WO2012033119A1 - Resin having improved adhesion properties, and sheet - Google Patents
Resin having improved adhesion properties, and sheet Download PDFInfo
- Publication number
- WO2012033119A1 WO2012033119A1 PCT/JP2011/070338 JP2011070338W WO2012033119A1 WO 2012033119 A1 WO2012033119 A1 WO 2012033119A1 JP 2011070338 W JP2011070338 W JP 2011070338W WO 2012033119 A1 WO2012033119 A1 WO 2012033119A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- resin
- sheet
- coupling agent
- copolymer
- aromatic vinyl
- Prior art date
Links
- 229920005989 resin Polymers 0.000 title claims abstract description 75
- 239000011347 resin Substances 0.000 title claims abstract description 75
- 229920001577 copolymer Polymers 0.000 claims abstract description 63
- 229920002554 vinyl polymer Polymers 0.000 claims abstract description 43
- 239000007822 coupling agent Substances 0.000 claims abstract description 42
- -1 aromatic vinyl compound Chemical class 0.000 claims abstract description 32
- 239000011521 glass Substances 0.000 claims abstract description 29
- 229920000089 Cyclic olefin copolymer Polymers 0.000 claims abstract description 27
- 239000003566 sealing material Substances 0.000 claims abstract description 26
- 238000010894 electron beam technology Methods 0.000 claims abstract description 23
- 238000010248 power generation Methods 0.000 claims abstract description 20
- 229910010272 inorganic material Inorganic materials 0.000 claims abstract description 12
- 239000011147 inorganic material Substances 0.000 claims abstract description 12
- 150000001336 alkenes Chemical class 0.000 claims abstract description 11
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 claims abstract description 10
- 230000001678 irradiating effect Effects 0.000 claims abstract description 9
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 claims description 45
- 239000006087 Silane Coupling Agent Substances 0.000 claims description 32
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims description 10
- 239000005977 Ethylene Substances 0.000 claims description 10
- 125000003277 amino group Chemical group 0.000 claims description 7
- 125000003700 epoxy group Chemical group 0.000 claims description 7
- 239000000470 constituent Substances 0.000 claims description 2
- 238000007789 sealing Methods 0.000 abstract description 20
- 239000004973 liquid crystal related substance Substances 0.000 abstract description 4
- 238000004132 cross linking Methods 0.000 description 32
- 238000000034 method Methods 0.000 description 28
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 24
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 14
- 239000000853 adhesive Substances 0.000 description 14
- 230000001070 adhesive effect Effects 0.000 description 14
- 238000000465 moulding Methods 0.000 description 14
- 239000004014 plasticizer Substances 0.000 description 14
- 125000000524 functional group Chemical group 0.000 description 11
- 238000000576 coating method Methods 0.000 description 10
- 239000004793 Polystyrene Substances 0.000 description 9
- 229920002223 polystyrene Polymers 0.000 description 9
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 8
- 239000003795 chemical substances by application Substances 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- 238000003851 corona treatment Methods 0.000 description 7
- 239000000178 monomer Substances 0.000 description 7
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 6
- 230000001133 acceleration Effects 0.000 description 6
- 239000004840 adhesive resin Substances 0.000 description 6
- 229920006223 adhesive resin Polymers 0.000 description 6
- 239000011248 coating agent Substances 0.000 description 6
- 239000003431 cross linking reagent Substances 0.000 description 6
- 238000004898 kneading Methods 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 229920000642 polymer Polymers 0.000 description 6
- 229910052710 silicon Inorganic materials 0.000 description 6
- 239000010703 silicon Substances 0.000 description 6
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 6
- XDLMVUHYZWKMMD-UHFFFAOYSA-N 3-trimethoxysilylpropyl 2-methylprop-2-enoate Chemical compound CO[Si](OC)(OC)CCCOC(=O)C(C)=C XDLMVUHYZWKMMD-UHFFFAOYSA-N 0.000 description 5
- 239000012760 heat stabilizer Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 230000000704 physical effect Effects 0.000 description 5
- 229920001169 thermoplastic Polymers 0.000 description 5
- 239000004416 thermosoftening plastic Substances 0.000 description 5
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 4
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 4
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical compound CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 description 4
- SJECZPVISLOESU-UHFFFAOYSA-N 3-trimethoxysilylpropan-1-amine Chemical compound CO[Si](OC)(OC)CCCN SJECZPVISLOESU-UHFFFAOYSA-N 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 238000012718 coordination polymerization Methods 0.000 description 4
- 239000010408 film Substances 0.000 description 4
- 230000003993 interaction Effects 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 239000006097 ultraviolet radiation absorber Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- WYTZZXDRDKSJID-UHFFFAOYSA-N (3-aminopropyl)triethoxysilane Chemical compound CCO[Si](OCC)(OCC)CCCN WYTZZXDRDKSJID-UHFFFAOYSA-N 0.000 description 3
- 239000004593 Epoxy Substances 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 150000001412 amines Chemical class 0.000 description 3
- 230000003712 anti-aging effect Effects 0.000 description 3
- 239000003963 antioxidant agent Substances 0.000 description 3
- 235000006708 antioxidants Nutrition 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 229920001038 ethylene copolymer Polymers 0.000 description 3
- 238000007667 floating Methods 0.000 description 3
- 239000004611 light stabiliser Substances 0.000 description 3
- MQWFLKHKWJMCEN-UHFFFAOYSA-N n'-[3-[dimethoxy(methyl)silyl]propyl]ethane-1,2-diamine Chemical compound CO[Si](C)(OC)CCCNCCN MQWFLKHKWJMCEN-UHFFFAOYSA-N 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- 238000005728 strengthening Methods 0.000 description 3
- BPSIOYPQMFLKFR-UHFFFAOYSA-N trimethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CO[Si](OC)(OC)CCCOCC1CO1 BPSIOYPQMFLKFR-UHFFFAOYSA-N 0.000 description 3
- GVJHHUAWPYXKBD-UHFFFAOYSA-N (±)-α-Tocopherol Chemical compound OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-UHFFFAOYSA-N 0.000 description 2
- KTZVZZJJVJQZHV-UHFFFAOYSA-N 1-chloro-4-ethenylbenzene Chemical compound ClC1=CC=C(C=C)C=C1 KTZVZZJJVJQZHV-UHFFFAOYSA-N 0.000 description 2
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 2
- TZZGHGKTHXIOMN-UHFFFAOYSA-N 3-trimethoxysilyl-n-(3-trimethoxysilylpropyl)propan-1-amine Chemical compound CO[Si](OC)(OC)CCCNCCC[Si](OC)(OC)OC TZZGHGKTHXIOMN-UHFFFAOYSA-N 0.000 description 2
- JLBJTVDPSNHSKJ-UHFFFAOYSA-N 4-Methylstyrene Chemical compound CC1=CC=C(C=C)C=C1 JLBJTVDPSNHSKJ-UHFFFAOYSA-N 0.000 description 2
- WSSSPWUEQFSQQG-UHFFFAOYSA-N 4-methyl-1-pentene Chemical compound CC(C)CC=C WSSSPWUEQFSQQG-UHFFFAOYSA-N 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 238000010539 anionic addition polymerization reaction Methods 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- LPIQUOYDBNQMRZ-UHFFFAOYSA-N cyclopentene Chemical compound C1CC=CC1 LPIQUOYDBNQMRZ-UHFFFAOYSA-N 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 208000028659 discharge Diseases 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- BXOUVIIITJXIKB-UHFFFAOYSA-N ethene;styrene Chemical group C=C.C=CC1=CC=CC=C1 BXOUVIIITJXIKB-UHFFFAOYSA-N 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 239000003063 flame retardant Substances 0.000 description 2
- 239000003365 glass fiber Substances 0.000 description 2
- 230000003301 hydrolyzing effect Effects 0.000 description 2
- 239000011256 inorganic filler Substances 0.000 description 2
- 229910003475 inorganic filler Inorganic materials 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- TVMXDCGIABBOFY-UHFFFAOYSA-N n-Octanol Natural products CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 2
- SSDSCDGVMJFTEQ-UHFFFAOYSA-N octadecyl 3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoate Chemical compound CCCCCCCCCCCCCCCCCCOC(=O)CCC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 SSDSCDGVMJFTEQ-UHFFFAOYSA-N 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 238000009832 plasma treatment Methods 0.000 description 2
- 229920005672 polyolefin resin Polymers 0.000 description 2
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 2
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 2
- 150000003254 radicals Chemical class 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000011342 resin composition Substances 0.000 description 2
- 229910000077 silane Inorganic materials 0.000 description 2
- 229910000679 solder Inorganic materials 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 125000005504 styryl group Chemical group 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- 239000004711 α-olefin Substances 0.000 description 2
- LTQBNYCMVZQRSD-UHFFFAOYSA-N (4-ethenylphenyl)-trimethoxysilane Chemical compound CO[Si](OC)(OC)C1=CC=C(C=C)C=C1 LTQBNYCMVZQRSD-UHFFFAOYSA-N 0.000 description 1
- JYEUMXHLPRZUAT-UHFFFAOYSA-N 1,2,3-triazine Chemical compound C1=CN=NN=C1 JYEUMXHLPRZUAT-UHFFFAOYSA-N 0.000 description 1
- KOMNUTZXSVSERR-UHFFFAOYSA-N 1,3,5-tris(prop-2-enyl)-1,3,5-triazinane-2,4,6-trione Chemical compound C=CCN1C(=O)N(CC=C)C(=O)N(CC=C)C1=O KOMNUTZXSVSERR-UHFFFAOYSA-N 0.000 description 1
- WEERVPDNCOGWJF-UHFFFAOYSA-N 1,4-bis(ethenyl)benzene Chemical compound C=CC1=CC=C(C=C)C=C1 WEERVPDNCOGWJF-UHFFFAOYSA-N 0.000 description 1
- UFFVWIGGYXLXPC-UHFFFAOYSA-N 1-[2-(2,5-dioxopyrrol-1-yl)phenyl]pyrrole-2,5-dione Chemical compound O=C1C=CC(=O)N1C1=CC=CC=C1N1C(=O)C=CC1=O UFFVWIGGYXLXPC-UHFFFAOYSA-N 0.000 description 1
- NVZWEEGUWXZOKI-UHFFFAOYSA-N 1-ethenyl-2-methylbenzene Chemical compound CC1=CC=CC=C1C=C NVZWEEGUWXZOKI-UHFFFAOYSA-N 0.000 description 1
- JZHGRUMIRATHIU-UHFFFAOYSA-N 1-ethenyl-3-methylbenzene Chemical compound CC1=CC=CC(C=C)=C1 JZHGRUMIRATHIU-UHFFFAOYSA-N 0.000 description 1
- BJELTSYBAHKXRW-UHFFFAOYSA-N 2,4,6-triallyloxy-1,3,5-triazine Chemical compound C=CCOC1=NC(OCC=C)=NC(OCC=C)=N1 BJELTSYBAHKXRW-UHFFFAOYSA-N 0.000 description 1
- PQJZHMCWDKOPQG-UHFFFAOYSA-N 2-anilino-2-oxoacetic acid Chemical compound OC(=O)C(=O)NC1=CC=CC=C1 PQJZHMCWDKOPQG-UHFFFAOYSA-N 0.000 description 1
- ISRGONDNXBCDBM-UHFFFAOYSA-N 2-chlorostyrene Chemical compound ClC1=CC=CC=C1C=C ISRGONDNXBCDBM-UHFFFAOYSA-N 0.000 description 1
- DOYKFSOCSXVQAN-UHFFFAOYSA-N 3-[diethoxy(methyl)silyl]propyl 2-methylprop-2-enoate Chemical compound CCO[Si](C)(OCC)CCCOC(=O)C(C)=C DOYKFSOCSXVQAN-UHFFFAOYSA-N 0.000 description 1
- LZMNXXQIQIHFGC-UHFFFAOYSA-N 3-[dimethoxy(methyl)silyl]propyl 2-methylprop-2-enoate Chemical compound CO[Si](C)(OC)CCCOC(=O)C(C)=C LZMNXXQIQIHFGC-UHFFFAOYSA-N 0.000 description 1
- RWLDCNACDPTRMY-UHFFFAOYSA-N 3-triethoxysilyl-n-(3-triethoxysilylpropyl)propan-1-amine Chemical compound CCO[Si](OCC)(OCC)CCCNCCC[Si](OCC)(OCC)OCC RWLDCNACDPTRMY-UHFFFAOYSA-N 0.000 description 1
- URDOJQUSEUXVRP-UHFFFAOYSA-N 3-triethoxysilylpropyl 2-methylprop-2-enoate Chemical compound CCO[Si](OCC)(OCC)CCCOC(=O)C(C)=C URDOJQUSEUXVRP-UHFFFAOYSA-N 0.000 description 1
- KBQVDAIIQCXKPI-UHFFFAOYSA-N 3-trimethoxysilylpropyl prop-2-enoate Chemical compound CO[Si](OC)(OC)CCCOC(=O)C=C KBQVDAIIQCXKPI-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229940126062 Compound A Drugs 0.000 description 1
- IYXGSMUGOJNHAZ-UHFFFAOYSA-N Ethyl malonate Chemical compound CCOC(=O)CC(=O)OCC IYXGSMUGOJNHAZ-UHFFFAOYSA-N 0.000 description 1
- NLDMNSXOCDLTTB-UHFFFAOYSA-N Heterophylliin A Natural products O1C2COC(=O)C3=CC(O)=C(O)C(O)=C3C3=C(O)C(O)=C(O)C=C3C(=O)OC2C(OC(=O)C=2C=C(O)C(O)=C(O)C=2)C(O)C1OC(=O)C1=CC(O)=C(O)C(O)=C1 NLDMNSXOCDLTTB-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 1
- 229930003427 Vitamin E Natural products 0.000 description 1
- 125000003668 acetyloxy group Chemical group [H]C([H])([H])C(=O)O[*] 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 1
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical compound C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 description 1
