조예 1.흔합유기용제 시료의 제조 : S1 각각의 구성 성분을 하기 표 2에 나타낸 바와 같은 조성으로 흔합하여 유기용제 시료 S1을 제조하였다. 표 2 Impurities that can be effectively removed through the purification method of the present invention include methyl 3-methoxypropionate as the progoonate compounds. Cyclonucleanone, 2-heptanone, these mixtures, etc. are mentioned as a ketone compound. EXAMPLES Hereinafter, the present invention will be described in more detail based on the following examples. However, the following examples are only for illustrating the present invention, and the scope of the present invention is not limited thereto. Preparation Example 1 Preparation of Mixed Organic Solvent Sample: Each component of S1 was mixed in a composition as shown in Table 2 below to prepare an organic solvent sample S1. TABLE 2
Figure imgf000010_0001
실시예 1 내지 5 및 비교예 1 내지 4 단계 a) 유기용제 시료와 첨가제의 반웅
Figure imgf000010_0001
Examples 1 to 5 and Comparative Examples 1 to 4 Step a) Reaction of the organic solvent sample and the additive
상기 제조예 1에서 얻은 흔합 유기용제 시료 (SI) 800g에 하기 표 3에 나타낸 바와 같은 각각의 산 /염기 첨가제를 첨가한 후, 별도의 교반장치가 있는 플라스크에 넣고 교반시 켜 반웅을 완료하였다. 단계 b) 불순물 제거 및 PGMEA의 회수  After adding each acid / base additive as shown in Table 3 to 800 g of the mixed organic solvent sample (SI) obtained in Preparation Example 1, the reaction mixture was added to a flask with a separate stirring device and stirred to complete reaction. Step b) Impurity Removal and Recovery of PGMEA
상기 단계 a)에서 수득한 각각의 반웅물을 lOOOmL 둥근바닥 플라스크 에 담고 전열기로 가열하여 증류시 킨 뒤, 30단 시브 트레이 (sieve tray)가 장착 된 내경 30mm의 증류탑을 이용하여 분별증류 » 실시하여 PGMEA를 회수하였 다. 비교예 5 및 6 상기 제조예 1에서 제조한 흔합 유기용제 시료 (S1)를 어떠 한 첨가제와의 반웅처 리 없이 직접 증류한 것을 제꾀하고는 상기 실시 예 1과 동일하게 실시하 여 PGMEA를 회수하였다. 이 때, 비교예 5는 비교예 1 내지 4와 유사한 회수 율에서의 PGMEA 순도를 확인하였고, 비교예 6은 PGMEA를 99.0% 이상의 고 순도로 회수하였을 경우의 수율의 저하를 확인하였다. 시험 예 시험예 1. 유기용제 중의 성분별 분해율의 평가 상기 실시 예 1 내지 5 및 비교예 1 내지 6의 단계 a)에서 얻은 반웅물 중의 각 성분의 분해율을 다음 식에 따라 평가하여, 그 결과를 하기 표 3에 나 타내었다: Each semi-coal water obtained in step a) was placed in a 100 mL round bottom flask and heated by a heater to be distilled, followed by fractional distillation using a 30 mm inner column equipped with a 30-sieve tray. PGMEA was recovered. Comparative Examples 5 and 6 PGMEA was recovered in the same manner as in Example 1, except that the mixed organic solvent sample (S1) prepared in Preparation Example 1 was directly distilled without any reaction with any additives. . At this time, Comparative Example 5 confirmed the PGMEA purity at a similar recovery rate to Comparative Examples 1 to 4, Comparative Example 6 confirmed a decrease in the yield when the PGMEA was recovered with high purity of 99.0% or more. Test Example Test Example 1 Evaluation of Degradation Rate for Each Component in the Organic Solvent The semi-aungmul obtained in steps a) of Examples 1 to 5 and Comparative Examples 1 to 6 above. The decomposition rate of each component in the solution was evaluated according to the following equation, and the results are shown in Table 3 below:
분해율 (%) = (처리전 각 성분량 - 처리후 각 성분량) I (처리전 각 성분 량) X 100 표 3  Degradation rate (%) = (Amount of each component before treatment-Amount of each component after treatment) I (Amount of each component before treatment) X 100 Table 3
Figure imgf000012_0001
상기 표 3에서 알 수 있듯이, 본 발명에 따른 알콕사이드류 화합물을 첨 가한 실시 예 1 내지 5의 경우, 흔합 유기용제 중 MMP 및 싸이클로핵사논이 첨가된 알콕사이드와의 선택적 반웅에 의해 거의 완전히 분해되는 반면, PGMEA는 거의 분해되지 않는 것을 알 수 있다. 반면에, Na이 또는 KOH를 첨가한 비교예 1 내지 4의 경우에는 싸이클로헥사논의 분해가 일어나지 않았으 며 첨가제의 함량이 증가함에 따라 MMP의 분해율이 증가하기는 하였지만 층 분하지 못하였고 PGMEA의 분해도 이에 비 례하여 증가되는 문제가 있었다. 아울러 , 실시 예 1에서 알콕사이드에 의한 반응 전 후 유기용제 시료를 가스 크로마토그래피로 분석하여 그 결과를 도 1 및 2에 나타내었다. 도 1 및 2에서 볼 수 있는 바와 같이, 반웅 전 시료내에 존재하던 MMP 및 싸이클 로핵사논은 반웅 후 ' 완전히 제거되는 것을 알 수 있으며, 반응의 결과물로 다 른 물질이 생성되는 것을 알 수 있다. 유기용제를 가스 크로마토그래피로 분 석하는 경우 피크의 순서는 일반적으로 물질의 비 점순서와 어느 정도 유사성을 가진다는 사실에 비추어 볼 때, MMP 및 싸이클로핵사논이 비 점 이 다른 물질로 변화되 었음을 알 수 있다. 시험예 2. 회수된 PGMEA의 순도 및 회수율의 평가 상기 실시 예 1 내지 5 및 비교예 1 내지 6의 단계 b)에서 회수된 PGMEA의 순도 및 회수율을 다음과 같이 평가하여, 그 결과를 하기 표 4에 나 타내었다.
