WO2012031558A1 - 一种压缩气体发动机 - Google Patents

一种压缩气体发动机 Download PDF

Info

Publication number
WO2012031558A1
WO2012031558A1 PCT/CN2011/079470 CN2011079470W WO2012031558A1 WO 2012031558 A1 WO2012031558 A1 WO 2012031558A1 CN 2011079470 W CN2011079470 W CN 2011079470W WO 2012031558 A1 WO2012031558 A1 WO 2012031558A1
Authority
WO
WIPO (PCT)
Prior art keywords
impeller
compressed gas
rows
gas engine
impeller chamber
Prior art date
Application number
PCT/CN2011/079470
Other languages
English (en)
French (fr)
Inventor
丛洋
Original Assignee
Cong Yang
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cong Yang filed Critical Cong Yang
Publication of WO2012031558A1 publication Critical patent/WO2012031558A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D1/00Non-positive-displacement machines or engines, e.g. steam turbines
    • F01D1/02Non-positive-displacement machines or engines, e.g. steam turbines with stationary working-fluid guiding means and bladed or like rotor, e.g. multi-bladed impulse steam turbines
    • F01D1/026Impact turbines with buckets, i.e. impulse turbines, e.g. Pelton turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles

Definitions

  • the present application relates to a compressed gas engine that can be mounted on a variety of power machines.
  • the invention is called a combined blast engine and a motor vehicle.
  • the main feature of the invention is that a separate compression gas engine and a wind resistance engine are respectively provided, and the impeller can be optimized according to the high and relatively concentrated flow rate of the compressed gas, and the low flow velocity and relative dispersion of the wind resistance air flow. Designed to increase energy efficiency.
  • the motor vehicle adopting the combined air-fuel engine adopts compressed gas as the main power, and directly adopts the wind-resistance airflow encountered by the power machinery during driving as an auxiliary power, and can also make the compressed gas and the wind-resistant airflow better cooperate. .
  • the purpose of the present application is to further improve the dynamic performance of a compressed gas engine.
  • a compressed gas engine includes at least one impeller chamber, at least one impeller installed in the impeller chamber through a rotating shaft, the impeller is provided with a plurality of blade teeth, and the impeller chamber is provided with at least one exhaust port At least two rows of air nozzles are mounted on the impeller chamber before each exhaust port.
  • a spacing between the air outlets of the at least two rows of the air nozzles is smaller than a distance between adjacent leaf teeth provided on the impeller, so that the compressed gas ejected by the at least two rows of air nozzles can simultaneously act on On the same leaf tooth.
  • three exhaust ports are symmetrically opened on the impeller chamber, and a spacing between the ends of the at least two rows of air nozzles disposed between the exhaust ports is smaller than between the adjacent vanes The distance is such that the compressed gas ejected from the at least two rows of air nozzles between the exhaust ports can simultaneously act on the same blade tooth.
  • two rows of air nozzles are mounted on the impeller chamber before each exhaust port.
  • a jet introduction groove corresponding to a rotation direction of the impeller is opened on an inner surface of the impeller chamber between the exhaust ports, and an air outlet of the at least two rows of air nozzles is installed in the air jet introduction Inside the slot.
  • the length of the jet introduction groove is greater than the distance between adjacent blade teeth.
  • each row is one or more, and each row of air nozzles installed on the impeller chamber is disposed in parallel with the axis of the shaft of the impeller, and the adjacent rows of air nozzles are dislocated. Settings.
  • front and rear sides of the impeller are provided with side plates, and the front and rear side plates between the adjacent leaf teeth and the adjacent leaf teeth and the inner surface of the corresponding impeller chamber between the adjacent leaf teeth are configured to temporarily store the injection.
  • the pressure chamber of the compressed gas is configured to temporarily store the injection.
  • an exhaust groove parallel to the axis of the shaft of the impeller is opened on the inner surface of the impeller chamber, and the exhaust groove communicates with the exhaust port.
  • a closest distance between the jet introduction groove and an adjacent exhaust groove is greater than a distance between adjacent blade teeth.
  • the amount of air jet can be flexibly increased according to the power performance requirements of the engine.
  • the number of nozzles and the diameter of the nozzle that can simultaneously act on the same vane can be flexibly set as needed.
  • the number of nozzles, the diameter of the nozzle, the angle of the spray and the layout can be optimized for the shape of the blade tip, and the injection efficiency of the compressed gas can be improved;
  • the problem that the nozzle is too heavy, and the nozzle is icy or even blocked by the icing is blocked.
