WO2012032590A1 - Material testing device - Google Patents

Material testing device Download PDF

Info

Publication number
WO2012032590A1
WO2012032590A1 PCT/JP2010/065225 JP2010065225W WO2012032590A1 WO 2012032590 A1 WO2012032590 A1 WO 2012032590A1 JP 2010065225 W JP2010065225 W JP 2010065225W WO 2012032590 A1 WO2012032590 A1 WO 2012032590A1
Authority
WO
WIPO (PCT)
Prior art keywords
profile
recognition level
testing machine
material testing
mark
Prior art date
Application number
PCT/JP2010/065225
Other languages
French (fr)
Japanese (ja)
Inventor
博志 辻
福田 武彦
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to PCT/JP2010/065225 priority Critical patent/WO2012032590A1/en
Priority to CN201080068958.4A priority patent/CN103080723B/en
Priority to JP2012532745A priority patent/JP5282853B2/en
Publication of WO2012032590A1 publication Critical patent/WO2012032590A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details
    • G01N3/06Special adaptations of indicating or recording means
    • G01N3/068Special adaptations of indicating or recording means with optical indicating or recording means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/0641Indicating or recording means; Sensing means using optical, X-ray, ultraviolet, infrared or similar detectors
    • G01N2203/0647Image analysis

Definitions

  • This invention relates to a material testing machine having a marked line recognition level display function.
  • a material testing machine that applies a tensile load to a test piece and measures its elongation is, for example, a pair of screw rods that are erected on a table in synchronization with the rotation of a motor, and the screw rods.
  • the crosshead is supported by a nut so as to be movable up and down, and a jig such as a grip connected to the table and the crosshead. Then, by moving the cross head in a state where both ends of the test piece are held by the gripping tool, a test for applying a tensile load to the test piece is executed, and the elongation of the test piece is measured by the displacement measuring means.
  • a video non-contact extensometer is known as one of the displacement measuring means in such a material testing machine.
  • a mark sticker or the like on which a mark mark is printed in advance is attached to a predetermined position on the surface of the test piece.
  • the standard mark position and the distance between the standard lines are changed from the obtained image data by photographing the standard mark on the surface of the test piece in advance with a video camera. The amount is calculated (see Patent Document 1).
  • both the marked stickers affixed to a predetermined vertical position of the test piece held by the gripping tool are within the field of view of one camera.
  • a video camera is placed.
  • the recognition of the marked mark by this video camera is performed using a profile created by integrating the image data of the data area set for the marked mark in the direction perpendicular to the load axis to the test piece. ing. Based on the profile, the position of the marked line before the test execution is further calculated (see Patent Document 2).
  • the mark mark profile before the execution of the test needs to be appropriate. Otherwise, it will affect the acquisition and displacement measurement of the marked line during the subsequent test execution. And in order for the profile of the marked line mark to be appropriate, it is necessary that the marked line mark stuck on the test piece is accurately captured and recognized accurately by the video camera.
  • FIG. 6 is an explanatory diagram of a conventional method for creating the profile P1 of the marked mark M.
  • the test piece 10 is photographed by a video camera 28 equipped with a lens 27 having a desired focal length.
  • a predetermined range around the mark mark M is designated in advance as a calculation range E which is an image data range used for the mark position calculation.
  • the integrated value of the color density in the horizontal direction of the paper that is, the integrated value of the gradation value of each pixel in the calculation range E arranged in the horizontal direction of the paper is calculated for each pixel position on the load axis side. Is plotted and graphed to obtain a profile P1.
  • the profile P1 is displayed on the display unit together with the captured image so that the operator can visually confirm the shape of the profile P1.
  • the shape of the profile P1 of the mark mark M varies depending on how the test piece 10 is illuminated, the aperture of the lens 27, the calculation range E of the marked line, and the like. For example, when the illumination applied to the test piece 10 is too strong, since the gray to white color component increases in the photographed image, the shape of the profile P1 shown in FIG. The peak of the color density distribution is low. In addition, as the test piece 10 that has received a tensile load extends, the design of the mark mark M extends in the load axis direction, so that the color density of the mark mark also decreases.
  • a profile with a small difference between the maximum value of the color density of the baseline L1 (profile minimum value) and the mark mark M is not a profile when the mark mark M is accurately captured by the video camera 28.
  • the operator will judge. If the operator determines from the shape of the profile P1 that the video camera 28 does not accurately capture the marked line mark, the lighting method for the test piece 10, the aperture of the lens 27, and the calculation range of the marked line E and the like are adjusted until an appropriate profile is obtained.
  • the present invention has been made to solve the above-described problems, and an object thereof is to provide a material testing machine capable of displaying a marked line recognition level of a video camera on a display unit.
  • a test is performed in a material testing machine that applies a test force to a test piece with a marked line and measures the elongation of the test piece by photographing the marked line with a video camera.
  • Profile creating means for creating a profile of the previous marked line from image data
  • recognition level determining means for determining a marked line recognition level of a video camera from the profile
  • a recognition level according to the determination by the recognition level determining means
  • a display unit for displaying.
  • the recognition level determination means determines in a plurality of stages according to the recognition level, and the recognition level is determined by the recognition level determination means. Are displayed on the display unit as a bar graph color-coded according to different stages.
  • the invention according to claim 3 is the invention according to claim 1, wherein the recognition level determination means is based on whether the profile is close to the characteristics of an ideal profile suitable for measurement of the test piece. To determine the recognition level.
  • the invention according to claim 4 is the invention according to claim 3, wherein the characteristics of the ideal profile are assumed not to reach full scale even if the maximum value of the profile fluctuates during test execution. Whether it is close to the ratio A to full scale.
  • the ideal profile is characterized in that an average value of the profile is calculated and a distribution range of a standard line in the profile is used to calculate a standard line position. Whether or not it is close to the ratio B to the full scale within the range of 30 to 50% of the calculation range in the load axis direction.
  • the characteristic of the ideal profile is whether or not the minimum value of the profile is close to 0% of full scale.
  • the recognition level determination means may assume that the maximum value of the profile is a, the average value of the profile is b, and the minimum value of the profile is c.
  • the recognition level S is calculated by the following formula to determine the recognition level.
  • Formula: S (1-
  • a, b, and c are values of 0 or more and 1 or less
  • A is a ratio to the full scale that is assumed not to reach full scale even if the maximum value of the profile fluctuates during the test execution.
  • B is a ratio to the full scale where the average value of the profile is within a range of 30 to 50% of the calculation range in the load axis direction for calculating the marked line position in the distribution range of the marked line in the profile.
  • the invention according to claim 8 is the invention according to claim 7, wherein the recognition level determination means determines the recognition level in a plurality of stages according to the value of the recognition level S, and the recognition level S is It is displayed on the display unit as a bar graph color-coded according to the stage determined by the recognition level determination means.
  • the video camera includes the marked line recognition level determining means for determining the recognition level of the marked line by the video camera, and displays the recognition level according to the determination on the display unit. It is possible to provide the operator with an objective index as to whether or not the marked line is accurately captured. For this reason, the difference of judgment by each operator can be reduced.
  • the recognition level is displayed on the display unit as a bar graph color-coded according to the stage determined by the recognition level determination means, the operator uses the video camera to mark the line.
  • the level of recognition level can be easily grasped.
  • the recognition level determining means determines whether or not the created profile is close to the characteristics of an ideal profile that does not affect the displacement measurement. Therefore, even an inexperienced operator can easily know whether or not there is an influence on the displacement measurement by looking at the recognition level display.
  • FIG. 1 is a schematic diagram of a material testing machine according to the present invention.
  • 3 is a schematic plan view for explaining the positional relationship among a test piece 10, a video camera 28, and an illumination device 37.
  • FIG. It is a block diagram which shows the main structures of this invention. It is explanatory drawing of determination of the profile P in the recognition level determination part 42.
  • FIG. It is a display example of a recognition level. It is explanatory drawing of the method of producing the profile P1 of the conventional marked mark M.
  • FIG. 1 is a schematic diagram of a material testing machine according to the present invention.
  • FIG. 2 is a schematic plan view for explaining the positional relationship among the test piece 10, the video camera 28, and the illumination device 37.
  • This material testing machine includes a table 18, a pair of support posts 19 erected on the floor surface, and a pair of screw rods erected so as to be able to rotate on the table 18 inside each support column 19 while facing the vertical direction. And a cross head 23 movable along these screw rods, and a load mechanism 30 for moving the cross head 23 to apply a test force to the test piece 10.
  • the crosshead 23 is connected to a pair of screw rods via a nut (not shown).
  • the lower end portion of each screw rod is connected to the load mechanism 30, and the power from the power source of the load mechanism 30 is transmitted to the pair of screw rods.
  • the cross head 23 moves up and down along the pair of screw rods.
