WO2012031418A1 - Multi-bank wavelet transform method and application for image and video compression coding and decoding - Google Patents

Multi-bank wavelet transform method and application for image and video compression coding and decoding Download PDF

Info

Publication number
WO2012031418A1
WO2012031418A1 PCT/CN2010/078008 CN2010078008W WO2012031418A1 WO 2012031418 A1 WO2012031418 A1 WO 2012031418A1 CN 2010078008 W CN2010078008 W CN 2010078008W WO 2012031418 A1 WO2012031418 A1 WO 2012031418A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelet
image
wavelet transform
transform
bank
Prior art date
Application number
PCT/CN2010/078008
Other languages
French (fr)
Chinese (zh)
Inventor
王国秋
Original Assignee
湖南华冠数码科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖南华冠数码科技有限公司 filed Critical 湖南华冠数码科技有限公司
Publication of WO2012031418A1 publication Critical patent/WO2012031418A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/60Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
    • H04N19/63Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding using sub-band based transform, e.g. wavelets
    • H04N19/635Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding using sub-band based transform, e.g. wavelets characterised by filter definition or implementation details

Definitions

  • the present invention relates to the field of information technology, and in particular, to a digital image and digital video compression coding conversion method. ⁇ Background technique ⁇
  • Digital signals have many advantages, but when the analog signals are digitized, their frequency bands will be greatly widened. For example, when a 6MHz ordinary TV signal is digitized, its digital rate will be as high as 167Mbps, which requires a large amount of memory capacity and transmission bandwidth. Digital signals lose their practical value.
  • the digital compression technique solves the above difficulties well, and the frequency band occupied by the compressed signal is much lower than that of the original analog signal. Therefore, it can be said that digital compression coding technology is one of the key technologies for practical use of digital signals.
  • a key factor in the transmission and preservation of digital images and digital video is the compressibility of digital images and digital video.
  • This compression is based on the premise of reducing the quality of the image or video, at the expense of the quality of the image or video in exchange for valuable storage or transmission bandwidth. Of course, this compression cannot be excessive, so that the visual effect of the image or video becomes unacceptable, which requires continuous improvement of compression efficiency under certain quality conditions. In addition, the compression behavior should be standardized, which will facilitate the transmission and sharing of information.
  • Wavelet Transform has a good performance in image compression coding, so people have high hopes for it, and hope to create a new era of image and video compression coding. But for 20 years, the role of wavelet transform in image and video compression has not been as great as imagined.
  • DWT is used in JPEG2000, JPEG2000 is very difficult to implement on the chip, which is determined by the characteristics of DWT.
  • DWT is an iterative algorithm (iterative) The algorithm, that is, the input value of the second processing is the output value of the first processing), iteratively iteratively multiple times in the chip, resulting in a large amount of memory in the chip, and the structure is complicated.
  • the wavelet transform chip can only implement a limited image block transform, which is generally 128x128 or 256x256. This allows large-format images to be divided into smaller blocks in order to be compression-coded with the chip. This is one of the reasons why JPEG2000 has been available for more than a decade, and it is still not available for handheld devices such as digital cameras.
  • the object of the present invention is to overcome the above drawbacks of the prior art, and to provide a multi-inlet wavelet transform method in image and video compression coding and decoding, which can be compatible with existing JPEG and MPEG technologies at zero cost on the basis of improving coding efficiency. To make the new technology and the existing industry can be smoothly connected.
  • a multi-inlet wavelet transform method for image and video compression encoding and decoding which uses a r-input bi-orthogonal wavelet with a radix r higher than or equal to 16 for image compression or decompression of a positive or Reverse transformation.
  • Another object of the present invention is to provide a computer software, DSP software, ASIC chip or FPGA chip implementation method having the above-described multi-inlet wavelet transform method.
  • the invention provides a novel multi-inlet wavelet transform, which has the advantage that the image of the wavelet transform has no blocking effect, and avoids the complex iterative algorithm of the wavelet transform, and such multi-inlet wavelet can be converted into wavelet transform and block transform.
  • the product of this, through the multi-inlet wavelet, the wavelet transform and the block transform are organically linked, which can realize the seamless backward compatibility of the old and new technologies, that is, the old technology is a standard subset of the new technology, and the new technology can be successfully decoded.
  • Technically encoded images or video and facilitate the implementation of parallel computing.
  • FIG. 1 is a block diagram of a compression encoding process for compressing an image or a video according to the present invention
  • FIG. 2 is a block diagram showing an equivalent encoding process for compressing an image or a video according to the present invention
  • FIG. 3 is a block diagram of a decoding process for compressing an image or video according to the present invention. ⁇ Detailed ways ⁇
  • image compression is the core of the transformation technology, which is an indispensable technology in image and video compression coding.
  • block conversion technology has always been the leader.
  • wavelet transform wavelet transform means 2-inlet wavelet transform
  • wavelet transform has begun to be used in the new international technical standards.
  • the current block transform and wavelet transform are completely incompatible, and there are two technologies that are not intrinsically linked.
  • the lack of compatibility leads to a complete disconnect between new technologies and industries.
  • the above-mentioned compatibility can be achieved by introducing a Multi-bank Discrete Wavelet Transform (MBDWT) into the transformation of image and video compression coding and decoding.
  • MDWT Multi-bank Discrete Wavelet Transform
  • the invention provides a multi-inlet wavelet transform method for transforming in image and video compression encoding and decoding, which uses r-into-discrete bio-orthogonal wavelet with a radix r higher than or equal to 16 for image compression. Or decompressed forward or reverse transform.
  • wavelet or “DWT” is often referred to as a 2-inlet wavelet, and when ambiguity occurs, we will specifically explain it.
  • the following formula (5) defines the forward transform of a one-dimensional r-incremental bi-orthogonal wavelet:
  • the two-dimensional forward transform refers to a discrete multi-wavelet transform on a matrix, which is composed of a one-dimensional wavelet transform, that is, first, all the columns of the matrix are sequentially subjected to column transformation, and the transformed data is substituted for the column. Then, all rows of this matrix are sequentially transformed. It can be seen that the two-dimensional forward transformation is the process of repeated use (5). Reverse the above process to obtain a two-dimensional inverse transformation. The two-dimensional inverse transformation is the process of repeated use (6).
  • Forward conversion is used for image or video compression encoding, and inverse transformation is used for image or video decoding.
  • radix of the multi-inlet wavelet is sufficiently high (r ⁇ 16)
  • ⁇ Ci ( Q ) ⁇ is the original data.
  • /2 is any normative orthogonal matrix of r/2-dimensional, which is characterized by a first behavior of 1// ⁇ 7 ⁇ , and the sum of elements of the remaining rows is 0, that is, having a vanishing moment.
  • ⁇ sj and ⁇ ?; ⁇ are low-pass filters of any bi-orthogonal DWT, and
  • the r-in wavelet with the structure of (11), (12), (13), (14) for the transform of image and video compression encoding and decoding, regardless of /2 which is the norm orthogonal to satisfy the condition
  • the matrix and ⁇ , ? ⁇ , , ⁇ form what kind of 2-into-double
  • biorthogonal wavelet is formed by ⁇ s ; , s t , t , with equation (11) , (12), (13), (14)
  • the structure of the r-inlet wavelet is compatible with DCT. Therefore, the 16-inlet wavelet transform in the present invention can be compatible with DCT-based image and video compression coding and decoding algorithms.
  • This filter bank is 23 or 21 in length and is symmetrical or antisymmetric. Except for the low pass filter, all high pass filters have vanishing moments.
  • ⁇ h t ⁇ ⁇ 9/640,-(3/320),-(3/128), 1/8,35/128,83/320, 151/640,
  • ⁇ g ' ⁇ 9/640,-(3/320),-(33/640),23/160,41/128,3/320,-(181/640),-(23/80), -(43/160), 0,
  • ⁇ g ⁇ c ⁇ 9/40,-(3/20),-(327/320),389/160,1907/320,-(31/16),-(1503/160),-(18/ 5), 303/160,
  • ⁇ ⁇ constitutes a 9-7 type of bi-orthogonal 2-inlet wavelet.
  • the invention is then compatible with DCT.
  • the DCT is now part of our 16-input bi-orthogonal wavelet.
  • the transforming link of the present invention uses a multi-inlet wavelet structure, so the selection of the multi-inlet wavelet is large. It is within the scope of the invention to comply with such a structure, and it is not necessary to define a specific DWT and a specific / ⁇ 2 .
  • the present invention does not limit the radix of the multi-inlet wavelet, but the application note is mainly on the 2 d -inlet wavelet, such as 16-in and 32-in, and only the hexadecimal number is high enough to avoid the iterative algorithm.
  • this multi-wavelet has a very efficient fast calculation method, whether it is software or chip implementation algorithm, the efficiency is very High.
  • Equation (15) has a special advantage. Although equation (15) itself is an orthogonal matrix, which is completely different from DCT, for DCT encoded images or video, equation (15) can be decoded without difficulty. This means that we are compatible with DCT in the chip or software. We don't need to design a DCT unit. We only need to design (15) to be compatible with DCT, which greatly saves the economic cost of compatibility. Compared with DCT, the computational cost of equation (15) is very economical. Of course, the coding performance of equation (15) is also higher than that of DCT.
  • the multi-wavelet of the present invention can be decomposed into two parts, as long as the performance of the two parts is excellent, the performance of the entire multi-inlet wavelet can be ensured to be excellent.
  • the performance of 2-input bi-orthogonal wavelets is very good, and whether it is DCT or (15), they are very good as block transforms, so the excellent performance of the multi-inlet wavelet designed is guaranteed.
  • the present invention still follows the flow of compression coding when used for multi-stream wavelet compression of images or video. As can be seen from equations (11) and (12), the transformation here can be divided into two parts.
  • the first is to make a DWT and divide the image into four, which is the usual DWT. Unlike the usual DWT, we will not break it down again, but divide the four-part "image" (three high-frequency subgraphs and one low-frequency subgraph) into (r/2) x (r /2) block, then use /2 for each block for 2D Block transformation.
  • Such a two-stage transform algorithm is essentially equivalent to the direct calculation method of (5) or (6) (see FIG. 2), and the process of decoding an image can be seen in FIG.
  • DWT retains the advantages of wavelet transforms, such as eliminating block effects.
  • the block transform can give a "direction" to the importance of the data, just like the DCT in JPEG, which makes the energy of the data orderable, so that it can absorb and be compatible with the excellent algorithms of JPEG and MPEG.
  • the present invention is mainly applied to a transform technique in compression coding of images and video. In mathematics, these things are attributed to the operation of the matrix. In the image, the Y, U, and V components are operated separately; in the video, for the residual frame (B frame or P frame) and the reference frame (I frame), we regard it as "image".

