WO2012030199A2 - Electrophoretic particles, and display device and image sheet comprising same - Google Patents

Electrophoretic particles, and display device and image sheet comprising same Download PDF

Info

Publication number
WO2012030199A2
WO2012030199A2 PCT/KR2011/006561 KR2011006561W WO2012030199A2 WO 2012030199 A2 WO2012030199 A2 WO 2012030199A2 KR 2011006561 W KR2011006561 W KR 2011006561W WO 2012030199 A2 WO2012030199 A2 WO 2012030199A2
Authority
WO
WIPO (PCT)
Prior art keywords
particles
particle size
display device
size distribution
circularity
Prior art date
Application number
PCT/KR2011/006561
Other languages
French (fr)
Korean (ko)
Other versions
WO2012030199A3 (en
Inventor
김재환
조영태
정민영
이창빈
이용의
김철환
Original Assignee
주식회사 이미지앤머터리얼스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 이미지앤머터리얼스 filed Critical 주식회사 이미지앤머터리얼스
Publication of WO2012030199A2 publication Critical patent/WO2012030199A2/en
Publication of WO2012030199A3 publication Critical patent/WO2012030199A3/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/166Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect
    • G02F1/167Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect by electrophoresis
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/1675Constructional details
    • G02F2001/1678Constructional details characterised by the composition or particle type

Definitions

  • the present invention relates to display technology, and more particularly, to electrophoretic particles, a display device and an image sheet comprising the same.
  • an electrophoretic display device uses a phenomenon in which charged particles move by an electric field applied between two electrodes.
  • the particles may have one kind of color or two or more kinds of colors.
  • the polarities of these particles are generally opposite to each other, but can be independently controlled by the difference in electrophoretic mobility even if they have the same polarity.
  • image information is implemented by particles, so design parameters such as image quality and driving voltage, such as contrast ratio and color reproducibility, depend on the characteristics of the particles.
  • the technical problem to be achieved by the present invention is to provide electrophoretic particles that can not only improve image quality such as contrast ratio and color reproducibility, but can also reduce driving voltage.
  • Another technical object of the present invention is to provide a display device using the particles having the above-described advantages.
  • Another technical problem to be achieved by the present invention is to provide an image sheet using particles having the aforementioned advantages.
  • the particles for the electrophoretic display device the circularity of the particles is defined by Figure 1a below, the circularity is 0.930 or more and less than 1 size
  • Has 1A is the projection area of the two-dimensionally projected particles
  • P is the circumferential length of the two-dimensionally projected particles.
  • the particles according to another embodiment of the present invention the particles for the electrophoretic display device, the particle size distribution of the particles is determined by the following equation 2, the particle size distribution may have a size of 10% to 40%. have.
  • Particle size distribution ( ⁇ / ⁇ ) ⁇ 100 (where ⁇ is the arithmetic mean diameter of particle size and ⁇ is the standard deviation of the particle size)
  • the particles according to another embodiment of the present invention may have all the features of the circularity and the particle size distribution described above.
  • the size of the particles may have a size of 0.02 ⁇ m to 50 ⁇ m.
  • the particles may have a color.
  • the particles may comprise any one or a mixture of pigments, dyes, metal particles, metal oxide particles, and resins.
  • Electrophoretic display device for achieving the above another technical problem, the substrate facing each other; At least one cavity disposed between the substrates; And particles dispersed in the cavities and having at least one of the foregoing features.
  • the particles in the cavities may include two or more kinds of particles in which at least one of color and electrophoretic mobility is different. In this case, only particles corresponding to any one of the two or more kinds of particles may satisfy at least one of the circularity and the particle size distribution.
  • an image sheet including support substrates facing each other; At least one cavity disposed between the support substrates; And dispersed in the cavities and having at least one of the foregoing features.
  • the particles in the cavities may include two or more kinds of particles in which at least one of color and electrophoretic mobility is different, and in this case, any one of the two or more kinds of particles Only the corresponding particles may satisfy at least one of the circularity and the particle size distribution.
  • Electrophoretic particles according to the embodiments of the present invention may improve the shielding power to the external light transmitted by the light reflective sub-particles while ensuring excellent light reflectivity, thereby improving the color reproducibility of the electrophoretic display device.
  • by having an optimized circularity to have excellent filling and light shielding power it is possible to improve the contrast and color reproducibility of the electrophoretic display device.
  • FIG. 2A and 2B respectively show aggregates of particles having different particle size distributions
  • FIG. 2C is an electron scanning microscope image of particles manufactured to have a particle size distribution according to an embodiment of the present invention.
  • FIG. 3A is a cross-sectional view of an electrophoretic display apparatus using particles according to an embodiment of the present invention
  • FIG. 3B is a cross-sectional view of an electrophoretic display apparatus using particles having the same spherical shape and the same size as a comparative example.
  • first, second, etc. are used herein to describe various members, parts, regions, and / or parts, these members, parts, regions, and / or parts should not be limited by these terms. Is self-explanatory. These terms are only used to distinguish one member, part, region or part from another region or part. Thus, the first member, part, region, or portion, which will be described below, may refer to the second member, component, region, or portion without departing from the teachings of the present invention.
  • the inventors have observed that the particle shape and particle size distribution of the electrophoretic particles affect the response speed, display ratio and color reproduction of the electrophoretic display device.
  • the following examples improve the performance of the electrophoretic display device such as response speed, contrast ratio and color reproduction of the electrophoretic display device by controlling the particle shape and particle size distribution of the particles, and using the same for various image sheets and electrophoretic display devices. It is about.
  • FIG. 1A is a characteristic equation relating to the circularity of particles
  • FIG. 1B shows various forms of electrophoretic particles.
  • Particles used in the electrophoretic display device may have a variety of shapes, such as spherical (10A), elliptical (10B) and amorphous potato (10C) shown in Figure 1b, the particles having a variety of these forms Used as
  • the extent to which the shape of these particles is spherical can be assessed by the circularity shown in FIG. 1A.
  • the circularity is determined by the ratio of the projected area of the particle to the circumferential depth of the particle.
  • A is the projection area of the two-dimensionally projected particles
  • P is the circumferential length of the two-dimensionally projected particles.
  • the circularity of the particles can be measured using commercial software such as ImageJ (R) from an image obtained from a scanning electron microscope. Alternatively, the circularity can also be measured by a flow particle image analyzer with a FPIA-3000 (R) manufactured by SYSMEX (Kobe, Japan).
  • the contact between the particles and the contact between the particles and the control electrode surface are almost point contact.
  • the shielding force of the incident light by the particles may be lowered, thereby lowering the quality of the display image.
  • the point contact may cause a decrease in Van der Walls force between the electrode and the particles, thereby reducing the bistable stability of the particles when the power is removed.