  • the upper grip 21 for holding the upper end of the test piece 10 is attached to the cross head 23.
  • the table 18 is provided with a lower gripping tool 22 for gripping the lower end portion of the test piece 10.
  • test force acting on the test piece 10 is detected by the load cell 24 and input to the control unit 33 via the control circuit 31.
  • the test piece 10 is taken by the video camera 28, and the image is input to the control unit 33.
  • the video camera 28 includes a detachable lens 27 and is supported by an arm 29 disposed on the column 19. Further, the video camera 28 is positioned by adjusting the fixing position of the arm 29 and the bending degree of the arm 29 in the support column 19 so that the upper gripping tool 21 and the lower gripping tool 22 are accommodated in the same visual field. As shown in FIG. 2, in the video camera 28, the front surface of the lens 27 faces the surface of the test piece 10 gripped by the upper gripping tool 21 and the lower gripping tool 22 in an inclined state of about 45 degrees. Arranged in position.
  • a lighting device 37 such as LED lighting is disposed above the video camera 28.
  • the illumination device 37 is supported by an arm 39 disposed on the support column 19 and is disposed so as not to enter the field of view of the video camera 28.
  • the illuminating device 37 irradiates the surface of the test piece 10 with light from the upper side of the test piece 10 to supply a light amount necessary for photographing with the video camera 28.
  • the control unit 33 is composed of a storage device such as a ROM and a RAM, a computer including a CPU, and the like.
  • the control unit 33 is connected to a display unit 35 that is a display device such as a liquid crystal display, an input unit 34 having a mouse and a keyboard, a video camera 28, and a control circuit 31.
  • the control circuit 31 transmits the test force data from the load cell 14 and the position information of the crosshead 23 to the control unit 33.
  • control part 33 takes in the image
  • the control unit 33 includes a profile creation unit 41 and a recognition level determination unit 42 which will be described later.
  • the operator marks the test piece 10 with a marked line. Adjustment of the position of the video camera 28 and the illumination device 37, the calculation range of the marked line, and the like are performed.
  • a mark is attached by sticking a mark sticker on which a mark mark M is printed in advance to the test piece 10.
  • FIG. 3 is a block diagram showing the main configuration of the present invention.
  • the image data obtained by photographing with the video camera 28 is sent to the control unit 33.
  • the profile P of the marked mark M is created using the image data in the calculation range E used for calculating the marked line position in the image data. These are executed by the profile creation unit 41 in the control unit 33.
  • FIG. 4 is an explanatory diagram of the evaluation of the profile P in the recognition level determination unit 42.
  • the first item is an evaluation of whether or not the maximum value a of the profile P is close to the ratio A to the full scale that is assumed not to reach the full scale even when the test fluctuates.
  • the full scale is obtained by plotting the integrated value of the gradation values (0 to 255) of each pixel in the horizontal direction of the calculation range E in the profile P. A value obtained by multiplying the value 255 by the number of pixels in the horizontal direction of the calculation range E is the full scale.
  • the numerical value of the full scale varies depending on the setting of the calculation range E or the like, the full scale is displayed as 100% as shown in FIG.
  • the maximum value a (the same value as the full scale here) is obtained at the pixel position in the load axis direction of the profile P. Since the range to be taken becomes wide, the accuracy of the marked line position calculation is impaired. For this reason, even if the maximum value a of the profile P varies during the execution of the test, it is desired not to reach full scale.
  • the mark mark M when the test is executed, the mark mark M also moves with the elongation of the test piece 10, and the color density of the mark mark M portion may be entirely reduced. Even in such a case, in order to keep the accuracy of the benchmark position calculation above a certain level, it is desirable that there is a sufficient difference from the baseline L even if the peak position of the profile P shown in FIG. It is.
  • the ratio A to the full scale that is assumed not to reach full scale is close to full scale, but not too close to full scale.
  • the ratio A is preferably 70 to 90%, for example.
  • the ratio A is 80%. This ratio A is changed depending on the nature of the test piece 10, the difference in the design of the mark seal attached to the test piece 10, and the like.
  • the second item is that the average value b of the profile P is a full range in which the distribution range of the mark mark M in the profile P is within 30 to 50% of the calculation range in the load axis direction for calculating the mark position. It is an evaluation of whether or not it is close to the ratio B to the scale.
  • the marked mark M also moves with the extension of the test piece 10, so that the peak shape of the profile shown in FIG. 4 may be deformed due to a change in the irradiation angle of light from the illumination device 37. .
  • the mark line is marked directly on the test piece 10
  • the shape of the mark line changes as the test piece 10 extends, and the peak shape of the profile may be deformed into a gentle shape. is there.
  • the distribution range of the mark mark M on the profile may exceed the calculation range in the load axis direction for calculating the mark position. If it does so, the numerical value of the baseline L of the profile P required for a marked line position calculation (profile minimum value) will not be calculated
  • the distribution range of the mark M is within the range of 30 to 50% of the calculation range in the load axis direction for calculating the mark position is determined by the average value b of the profile P (the color density of the entire profile P) It is empirically found that it can be judged by evaluating whether or not the ratio is close to the ratio B to the full scale.
  • the ratio B is preferably 10 to 30%. In this embodiment, the ratio B is 20%.
  • the ratio A is changed depending on the nature of the test piece 10, the difference in the design of the mark sticker attached to the test piece 10 (the difference in the mark mark M), and the like.
  • the third item is an evaluation of whether or not the minimum value c of the profile P is close to 0% of full scale. This is because it is preferable that the background noise of the profile, which is data used as the basis of the calculation, be as low as possible from the viewpoint of reliability of the calculation of the marked line position.
  • the value of the recognition level S is Does not grow.
  • the recognition level S becomes more stable as the value of the recognition level S increases. That is, it shows that the marked mark M is captured more accurately by the video camera 28.
  • FIG. 5 is a display example of the recognition level.
  • 5A is a display example when it is determined that the recognition level is insufficient
  • FIG. 5B is a display example when it is determined that the recognition level is unstable
  • FIG. 5C is a case where the recognition level is stable. It is an example of a display when it determines.
  • the upper bar graph indicates the recognition level of the marked line attached above the test piece 10
  • the lower bar graph indicates the lower side of the test piece 10. The level of the marked line attached to is shown respectively.
  • the recognition level S obtained from Equation 1 is determined in three stages according to the value of the recognition level S in the recognition level determination unit 42 shown in FIG.
  • the recognition level S when the recognition level S is 0 or more and less than 0.3, “recognition level is insufficient”, when the recognition level S is 0.3 or more and less than 0.6, “recognition level uneasy foot”, and the recognition level S is In the case of 0.6 or more and 1 or less, it is determined that “the recognition level is stable”.
  • these numerical ranges are examples, and are not limited to these.
  • the determination is not limited to the three-stage determination, but may be simply a two-stage determination of “insufficient” or “stable” or a more detailed determination.
  • the recognition level of the marked line is displayed on the display unit 35.
  • the recognition level of the marked line is displayed as a bar graph corresponding to the value of the recognition level S, and the respective bars are “recognition level deficient”, “recognition level uneasy foot”, “recognition level stable” Are displayed in different colors according to the three-stage determination results.
  • a short bar corresponding to the value of the recognition level S is displayed in, for example, a red color associated with “the recognition level is insufficient”.
  • a medium-length bar corresponding to the value of the recognition level S corresponds to, for example, “recognition level unstable” as shown in FIG. Displayed in yellow.
  • a long bar corresponding to the value of the recognition level S is, for example, a blue color associated with “recognition level stable”. Is displayed. In FIG. 5, different hatching is given instead of the color classification for determination of the recognition level S.
  • the operator When the display is displayed with a color indicating “recognition level shortage” and “recognition level uneasy foot”, the operator re-adjusts the position of the illumination device 37, the amount of light, the calculation range of the marked line, and the like. Then, after the readjustment, calculations such as profile creation and recognition level determination described above are executed again by the control unit 33. Thereafter, if the mark recognition level display shows “recognition level stable”, the operator operates the input unit 34 to give a test execution instruction to the control unit 33.
  • the recognition level of the marked line is displayed as a bar graph.
  • the numerical value of the recognition level S is displayed as it is, and “recognition level insufficient”, “recognition level uneasy foot”, “recognition level stable”.
  • the color-coded display according to the three-stage determination result may be omitted.
  • the display of the bar graph of the numerical value of the recognition level S may be omitted, and the determination results in three stages of “recognition level shortage”, “recognition level uneasy foot”, and “recognition level stable” may be displayed as color-coded signals.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

The purpose of this invention is to provide a material testing device capable of displaying the gauge line recognition level of a video camera on a display unit. Image data acquired by the video camera (28) is sent to a control unit (33), and the portion of the image data within the range of calculation for calculating the gauge line mark position is used so that a gauge line mark profile is created by a profile creation unit (41). Then, the created profile is used such that it is determined, by means of a recognition level determination unit (42), whether the video camera (28) accurately recognizes the gauge line, and the display unit (35) displays a color coded bar graph corresponding to the results of the determination.