Abstract

The present invention provides a multi-bank wavelet transform method for image and video compression coding and decoding. The r-bank discrete biothonormal wavelet with the bank number r greater than or equal to 16 is applied to perform forward or inverse transform on image compression or decompression. Above-mentioned multi-bank wavelet transform method can be applied to computer software, DSP software, ASIC chip or FPGA chip. The present invention provides a new multi-bank wavelet transform method. It has the advantages that images haven't blocking effect after wavelet transform, and avoids complicated iterative calculation in wavelet transform. And such multi-bank wavelet transform can be translated into the product of wavelet transform and block transform. Wavelet transform and block transform are integrated dynamically,thus enabling seamless downward compatibility of new and old technology, that is, the old technology is a standard subset of the new one. The images or videos coded with the old technology can be decoded smoothly using the new technology, which is favorable to parallel calculation.

Description

用于图像和视频压缩编码和解码中的多进小波变换方法及应用  Multi-inlet wavelet transform method and application for image and video compression coding and decoding
【技术领域】 [Technical Field]
本发明涉及信息技术领域, 具体涉及一种用于数字图像和数字视频压缩编码变换方法。 【背景技术】  The present invention relates to the field of information technology, and in particular, to a digital image and digital video compression coding conversion method. 【Background technique】
随着计算机、 微电子、 信号处理、 通信以及激光等技术的迅猛发展, 集声音、 图像、 视 频于一体的多媒体技术迅速渗透到计算机、 通信、 广播电视以及消费娱乐业, 在上述各领域 中, 越来越多地采用通过数字信号传输之数字设备。  With the rapid development of technologies such as computers, microelectronics, signal processing, communications, and lasers, multimedia technologies that integrate sound, image, and video have rapidly penetrated into computers, communications, broadcast television, and consumer entertainment industries. Digital devices that transmit over digital signals are increasingly being used.
数字信号有很多优点, 但当模拟信号数字化后其频带会大大加宽, 如一路 6MHz的普通 电视信号数字化后, 其数码率将高达 167Mbps, 这对储存器容量和传输带宽要求很大, 从而 使数字信号失去实用价值。 数字压缩技术很好地解决了上述困难, 压缩后信号所占用的频带 大大低于原模拟信号的频带。 因此可以说, 数字压缩编码技术是使数字信号走向实用化的关 键技术之一, 数字图像和数字视频之所以能传输和保存的一个关键因素在于数字图像和数字 视频的这种可压缩性。 这种压缩是以降低图像或视频的质量为前提的, 以牺牲图像或视频的 质量换取宝贵的存储空间或传输带宽。 当然, 这种压缩不能过度, 以致图像或视频的视觉效 果变得不可接受, 这就要求在一定的质量条件下, 不断提高压缩效率。 此外, 压缩行为应该 是规范的, 这样将有利于信息的传输与共享。  Digital signals have many advantages, but when the analog signals are digitized, their frequency bands will be greatly widened. For example, when a 6MHz ordinary TV signal is digitized, its digital rate will be as high as 167Mbps, which requires a large amount of memory capacity and transmission bandwidth. Digital signals lose their practical value. The digital compression technique solves the above difficulties well, and the frequency band occupied by the compressed signal is much lower than that of the original analog signal. Therefore, it can be said that digital compression coding technology is one of the key technologies for practical use of digital signals. A key factor in the transmission and preservation of digital images and digital video is the compressibility of digital images and digital video. This compression is based on the premise of reducing the quality of the image or video, at the expense of the quality of the image or video in exchange for valuable storage or transmission bandwidth. Of course, this compression cannot be excessive, so that the visual effect of the image or video becomes unacceptable, which requires continuous improvement of compression efficiency under certain quality conditions. In addition, the compression behavior should be standardized, which will facilitate the transmission and sharing of information.
为了规范这种压缩编码行为, 目前出台了不少国际标准, 如图像压缩标准 JPEG (国际标 准 ISO/ICE 10918, 大量使用在数码相机和国际互联网), 图像压缩标准 JPEG2000 (ISO/IEC 15444-1:2000) ,视频压缩标准 MPEG-1 (国际标准 ISO/ICE 11172,在 VCD里使用)、 MPEG-2 (国际标准 ISO/ICE 13818,使用在 DVD和数字电视里)和 MPEG-4(国际标准 ISO/ICE 14496, 使用在流媒体技术中) 等。 这些标准除了规范了压缩行为外, 压缩效率也在不断提高。 如 MPEG-2的压缩效率高于 MPEG-1 , MPEG-4的压缩效率高于 MPEG-2。  In order to standardize this compression coding behavior, many international standards have been introduced, such as the image compression standard JPEG (international standard ISO/ICE 10918, which is widely used in digital cameras and the Internet), and the image compression standard JPEG2000 (ISO/IEC 15444-1). :2000), video compression standard MPEG-1 (international standard ISO/ICE 11172, used in VCD), MPEG-2 (international standard ISO/ICE 13818, used in DVD and digital TV) and MPEG-4 (international standard) ISO/ICE 14496, used in streaming media technology). In addition to standardizing compression behavior, these standards continue to improve compression efficiency. For example, MPEG-2 has higher compression efficiency than MPEG-1, and MPEG-4 has higher compression efficiency than MPEG-2.
在压缩编码标准和技术里, 必须使用变换技术。 目前, 在 JPEG、 MPEG- MPEG-2和 MPEG-4里,所用的正交变换方法都是离散余弦变换(Discrete Cosine Transform, 简称 DCT); 而在 JPEG2000里, 使用了小波变换技术 (Discrete Wavelet Transform简称 DWT)。  In compression coding standards and techniques, transformation techniques must be used. At present, in JPEG, MPEG-MPEG-2 and MPEG-4, the orthogonal transform method used is Discrete Cosine Transform (DCT); in JPEG2000, Wavelet Transform Technology (Discrete Wavelet Transform) is used. Referred to as DWT).
小波变换 (Wavelet Transform) 在图像压缩编码里有较好的表现, 因此人们对它寄予厚 望, 希望能开创图像与视频压缩编码的新时代。但是 20年来, 小波变换在图像和视频压缩上 所发挥的作用并不如想象的那么大。 虽然在 JPEG2000里使用了 DWT, 但 JPEG2000在芯片 里实现非常困难, 这是由 DWT 的特点所决定的。 事实上, DWT是一个迭代算法 (iterative algorithm, 即第二次处理的输入值是第一次处理的输出值), 在芯片里需要反复迭代多次, 导 致芯片里需要大量的存储器, 且结构复杂。 所以, 小波变换芯片实际上只能实现有限的图像 块变换, 一般是 128x128或 256x256大小的。 这使得大幅面的图像必须分成较小的块才能用 芯片完成压缩编码。 这也就是 JPEG2000 问世十多年了, 依旧无法用于数码相机等手持设备 的原因之一。 Wavelet Transform (Wavelet Transform) has a good performance in image compression coding, so people have high hopes for it, and hope to create a new era of image and video compression coding. But for 20 years, the role of wavelet transform in image and video compression has not been as great as imagined. Although DWT is used in JPEG2000, JPEG2000 is very difficult to implement on the chip, which is determined by the characteristics of DWT. In fact, DWT is an iterative algorithm (iterative) The algorithm, that is, the input value of the second processing is the output value of the first processing), iteratively iteratively multiple times in the chip, resulting in a large amount of memory in the chip, and the structure is complicated. Therefore, the wavelet transform chip can only implement a limited image block transform, which is generally 128x128 or 256x256. This allows large-format images to be divided into smaller blocks in order to be compression-coded with the chip. This is one of the reasons why JPEG2000 has been available for more than a decade, and it is still not available for handheld devices such as digital cameras.
相对而言, 视频压缩编码更加复杂, DWT目前用在视频里更加困难。这一点是不难理解 的, 因为 DWT与目前大量使用的 DCT等块变换的形式、 结构和特点完全不同。 所以, 一个 好的变换不应该是迭代的,即一个小块的图像数据完成变换后就应该立即能接上下一个步骤, 在图像和视频压缩编码里, 就是一个小块的数据完成变换后, 就要能立即开始量化及后续步 骤, 这是 DCT等块变换的优点, 而 DWT是不具备这一优点的。  Relatively speaking, video compression coding is more complicated, and DWT is currently more difficult to use in video. This is not difficult to understand, because DWT is completely different from the form, structure and characteristics of block transforms such as DCT currently in large use. Therefore, a good transformation should not be iterative, that is, a small block of image data should be immediately connected to the next step after the transformation. In the image and video compression coding, after a small piece of data is transformed, To start the quantization and subsequent steps immediately, this is the advantage of block transforms such as DCT, and DWT does not have this advantage.
在现有的技术标准里, 虽然新技术的压缩编码效率提高了, 但是新旧技术的兼容性却是 个大问题。 如 JPEG2000根本无法兼容 JPEG, MPEG-4也根本无法兼容 MPEG-2, 这极大地 限制了新技术的产业化。  In the existing technical standards, although the compression coding efficiency of the new technology is improved, the compatibility of the old and new technologies is a big problem. If JPEG2000 is not compatible with JPEG at all, MPEG-4 is not compatible with MPEG-2 at all, which greatly limits the industrialization of new technologies.
【发明内容】  [Summary of the Invention]
本发明目的是克服上述现有技术的缺陷, 提供一种图像与视频压缩编码解码中的多进小 波变换方法, 在提高编码效率的基础上, 能够零成本地兼容现有的 JPEG和 MPEG的技术, 使新技术与现有产业能平稳接轨。  The object of the present invention is to overcome the above drawbacks of the prior art, and to provide a multi-inlet wavelet transform method in image and video compression coding and decoding, which can be compatible with existing JPEG and MPEG technologies at zero cost on the basis of improving coding efficiency. To make the new technology and the existing industry can be smoothly connected.