Figure imgf000012_0001
As can be seen in Table 3, in Examples 1 to 5 to which the alkoxide compound according to the present invention is added, almost completely decomposes by selective reaction with an alkoxide to which MMP and cyclonuxanone are added in a mixed organic solvent. It can be seen that PGMEA hardly decomposes. On the other hand, in the case of Comparative Examples 1 to 4 in which Na or KOH was added, the decomposition of cyclohexanone did not occur, and the decomposition rate of MMP was increased but the layer was not separated, and the decomposition degree of PGMEA was increased as the additive content was increased. In comparison, there was a problem that increases. In addition, in Example 1, before and after the reaction with the alkoxide, the organic solvent sample was analyzed by gas chromatography, and the results are shown in FIGS. 1 and 2. As can be seen in Figures 1 and 2, the MMP and cyclonuxanone present in the sample before the reaction, it can be seen that after the reaction 'to be completely removed, it can be seen that other substances are produced as a result of the reaction. When analyzing organic solvents by gas chromatography, the order of the peaks generally has some similarities to the non-pointing order of materials, so MMP and cyclonuxanone are changed to materials with different boiling points. It can be seen. Test Example 2 Evaluation of Purity and Recovery Rate of Recovered PGMEA The purity and recovery rate of PGMEA recovered in Examples b) and Steps b) of Comparative Examples 1 to 6 were evaluated as follows. I showed up.
(1) 회수된 PGMEA의 순도 (1) Purity of recovered PGMEA
PGMEA의 순도측정은 애질런트 테크놀로지스 (Agilent technologies)사 의 가스 크로마토그래피 (모델명 : 7890A, 길이 30m 및 내경 0.320mm의 HP—5 컬럼 장착)를 이용하였다. (2) 회수율 (%) = 회수된 PGMEA 질량 / 원 시료 (SI) 중의 PGMEA 질량 X 100 표 4 The purity of PGMEA was measured using Agilent Technologies' gas chromatography (model: 7890A, equipped with HP-5 columns with a length of 30m and an internal diameter of 0.320mm). (2) Recovery (%) = recovered PGMEA mass / mass of PGMEA in original sample (SI) X 100 Table 4
Figure imgf000014_0001
Figure imgf000014_0001
상기 표 4의 결과로부터 알 수 있듯이 MMP 및 싸이클로핵사논의 분해 가 많이 일어난 실시 예 1 내지 5의 경우 증류공정에서 쉽 게 고순도의 PGMEA 를 높은 수율로 정제하여 회수할 수 있었다. 그러나 분해율이 적 었던 비교예 1 내지 4 및 처리과정을 거치지 않은 비교예 5의 경우에는 회수율이 매우 낮 았음에도 불구하고 실시 예에 비하여 순도가 매우 낮음을 알 수 있다. 또한 비교예 6에서처 럼 순도를 높이는 경우에는 회수율이 더욱 급격히 떨어져 더 이 상의 고순도 정제가 어 려움을 알 수 있다. 이상, 본 발명을 상기 실시예를 중심으로 하여 설명하였으나 이는 예시 에 지나지 아니하며, 본 발명은 본 발명의 기술분야에서 통상의 지식을 가진 자에게 자명한 다양한 변형 및 균등한 기타의 실시예를 이하에 첨부한 청구범 위 내에서 수행할 수 있다는 사실을 이해하여야 한다. As can be seen from the results of Table 4, in the case of Examples 1 to 5 in which much decomposition of MMP and cyclonucleanone occurred, the high-purity PGMEA was easily purified and recovered in a distillation process. However, in the case of Comparative Examples 1 to 4 and the Comparative Example 5, which did not undergo a low decomposition rate, although the recovery rate was very low, the purity is very low compared to the Examples. In addition, in the case of increasing the purity as in Comparative Example 6, it can be seen that the recovery rate is more sharply reduced, and further purification of the higher purity is difficult. In the above, the present invention has been described with reference to the above embodiments, which are only examples, and the present invention includes various modifications and other equivalent embodiments which are obvious to those skilled in the art. It should be understood that they can be performed within the scope of the appended claims.