Description

材料試験機Material testing machine
 この発明は、標線認識レベル表示機能を備えた材料試験機に関する。 This invention relates to a material testing machine having a marked line recognition level display function.
 試験片に引張荷重を付与して、その伸びを計測する材料試験機は、例えば、テーブル上にモータの回転により同期して回転自在に立設された一対のねじ棹と、それらのねじ棹にナットを介して上下動可能に支持されたクロスヘッドと、テーブルとクロスヘッドのそれぞれに連結されたつかみ具等の治具とから構成される。そして、試験片の両端をつかみ具に把持させた状態でクロスヘッドを移動させることにより、引張荷重を試験片に与える試験が実行されるとともに、試験片の伸びが変位測定手段により測定される。 A material testing machine that applies a tensile load to a test piece and measures its elongation is, for example, a pair of screw rods that are erected on a table in synchronization with the rotation of a motor, and the screw rods. The crosshead is supported by a nut so as to be movable up and down, and a jig such as a grip connected to the table and the crosshead. Then, by moving the cross head in a state where both ends of the test piece are held by the gripping tool, a test for applying a tensile load to the test piece is executed, and the elongation of the test piece is measured by the displacement measuring means.
 このような材料試験機における変位測定手段の一つとして、ビデオ式非接触伸び計が知られている。先ず、ビデオ式非接触伸び計により変位測定を行う前には、予め標線マークを印刷等した標線シール等を、試験片表面の所定の位置に貼着している。そして、試験実行中には、予め試験片の表面の所定の上下位置に付された標線マークをビデオカメラで撮影することで、得られた画像データから標線位置および標線間距離の変位量を算出している(特許文献1参照)。 A video non-contact extensometer is known as one of the displacement measuring means in such a material testing machine. First, before measuring displacement with a video non-contact extensometer, a mark sticker or the like on which a mark mark is printed in advance is attached to a predetermined position on the surface of the test piece. During the test, the standard mark position and the distance between the standard lines are changed from the obtained image data by photographing the standard mark on the surface of the test piece in advance with a video camera. The amount is calculated (see Patent Document 1).
 このようなビデオ式非接触伸び計で伸びを測定するときには、つかみ具に把持された試験片の所定の上下位置に貼着した標線シールの両方が、1つのカメラの視野内に納まるようにビデオカメラを配置している。このビデオカメラによる標線マークの認識は、標線マークに対して設定したデータ領域の画像データを試験片への負荷軸と直交する方向に積分して作成された、プロファイルを利用して行われている。そして、そのプロファイルを基に、試験実行前の標線の位置がさらに計算されている(特許文献2参照)。 When measuring the elongation with such a video non-contact extensometer, both the marked stickers affixed to a predetermined vertical position of the test piece held by the gripping tool are within the field of view of one camera. A video camera is placed. The recognition of the marked mark by this video camera is performed using a profile created by integrating the image data of the data area set for the marked mark in the direction perpendicular to the load axis to the test piece. ing. Based on the profile, the position of the marked line before the test execution is further calculated (see Patent Document 2).
特開平11-094719号公報Japanese Patent Laid-Open No. 11-094719 特開平11-295042号公報JP 11-295042 A
 ところで、標線マークのプロファイルから標線位置を求める場合には、試験実行前の標線マークのプロファイルが適正である必要がある。そうでなければ、その後の試験実行中の標線位置の捕捉および変位測定に影響を及ぼすこととなるためである。そして、その標線マークのプロファイルが適正であるためには、試験片に貼着されている標線マークをビデオカメラが的確に捉え、正確に認識できていることが必要である。 By the way, when the mark position is obtained from the mark mark profile, the mark mark profile before the execution of the test needs to be appropriate. Otherwise, it will affect the acquisition and displacement measurement of the marked line during the subsequent test execution. And in order for the profile of the marked line mark to be appropriate, it is necessary that the marked line mark stuck on the test piece is accurately captured and recognized accurately by the video camera.
 図6は、従来の標線マークMのプロファイルP1を作成する手法の説明図である。まず、画像データを収集するため、所望の焦点距離を有するレンズ27を装着したビデオカメラ28により試験片10を撮影する。ここで、予め標線マークM周辺の所定の範囲を、標線位置計算に使用する画像データ範囲である計算範囲Eとして指定している。この計算範囲Eの画像データについて、紙面横方向の色濃度の積分値、すなわち、紙面横方向に列設する計算範囲E内の各画素の階調値の積算値を負荷軸側の画素位置毎にプロットしてグラフ化し、プロファイルP1を得ている。プロファイルP1は撮影画像とともに表示部に表示され、オペレータがプロファイルP1の形状を目視で確認できるようになっている。 FIG. 6 is an explanatory diagram of a conventional method for creating the profile P1 of the marked mark M. First, in order to collect image data, the test piece 10 is photographed by a video camera 28 equipped with a lens 27 having a desired focal length. Here, a predetermined range around the mark mark M is designated in advance as a calculation range E which is an image data range used for the mark position calculation. For the image data in the calculation range E, the integrated value of the color density in the horizontal direction of the paper, that is, the integrated value of the gradation value of each pixel in the calculation range E arranged in the horizontal direction of the paper is calculated for each pixel position on the load axis side. Is plotted and graphed to obtain a profile P1. The profile P1 is displayed on the display unit together with the captured image so that the operator can visually confirm the shape of the profile P1.
 従来、標線マークMがビデオカメラ28に的確に捉えられているかどうかの判断は、オペレータが標線マークMのプロファイルP1の形状を目視確認することにより行っている。プロファイルP1の形状は、試験片10への照明のあて方、レンズ27の絞り、標線の計算範囲E等の設定により変化する。例えば、試験片10にあてる照明が強すぎる場合には、撮影画像ではグレーから白の色成分が多くなるため、図6に示すプロファイルP1の形状は、ベースラインL1が上がり、標線マークMの色濃度分布のピークが低いものとなる。また、引張荷重を受けた試験片10が伸びるのに伴って、標線マークMの図柄等が負荷軸方向に伸びることにより標線マークの色濃度も薄くなる。このため、ベースラインL1(プロファイルの最小値)と標線マークMの色濃度の最大値の差が小さいプロファイルは、標線マークMがビデオカメラ28に的確に捉えられているときのプロファイルではないとオペレータは判断することになる。そして、オペレータがプロファイルP1の形状から、ビデオカメラ28が標線マークを的確に捉えていないと判断した場合には、試験片10への照明のあて方、レンズ27の絞り、標線の計算範囲E等が、適正なプロファイルが得られるまで調整される。 Conventionally, whether or not the mark mark M is accurately captured by the video camera 28 is determined by the operator visually confirming the shape of the profile P1 of the mark mark M. The shape of the profile P1 varies depending on how the test piece 10 is illuminated, the aperture of the lens 27, the calculation range E of the marked line, and the like. For example, when the illumination applied to the test piece 10 is too strong, since the gray to white color component increases in the photographed image, the shape of the profile P1 shown in FIG. The peak of the color density distribution is low. In addition, as the test piece 10 that has received a tensile load extends, the design of the mark mark M extends in the load axis direction, so that the color density of the mark mark also decreases. For this reason, a profile with a small difference between the maximum value of the color density of the baseline L1 (profile minimum value) and the mark mark M is not a profile when the mark mark M is accurately captured by the video camera 28. The operator will judge. If the operator determines from the shape of the profile P1 that the video camera 28 does not accurately capture the marked line mark, the lighting method for the test piece 10, the aperture of the lens 27, and the calculation range of the marked line E and the like are adjusted until an appropriate profile is obtained.