  • the workload of each nozzle is reduced, and the problem of nozzle icing or even blocking the jet flow due to icing is greatly reduced or even eliminated.
  • the length of the jet introduction groove is at least greater than the distance between two adjacent blade teeth, and two or more blade teeth can be simultaneously worked by one air inlet, thereby greatly improving the dynamic performance of the engine.
  • FIG. 1 is a schematic structural view of a compressed gas engine.
  • Figure 2 is a schematic view showing the structure of the impeller of Figure 1.
  • FIG. 3 is a schematic structural view of another compressed gas engine.
  • FIG. 4 is a schematic structural view of still another compressed gas engine.
  • Fig. 5 is a schematic structural view of still another compressed gas engine.
  • Fig. 6 is a schematic structural view of still another compressed gas engine.
  • Fig. 7 is a schematic structural view of still another compressed gas engine.
  • Fig. 8 is a schematic structural view of still another compressed gas engine.
  • Fig. 9 is a schematic structural view of still another compressed gas engine.
  • a compressed gas engine as shown in Figs. 1 and 2, includes an impeller chamber 5, and an impeller 6 mounted in the impeller chamber 5 through a rotating shaft. among them:
  • the inner surface of the impeller chamber 5 is provided with a jet introduction groove 4 corresponding to the rotation direction of the impeller 6, and the impeller chamber 5 is symmetrically mounted with three rows of air nozzles (1, 2, 3), each row of air nozzles and impellers.
  • the axes of the shafts of 6 are arranged in parallel, and the number of air nozzles in each row may be one or more, which is flexibly set according to the width of the impeller 6 and the size of the air nozzle of the air nozzle and the required amount of air jets, and the adjacent rows of air nozzles
  • the misalignment is arranged to optimize the force receiving surface of the blade teeth 8, and the air outlets of the three rows of air nozzles (1, 2, 3) are installed in the air injection introduction groove 4, and an exhaust gas is opened in the impeller chamber 5.
  • the port 9 is provided with an exhaust groove 10 parallel to the axis of the shaft of the impeller 6 on the inner surface of the impeller chamber 5.
  • the width of the exhaust groove 10 substantially coincides with the width of the impeller 6, and the exhaust groove 10 and the exhaust port 9 The same.
  • a plurality of blade teeth 8 are equally spaced apart on the impeller 6, and the front and rear sides of the impeller 6 are provided with side plates 11 between adjacent leaf teeth 8, between the front and rear side plates 11 between adjacent leaf teeth, and between adjacent leaf teeth
  • a part of the inner surface of the corresponding impeller chamber 5 constitutes a pressure holding chamber 7 capable of storing the injected compressed gas.
  • the impeller 6 and the front and rear side plates 11 of the impeller 6 may be integrally formed or assembled separately.
  • the compressed gas ejected by the three rows of air nozzles (1, 2, 3) symmetrically arranged pushes the impeller 6 to run; on the other hand, when the impeller 6 rotates, each of the pressure maintaining chambers 7 rotates in sequence The first row of air nozzles 1, the second row of air nozzles 2 and the third row of air nozzles 3, the pressure holding chamber 7 receives and holds the compressed gas injected by the three rows of air nozzles (1, 2, 3).
  • the pressure-holding chamber 7 after three times of pressure-holding and pressurization passes through the exhaust port 9, the compressed gas in the pressure-holding chamber 7 performs secondary work, is quickly sprayed and released through the exhaust port 9, and is again pushed by the reaction force.
  • the impeller 6 is operated.
  • Another compressed gas engine as shown in Fig. 3, includes an impeller chamber 5 and an impeller 6 mounted in the impeller chamber 5 through a rotating shaft.
  • the difference between this embodiment and the first embodiment is that nine rows of air nozzles are arranged, wherein each of the three rows of air nozzles is a group, which constitutes three sets of air nozzles (1, 2, 3) symmetrically arranged, thereby being able to enlarge The air jet amount and the dynamic performance are improved.
  • the other structure of this embodiment is the same as that of the first embodiment.
  • Still another compressed gas engine as shown in Fig. 4, includes an impeller chamber 5 and an impeller 6 mounted in the impeller chamber 5 through a rotating shaft.
  • the difference between this embodiment and the first embodiment is that six rows of air nozzles are provided, wherein each of the two rows of air nozzles is a group, and three sets of air nozzles (1, 2, 3) symmetrically arranged are formed.
  • the special design is that the distance (L2) between the air outlets of the two rows of air nozzles constituting each group of air nozzles is smaller than the distance (L1) between the adjacent leaf teeth provided on the impeller, so that the two rows of jets of each group
  • the compressed gas ejected from the mouth can simultaneously act on the same leaf tooth, and this structure can greatly improve the function of the single leaf tooth.