- 239000012965 benzophenone Substances 0.000 description 1
- QRUDEWIWKLJBPS-UHFFFAOYSA-N benzotriazole Chemical compound C1=CC=C2N[N][N]C2=C1 QRUDEWIWKLJBPS-UHFFFAOYSA-N 0.000 description 1
- 239000012964 benzotriazole Substances 0.000 description 1
- 230000000740 bleeding effect Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- CDQSJQSWAWPGKG-UHFFFAOYSA-N butane-1,1-diol Chemical compound CCCC(O)O CDQSJQSWAWPGKG-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000003518 caustics Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- OTARVPUIYXHRRB-UHFFFAOYSA-N diethoxy-methyl-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CCO[Si](C)(OCC)CCCOCC1CO1 OTARVPUIYXHRRB-UHFFFAOYSA-N 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 239000008393 encapsulating agent Substances 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- FWDBOZPQNFPOLF-UHFFFAOYSA-N ethenyl(triethoxy)silane Chemical compound CCO[Si](OCC)(OCC)C=C FWDBOZPQNFPOLF-UHFFFAOYSA-N 0.000 description 1
- NKSJNEHGWDZZQF-UHFFFAOYSA-N ethenyl(trimethoxy)silane Chemical compound CO[Si](OC)(OC)C=C NKSJNEHGWDZZQF-UHFFFAOYSA-N 0.000 description 1
- LDLDYFCCDKENPD-UHFFFAOYSA-N ethenylcyclohexane Chemical compound C=CC1CCCCC1 LDLDYFCCDKENPD-UHFFFAOYSA-N 0.000 description 1
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000004088 foaming agent Substances 0.000 description 1
- WIGCFUFOHFEKBI-UHFFFAOYSA-N gamma-tocopherol Natural products CC(C)CCCC(C)CCCC(C)CCCC1CCC2C(C)C(O)C(C)C(C)C2O1 WIGCFUFOHFEKBI-UHFFFAOYSA-N 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 238000007756 gravure coating Methods 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- ACCCMOQWYVYDOT-UHFFFAOYSA-N hexane-1,1-diol Chemical compound CCCCCC(O)O ACCCMOQWYVYDOT-UHFFFAOYSA-N 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 description 1
- 150000002513 isocyanates Chemical class 0.000 description 1
- 150000002596 lactones Chemical class 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- INJVFBCDVXYHGQ-UHFFFAOYSA-N n'-(3-triethoxysilylpropyl)ethane-1,2-diamine Chemical compound CCO[Si](OCC)(OCC)CCCNCCN INJVFBCDVXYHGQ-UHFFFAOYSA-N 0.000 description 1
- PHQOGHDTIVQXHL-UHFFFAOYSA-N n'-(3-trimethoxysilylpropyl)ethane-1,2-diamine Chemical compound CO[Si](OC)(OC)CCCNCCN PHQOGHDTIVQXHL-UHFFFAOYSA-N 0.000 description 1
- KBJFYLLAMSZSOG-UHFFFAOYSA-N n-(3-trimethoxysilylpropyl)aniline Chemical compound CO[Si](OC)(OC)CCCNC1=CC=CC=C1 KBJFYLLAMSZSOG-UHFFFAOYSA-N 0.000 description 1
- XCOASYLMDUQBHW-UHFFFAOYSA-N n-(3-trimethoxysilylpropyl)butan-1-amine Chemical compound CCCCNCCC[Si](OC)(OC)OC XCOASYLMDUQBHW-UHFFFAOYSA-N 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- FVXBCDWMKCEPCL-UHFFFAOYSA-N nonane-1,1-diol Chemical compound CCCCCCCCC(O)O FVXBCDWMKCEPCL-UHFFFAOYSA-N 0.000 description 1
- JFNLZVQOOSMTJK-KNVOCYPGSA-N norbornene Chemical compound C1[C@@H]2CC[C@H]1C=C2 JFNLZVQOOSMTJK-KNVOCYPGSA-N 0.000 description 1
- 230000001151 other effect Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000010690 paraffinic oil Substances 0.000 description 1
- RGSFGYAAUTVSQA-UHFFFAOYSA-N pentamethylene Natural products C1CCCC1 RGSFGYAAUTVSQA-UHFFFAOYSA-N 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 238000007539 photo-oxidation reaction Methods 0.000 description 1
- 230000010399 physical interaction Effects 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- ULWHHBHJGPPBCO-UHFFFAOYSA-N propane-1,1-diol Chemical compound CCC(O)O ULWHHBHJGPPBCO-UHFFFAOYSA-N 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000012321 sodium triacetoxyborohydride Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 150000003440 styrenes Chemical class 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 125000000101 thioether group Chemical group 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- JXUKBNICSRJFAP-UHFFFAOYSA-N triethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CCO[Si](OCC)(OCC)CCCOCC1CO1 JXUKBNICSRJFAP-UHFFFAOYSA-N 0.000 description 1
- DQZNLOXENNXVAD-UHFFFAOYSA-N trimethoxy-[2-(7-oxabicyclo[4.1.0]heptan-4-yl)ethyl]silane Chemical compound C1C(CC[Si](OC)(OC)OC)CCC2OC21 DQZNLOXENNXVAD-UHFFFAOYSA-N 0.000 description 1
- 235000019165 vitamin E Nutrition 0.000 description 1
- 229940046009 vitamin E Drugs 0.000 description 1
- 239000011709 vitamin E Substances 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K3/00—Materials not provided for elsewhere
- C09K3/10—Materials in mouldable or extrudable form for sealing or packing joints or covers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/12—Chemical modification
- C08J7/16—Chemical modification with polymerisable compounds
- C08J7/18—Chemical modification with polymerisable compounds using wave energy or particle radiation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/042—PV modules or arrays of single PV cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/042—PV modules or arrays of single PV cells
- H01L31/048—Encapsulation of modules
- H01L31/0481—Encapsulation of modules characterised by the composition of the encapsulation material
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2200/00—Chemical nature of materials in mouldable or extrudable form for sealing or packing joints or covers
- C09K2200/06—Macromolecular organic compounds, e.g. prepolymers
- C09K2200/0615—Macromolecular organic compounds, e.g. prepolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C09K2200/0617—Polyalkenes
- C09K2200/062—Polyethylene
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2200/00—Chemical nature of materials in mouldable or extrudable form for sealing or packing joints or covers
- C09K2200/06—Macromolecular organic compounds, e.g. prepolymers
- C09K2200/0615—Macromolecular organic compounds, e.g. prepolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C09K2200/0632—Polystyrenes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Definitions
- the present invention relates to a resin excellent in adhesiveness with inorganic materials such as glass plates, glass fibers, inorganic fillers, and the like, and a sheet thereof.
- a resin or a sheet thereof excellent in adhesiveness to an inorganic material such as glass is required for uses such as a solar power generation device (solar cell), a liquid crystal, an EL display member, an EL light emitting device sealing, and an adhesive resin. It has been.
- conventional resins have not been satisfactory because sufficient adhesiveness cannot be obtained, a method for improving adhesiveness is expensive, and other physical properties are adversely affected.
- Patent Documents 1 to 4 For example, a method of modifying a silane by adding a silane coupling agent to an EVA resin or a polyolefin resin, kneading and cross-linking (Patent Documents 1 to 4) has been proposed. Although this method improves the adhesion to, for example, glass, the method of kneading a coupling agent into a resin and performing radical crosslinking suppresses crosslinking at the time of sheet molding and reliably crosslinks at the time of sealing. The process window is narrow, and sometimes there are problems in molding processing and poor cross-linking during sealing. Further, the kneading increases the cost, and there is also an adverse effect on the physical properties of the remaining cross-linking agent, cross-linking auxiliary, etc., and a more efficient and stable method for improving adhesiveness has been demanded.
- Patent Documents 5, 6, 7, and 8 describe a sealing material for a solar power generation device that is obtained by irradiating an electron beam to a resin such as EVA or polyolefin that contains a silane coupling agent or a crosslinking agent.
- a resin such as EVA or polyolefin that contains a silane coupling agent or a crosslinking agent.
- its main purpose is electron beam crosslinking for substituting the drawback of crosslinking by peroxide, or adjustment of molding processability by controlling the degree of crosslinking by electron beam.
- Patent Documents 9 and 10 for the purpose of improving the adhesiveness of a sealing material and suppressing deterioration, an ethylene-based resin is copolymerized with an unsaturated carboxylic acid derivative or an epoxy compound, or modified with these. A method of coating a silane coupling agent is described. However, it is highly technically difficult to copolymerize or modify polar monomers such as carboxylic acid derivatives and epoxy compounds in an olefin resin, and there is a high possibility of sacrificing other physical properties.
- the present invention has been made in view of the above circumstances, and provides a resin having excellent adhesiveness with an inorganic material such as glass and the like, and capable of imparting adhesiveness in an efficient manner, and a sheet thereof.
- Another object of the present invention is to provide a sealing material using such a resin or sheet and a solar power generation device including the sealing material.
- a resin having adhesiveness to an inorganic material such as glass or silicon which is obtained by adding or applying a coupling agent to an aromatic vinyl compound-olefin copolymer and further irradiating with energy.
- the method of adding or applying the coupling agent is not limited, but in one embodiment, the aromatic vinyl compound-olefin copolymer is formed into a sheet shape, the coupling agent is applied to the surface, and energy irradiation is performed.
- a resin obtained by adding a coupling agent to an aromatic vinyl compound-olefin copolymer to form a sheet and further irradiating with energy is provided. .
- the aromatic vinyl compound is styrene, and in another embodiment, the olefin is ethylene.
- the aromatic vinyl compound-olefin copolymer is a cross-copolymer comprising an aromatic vinyl compound and an olefin.
- such a cross-copolymer has an olefin-aromatic vinyl compound-aromatic polyene copolymer chain and an aromatic vinyl compound polymer chain, and is a unit derived from an aromatic vinyl compound and an olefin monomer.
- the content of units derived from aromatic polyene is preferably of copolymer weight. Less than 5% by mass and 0.01% by mass or more, more preferably less than 1% by mass and 0.01% by mass or more.
- the energy irradiation is electron beam irradiation, for example, generally an electron beam having an acceleration voltage in the range of 10 keV to 5000 keV, preferably 10 keV to 250 keV, more preferably 10 keV to 150 keV.
- the coupling agent is a silane coupling agent, particularly a silane coupling agent having any functional group of an amino group, a methacryloxy group, and an epoxy group.
- a sheet produced using the above resin and a sealing material using such a resin or the sheet are provided, and further, such a sealing material is used as a constituent element.
- a solar power generation device is also provided.
- the aromatic vinyl compound-olefin copolymer is particularly selected, and a coupling agent is added or applied thereto, and further irradiated with energy, so that it has excellent adhesion to inorganic materials, particularly glass and silicon.
- Resin or its sheet can be obtained, and such resin or its sheet is useful as, for example, a sealing material for a solar power generation device, a liquid crystal or EL display, a sealing for a light emitting device, and an adhesive resin.
- the present invention relates to adhesion to inorganic materials such as glass plates, glass fibers, and inorganic fillers, which can be obtained by adding or applying a coupling agent to an aromatic vinyl compound-olefin copolymer and further irradiating with energy. It is a resin or sheet thereof that is excellent in properties and preferably excellent in filling properties.
- the sheet in the present invention includes the concept of a film, and the thickness thereof is not particularly limited, and generally ranges from 1 ⁇ m to 3 mm.
- the aromatic vinyl compound-olefin copolymer means a copolymer obtained by copolymerizing each monomer of an aromatic vinyl compound and an olefin, and the content of units derived from these monomers. Denotes a copolymer occupying 70% by mass or more, preferably 90% by mass or more, and most preferably 95% by mass or more of the entire copolymer mass.