 このように、オペレータがプロファイルの形状を見て、ビデオカメラが標線マークを的確に捉えているか否かを判断する場合には、各オペレータの感性の違いから判断に差が生じることがある。このような判断の差は、試験結果に影響を及ぼすため、可能な限り生じないようにすることが好ましい。しかし、実際には、このような判断の差が生じないようにするため、どのようなプロファイルが測定結果に影響を与えるのかを的確に読み取ることができる程度に、材料試験および装置の操作に慣れることを、オペレータに要求している。 As described above, when the operator looks at the profile shape and determines whether or not the video camera accurately captures the marked mark, there may be a difference in judgment due to the difference in sensitivity of each operator. Since such a difference in judgment affects the test result, it is preferable to avoid it as much as possible. In practice, however, in order to prevent such a difference in judgment, the user is used to the material test and the operation of the apparatus to such an extent that it is possible to accurately read what profile affects the measurement result. It is demanding from the operator.
 また、材料試験および装置の操作に慣れたオペレータであっても、装置の設計側が、ビデオカメラが標線マークを的確に捉えているときのプロファイルとして想定しているものとはかけ離れたプロファイルを、ビデオカメラが標線マークを的確に捉えていると判断している場合もある。この場合には、正確な測定結果を得ることが困難となる。 Moreover, even an operator accustomed to material testing and operation of the device, a profile that is far from what the device design assumes as the profile when the video camera accurately captures the marked mark, In some cases, it is determined that the video camera accurately captures the marked mark. In this case, it is difficult to obtain an accurate measurement result.
 この発明は上記課題を解決するためになされたものであり、ビデオカメラの標線認識レベルを表示部に表示可能な材料試験機を提供することを目的とする。 The present invention has been made to solve the above-described problems, and an object thereof is to provide a material testing machine capable of displaying a marked line recognition level of a video camera on a display unit.
 請求項1に記載の発明は、標線を付した試験片に試験力を付与するとともに、前記標線をビデオカメラで撮影することにより、試験片の伸びを測定する材料試験機において、試験実行前の前記標線のプロファイルを画像データから作成するプロファイル作成手段と、前記プロファイルからビデオカメラの標線認識レベルを判定する認識レベル判定手段と、前記認識レベル判定手段による判定に応じた認識レベルを表示する表示部と、を備えることを特徴とする。 According to the first aspect of the present invention, a test is performed in a material testing machine that applies a test force to a test piece with a marked line and measures the elongation of the test piece by photographing the marked line with a video camera. Profile creating means for creating a profile of the previous marked line from image data, recognition level determining means for determining a marked line recognition level of a video camera from the profile, and a recognition level according to the determination by the recognition level determining means And a display unit for displaying.
 請求項2に記載の発明は、請求項1に記載の発明において、前記認識レベル判定手段は、認識レベルに応じて複数の段階に判定し、前記認識レベルは、前記認識レベル判定手段により判定された段階により色分けされたバーグラフとして前記表示部に表示される。 According to a second aspect of the present invention, in the first aspect of the invention, the recognition level determination means determines in a plurality of stages according to the recognition level, and the recognition level is determined by the recognition level determination means. Are displayed on the display unit as a bar graph color-coded according to different stages.
 請求項3に記載の発明は、請求項1に記載の発明において、前記認識レベル判定手段は、前記プロファイルが、前記試験片の測定に適した理想的なプロファイルの特徴に近いか否かに基づいて前記認識レベルを判定する。 The invention according to claim 3 is the invention according to claim 1, wherein the recognition level determination means is based on whether the profile is close to the characteristics of an ideal profile suitable for measurement of the test piece. To determine the recognition level.
 請求項4に記載の発明は、請求項3に記載の発明において、前記理想的なプロファイルの特徴は、前記プロファイルの最大値が試験実行中に変動してもフルスケールに到達しないと想定されるフルスケールに対する割合Aに近いか否かである。 The invention according to claim 4 is the invention according to claim 3, wherein the characteristics of the ideal profile are assumed not to reach full scale even if the maximum value of the profile fluctuates during test execution. Whether it is close to the ratio A to full scale.
 請求項5に記載の発明は、請求項3に記載の発明において、前記理想的なプロファイルの特徴は、前記プロファイルの平均値が、プロファイルにおける標線の分布範囲が標線位置を計算するための負荷軸方向の計算範囲の30~50%の範囲内となるフルスケールに対する割合Bに近いか否かである。 According to a fifth aspect of the present invention, in the invention of the third aspect, the ideal profile is characterized in that an average value of the profile is calculated and a distribution range of a standard line in the profile is used to calculate a standard line position. Whether or not it is close to the ratio B to the full scale within the range of 30 to 50% of the calculation range in the load axis direction.
 請求項6に記載の発明は、請求項3に記載の発明において、前記理想的なプロファイルの特徴は、前記プロファイルの最小値がフルスケールの0%に近いか否かである。 In the invention described in claim 6, in the invention described in claim 3, the characteristic of the ideal profile is whether or not the minimum value of the profile is close to 0% of full scale.
 請求項7に記載の発明は、請求項1に記載の発明において、前記認識レベル判定手段は、前記プロファイルの最大値をa、前記プロファイルの平均値をb、前記プロファイルの最小値をcとすると、認識レベルSを下記式により計算して、認識レベルを判定する。 According to a seventh aspect of the present invention, in the first aspect of the present invention, the recognition level determination means may assume that the maximum value of the profile is a, the average value of the profile is b, and the minimum value of the profile is c. The recognition level S is calculated by the following formula to determine the recognition level.
 式:S=(1-|a-A|)・(1-|b-B|)・(1-|c-0.0|)
 ただし、a、b、cは0以上、1以下の値であり、Aは、前記プロファイルの最大値が試験実行中に変動してもフルスケールに到達しないと想定されるフルスケールに対する割合であり、Bは、前記プロファイルの平均値が、プロファイルにおける標線の分布範囲が標線位置を計算するための負荷軸方向の計算範囲の30~50%の範囲内となるフルスケールに対する割合である。
Formula: S = (1- | a-A |). (1- | b-B |). (1- | c-0.0 |)
However, a, b, and c are values of 0 or more and 1 or less, and A is a ratio to the full scale that is assumed not to reach full scale even if the maximum value of the profile fluctuates during the test execution. , B is a ratio to the full scale where the average value of the profile is within a range of 30 to 50% of the calculation range in the load axis direction for calculating the marked line position in the distribution range of the marked line in the profile.
 請求項8に記載の発明は、請求項7に記載の発明において、前記認識レベル判定手段は、前記認識レベルSの値に応じて認識レベルを複数の段階に判定し、前記認識レベルSは、前記認識レベル判定手段により判定された段階により色分けされたバーグラフとして表示部に表示される。 The invention according to claim 8 is the invention according to claim 7, wherein the recognition level determination means determines the recognition level in a plurality of stages according to the value of the recognition level S, and the recognition level S is It is displayed on the display unit as a bar graph color-coded according to the stage determined by the recognition level determination means.
 請求項1に記載の発明によれば、ビデオカメラによる標線の認識レベルを判定する標線認識レベル判定手段を備え、その判定に応じた認識レベルを表示部に表示することから、ビデオカメラが標線を的確に捉えているか否かの客観的な指標をオペレータに提供することが可能となる。このため、各オペレータによる判断の差を低減することができる。 According to the first aspect of the present invention, the video camera includes the marked line recognition level determining means for determining the recognition level of the marked line by the video camera, and displays the recognition level according to the determination on the display unit. It is possible to provide the operator with an objective index as to whether or not the marked line is accurately captured. For this reason, the difference of judgment by each operator can be reduced.
 請求項2および請求項8に記載の発明によれば、認識レベルを、認識レベル判定手段により判定された段階により色分けされたバーグラフとして表示部に表示することから、オペレータはビデオカメラによる標線の認識レベルの程度を容易に把握することができる。 According to the second and eighth aspects of the present invention, since the recognition level is displayed on the display unit as a bar graph color-coded according to the stage determined by the recognition level determination means, the operator uses the video camera to mark the line. The level of recognition level can be easily grasped.