Claims

특허청구범위 Claims
1. 프로필렌글리콜 모노메틸에테르 아세테이트 (PGMEA), 및 불순물로서 프 로피오네이트류와 케톤류의 화합물 중 적어도 하나를 포함하는 유기용제 흔합 물에, 알콕사이드류 화합물을 첨가하고 반웅시켜, 상기 불순물을 제거하는 과정을 포함하는, 유기용제의 정제방법. 1.Adding and reacting an alkoxide compound to an organic solvent mixture comprising propylene glycol monomethyl ether acetate (PGMEA) and at least one of propionate and ketone compounds as impurities, removing the impurities Purifying organic solvent, including the process.
2. 제 1항에 있어서, 2. The method of paragraph 1,
상기 불순물을 제거하는 과정이, 분별증류 공정을 포함하는 것을 특징으 로 하는 유기용제의 정제방법.  The process of removing the impurities, characterized in that it comprises a fractional distillation process.
3. 게 1항에 있어서, 3. The crab of paragraph 1,
상기 유기용제 흔합물은, 반도체 또는 디스플레이 제조공정에서 발생하 는 폐유기용제로부터 기인하는 것을 특징으로 하는, °유기용제의 정제방법. The organic solvent mixture is derived from the waste organic solvent generated in the semiconductor or display manufacturing process, ° Organic solvent purification method.
4. 제 1항에 있어서' 4. according to paragraph 1 '
. 상기 알콕사이드류 화합물은ᅳ 하기 화학식 1로 표시되는 화합물을 . The alkoxide compound is a compound represented by the formula
1종 이상 사용하는 것을 특징으로 하는, 유기용제의 정제방법: Method for purifying organic solvent, characterized in that it is used at least one:
화학식 1  Formula 1
M-(OR')n " M- (OR ') n "
상기 식에서, M은 Na, , Co, Ga, Ge, Hf, Fe, Ni, Nb, Mo, La, Re, Sc, Si, Ti, Ta, W, Y또는 Zr이고; R' 은 탄소수 m의 직쇄, 분지쇄 또는 고리형의 알킬 기이며; n은 1 내지 6의 정수이고; mxn은 1 내지 20의 정수이다.  Wherein M is Na, Co, Ga, Ge, Hf, Fe, Ni, Nb, Mo, La, Re, Sc, Si, Ti, Ta, W, Y or Zr; R 'is a straight, branched or cyclic alkyl group of m carbon atoms; n is an integer from 1 to 6; mxn is an integer of 1-20.
5. 제 1항 또는 게 4항에 있어서, 5. Paragraph 1 or 4,
상기 C 20 알콕사이드류 화합물은, 소듐메특사이드, 소듐에록사이드, 소 듐프로폭사이드, 소듐이소프로폭사이드, 소듐부록사이드, 소듐 ί—부톡사이드, 포 타슘메톡사이드, 포타슘에록사이드, 포타슴프로폭사이드, 포타슴이소프로폭사이 드, 포타슴부록사이드, 포타슘 ί-부록사이드, 티타늄메톡사이드, 티타늄에록사이 드, 티타늄프로폭사이드, 티타늄이소프로폭사이드, 티타늄부록사이드, 티타늄이 소부록사이드, 티타늄 -2-에틸핵속사이드, 알루미늄에록사이드, 알루미늄프로폭 사이드, 알루미늄이소프로폭사이드, 알루미늄부톡사이드, 알루미늄 ί-부톡사이드, 및 이들의 흔합물로 이루어지는 군으로부터 선택되는 것을 특징으로 하는, 유 기용제의 정 제방법 . The C 20 alkoxide compound, sodium mesoside, sodium epoxide, small Sodium Propoxide, Sodium Isopropoxide, Sodium Iboxide, Sodium ί—Butoxide, Potassium Methoxide, Potassium Eoxide, Potassium Propoxide, Potassium Isopropoxide, Potassium Axoxide, Potassium ί-Boxide, Titanium Methoxide, Titanium Eoxide, Titanium Propoxide, Titanium Isopropoxide, Titanium Boxide, Titanium Isooxide, Titanium-2-Ethyl Nucleoside, Aluminum Eoxide, A process for purifying organic solvents, characterized in that it is selected from the group consisting of aluminum propoxide, aluminum isopropoxide, aluminum butoxide, aluminum ί-butoxide, and mixtures thereof.