  • Other structures of this embodiment are the same as those of the first embodiment.
  • Still another compressed gas engine as shown in Fig. 5, includes an impeller chamber 5 and an impeller 6 mounted in the impeller chamber 5 through a rotating shaft.
  • the difference between this embodiment and the third embodiment is that twelve rows of air nozzles are provided, wherein each of the four rows of air nozzles is a group, and three sets of air nozzles (1, 2, 3) symmetrically arranged are formed.
  • the distance (L2) between the air outlets of the adjacent two rows of air nozzles constituting each group of air nozzles is smaller than the distance (L1) between adjacent leaf teeth provided on the impeller, not only the adjacent two rows of air nozzles are sprayed
  • the compressed gas can simultaneously act on the same blade teeth, and the blades that enter the jet nozzle area of the group are continuously jetted by the four rows of nozzles.
  • the other structure of this embodiment is the same as that of the third embodiment.
  • Still another compressed gas engine as shown in Fig. 6, includes an impeller chamber 5 and an impeller 6 mounted in the impeller chamber 5 through a rotating shaft.
  • the difference between this embodiment and the first embodiment is that three exhaust ports 9, three exhaust slots 10 and three jet introduction slots 4 are symmetrically opened on the impeller chamber 5, and the respective exhaust ports 9 respectively correspond to
  • the exhaust slots 10 communicate with each other, and the inner surface of the impeller chamber 5 between the exhaust ports 9 is provided with a jet introduction groove 4 corresponding to the rotation direction of the impeller 6, and the three rows of air nozzles (1, 2, 3) are symmetrically arranged. Between each of the exhaust ports 9, the air outlets of each of the air nozzles are installed in the respective air jet introduction slots 4.
  • the other structure of this embodiment is the same as that of the first embodiment.
  • Still another compressed gas engine as shown in Fig. 7, includes an impeller chamber 5 and an impeller 6 mounted in the impeller chamber 5 through a rotating shaft.
  • the difference between this embodiment and the fifth embodiment is that nine rows of air nozzles are provided, wherein each of the three rows of air nozzles is a group, which constitutes three sets of air nozzles (1, 2, 3) symmetrically arranged, and three sets of air nozzles. (1, 2, 3) is symmetrically disposed between the exhaust ports 9, so that the amount of air jet can be increased, and the power performance can be improved.
  • the other structure of this embodiment is the same as that of the first embodiment.
  • Still another compressed gas engine as shown in Fig. 8, includes an impeller chamber 5 and an impeller 6 that is mounted in the impeller chamber 5 through a rotating shaft.
  • the difference between this embodiment and the fifth embodiment is that six rows of air nozzles are provided, wherein each two rows of air nozzles are a group, and three sets of air nozzles (1, 2, 3) symmetrically arranged are formed.
  • the special design is that the distance (L2) between the air outlets of the two rows of air nozzles constituting each group of air nozzles is smaller than the distance (L1) between the adjacent leaf teeth provided on the impeller, so that the two rows of jets of each group
  • the compressed gas ejected from the nozzle can simultaneously act on the same blade tooth, and the three sets of air nozzles (1, 2, 3) are symmetrically disposed between the exhaust ports 9.
  • Other structures of this embodiment are the same as those of the first embodiment.
  • three exhaust ports are symmetrically opened on the impeller chamber, and the distance between the jet outlets of the two rows of air nozzles between the exhaust ports is smaller than the distance between adjacent vanes on the impeller, which can be flexible according to requirements.
  • Still another compressed gas engine as shown in Fig. 9, includes an impeller chamber 5 and an impeller 6 mounted in the impeller chamber 5 via a rotating shaft.
  • the difference between this embodiment and the seventh embodiment is that twelve rows of air nozzles are provided, wherein each of the four rows of air nozzles is a group, and three sets of air nozzles (1, 2, 3) symmetrically arranged are formed.
  • the distance (L2) between the air outlets of the adjacent two rows of air nozzles constituting each group of air nozzles is smaller than the distance (L1) between adjacent leaf teeth provided on the impeller, not only the adjacent two rows of air nozzles are sprayed
  • the compressed gas can simultaneously act on the same blade teeth, and the blades that enter the jet nozzle area of the group are continuously jetted by the four rows of nozzles.
  • the other structures of this embodiment are the same as those of the seventh embodiment, and the three sets of air nozzles (1, 2, 3) are symmetrically disposed between the exhaust ports 9. With this embodiment, the amount of air jet can be further increased, and the power performance can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