 請求項3乃至請求項7に記載の発明によれば、認識レベル判定手段は、作成されたプロファイルが変位測定に影響を及ぼすことのない理想的なプロファイルの特徴に近いか否かを判定することから、経験の浅いオペレータでも、認識レベルの表示を見ることで、変位測定への影響の有無を容易に知ることができる。 According to the third to seventh aspects of the present invention, the recognition level determining means determines whether or not the created profile is close to the characteristics of an ideal profile that does not affect the displacement measurement. Therefore, even an inexperienced operator can easily know whether or not there is an influence on the displacement measurement by looking at the recognition level display.
この発明に係る材料試験機の概要図である。1 is a schematic diagram of a material testing machine according to the present invention. 試験片10、ビデオカメラ28および照明装置37の位置関係を説明するための平面概略図である。3 is a schematic plan view for explaining the positional relationship among a test piece 10, a video camera 28, and an illumination device 37. FIG. この発明の主要な構成を示すブロック図である。It is a block diagram which shows the main structures of this invention. 認識レベル判定部42におけるプロファイルPの判定の説明図である。It is explanatory drawing of determination of the profile P in the recognition level determination part 42. FIG. 認識レベルの表示例である。It is a display example of a recognition level. 従来の標線マークMのプロファイルP1を作成する手法の説明図である。It is explanatory drawing of the method of producing the profile P1 of the conventional marked mark M. FIG.
 以下、この発明の実施の形態を図面に基づいて説明する。図1は、この発明に係る材料試験機の概要図である。図2は、試験片10、ビデオカメラ28および照明装置37の位置関係を説明するための平面概略図である。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic diagram of a material testing machine according to the present invention. FIG. 2 is a schematic plan view for explaining the positional relationship among the test piece 10, the video camera 28, and the illumination device 37.
 この材料試験機は、テーブル18と、床面に立設された一対の支柱19と、各支柱19の内部におけるテーブル18上に鉛直方向を向く状態で回転可能に立設された一対のねじ棹と、これらのねじ棹に沿って移動可能なクロスヘッド23と、このクロスヘッド23を移動させて試験片10に対して試験力を付与するための負荷機構30とを備える。 This material testing machine includes a table 18, a pair of support posts 19 erected on the floor surface, and a pair of screw rods erected so as to be able to rotate on the table 18 inside each support column 19 while facing the vertical direction. And a cross head 23 movable along these screw rods, and a load mechanism 30 for moving the cross head 23 to apply a test force to the test piece 10.
 クロスヘッド23は、一対のねじ棹に対して、図示を省略したナットを介して連結されている。各ねじ棹の下端部は、負荷機構30に連結されており、負荷機構30の動力源からの動力が、一対のねじ棹に伝達される構成となっている。一対のねじ棹が同期して回転することにより、クロスヘッド23は、これら一対のねじ棹に沿って昇降する。 The crosshead 23 is connected to a pair of screw rods via a nut (not shown). The lower end portion of each screw rod is connected to the load mechanism 30, and the power from the power source of the load mechanism 30 is transmitted to the pair of screw rods. As the pair of screw rods rotate in synchronization, the cross head 23 moves up and down along the pair of screw rods.
 クロスヘッド23には、試験片10の上端部を把持するための上つかみ具21が付設されている。一方、テーブル18には、試験片10の下端部を把持するための下つかみ具22が付設されている。引っ張り試験を行う場合には、試験片10の両端部をこれらの上つかみ具21および下つかみ具22により把持した状態で、クロスヘッド23を上昇させることにより、試験片10に試験力(引張荷重)を負荷する。 The upper grip 21 for holding the upper end of the test piece 10 is attached to the cross head 23. On the other hand, the table 18 is provided with a lower gripping tool 22 for gripping the lower end portion of the test piece 10. When performing a tensile test, the test force (tensile load) is applied to the test piece 10 by raising the cross head 23 in a state where both ends of the test piece 10 are gripped by the upper gripping tool 21 and the lower gripping tool 22. ).
 このときに、試験片10に作用する試験力はロードセル24によって検出され、制御回路31を介して制御部33に入力される。また、試験片10は、ビデオカメラ28により撮影され、その画像は制御部33に入力される。 At this time, the test force acting on the test piece 10 is detected by the load cell 24 and input to the control unit 33 via the control circuit 31. The test piece 10 is taken by the video camera 28, and the image is input to the control unit 33.
 ビデオカメラ28は、着脱可能なレンズ27を備え、支柱19に配設されたアーム29に支持されている。また、ビデオカメラ28は、上つかみ具21および下つかみ具22を同一視野に収めるように、支柱19におけるアーム29の固定位置およびアーム29の屈曲度を調整することで位置決めされる。そして、図2に示すように、ビデオカメラ28は、約斜め45度傾いた状態で上つかみ具21および下つかみ具22に把持された試験片10の表面に対してレンズ27の正面が正対する位置に配設される。 The video camera 28 includes a detachable lens 27 and is supported by an arm 29 disposed on the column 19. Further, the video camera 28 is positioned by adjusting the fixing position of the arm 29 and the bending degree of the arm 29 in the support column 19 so that the upper gripping tool 21 and the lower gripping tool 22 are accommodated in the same visual field. As shown in FIG. 2, in the video camera 28, the front surface of the lens 27 faces the surface of the test piece 10 gripped by the upper gripping tool 21 and the lower gripping tool 22 in an inclined state of about 45 degrees. Arranged in position.
 ビデオカメラ28の上方には、LED照明等の照明装置37が配設されている。照明装置37は、支柱19に配設されたアーム39に支持されるとともに、ビデオカメラ28の視野に入らないように配置される。照明装置37は、試験片10の上方側から試験片10の表面に対し光を照射することで、ビデオカメラ28による撮影に必要な光量を供給している。 A lighting device 37 such as LED lighting is disposed above the video camera 28. The illumination device 37 is supported by an arm 39 disposed on the support column 19 and is disposed so as not to enter the field of view of the video camera 28. The illuminating device 37 irradiates the surface of the test piece 10 with light from the upper side of the test piece 10 to supply a light amount necessary for photographing with the video camera 28.
 制御部33は、ROM、RAM等の記憶装置およびCPU等を備えるコンピュータ等によって構成される。制御部33には、液晶ディスプレイ等の表示装置である表示部35、マウスおよびキーボード等を有する入力部34およびビデオカメラ28、制御回路31が接続される。制御回路31は、ロードセル14からの試験力データ、クロスヘッド23の位置情報を制御部33に送信する。そして、制御部33は、ビデオカメラ28の撮影画像データを取り込んでデータ処理を実行し、試験片10における標線間の距離の変位量を演算するとともに、その結果を試験片10の伸びとして、試験力やクロスヘッド23の位置情報等とともに表示部35に表示する。また、制御部33は、後述するプロファイル作成部41と認識レベル判定部42とを備える。 The control unit 33 is composed of a storage device such as a ROM and a RAM, a computer including a CPU, and the like. The control unit 33 is connected to a display unit 35 that is a display device such as a liquid crystal display, an input unit 34 having a mouse and a keyboard, a video camera 28, and a control circuit 31. The control circuit 31 transmits the test force data from the load cell 14 and the position information of the crosshead 23 to the control unit 33. And the control part 33 takes in the image | photographed image data of the video camera 28, performs a data process, and while calculating the displacement amount of the distance between the marked lines in the test piece 10, the result is made into elongation of the test piece 10, It is displayed on the display unit 35 together with the test force, the position information of the crosshead 23, and the like. The control unit 33 includes a profile creation unit 41 and a recognition level determination unit 42 which will be described later.
 このような材料試験機において、上つかみ具21および下つかみ具22に把持された状態の試験片10に対して試験を実行する前には、オペレータが試験片10に標線を付し、さらに、ビデオカメラ28および照明装置37の位置、標線の計算範囲の調整等が行われる。なお、この実施形態では、標線マークMが予め印刷された標線シールを試験片10に貼着することにより標線を付している。 In such a material testing machine, before the test is performed on the test piece 10 held by the upper gripping tool 21 and the lower gripping tool 22, the operator marks the test piece 10 with a marked line. Adjustment of the position of the video camera 28 and the illumination device 37, the calculation range of the marked line, and the like are performed. In this embodiment, a mark is attached by sticking a mark sticker on which a mark mark M is printed in advance to the test piece 10.