  • the particles preferably have a circularity of 0.93 to less than 1, which is not a perfect sphere.
  • the light shielding power of the particles is increased, so that display quality such as contrast ratio and color reproducibility can be improved, and a suitable driving voltage can be ensured.
  • FIG. 2A and 2B show aggregates 11 and 12 of particles having different particle size distributions, respectively, and FIG. 2C is an electron scanning microscope image of an aggregate of particles having a particle size distribution according to an embodiment of the present invention.
  • the particle size distribution of the particles is defined by equation (2).
  • is the arithmetic mean diameter of particle size and ⁇ is the standard deviation of the particle size.
  • the particle size distribution of the particles, from the images obtained from the scanning electron microscope as shown in the circular diagram, can be measured using commercial software such as ImageJ (R) .
  • the small value of the particle size distribution indicates that the particle size is almost similar, and the large value of the particle size distribution indicates that the particle size varies widely.
  • the size of the particles when the size of the particles is uniform, the charging and cohesiveness of the particles may be improved. However, as the particle size becomes uniform, in the reflective mode display, the light shielding power of the particle layer by the particles is weakened, thereby reducing the business card ratio and color reproducibility. In addition, when the size of the particles used is several micro to sub micro size, the weakening of the light shielding force causes a drastic deterioration of the image quality.
  • the particle size distribution of the particles may preferably be 10% to 40%.
  • the light shielding power of the particle layer (refering to the aggregate of particles distributed over the control electrode) is significantly increased, thereby improving the contrast ratio and color reproducibility.
  • the particle size distribution of less than 10% not only the filling of the particle layer is low, sufficient light shielding cannot be obtained, but also a separate classification process is required to obtain a small particle size distribution, which increases the particle manufacturing cost. If the particle size distribution exceeds 40%, there is a problem that the interchargeability between particles is deteriorated, and the life of the display device is shortened due to the aggregation of particles having different polarities.
  • 2C has a particle size distribution of about 0.2 ⁇ m to about 0.8 ⁇ m and a particle size distribution of about 20%. These particles not only had excellent color reproducibility, but also exhibited excellent contrast ratio of about 10 degrees. However, this is exemplary and the particles may have a size of 0.02 ⁇ m to 50 ⁇ m or less. If desired, in the case of a wet drive, the size of the particles may be within a relatively small range of 0.02 ⁇ m to 10 ⁇ m, and in the case of a dry drive, the size of the particles may be in the range of 0.02 ⁇ m to 50 ⁇ m. .
  • FIG. 3A is a cross-sectional view of an electrophoretic display apparatus 1000 using particles according to an embodiment of the present invention
  • FIG. 3B is a cross-sectional view of an electrophoretic display apparatus 1000R using particles having the same spherical shape and the same size as a comparative example. .
  • At least particles are to be dispersed between a first substrate 21 (which may be a lower substrate in this figure) and a second substrate 22 (which may be an upper substrate in this figure) facing each other.
  • a light conversion layer 70 may be provided that includes one or more cavities V1, V2, V3.
  • At least one of the lower substrate 20 and the upper substrate 21, for example, the upper substrate 21 on the observer 1 side may be formed of a transparent material such as glass and transparent resin.
  • the cavities V1, V2, V3 may be defined by the partition 30 as a separating member, as shown. However, this is exemplary and the cavities V1, V2, V3 may be defined by other separating members, such as microcup structures or microcapsule shells, as is well known in the art.
  • the cavities V1, V2, V3, alone or in combination with one or more other adjacent cavities, may constitute one subpixel or pixel.
  • the electrophoretic display apparatus 1000R may include electrodes 41 and 42 for driving the particles 100R, 100G, 100B, and 100K; PR, PG, PB, and PK.
  • the electrodes 41 and 42 may be configured to face each other so as to generate an electric field perpendicular to the main surfaces of the substrates 21 and 22, as shown.
  • the electrodes 22 disposed on the lower substrate 21 are individual electrodes 42R, 42G, 42B that can be independently addressed for each pixel by a suitable switching element such as a transistor, and the electrodes on the upper substrate 22 ( 41 may be a common electrode opposite the individual electrodes 42.
  • the transparent electrode may include, for example, Indium-Tin-Oxide (ITO), Fluorinated Tin Oxide (FTO), Indium Oxide (IO), and Tin Oxide; It may be formed of any one or a combination of a transparent metal oxide such as SnO 2 ), a transparent conductive resin such as polyacetylene, or a conductive resin containing conductive metal fine particles.
  • ITO Indium-Tin-Oxide
  • FTO Fluorinated Tin Oxide
  • IO Indium Oxide
  • Tin Oxide Tin Oxide
  • It may be formed of any one or a combination of a transparent metal oxide such as SnO 2 ), a transparent conductive resin such as polyacetylene, or a conductive resin containing conductive metal fine particles.
  • the above-described electrode configuration is exemplary and the present invention is not limited thereto. For example, it may have a known in-plane configuration or a combination thereof.
  • Individual electrodes 42 may be driven by an active matrix comprising transistors 50 as switching elements.
  • transistors 50 as switching elements.
  • Fluid U may be a solution or gas of one or more dielectric liquids. Fluid U may be colored with dyes and / or pigments.
  • Electrophoretic particles (100R, 100G, 100B, 100K; PR, PG, PB, PK) have a positive or negative charge, any one of pigments, dyes, metal particles, metal oxide particles and resins or these It can be formed into a mixture of.
  • a mixture particle of a pigment and a polymer may be used, and the mixture particle may be a pigment coated on the surface of the polymer particle or a composition in which the pigment is dispersed in the polymer.
  • the particles disclosed in the applicant's Korean application No. 10-2010-0086456 can be used, the matters disclosed in these patent documents are hereby incorporated by reference in their entirety.
  • the particles 100R, 100G, 100B, 100K; PR, PG, PB, PK may have a size of several tens of micro to submicron levels to have suitable electrophoretic mobility.
  • the particles may have a size of 0.02 ⁇ m to 50 ⁇ m or less.
  • the size of the particles may be in a relatively small range of 0.02 ⁇ m to 10 ⁇ m, and in the case of a dry drive, the size of the particles may be in the range of 0.02 ⁇ m to 50 ⁇ m.
  • each cavity V1, V2, and V3 may be filled with particles having one kind of color and electrophoretic mobility, or three or more kinds of particles having different color and / or electrophoretic mobility.
  • the particles 100R, 100G, 100B (PR, PG, PB) dispersed in the cavities V1, V2, and V3 may have red, green, and blue colors, respectively, in order to realize multi colors by the RGB color system. have.