- the manufacturing method of this copolymer is arbitrary.
- aromatic vinyl compounds include styrene and various substituted styrenes such as p-methylstyrene, m-methylstyrene, o-methylstyrene, ot-butylstyrene, mt-butylstyrene, and pt-butylstyrene. , P-chlorostyrene, o-chlorostyrene and the like.
- styrene, p-methylstyrene, p-chlorostyrene, particularly preferably styrene is used.
- the olefin examples include ethylene and an ⁇ -olefin having 3 to 20 carbon atoms, that is, propylene, 1-butene, 1-hexene, 4-methyl-1-pentene, and 1-octene.
- cyclic olefins are also included in the category of olefins, and examples of the cyclic olefins include vinylcyclohexane, cyclopentene, and norbornene.
- ethylene or a mixture of ethylene and an ⁇ -olefin, ie, propylene, 1-butene, 1-hexene, or 1-octene is used, and more preferably, ethylene is used.
- the aromatic vinyl compound-olefin copolymer a copolymer of ethylene and styrene is preferable.
- examples of the aromatic vinyl compound-olefin copolymer include the copolymers described in EP 0 416 815 A2, JP 3659760, and EP 872492B1, each of which is incorporated herein by reference. More preferably, a cross-copolymer is used as the aromatic vinyl compound-olefin copolymer.
- a cross-copolymer is a copolymer obtained by anionic polymerization in the presence of an olefin-aromatic vinyl compound-aromatic polyene copolymer and an aromatic vinyl compound monomer obtained by coordination polymerization.
- -Aromatic vinyl compound-A copolymer having an aromatic polyene copolymer chain (may be described as a main chain) and an aromatic vinyl compound polymer chain (may be described as a side chain) .
- the present cross-copolymer and its production method are described in WO 2000-37517, USP 6559234, or WO 2007-139116, each of which is incorporated herein by reference in its entirety, and is derived from an aromatic vinyl compound and an olefin monomer.
- the content of the unit to be produced occupies 70% by mass or more of the total copolymer mass, preferably 90% by mass or more, most preferably 95% by mass or more, and the content of the unit derived from the aromatic polyene is preferably It is less than 5% by mass of the combined mass and 0.01% by mass or more, more preferably less than 1% by mass and 0.01% by mass.
- the aromatic polyene is a monomer having a carbon number of 10 or more and 30 or less, having a plurality of double bonds (vinyl group) and one or a plurality of aromatic groups and capable of coordination polymerization.
- An aromatic polyene in which one of (vinyl group) is used for coordination polymerization and a double bond left in a polymerized state can be anionically polymerized.
- any one or a mixture of two or more of orthodivinylbenzene, paradivinylbenzene and metadivinylbenzene is preferably used.
- a cross copolymer having a main chain of an ethylene-styrene-divinylbenzene copolymer chain and a side chain of a polystyrene chain is used.
- Examples of the inorganic material in which the adhesiveness of the resin or sheet according to the present invention is a problem include glass, ceramics, metal, and the like, but glass is particularly preferable.
- the glass may have any form such as powder, fiber, plate, etc., but is preferably plate-like glass.
- a known coupling agent can be used.
- a coupling agent include a silane coupling agent, a titanate coupling agent, and an isocyanate coupling agent.
- a silane coupling agent is used.
- silane coupling agents can be obtained from Shin-Etsu Chemical Co., Ltd., Dow Corning Co., and Evonik.
- a silane coupling agent is a silane compound having a functional group and a hydrolytic condensable group in the molecule.
- the functional group include vinyl groups such as vinyl, methacryloxy, acryloxy, and styryl, amino groups, epoxy groups, mercapto groups, sulfide groups, isocyanate groups, and halogens.
- the functional group is preferably a vinyl group, amino group, epoxy group, methacryloxy group, or acryloxy group, and most preferably an amino group, methacryloxy group, or epoxy group.
- these functional groups may be present in the molecule.
- These coupling agents can be used alone or in combination of two or more.
- silane coupling agent having a vinyl group as a functional group examples include vinyltrimethoxysilane and vinyltriethoxysilane.
- An example of a silane coupling agent having a styryl group as a functional group is p-styryltrimethoxysilane.
- An example of a silane coupling agent having an acryloxy group as a functional group is 3-acryloxypropyltrimethoxysilane.
- Examples of the silane coupling agent having a methacryloxy group as a functional group include 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, and 3-methacryloxypropylmethyldiethoxysilane. Can be illustrated.
- Examples of the silane coupling agent having an epoxy group as a functional group include 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 2- (3,4 -Epoxycyclohexyl) ethyltrimethoxysilane.
- silane coupling agent having an amino group as a functional group examples include 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2 -(Aminoethyl) -3-aminopropylethyldimethoxysilane, N-2- (aminoethyl) -3-aminopropylmethyldiethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, N -2- (aminoethyl) -3-aminopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, bis (3-trimethoxysilylpropyl) amine, bis (3-triethoxysilylpropyl) amine, N-
- the above is an example having a methoxy group or an ethoxy group as a hydrolytic condensable group, but a triisopropoxy group or an acetoxy group can also be used.
- the amount of the silane coupling agent used is not particularly limited, but when added to the resin by kneading or the like, it is generally used in the range of 0.05% by mass to 10% by mass with respect to the resin. When applied to a resin, it is generally used in the range of 0.1 g / m 2 to 20 g / m 2 .
- the resin according to the present invention is prepared by a method characterized by adding or applying a coupling agent to an aromatic vinyl compound-olefin copolymer and further irradiating with energy. That is, in the method of adding a coupling agent to an aromatic vinyl compound-olefin copolymer, a known method for adding an additive to a resin is usually used to add the aromatic vinyl compound-olefin copolymer to the aromatic vinyl compound-olefin copolymer. Add coupling agent and knead. Industrially, for example, a twin screw extruder, a Banbury mixer, a roll forming machine, or the like can be used.
- a sheet is formed by a known molding method such as inflation molding, extrusion molding, T-die molding, calendar molding, roll molding, press molding or the like.
- a coupling agent is applied.
- the above-mentioned known methods can be used.
- a known coating method such as a gravure coating method, a roll coating method, a dip coating method, or a spraying method, Apply coupling agent.
- the coupling agent may be used after diluted in an appropriate solvent or may be used without dilution.
- the latter application method is economically superior to the former method in which the coupling agent is added and kneaded, because the amount of coupling agent used can be reduced.
- the aromatic vinyl compound-olefin copolymer sheet formed by adding or applying the coupling agent as described above is irradiated with energy.
- energy irradiation include irradiation with electron beams, gamma rays, X-rays, ultraviolet rays, neutron rays, ⁇ rays, infrared rays, visible rays, corona discharge treatment, and plasma treatment. These energy irradiations can be performed using a known apparatus. In a preferred embodiment of the invention, electron beam irradiation is used.
- the acceleration voltage of the electron beam is generally in the range of 10 keV to 5000 keV, and the irradiation dose is generally in the range of 1 kGy to 500 kGy. This acceleration voltage is appropriately controlled depending on the thickness of the sheet.
- the purpose of the present invention is to provide adhesion by strengthening the interaction between the resin in the vicinity of the surface and the coupling agent by electron beam treatment. , Preferably 10 keV to 250 keV, more preferably 10 keV to 150 keV.
- the term “reinforcement of interaction” as used herein refers to enhancement of chemical or physical interaction that leads to adhesion enhancement, such as grafting, cross-linking, chemical reaction, molecular chain entanglement between resins and coupling agents in the vicinity of the surface.
- corona discharge treatment or plasma treatment particularly preferably corona discharge treatment is used.
- the specific condition is that the coupling agent used is preferably a silane coupling agent having an epoxy group or an amino group.
- the corona discharge treatment can be performed with a known apparatus and known conditions.
- the preferred corona discharge energy is not particularly limited, but is preferably in the range of 0.1 to 1000 mJ / mm 2 .
- a peel strength (adhesive strength) of 22 N / 25 mm or more, preferably 25 N / 25 mm or more can be achieved.
- a peel strength of 3N / 6 mm or more can be achieved in the same test for metals such as silicon (including silicon subjected to surface stabilization treatment), aluminum, copper, and solder.
- Irradiation of energy rays is carried out in the same way whether the aromatic vinyl compound-olefin copolymer is added with a coupling agent and kneaded or applied after forming into a sheet, but the interaction only in the vicinity of the resin surface.
- crosslinking aids that can be used are known crosslinking aids such as triallyl isocyanurate, triallyl cyanurate, N, N′-phenylenebismaleimide, ethylene glycol di (meth) acrylate, propanediol di (meth) acrylate, Examples include butanediol di (meth) acrylate, hexanediol di (meth) acrylate, nonanediol di (meth) acrylate, and trimethylolpropane tri (meth) acrylate. These crosslinking aids may be used alone or in combination of two or more. When the crosslinking aid is blended, the content is not particularly limited, but it is usually preferably in the range of 0.01 to 5% by mass with respect to the total mass.
- additives that are used in ordinary resins, for example, heat stabilizers, antioxidants, and the like, as long as the purpose of the present invention is not impaired.
- An antistatic agent, a filler, a colorant, a lubricant, an antifogging agent, a foaming agent, a flame retardant, a flame retardant aid and the like may be added.
- the resin of the present invention or the sheet thereof has excellent adhesiveness with an inorganic material such as a wiring metal, silicon, or glass, sealing of a photovoltaic power generation device (solar cell), a liquid crystal, an EL display member, and an EL light emitting device It is useful as an adhesive resin.
- a photovoltaic power generation device solar cell
- liquid crystal liquid crystal
- EL display member an EL light emitting device
- various sealing members of a solar power generation device (solar cell) which is a preferred application of the resin of the present invention or a sheet thereof, will be described in detail.
- the adhesive resin sheet of the present invention is used as various sealing members of a solar power generation device (solar cell), particularly as a sealing sheet, the preferred physical properties are A hardness 50 or more and 95 or less, and total light The transmittance is 75% or more in a sheet having a thickness of 1 mm.
- a styrene-ethylene copolymer satisfying such conditions has a composition having a styrene content of 5 mol% to 40 mol%.
- a cross-copolymer can be preferably used.
- a cross-copolymer satisfying this condition is incorporated herein by reference in its entirety, for example, in WO 2007-139116, JP-A 2009-120792, and JP-A 2010-150442. Since the method, the total light transmittance, and the A hardness are described, those skilled in the art can easily manufacture by performing a few trials with reference to these. Specifically, when the aromatic vinyl compound is styrene and the olefin is ethylene, a cross-copolymer that satisfies this condition can be achieved by satisfying the following conditions.
- the ethylene-styrene-divinylbenzene copolymer used for the production of the cross-copolymer has a styrene content of 5 mol% to 40 mol%, a divinylbenzene content of 0.01 mol% to 3 mol%, and a weight average.
- the molecular weight is 30,000 to 150,000
- the mass proportion of the present ethylene-styrene-divinylbenzene copolymer in the finally obtained cross-copolymer is 40% by mass to 95% by mass, preferably 40% by mass to 90%. It is below mass%.
- the storage elastic modulus of the resin at 120 ° C. is preferably 1 ⁇ 10 4 Pa or more, more preferably It is necessary to be 1 ⁇ 10 5 Pa or more.
- the storage elastic modulus can be easily obtained using a known viscoelasticity measuring apparatus.
- the above cross-copolymer can satisfy this condition without performing a crosslinking treatment and can be suitably used in the present invention.
- the MFR value (200 ° C., weight 98N) of the raw material resin is not particularly limited, but is generally 0.1 g / 10 min or more and 300 g / 10 min or less. If it is lower than this, voids due to poor filling are likely to occur during sealing, and if it is higher than this, there may be a concern about insufficient heat resistance, that is, a creep phenomenon of solar cells or wiring in the environment.
- This MFR value can be easily estimated by a person skilled in the art from the known literature of the resin to be used, and can also be adjusted by adding a small amount of oil or plasticizer.
- adhesion to glass is particularly important from the viewpoint of ensuring reliability.
- peel strength adheresive strength
- the sheet body is substantially thermoplastic, and therefore, crosslinking and other effects due to electron beam irradiation are inorganic. It is preferably limited to the vicinity of the sheet surface that requires adhesion to a material such as glass. For this purpose, it is generally preferable to control the electron arrival depth by changing the acceleration voltage of the electron beam, or to irradiate only the surface that requires adhesion.
- the center of the sheet or the surface opposite to the electron beam irradiation surface is substantially not irradiated with the electron beam, and is preferably thermoplastic for the sealing resin sheet for the photovoltaic power generation apparatus.
- the degree of cross-linking with respect to the entire sheet is substantially low. It is as follows.