 図3は、この発明の主要な構成を示すブロック図である。 FIG. 3 is a block diagram showing the main configuration of the present invention.
 ビデオカメラ28で撮影して得られた画像データは制御部33に送られる。先に図6を参照して説明したように、画像データのうち標線位置計算に使用する計算範囲Eの画像データを利用して、標線マークMのプロファイルPが作成される。これらは、制御部33におけるプロファイル作成部41によって実行される。 The image data obtained by photographing with the video camera 28 is sent to the control unit 33. As described above with reference to FIG. 6, the profile P of the marked mark M is created using the image data in the calculation range E used for calculating the marked line position in the image data. These are executed by the profile creation unit 41 in the control unit 33.
 作成されたプロファイルPは、認識レベル判定部42において、以下の3つの項目について、理想的なプロファイルの特徴に近いか否かが評価される。図4は、認識レベル判定部42におけるプロファイルPの評価の説明図である。 The created profile P is evaluated by the recognition level determination unit 42 as to whether the following three items are close to ideal profile characteristics. FIG. 4 is an explanatory diagram of the evaluation of the profile P in the recognition level determination unit 42.
 第1の項目は、プロファイルPの最大値aが試験実行中に変動してもフルスケールに到達しないと想定されるフルスケールに対する割合Aに近いか否かの評価である。この実施形態におけるフルスケールとは、プロファイルPが計算範囲Eの横方向の各画素の階調値(0~255)の積算値をプロットしたものであることから、1画素の階調値の最大値255に計算範囲Eの横方向の画素数を乗じた値がフルスケールとなる。一方で、計算範囲Eの設定等によりフルスケールの数値は変動するため、図4に示すように、フルスケールを100%として表示している。 The first item is an evaluation of whether or not the maximum value a of the profile P is close to the ratio A to the full scale that is assumed not to reach the full scale even when the test fluctuates. In this embodiment, the full scale is obtained by plotting the integrated value of the gradation values (0 to 255) of each pixel in the horizontal direction of the calculation range E in the profile P. A value obtained by multiplying the value 255 by the number of pixels in the horizontal direction of the calculation range E is the full scale. On the other hand, since the numerical value of the full scale varies depending on the setting of the calculation range E or the like, the full scale is displayed as 100% as shown in FIG.
 ところで、図4に示すプロファイルPのピークが、試験が実行されて測定を行っている間に飽和すると、プロファイルPの負荷軸方向の画素位置において最大値a(ここではフルスケールと同じ値)をとる範囲が広くなるため、標線位置計算の精度が損なわれることになる。このため、プロファイルPの最大値aが試験実行中に変動してもフルスケールに到達しないことが望まれる。一方で、試験実行により試験片10の伸びに伴って標線マークMも移動し、標線マークM部分の色濃度が全体的に薄くなることもある。このような場合にも、標線位置計算の精度を一定以上に保つためには、図4に示すプロファイルPのピーク位置が低くなっても、ベースラインLとの差が十分にあることが望まれる。 By the way, when the peak of the profile P shown in FIG. 4 is saturated while the test is performed and the measurement is performed, the maximum value a (the same value as the full scale here) is obtained at the pixel position in the load axis direction of the profile P. Since the range to be taken becomes wide, the accuracy of the marked line position calculation is impaired. For this reason, even if the maximum value a of the profile P varies during the execution of the test, it is desired not to reach full scale. On the other hand, when the test is executed, the mark mark M also moves with the elongation of the test piece 10, and the color density of the mark mark M portion may be entirely reduced. Even in such a case, in order to keep the accuracy of the benchmark position calculation above a certain level, it is desirable that there is a sufficient difference from the baseline L even if the peak position of the profile P shown in FIG. It is.
 したがって、プロファイルPの最大値aが試験実行中に変動してもフルスケールに到達しないと想定されるフルスケールに対する割合Aは、フルスケールに近い値ではあるが、フルスケールに近すぎる値でないことが好ましい。すなわち、この割合Aは、例えば70~90%であることが好ましい。なお、この実施形態では、割合Aは80%としている。この割合Aは試験片10の性質や試験片10に貼着する標線シールの図柄の違い等により変更される。 Therefore, even if the maximum value a of the profile P fluctuates during test execution, the ratio A to the full scale that is assumed not to reach full scale is close to full scale, but not too close to full scale. Is preferred. That is, the ratio A is preferably 70 to 90%, for example. In this embodiment, the ratio A is 80%. This ratio A is changed depending on the nature of the test piece 10, the difference in the design of the mark seal attached to the test piece 10, and the like.
 第2の項目は、プロファイルPの平均値bが、プロファイルPにおける標線マークMの分布範囲が標線位置を計算するための負荷軸方向の計算範囲の30~50%の範囲内となるフルスケールに対する割合Bに近い否かの評価である。試験を実行すると、試験片10の伸びに伴って標線マークMも移動するため、照明装置37からの光の照射角度の変化等により、図4に示すプロファイルのピーク形状が変形することがある。また、試験片10に直接標線を標している場合には、試験片10の伸びに伴って標線の形状が変化し、プロファイルのピーク形状がなだらかな形状へと変形していくこともある。そして、このようなプロファイルの変形においては、プロファイル上の標線マークMの分布範囲が、標線位置を計算するための負荷軸方向の計算範囲を越える場合がある。そうすると、標線位置計算に必要なプロファイルPのベースラインLの数値(プロファイルの最小値)が正しく求められなくなり、標線位置計算の精度が損なわれることになる。プロファイルPにおける標線マークMの分布範囲が、標線位置を計算するための負荷軸方向の計算範囲の30~50%の範囲内に収まっていれば、標線マークMのプロファイルPが変形しても、標線位置計算に必要なプロファイルのベースラインの数値(プロファイルの最小値)を正しく収集できる。 The second item is that the average value b of the profile P is a full range in which the distribution range of the mark mark M in the profile P is within 30 to 50% of the calculation range in the load axis direction for calculating the mark position. It is an evaluation of whether or not it is close to the ratio B to the scale. When the test is executed, the marked mark M also moves with the extension of the test piece 10, so that the peak shape of the profile shown in FIG. 4 may be deformed due to a change in the irradiation angle of light from the illumination device 37. . Further, when the mark line is marked directly on the test piece 10, the shape of the mark line changes as the test piece 10 extends, and the peak shape of the profile may be deformed into a gentle shape. is there. In such profile deformation, the distribution range of the mark mark M on the profile may exceed the calculation range in the load axis direction for calculating the mark position. If it does so, the numerical value of the baseline L of the profile P required for a marked line position calculation (profile minimum value) will not be calculated | required correctly, and the precision of a marked line position calculation will be impaired. If the distribution range of the mark mark M in the profile P is within 30 to 50% of the calculation range in the load axis direction for calculating the mark position, the profile P of the mark mark M is deformed. However, it is possible to correctly collect the baseline value (minimum profile value) of the profile necessary for calculating the marked line position.
 標線位置を計算するための負荷軸方向の計算範囲の30~50%の範囲内に標線マークMの分布範囲が収まっているかどうかは、プロファイルPの平均値b(プロファイルP全体の色濃度の平均値でもある)がフルスケールに対する割合Bに近い否かを評価することによって判断できることが経験的に見出されている。ここで割合Bは10~30%であることが好ましい。なお、この実施形態では、割合Bは20%としている。この割合Aは試験片10の性質や試験片10に貼着する標線シールの図柄の違い(標線マークMの違い)等により変更される。 Whether or not the distribution range of the mark M is within the range of 30 to 50% of the calculation range in the load axis direction for calculating the mark position is determined by the average value b of the profile P (the color density of the entire profile P) It is empirically found that it can be judged by evaluating whether or not the ratio is close to the ratio B to the full scale. Here, the ratio B is preferably 10 to 30%. In this embodiment, the ratio B is 20%. The ratio A is changed depending on the nature of the test piece 10, the difference in the design of the mark sticker attached to the test piece 10 (the difference in the mark mark M), and the like.