为实现上述发明目的, 本发明所提出的技术方案是:  In order to achieve the above object, the technical solution proposed by the present invention is:
一种用于图像和视频压缩编码和解码中的多进小波变换方法, 其是采用进制数 r高于或 等于 16的 r-进离散双正交小波进行图像压缩或解压缩的正向或反向变换。  A multi-inlet wavelet transform method for image and video compression encoding and decoding, which uses a r-input bi-orthogonal wavelet with a radix r higher than or equal to 16 for image compression or decompression of a positive or Reverse transformation.
本发明另一目的是提供具有上述多进小波变换方法的计算机软件、 DSP软件、 ASIC芯片 或 FPGA芯片的实现方法。  Another object of the present invention is to provide a computer software, DSP software, ASIC chip or FPGA chip implementation method having the above-described multi-inlet wavelet transform method.
本发明提供了一种全新的多进小波变换, 它拥有小波变换的图像没有分块效应的优点, 又避免了小波变换复杂的迭代算法, 并且这样的多进小波可以转化为小波变换和块变换的乘 积, 通过这样的多进小波将小波变换与块变换有机联系起来, 可实现新旧技术的无缝向下兼 容, 即老技术是新技术的一个标准子集, 新技术能顺利地解码用老技术编码的图像或视频, 且有利于并行计算的实现。  The invention provides a novel multi-inlet wavelet transform, which has the advantage that the image of the wavelet transform has no blocking effect, and avoids the complex iterative algorithm of the wavelet transform, and such multi-inlet wavelet can be converted into wavelet transform and block transform. The product of this, through the multi-inlet wavelet, the wavelet transform and the block transform are organically linked, which can realize the seamless backward compatibility of the old and new technologies, that is, the old technology is a standard subset of the new technology, and the new technology can be successfully decoded. Technically encoded images or video, and facilitate the implementation of parallel computing.
【附图说明】  [Description of the Drawings]
图 1为本发明用于压缩图像或视频时压缩编码流程框图;  1 is a block diagram of a compression encoding process for compressing an image or a video according to the present invention;
图 2为本发明用于压缩图像或视频时等价的编码流程框图;  2 is a block diagram showing an equivalent encoding process for compressing an image or a video according to the present invention;
图 3为本发明用于压缩图像或视频时解码流程框图。 【具体实施方式】 3 is a block diagram of a decoding process for compressing an image or video according to the present invention. 【Detailed ways】
在图像和视频压缩技术领域中, 图像压缩是最核心的基础, 变换技术是图像和视频压缩 编码里必不可少的技术。 在图像与视频压缩编码领域, 一直是块变换技术独领风骚。 小波变 换 (小波变换意指 2-进小波变换) 的出现改变了这种局面, 在新的国际技术标准里小波变换 已开始使用。 然而, 目前的块变换与小波变换是完全不相容的、 没有内在联系的两种技术, 缺乏兼容性, 导致新技术与产业完全脱节。 将多进离散小波 (Multi-bank Discrete Wavelet Transform, 简称 MBDWT) 引入图像和视频压缩编码和解码的变换环节中, 便可实现上述的 兼容。 当多进小波 (Multi-bank Wavelet)的进制数较高时, 完成一次变换就相当 DWT完成了多 次迭代 (iteration)。 如 8-进小波 (8-bank Wavelet) 分解一次, 就相当 DWT完成了 3次迭代; 16-进小波 (16-bank Wavelet)分解一次相当 DWT完成了 4次迭代; 32-进小波变换一次相当于 DWT完成了 5次迭代等等。 随之而来的问题是, 多进小波的变量成百上千, 它的构造是一大 挑战。 本发明提供了一种多进小波变换方法, 用于图像和视频压缩编码和解码中的变换环节, 其是采用进制数 r高于或等于 16的 r-进离散双正交小波进行图像压缩或解压缩的正向或反向 变换。  In the field of image and video compression technology, image compression is the core of the transformation technology, which is an indispensable technology in image and video compression coding. In the field of image and video compression coding, block conversion technology has always been the leader. The emergence of wavelet transform (wavelet transform means 2-inlet wavelet transform) has changed this situation, and wavelet transform has begun to be used in the new international technical standards. However, the current block transform and wavelet transform are completely incompatible, and there are two technologies that are not intrinsically linked. The lack of compatibility leads to a complete disconnect between new technologies and industries. The above-mentioned compatibility can be achieved by introducing a Multi-bank Discrete Wavelet Transform (MBDWT) into the transformation of image and video compression coding and decoding. When the multi-bank Wavelet has a high hexadecimal number, completing a transformation is equivalent to multiple iterations of the DWT. If the 8-letter wavelet is decomposed once, it is equivalent to DWT completing 3 iterations; 16-wave wavelet is decomposed once and equivalent DWT completes 4 iterations; 32-in wavelet transform is equivalent to once Completed 5 iterations and so on at DWT. The ensuing problem is that there are hundreds of variables in the multi-wavelet, and its construction is a big challenge. The invention provides a multi-inlet wavelet transform method for transforming in image and video compression encoding and decoding, which uses r-into-discrete bio-orthogonal wavelet with a radix r higher than or equal to 16 for image compression. Or decompressed forward or reverse transform.
假定 { ht }和{ ht }是两支低通滤波器(low-pass filters )对偶, { }和{ g^r> } (j=0,l,..., r-1 ) 各为 r-1支高通滤波器 (high-pass filters) 对偶, 满足 It is assumed that { h t } and { h t } are two low-pass filters, { } and { g^ r> } (j=0, l,..., r-1 ) For r-1 high-pass filters, the dual is satisfied
∑½ = 0, ∑1⁄2 = 0,
这里 是一个脉冲信号, 即 =1 (j=0 ) ,或 =0 (}≠0 o 则称由 { , &(;') }和{ , 8^r> } 定义了一个 r-进离散双正交小波 (r-bank discrete biorthogonal wavelet)。 Here is a pulse signal, ie =1 (j=0), or =0 (} ≠0 o is defined by { , &( ; ') } and { , 8^ r> } defines an r-incremental double R-bank discrete biorthogonal wavelet.
特别, 当 r=2时, 这就是通常的双正交小波, JPEG2000里就是用这样的双正交小波。 所 以,通常所说的小波也称为 2-进小波。 r>2时,称为多进小波。在本发明里, "小波 "或" DWT" 往往是指 2-进小波, 当有二义性发生时, 我们都会特别加以说明。  In particular, when r = 2, this is the usual bi-orthogonal wavelet, which is used in JPEG2000. Therefore, the so-called wavelet is also called 2-inlet wavelet. When r>2, it is called multi-inlet wavelet. In the present invention, "wavelet" or "DWT" is often referred to as a 2-inlet wavelet, and when ambiguity occurs, we will specifically explain it.
如果∑g!0) = 0 ,∑ > = 0, (j=0,l,..., r-1 ) , 就称 { }和{ }具有消失矩 (Vanishing If ∑g! 0) = 0 , ∑ > = 0, (j=0,l,..., r-1 ), then { } and { } are called vanishing moments (Vanishing
Moment)。 如果 hi = h,, g j) = g j), 则称此时的双正交小波为正交小波( orthogonal wavelet)。所以, 正交小波是双正交小波的一个特例。 Moment). If hi = h,, g j) = g j) , then the bi-orthogonal wavelet at this time is called an orthogonal wavelet. Therefore, orthogonal wavelets are a special case of biorthogonal wavelets.
如果 {^}是一个滤波器, i=l,2,...,2N+l, 即滤波器的长度为奇数。 如果 = , i=l,2,... N, 就称这个滤波器是对称的 (symmetric); 如果 ; = , i=l,2,... N, 就称这 个滤波器是反对称的 ( anti-symmetric )。 下面的公式 (5)定义了一维的 r-进离散双正交小波的正向变换 (Forward Transform):
Figure imgf000006_0001
If {^} is a filter, i=l, 2,..., 2N+l, that is, the length of the filter is odd. If = , i = l, 2, ... N, the filter is said to be symmetric; if ; = , i = l, 2, ... N, the filter is called antisymmetric (anti-symmetric). The following formula (5) defines the forward transform of a one-dimensional r-incremental bi-orthogonal wavelet:
Figure imgf000006_0001
而下面的公式 (6)定义了一维的 r-进离散双正交小波的反向变换 (Inverse Transform): The following formula (6) defines the inverse transform of one-dimensional r-into-discrete bi-orthogonal wavelets (Inverse Transform):
^H ^+^ ). (6) 对于图像或视频压缩编码, 需要完成二维变换。 二维正向变换是指对一个矩阵作离散多 进小波变换, 它是由一维小波变换构成的, 即首先对矩阵的所有列依次做列变换, 用变换后 的数据替代该列。 然后, 对这个矩阵的所有行依次作行变换。 可见二维正向变换就是反复运 用 (5)的过程。 将上述过程反过来, 就得到二维反向变换。 二维反向变换就是反复运用 (6)的过 程。  ^H ^+^ ). (6) For image or video compression coding, a two-dimensional transformation is required. The two-dimensional forward transform refers to a discrete multi-wavelet transform on a matrix, which is composed of a one-dimensional wavelet transform, that is, first, all the columns of the matrix are sequentially subjected to column transformation, and the transformed data is substituted for the column. Then, all rows of this matrix are sequentially transformed. It can be seen that the two-dimensional forward transformation is the process of repeated use (5). Reverse the above process to obtain a two-dimensional inverse transformation. The two-dimensional inverse transformation is the process of repeated use (6).
图像或视频压缩编码时使用正向变换, 图像或视频解码时使用反向变换。 当多进小波的 进制数足够高时 (r≥16), 只需作一次正向变换或反向变换, 即在 (5) 和 (6) 中, 取 j=-l。 此时, {Ci(Q) }是原始数据。 Forward conversion is used for image or video compression encoding, and inverse transformation is used for image or video decoding. When the radix of the multi-inlet wavelet is sufficiently high (r ≥ 16), only one forward transform or reverse transform is required, that is, in (5) and (6), j=-l is taken. At this time, { Ci ( Q ) } is the original data.
采用 r-进 有下列矩阵形式时, 即  When r-in has the following matrix form,
Figure imgf000006_0002
Figure imgf000006_0002
(W2)  (W2)
7 8(rr/2+i) 8Π2+Ϊ) (7/ 2+1) 7 8 (rr/2+i) 8 Π2+Ϊ) (7/ 2+1)
,1 62  , 1 62
H = (8)  H = (8)
(r-1) (7—1)  (r-1) (7-1)
8i 82
Figure imgf000007_0001
Figure imgf000007_0002
8i 82
Figure imgf000007_0001
Figure imgf000007_0002
这里 >r是滤波器组的最大长度, 并假定 r为偶数, 本发明一个显著特点是, (7)~(10)可以分 解成下列 (11)~(14)的形式: Here, >r is the maximum length of the filter bank, and assuming r is an even number. A remarkable feature of the present invention is that (7)~(10) can be decomposed into the following forms (11)~(14):