一种压缩气体发动机 技术领域
本申请涉及一种压缩气体发动机,可安装在各种动力机械上。
背景技术
此前,发明人提出了一种申请号为200780030483.8、 发明名称为组合式风气发动机及机动车。该发明的主要特点是分别设置独立结构的压缩气体发动机和风阻发动机,可根据压缩气体的流速高、相对集中,而风阻气流的流速低、相对分散的特点,分别有针对性地对叶轮进行优化设计,以提高能量使用效率。采用该组合式风气发动机的机动车既采用压缩气体作为主动力,又直接采用动力机械在行驶过程中所遇到的风阻气流作为辅助动力,还可以使压缩气体和风阻气流能够更好地配合使用。
但是,这种新型的以压缩气体作为动力的新能源汽车仍还有大量的技术工作要做。
技术问题
本申请的目的是进一步提高压缩气体发动机的动力性能。
技术解决方案
实现上述目的的技术方案:
一种压缩气体发动机,包括至少一个叶轮室、通过转轴装设于所述叶轮室内的至少一个叶轮,所述叶轮上设置有多个叶齿,所述叶轮室上开设有至少一个排气口,在每一排气口之前的所述叶轮室上装设有至少两排喷气嘴。
进一步地,至少两排所述喷气嘴的喷气出口之间的间距小于所述叶轮上设置的相邻叶齿之间的距离,使得所述至少两排喷气嘴喷出的压缩气体能够同时作用于同一叶齿上。
进一步地,所述叶轮室上对称开设有三个排气口,所述各排气口之间装设的所述至少两排喷气嘴的未端之间的间距小于所述相邻叶齿之间的距离,使得各排气口之间的所述至少两排喷气嘴喷出的压缩气体能够同时作用于同一叶齿上。
进一步地,在每一排气口之前的所述叶轮室上装设两排喷气嘴。
进一步地,在各排气口之间的所述叶轮室的内表面上开设有与叶轮的转动方向相一致的喷气导入槽,所述至少两排喷气嘴的喷气出口装设在所述喷气导入槽内。
进一步地,所述喷气导入槽的长度大于相邻叶齿之间的距离。
进一步地,每一排喷气嘴的数量是一个或多个,所述叶轮室上装设的每一排喷气嘴与所述叶轮的转轴轴线平行设置,所述相邻的各排喷气嘴之间错位设置。
进一步地,所述叶轮的前后两侧设置有侧板,相邻叶齿、相邻叶齿之间的前后侧板以及相邻叶齿之间对应的叶轮室的内表面构成能够暂时存储喷入的压缩气体的保压室。
进一步地,在所述叶轮室的内表面上开设有与叶轮的转轴轴线平行的排气槽,所述排气槽与所述排气口相通。
进一步地,所述喷气导入槽与相邻的排气槽之间的最近距离大于相邻叶齿之间的距离。
有益效果
采用上述技术方案,其有益的技术效果在于:
通过在每一排气口之前,沿叶轮室的转动周面上装设至少两排喷气嘴,可根据发动机的动力性能需要,灵活加大喷气量。
通过设置至少两排喷气嘴的喷气出口之间的距离小于叶轮上相邻叶齿之间的距离,可以根据需要灵活设置能够同时作用于同一叶齿上的喷嘴数量和喷嘴的直径。一是在同等喷气量的情况下,可以针对叶齿的叶面形状,对喷嘴的数量、喷嘴的直径、喷射的角度和布局进行优化设计,提高压缩气体的喷射效率;二是在同等喷气量的情况下,避免了采用大孔径集中喷射时,因喷嘴的工作负荷过重,容易导致的喷嘴结冰甚至因结冰而堵塞喷射气流的问题。通过分散的喷嘴设置,减轻了各喷嘴的工作负荷,大幅减少甚至消除喷嘴结冰甚至因结冰而堵塞喷射气流的问题。
通过在叶轮室上对称开设三个排气口,并在各排气口之间设置喷气嘴,优化了发动机的动态平衡能力,有利于提高发动机的转速。
通过设置喷气导入槽,喷气导入槽的长度至少大于两个相邻叶齿间距离,可以通过一个进气口同时对两个以上的叶齿作功,大大提高了发动机的动力性能。
附图说明