 第3の項目は、プロファイルPの最小値cがフルスケールの0%に近いか否かの評価である。これは、標線位置計算の信頼性の観点から、その計算の基礎となるデータであるプロファイルのバックグラウンドノイズが可能な限り低いことが好ましいからである。 The third item is an evaluation of whether or not the minimum value c of the profile P is close to 0% of full scale. This is because it is preferable that the background noise of the profile, which is data used as the basis of the calculation, be as low as possible from the viewpoint of reliability of the calculation of the marked line position.
 上述した3つの項目の評価は、具体的には以下に式により実行され、認識レベルSが算出される。 The evaluation of the above three items is specifically executed by the following formula, and the recognition level S is calculated.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 a、b、cのそれぞれが目標値A、B、0に近いほど、各項の値が1に近づき、かつ、a、b、cのすべての条件がそろわなければ、認識レベルSの値は大きくならない。そして、認識レベルSは値が大きいほど認識レベルが安定している。すなわち、ビデオカメラ28により標線マークMがより的確に捉えられていることを示す。なお、この実施形態では、上述したように、割合Aを80%、割合Bを20%と設定していることからA=0.8、B=0.2として認識レベルSを算出している。 As each of a, b, and c approaches the target values A, B, and 0, the value of each term approaches 1 and if all the conditions of a, b, and c are not met, the value of the recognition level S is Does not grow. The recognition level S becomes more stable as the value of the recognition level S increases. That is, it shows that the marked mark M is captured more accurately by the video camera 28. In this embodiment, as described above, since the ratio A is set to 80% and the ratio B is set to 20%, the recognition level S is calculated with A = 0.8 and B = 0.2. .
 図5は、認識レベルの表示例である。図5(a)は、認識レベル不足と判定された場合の表示例、図5(b)は、認識レベル不安定と判定された場合の表示例、図5(c)は、認識レベル安定と判定された場合の表示例である。なお、図5(a)、(b)、(c)における上側のバーグラフは、試験片10の上方に付された標線の認識レベルを、下側のバーグラフは、試験片10の下方に付された標線の認識レベルを、それぞれ示している。 FIG. 5 is a display example of the recognition level. 5A is a display example when it is determined that the recognition level is insufficient, FIG. 5B is a display example when it is determined that the recognition level is unstable, and FIG. 5C is a case where the recognition level is stable. It is an example of a display when it determines. 5A, 5B, and 5C, the upper bar graph indicates the recognition level of the marked line attached above the test piece 10, and the lower bar graph indicates the lower side of the test piece 10. The level of the marked line attached to is shown respectively.
 数式1により得られた認識レベルSは、図3に示す認識レベル判定部42において、認識レベルSの値に応じて3段階に分けて判定される。この実施形態では、認識レベルSが0以上0.3未満の場合は「認識レベル不足」、認識レベルSが0.3以上0.6未満の場合は「認識レベル不安足」、認識レベルSが0.6以上1以下の場合は「認識レベル安定」、と判定される。なお、これらの数値範囲は一例であって、これに限定されるものではない。また、判定も3段階の判定だけでなく、単に「不足」「安定」の2段階判定や、さらに細分化した判定を行ってもよい。 The recognition level S obtained from Equation 1 is determined in three stages according to the value of the recognition level S in the recognition level determination unit 42 shown in FIG. In this embodiment, when the recognition level S is 0 or more and less than 0.3, “recognition level is insufficient”, when the recognition level S is 0.3 or more and less than 0.6, “recognition level uneasy foot”, and the recognition level S is In the case of 0.6 or more and 1 or less, it is determined that “the recognition level is stable”. In addition, these numerical ranges are examples, and are not limited to these. In addition, the determination is not limited to the three-stage determination, but may be simply a two-stage determination of “insufficient” or “stable” or a more detailed determination.
 認識レベル判定部による判定が終わると、標線の認識レベルは、表示部35に表示される。表示部35には、標線の認識レベルが認識レベルSの値に応じたバーグラフとして表示されるとともに、それぞれのバーは、「認識レベル不足」、「認識レベル不安足」、「認識レベル安定」の3段階の判定結果に応じて色分け表示される。「認識レベル不足」と判定された場合には、図5(a)に示すように、認識レベルSの値に応じた短いバーが、例えば「認識レベル不足」と対応づけられた赤色で表示される。「認識レベル不安定」と判定された場合には、図5(b)に示すように、認識レベルSの値に応じた中程度の長さのバーが、例えば「認識レベル不安定」と対応づけられた黄色で表示される。さらに、「認識レベル安定」と判定された場合には、図5(c)に示すように、認識レベルSの値に応じた長いバーが、例えば「認識レベル安定」と対応づけられた青色で表示される。なお、図5においては、認識レベルSの判定の色分けに代えて、異なるハッチングを付している。 When the determination by the recognition level determination unit is finished, the recognition level of the marked line is displayed on the display unit 35. On the display unit 35, the recognition level of the marked line is displayed as a bar graph corresponding to the value of the recognition level S, and the respective bars are “recognition level deficient”, “recognition level uneasy foot”, “recognition level stable” Are displayed in different colors according to the three-stage determination results. When it is determined that “the recognition level is insufficient”, as shown in FIG. 5A, a short bar corresponding to the value of the recognition level S is displayed in, for example, a red color associated with “the recognition level is insufficient”. The If it is determined that the recognition level is unstable, a medium-length bar corresponding to the value of the recognition level S corresponds to, for example, “recognition level unstable” as shown in FIG. Displayed in yellow. Further, when it is determined that the “recognition level is stable”, as shown in FIG. 5C, a long bar corresponding to the value of the recognition level S is, for example, a blue color associated with “recognition level stable”. Is displayed. In FIG. 5, different hatching is given instead of the color classification for determination of the recognition level S.
 表示が「認識レベル不足」および「認識レベル不安足」を示す色等で表示された場合には、オペレータは、照明装置37の位置やその光量、標線の計算範囲等の再調整を行う。そして、再調整後に再度上述したプロファイル作成および認識レベル判定等の演算が制御部33で実行される。しかる後、標線の認識レベルの表示が「認識レベル安定」を示す表示となれば、オペレータは試験実行の指示を入力部34を操作して制御部33に与える。 When the display is displayed with a color indicating “recognition level shortage” and “recognition level uneasy foot”, the operator re-adjusts the position of the illumination device 37, the amount of light, the calculation range of the marked line, and the like. Then, after the readjustment, calculations such as profile creation and recognition level determination described above are executed again by the control unit 33. Thereafter, if the mark recognition level display shows “recognition level stable”, the operator operates the input unit 34 to give a test execution instruction to the control unit 33.
 なお、この実施形態では、標線の認識レベルをバーグラフとして表示しているが、認識レベルSの数値をそのまま表示し、「認識レベル不足」、「認識レベル不安足」、「認識レベル安定」の3段階の判定結果に応じた色分け表示を省略してもよい。また、認識レベルSの数値のバーグラフの表示を省略し、「認識レベル不足」、「認識レベル不安足」、「認識レベル安定」の3段階の判定結果を色分け信号として表示してもよい。 In this embodiment, the recognition level of the marked line is displayed as a bar graph. However, the numerical value of the recognition level S is displayed as it is, and “recognition level insufficient”, “recognition level uneasy foot”, “recognition level stable”. The color-coded display according to the three-stage determination result may be omitted. Further, the display of the bar graph of the numerical value of the recognition level S may be omitted, and the determination results in three stages of “recognition level shortage”, “recognition level uneasy foot”, and “recognition level stable” may be displayed as color-coded signals.
 10  試験片
 18  テーブル
 19  支柱
 21  上つかみ具
 22  下つかみ具
 23  クロスヘッド
 24  ロードセル
 27  レンズ
 28  ビデオカメラ
 29  アーム
 30  負荷手段
 31  制御回路
 33  制御部
 34  入力部
 35  表示部
 37  照明装置
 39  アーム
 41  プロファイル作成部
 42  認識レベル判定部
 