1  One
5  5
6. 계 1항에 있어서, 6. In accordance with paragraph 1,
상기 알콕사이드류 화합물은, 상기 제거되는 불순물의 함량을 100 중량부로 하였을 때, 1 내지 500 중량부의 양으로 첨가되는 것을 특징으로 하 는, 유기용제의 정제방법 .  Wherein the alkoxide compounds, when the content of the impurities removed to 100 parts by weight, characterized in that it is added in an amount of 1 to 500 parts by weight, organic solvent purification method.
7. 제 1항에 있어서, 7. The method of paragraph 1,
상기 반웅은, —10 내지 200 °C의 온도에서 0.1 내지 100 시간 동안 실 시하는 것을 특징으로 하는, 유기용제의 정제방법 . The reaction is, — characterized in that for 0.1 to 100 hours at a temperature of 10 to 200 ° C, organic solvent purification method.
8. 제 1항에 있어서, 8. The method of paragraph 1,
상기 프로피오네이트류 화합물은, 메틸 3-메록시프로피오네이트인 것을 특징으로 하는, 유기용제의 정제방법 .  The said propionate compound is methyl 3- methoxy propionate, The purification method of the organic solvent.
9. 제 1항에 있어서, 9. The method of paragraph 1,
상기 케톤류 화합물은, 싸이클로핵사논, 2-헵타논, 또는 이들의 흔합물인 것을 특징으로 하는, 유기용제의 정제방법 .  The ketone compound is a cyclonucleanone, 2-heptanone, or a mixture thereof.
PCT/KR2010/006100 2010-09-08 2010-09-08 Method for purifying organic solvents WO2012033240A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013528095A JP5637470B2 (en) 2010-09-08 2010-09-08 Purification method of organic solvent
CN201080068890.XA CN103080067B (en) 2010-09-08 2010-09-08 Method for purifying organic solvents
PCT/KR2010/006100 WO2012033240A1 (en) 2010-09-08 2010-09-08 Method for purifying organic solvents

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2010/006100 WO2012033240A1 (en) 2010-09-08 2010-09-08 Method for purifying organic solvents

Publications (1)

Publication Number Publication Date
WO2012033240A1 true WO2012033240A1 (en) 2012-03-15

Family

ID=45810824

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/006100 WO2012033240A1 (en) 2010-09-08 2010-09-08 Method for purifying organic solvents

Country Status (3)

Country Link
JP (1) JP5637470B2 (en)
CN (1) CN103080067B (en)
WO (1) WO2012033240A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104370742B (en) * 2014-10-16 2016-01-06 惠州Tcl环境科技有限公司 A kind of method of PGMEA that purifies from PGMEA waste liquid