- the gel content is determined according to ASTM D-2765-84.
- acquires the radical produced
- the ultraviolet absorber include benzotriazole, triazine, benzophenone, benzoate, oxalic anilide, and malonic ester.
- the mass ratio of the ultraviolet absorber and the hindered amine light stabilizer is in the range of 1: 100 to 100: 1, and the total mass of the ultraviolet absorber and the hindered amine light stabilizer is the light-proofing agent mass. The range is 0.05 to 5 parts by mass with respect to 100 parts by mass.
- the light-proofing agent as described above can be obtained, for example, as ADEKA STAB LA series from ADEKA Corporation or as Sumisorb series from Sumika Chemtex Co., Ltd.
- the sealing material can be blended with any known plasticizer conventionally used for polyvinyl chloride and other resins.
- the plasticizer preferably used is an oil or an oxygen-containing or nitrogen-containing plasticizer, more preferably a paraffinic oil, a naphthenic oil, an ester plasticizer, an epoxy plasticizer, an ether plasticizer, or Selected from amide plasticizers. These plasticizers can be suitably used because they have relatively good compatibility and are not easily bled, and have a large plasticizing effect that can be evaluated by the degree to which the glass transition temperature is lowered.
- the compounding amount of the plasticizer is 1 part by mass or more and 20 parts by mass or less, preferably 1 part by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the resin of the present invention or the sheet thereof. If the amount is less than 1 part by mass, the above effects are insufficient. If the amount is more than 20 parts by mass, it may cause bleeding, excessive softening, and excessive stickiness. Moreover, the fluidity
- Suitable anti-aging agents include, for example, hindered phenol antioxidants, phosphorus heat stabilizers, lactone heat stabilizers, vitamin E heat stabilizers, sulfur heat stabilizers and the like.
- the usage-amount is 3 parts weight or less with respect to 100 mass parts of resin compositions.
- the thickness of the sheet for the sealing material of the solar power generation device is not particularly limited, but is generally 30 ⁇ m to 1 mm, preferably 100 ⁇ m to 0.5 mm.
- known molding methods such as inflation molding, extrusion molding, T-die molding, calendar molding, roll molding, etc. can be employed.
- the sheet for the sealing material of the photovoltaic power generation apparatus does not necessarily have to be a single layer, and the adhesive resin sheet according to the present invention is applied to a glass bonding surface or a bonding surface with a cell such as a silicon cell.
- Other suitable resin sheets may be further laminated to form a multilayer structure.
- the other suitable resin sheet may be an aromatic vinyl compound-olefin copolymer, preferably a cross copolymer sheet, in which the amount of the silane coupling agent is small or not blended,
- Other resin for example, EVA or other ethylene copolymer sheets may be used.
- the crosslinking treatment is performed using a coupling agent and a resin sheet. Only the vicinity of the surface of the sheet for strengthening the bonding of the sheet is preferable, and the central part occupying most of the sheet and the opposite side of the adhesive surface to the glass are sealed without substantial cross-linking. It is preferable when used as a stopper. However, when the sheet itself requires high heat resistance or after sealing, it is possible to perform further crosslinking treatment.
- thermoplasticity of the thermoplastic sealing material of the present invention is important in the process of sealing solar cells by melting and flowing in the sealing process.
- the subsequent crosslinking conditions are arbitrarily determined depending on the crosslinking agent and crosslinking aid used.
- the crosslinking agents and crosslinking aids that can be used for the thermoplastic sealing material are those commonly used for ethylene resins, styrene resins, and styrene-ethylene copolymers, and are known.
- crosslinking agents Preferred crosslinking agents, crosslinking assistants, and crosslinking conditions are described in, for example, JP-T-10-505621 (WO96 / 077681), JP-A-08-139347, and JP-A-2000-183831.
- the sealing material subjected to such a crosslinking treatment loses the merit of using recyclability, but has a high water vapor barrier property (low water vapor permeability), a high volume resistivity, and does not liberate corrosive substances such as acetic acid. This is advantageous in terms of improving the reliability of the solar cell.
- Examples of solar cells using the sealing material according to the present invention include solar cells of each type of single crystal silicon, polycrystalline silicon, amorphous silicon, compound, and organic. High water vapor barrier properties (low water vapor permeability), high volume resistivity, and corrosion of acetic acid, etc., even in the case where solar cells adhere to the surface glass, such as thin film solar cells, and the sealing material does not require transparency The point that the active substance is not liberated is advantageous from the viewpoint of improving the reliability of the solar cell.
- ⁇ Raw resin> The raw material resins used in Examples and Comparative Examples are as follows.
- the following cross copolymers were produced by the production methods described in WO2000 / 37517 or WO2007139116, the entire contents of which are incorporated herein by reference, and the following compositions were similarly determined by the methods described in these publications.
- These cross copolymers include an ethylene-styrene-divinylbenzene copolymer chain obtained by anionic polymerization in the presence of an ethylene-styrene-divinylbenzene copolymer obtained by coordination polymerization and a styrene monomer. It is a copolymer having a polystyrene chain.
- the cross-copolymer in order to define the cross-copolymer, the styrene content, divinylbenzene content, weight average molecular weight (Mw), molecular weight distribution (Mw / Mn) of the ethylene-styrene-divinylbenzene copolymer used, the cross-copolymer
- Mw weight average molecular weight
- Mw / Mn molecular weight distribution of the ethylene-styrene-divinylbenzene copolymer used, the cross-copolymer
- the content of the ethylene-styrene-divinylbenzene copolymer, the molecular weight (Mw) of the polystyrene chain, and the molecular weight distribution (Mw / Mn) are shown.
- the total styrene content is a total content of the styrene contents contained in the ethylene-styrene-divinylbenzene copolymer chain and the polystyrene chain contained in the cross copolymer.
- ⁇ Silane coupling agent> The following silane coupling agent manufactured by Shin-Etsu Chemical Co., Ltd. was used. ⁇ 3-Aminopropyltriethoxysilane (KBE-903) ⁇ 3-Aminopropyltrimethoxysilane (KBM-903) N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane (KBM-602) ⁇ 3-Glycidoxypropyltrimethoxysilane (KBM-403) ⁇ 3-Methacryloxypropyltrimethoxysilane (KBM-503) Furthermore, the following silane coupling agent manufactured by Evonik was used. ⁇ Bis (3-trimethoxysilylpropyl) amine
- ⁇ Sheet preparation> As the sample sheet, a 0.4 mm thick sheet formed by a hot press method (temperature 180 ° C., time 3 minutes, pressure 50 kg / cm 2 ) was used.
- ⁇ Tensile test> In accordance with JIS K-6251, the obtained film was cut into a No. 2 1/2 type test piece shape, and an initial tensile elastic modulus was used at a tensile speed of 500 mm / min using a Shimadzu AGS-100D type tensile tester. The elongation at break and the strength at break were measured.
- ⁇ Coating method> A silane coupling agent and acetic acid were dissolved in cyclohexane to prepare a solution containing 2% by mass of the coupling agent and 2% by mass of acetic acid. Using a bar coater, the cyclohexane solution was coated on the sheet with a thickness of 45 microns. Then, it was naturally dried all day and night.
- Example 1 Addition of 0.2 parts by weight of ADEKA Corporation weathering agents LA-52 and LA-36, 0.1 parts by weight of Ciba Japan Co., Ltd. Irganox 1076 to 100 parts by weight of cross copolymer 1 Then, kneading was performed using a Brabender as described above. A sheet having a thickness of 0.4 mm was prepared from the obtained resin kneaded material by the above-described hot pressing method. A silane coupling agent: 3-aminopropyltriethoxysilane was dissolved in cyclohexane at a concentration of 2% by mass and acetic acid 2% by mass to prepare a coating solution.
- the cyclohexane solution was applied to the prepared sheet with an opening thickness of 45.7 microns using a bar coater. Then, it was dried overnight in a draft. The surface of the obtained sheet on which the coupling agent was applied was irradiated once with an electron beam of 50 kGy at an acceleration voltage of 125 kV. Several days after the irradiation, pressure bonding with glass was performed according to the above. The next day, when the adhesive strength was measured, the adhesive strength was high and the sheet was destroyed. The adhesive strength measured at the time of material breakage was 35 N / 25 mm or more.
- Examples 2 to 10> The test was conducted in the same manner as in Example 1, except that the sheet resin, the silane coupling agent, and the electron beam irradiation conditions were changed. Test conditions and results are shown in Table 2. Further, Irganox 1076 made by Ciba Japan, which is an antioxidant, was not added to the resin kneaded material using the cross copolymers 4 and 5.
- Example 11 to 20 As in Example 1, except that when dissolving the silane coupling agent in cyclohexane, a coating solution was prepared without using acetic acid, and the sheet resin, silane coupling agent, and electron beam irradiation conditions were prepared. Others were tested in the same manner. When 3-methacryloxypropyltrimethoxysilane was used, 3-methacryloxypropyltrimethoxysilane was dissolved in cyclohexane at a concentration of 10% by mass to prepare a coating solution. Test conditions and results are shown in Table 2.
- Examples 21 to 25 The test pieces obtained in the same manner as in Examples 1, 4, 5, and 7 were left to stand for 1000 hours under the conditions of a temperature and humidity of 85 ° C. and a humidity of 85% using a constant temperature and humidity device, and the adhesive strength was measured in the same manner. .
- the results are shown in Table 4.
- the adhesive strength was 35 N / 25 mm or more, resulting in material destruction, and substantially the same adhesive strength.
- Example 22 (same sample as Example 4) also showed an adhesive strength of 35 N / 25 mm or more, resulting in material destruction, rather the adhesive strength increased.
- Example 26 to 27 As in Example 1, except that when dissolving the silane coupling agent in cyclohexane, a coating solution was prepared without using acetic acid, and the sheet resin and the silane coupling agent were changed. The test was conducted in the same manner except that the corona discharge treatment (corona discharge energy 4 mJ / mm 2 ) was used instead of the line irradiation. Table 5 shows the test conditions and results.
- Example 28 to 30> As in Example 1, except that when dissolving the silane coupling agent in cyclohexane, a coating solution was prepared without using acetic acid, and the sheet resin and the silane coupling agent were changed. Irradiation or corona treatment was performed. In the adhesion test, tab sheets for solar cells (super soft copper flat-plated wire: lead-free solder, width 6 mm) were used instead of glass, and the sheet was pressure-bonded by the same method. The adhesive strength was measured under 180 ° peeling conditions. Table 6 shows the test conditions and results.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Polymers & Plastics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Power Engineering (AREA)
- Materials Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- Medicinal Chemistry (AREA)
- Computer Hardware Design (AREA)
- Toxicology (AREA)
- General Chemical & Material Sciences (AREA)
- Photovoltaic Devices (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
- Treatments Of Macromolecular Shaped Articles (AREA)
- Sealing Material Composition (AREA)
Abstract
Description
また本発明は、そのような樹脂またはシートを用いた封止材並びに該封止材を含む太陽光発電装置を提供することも目的とする。 The present invention has been made in view of the above circumstances, and provides a resin having excellent adhesiveness with an inorganic material such as glass and the like, and capable of imparting adhesiveness in an efficient manner, and a sheet thereof. For the purpose.
Another object of the present invention is to provide a sealing material using such a resin or sheet and a solar power generation device including the sealing material.
また更なる実施態様では、カップリング剤は、シランカップリング剤であり、特に、アミノ基、メタクリロキシ基、エポキシ基のいずれかの官能基を有するシランカップリング剤である。 According to another embodiment, the energy irradiation is electron beam irradiation, for example, generally an electron beam having an acceleration voltage in the range of 10 keV to 5000 keV, preferably 10 keV to 250 keV, more preferably 10 keV to 150 keV. .
In a still further embodiment, the coupling agent is a silane coupling agent, particularly a silane coupling agent having any functional group of an amino group, a methacryloxy group, and an epoxy group.
本発明は、芳香族ビニル化合物-オレフィン系共重合体にカップリング剤を添加または塗布し、さらにエネルギー照射することにより得ることのできる、ガラス板、ガラス繊維、無機フィラー等の無機材料との接着性に優れ、また好ましくは充填性にも優れる樹脂またはそのシートである。本発明におけるシ-トはフィルムの概念を包含し、その厚さに特に制限はなく、一般的には1μmから3mmの範囲である。 [Adhesive resin and sheet thereof]
The present invention relates to adhesion to inorganic materials such as glass plates, glass fibers, and inorganic fillers, which can be obtained by adding or applying a coupling agent to an aromatic vinyl compound-olefin copolymer and further irradiating with energy. It is a resin or sheet thereof that is excellent in properties and preferably excellent in filling properties. The sheet in the present invention includes the concept of a film, and the thickness thereof is not particularly limited, and generally ranges from 1 μm to 3 mm.