  • the particles 100R, 100G, 100B (PR, PG, PB) may implement a multi color by the CMY color system, and in this case, may have cyan, magenta, and yellow colors, respectively.
  • the other particles 100K (PK) may have white or black depending on the color system.
  • the particles 100R, 100G, 100B of FIG. 3A have a circularity of less than 0.930 to 1 and a particle size distribution of 10% to 40%, according to an embodiment of the present invention, and the particles of FIG. PR, PG, PB) have a perfect sphere with a circularity of 1 and a particle size distribution of 0%.
  • the particles 100R, 100G, 100B; PR, PG, PB have red, green and blue, respectively, charged with +, other particles 100K (PK) are black,-polarity Assume that we have
  • each particle 100R, 100G, 100B, 100K; PR, PG, PB, PK will be distributed as shown in Figs. 2A and 2B, respectively.
  • the incident light i is reflected by the particles 100R, 100G (PR, PG), and as a result, wavelengths of red and green color to the observer 1, respectively. Light with will be delivered.
  • the incident light i is absorbed and turned off by the black particles 100K and PK, and no light is transmitted to the observer 1.
  • the observer 1 observes the color in which the red light (iR; iR ') and the green light (iG; iG') which are reflected light are mixed.
  • the filling state of the particle layer PL distributed on the common electrode side is good, so that only a few layers may provide excellent light shielding power. You can get it. Accordingly, the black particles 100K, which should not be visible to the observer 1, are sufficiently covered by the particle layer PL so that they are not reflected to the observer 1. In particular, even if the dielectric fluid U is transparent without being colored with a dye or pigment that may mask the black particles 100K, such as gray, since the black particles behind it may be covered by the color particles 100R and 100G. Contrast can be significantly improved, and color reproducibility can be improved.
  • the particle layer PL distributed on the common electrode side has a poor filling state due to the point contact and the uniform size, thereby providing sufficient light shielding force by the empty space in the particle layer PL. Can not get Thus, the intensity of the reflected light is reduced, and the contrast and color reproducibility of the display information are reduced.
  • black particles PK may be illuminated which should not be visible to the observer 1 by transmitted light iT. This immersion phenomenon causes a reduction in color reproducibility in a display device including particles having two or more different colors in a pixel or subpixel.
  • the color particles have been described above, those skilled in the art can realize that the same advantages can be obtained by designing the black and / or white particles to have a predetermined circularity and / or particle size distribution even in a monochrome monochrome display device. have.
  • the above embodiments relate to an electrophoretic display device having a partition structure, the same advantages can be obtained in an electrophoretic display device having a microcapsule structure, a microcup structure, or other various types of cavity structures and polymer dispersed structures. It can be obvious.
  • the above-described embodiments disclose an electrophoretic display device as a finished product, but form cavities defined by suitable separating members between supporting substrates that do not include a drive element, so that the layer indicated by 70 in FIG. 3A (light conversion layer). May comprise an image media layer (or image sheet).
  • the electrophoretic display apparatus 1000 as illustrated in FIG. 3A may be provided by bonding the image media layer to the substrate on which the driving element is formed by using an adhesive layer.

Abstract

The present invention relates to electrophoretic particles, and to a display device and image sheet comprising same. The circularity of each of the electrophoretic particles for an electrophoretic display device according to one embodiment of the present invention is determined by the following FIG. 1A, wherein the circularity is no less than 0.930 and less than 1. The particle size distribution of the particles is 10% to 40%, and is determined by the following mathematical formula 2 (where A represents a projected area of a two-dimensionally projected particle, and P represents the perimeter of the two-dimensionally projected particle): [Mathematical formula 2] particle size distribution = (â/á) × 100 (where, á is an arithmetic mean diameter of particle sizes, and â is a standard deviation of the particle sizes).

Description

전기 영동 입자들, 이를 포함하는 디스플레이 장치 및 이미지 시트Electrophoretic particles, display device and image sheet comprising the same
본 발명은 디스플레이 기술에 관한 것으로서, 더욱 상세하게는, 전기 영동 입자들, 이를 포함하는 디스플레이 장치 및 이미지 시트에 관한 것이다.The present invention relates to display technology, and more particularly, to electrophoretic particles, a display device and an image sheet comprising the same.
액정 디스플레이 장치를 대체하기 위한 정보 디스플레이 장치로서, 전기 영동 방식(electrophoresis), 통전변색 방식(electro-chromic), 및 이색 입자 회전 방식(dichroic particles rotary method)을 이용한 디스플레이 장치가 제안되어 왔다. 이들 기술들은 종이와 같은 통상의 인쇄 매체에 근접한 넓은 시야각, 낮은 소비 전력 및 메모리 효과와 같은 이점들 때문에 액정 디스플레이 장치를 대체할 수 있는 차세대 디스플레이 장치로서 광범위하게 연구되고 있다.As an information display device for replacing a liquid crystal display device, a display device using an electrophoresis method, an electro-chromic method, and a dichroic particles rotary method has been proposed. These techniques have been extensively studied as next generation display devices that can replace liquid crystal display devices due to advantages such as wide viewing angle, low power consumption, and memory effect in proximity to conventional print media such as paper.
이들 디스플레이 장치들 중 전기 영동 방식의 디스플레이 장치는 2 개의 전극들 사이에 인가된 전기장에 의해 하전된 입자들이 이동하는 현상을 이용한 장치이다. 상기 입자들은 한 종류의 컬러를 갖거나, 2 종류 이상의 컬러를 가질 수 있다. 2 종류 이상의 컬러 입자를 사용하는 경우, 이들 입자들의 극성은 서로 반대인 것이 일반적이지만, 동일한 극성을 같더라도 전기 영동 이동도의 차이에 의해 독립적으로 제어될 수 있다.Among these display devices, an electrophoretic display device uses a phenomenon in which charged particles move by an electric field applied between two electrodes. The particles may have one kind of color or two or more kinds of colors. In the case of using two or more kinds of colored particles, the polarities of these particles are generally opposite to each other, but can be independently controlled by the difference in electrophoretic mobility even if they have the same polarity.
이와 같이, 전기 영동 방식의 디스플레이 장치는 입자에 의해 이미지 정보가 구현되는 것이어서, 명암비 및 색 재현성과 같은 이미지 품질과 구동 전압과 같은 설계 파라미터들은 입자들의 특성에 의존한다.As such, in the electrophoretic display device, image information is implemented by particles, so design parameters such as image quality and driving voltage, such as contrast ratio and color reproducibility, depend on the characteristics of the particles.
본 발명이 이루고자 하는 기술적 과제는, 명암비 및 색재현성과 같은 이미지 품질을 향상시킬 수 있을 뿐만 아니라, 구동 전압을 감소시킬 수 있는 전기 영동 입자들을 제공하는 것이다.The technical problem to be achieved by the present invention is to provide electrophoretic particles that can not only improve image quality such as contrast ratio and color reproducibility, but can also reduce driving voltage.