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6159345A (en) * 1998-11-06 2000-12-12 Mitsubishi Chemical America, Inc. Method and apparatus for recovering and/or recycling solvents
KR100732719B1 (en) * 2006-12-06 2007-06-27 김민수 Regeneration method of waste organic solvent
KR100869333B1 (en) * 2008-02-11 2008-11-18 재원산업 주식회사 Reproducing method of used propylene glycol monomethyl ether acetate
WO2009031731A1 (en) * 2007-09-05 2009-03-12 Korex Corporation Method and apparatus for recycling photoresist stripper waste
KR100972103B1 (en) * 2008-03-06 2010-07-22 재원산업 주식회사 Collection method of high concentration used PGMEA organic solvent and apparatus thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5748308A (en) * 1980-09-03 1982-03-19 Toyota Motor Corp Chemical composition for treating paint washing waste solvent solution
DE4320820A1 (en) * 1993-06-23 1995-01-05 Basf Ag Process for the conversion of carboxylic acid chlorides dissolved in carboxylic acid esters
CN1259113A (en) * 1997-06-03 2000-07-05 伊斯曼化学公司 Process for the preparation of 1,3-dicarbonyl compounds
JP2001179006A (en) * 1999-12-22 2001-07-03 Neos Co Ltd Regeneration treatment agent for paint-containing thinner
JP2008001653A (en) * 2006-06-23 2008-01-10 Kyowa Kako Kk Method of modifying waste solvent

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6159345A (en) * 1998-11-06 2000-12-12 Mitsubishi Chemical America, Inc. Method and apparatus for recovering and/or recycling solvents
KR100732719B1 (en) * 2006-12-06 2007-06-27 김민수 Regeneration method of waste organic solvent
WO2009031731A1 (en) * 2007-09-05 2009-03-12 Korex Corporation Method and apparatus for recycling photoresist stripper waste
KR100869333B1 (en) * 2008-02-11 2008-11-18 재원산업 주식회사 Reproducing method of used propylene glycol monomethyl ether acetate
KR100972103B1 (en) * 2008-03-06 2010-07-22 재원산업 주식회사 Collection method of high concentration used PGMEA organic solvent and apparatus thereof

Also Published As

Publication number Publication date
CN103080067B (en) 2015-03-04
CN103080067A (en) 2013-05-01
JP2013539472A (en) 2013-10-24
JP5637470B2 (en) 2014-12-10

Similar Documents

Publication Publication Date Title
KR101005586B1 (en) Purification method for organic solvent
JP4611378B2 (en) Extraction of phenol-containing effluent stream
JP5069236B2 (en) Method for purifying fluoromethyl 1,1,1,3,3,3-hexafluoroisopropyl ether (sevoflurane)
CN102066300B (en) Process for purification of fluromethyl 1,1,1,3,3,3,-hexafluoroisopropyl ether (sevoflurane)
KR20090089266A (en) Process for producing ester solvents
CN102884038B (en) A kind of method preparing lactic acid alkyl ester and use the method that this lactic acid alkyl ester prepares lactamide
KR101306336B1 (en) Method for purifying organic solvent
WO2012033240A1 (en) Method for purifying organic solvents
KR101282799B1 (en) Refining method of organic solvent to recycle pma
WO2007122964A1 (en) Process for producing (meth)acrylic ester
KR102109403B1 (en) Purification method of thinner waste and Thinner composition manufactured therefrom)
KR101427397B1 (en) Treatment method of Propyleneglycol monomethylether acetate
KR101232334B1 (en) Refining method of organic solvent
JPH07258135A (en) Production and recovery of dipropylene glycol t-butyl ether
KR101202739B1 (en) Method for purifying organic solvent
KR101142297B1 (en) Method for purifying organic solvent
KR101142296B1 (en) Method for purifying organic solvent
KR101686080B1 (en) Purification method of thinner for rinsing photoresist
JP4276349B2 (en) Inden production method
TWI588123B (en) Method for separating and recovering alkanediol monoalkyl ether, method for reusing photoresist composition waste liquid, and method for recovering photoresist composition treating liquid
KR101371209B1 (en) PMA recycling method
KR101193595B1 (en) Method for purifying organic solvent
CN110869347B (en) Method for recovering dimethyl sulfoxide from recovered resist stripping agent
KR101501097B1 (en) Purification method of thinner for rinsing photoresist using benzoyl chloride
JP3871243B2 (en) Method for producing alkyladamantyl ester

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080068890.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10857027

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013528095

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10857027

Country of ref document: EP

Kind code of ref document: A1