オレフィンとしては、エチレン、炭素数3~20のα-オレフィン、すなわちプロピレン、1-ブテン、1-ヘキセン、4-メチル-1-ペンテン、1-オクテンが挙げられる。本発明においてはオレフィンの範疇に環状オレフィンも含まれ、本環状オレフィンの例としては、ビニルシクロヘキサンやシクロペンテン、ノルボルネン等が挙げられる。好ましくは、エチレンまたはエチレンとα-オレフィンすなわちプロピレン、1-ブテン、1-ヘキセン、または1-オクテン等の混合物が用いられ、更に好ましくは、エチレンが用いられる。
芳香族ビニル化合物-オレフィン系共重合体としてはエチレンとスチレンの共重合体が好ましい。 Examples of aromatic vinyl compounds include styrene and various substituted styrenes such as p-methylstyrene, m-methylstyrene, o-methylstyrene, ot-butylstyrene, mt-butylstyrene, and pt-butylstyrene. , P-chlorostyrene, o-chlorostyrene and the like. Industrially, styrene, p-methylstyrene, p-chlorostyrene, particularly preferably styrene is used.
Examples of the olefin include ethylene and an α-olefin having 3 to 20 carbon atoms, that is, propylene, 1-butene, 1-hexene, 4-methyl-1-pentene, and 1-octene. In the present invention, cyclic olefins are also included in the category of olefins, and examples of the cyclic olefins include vinylcyclohexane, cyclopentene, and norbornene. Preferably, ethylene or a mixture of ethylene and an α-olefin, ie, propylene, 1-butene, 1-hexene, or 1-octene is used, and more preferably, ethylene is used.
As the aromatic vinyl compound-olefin copolymer, a copolymer of ethylene and styrene is preferable.
芳香族ビニル化合物-オレフィン系共重合体としてさらに好ましくはクロス共重合体が用いられる。クロス共重合体とは配位重合により得られるオレフィン-芳香族ビニル化合物-芳香族ポリエン共重合体及び芳香族ビニル化合物モノマーの共存下でアニオン重合を行うことにより得られる共重合体であり、オレフィン-芳香族ビニル化合物-芳香族ポリエン共重合体鎖(主鎖と記載される場合もある)と芳香族ビニル化合物重合体鎖(側鎖と記載される場合もある)を有する共重合体である。本クロス共重合体及びその製造方法は、その全体の記載をそれぞれ出典明示によりここに援用する、WO2000-37517、USP6559234、またはWO2007-139116に記載されており、芳香族ビニル化合物とオレフィンモノマーから誘導されるユニットの含量が全体の共重合体質量の70質量%以上、好ましくは90質量%以上、最も好ましくは95質量%以上占め、芳香族ポリエンから誘導されるユニットの含量が、好ましくは共重合体質量の5質量%未満0.01質量%以上、さらに好ましくは1質量%未満0.01質量%以上である。ここで芳香族ポリエンとは、10以上30以下の炭素数を持ち、複数の二重結合(ビニル基)と単数または複数の芳香族基を有し配位重合可能なモノマーであり、二重結合(ビニル基)の1つが配位重合に用いられて重合した状態において残された二重結合がアニオン重合可能な芳香族ポリエンである。好ましくは、オルトジビニルベンゼン、パラジビニルベンゼン及びメタジビニルベンゼンのいずれか1種または2種以上の混合物が好適に用いられる。さらにクロス共重合体のうち、最も好ましくは主鎖がエチレン-スチレン-ジビニルベンゼン共重合体鎖であり、かつ側鎖がポリスチレン鎖であるクロス共重合体が用いられる。 In a preferred embodiment of the present invention, examples of the aromatic vinyl compound-olefin copolymer include the copolymers described in EP 0 416 815 A2, JP 3659760, and EP 872492B1, each of which is incorporated herein by reference.
More preferably, a cross-copolymer is used as the aromatic vinyl compound-olefin copolymer. A cross-copolymer is a copolymer obtained by anionic polymerization in the presence of an olefin-aromatic vinyl compound-aromatic polyene copolymer and an aromatic vinyl compound monomer obtained by coordination polymerization. -Aromatic vinyl compound-A copolymer having an aromatic polyene copolymer chain (may be described as a main chain) and an aromatic vinyl compound polymer chain (may be described as a side chain) . The present cross-copolymer and its production method are described in WO 2000-37517, USP 6559234, or WO 2007-139116, each of which is incorporated herein by reference in its entirety, and is derived from an aromatic vinyl compound and an olefin monomer. The content of the unit to be produced occupies 70% by mass or more of the total copolymer mass, preferably 90% by mass or more, most preferably 95% by mass or more, and the content of the unit derived from the aromatic polyene is preferably It is less than 5% by mass of the combined mass and 0.01% by mass or more, more preferably less than 1% by mass and 0.01% by mass. Here, the aromatic polyene is a monomer having a carbon number of 10 or more and 30 or less, having a plurality of double bonds (vinyl group) and one or a plurality of aromatic groups and capable of coordination polymerization. An aromatic polyene in which one of (vinyl group) is used for coordination polymerization and a double bond left in a polymerized state can be anionically polymerized. Preferably, any one or a mixture of two or more of orthodivinylbenzene, paradivinylbenzene and metadivinylbenzene is preferably used. Further, among the cross copolymers, most preferably, a cross copolymer having a main chain of an ethylene-styrene-divinylbenzene copolymer chain and a side chain of a polystyrene chain is used.
以上は加水分解縮合性基としてメトキシ基、エトキシ基を有する例であるが、トリイソプロポキシ基やアセトキシ基も使用できる。
シランカップリング剤の使用量に特に制限はないが、樹脂に混練等で添加する場合、一般的には樹脂に対し0.05質量%~10質量%の範囲で用いられる。樹脂に塗布する場合、一般的に0.1g/m2~20g/m2の範囲で用いられる。 Examples of the silane coupling agent having a vinyl group as a functional group include vinyltrimethoxysilane and vinyltriethoxysilane. An example of a silane coupling agent having a styryl group as a functional group is p-styryltrimethoxysilane. An example of a silane coupling agent having an acryloxy group as a functional group is 3-acryloxypropyltrimethoxysilane. Examples of the silane coupling agent having a methacryloxy group as a functional group include 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, and 3-methacryloxypropylmethyldiethoxysilane. Can be illustrated. Examples of the silane coupling agent having an epoxy group as a functional group include 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 2- (3,4 -Epoxycyclohexyl) ethyltrimethoxysilane. Examples of the silane coupling agent having an amino group as a functional group include 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2 -(Aminoethyl) -3-aminopropylethyldimethoxysilane, N-2- (aminoethyl) -3-aminopropylmethyldiethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, N -2- (aminoethyl) -3-aminopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, bis (3-trimethoxysilylpropyl) amine, bis (3-triethoxysilylpropyl) amine, N- (n-butyl) -3-aminopropyltrimethoxysilane It can be exemplified.
The above is an example having a methoxy group or an ethoxy group as a hydrolytic condensable group, but a triisopropoxy group or an acetoxy group can also be used.
The amount of the silane coupling agent used is not particularly limited, but when added to the resin by kneading or the like, it is generally used in the range of 0.05% by mass to 10% by mass with respect to the resin. When applied to a resin, it is generally used in the range of 0.1 g / m 2 to 20 g / m 2 .
一方、芳香族ビニル化合物-オレフィン系共重合体にカップリング剤を塗布する方法では、先ず、芳香族ビニル化合物-オレフィン系共重合体をシート化した後にカップリング剤を塗布する。シ-ト化には上記の公知の方法を用いることができ、得られたシ-トに、例えばグラビアコーティング法、ロールコーティング法あるいはディップコーティング法、噴霧法等の公知の塗布方法を用いて、カップリング剤を塗布する。この際、カップリング剤は適当な溶媒に希釈して用いても、希釈せずに用いても良い。後者の塗布方法は、前者のカップリング剤を添加、混練する方法と比較し、カップリング剤の使用量を減じることができ、経済的により優れている。 The resin according to the present invention is prepared by a method characterized by adding or applying a coupling agent to an aromatic vinyl compound-olefin copolymer and further irradiating with energy. That is, in the method of adding a coupling agent to an aromatic vinyl compound-olefin copolymer, a known method for adding an additive to a resin is usually used to add the aromatic vinyl compound-olefin copolymer to the aromatic vinyl compound-olefin copolymer. Add coupling agent and knead. Industrially, for example, a twin screw extruder, a Banbury mixer, a roll forming machine, or the like can be used. Thereafter, a sheet is formed by a known molding method such as inflation molding, extrusion molding, T-die molding, calendar molding, roll molding, press molding or the like.
On the other hand, in the method of applying a coupling agent to an aromatic vinyl compound-olefin copolymer, first, after forming the aromatic vinyl compound-olefin copolymer into a sheet, the coupling agent is applied. For the sheeting, the above-mentioned known methods can be used. For the obtained sheet, for example, using a known coating method such as a gravure coating method, a roll coating method, a dip coating method, or a spraying method, Apply coupling agent. In this case, the coupling agent may be used after diluted in an appropriate solvent or may be used without dilution. The latter application method is economically superior to the former method in which the coupling agent is added and kneaded, because the amount of coupling agent used can be reduced.
また、特定の条件下ではコロナ放電処理やプラズマ処理、特に好ましくはコロナ放電処理が用いられる。特定の条件とは、用いられるカップリング剤が好ましくはエポキシ基またはアミノ基を有するシランカップリング剤であるという条件である。コロナ放電処理は公知の装置及び公知の条件で行うことができる。好ましいコロナ放電エネルギーは特に限定されないが、好ましくは、0.1~1000mJ/mm2の範囲である。
カップリング剤を添加または塗布して形成された芳香族ビニル化合物-オレフィン系共重合体シートにこのようなエネルギー照射を行うと、無機材料に対して高い接着強度を達成することができ、例えば、ガラスに対して、浮動ローラー法剥離試験による90°剥離試験において、22N/25mm以上、好ましくは25N/25mm以上の剥離強度(接着強度)を達成することができる。また、シリコン(表面安定化処理されたシリコンを含む)、アルミニウム、銅、ハンダ等の金属に対しては同様の試験において3N/6mm以上の剥離強度を達成できる。 Next, the aromatic vinyl compound-olefin copolymer sheet formed by adding or applying the coupling agent as described above is irradiated with energy. Examples of energy irradiation used include irradiation with electron beams, gamma rays, X-rays, ultraviolet rays, neutron rays, α rays, infrared rays, visible rays, corona discharge treatment, and plasma treatment. These energy irradiations can be performed using a known apparatus. In a preferred embodiment of the invention, electron beam irradiation is used. The acceleration voltage of the electron beam is generally in the range of 10 keV to 5000 keV, and the irradiation dose is generally in the range of 1 kGy to 500 kGy. This acceleration voltage is appropriately controlled depending on the thickness of the sheet. The purpose of the present invention is to provide adhesion by strengthening the interaction between the resin in the vicinity of the surface and the coupling agent by electron beam treatment. , Preferably 10 keV to 250 keV, more preferably 10 keV to 150 keV. The term “reinforcement of interaction” as used herein refers to enhancement of chemical or physical interaction that leads to adhesion enhancement, such as grafting, cross-linking, chemical reaction, molecular chain entanglement between resins and coupling agents in the vicinity of the surface.
Under specific conditions, corona discharge treatment or plasma treatment, particularly preferably corona discharge treatment is used. The specific condition is that the coupling agent used is preferably a silane coupling agent having an epoxy group or an amino group. The corona discharge treatment can be performed with a known apparatus and known conditions. The preferred corona discharge energy is not particularly limited, but is preferably in the range of 0.1 to 1000 mJ / mm 2 .
When such an energy irradiation is performed on an aromatic vinyl compound-olefin copolymer sheet formed by adding or applying a coupling agent, high adhesive strength can be achieved with respect to an inorganic material, for example, In a 90 ° peel test by a floating roller method peel test, a peel strength (adhesive strength) of 22 N / 25 mm or more, preferably 25 N / 25 mm or more can be achieved. In addition, a peel strength of 3N / 6 mm or more can be achieved in the same test for metals such as silicon (including silicon subjected to surface stabilization treatment), aluminum, copper, and solder.
上述した本発明の接着性樹脂シートを太陽光発電装置(太陽電池)の各種封止用部材、特に封止用シートとして用いる場合、その好ましい物性は、A硬度50以上95以下であり、全光線透過率は厚さ1mmのシートにおいて75%以上である。このような条件を満足するスチレン-エチレン共重合体は、スチレン含量5モル%以上40モル%以下の組成を有する。 [Encapsulant and solar power generation device]
When the above-described adhesive resin sheet of the present invention is used as various sealing members of a solar power generation device (solar cell), particularly as a sealing sheet, the preferred physical properties are A hardness 50 or more and 95 or less, and total light The transmittance is 75% or more in a sheet having a thickness of 1 mm. A styrene-ethylene copolymer satisfying such conditions has a composition having a styrene content of 5 mol% to 40 mol%.