图1是一种压缩气体发动机的结构示意图。
图2是图1中叶轮的结构示意图。
图3是另一种压缩气体发动机的结构示意图。
图4是又一种压缩气体发动机的结构示意图。
图5是又一种压缩气体发动机的结构示意图。
图6是又一种压缩气体发动机的结构示意图。
图7是又一种压缩气体发动机的结构示意图。
图8是又一种压缩气体发动机的结构示意图。
图9是又一种压缩气体发动机的结构示意图。
本发明的实施方式
下面结合附图与具体实施方式对本发明作进一步详细的描述:
实施例一
一种压缩气体发动机,如图1和图2所示,包括叶轮室5、通过转轴装设于叶轮室5内的叶轮6。其中:
在叶轮室5的内表面上开设有与叶轮6的转动方向相一致的喷气导入槽4,叶轮室5上对称装设有三排喷气嘴(1、2、3),每一排喷气嘴与叶轮6的转轴轴线平行设置,每一排喷气嘴的数量可以是一个或多个,根据叶轮6的宽度及喷气嘴的喷气孔大小和所需的喷气量而灵活设置,相邻的各排喷气嘴之间错位设置,用于优化叶齿8的受力面,三排喷气嘴(1、2、3)的喷气出口都装设在喷气导入槽4内,在叶轮室5上开设有一个排气口9,在叶轮室5的内表面上开设有与叶轮6的转轴轴线平行的排气槽10,排气槽10的宽度与叶轮6的宽度基本相一致,排气槽10与排气口9相通。
叶轮6上等间隔开设有多个叶齿8,叶轮6的前后两侧设置有侧板11,由相邻叶齿8、相邻叶齿之间的前后侧板11以及相邻叶齿之间对应的叶轮室5的部分内表面构成能够存储喷入的压缩气体的保压室7。叶轮6与叶轮6的前后两侧侧板11可以是整体加工而成,也可以是分别加工后组装而成。
为了使进入喷气导入槽4的压缩气体能够同时作用于多个叶齿8上,产生更大的推力,喷气导入槽4的长度远远大于相邻叶齿之间的距离(L1)。另外,为了防止漏气,避免刚喷入的气体直接从排气槽10排出,喷气导入槽4与排气槽10之间的最近距离大于相邻叶齿之间的距离(L1)。
工作时,一方面,通过对称设置的三排喷气嘴(1、2、3)喷出的压缩气体推动叶轮6运转;另一方面,当叶轮6转动时,每一个保压室7依次转动经过第一排喷气嘴1、第二排喷气嘴2和第三排喷气嘴3,保压室7接收并保存三排喷气嘴(1、2、3)喷入的压缩气体。当经过三次保压、增压后的保压室7在经过排气口9时,保压室7内的压缩气体二次作功,通过排气口9迅速喷射释放,通过反作用力再一次推动叶轮6运转。
实施例二
另一种压缩气体发动机,如图3所示,包括叶轮室5、通过转轴装设于叶轮室5内的叶轮6。 本实施例与实施例一的不同之处在于:设置了九排喷气嘴,其中每三排喷气嘴为一组,构成对称设置的三组喷气嘴(1、2、3),从而可以加大喷气量,提高动力性能,本实施例的其它结构同实施例一。
实施例三
又一种压缩气体发动机,如图4所示,包括叶轮室5、通过转轴装设于叶轮室5内的叶轮6。 本实施例与实施例一的不同之处在于:设置了六排喷气嘴,其中每两排喷气嘴为一组,构成对称设置的三组喷气嘴(1、2、3)。特别的设计在于:构成每一组喷气嘴的两排喷气嘴的喷气出口之间的间距(L2)小于叶轮上设置的相邻叶齿之间的距离(L1),使得每组的两排喷气嘴喷出的压缩气体能够同时作用于相同的叶齿上,此结构能够大大提高对单个叶齿的作功能力。本实施例的其它结构同实施例一。
实施例四