또한, 본 발명이 이루고자 하는 다른 기술적 과제는, 전술한 이점을 갖는 입자들을 이용한 디스플레이 장치를 제공하는 것이다.In addition, another technical object of the present invention is to provide a display device using the particles having the above-described advantages.
또한, 본 발명이 이루고자 하는 또 다른 기술적 과제는, 전술한 이점을 갖는 입자들을 이용한 이미지 시트를 제공하는 것이다.In addition, another technical problem to be achieved by the present invention is to provide an image sheet using particles having the aforementioned advantages.
상기 기술적 과제를 달성하기 위한 본 발명의 일 실시예에 따른 입자들은, 전기 영동 디스플레이 장치용 입자들로서, 상기 입자들의 원형도는 하기 도 1a에 의해 정해지며, 상기 원형도는 0.930 이상 1 미만의 크기를 갖는다. 도 1a의 A는 2차원적으로 투영된 입자의 투영 면적이고, P는 2 차원적으로 투영된 입자의 둘레 길이이다.Particles according to an embodiment of the present invention for achieving the above technical problem, the particles for the electrophoretic display device, the circularity of the particles is defined by Figure 1a below, the circularity is 0.930 or more and less than 1 size Has 1A is the projection area of the two-dimensionally projected particles, and P is the circumferential length of the two-dimensionally projected particles.
또한, 본 발명의 다른 실시예에 따른 입자들은, 전기 영동 디스플레이 장치용 입자들로서, 상기 입자들의 입도 분포는 하기 수학식 2에 의해 정해지며, 상기 입도 분포는 10 % 내지 40 %의 크기를 가질 수 있다.In addition, the particles according to another embodiment of the present invention, the particles for the electrophoretic display device, the particle size distribution of the particles is determined by the following equation 2, the particle size distribution may have a size of 10% to 40%. have.
[수학식 2][Equation 2]
입도분포 = (β/α) × 100 (상기 α는 입자 크기의 산술 평균 직경이며, 상기 β는 상기 입자 크기의 표준 편차임)Particle size distribution = (β / α) × 100 (where α is the arithmetic mean diameter of particle size and β is the standard deviation of the particle size)
또한, 본 발명의 또 다른 실시예에 따른 입자들은, 전술한 상기 원형도와 상기 입도 분포의 특징을 모두 가질 수도 있다. 일부 실시예에서, 상기 입자들의 크기는, 0.02 ㎛ 내지 50 ㎛ 의 크기를 가질 수 있다.In addition, the particles according to another embodiment of the present invention may have all the features of the circularity and the particle size distribution described above. In some embodiments, the size of the particles may have a size of 0.02 μm to 50 μm.
또한, 상기 입자들은 컬러를 가질 수도 있다. 일부 실시예에서, 상기 입자들은 안료, 염료, 금속 파티클, 금속 산화물 파티클 및 수지 중 어느 하나 또는 이들의 혼합물을 포함할 수도 있다.In addition, the particles may have a color. In some embodiments, the particles may comprise any one or a mixture of pigments, dyes, metal particles, metal oxide particles, and resins.
상기 다른 기술적 과제를 달성하기 위한 본 발명의 일 실시예에 따른 전기 영동 디스플레이 장치는, 서로 대향하는 기판들; 상기 기판들 사이에 배치되는 적어도 하나 이상의 캐비티들; 및 상기 캐비티들 내에 분산되고, 전술한 특징들 중 적어도 어느 하나를 갖는 입자들을 포함한다. 일부 실시예에서, 상기 캐비티들 내의 상기 입자들은 컬러 및 전기 영동 이동도 중 적어도 어느 하나가 서로 다른 2 종류 이상의 입자들을 포함할 수도 있다. 이 경우, 상기 2 종류 이상의 입자들 중 어느 하나의 종류에 해당하는 입자들만 상기 원형도 및 입도 분포 중 적어도 어느 하나를 만족할 수 있다.Electrophoretic display device according to an embodiment of the present invention for achieving the above another technical problem, the substrate facing each other; At least one cavity disposed between the substrates; And particles dispersed in the cavities and having at least one of the foregoing features. In some embodiments, the particles in the cavities may include two or more kinds of particles in which at least one of color and electrophoretic mobility is different. In this case, only particles corresponding to any one of the two or more kinds of particles may satisfy at least one of the circularity and the particle size distribution.
상기 또 다른 기술적 과제를 달성하기 위한 본 발명의 일 실시예에 따른 이미지 시트는, 서로 대향하는 지지 기판들; 상기 지지 기판들 사이에 배치되는 적어도 하나 이상의 캐비티들; 및 상기 캐비티들 내에 분산되고, 전술한 특징들 중 적어도 어느 하나를 갖는다. 일부 실시예에서는, 상기 캐비티들 내의 상기 입자들은 컬러 및 전기 영동 이동도 중 적어도 어느 하나가 서로 다른 2 종류 이상의 입자들을 포함할 수 있으며, 이 경우, 상기 2 종류 이상의 입자들 중 어느 하나의 종류에 해당하는 입자들만 상기 원형도 및 입도 분포 중 적어도 어느 하나를 만족시킬 수 있다.According to another aspect of the present invention, there is provided an image sheet including support substrates facing each other; At least one cavity disposed between the support substrates; And dispersed in the cavities and having at least one of the foregoing features. In some embodiments, the particles in the cavities may include two or more kinds of particles in which at least one of color and electrophoretic mobility is different, and in this case, any one of the two or more kinds of particles Only the corresponding particles may satisfy at least one of the circularity and the particle size distribution.
본 발명의 실시예들에 따른 전기 영동 입자들은, 광 반사성 서브 입자에 의해 투과되는 외부 광에 대한 차폐력을 향상시키면서 우수한 광 반사성을 확보하여, 전기 영동 디스플레이 장치의 색 재현력을 향상시킬 수 있다. 또한, 본 발명의 실시예에 따르면, 우수한 충진도와 그에 따른 광차폐력을 갖도록 최적화된 원형도를 가짐으로써, 전기 영동 디스플레이 장치의 대비도와 색 재현성을 향상시킬 수 있다. Electrophoretic particles according to the embodiments of the present invention may improve the shielding power to the external light transmitted by the light reflective sub-particles while ensuring excellent light reflectivity, thereby improving the color reproducibility of the electrophoretic display device. In addition, according to an embodiment of the present invention, by having an optimized circularity to have excellent filling and light shielding power, it is possible to improve the contrast and color reproducibility of the electrophoretic display device.