<可塑剤>
封止材には従来塩ビや他の樹脂に用いられている公知の任意の可塑剤を配合することができる。好ましく用いられる可塑剤は、オイルまたは含酸素または含窒素系可塑剤であり、より好ましくは、パラフィン系オイル、ナフテン系オイル、エステル系可塑剤、エポキシ系可塑剤、エ-テル系可塑剤、またはアミド系可塑剤から選ばれる。
これらの可塑剤は、相溶性が比較的良好でブリ-ドし難く、またガラス転移温度が低下する度合いで評価できる可塑化効果も大きく、好適に用いることができる。
可塑剤の配合量は、本発明の樹脂またはそのシート100質量部に対して、可塑剤1質量部以上20質量部以下、好ましくは1質量部以上10質量部以下である。1質量部未満では上記効果が不足し、20質量部より高いとブリ-ドや、過度の軟化、それによる過度のべたつきの発現等の原因となる場合がある。また可塑剤を配合することで、封止材の流動性を向上させることができる。特に用いられる樹脂のMFR値が低い場合、上記の範囲で可塑剤を添加することにより、封止材として適当なMFR値に調整することが可能となる。 Furthermore, for the purpose of improving the properties as a sealing material, the following plasticizers and anti-aging agents can be added as necessary.
<Plasticizer>
The sealing material can be blended with any known plasticizer conventionally used for polyvinyl chloride and other resins. The plasticizer preferably used is an oil or an oxygen-containing or nitrogen-containing plasticizer, more preferably a paraffinic oil, a naphthenic oil, an ester plasticizer, an epoxy plasticizer, an ether plasticizer, or Selected from amide plasticizers.
These plasticizers can be suitably used because they have relatively good compatibility and are not easily bled, and have a large plasticizing effect that can be evaluated by the degree to which the glass transition temperature is lowered.
The compounding amount of the plasticizer is 1 part by mass or more and 20 parts by mass or less, preferably 1 part by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the resin of the present invention or the sheet thereof. If the amount is less than 1 part by mass, the above effects are insufficient. If the amount is more than 20 parts by mass, it may cause bleeding, excessive softening, and excessive stickiness. Moreover, the fluidity | liquidity of a sealing material can be improved by mix | blending a plasticizer. In particular, when the MFR value of the resin used is low, it is possible to adjust the MFR value to be suitable as a sealing material by adding a plasticizer within the above range.
適当な老化防止剤としては、例えばヒンダードフェノール系酸化防止剤、リン系熱安定剤、ラクトン系熱安定剤、ビタミンE系熱安定剤、イオウ系熱安定剤等が挙げられる。その使用量は、樹脂組成物100質量部に対して3量部以下である。 <Anti-aging agent>
Suitable anti-aging agents include, for example, hindered phenol antioxidants, phosphorus heat stabilizers, lactone heat stabilizers, vitamin E heat stabilizers, sulfur heat stabilizers and the like. The usage-amount is 3 parts weight or less with respect to 100 mass parts of resin compositions.
太陽光発電装置の封止材用シ-トとして、その厚みに特に制限はないが、一般に30μm~1mm、好ましくは100μm~0.5mmである。このような樹脂シ-トを製造するには、インフレーション成形、押し出し成形、Tダイ成形、カレンダ-成形、ロ-ル成形などの公知の成形法を採用することができる。
また、太陽光発電装置の封止材用シ-トとしては、必ずしも単層である必要はなく、本発明に係る接着性樹脂シートをガラス接着面、あるいはシリコンセル等のセルとの接着面に用い、他の適当な樹脂シートをさらに積層して多層構造としてもよい。ここで他の適当な樹脂シートとしては、シランカップリング剤の配合量が少ないか、あるいは配合していない芳香族ビニル化合物-オレフィン系共重合体、好ましくはクロス共重合体のシートでも良いし、他の樹脂、例えばEVAや他のエチレン系共重合体のシートでもよい。 <Film, Sheet>
The thickness of the sheet for the sealing material of the solar power generation device is not particularly limited, but is generally 30 μm to 1 mm, preferably 100 μm to 0.5 mm. In order to produce such a resin sheet, known molding methods such as inflation molding, extrusion molding, T-die molding, calendar molding, roll molding, etc. can be employed.
In addition, the sheet for the sealing material of the photovoltaic power generation apparatus does not necessarily have to be a single layer, and the adhesive resin sheet according to the present invention is applied to a glass bonding surface or a bonding surface with a cell such as a silicon cell. Other suitable resin sheets may be further laminated to form a multilayer structure. Here, the other suitable resin sheet may be an aromatic vinyl compound-olefin copolymer, preferably a cross copolymer sheet, in which the amount of the silane coupling agent is small or not blended, Other resin, for example, EVA or other ethylene copolymer sheets may be used.
本発明の樹脂シートを用いてなる太陽光発電装置の封止材は、封止工程の簡略化と太陽光発電装置のリサイクル性を考慮すると、架橋処理を行うのはカップリング剤と樹脂シ-トの結合を強化するためのシート表面近傍のみが好ましく、シ-トの大部分を占める中心部分やガラスとの接着面の反対面は実質的な架橋をせずに熱可塑性であることが封止材として用いる上で好ましい。しかしシ-ト自身により高度な耐熱性を要求される場合や封止後には、これ以上の架橋処理を行うことも可能である。架橋処理は、一般には本熱可塑性封止材に架橋剤、架橋助剤を添加し、架橋温度以下の条件でフィルム、シートを成形し、太陽電池セルの封止後に所定の架橋条件にて架橋を行う。本発明の熱可塑性封止材の熱可塑性は封止工程で溶融、流動により太陽電池セルを封止する工程で重要である。その後の架橋条件は、用いられる架橋剤、架橋助剤により任意に決定される。本熱可塑性封止材に使用可能な架橋剤、架橋助剤は、通常エチレン系樹脂、スチレン系樹脂やスチレン-エチレン共重合体に用いられるものであり公知である。好ましい架橋剤、架橋助剤、架橋条件は例えば、特表平10-505621(WO96/07681)、特開平08-139347号公報、特開2000-183381号公報に記載されている。このような架橋処理を行った封止材はリサイクル性という使用のメリットは無くなるが、高い水蒸気バリア性(低い水蒸気透過率)、高い体積抵抗率、及び酢酸等の腐食性物質を遊離しない点は、太陽電池の信頼性向上の面から有利である。 <Crosslinking>
In the sealing material of the photovoltaic power generation apparatus using the resin sheet of the present invention, considering the simplification of the sealing process and the recyclability of the photovoltaic power generation apparatus, the crosslinking treatment is performed using a coupling agent and a resin sheet. Only the vicinity of the surface of the sheet for strengthening the bonding of the sheet is preferable, and the central part occupying most of the sheet and the opposite side of the adhesive surface to the glass are sealed without substantial cross-linking. It is preferable when used as a stopper. However, when the sheet itself requires high heat resistance or after sealing, it is possible to perform further crosslinking treatment. In the crosslinking treatment, generally, a crosslinking agent and a crosslinking aid are added to the thermoplastic sealing material, a film and a sheet are formed under the condition of a crosslinking temperature or less, and the photovoltaic cell is sealed under a predetermined crosslinking condition. I do. The thermoplasticity of the thermoplastic sealing material of the present invention is important in the process of sealing solar cells by melting and flowing in the sealing process. The subsequent crosslinking conditions are arbitrarily determined depending on the crosslinking agent and crosslinking aid used. The crosslinking agents and crosslinking aids that can be used for the thermoplastic sealing material are those commonly used for ethylene resins, styrene resins, and styrene-ethylene copolymers, and are known. Preferred crosslinking agents, crosslinking assistants, and crosslinking conditions are described in, for example, JP-T-10-505621 (WO96 / 077681), JP-A-08-139347, and JP-A-2000-183831. The sealing material subjected to such a crosslinking treatment loses the merit of using recyclability, but has a high water vapor barrier property (low water vapor permeability), a high volume resistivity, and does not liberate corrosive substances such as acetic acid. This is advantageous in terms of improving the reliability of the solar cell.
実施例、比較例に用いた原料樹脂は以下の通りである。
下記クロス共重合体は、出典明示により全内容をここに援用するWO2000/37517またはWO2007139116号公報記載の製造方法で製造したもので、下記組成は、同様にこれら公報記載の方法で求めた。これらのクロス共重合体は、配位重合により得られるエチレン-スチレン-ジビニルベンゼン共重合体とスチレンモノマーの共存下でアニオン重合を行うことにより得られる、エチレン-スチレン-ジビニルベンゼン共重合体鎖とポリスチレン鎖を有する共重合体である。
以下、クロス共重合体を規定するために、用いられるエチレン-スチレン-ジビニルベンゼン共重合体のスチレン含量、ジビニルベンゼン含量、重量平均分子量(Mw)、分子量分布(Mw/Mn)、クロス共重合体中のエチレン-スチレン-ジビニルベンゼン共重合体の含量、ポリスチレン鎖の分子量(Mw)、分子量分布(Mw/Mn)を示す。また、全スチレン含量は、クロス共重合体に含まれるエチレン-スチレン-ジビニルベンゼン共重合体鎖とポリスチレン鎖に含まれるスチレン含量を合計した含量である。 <Raw resin>
The raw material resins used in Examples and Comparative Examples are as follows.
The following cross copolymers were produced by the production methods described in WO2000 / 37517 or WO2007139116, the entire contents of which are incorporated herein by reference, and the following compositions were similarly determined by the methods described in these publications. These cross copolymers include an ethylene-styrene-divinylbenzene copolymer chain obtained by anionic polymerization in the presence of an ethylene-styrene-divinylbenzene copolymer obtained by coordination polymerization and a styrene monomer. It is a copolymer having a polystyrene chain.
Hereinafter, in order to define the cross-copolymer, the styrene content, divinylbenzene content, weight average molecular weight (Mw), molecular weight distribution (Mw / Mn) of the ethylene-styrene-divinylbenzene copolymer used, the cross-copolymer The content of the ethylene-styrene-divinylbenzene copolymer, the molecular weight (Mw) of the polystyrene chain, and the molecular weight distribution (Mw / Mn) are shown. The total styrene content is a total content of the styrene contents contained in the ethylene-styrene-divinylbenzene copolymer chain and the polystyrene chain contained in the cross copolymer.
エチレン-スチレン-ジビニルベンゼン共重合体のスチレン含量15モル%、
ジビニルベンゼン含量0.040モル%、
Mw=70000、Mw/Mn=2.2、
エチレン-スチレン-ジビニルベンゼン共重合体の含量67質量%、
ポリスチレン鎖のMw=35000、Mw/Mn=1.2
全スチレン含量60質量%
・クロス共重合体2:
エチレン-スチレン-ジビニルベンゼン共重合体のスチレン含量25モル%、
ジビニルベンゼン含量0.035モル%、
Mw=90000、Mw/Mn=2.3
エチレン-スチレン-ジビニルベンゼン共重合体の含量67質量%、
ポリスチレン鎖のMw=44000、Mw/Mn=1.2
全スチレン含量70質量%、
・クロス共重合体3:
エチレン-スチレン-ジビニルベンゼン共重合体のスチレン含量23モル%、
ジビニルベンゼン含量0.035モル%、Mw=103000、Mw/Mn=2.2
エチレン-スチレン-ジビニルベンゼン共重合体の含量52質量%、
ポリスチレン鎖のMw=35000、Mw/Mn=1.2
全スチレン含量75質量%
・クロス共重合体4:
エチレン-スチレン-ジビニルベンゼン共重合体のスチレン含量24モル%、
ジビニルベンゼン含量0.030モル%、
Mw=115000、Mw/Mn=2.2
エチレン-スチレン-ジビニルベンゼン共重合体の含量77質量%、
ポリスチレン鎖のMw=26000、Mw/Mn=1.2
・クロス共重合体5:
エチレン-スチレン-ジビニルベンゼン共重合体のスチレン含量10モル%、
ジビニルベンゼン含量0.040モル%、
Mw=105000、Mw/Mn=2.2
エチレン-スチレン-ジビニルベンゼン共重合体の含量85質量%、
ポリスチレン鎖のMw=22000、Mw/Mn=1.2
・エチレン-スチレン共重合体1:
スチレン含量41質量%(16モル%)、
Mw=120000、Mw/Mn=2.2
上記エチレン-スチレン共重合体はJP3659760号公報記載の製造方法で製造した。
使用した樹脂の物性は表1にまとめて示した。 -Cross copolymer 1:
15 mol% of styrene content of ethylene-styrene-divinylbenzene copolymer,
Divinylbenzene content 0.040 mol%,
Mw = 70000, Mw / Mn = 2.2,
Ethylene-styrene-divinylbenzene copolymer content of 67% by mass,
Polystyrene chain Mw = 35000, Mw / Mn = 1.2
Total styrene content 60% by mass
-Cross copolymer 2:
Ethylene-styrene-divinylbenzene copolymer having a styrene content of 25 mol%,
Divinylbenzene content 0.035 mol%,
Mw = 90000, Mw / Mn = 2.3
Ethylene-styrene-divinylbenzene copolymer content of 67% by mass,
Polystyrene chain Mw = 44000, Mw / Mn = 1.2
70% by mass of total styrene content,
-Cross copolymer 3:
Styrene content of 23 mol% of ethylene-styrene-divinylbenzene copolymer,
Divinylbenzene content 0.035 mol%, Mw = 103000, Mw / Mn = 2.2
Content of ethylene-styrene-divinylbenzene copolymer is 52% by mass,
Polystyrene chain Mw = 35000, Mw / Mn = 1.2
Total styrene content 75% by mass
-Cross copolymer 4:
Styrene content of 24 mol% of ethylene-styrene-divinylbenzene copolymer,
Divinylbenzene content 0.030 mol%,
Mw = 15000, Mw / Mn = 2.2
Content of ethylene-styrene-divinylbenzene copolymer of 77% by mass,
Polystyrene chain Mw = 26000, Mw / Mn = 1.2
-Cross copolymer 5:
10 mol% of styrene content of ethylene-styrene-divinylbenzene copolymer,
Divinylbenzene content 0.040 mol%,
Mw = 105000, Mw / Mn = 2.2
85% by mass of ethylene-styrene-divinylbenzene copolymer,
Polystyrene chain Mw = 22000, Mw / Mn = 1.2
・ Ethylene-styrene copolymer 1:
Styrene content 41% by mass (16 mol%),
Mw = 120,000, Mw / Mn = 2.2
The ethylene-styrene copolymer was produced by the production method described in JP36559760.