Figure imgf000007_0003
Figure imgf000007_0004
Figure imgf000007_0003
Figure imgf000007_0004
¾ 0 .. 0 0  3⁄4 0 .. 0 0
0 0 .. 0 0  0 0 .. 0 0
(13)  (13)
0 0 0 0 0 0 0 0
Figure imgf000007_0005
Figure imgf000007_0005
这里, /2是任意一个 r/2维的规范正交矩阵, 它的特点是第一行为 1//^7Ϊ, 其余各行 的元素和为 0, 即具有消失矩。 而 {sj和 {?;}是任意一个双正交 DWT的低通滤波器, 和Here, /2 is any normative orthogonal matrix of r/2-dimensional, which is characterized by a first behavior of 1//^7Ϊ, and the sum of elements of the remaining rows is 0, that is, having a vanishing moment. And {sj and {?;} are low-pass filters of any bi-orthogonal DWT, and
{ }这个双正交 DWT的高通滤波器。 { } This bi-orthogonal DWT high-pass filter.
用具有 (11)、 (12)、 (13)、 (14)这种结构的 r-进小波于图像和视频压缩编码和解码的变换环 节, 而不论 /2是何种满足条件的规范正交矩阵及 { , ?·, , }形成一个什么样的 2-进双 特别地,如果 r=16,所对应的 /2取 8维的离散余弦变换 DC discrete cosine transform) , 则不论 { s;, st , t 构成什么样的双正交小波, 具有式 (11)、 (12)、 (13)、 (14)结构的 r-进 小波能兼容 DCT。 因此, 本发明中的 16-进小波变换能兼容基于 DCT的图像与视频压缩编码 解码算法。 Use the r-in wavelet with the structure of (11), (12), (13), (14) for the transform of image and video compression encoding and decoding, regardless of /2 which is the norm orthogonal to satisfy the condition The matrix and { , ?·, , } form what kind of 2-into-double In particular, if r=16, the corresponding /2 takes an 8-dimensional discrete cosine transform, then what kind of biorthogonal wavelet is formed by { s ; , s t , t , with equation (11) , (12), (13), (14) The structure of the r-inlet wavelet is compatible with DCT. Therefore, the 16-inlet wavelet transform in the present invention can be compatible with DCT-based image and video compression coding and decoding algorithms.
下面便是一个 16-进双正交小波的具体实例(即 r=16)。这个滤波器组的长度为 23或 21, 且为对称的或为反对称的。 除了低通滤波器外, 所有的高通滤波器均有消失矩。  Below is a concrete example of a 16-input bi-orthogonal wavelet (ie r=16). This filter bank is 23 or 21 in length and is symmetrical or antisymmetric. Except for the low pass filter, all high pass filters have vanishing moments.
1 ) 其正向低通滤波器为:  1) Its forward low-pass filter is:
{ ht }={ 9/640,-(3/320),-(3/128), 1/8,35/128,83/320, 151/640, { h t }={ 9/640,-(3/320),-(3/128), 1/8,35/128,83/320, 151/640,
1/4,1/4,1/4,1/4,1/4,1/4,1/4,1/4,1/4,151/640,83/320,35/128,1/8,-(3/128),-(3/320),9/640}, 1/4,1/4,1/4,1/4,1/4,1/4,1/4,1/4,1/4,151/640,83/320,35/128,1/8, -(3/128),-(3/320),9/640},
2) 15支正向高通滤波器为:  2) 15 forward high-pass filters are:
{ l?! (1) }=c{27/64,-(9/32),-(63/80),609/160,1317/160,1137/160,351/64,403/80,317/80,223/80,{ l?! (1) }=c{27/64,-(9/32),-(63/80),609/160,1317/160,1137/160,351/64,403/80,317/80,223/80,
243/160,0,-(243/160),-(223/80),-(317/80),-(403/80),-(351/64),-(1137/160), 243/160,0,-(243/160),-(223/80),-(317/80),-(403/80),-(351/64),-(1137/160),
-(1317/160),-(609/160),63/80,9/32,-(27/64)}, -(1317/160),-(609/160),63/80,9/32,-(27/64)},
{ l?! (2) }=c{63/160,-(21/80),-(291/320),587/160,499/64,26/5,19/10,0,-(367/160),-(79/16), -(551/80),-(587/80),-(551/80),-(79/16),-(367/160),0,19/10,26/5,499/64,587/160, -(291/320), -(21/80),63/160}, { l?! (2) }=c{63/160,-(21/80),-(291/320),587/160,499/64,26/5,19/10,0,-(367/160 ),-(79/16), -(551/80),-(587/80),-(551/80),-(79/16),-(367/160),0,19/10, 26/5,499/64,587/160, -(291/320), -(21/80),63/160},
{ g!(3) }=c{27/80,-(9/40),-(63/64),105/32,2217/320,27/10,-(57/32),-(393/80),-(1203/160),{ g! (3) }=c{27/80,-(9/40),-(63/64),105/32,2217/320,27/10,-(57/32),-(393 /80),-(1203/160),
-(251/40),-(311/80),0,311/80,251/40,1203/160,393/80,57/32,-(27/10),-(2217/320), -(105/32), 63/64,9/40,-(27/80)}, -(251/40),-(311/80),0,311/80,251/40,1203/160,393/80,57/32,-(27/10),-(2217/320), -(105/32) , 63/64, 9/40,-(27/80)},
{ g ' }={9/640,-(3/320),-(33/640),23/160,41/128,3/320,-(181/640),-(23/80),-(43/160),0, { g ' }={9/640,-(3/320),-(33/640),23/160,41/128,3/320,-(181/640),-(23/80), -(43/160), 0,
43/160,23/80,43/160,0,-(43/160),-(23/80),-(181/640),3/320,41/128,23/160,-(33/640), 43/160,23/80,43/160,0,-(43/160),-(23/80),-(181/640),3/320,41/128,23/160,-(33 /640),
-(3/320),9/640}, -(3/320), 9/640},
{ g }=c{9/40,-(3/20),-(327/320),389/160,1907/320,-(31/16),-(1503/160),-(18/5),303/160, { g }=c{9/40,-(3/20),-(327/320),389/160,1907/320,-(31/16),-(1503/160),-(18/ 5), 303/160,
363/80,1167/160,0,-(1167/160),-(363/80),-(303/160),18/5,1503/160,31/16, -(1907/320), 363/80,1167/160,0,-(1167/160),-(363/80),-(303/160),18/5,1503/160,31/16,-(1907/320),
-(389/160),327/320,3/20,-(9/40)}, -(389/160), 327/320, 3/20,-(9/40)},
{ l?! (6) }=c{9/64,-(3/32),-(123/160),257/160,353/80,-(429/160),-(3161/320),0,779/80,lll/40,{ l?! (6) }=c{9/64,-(3/32),-(123/160),257/160,353/80,-(429/160),-(3161/320),0,779 /80,lll/40,
-(583/160),-(257/80),-(583/160),111/40,779/80,0,-(3161/320),-(429/160),353/80, 257/160, -(583/160),-(257/80),-(583/160),111/40,779/80,0,-(3161/320),-(429/160),353/80, 257/160 ,
-(123/160),-(3/32),9/64}, ¾e/is^)-'¾e/ee^)-'¾e/A9i)-'¾e/i8)-Ote/i8'8/At7¾e/At7 w/is (9i/A)-'¾e/^)-}3={ (zi }-(123/160),-(3/32),9/64}, 3⁄4e/is^)-'3⁄4e/ee^)-'3⁄4e/A9i)-'3⁄4e/i8)-Ote/i8'8/At73⁄4e/At7 w/is (9i/A)-'3⁄4e/^)-} 3={ (z i }
'{w/st7te/sr(w/6½)-'(9i/6^i)-'(w/68t7)-'¾e/e6i)-'¾e/£9i)-'¾e/6^i)-'¾e/i6)-'¾e/6t7)- ζζ '0te/6t7te/i6te/6^ite/e9ite/e6i 9/68t7'9i/6^i 9/6t7 ¾e/si)-'(w/st7)-}3={ (1) } '{w/st7te/sr(w/61⁄2)-'(9i/6^i)-'(w/68t7)-'3⁄4e/e6i)-'3⁄4e/£9i)-'3⁄4e/6^i)- '3⁄4e/i6)-'3⁄4e/6t7)- ζζ '0te/6t7te/i6te/6^ite/e9ite/e6i 9/68t7'9i/6^i 9/6t7 3⁄4e/si)-'(w/st7) -}3={ (1 ) }
'{(8n/£)-'(W/I)-'8/I' // '8^ΐ/5ε /ΐ /ΐ /ΐ /ΐ /ΐ /ΐ /ΐ /ΐ /ΐ /ΐ /ΐ'8^ΐ/5ε 9/Δΐ'8/ΐ'(^9/ΐ)-'(8^ΐ/ε)-}={ } '{(8n/£)-'(W/I)-'8/I' // '8^ΐ/5ε /ΐ /ΐ /ΐ /ΐ /ΐ /ΐ /ΐ /ΐ /ΐ /ΐ /ΐ '8^ΐ/5ε 9/Δΐ'8/ΐ'(^9/ΐ)-'(8^ΐ/ε)-}={ }
Ote/A6^'¾e/6e)-'¾e/6e^)-' Ate/6sr(w/iei)-'(9i/ie)-'w/i8te/e'(w/6)-}3={ Ote/A6^'3⁄4e/6e)-'3⁄4e/6e^)-' Ate/6sr(w/iei)-'(9i/ie)-'w/i8te/e'(w/6)-}3= {
'{(w/si)-te/s'w/Aer( ei)-'(w/e^)-te/ ^'o'¾e/ ^)-'9i/ASte/66 '¾e/Aei)-te/66'9i/AS'¾e/ ^)-Ote/ ^'(w/e^)-'( ei)-'w/A£ite/s'(w/si)-}3={ }  '{(w/si)-te/s'w/Aer( ei)-'(w/e^)-te/ ^'o'3⁄4e/ ^)-'9i/ASte/66 '3⁄4e/Aei)- Te/66'9i/AS'3⁄4e/ ^)-Ote/ ^'(w/e^)-'( ei)-'w/A£ite/s'(w/si)-}3={ }
' { 8/e'( i )-'(w/A6 \ z£/6i\ 'z L z szyz/e'z /Li'iz / s ΐ yz /ξζζ Ό'¾ε/ς^^)-¾ε/ε8ΐ'¾ε/Δς)-'¾/6)-¾ε/ΐ8^'¾ε/ΐΔ)-'¾ε/6ςΐ)- 9/Δ6ΐ /ΐ'(8/ε)-}3={ (ει } ' { 8/e'( i )-'(w/A6 \ z£/6i\ 'z L z szyz/e'z /Li'iz / s ΐ yz /ξζζ Ό'3⁄4ε/ς^^)-3⁄4ε /ε8ΐ'3⁄4ε/Δς)-'3⁄4/6)-3⁄4ε/ΐ8^'3⁄4ε/ΐΔ)-'3⁄4ε/6ςΐ)- 9/Δ6ΐ /ΐ'(8/ε)-}3={ (ει }
'{(8^i/e)-'w/rw/n'(w/6i)-'8^i/ete/6'¾e/n)- £/6'0' £/6) £/n' £/6)-'0t£/6' £/n) £/6'8n/£'(W/6I)-' /n' /I'(8n/£H={ i) } '{(8^i/e)-'w/rw/n'(w/6i)-'8^i/ete/6'3⁄4e/n)- £/6'0' £/6) £/n '£/6)-'0t£/6' £/n) £/6'8n/£'(W/6I)-'/n'/I'(8n/£H={ i) }
'{9ΐ/6'(8/ε)-'( 9/Δεζ) ε/6κ'(8// )-' ε/ΐς)-¾ε/ΔΔΐ' ε/6ςζ)-'9ΐ/εΐΐ' ε/Δεΐ)- 'ο¾ε/Δεΐ'(9ΐ/εΐΐ) ε/6^(ζε/ΔΔΐ) ε/ΐς'8// ' ε/6κ)- 9/Δεζ'8/ε'(9ΐ/6)-}3={ („ } οτ  '{9ΐ/6'(8/ε)-'( 9/Δεζ) ε/6κ'(8// )-' ε/ΐς)-3⁄4ε/ΔΔΐ' ε/6ςζ)-'9ΐ/εΐΐ' ε/ Δεΐ)- 'ο3⁄4ε/Δεΐ'(9ΐ/εΐΐ) ε/6^(ζε/ΔΔΐ) ε/ΐς'8// ' ε/6κ)- 9/Δεζ'8/ε'(9ΐ/6)-} 3={ („ } οτ
'{¾ε/ΐ^)-'9ΐ/Δ 9/ΐ5^'¾ε/Δ½)-'8/Δ^'¾ε/ΐ8)-Ό¾ε/ΐ8'¾ε/Δ9ΐ)-¾ε/εε^  '{3⁄4ε/ΐ^)-'9ΐ/Δ 9/ΐ5^'3⁄4ε/Δ1⁄2)-'8/Δ^'3⁄4ε/ΐ8)-Ό3⁄4ε/ΐ8'3⁄4ε/Δ9ΐ)-3⁄4ε/εε^
'{w/st7'¾e/si)-'(w/6½)-'9i/6^r(w/68t7)-te/e6r¾e/£9i)-te/6^r¾e/i6)- ¾ε/6^Ό '¾e/6t7)-te/i6'¾e/6^i)-te/e9r¾e/£6i)-'w/68t7'(9i/6^i)-'w/6½te/sr(w/st7)-}3={(6^ } /i i)- /i t7/i)-' r(t/i)-'t7/r(t7/i)-'†7/r(†7/i)-'8^i/se'(w/Ai)-'8/rw/r(8^i/e)-}={ (8^ } '{w/st7'3⁄4e/si)-'(w/61⁄2)-'9i/6^r(w/68t7)-te/e6r3⁄4e/£9i)-te/6^r3⁄4e/i6)- 3⁄4ε/6 ^Ό '3⁄4e/6t7)-te/i6'3⁄4e/6^i)-te/e9r3⁄4e/£6i)-'w/68t7'(9i/6^i)-'w/61⁄2te/sr(w/st7 )-}3={( 6 ^ } /ii)- /i t7/i)-'r(t/i)-'t7/r(t7/i)-'†7/r(†7/i)-'8^i/se'(w/Ai)-'8/rw/r(8^i/e)-}={ (8 ^ }
'{(0Ζε// )-'09ΐ/6'0Ζ/6 '{(0Ζε// )-'09ΐ/6'0Ζ/6
'(09i/esi)-'¾e/A8)-O9i/is^'w/eot7'(oi/ei)-'(09i/A6t7i)-'9i/sro9i/6e8ro'(09i/6e8i)-'(9i/si)- 'θ9ΐ/Δ6Μ'θΐ/εΐ'(ΐ79/εοΐ7)-'(ο9ΐ/ΐςζ) ε/Δ8'θ9ΐ/εςΐ'(οζ/6)-'(θ9ΐ/6)-'οζε// }3={ ω^ } '(09i/esi)-'3⁄4e/A8)-O9i/is^'w/eot7'(oi/ei)-'(09i/A6t7i)-'9i/sro9i/6e8ro'(09i/6e8i)-'( 9i/si)- 'θ9ΐ/Δ6Μ'θΐ/εΐ'(ΐ79/εοΐ7)-'(ο9ΐ/ΐςζ) ε/Δ8'θ9ΐ/εςΐ'(οζ/6)-'(θ9ΐ/6)-'οζε/ / }3={ ω ^ }
- L- - L-
8008.0/0T0ZN3/X3d 8I £0/ZI0Z OAV ((}),,, 389/603/303/09/0127224-- ((((((,,,,363/806/6006/60363/80303/608/5503/603/690/3011711171111111172 ----- - { }{(((,,,,,,59/03/03/30389/6090/303/6503/608/5303/60 2c422721172111111=---s 8008.0/0T0ZN3/X3d 8I £0/ZI0Z OAV ((}),,, 389/603/303/09/0127224-- (((((,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -- - { }{(((,,,,,,59/03/03/30389/6090/303/6503/608/5303/60 2c422721172111111=---s
0 2 0 2
0 10 1
Figure imgf000010_0001
I { }{((((((),,,,,5/65/33/63/3/6/30/35/699/33/3c1421741421427122712712172u_-- -- -)- (((((},,,,,5/383/35/39/8/3/359/39/6/3/8222127222127121217414 ----- { }{(((((,,,,,,3/8/9/659/3/38/39/5/383/35/30cl41741271221227212222=----- (((((}),,,,9/3/39/33/89/6/6/63/82112212141141412 ----- }{(((((,,,,,,,,3/8/6/69/63/89/3/39/309/3/39/30121411414122112221122=----- (((},,,,,,,, 03/33/659/3/35/3/89/33/63/89/617211122177212272122741- - -
Figure imgf000010_0001