又一种压缩气体发动机,如图5所示,包括叶轮室5、通过转轴装设于叶轮室5内的叶轮6。 本实施例与实施例三的不同之处在于:设置了十二排喷气嘴,其中每四排喷气嘴为一组,构成对称设置的三组喷气嘴(1、2、3)。构成每一组喷气嘴的相邻两排喷气嘴的喷气出口之间的距离(L2)小于叶轮上设置的相邻叶齿之间的距离(L1),不但使相邻的两排喷气嘴喷出的压缩气体能够同时作用于相同的叶齿上,而且使进入该组喷气嘴喷射区域的叶齿被四排喷气嘴持续地喷气作功。本实施例的其它结构同实施例三。
实施例五
又一种压缩气体发动机,如图6所示,包括叶轮室5、通过转轴装设于叶轮室5内的叶轮6。 本实施例与实施例一的不同之处在于:在叶轮室5上对称开设有三个排气口9、三个排气槽10和三个喷气导入槽4,各排气口9分别与对应的排气槽10相通,各排气口9之间的叶轮室5的内表面上开设有与叶轮6的转动方向相一致的喷气导入槽4,三排喷气嘴(1、2、3)对称分设于各排气口9之间,每一排喷气嘴的喷气出口都装设在各自对应的喷气导入槽4内,本实施例的其它结构同实施例一。
本实施例通过对称设置三排喷气嘴和对称设置三个排气口9,进一步提高了喷气嘴喷入压缩气体时叶轮的受力平衡问题,又解决了保压室7内的压缩气体二次作功时叶轮的受力平衡问题。
实施例六
又一种压缩气体发动机,如图7所示,包括叶轮室5、通过转轴装设于叶轮室5内的叶轮6。 本实施例与实施例五的不同之处在于:设置了九排喷气嘴,其中每三排喷气嘴为一组,构成对称设置的三组喷气嘴(1、2、3),三组喷气嘴(1、2、3)对称分设于各排气口9之间,从而可以加大喷气量,提高动力性能,本实施例的其它结构同实施例一。
实施例七
又一种压缩气体发动机,如图8所示,包括叶轮室5、通过转轴装设于叶轮室5内的叶轮6。 本实施例与实施例五的不同之处在于:设置了六排喷气嘴,其中每两排喷气嘴为一组,构成对称设置的三组喷气嘴(1、2、3)。特别的设计在于:构成每一组喷气嘴的两排喷气嘴的喷气出口之间的间距(L2)小于叶轮上设置的相邻叶齿之间的距离(L1),使得每组的两排喷气嘴喷出的压缩气体能够同时作用于相同的叶齿上,三组喷气嘴(1、2、3)对称分设于各排气口9之间。本实施例的其它结构同实施例一。
本实施例通过在叶轮室上对称开设三个排气口,各排气口之间设置两排喷气嘴的喷气出口之间的距离小于叶轮上相邻叶齿之间的距离,可以根据需要灵活设置能够同时作用于相同叶齿上的喷嘴数量和喷嘴的直径,既可以灵活加大喷气量,又可以实现在同等喷气量的情况下(喷嘴直径小、但喷嘴数量多。),提高压缩气体发动机的动力性能(喷嘴直径越小,喷力越大,射程越远。)。这种三进三排的工作方式,优化了发动机的动态平衡能力,有利于提高发动机的转速。
实施例八
又一种压缩气体发动机,如图9所示,包括叶轮室5、通过转轴装设于叶轮室5内的叶轮6。 本实施例与实施例七的不同之处在于:设置了十二排喷气嘴,其中每四排喷气嘴为一组,构成对称设置的三组喷气嘴(1、2、3)。构成每一组喷气嘴的相邻两排喷气嘴的喷气出口之间的距离(L2)小于叶轮上设置的相邻叶齿之间的距离(L1),不但使相邻的两排喷气嘴喷出的压缩气体能够同时作用于相同的叶齿上,而且使进入该组喷气嘴喷射区域的叶齿被四排喷气嘴持续地喷气作功。本实施例的其它结构同实施例七,三组喷气嘴(1、2、3)对称分设于各排气口9之间。采用本实施例,能进一步加大喷气量,提高动力性能。
以上内容是结合具体的实施方式对本申请所作的进一步详细说明,不能认定本申请的具体实施只局限于这些说明。对于本申请所属技术领域的普通技术人员来说,在不脱离本申请发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。