The physical properties of the resins used are summarized in Table 1.
以下の信越化学工業社製シランカップリング剤を用いた。
・3-アミノプロピルトリエトキシシラン(KBE-903)
・3-アミノプロピルトリメトキシシラン(KBM-903)
・N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン(KBM-602)
・3-グリシドキシプロピルトリメトキシシラン(KBM-403)
・3-メタクリロキシプロピルトリメトキシシラン(KBM-503)
さらに、以下のエボニック社製シランカップリング剤を用いた。
・ビス(3-トリメトキシシリルプロピル)アミン <Silane coupling agent>
The following silane coupling agent manufactured by Shin-Etsu Chemical Co., Ltd. was used.
・ 3-Aminopropyltriethoxysilane (KBE-903)
・ 3-Aminopropyltrimethoxysilane (KBM-903)
N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane (KBM-602)
・ 3-Glycidoxypropyltrimethoxysilane (KBM-403)
・ 3-Methacryloxypropyltrimethoxysilane (KBM-503)
Furthermore, the following silane coupling agent manufactured by Evonik was used.
・ Bis (3-trimethoxysilylpropyl) amine
サンプルシートは、加熱プレス法(温度180℃、時間3分間、圧力50kg/cm2)により成形した厚さ0.4mmのシートを用いた。 <Sheet preparation>
As the sample sheet, a 0.4 mm thick sheet formed by a hot press method (temperature 180 ° C., time 3 minutes, pressure 50 kg / cm 2 ) was used.
ブラベンダープラスチコーダー(ブラベンダー社製PL2000型)を使用し、樹脂と添加物の合計約45gを180℃、100rpm、5分間混練し樹脂組成物を作製した。 <Addition and kneading method>
Using a Brabender plastic coder (PL2000 model manufactured by Brabender), a total of about 45 g of the resin and additives was kneaded at 180 ° C., 100 rpm for 5 minutes to prepare a resin composition.
JIS K-6251に準拠し、得られたフィルムを2号1/2号型テストピース形状にカットし、島津製作所AGS-100D型引張試験機を用い、引張速度500mm/minにて初期引張弾性率、破断点伸び、破断強度を測定した。 <Tensile test>
In accordance with JIS K-6251, the obtained film was cut into a No. 2 1/2 type test piece shape, and an initial tensile elastic modulus was used at a tensile speed of 500 mm / min using a Shimadzu AGS-100D type tensile tester. The elongation at break and the strength at break were measured.
シランカップリング剤、酢酸をシクロヘキサンに溶解し、カップリング剤2質量%、酢酸2質量%の溶液を調製した。バーコーターを用い、45ミクロン厚さでシクロヘキサン溶液をシ-ト上に塗布した。その後、一昼夜自然乾燥させた。 <Coating method>
A silane coupling agent and acetic acid were dissolved in cyclohexane to prepare a solution containing 2% by mass of the coupling agent and 2% by mass of acetic acid. Using a bar coater, the cyclohexane solution was coated on the sheet with a thickness of 45 microns. Then, it was naturally dried all day and night.
岩崎電気EB装置TYPE:CB250/15/180Lを用い、加速電圧125kVで所定の照射線量(kGy)の照射を1回実施した。塗布法によるシ-トの場合、塗布面に照射を実施した。 <Electron beam irradiation>
Using the Iwasaki Electric EB apparatus TYPE: CB250 / 15 / 180L, irradiation with a predetermined irradiation dose (kGy) was performed once at an acceleration voltage of 125 kV. In the case of the sheet by the coating method, the coated surface was irradiated.
幅25mm、長さ60mmのガラス板の表面をアセトンで洗浄し、よく乾燥させた。シ-トを幅25mm、長さ60mmにカットし、気泡が入らないようにガラス板上に密着させた。その後、加熱オーブン内で0.03MPaの荷重をかけ、160℃、15分間圧着させた。 <Press bonding with glass>
The surface of a glass plate having a width of 25 mm and a length of 60 mm was washed with acetone and thoroughly dried. The sheet was cut into a width of 25 mm and a length of 60 mm, and was closely adhered to the glass plate so that no bubbles would enter. Thereafter, a load of 0.03 MPa was applied in a heating oven, and pressure bonding was performed at 160 ° C. for 15 minutes.
島津製作所AGS-100D型引張試験機を用い、浮動ローラー法にて90°剥離条件下、引張速度100mm/minにて測定した。
<ゲル分>
ASTM D-2765-84に従い、以下のようにして求めた。すなわち、精秤した1.0gポリマー(大きさ約1mm)を、100メッシュのステンレス製網袋に包み、精秤した。これを沸騰キシレン中で約5時間抽出した後、網袋を回収し、真空中90℃で10時間以上乾燥した。十分に冷却後、網袋を精秤し、以下の式により、ポリマー中のゲル量を算出した。
ゲル量=(網袋に残留したポリマーの質量/初めのポリマー質量)×100
<Measurement of adhesive strength>
Using a Shimadzu AGS-100D type tensile tester, measurement was performed at a tensile speed of 100 mm / min under a 90 ° peeling condition by a floating roller method.
<Gel content>
According to ASTM D-2765-84, it was determined as follows. That is, a precisely weighed 1.0 g polymer (size: about 1 mm) was wrapped in a 100 mesh stainless steel net bag and precisely weighed. After extracting this in boiling xylene for about 5 hours, the net bag was collected and dried in a vacuum at 90 ° C. for 10 hours or more. After cooling sufficiently, the net bag was precisely weighed, and the amount of gel in the polymer was calculated by the following formula.
Gel amount = (mass of polymer remaining in mesh bag / initial polymer mass) × 100
クロス共重合体1 100質量部に対し、株式会社ADEKA製耐候剤LA-52、LA-36各0.2質量部、酸化防止剤としてチバ・ジャパン社製イルガノックス1076を0.1質量部添加し、上記のようにブラベンダーを用いて混練を行った。得られた樹脂混練物を上記加熱プレス法にて0.4mm厚さのシ-トを作製した。
シクロヘキサンに対し、シランカップリング剤:3-アミノプロピルトリエトキシシランを2質量%、酢酸2質量%の濃度で溶解し、塗布用の溶液を調製した。上記作製のシ-トに、バーコーターを用い上記シクロヘキサン溶液を開口厚さ45.7ミクロンで塗布した。その後ドラフト中で一昼夜乾燥した。
得られたシ-トのカップリング剤塗布面に対し、加速電圧125kVで50kGyの電子線照射を1回行った。照射から数日後、上記に従って、ガラスとの圧着を行った。
翌日、接着強度測定を行ったところ、接着強度が高く、シ-トの材料破壊となった。材破に至る際に測定された接着強度は35N/25mm以上であった。 <Example 1>
Addition of 0.2 parts by weight of ADEKA Corporation weathering agents LA-52 and LA-36, 0.1 parts by weight of Ciba Japan Co., Ltd. Irganox 1076 to 100 parts by weight of cross copolymer 1 Then, kneading was performed using a Brabender as described above. A sheet having a thickness of 0.4 mm was prepared from the obtained resin kneaded material by the above-described hot pressing method.
A silane coupling agent: 3-aminopropyltriethoxysilane was dissolved in cyclohexane at a concentration of 2% by mass and acetic acid 2% by mass to prepare a coating solution. The cyclohexane solution was applied to the prepared sheet with an opening thickness of 45.7 microns using a bar coater. Then, it was dried overnight in a draft.
The surface of the obtained sheet on which the coupling agent was applied was irradiated once with an electron beam of 50 kGy at an acceleration voltage of 125 kV. Several days after the irradiation, pressure bonding with glass was performed according to the above.
The next day, when the adhesive strength was measured, the adhesive strength was high and the sheet was destroyed. The adhesive strength measured at the time of material breakage was 35 N / 25 mm or more.
実施例1と同様に、但し、シ-トの樹脂、シランカップリング剤、電子線照射条件を変えて試験を行った。試験条件及び結果を表2に示す。また、クロス共重合体4及び5を用いた樹脂混練物には、酸化防止剤であるチバ・ジャパン社製イルガノックス1076の添加は行わなかった。 <Examples 2 to 10>
The test was conducted in the same manner as in Example 1, except that the sheet resin, the silane coupling agent, and the electron beam irradiation conditions were changed. Test conditions and results are shown in Table 2. Further, Irganox 1076 made by Ciba Japan, which is an antioxidant, was not added to the resin kneaded material using the cross copolymers 4 and 5.
実施例1と同様に、但し、シクロヘキサンに対しシランカップリング剤を溶解する際に、酢酸を用いず塗布用の溶液を調製し、さらにシ-トの樹脂、シランカップリング剤、電子線照射条件を変えて、他は同様にして試験を行った。3-メタクリロキシプロピルトリメトキシシランを用いる場合、シクロヘキサンに対し、3-メタクリロキシプロピルトリメトキシシランを10質量%の濃度で溶解し、塗布用の溶液を調製した。試験条件及び結果を表2に示す。 <Examples 11 to 20>
As in Example 1, except that when dissolving the silane coupling agent in cyclohexane, a coating solution was prepared without using acetic acid, and the sheet resin, silane coupling agent, and electron beam irradiation conditions were prepared. Others were tested in the same manner. When 3-methacryloxypropyltrimethoxysilane was used, 3-methacryloxypropyltrimethoxysilane was dissolved in cyclohexane at a concentration of 10% by mass to prepare a coating solution. Test conditions and results are shown in Table 2.
実施例と同様に、但し、シ-トに電子線を照射せずにガラスとの接着試験を行った。試験条件及び結果を表3に示す。 <Comparative Examples 1 to 6>
As in the examples, except that the sheet was not irradiated with an electron beam, and an adhesion test with glass was performed. Table 3 shows the test conditions and results.
実施例と同様に、ただしカップリング剤を使用せず、電子線を照射した後にガラスとの接着試験を行った。試験条件及び結果を表3に示す。 <Comparative Examples 7 to 9>
Similar to the examples, however, a coupling agent was not used, and an adhesion test with glass was performed after irradiation with an electron beam. Table 3 shows the test conditions and results.
実施例と同様に、ただしカップリング剤を使用せず、電子線も照射せずにガラスとの接着試験を行った。試験条件及び結果を表3に示す。 <Comparative Examples 10 to 12>
Similar to the examples, however, the adhesion test with glass was conducted without using a coupling agent and without irradiating an electron beam. Table 3 shows the test conditions and results.