I { }{(((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((( ,,,,,5/383/35/39/8/3/359/39/6/3/8222127222127121217414 ----- { }{((((,,,,,,,,,,,,, /659/3/38/39/5/383/35/30cl41741271221227212222=----- ((((}),,,, 9/3/39/33/89/6/6/63/82112212141141412 ----- }{(((((,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, ((},,,,,,,, 03/33/659/3/35/3/89/33/63/89/617211122177212272122741- - -
}{(((((((,,,9/63/83/69/3/85/3/359/33/63/3c12742122712177222111172=- -- - - - - 職s/u O 800 sosld 8msiAV /In08/6s0£09I/6y08/£s//£nt£/r 9/6}A/;A)- }{((((()) 职// O 800 sosld 8msiAV /In08/6s0£09I/6y08/£s//£nt£/r 9/6}A/;A)-
Figure imgf000011_0001
Figure imgf000011_0001
o o
Figure imgf000012_0001
Figure imgf000012_0001
其余没有写出的元素也为 0, 而^=-9^/16;
Figure imgf000012_0002
The remaining unwritten elements are also 0, and ^=-9^/16;
Figure imgf000012_0002
式 (13)和 (14)的形式也类似: The forms of (13) and (14) are similar:
Figure imgf000012_0003
20。 这里 {
Figure imgf000012_0004
}构成一个 9-7型双正交 2-进小波。 本发明将一个进制数很高的多进小波转化为一个较低阶的 2-进小波与一个正交矩阵的 积, 这同时解决了三大难题: 一是使得多进小波的设计变为可能; 二是使得多进小波变换的 计算量得到了有效控制, 如 2-进小波有高效的 lift算法等; 三是使得多进小波与块变换建立了 一个有机联系, 使得新的变换能兼容传统的块变换。 例如, 如果/ ^取为 8维的 DCT, SP P8 =DCT=
Figure imgf000012_0003
20. Here{
Figure imgf000012_0004
} constitutes a 9-7 type of bi-orthogonal 2-inlet wavelet. The invention converts a multi-inlet wavelet with a high hexadecimal number into a product of a lower-order 2-inlet wavelet and an orthogonal matrix, which simultaneously solves three major problems: First, the design of the multi-inlet wavelet is changed into Possiblely; the second is to make the computational complexity of multi-inlet wavelet transform effectively controlled, such as 2-inletted wavelet with efficient lift algorithm; thirdly, make multi-inlet wavelet and block transform establish an organic connection, making the new transform compatible Traditional block transformation. For example, if / ^ is taken as an 8-dimensional DCT, SP P 8 =DCT=
353553,0.353553,0.353553,0.353553,0.353553,0.35 353553, 0.353553, 0.353553, 0.353553, 0.353553, 0.35
{0.490393,0.415735,0.277785,0.0975452,-0.0975452,-0.277785,-0.415735,-0.490393}, {0.490393, 0.415735, 0.277785, 0.0975452, -0.0975452, -0.277785, -0.415735, -0.490393},
{0.461940,0.191342,-0.191342,-0.461940,-0.461940,-0.191342,0.191342,0.461940}, {0.461940, 0.191342, -0.191342, -0.461940, -0.461940, -0.191342, 0.191342, 0.461940},
{0.415735,-0.0975452,-0.490393,-0.277785,0.277785,0.490393,0.0975452,-0.415735}, {0.415735, -0.0975452, -0.490393, -0.277785, 0.277785, 0.490393, 0.0975452, -0.415735},
{0.353553,-0.353553,-0.353553,0.353553,0.353553,-0.353553,-0.353553,0.353553}, {0.353553, -0.353553, -0.353553, 0.353553, 0.353553, -0.353553, -0.353553, 0.353553},
{0.277785,-0.490393,0.0975452,0.415735,-0.415735,-0.0975452,0.490393,-0.277785}, {0.277785,-0.490393,0.0975452,0.415735,-0.415735,-0.0975452,0.490393,-0.277785},
{0.191342,-0.461940,0.461940,-0.191342,-0.191342,0.461940,-0.461940,0.191342}, {0.191342, -0.461940, 0.461940, -0.191342, -0.191342, 0.461940, -0.461940, 0.191342},
{0.0975452,-0.277785,0.415735,-0.490393,0.490393,-0.415735,0.277785,-0.0975452} }; {0.0975452, -0.277785, 0.415735, -0.490393, 0.490393, -0.415735, 0.277785, -0.0975452} };
则本发明与 DCT就兼容了。 事实上, 此时 DCT是我们的 16-进双正交小波的一部分。 The invention is then compatible with DCT. In fact, the DCT is now part of our 16-input bi-orthogonal wavelet.
本发明变换环节用多进小波的结构, 所以多进小波的挑选余地很大。只要符合这种结构, 都在本发明的权利范围之内, 而不必限定特定的 DWT和特定的/^ 2。 本发明对多进小波的进制数也不限定, 但应用注意点主要在 2d-进小波上, 如 16-进和 32- 进等, 只有进制数足够高, 才能避免迭代算法。 The transforming link of the present invention uses a multi-inlet wavelet structure, so the selection of the multi-inlet wavelet is large. It is within the scope of the invention to comply with such a structure, and it is not necessary to define a specific DWT and a specific /^ 2 . The present invention does not limit the radix of the multi-inlet wavelet, but the application note is mainly on the 2 d -inlet wavelet, such as 16-in and 32-in, and only the hexadecimal number is high enough to avoid the iterative algorithm.
如果我们的 DWT选为双正交的, / ^有特别优秀的结构 (如 (15)),则这个多进小波有非常有 效的快速计算方法, 无论是软件还是芯片实现算法, 效率都是非常高的。  If our DWT is chosen to be bi-orthogonal, / ^ has a particularly good structure (such as (15)), then this multi-wavelet has a very efficient fast calculation method, whether it is software or chip implementation algorithm, the efficiency is very High.
式 (15)还有一个特别的优点。 虽然式 (15)本身是一个正交矩阵, 与 DCT完全不同, 但对于 DCT编码的图像或视频, 用式 (15)能毫无困难地解码。 这意味着我们在芯片或软件里为兼容 DCT, 不需要特别设计一个 DCT的运算单元, 只需要设计式 (15)就能兼容 DCT了, 从而极大 地节省兼容性带来的经济成本。 同 DCT相比, 式 (15)的计算开销是非常经济的。 当然, 式 (15) 的编码性能也高于 DCT。  Equation (15) has a special advantage. Although equation (15) itself is an orthogonal matrix, which is completely different from DCT, for DCT encoded images or video, equation (15) can be decoded without difficulty. This means that we are compatible with DCT in the chip or software. We don't need to design a DCT unit. We only need to design (15) to be compatible with DCT, which greatly saves the economic cost of compatibility. Compared with DCT, the computational cost of equation (15) is very economical. Of course, the coding performance of equation (15) is also higher than that of DCT.
从本发明的特点, 可以看出来, 由于本发明的多进小波能分解成两部分, 只要这两部分 的性能是优良的, 就能保证整个多进小波的性能是优良的。 我们知道, 2-进双正交小波的性 能非常优秀, 而无论是 DCT还是 (15), 作为块变换, 它们都是非常优秀的, 所以所设计的多 进小波优良性能有确切的保障。 参见图 1, 本发明在用于多进小波压缩图像或视频时, 依旧遵循压缩编码的流程。 从式 (11)、(12)可以看出,这里的变换可以分成两个部分,首先是作一次 DWT,将图像"一分为四", 这就是通常的 DWT。与通常的 DWT不同的是,接下来我们不再作迭代分解,而是将被四分的"图 像" (三个高频子图和一个低频子图) 都分成 (r/2) x (r/2)的块, 再用 /2对每个块作二维 块变换。 这样的两阶段的变换算法与 (5)或 (6)的直接计算方法本质上是等价的 (参见图 2 ) , 而解码图像的过程可参见图 3。 From the features of the present invention, it can be seen that since the multi-wavelet of the present invention can be decomposed into two parts, as long as the performance of the two parts is excellent, the performance of the entire multi-inlet wavelet can be ensured to be excellent. We know that the performance of 2-input bi-orthogonal wavelets is very good, and whether it is DCT or (15), they are very good as block transforms, so the excellent performance of the multi-inlet wavelet designed is guaranteed. Referring to Figure 1, the present invention still follows the flow of compression coding when used for multi-stream wavelet compression of images or video. As can be seen from equations (11) and (12), the transformation here can be divided into two parts. The first is to make a DWT and divide the image into four, which is the usual DWT. Unlike the usual DWT, we will not break it down again, but divide the four-part "image" (three high-frequency subgraphs and one low-frequency subgraph) into (r/2) x (r /2) block, then use /2 for each block for 2D Block transformation. Such a two-stage transform algorithm is essentially equivalent to the direct calculation method of (5) or (6) (see FIG. 2), and the process of decoding an image can be seen in FIG.
当然, 图 2和图 3的算法比直接计算要高效多了。 DWT保留了小波变换的优点, 例如消 除块效果。 而块变换则能给数据的重要性排定一个 "方向", 就像 JPEG里的 DCT—样, 使得 数据的能量有序化, 从而能吸取和兼容 JPEG和 MPEG里简洁高效的优秀算法。 本发明主要用于图像与视频的压缩编码中的变换技术。 在数学上, 这些内容都归于对矩 阵的操作。 在图像里, 是对 Y、 U、 V分量分别进行操作; 在视频中, 对于残差帧 (B帧或 P 帧) 和基准帧 (I帧), 我们都视其为 "图像"。  Of course, the algorithms in Figures 2 and 3 are much more efficient than direct calculations. DWT retains the advantages of wavelet transforms, such as eliminating block effects. The block transform can give a "direction" to the importance of the data, just like the DCT in JPEG, which makes the energy of the data orderable, so that it can absorb and be compatible with the excellent algorithms of JPEG and MPEG. The present invention is mainly applied to a transform technique in compression coding of images and video. In mathematics, these things are attributed to the operation of the matrix. In the image, the Y, U, and V components are operated separately; in the video, for the residual frame (B frame or P frame) and the reference frame (I frame), we regard it as "image".
故而, 一切采用图像与视频的压缩编码的产品如计算机软件、 DSP 软件、 ASIC 芯片或 FPGA芯片皆可采用本发明的多进小波变换方法。  Therefore, all of the products using compression coding of images and video, such as computer software, DSP software, ASIC chips or FPGA chips, can adopt the multi-inlet wavelet transform method of the present invention.
以上所述实施例仅表达了本发明的几种较佳的实施方式, 其描述较为具体和详细, 但并 不能因此而理解为对本发明范围的限制。 应当指出的是, 对于本领域的普通技术人员来说, 在不脱离本发明构思的前提下, 还可以做出若干变形和改进, 这些都属于本发明的保护范围。 因此, 本发明的保护范围应以所附权利要求为准。  The above-described embodiments are merely illustrative of several preferred embodiments of the present invention, and the description thereof is not to be construed as limiting the scope of the invention. It should be noted that a number of variations and modifications may be made by those skilled in the art without departing from the spirit and scope of the invention. Therefore, the scope of the invention should be determined by the appended claims.