또한, 본 발명의 실시예에 따르면, 최적화된 입도 분포에 의해 광 차폐력을 확보하여, 전기 영동 디스플레이 장치의 대비도와 색 재현성을 더욱 향상시킬 수 있으며, 별도의 분급 공정을 축소 또는 생략할 수 있어, 제조 비용을 절감할 수 있다.In addition, according to an embodiment of the present invention, by ensuring the light shielding power by the optimized particle size distribution, it is possible to further improve the contrast and color reproducibility of the electrophoretic display device, it is possible to reduce or omit a separate classification process In addition, manufacturing costs can be reduced.
도 1은 전기 영동 입자들이 갖는 다양한 형태를 도시한다.1 illustrates various forms of electrophoretic particles.
도 2a 및 도 2b는 각각 입도 분포가 서로 다른 입자들의 집합체를 각각 도시하며, 도 2c는 본 발명의 일 실시예에 따른 입도 분포를 갖도록 제조된 입자들의 전자주사현미경 이미지이다. 2A and 2B respectively show aggregates of particles having different particle size distributions, and FIG. 2C is an electron scanning microscope image of particles manufactured to have a particle size distribution according to an embodiment of the present invention.
도 3a는 본 발명의 실시예에 따른 입자들을 이용한 전기 영동 디스플레이 장치의 단면도이며, 도 3b는 비교예로서 완벽한 구형을 가지며 크기가 동일한 입자들을 이용한 전기 영동 디스플레이 장치의 단면도이다.3A is a cross-sectional view of an electrophoretic display apparatus using particles according to an embodiment of the present invention, and FIG. 3B is a cross-sectional view of an electrophoretic display apparatus using particles having the same spherical shape and the same size as a comparative example.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.
본 발명의 실시예들은 당해 기술 분야에서 통상의 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위하여 제공되는 것이며, 하기 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. 오히려, 이들 실시예는 본 개시를 더욱 충실하고 완전하게 하고, 당업자에게 본 발명의 사상을 완전하게 전달하기 위하여 제공되는 것이다.The embodiments of the present invention are provided to more fully explain the present invention to those skilled in the art, and the following examples can be modified in various other forms, and the scope of the present invention is It is not limited to an Example. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the inventive concept to those skilled in the art.
또한, 도면에서 각 층의 두께나 크기는 설명의 편의 및 명확성을 위하여 과장된 것이며, 도면상에서 동일 부호는 동일한 요소를 지칭한다. 본 명세서에서 사용된 바와 같이, 용어 "및/또는"은 해당 열거된 항목 중 어느 하나 및 하나 이상의 모든 조합을 포함한다.In addition, the thickness or size of each layer in the drawings is exaggerated for convenience and clarity, the same reference numerals in the drawings refer to the same elements. As used herein, the term "and / or" includes any and all combinations of one or more of the listed items.
본 명세서에서 사용된 용어는 특정 실시예를 설명하기 위하여 사용되며, 본 발명을 제한하기 위한 것이 아니다. 본 명세서에서 사용된 바와 같이, 단수 형태는 문맥상 다른 경우를 분명히 지적하는 것이 아니라면, 복수의 형태를 포함할 수 있다. 또한, 본 명세서에서 사용되는 경우 "포함한다(comprise)" 및/또는 "포함하는(comprising)"은 언급한 형상들, 숫자, 단계, 동작, 부재, 요소 및/또는 이들 그룹의 존재를 특정하는 것이며, 하나 이상의 다른 형상, 숫자, 동작, 부재, 요소 및/또는 그룹들의 존재 또는 부가를 배제하는 것이 아니다.The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms "a", "an" and "the" may include the plural forms as well, unless the context clearly indicates otherwise. Also, as used herein, "comprise" and / or "comprising" specifies the presence of the mentioned shapes, numbers, steps, actions, members, elements and / or groups of these. It is not intended to exclude the presence or the addition of one or more other shapes, numbers, acts, members, elements and / or groups.
본 명세서에서 제 1, 제 2 등의 용어가 다양한 부재, 부품, 영역, 및/또는 부분들을 설명하기 위하여 사용되지만, 이들 부재, 부품, 영역, 및/또는 부분들은 이들 용어에 의해 한정되어서는 안됨은 자명하다. 이들 용어는 하나의 부재, 부품, 영역 또는 부분을 다른 영역 또는 부분과 구별하기 위하여만 사용된다. 따라서, 이하 상술할 제 1 부재, 부품, 영역 또는 부분은 본 발명의 가르침으로부터 벗어나지 않고서도 제 2 부재, 부품, 영역 또는 부분을 지칭할 수 있다.Although the terms first, second, etc. are used herein to describe various members, parts, regions, and / or parts, these members, parts, regions, and / or parts should not be limited by these terms. Is self-explanatory. These terms are only used to distinguish one member, part, region or part from another region or part. Thus, the first member, part, region, or portion, which will be described below, may refer to the second member, component, region, or portion without departing from the teachings of the present invention.
이하, 본 발명의 실시예들은 본 발명의 이상적인 실시예들을 개략적으로 도시하는 도면들을 참조하여 설명한다. 도면들에 있어서, 예를 들면, 부재들의 크기와 형상은 설명의 편의와 명확성을 위하여 과장될 수 있으며, 실제 구현시, 도시된 형상의 변형들이 예상될 수 있다. 따라서, 본 발명의 실시예는 본 명세서에 도시된 영역의 특정 형상에 제한된 것으로 해석되어서는 아니 된다.Embodiments of the present invention will now be described with reference to the drawings, which schematically illustrate ideal embodiments of the present invention. In the drawings, for example, the size and shape of the members may be exaggerated for convenience and clarity of description, and in actual implementation, variations of the illustrated shape may be expected. Accordingly, embodiments of the present invention should not be construed as limited to the specific shapes of the regions shown herein.
본 발명자들은 전기 영동 입자들의 입자 형태와 입도 분포가 전기 영동 디스플레이 장치의 응답 속도, 표시 품질과 관련된 명암비 및 색재현력에 영향을 미침을 관측하였다. 하기 실시예들은 전기 영동 디스플레이 장치의 응답 속도, 명암비 및 색재현력과 같은 전기 영동 디스플레이 장치의 성능이 입자들의 입자 형태와 입도 분포의 제어를 통하여 개선되고, 이를 이용한 다양한 이미지 시트 및 전기 영동 디스플레이 장치들에 관한 것이다.The inventors have observed that the particle shape and particle size distribution of the electrophoretic particles affect the response speed, display ratio and color reproduction of the electrophoretic display device. The following examples improve the performance of the electrophoretic display device such as response speed, contrast ratio and color reproduction of the electrophoretic display device by controlling the particle shape and particle size distribution of the particles, and using the same for various image sheets and electrophoretic display devices. It is about.