DESCRIPTION OF SYMBOLS 10 Test piece 18 Table 19 Support | pillar 21 Upper gripper 22 Lower gripper 23 Crosshead 24 Load cell 27 Lens 28 Video camera 29 Arm 30 Load means 31 Control circuit 33 Control part 34 Input part 35 Display part 37 Illumination device 39 Arm 41 Profile preparation Part 42 recognition level judgment part

Claims (8)

  1.  標線を付した試験片に試験力を付与するとともに、前記標線をビデオカメラで撮影することにより、試験片の伸びを測定する材料試験機において、
     試験実行前の前記標線のプロファイルを画像データから作成するプロファイル作成手段と、
     前記プロファイルからビデオカメラの標線認識レベルを判定する認識レベル判定手段と、
     前記認識レベル判定手段による判定に応じた認識レベルを表示する表示部と、
     を備えることを特徴とする材料試験機。
    In a material testing machine for measuring the elongation of a test piece by applying a test force to a test piece with a mark and photographing the mark with a video camera,
    Profile creation means for creating a profile of the marked line before test execution from image data;
    A recognition level determination means for determining a marked line recognition level of the video camera from the profile;
    A display unit that displays a recognition level according to the determination by the recognition level determination unit;
    A material testing machine comprising:
  2.  請求項1に記載の材料試験機において、
     前記認識レベル判定手段は、認識レベルに応じて複数の段階に判定し、
     前記認識レベルは、前記認識レベル判定手段により判定された段階により色分けされたバーグラフとして前記表示部に表示される材料試験機。
    The material testing machine according to claim 1,
    The recognition level determination means determines in a plurality of stages according to the recognition level,
    The material testing machine, wherein the recognition level is displayed on the display unit as a bar graph color-coded according to the stage determined by the recognition level determination means.
  3.  請求項1に記載の材料試験機において、
     前記認識レベル判定手段は、前記プロファイルが、前記試験片の測定に適した理想的なプロファイルの特徴に近いか否かに基づいて前記認識レベルを判定する材料試験機。
    The material testing machine according to claim 1,
    The recognition level determination means is a material testing machine that determines the recognition level based on whether or not the profile is close to characteristics of an ideal profile suitable for measurement of the test piece.
  4.  請求項3に記載の材料試験機において、
     前記理想的なプロファイルの特徴は、前記プロファイルの最大値が試験実行中に変動してもフルスケールに到達しないと想定されるフルスケールに対する割合Aに近いか否かである材料試験機。
    The material testing machine according to claim 3,
    The ideal profile is characterized by whether or not the maximum value of the profile is close to a ratio A to full scale, which is assumed not to reach full scale even if the maximum value of the profile fluctuates during test execution.
  5.  請求項3に記載の材料試験機において、
     前記理想的なプロファイルの特徴は、前記プロファイルの平均値が、プロファイルにおける標線の分布範囲が標線位置を計算するための負荷軸方向の計算範囲の30~50%の範囲内となるフルスケールに対する割合Bに近いか否かである材料試験機。
    The material testing machine according to claim 3,
    The ideal profile is characterized in that the average value of the profile is a full scale in which the distribution range of the marked line in the profile is within 30 to 50% of the calculation range in the load axis direction for calculating the marked line position. A material testing machine that is close to the ratio B with respect to.
  6.  請求項3に記載の材料試験機において、
     前記理想的なプロファイルの特徴は、前記プロファイルの最小値がフルスケールの0%に近いか否かである材料試験機。
    The material testing machine according to claim 3,
    The ideal profile is characterized by whether the minimum value of the profile is close to 0% of full scale.
  7.  請求項1に記載の材料試験機において、
     前記認識レベル判定手段は、前記プロファイルの最大値をa、前記プロファイルの平均値をb、前記プロファイルの最小値をcとすると、認識レベルSを下記式により計算して、認識レベルを判定する材料試験機。
     式:S=(1-|a-A|)・(1-|b-B|)・(1-|c-0.0|)
     ただし、a、b、cは0以上、1以下の値であり、Aは、前記プロファイルの最大値が試験実行中に変動してもフルスケールに到達しないと想定されるフルスケールに対する割合であり、Bは、前記プロファイルの平均値が、プロファイルにおける標線の分布範囲が標線位置を計算するための負荷軸方向の計算範囲の30~50%の範囲内となるフルスケールに対する割合である。
    The material testing machine according to claim 1,
    The recognition level determination means calculates the recognition level S according to the following equation, where a is the maximum value of the profile, b is the average value of the profile, and c is the minimum value of the profile. testing machine.
    Formula: S = (1- | a-A |). (1- | b-B |). (1- | c-0.0 |)
    However, a, b, and c are values of 0 or more and 1 or less, and A is a ratio to the full scale that is assumed not to reach full scale even if the maximum value of the profile fluctuates during the test execution. , B is a ratio to the full scale where the average value of the profile is within a range of 30 to 50% of the calculation range in the load axis direction for calculating the marked line position in the distribution range of the marked line in the profile.
  8.  請求項7に記載の材料試験機において、
     前記認識レベル判定手段は、前記認識レベルSの値に応じて認識レベルを複数の段階に判定し、
     前記認識レベルSは、前記認識レベル判定手段により判定された段階により色分けされたバーグラフとして表示部に表示される材料試験機。
    The material testing machine according to claim 7,
    The recognition level determination means determines the recognition level in a plurality of stages according to the value of the recognition level S,
    The recognition level S is a material testing machine displayed on the display unit as a bar graph color-coded according to the stage determined by the recognition level determination means.
PCT/JP2010/065225 2010-09-06 2010-09-06 Material testing device WO2012032590A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2010/065225 WO2012032590A1 (en) 2010-09-06 2010-09-06 Material testing device
CN201080068958.4A CN103080723B (en) 2010-09-06 2010-09-06 Material testing device
JP2012532745A JP5282853B2 (en) 2010-09-06 2010-09-06 Material testing machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/065225 WO2012032590A1 (en) 2010-09-06 2010-09-06 Material testing device

Publications (1)

Publication Number Publication Date
WO2012032590A1 true WO2012032590A1 (en) 2012-03-15

Family

ID=45810216

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/065225 WO2012032590A1 (en) 2010-09-06 2010-09-06 Material testing device

Country Status (3)

Country Link
JP (1) JP5282853B2 (en)
CN (1) CN103080723B (en)
WO (1) WO2012032590A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113167699A (en) * 2018-12-13 2021-07-23 株式会社岛津制作所 Material testing machine and control method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11304439A (en) * 1998-04-23 1999-11-05 Japan Tobacco Inc Contactless extensometer
JP2000186989A (en) * 1997-09-25 2000-07-04 Shimadzu Corp Non-contact video type testing method
JP2004257925A (en) * 2003-02-27 2004-09-16 Shimadzu Corp Material testing machine

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5082941B2 (en) * 2008-03-10 2012-11-28 株式会社島津製作所 Mark position measurement device, mark position measurement program, and mark mark
CN201449356U (en) * 2009-08-07 2010-05-05 烟台正海汽车内饰件有限公司 Device for measuring breaking elongation of foamed materials

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000186989A (en) * 1997-09-25 2000-07-04 Shimadzu Corp Non-contact video type testing method
JPH11304439A (en) * 1998-04-23 1999-11-05 Japan Tobacco Inc Contactless extensometer
JP2004257925A (en) * 2003-02-27 2004-09-16 Shimadzu Corp Material testing machine

Also Published As

Publication number Publication date
JPWO2012032590A1 (en) 2013-12-12
CN103080723A (en) 2013-05-01
CN103080723B (en) 2014-11-26
JP5282853B2 (en) 2013-09-04

Similar Documents

Publication Publication Date Title
US6460418B1 (en) Method of and apparatus for measuring elongation of a test specimen
JP5435127B2 (en) Material testing machine
CN112789494A (en) Material testing machine
JP5955716B2 (en) Hardness tester and hardness test method
US10663381B2 (en) Hardness tester and program
US8654351B2 (en) Offset amount calibrating method and surface profile measuring machine
JP2023532921A (en) Thickness correction for video extensometer systems and methods
JP5282853B2 (en) Material testing machine
JP2023083760A (en) Stress measurement method and stress measurement program and stress measurement device
CN112014252B (en) Brinell hardness field measuring device for small-diameter pipe
JP6031821B2 (en) Displacement measuring method and material testing machine
JP3673076B2 (en) Focus adjustment device for imaging equipment
JP3147797B2 (en) Video non-contact extensometer
JP2004257925A (en) Material testing machine
JP4136774B2 (en) Material testing machine
JP4239752B2 (en) Material testing machine
WO2022074879A1 (en) Material testing machine
JP2742640B2 (en) Automatic crack growth dimension measurement device
JPH11257926A (en) Video type noncontact elongation meter
JP4064705B2 (en) Hardness tester
JPH11304439A (en) Contactless extensometer
JP2004069460A (en) Method and apparatus for measuring actual stress-distortion in high-speed tension region
JP2001281119A (en) Fatigue crack testing device
KR20020083372A (en) Method of and apparatus for measuring elongation of a test specimen
JP2012047465A (en) Material testing machine

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080068958.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10856940

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012532745

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10856940

Country of ref document: EP

Kind code of ref document: A1