Claims

^ ^ ^ ^
1、 一种用于图像和视频压缩编码和解码中的多进小波变换方法, 其特征在于: 采用进 制数 r高于或等于 16的 r-进离散双正交小波进行图像压缩或解压缩的正向或反向变换。 A multi-inlet wavelet transform method for image and video compression encoding and decoding, characterized in that: image compression or decompression is performed by using r-into-discrete bi-orthogonal wavelet with a number r greater than or equal to 16. Forward or reverse transformation.
2、 根据权利要求 1所述的用于图像和视频压缩编码和解码中的多进小波变换方法, 其 特征在于: 所述进制数 r高于或等于 16的 r-进离散双正交小波正向变换为:  2. The multi-inlet wavelet transform method for image and video compression encoding and decoding according to claim 1, wherein: said r-incremental bi-orthogonal wavelet having a radix r higher than or equal to 16. Forward transformation to:
,( ) ,( +!) d ( ) J+i) ,Z = l,...r r-进离散双正交小波的反向变换为:
Figure imgf000015_0001
, ( ) , ( +! ) d ( ) J + i ) , Z = l, ... r r - Inverse discrete bi-orthogonal wavelet transform is:
Figure imgf000015_0001
式中: {^}和{ }为低通滤波器对偶, { )}和 (k=l,...,r-l) 为 r-1支高通滤波器 对偶, )是变换系数。  Where: {^} and { } are low-pass filter pairs, { )} and (k=l,...,r-l) are r-1 high-pass filters dual, ) are transform coefficients.
3、根据权利要求 1或 2所述的用于图像和视频压缩编码和解码中的多进小波变换方法, 其特征在于: 采用 r-进离散双正交小波的滤波器组具有下列矩阵形式时,  The multi-inlet wavelet transform method for image and video compression encoding and decoding according to claim 1 or 2, wherein: the filter bank using the r-input bi-orthogonal wavelet has the following matrix form ,
Figure imgf000015_0002
Figure imgf000015_0002
8(7r/2+1) 0 8(r/2+l) - - 8r " . 8 (7r/2+1) 0 8 (r/2+l) - - 8 r "
61 62 · ·· 01  61 62 · ·· 01
H, = (2)  H, = (2)
Figure imgf000015_0003
Figure imgf000015_0003
式中 > 为滤波器组的最大长度,并设定 r为偶数, 和 { }为低通滤波器对偶, 和 (k=l,...,r-l ) 为 r-1支高通滤波器对偶, 则上述 (1)~(4)表达式具有下列 (5)〜(8)分解形 式: Where > is the maximum length of the filter bank, and sets r to an even number, and { } is the low-pass filter pair, and (k=l,...,rl) is the r-1 high-pass filter dual, then the above (1)~(4) expressions have the following (5)~(8) decomposition forms:
Figure imgf000016_0001
Figure imgf000016_0001
Figure imgf000016_0002
Figure imgf000016_0002
式中: { s; }和{ st }为任意一个双正交 2-进小波的低通滤波器, { tt }和{ I }为所述 2-进双 正交小波的高通滤波器, /2是任意一个 r/2 维的规范正交矩阵, 它的第一行的元素都为 1/ 2 , 其余各行的元素和为 0。 Where: { s ; } and { s t } are any low-pass filters of bi-orthogonal 2-inlet wavelets, { t t } and { I } are high-pass filters of the 2-input bi-orthogonal wavelets , /2 is any r/2-dimensional canonical orthogonal matrix whose elements in the first row are both 1/2, and the sum of the elements of the remaining rows is 0.
4、 根据权利要求 3所述的用于图像和视频压缩编码和解码中的小波变换方法, 其特征 在于: 当 r=16时, 其滤波器组由 32支滤波器构成, 其中 16支用于正向变换, 16支用于反 向变换, 所述滤波器组为:  4. The wavelet transform method for image and video compression encoding and decoding according to claim 3, wherein: when r=16, the filter bank is composed of 32 filters, 16 of which are used for Forward transform, 16 for inverse transform, the filter bank is:
1 ) 正向低通滤波器:  1) Forward low pass filter:
{ ht }={9/640,-(3/320),-(3/128),1/8,35/128,83/320,151/640,1/4,1/4,1/4,1/4,1/4,1/4,1/4,1/4,1/4, { h t }={9/640,-(3/320),-(3/128),1/8,35/128,83/320,151/640,1/4,1/4,1/4, 1/4, 1/4, 1/4, 1/4, 1/4, 1/4,
151/640,83/320,35/128,1/8,-(3/128),-(3/320),9/640}, 151/640, 83/320, 35/128, 1/8, -(3/128), -(3/320), 9/640},
2) 15支正向高通滤波器:  2) 15 forward high-pass filters:
{ }=c{27/64,-(9/32),-(63/80),609/160,1317/160,1137/160,351/64,403/80,317/80,223/80,  { }=c{27/64,-(9/32),-(63/80),609/160,1317/160,1137/160,351/64,403/80,317/80,223/80,
243/160,0,-(243/160),-(223/80),-(317/80),-(403/80),-(351/64),-(1137/160),-(1317/160),-(609/160) /3/:/〇 8008/-ososil£ 8ΪΗεθίϊΟίΑν 9ΐ/6)09ΐ/9£)0ΐ/6Γς/9909ΐ/8ς0£/ΐ6)08/ΐ¾09ΐ/£9}{ }Δ(ΔΔ。=」--」 0£/ΐ6¾09ΐ/8ς9ς/90ΐ/6309ΐ/9£)9ΐ/608/ΐςς)08/8ς)08/ΐςς)Δ(Δ/Δ」---- 09ΐ¾08§(- (eο9ΐ/£οπ08/£6£)¾£/ς)οΐ/ΤΟ/6ο8/}{ } χ(Δ//。=」」 ¾£/SOI)O£/)OI/)t£/^08/£6ro9I/SrowIsro8/nrso8/n£)OWIS¾/(//-」--- 0目 )0寸/6 (」243/160,0,-(243/160),-(223/80),-(317/80),-(403/80),-(351/64),-(1137/160),-( 1317/160),-(609/160) /3/:/〇8008/-ososil£ 8ΪΗεθίϊΟίΑν 9ΐ/6)09ΐ/9£)0ΐ/6Γς/9909ΐ/8ς0£/ΐ6)08/ΐ3⁄409ΐ/£9}{ }Δ(ΔΔ.=”--” 0£/ΐ63⁄409ΐ/8ς9ς/90ΐ/6309ΐ/9£)9ΐ/608/ΐςς)08/8ς)08/ΐςς)Δ(Δ/Δ”---- 09ΐ3⁄408§(- (eο9ΐ/£οπ08/£6 £)3⁄4£/ς)οΐ/ΤΟ/6ο8/}{ } χ(Δ//.=”” 3⁄4£/SOI)O£/)OI/)t£/^08/£6ro9I/SrowIsro8/nrso8/ n£)OWIS3⁄4/(//-"--- 0 mesh) 0 inch / 6 ("
)o8/¾)ol9/I8IO£/8n/£/££)O7---  )o8/3⁄4)ol9/I8IO£/8n/£/££)O7---
09ΐ/£ο£ς/8ΐ)ο9ΐ/£οςΐ9ΐ/ΐ£Ο£/06Γ09ΐ/68£Ο£/£)Ο/£ο1/6}{ }(Δ/7。=-- 09ΐ/£ο£ς/8ΐ)ο9ΐ/£οςΐ9ΐ/ΐ£Ο£/06Γ09ΐ/68£Ο£/£)Ο/£ο1/6}{ }(Δ/7.=--
Figure imgf000017_0001
Figure imgf000017_0001
WIWI)/nwI)/nwI)wrWIWrWI)/s/)/rs/r((/--」」」 WIWI)/nwI)/nwI)wrWIWrWI)/s/)/rs/r((/--"""
¾£/ςΐ)9ΐ)¾£/£6ΐ¾£/£9ΐ)¾£/6π¾£/ΐ60(」」-- ¾£/ΐ)9ΐ/ΐ¾£/ΐ8)0¾£/ΐ8¾£/9ΐ)¾£/£¾Δ ^」」」- { g 12> }={ -(3/128), 1/64, 1 l/64,-(19/64),3/128,9/32,-(ll/32),9/32,0,-(9/32), 11/32,-(9/32),0, 9/32,-(ll/32),9/32,3/128,-(19/64),ll/64,l/64,-(3/128)}, 3⁄4£/ςΐ)9ΐ)3⁄4£/£6ΐ3⁄4£/£9ΐ)3⁄4£/6π3⁄4£/ΐ60(""-- 3⁄4£/ΐ)9ΐ/ΐ3⁄4£/ΐ8)03⁄4£/ΐ83⁄4£/9ΐ)3⁄4 £/£3⁄4Δ ^"""- { g 12> }={ -(3/128), 1/64, 1 l/64,-(19/64),3/128,9/32,-(ll/32),9/32,0 ,-(9/32), 11/32,-(9/32),0, 9/32,-(ll/32),9/32,3/128,-(19/64),ll/64 ,l/64,-(3/128)},
{ }=c{ -(3/8), 1/4, 197/64,-( 159/32),-(71/32),281/32,-(9/2),-(57/32), 183/32,-(225/32),0,  { }=c{ -(3/8), 1/4, 197/64,-( 159/32), -(71/32),281/32,-(9/2),-(57/32 ), 183/32,-(225/32),0,
225/32,-(183/32),57/32,9/2,-(281/32),71/32,159/32,-(197/64),-(l/4),3/8}, 225/32,-(183/32),57/32,9/2,-(281/32),71/32,159/32,-(197/64),-(l/4),3/8} ,
{ i?! (14) }=c{-(15/64),5/32,137/64,-(13/4),-(213/64),271/32,0,-(271/32),57/16,99/32,-(137/32),{ i?! (14) }=c{-(15/64),5/32,137/64,-(13/4),-(213/64),271/32,0,-(271/32) , 57/16, 99/32,-(137/32),
99/32,57/16,-(271/32),0,271/32,-(213/64),-(13/4),137/64,5/32,-(15/64)}, 99/32, 57/16,-(271/32), 0,271/32,-(213/64),-(13/4),137/64,5/32,-(15/64)},
{ g!(15) }=c{-(9/64),3/32,81/64,-(31/16),-(131/64),159/32,7/4,-(239/32),-(39/32),297/32,0,{ g! (15) }=c{-(9/64),3/32,81/64,-(31/16),-(131/64),159/32,7/4,-(239 /32),-(39/32),297/32,0,
-(297/32),39/32,239/32,-(7/4),-(159/32),131/64,31/16,-(81/64),-(3/32),9/64}; -(297/32),39/32,239/32,-(7/4),-(159/32),131/64,31/16,-(81/64),-(3/32),9 /64};
3 ) 反向低通滤波器:  3) Reverse low pass filter:
{ ¾ }={-(3/128),-(1/64),1/8,17/64,35/128,1/4,1/4,1/4,1/4,1/4,1/4,1/4,1/4,1/4,1/4,1/4,35/128, { 3⁄4 }={-(3/128),-(1/64),1/8,17/64,35/128,1/4,1/4,1/4,1/4,1/4 , 1/4, 1/4, 1/4, 1/4, 1/4, 1/4, 35/128,
17/64,1/8,-(1/64),-(3/128)}, 17/64, 1/8, -(1/64),-(3/128)},
4) 15支反向高通滤波器:  4) 15 reverse high-pass filters:
{ }=c{-(45/64),-(15/32),249/64,129/16,489/64,193/32,163/32,129/32,91/32,49/32,0, -(49/32),-(91/32),-(129/32),-(163/32),-(193/32),-(489/64),-(129/16),-(249/64),15/32,45/64},  { }=c{-(45/64),-(15/32),249/64,129/16,489/64,193/32,163/32,129/32,91/32,49/32,0,-(49/32), -(91/32),-(129/32),-(163/32),-(193/32),-(489/64),-(129/16),-(249/64),15 /32,45/64},
{ 5· 2) }=c{-(21/32),-(7/16),251/64,247/32,47/8,81/32,0,-(81/32),-(167/32),-(233/32), { 5· 2) }=c{-(21/32),-(7/16),251/64,247/32,47/8,81/32,0,-(81/32),-(167/ 32),-(233/32),