도 1a는 입자의 원형도에 관한 특성식이며, 도 1b는 전기 영동 입자들이 갖는 다양한 형태를 도시한다. 전기 영동 디스플레이 장치에서 사용되는 입자들은, 도 1b에 도시된 구형(10A), 타원형(10B) 및 무정형의 감자형(10C) 등의 다양한 형태를 가질 수 있으며, 이러한 다양한 형태를 갖는 입자들이 집합적으로 이용된다.1A is a characteristic equation relating to the circularity of particles, and FIG. 1B shows various forms of electrophoretic particles. Particles used in the electrophoretic display device may have a variety of shapes, such as spherical (10A), elliptical (10B) and amorphous potato (10C) shown in Figure 1b, the particles having a variety of these forms Used as
이들 입자들의 형태가 어느 정도로 구형에 가까운가에 관한 정도는 도 1a에 나타낸 원형도(circularity)에 의해 평가될 수 있다. 상기 원형도는 입자의 둘레 깊이에 대한 입자의 투영 면적의 비로 결정된다. 도 1a에서, A는 2차원적으로 투영된 입자의 투영 면적이고, P는 2 차원적으로 투영된 입자의 둘레 길이이다. 입자들의 원형도는 주사전자현미경으로부터 얻어진 이미지로부터 ImageJ(R)와 같은 상용의 소프트웨어를 사용하여 측정될 수 있다. 또는, SYSMEX사(일본 고베 소재)의 FPIA-3000(R)이란 이미지 분석기(flow particle image analyzer)에 의해 상기 원형도를 측정할 수도 있다.The extent to which the shape of these particles is spherical can be assessed by the circularity shown in FIG. 1A. The circularity is determined by the ratio of the projected area of the particle to the circumferential depth of the particle. In FIG. 1A, A is the projection area of the two-dimensionally projected particles, and P is the circumferential length of the two-dimensionally projected particles. The circularity of the particles can be measured using commercial software such as ImageJ (R) from an image obtained from a scanning electron microscope. Alternatively, the circularity can also be measured by a flow particle image analyzer with a FPIA-3000 (R) manufactured by SYSMEX (Kobe, Japan).
반사형 전기 영동 디스플레이 장치 내에서, 입자들이 완벽한 구에 가까우면, 입자들 사이의 접촉 및 입자와 제어 전극 표면간의 접촉은 거의 점 접촉으로 이루어진다. 그 결과, 입자들에 의한 입사 광의 차폐력이 저하되어, 표시 이미지의 품질이 저하될 수 있다. 또한, 상기 점 접촉은 전극과 입자들 사이의 반데르발스(Van der Walls) 힘의 저하를 초래하여, 전원 제거시 입자의 쌍안정성(bistability)을 감소시킬 수 있다. In reflective electrophoretic display devices, when the particles are close to a perfect sphere, the contact between the particles and the contact between the particles and the control electrode surface are almost point contact. As a result, the shielding force of the incident light by the particles may be lowered, thereby lowering the quality of the display image. In addition, the point contact may cause a decrease in Van der Walls force between the electrode and the particles, thereby reducing the bistable stability of the particles when the power is removed.
본 발명의 실시예에 따르면, 입자들은, 바람직하게는, 완벽한 구가 아닌 0.93 내지 1 미만의 원형도를 갖는다. 전술한 원형도 범위 내에서, 입자들의 광 차폐력은 증가되고, 그에 따라, 명암비 및 색 재현력과 같은 표시 품질이 향상되고, 적합한 구동 전압을 확보할 수 있다. 이러한 본 발명의 이점은 후술하는 디스플레이 장치의 실시예에 관한 설명으로부터 더욱 분명해질 것이다. 상기 입자들의 원형도가 0.93보다 작으면, 서로 다른 극성을 갖는 입자들 사이의 전기적 인력에 의한 들러붙음 현상이 심해지고, 입자와 제어 전극 표면 사이의 반데르발스 힘이 증가한다. 그 결과, 동일 구동 전압 하에서 이미지 밀도가 감소될 뿐만 아니라, 동등한 수준의 이미지 밀도를 얻기 위해 요구되는 구동 전압은, 예를 들면, 100 V 이상으로 급격히 증가될 수 있다.According to an embodiment of the invention, the particles preferably have a circularity of 0.93 to less than 1, which is not a perfect sphere. Within the above circularity range, the light shielding power of the particles is increased, so that display quality such as contrast ratio and color reproducibility can be improved, and a suitable driving voltage can be ensured. These advantages of the present invention will become more apparent from the description of the embodiments of the display device described below. If the particles have a roundness of less than 0.93, the sticking phenomenon due to electrical attraction between particles having different polarities is increased, and the van der Waals force between the particles and the control electrode surface is increased. As a result, not only the image density is reduced under the same driving voltage, but also the driving voltage required to obtain an equivalent level of image density can be rapidly increased, for example, to 100 V or more.
도 2a 및 도 2b는 각각 입도 분포가 서로 다른 입자들의 집합체(11, 12)를 각각 도시하며, 도 2c는 본 발명의 실시예에 따른 입도 분포를 갖는 입자들의 집합체의 전자주사현미경 이미지이다. 2A and 2B show aggregates 11 and 12 of particles having different particle size distributions, respectively, and FIG. 2C is an electron scanning microscope image of an aggregate of particles having a particle size distribution according to an embodiment of the present invention.
입자들의 입도 분포는 수학식 2에 의해 정의된다.The particle size distribution of the particles is defined by equation (2).
[수학식 2][Equation 2]
입도 분포 = (β/α) × 100Particle Size Distribution = (β / α) × 100
여기서, α는 입자 크기의 산술 평균 직경이며, β는 상기 입자 크기의 표준 편차이다. 입자들의 입도 분포도, 위 원형도와 같이 주사전자현미경으로부터 얻어진 이미지로부터 ImageJ(R)과 같은 상용의 소프트웨어를 사용하여 측정될 수 있다. 입도 분포의 값이 작다는 것은 입자의 크기가 거의 비슷한 것을 나타내며, 입도 분포의 값이 크다는 것은 입자의 크기가 매우 다양하게 존재하는 것을 나타낸다.Where α is the arithmetic mean diameter of particle size and β is the standard deviation of the particle size. The particle size distribution of the particles, from the images obtained from the scanning electron microscope as shown in the circular diagram, can be measured using commercial software such as ImageJ (R) . The small value of the particle size distribution indicates that the particle size is almost similar, and the large value of the particle size distribution indicates that the particle size varies widely.