Claims (10)

  1. 一种压缩气体发动机,包括至少一个叶轮室、通过转轴装设于所述叶轮室内的至少一个叶轮,所述叶轮上设置有多个叶齿,所述叶轮室上开设有至少一个排气口,其特征在于:在每一排气口之前的所述叶轮室上装设有至少两排喷气嘴。
  2. 根据权利要求1所述的压缩气体发动机,其特征在于:至少两排所述喷气嘴的喷气出口之间的间距小于所述叶轮上设置的相邻叶齿之间的距离,使得所述至少两排喷气嘴喷出的压缩气体能够同时作用于同一叶齿上。
  3. 根据权利要求1所述的压缩气体发动机,其特征在于:所述叶轮室上对称开设有三个排气口,所述各排气口之间装设的所述至少两排喷气嘴的喷气出口之间的间距小于所述相邻叶齿之间的距离,使得各排气口之间的所述至少两排喷气嘴喷出的压缩气体能够同时作用于同一叶齿上。
  4. 根据权利要求1-3任意一项所述的压缩气体发动机,其特征在于:在每一排气口之前的所述叶轮室上装设两排喷气嘴。
  5. 根据权利要求4所述的压缩气体发动机,其特征在于:在各排气口之间的所述叶轮室的内表面上开设有与叶轮的转动方向相一致的喷气导入槽,所述至少两排喷气嘴的喷气出口装设在所述喷气导入槽内。
  6. 根据权利要求5所述的压缩气体发动机,其特征在于:所述喷气导入槽的长度大于相邻叶齿之间的距离。
  7. 根据权利要求1-3任意一项所述的压缩气体发动机,其特征在于:所述叶轮室上装设的每一排喷气嘴与所述叶轮的转轴轴线平行设置,所述相邻的各排喷气嘴之间错位设置。
  8. 根据权利要求1-3任意一项所述的压缩气体发动机,其特征在于:所述叶轮的前后两侧设置有侧板,相邻叶齿、相邻叶齿之间的前后侧板以及相邻叶齿之间对应的叶轮室的内表面构成能够暂时存储喷入的压缩气体的保压室。
  9. 根据权利要求1-3任意一项所述的压缩气体发动机,其特征在于:在所述叶轮室的内表面上开设有与叶轮的转轴轴线平行的排气槽,所述排气槽与所述排气口相通。
  10. 根据权利要求5所述的压缩气体发动机,其特征在于:在所述叶轮室的内表面上开设有与叶轮的转轴轴线平行的排气槽,所述排气槽与所述排气口相通 , 所述喷气导入槽与相邻的排气槽之间的最近距离大于相邻叶齿之间的距离。
PCT/CN2011/079470 2010-09-08 2011-09-08 一种压缩气体发动机 WO2012031558A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010275759.2 2010-09-08
CN2010102757592A CN102400716A (zh) 2010-09-08 2010-09-08 一种压缩气体发动机