-(251/32),-(233/32), -( 167/32),-(81/32),0,81/32,47/8,247/32,251/64,-(7/16),-(21/32) } , -(251/32),-(233/32), -( 167/32),-(81/32),0,81/32,47/8,247/32,251/64,-(7/16),- (21/32) } ,
{ g > }=c{-(9/16),-(3/8),237/64,219/32,27/8,-(51/32),-(177/32),-(259/32),-(113/16),-(137/32) 0,137/32, 113/16,259/32,177/32,51/32,-(27/8),-(219/32),-(237/64),3/8,9/16},  { g > }=c{-(9/16),-(3/8),237/64,219/32,27/8,-(51/32),-(177/32),-(259/32 ),-(113/16),-(137/32) 0,137/32, 113/16,259/32,177/32,51/32,-(27/8),-(219/32),-(237/64 ), 3/8, 9/16},
{ 5·4) }={-(3/128),-(1/64), 11/64, 19/64,3/128,-(9/32),-( 11/32),-(9/32),0,9/32, 11/32,9/32,0, -(9/32),-(11/32),-(9/32),3/128,19/64,11/64,-(1/64),-(3/128)}, { 5· 4) }={-(3/128),-(1/64), 11/64, 19/64,3/128,-(9/32),-( 11/32),-( 9/32), 0, 9/32, 11/32, 9/32, 0, -(9/32), -(11/32), -(9/32), 3/128, 19/64, 11/64,-(1/64),-(3/128)},
{ 5·5) }=c{-(3/8),-( 1/4), 197/64, 159/32,-(71/32),-(281/32),-(9/2),57/32, 183/32,225/32,0, -(225/32),-(183/32),-(57/32),9/2,281/32,71/32,-(159/32),-(197/64),1/4,3/8}, { 5· 5) }=c{-(3/8),-( 1/4), 197/64, 159/32,-(71/32),-(281/32),-(9/2 ), 57/32, 183/32, 225/32, 0, -(225/32), -(183/32), -(57/32), 9/2,281/32,71/32,-(159/32 ),-(197/64),1/4,3/8},
{ 5·6) }=c{-(15/64),-(5/32), 137/64, 13/4,-(213/64),-(271/32),0,271/32,57/16,-(99/32), { 5· 6) }=c{-(15/64),-(5/32), 137/64, 13/4,-(213/64),-(271/32),0,271/32,57 /16,-(99/32),
-(137/32),-(99/32), 57/16,271/32,0,-(271/32),-(213/64),13/4,137/64,-(5/32),-(15/64)}, -(137/32),-(99/32), 57/16,271/32,0,-(271/32),-(213/64),13/4,137/64,-(5/32),- (15/64)},
{ ^(7) }=c{-(9/64),-(3/32),81/64,31/16,-(131/64),-(159/32),7/4,239/32,-(39/32),-(297/32),0,{ ^ (7) }= c {-(9/64),-(3/32),81/64,31/16,-(131/64),-(159/32),7/4,239/32 ,-(39/32),-(297/32),0,
297/32,39/32,-(239/32),-(7/4),159/32,131/64,-(31/16),-(81/64),3/32,9/64}, { g " }={ 9/640,3/320,-(3/128),-(l/8),35/128,-(83/320), 151/640,-(l/4),l/4,-(l/4), l/4,-(l/4), l/4 297/32,39/32,-(239/32),-(7/4),159/32,131/64,-(31/16),-(81/64),3/32,9/64} , { g " }={ 9/640,3/320,-(3/128),-(l/8),35/128,-(83/320), 151/640,-(l/4), l/4,-(l/4), l/4,-(l/4), l/4
-(1/4), 1/4, -(1/4),151/640,-(83/320),35/128,-(1/8),-(3/128),3/320,9/640}, -(1/4), 1/4, -(1/4),151/640,-(83/320),35/128,-(1/8),-(3/128),3/320 , 9/640},
{ gf }=c{27/64,9/32,-(63/80),-(609/160), 1317/160,-(1137/160),351/64,-(403/80),317/80,  { gf }=c{27/64,9/32,-(63/80),-(609/160), 1317/160,-(1137/160),351/64,-(403/80), 317/80,
-(223/80),243/160,0,-(243/160),223/80,-(317/80),403/80,-(351/64), 1137/160,-(1317/160),609/160, 63/80,-(9/32),-(27/64) }, -(223/80),243/160,0,-(243/160),223/80,-(317/80),403/80,-(351/64), 1137/160,-(1317/ 160), 609/160, 63/80,-(9/32),-(27/64) },
{ ^(10) }=c{ 63/160,21/80,-(291/320),-(587/160),499/64,-(26/5),19/10,0,-(367/160),79/16, { ^ (10) }=c{ 63/160,21/80,-(291/320),-(587/160),499/64,-(26/5),19/10,0,-( 367/160), 79/16,
-(551/80),587/80,-(551/80),79/16,-(367/160),0, 19/10,-(26/5),499/64,-(587/160),-(291/320),21/80, 63/160}, -(551/80),587/80,-(551/80),79/16,-(367/160),0, 19/10,-(26/5),499/64,-(587/ 160),-(291/320), 21/80, 63/160},
^(11) }=c{27/80,9/40,-(63/64),-(105/32),2217/320,-(27/10),-(57/32),393/80,-(1203/160) 251/40,-(311/80),0,311/80,-(251/40), 1203/160,-(393/80),57/32,27/10,-(2217/320), 105/32,63/64, -(9/40),-(27/80)}, ^ (11) }=c{27/80,9/40,-(63/64),-(105/32),2217/320,-(27/10),-(57/32),393/ 80,-(1203/160) 251/40,-(311/80),0,311/80,-(251/40), 1203/160,-(393/80),57/32,27/10,- (2217/320), 105/32, 63/64, -(9/40),-(27/80)},
{ ^(12) }={ 9/640,3/320,-(33/640),-(23/160),41/128,-(3/320),-(181/640),23/80,-(43/160),0, { ^ (12) }={ 9/640,3/320,-(33/640),-(23/160),41/128,-(3/320),-(181/640),23/ 80,-(43/160), 0,
43/160,-(23/80),43/160,0,-(43/160),23/80,-(181/640),-(3/320),41/128,-(23/160),-(33/640),3/320, 9/640}, 43/160,-(23/80),43/160,0,-(43/160),23/80,-(181/640),-(3/320),41/128,-(23/ 160),-(33/640), 3/320, 9/640},
{ ^(13) }=c{ 9/40,3/20,-(327/320),-(389/160),1907/320,31/16,-(1503/160), 18/5,303/160, { ^ (13) }=c{ 9/40,3/20,-(327/320),-(389/160),1907/320,31/16,-(1503/160), 18/5,303/ 160,
-(363/80), 1167/160,0,-(1167/160),363/80,-(303/160),-(18/5),1503/160,-(31/16),-(1907/320), 389/160,327/320,-(3/20),-(9/40)}, -(363/80), 1167/160,0,-(1167/160),363/80,-(303/160),-(18/5),1503/160,-(31/16),- (1907/320), 389/160, 327/320,-(3/20),-(9/40)},
{ ^(14) }=c{ 9/64,3/32,-(123/160),-(257/160),353/80,429/160,-(3161/320),0,779/80,-(l H/40), { ^ (14) }=c{ 9/64,3/32,-(123/160),-(257/160),353/80,429/160,-(3161/320),0,779/80,-( l H/40),
-(583/160),257/80,-(583/160),-(l l l/40),779/80,0,-(3161/320),429/160,353/80,-(257/160), -(123/160),3/32,9/64}, -(583/160),257/80,-(583/160),-(lll/40),779/80,0,-(3161/320),429/160,353/80,-(257/160) , -(123/160), 3/32, 9/64},
{ ^(15) }=c{27/320,9/160,-(9/20),-(153/160),87/32,251/160,-(403/64),-(13/10), 1497/160, { ^ (15) }=c{27/320,9/160,-(9/20),-(153/160),87/32,251/160,-(403/64),-(13/10) , 1497/160,
15/16,-(1839/160),0, 1839/160,-(15/16),-(1497/160),13/10,403/64,-(251/160),-(87/32), 15/16,-(1839/160),0, 1839/160,-(15/16),-(1497/160),13/10,403/64,-(251/160),-(87/32) ,
153/160,9/20,-(9/160),-(27/320) }; 在上面的滤波器中, 所有的 c=l/ ^。 153/160, 9/20, -(9/160), -(27/320) }; In the above filter, all c=l/^.
5、根据权利要求 4所述的用于图像和视频压缩编码和解码中的多进小波变换方法, 其特 征在于: 生成上述 16-进双正交小波滤波器组的 2-进小波是一个 9-7型双正交小波, 其滤波器 组为: The multi-inlet wavelet transform method for image and video compression encoding and decoding according to claim 4, wherein: generating a 2-inlet wavelet of said 16-input bi-orthogonal wavelet filter bank is a 9 Type -7 biorthogonal wavelet, the filter bank is:
dsa ^ ¾、「/¾ ¾¾½(尊¾ s-i ^ m^ ^-、L Dsa ^ 3⁄4, "/3⁄4 3⁄43⁄41⁄2 (3⁄4 s-i ^ m^ ^-, L
q/s q/zi- q/ςι q/ςι- q/zi q/s- q/z q/s q/zi- q/ςι q/ςι- q/zi q/s- q/z
q/ς qm— q/vi q/ς- q/ς- q/pi— q/ς  q/ς qm— q/vi q/ς- q/ς- q/pi— q/ς
q/s- q/ςι q/£- q/zi- q/zi qii q/ςι- q/s  q/s- q/ςι q/£- q/zi- q/zi qii q/ςι- q/s
。n 。n— 。n— 。n  . n . N-. N-. n
q/z\- q/£ q/ςι q/ςι- q/£- q/z\  q/z\- q/£ q/ςι q/ςι- q/£- q/z\
q/vi q/ς q/ς- qm— q/p\- q/ς- q/vi  q/vi q/ς q/ς- qm— q/p\- q/ς- q/vi
q/ςι- q/z\- q/s- q/£- q/z\ q/ςι  q/ςι- q/z\- q/s- q/£- q/z\ q/ςι
'{oz Ό9ΐ/ε Ό9ΐ/π- Ό9ΐ/εΐ7- } '{oz Ό9ΐ/ε Ό9ΐ/π- Ό9ΐ/εΐ7- }
'{ΐ79/
Figure imgf000020_0001
}
'{ΐ79/
Figure imgf000020_0001
}
'{w/ε- ¾ε/ΐ '19/6 ΐ '9ΐ/6- '19/6 ΐ ¾ε/ΐ 'w/e-} zj^={ ]ι } '{ο^ε/6 Ό9ΐ/ε- Ό9ΐ/π- Ό9ΐ/εΐ7 Ό^ε/06ΐ Ό9ΐ/εΐ7 '09ΐ/π- Ό9ΐ/ε- Ό^ε/6ί ={ ,s }'{w/ε- 3⁄4ε/ΐ '19/6 ΐ '9ΐ/6- '19/6 ΐ 3⁄4ε/ΐ 'w/e-} zj^={ ] ι } '{ο^ε/6 Ό9ΐ/ε - Ό9ΐ/π- Ό9ΐ/εΐ7 Ό^ε/06ΐ Ό9ΐ/εΐ7 '09ΐ/π- Ό9ΐ/ε- Ό^ε/6ί ={ ,s }
— 8ΐ -— 8ΐ -
8008.0/0T0ZN3/X3d 8I £0 Ζ OAV 8008.0/0T0ZN3/X3d 8I £0 Ζ OAV
PCT/CN2010/078008 2010-09-09 2010-10-22 Multi-bank wavelet transform method and application for image and video compression coding and decoding WO2012031418A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010277190.3 2010-09-09
CN 201010277190 CN101984664B (en) 2010-09-09 2010-09-09 Multi-band wavelet transformation method for image and video compression coding and decoding and applications