일반적으로 입자의 크기가 균일하면, 입자의 대전성 및 응집성 등이 개선될 수 있다. 그러나, 입자의 크기가 균일해 질수록 반사형 모드 디스플레이에서, 입자들에 의한 입자 층의 광 차폐성력이 약화되어, 명함비와 색 재현성이 감소된다. 또한, 사용되는 입자의 크기가 수 마이크로 내지 서브 마이크로 크기인 경우, 광 차폐력의 약화는 이미지 품질을 급격하게 열화시키는 원인이 된다.In general, when the size of the particles is uniform, the charging and cohesiveness of the particles may be improved. However, as the particle size becomes uniform, in the reflective mode display, the light shielding power of the particle layer by the particles is weakened, thereby reducing the business card ratio and color reproducibility. In addition, when the size of the particles used is several micro to sub micro size, the weakening of the light shielding force causes a drastic deterioration of the image quality.
본 발명의 실시예에 따르면, 입자들의 입도 분포는, 바람직하게는, 10 % 내지 40 % 일 수 있다. 이 범위 내에서, 입자층(제어 전극 위에 분포된 입자의 집합체를 지칭함)의 광 차폐력은 현저하게 증가되고, 그에 따라 명암비와 색 재현성이 개선된다. 실제 10 % 미만의 입도 분포에서는 입자층의 충진성이 낮아 충분한 광 차폐성을 얻을 수 없을 뿐만 아니라, 작은 입도 분포를 얻기 위하여 별도의 분급 공정이 요구되어, 이는 입자 제조 비용을 상승시킨다. 입도 분포가 40 %를 초과하면, 입자간 대전성이 나빠지고, 극성이 다른 입자간 응집에 의해 디스플레이 장치의 수명이 짧아지는 문제점이 있다. 도 2c에 도시된 본 발명의 실시예에 따른 입자들의 집합체는 입자들의 크기는 약 0.2 ㎛ 내지 약 0.8 ㎛ 이고, 약 20 %의 입도 분포를 갖는다. 이들 입자들은, 우수한 색 재현성을 가질 뿐만 아니라, 약 10 정도의 우수한 명암비를 나타내었다. 그러나, 이는 예시적이며, 입자들은 0.02 ㎛ 내지 50 ㎛ 이하의 크기를 가질 수 있다. 필요에 따라, 습식 구동 장치의 경우, 상기 입자들의 크기는 0.02 ㎛ 내지 10 ㎛의 비교적 작은 범위 내에 있을 수 있으며, 건식 구동 장치의 경우, 상기 입자들의 크기는 0.02 ㎛ 내지 50 ㎛의 범위 내일 수 있다. According to an embodiment of the present invention, the particle size distribution of the particles may preferably be 10% to 40%. Within this range, the light shielding power of the particle layer (refering to the aggregate of particles distributed over the control electrode) is significantly increased, thereby improving the contrast ratio and color reproducibility. In the particle size distribution of less than 10%, not only the filling of the particle layer is low, sufficient light shielding cannot be obtained, but also a separate classification process is required to obtain a small particle size distribution, which increases the particle manufacturing cost. If the particle size distribution exceeds 40%, there is a problem that the interchargeability between particles is deteriorated, and the life of the display device is shortened due to the aggregation of particles having different polarities. The aggregate of particles according to the embodiment of the present invention shown in FIG. 2C has a particle size distribution of about 0.2 μm to about 0.8 μm and a particle size distribution of about 20%. These particles not only had excellent color reproducibility, but also exhibited excellent contrast ratio of about 10 degrees. However, this is exemplary and the particles may have a size of 0.02 μm to 50 μm or less. If desired, in the case of a wet drive, the size of the particles may be within a relatively small range of 0.02 μm to 10 μm, and in the case of a dry drive, the size of the particles may be in the range of 0.02 μm to 50 μm. .
도 3a는 본 발명의 실시예에 따른 입자들을 이용한 전기 영동 디스플레이 장치(1000)의 단면도이며, 도 3b는 비교예로서 완벽한 구형을 가지며 크기가 동일한 입자들을 이용한 전기 영동 디스플레이 장치(1000R)의 단면도이다.3A is a cross-sectional view of an electrophoretic display apparatus 1000 using particles according to an embodiment of the present invention, and FIG. 3B is a cross-sectional view of an electrophoretic display apparatus 1000R using particles having the same spherical shape and the same size as a comparative example. .
도 3a 및 도 3b를 참조하면, 서로 대향하는 제 1 기판(21; 본 도면에서는 하부 기판일 수 있음)과 제 2 기판(22; 본 도면에서는 상부 기판일 수 있음) 사이에 입자들이 분산될 적어도 하나 이상의 캐비티(V1, V2, V3)를 포함하는 광 변환 층(70)이 제공될 수 있다. 하부 기판(20)과 상부 기판(21) 중 적어도 어느 하나, 예를 들면, 관찰자(1) 측의 상부 기판(21)은 유리 및 투명 수지와 같은 투명한 재료로 형성될 수 있다. 3A and 3B, at least particles are to be dispersed between a first substrate 21 (which may be a lower substrate in this figure) and a second substrate 22 (which may be an upper substrate in this figure) facing each other. A light conversion layer 70 may be provided that includes one or more cavities V1, V2, V3. At least one of the lower substrate 20 and the upper substrate 21, for example, the upper substrate 21 on the observer 1 side may be formed of a transparent material such as glass and transparent resin.
캐비티(V1, V2, V3)는 도시된 바와 같이 분리 부재인 격벽(30)에 의해 정의될 수 있다. 그러나, 이는 예시적이며, 캐비티(V1, V2, V3)는 당해 기술 분야에 잘 알려진 바와 같이 마이크로 컵 구조 또는 마이크로 캡슐 쉘과 같은 다른 분리 부재에 의해 정의될 수도 있다. 캐비티들(V1, V2, V3)은, 단독으로 또는 인접한 다른 하나 이상의 캐비티들과 조합되어, 하나의 서브픽셀 또는 픽셀을 구성할 수 있다.The cavities V1, V2, V3 may be defined by the partition 30 as a separating member, as shown. However, this is exemplary and the cavities V1, V2, V3 may be defined by other separating members, such as microcup structures or microcapsule shells, as is well known in the art. The cavities V1, V2, V3, alone or in combination with one or more other adjacent cavities, may constitute one subpixel or pixel.