Publications (1)

Publication Number Publication Date
WO2012031558A1 true WO2012031558A1 (zh) 2012-03-15

Family

ID=45810130

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/079470 WO2012031558A1 (zh) 2010-09-08 2011-09-08 一种压缩气体发动机

Country Status (2)

Country Link
CN (1) CN102400716A (zh)
WO (1) WO2012031558A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104564165B (zh) * 2015-01-23 2016-05-04 无锡蠡湖增压技术股份有限公司 一种涡旋发动机用涡轮
CN104895670A (zh) * 2015-03-12 2015-09-09 肖光生 页轮高速发动机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4150918A (en) * 1976-01-21 1979-04-24 Hollymatic Corporation Pressure gas engine
CN201513202U (zh) * 2009-04-30 2010-06-23 丛洋 压缩气体发动机及机动车
CN101876258A (zh) * 2009-04-30 2010-11-03 丛洋 压缩气体发动机及机动车
CN201771553U (zh) * 2010-09-08 2011-03-23 丛洋 一种压缩气体发动机
CN201874623U (zh) * 2010-06-13 2011-06-22 丛洋 压缩空气发动机及机动车
CN201953416U (zh) * 2010-06-25 2011-08-31 丛洋 压缩气体发动机的叶轮室及改进的压缩气体发动机

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2631428A (en) * 1946-08-28 1953-03-17 Arthur H Nelson Multiple fluid-operated rotary gear motors with treatment between stages
CN1603613A (zh) * 2004-11-22 2005-04-06 丛洋 风气发动机即采用风力气压取代燃料能源的发动机
CN1908422A (zh) * 2006-08-16 2007-02-07 丛洋 风气发动机即采用风力气压取代燃料能源的发动机
CN201517429U (zh) * 2009-05-07 2010-06-30 丛洋 减压储气装置、喷气系统、机动车制冷系统、压缩气体发动机及机动车

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4150918A (en) * 1976-01-21 1979-04-24 Hollymatic Corporation Pressure gas engine
CN201513202U (zh) * 2009-04-30 2010-06-23 丛洋 压缩气体发动机及机动车
CN101876258A (zh) * 2009-04-30 2010-11-03 丛洋 压缩气体发动机及机动车
CN201874623U (zh) * 2010-06-13 2011-06-22 丛洋 压缩空气发动机及机动车
CN201934144U (zh) * 2010-06-13 2011-08-17 丛洋 多级压缩气体发动机及机动车
CN201953416U (zh) * 2010-06-25 2011-08-31 丛洋 压缩气体发动机的叶轮室及改进的压缩气体发动机
CN201771553U (zh) * 2010-09-08 2011-03-23 丛洋 一种压缩气体发动机

Also Published As

Publication number Publication date
CN102400716A (zh) 2012-04-04

Similar Documents

Publication Publication Date Title
WO2012030052A2 (ko) 반작용식 터빈
WO2011160601A1 (zh) 改进的叶轮室及压缩气体发动机
SE510714C2 (sv) Turboladdad förbränningsmotor
WO2012031558A1 (zh) 一种压缩气体发动机
WO2013117145A1 (zh) 增压装置及涡轮发动机
WO2020149495A1 (ko) 제트추진 수직이착륙 비행체의 추력 전환 장치
WO2011160602A1 (zh) 一种气流收集装置、风力发动机及机动车
FI120211B (fi) Turbokompressorin turpiiniyksikkö ja menetelmä turbokompressorin turpiiniyksikön karstoittumisen estämiseksi
WO2012019419A1 (zh) 风动透平冲压发动机
WO2012118288A1 (ko) 가스터빈
CN201953416U (zh) 压缩气体发动机的叶轮室及改进的压缩气体发动机
JPS6296739A (ja) 廃気ガス遮蔽装置付タ−ビン型動力装置を備えたヘリコプタ
WO2015046704A1 (ko) 반작용식 스팀 터빈용 노즐 회전체
WO2015161686A1 (zh) 变压喷气式空气发动机
WO2016192601A1 (zh) 一种喷射式旋转马达
WO2012006925A1 (zh) 多级压缩气体发动机及机动车
CN110608067A (zh) 低压喷气式动力机
CN113404547A (zh) 涡轮叶片和燃气轮机
CN112211724A (zh) 一种发动机及飞行器
CN112460044B (zh) 一种离心风机模块及气流增压喷射模块、风机模组
WO2013051807A1 (ko) 반작용식 터빈장치
CN113669116A (zh) 一种动力装置
CN219492351U (zh) 一种低压内缸
GB1059876A (en) Combustion equipment
CN115788978B (zh) 一种高效射水抽气真空装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11823081

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11823081

Country of ref document: EP

Kind code of ref document: A1