Publications (1)

Publication Number Publication Date
WO2012031418A1 true WO2012031418A1 (en) 2012-03-15

Family

ID=43641834

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/078008 WO2012031418A1 (en) 2010-09-09 2010-10-22 Multi-bank wavelet transform method and application for image and video compression coding and decoding

Country Status (2)

Country Link
CN (1) CN101984664B (en)
WO (1) WO2012031418A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1932877A (en) * 2006-09-30 2007-03-21 中山大学 Data decomposition and reconfiguration method with parameter
EP1890120A1 (en) * 2005-06-06 2008-02-20 Tokyo Institute of Technology Image conversion device and image conversion program

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1336729B (en) * 2000-08-01 2010-04-21 湖南启泰信息技术有限公司 Wavelet conversion method for data compression and decompression
CN100409693C (en) * 2006-07-13 2008-08-06 王国秋 Orthogonal transformation method for image and video compression
CN100596201C (en) * 2008-06-23 2010-03-24 王国秋 Orthogonal integer transform method used for image and video compression

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1890120A1 (en) * 2005-06-06 2008-02-20 Tokyo Institute of Technology Image conversion device and image conversion program
CN1932877A (en) * 2006-09-30 2007-03-21 中山大学 Data decomposition and reconfiguration method with parameter

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BENKRID A. ET AL.: "Design and Implementation of a Generic 2-D Biorthogonal Discrete Wavelet Transform on an FPGA", PROCEEDINGS OF THE 9TH ANNUAL IEEE SYMPOSIUM ON FIELD-PROGRAMMABLE CUSTOM COMPUTING MACHINES (FCCM'01), December 2001 (2001-12-01) *
WANG, GUOQIU ET AL.: "Compactly Supported 4-bank Bisymmetric Orthonormal Wavelet Bases", WORLD SCI-TECH R&D, vol. 28, no. 2, 30 April 2006 (2006-04-30), pages 61 - 65 *
ZOU, QINGYUN: "A Class of Discrete 4-bank Symmetric Biorthonormal Wavelets Bases", APPICATION MATHS, 30 June 2010 (2010-06-30), pages 358 - 362 *

Also Published As

Publication number Publication date
CN101984664A (en) 2011-03-09
CN101984664B (en) 2013-03-20

Similar Documents

Publication Publication Date Title
JP5392199B2 (en) Image processing apparatus and method
JP4709493B2 (en) Method and product for communicating compressed digital images
US20050169379A1 (en) Apparatus and method for scalable video coding providing scalability in encoder part
JP2005176383A (en) Coding framework of color space
JP4392783B2 (en) Movie reproduction system, movie transmission device, movie transmission method, program, and recording medium
JP2010022006A (en) Image data processing method
CN1618237A (en) Stereoscopic video encoding/decoding apparatus supporting multi-display modes and methods thereof
JP2012095310A (en) Transform domain subsampling for video transcoding
JP2004274758A (en) Method and apparatus for converting jpp-stream into jpeg-2000 code stream
WO2008145039A1 (en) Methods, systems and devices for generating upsample filter and downsample filter and for performing encoding
JP2003179759A (en) Still image decompression device
JP4086344B2 (en) Image transmitting apparatus and control method
JP5950157B2 (en) Image processing apparatus and method, and program
CN112235606A (en) Multi-layer video processing method, system and readable storage medium
JP2005039837A (en) Method and apparatus for video image noise removal
JP2004172957A (en) Image processor, program and storage medium
CN101888553B (en) Scalable video coding method and device
CN102333223A (en) Video data coding method, decoding method, coding system and decoding system
WO2010024907A1 (en) Systems and methods for compression transmission and decompression of video codecs
US20130163889A1 (en) Image processing apparatus and method
WO2012031418A1 (en) Multi-bank wavelet transform method and application for image and video compression coding and decoding
Strukov et al. Evaluation of Video Compression Methods for Network Transmission on Diverse Data: A Case Study
ROSENBAUM. et al. Mobile image communication using JPEG2000
JP2003115765A (en) Encoding device and method therefor decoding device and method therefor and editing device and method therefor
KR100389702B1 (en) The method for compressing and expanding data-stream without loss by bit-substitution

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10856880

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10856880

Country of ref document: EP

Kind code of ref document: A1