実施例1、4、5、7と同様にして得られた試験片を恒温恒湿装置にて温度85℃、湿度85%の条件下で1000時間放置した後に同様に接着強度の測定を行った。その結果を表4に示す。実施例21、23、24、25(それぞれ実施例1、5、7、18と同じサンプル)では、35N/25mm以上の接着強度を示し材料破壊となり、実質的に同等の接着強度を示した。実施例22(実施例4と同じサンプル)でも35N/25mm以上の接着強度を示し材料破壊となり、むしろ接着強度が増加した。 <Examples 21 to 25>
The test pieces obtained in the same manner as in Examples 1, 4, 5, and 7 were left to stand for 1000 hours under the conditions of a temperature and humidity of 85 ° C. and a humidity of 85% using a constant temperature and humidity device, and the adhesive strength was measured in the same manner. . The results are shown in Table 4. In Examples 21, 23, 24, and 25 (the same samples as Examples 1, 5, 7, and 18 respectively), the adhesive strength was 35 N / 25 mm or more, resulting in material destruction, and substantially the same adhesive strength. Example 22 (same sample as Example 4) also showed an adhesive strength of 35 N / 25 mm or more, resulting in material destruction, rather the adhesive strength increased.
実施例1と同様に、但し、シクロヘキサンに対しシランカップリング剤を溶解する際に、酢酸を用いず塗布用の溶液を調製し、さらにシ-トの樹脂、シランカップリング剤を変更し、電子線照射の代わりにコロナ放電処理(コロナ放電エネルギー4mJ/mm2)に変えて、他は同様にして試験を行った。試験条件及び結果を表5に示す。 <Examples 26 to 27>
As in Example 1, except that when dissolving the silane coupling agent in cyclohexane, a coating solution was prepared without using acetic acid, and the sheet resin and the silane coupling agent were changed. The test was conducted in the same manner except that the corona discharge treatment (corona discharge energy 4 mJ / mm 2 ) was used instead of the line irradiation. Table 5 shows the test conditions and results.
実施例1と同様に、但し、シクロヘキサンに対しシランカップリング剤を溶解する際に、酢酸を用いず塗布用の溶液を調製し、さらにシ-トの樹脂、シランカップリング剤を変更し、電子線照射またはコロナ処理を行った。接着試験では、ガラスの代わりに太陽電池用タブ線(超軟質銅平角めっき線:鉛フリーはんだ、巾6mm)を用い、同様の方法でシートと圧着した。接着強度の測定は、180°剥離条件で行った。試験条件及び結果を表6に示す。 <Examples 28 to 30>
As in Example 1, except that when dissolving the silane coupling agent in cyclohexane, a coating solution was prepared without using acetic acid, and the sheet resin and the silane coupling agent were changed. Irradiation or corona treatment was performed. In the adhesion test, tab sheets for solar cells (super soft copper flat-plated wire: lead-free solder, width 6 mm) were used instead of glass, and the sheet was pressure-bonded by the same method. The adhesive strength was measured under 180 ° peeling conditions. Table 6 shows the test conditions and results.
Claims (13)
- 芳香族ビニル化合物-オレフィン系共重合体にカップリング剤を添加または塗布し、さらにエネルギー照射してなる、無機材料との接着性を有する樹脂。 A resin having adhesiveness to an inorganic material obtained by adding or applying a coupling agent to an aromatic vinyl compound-olefin copolymer and further irradiating energy.
- 芳香族ビニル化合物がスチレンである請求項1に記載の樹脂。 The resin according to claim 1, wherein the aromatic vinyl compound is styrene.
- オレフィンがエチレンである請求項1または2に記載の樹脂。 The resin according to claim 1 or 2, wherein the olefin is ethylene.
- 芳香族ビニル化合物-オレフィン系共重合体が、芳香族ビニル化合物とオレフィンを含んでなるクロス共重合体である請求項1に記載の樹脂。 2. The resin according to claim 1, wherein the aromatic vinyl compound-olefin copolymer is a cross-copolymer comprising an aromatic vinyl compound and an olefin.
- エネルギー線が電子線である請求項1から4のいずれか一項に記載の樹脂。 The resin according to any one of claims 1 to 4, wherein the energy beam is an electron beam.
- 無機材料がガラスである請求項1から5のいずれか一項に記載の樹脂。 The resin according to any one of claims 1 to 5, wherein the inorganic material is glass.
- カップリング剤がシランカップリング剤である請求項1から6のいずれか一項に記載の樹脂。 The resin according to any one of claims 1 to 6, wherein the coupling agent is a silane coupling agent.
- シランカップリング剤が、アミノ基、エポキシ基またはメタクリロキシ基のいずれかを有する請求項7に記載の樹脂。 The resin according to claim 7, wherein the silane coupling agent has any one of an amino group, an epoxy group, and a methacryloxy group.
- 芳香族ビニル化合物-オレフィン系共重合体をシート状に成形し、その表面にカップリング剤を塗布し、さらにエネルギー照射してなる、請求項1から8のいずれか一項に記載の樹脂。 The resin according to any one of claims 1 to 8, wherein an aromatic vinyl compound-olefin copolymer is formed into a sheet shape, a coupling agent is applied to the surface, and energy irradiation is further performed.
- 芳香族ビニル化合物-オレフィン系共重合体にカップリング剤を添加してシート状に成形し、さらにエネルギー照射してなる、請求項1から8のいずれか一項に記載の樹脂。 The resin according to any one of claims 1 to 8, wherein the resin is formed by adding a coupling agent to an aromatic vinyl compound-olefin copolymer to form a sheet, and further irradiating with energy.
- 請求項1から10のいずれか一項に記載の樹脂から形成されるシート。 A sheet formed from the resin according to any one of claims 1 to 10.
- 請求項1から10のいずれか一項に記載の樹脂または請求項11に記載のシートを用いて形成される封止材。 A sealing material formed using the resin according to any one of claims 1 to 10 or the sheet according to claim 11.
- 請求項12に記載の封止材を構成要素として含む太陽光発電装置。 A solar power generation device including the sealing material according to claim 12 as a constituent element.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201180052353.0A CN103210025B (en) | 2010-09-08 | 2011-09-07 | Resin having improved adhesion properties, and sheet |
JP2012532996A JPWO2012033119A1 (en) | 2010-09-08 | 2011-09-07 | Adhesion improving resin and sheet |
KR1020137008976A KR20130118866A (en) | 2010-09-08 | 2011-09-07 | Resin having improved adhesion properties, and sheet |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-200645 | 2010-09-08 | ||
JP2010200645 | 2010-09-08 | ||
JP2011-147238 | 2011-07-01 | ||
JP2011147238 | 2011-07-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012033119A1 true WO2012033119A1 (en) | 2012-03-15 |
Family
ID=45810716
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/070338 WO2012033119A1 (en) | 2010-09-08 | 2011-09-07 | Resin having improved adhesion properties, and sheet |
Country Status (4)
Country | Link |
---|---|
JP (1) | JPWO2012033119A1 (en) |
KR (1) | KR20130118866A (en) |
CN (1) | CN103210025B (en) |
WO (1) | WO2012033119A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015079834A (en) * | 2013-10-16 | 2015-04-23 | 大日本印刷株式会社 | Sealing-material sheet for solar battery module use, and method for manufacturing the same |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06334207A (en) * | 1993-05-27 | 1994-12-02 | Canon Inc | Solar cell module |
JPH08283696A (en) * | 1995-04-14 | 1996-10-29 | Haishiito Kogyo Kk | Sheet for sealing solar cell and its production |
WO2000037517A1 (en) * | 1998-12-22 | 2000-06-29 | Denki Kagaku Kogyo Kabushiki Kaisha | Cross-copolymerized olefin/styrene/diene copolymer, process for the production of the same and uses thereof |
JP2001119047A (en) * | 1999-10-21 | 2001-04-27 | Du Pont Mitsui Polychem Co Ltd | Solar cell sealing material and solar battery module |
JP2002537423A (en) * | 1999-02-17 | 2002-11-05 | ザ ダウ ケミカル カンパニー | Alpha-olefin / vinyl or vinylidene aromatic interpolymer product and method for making the same using a composite catalyst system |
JP2009120792A (en) * | 2007-10-23 | 2009-06-04 | Denki Kagaku Kogyo Kk | Process for producing cross-copolymer, cross-copolymer produced by the process and its use |
JP2009249556A (en) * | 2008-04-09 | 2009-10-29 | Asahi Kasei E-Materials Corp | Resin sealing sheet |
JP2010150442A (en) * | 2008-12-26 | 2010-07-08 | Denki Kagaku Kogyo Kk | Sealing material for solar cell |
-
2011
- 2011-09-07 JP JP2012532996A patent/JPWO2012033119A1/en not_active Withdrawn
- 2011-09-07 CN CN201180052353.0A patent/CN103210025B/en not_active Expired - Fee Related
- 2011-09-07 KR KR1020137008976A patent/KR20130118866A/en not_active Application Discontinuation
- 2011-09-07 WO PCT/JP2011/070338 patent/WO2012033119A1/en active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06334207A (en) * | 1993-05-27 | 1994-12-02 | Canon Inc | Solar cell module |
JPH08283696A (en) * | 1995-04-14 | 1996-10-29 | Haishiito Kogyo Kk | Sheet for sealing solar cell and its production |
WO2000037517A1 (en) * | 1998-12-22 | 2000-06-29 | Denki Kagaku Kogyo Kabushiki Kaisha | Cross-copolymerized olefin/styrene/diene copolymer, process for the production of the same and uses thereof |
JP2002537423A (en) * | 1999-02-17 | 2002-11-05 | ザ ダウ ケミカル カンパニー | Alpha-olefin / vinyl or vinylidene aromatic interpolymer product and method for making the same using a composite catalyst system |
JP2001119047A (en) * | 1999-10-21 | 2001-04-27 | Du Pont Mitsui Polychem Co Ltd | Solar cell sealing material and solar battery module |
JP2009120792A (en) * | 2007-10-23 | 2009-06-04 | Denki Kagaku Kogyo Kk | Process for producing cross-copolymer, cross-copolymer produced by the process and its use |
JP2009249556A (en) * | 2008-04-09 | 2009-10-29 | Asahi Kasei E-Materials Corp | Resin sealing sheet |
JP2010150442A (en) * | 2008-12-26 | 2010-07-08 | Denki Kagaku Kogyo Kk | Sealing material for solar cell |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015079834A (en) * | 2013-10-16 | 2015-04-23 | 大日本印刷株式会社 | Sealing-material sheet for solar battery module use, and method for manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
JPWO2012033119A1 (en) | 2014-01-20 |
KR20130118866A (en) | 2013-10-30 |
CN103210025A (en) | 2013-07-17 |
CN103210025B (en) | 2015-02-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6078967B2 (en) | Sealant sheet for solar cell module | |
EP2808906B1 (en) | Sealing film for solar cells, and solar cell using same | |
JP5525932B2 (en) | Composition for solar cell encapsulant, solar cell encapsulant comprising the same, and solar cell module using the same | |
WO2009125685A1 (en) | Sealing resin sheet | |
WO2009157545A1 (en) | Laminated sheet for solar cell, and solar cell module comprising the same | |
JP5570367B2 (en) | Laminate | |
JP5519409B2 (en) | Resin sheet for solar cell encapsulant | |
EP2725627B1 (en) | Solar cell sealing film and solar cell using the sealing film | |
WO2021098299A1 (en) | Adhesive film, anti-pid encapsulation adhesive film, composition forming adhesive film, and photovoltaic module and laminated glass | |
JP4762377B2 (en) | Amorphous silicon solar cell module | |
EP2808907A1 (en) | Sealing film for solar cells, and solar cell using same | |
JP5821341B2 (en) | Resin composition for solar cell encapsulant and solar cell encapsulant using the same | |
WO2013084850A1 (en) | Sealing material sheet for solar cell modules | |
JP5538092B2 (en) | Composition for solar cell encapsulant, encapsulant comprising the same, and solar cell module using the same | |
JP2011155238A (en) | Resin composition for solar cell sealing material | |
JP2013115211A (en) | Sealing material sheet for solar cell module and solar cell module using the same | |
JP2011077360A (en) | Sealing resin sheet and solar cell module using the same | |
JP2012015402A (en) | Resin composition for solar cell sealing material, solar cell sealing material using it, method of producing the same, and solar cell module | |
JP2012092197A (en) | Resin and sheet | |
JP5560099B2 (en) | Resin composition for solar cell encapsulant | |
JP2013115212A (en) | Method for manufacturing sealing material sheet for solar cell module and solar cell module using the same | |
JP5788712B2 (en) | Ethylene-polar monomer copolymer sheet, and interlayer film for laminated glass, laminated glass, solar cell sealing film and solar cell using the same | |
JP5330178B2 (en) | Resin sealing sheet and solar cell module using the same | |
WO2012033119A1 (en) | Resin having improved adhesion properties, and sheet | |
JP5525933B2 (en) | Composition for solar cell encapsulant, solar cell encapsulant comprising the same, and solar cell module using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11823593 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2012532996 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20137008976 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11823593 Country of ref document: EP Kind code of ref document: A1 |