전기 영동 디스플레이 장치(1000R)는 입자들(100R, 100G, 100B, 100K; PR, PG, PB, PK)을 구동하기 위한 전극들(41, 42)을 포함할 수 있다. 전극들(41, 42)은, 도시된 바와 같이 기판들(21, 22)의 주면에 수직하는 전계를 발생시킬 수 있도록 서로 대향하는 구성을 가질 수 있다. 하부 기판(21) 상에 배치된 전극들(22)은 트랜지스터와 같은 적합한 스위칭 소자에 의해 각 픽셀마다 독립적인 어드레싱이 가능한 개별 전극(42R, 42G, 42B)이며, 상부 기판(22) 상의 전극(41)은 개별 전극들(42)에 대향하는 공통 전극일 수 있다. The electrophoretic display apparatus 1000R may include electrodes 41 and 42 for driving the particles 100R, 100G, 100B, and 100K; PR, PG, PB, and PK. The electrodes 41 and 42 may be configured to face each other so as to generate an electric field perpendicular to the main surfaces of the substrates 21 and 22, as shown. The electrodes 22 disposed on the lower substrate 21 are individual electrodes 42R, 42G, 42B that can be independently addressed for each pixel by a suitable switching element such as a transistor, and the electrodes on the upper substrate 22 ( 41 may be a common electrode opposite the individual electrodes 42.
이들 전극들(41, 42) 중 적어도 어느 하나, 예를 들면 공통 전극은 투명 전극일 수 있다. 상기 투명 전극은, 예를 들면, 인듐-주석-산화물(Indium-Tin-Oxide; ITO), 불화 주석 산화물(Fluorinated tin Oxide; FTO), 인듐 산화물(indium oxide; IO) 및 주석 산화물(tin oxide; SnO2)과 같은 투명한 금속 산화물, 폴리아세틸렌(polyacetylene)과 같은 투명한 도전성 수지, 또는 도전성 금속 미립자를 함유하는 도전성 수지 중 어느 하나 또는 이들의 조합으로 형성될 수 있다. 그러나, 전술한 전극 구성은 예시적이며, 본 발명이 이에 제한된 것은 아니다. 예를 들면, 공지의 인플레인(in-plane) 구성 또는 이들이 조합된 구성을 가질 수도 있다. At least one of these electrodes 41, 42, for example the common electrode, may be a transparent electrode. The transparent electrode may include, for example, Indium-Tin-Oxide (ITO), Fluorinated Tin Oxide (FTO), Indium Oxide (IO), and Tin Oxide; It may be formed of any one or a combination of a transparent metal oxide such as SnO 2 ), a transparent conductive resin such as polyacetylene, or a conductive resin containing conductive metal fine particles. However, the above-described electrode configuration is exemplary and the present invention is not limited thereto. For example, it may have a known in-plane configuration or a combination thereof.
개별 전극들(42)은 스위칭 소자로서 트랜지스터들(50)을 포함하는 능동 매트릭스에 의해 구동될 수 있다. 그러나, 이는 예시적일 뿐, 당업자라면, 수동 매트릭스 방식의 전극 구성, 또는 정적 구동을 위한 세그먼트 방식의 전극 구성과 배선 구조도 본 발명의 실시예에 포함됨을 이해할 수 있을 것이다. Individual electrodes 42 may be driven by an active matrix comprising transistors 50 as switching elements. However, this is only illustrative, and those skilled in the art will appreciate that a passive matrix type electrode configuration, or a segment type electrode configuration and wiring structure for static driving are also included in the embodiments of the present invention.
캐비티들(V1, V2, V3) 내에는 고저항을 가지면서 점성이 낮은 유체(U)와 유체 내에 분산된 적어도 한 종류 이상의 전기 영동 입자들(100R, 100G, 100B, 100K; PR, PG, PB, PK)이 분산된다. 유체(U)는 하나 이상의 유전성 액체로 이루어진 용액이나 기체일 수 있다. 유체(U)는 염료 및/또는 안료에 의해 착색될 수도 있다.In the cavities (V1, V2, V3) has a high resistance and low viscosity fluid (U) and at least one kind of electrophoretic particles (100R, 100G, 100B, 100K; PR, PG, PB) dispersed in the fluid , PK) is dispersed. Fluid U may be a solution or gas of one or more dielectric liquids. Fluid U may be colored with dyes and / or pigments.
전기 영동 입자들(100R, 100G, 100B, 100K; PR, PG, PB, PK)은 양성 또는 음성의 전하를 가지며, 안료(pigments), 염료, 금속 파티클, 금속 산화물 파티클 및 수지 중 어느 하나 또는 이들의 혼합물로 형성될 수 있다. 예를 들면, 안료와 폴리머의 혼합물 입자가 사용될 수 있으며, 상기 혼합물 입자는, 폴리머 입자 표면에 안료가 코팅된 것이거나, 폴리머 내에 안료가 분산된 조성물일 수 있다. 바람직하게는, 본 출원인의 한국 출원 제10-2010-0086456호에 개시된 입자들이 이용될 수 있으며, 이들 특허 문헌에 개시된 사항은 본 명세서에 참조에 의해 그 전체가 포함된다. Electrophoretic particles (100R, 100G, 100B, 100K; PR, PG, PB, PK) have a positive or negative charge, any one of pigments, dyes, metal particles, metal oxide particles and resins or these It can be formed into a mixture of. For example, a mixture particle of a pigment and a polymer may be used, and the mixture particle may be a pigment coated on the surface of the polymer particle or a composition in which the pigment is dispersed in the polymer. Preferably, the particles disclosed in the applicant's Korean application No. 10-2010-0086456 can be used, the matters disclosed in these patent documents are hereby incorporated by reference in their entirety.
입자들(100R, 100G, 100B, 100K; PR, PG, PB, PK)은 적합한 전기 영동 이동도를 갖도록 수십 마이크로 내지 서브 마이크론 레벨의 크기를 가질 수 있다. 예를 들면, 상기 입자들은, 0.02 ㎛ 내지 50 ㎛ 이하의 크기를 가질 수 있다. 필요에 따라, 습식 구동 장치의 경우, 상기 입자들의 크기는 0.02 ㎛ 내지 10 ㎛의 비교적 작은 범위일 수 있으며, 건식 구동 장치의 경우, 상기 입자들의 크기는 0.02 ㎛ 내지 50 ㎛의 범위 내일 수 있다. The particles 100R, 100G, 100B, 100K; PR, PG, PB, PK may have a size of several tens of micro to submicron levels to have suitable electrophoretic mobility. For example, the particles may have a size of 0.02 μm to 50 μm or less. If desired, in the case of a wet drive, the size of the particles may be in a relatively small range of 0.02 μm to 10 μm, and in the case of a dry drive, the size of the particles may be in the range of 0.02 μm to 50 μm.
또한, 각 캐비티들(V1, V2, V3) 내에는, 도시된 바와 같이 컬러 및/또는 전기 영동 이동도가 서로 다른 2 종류의 입자들이 분산되어 멀티 컬러 디스플레이 장치를 구현할 수 있다. 그러나, 이는 예시적이며, 각 캐비티는 1 종류의 컬러 및 전기 영동 이동도를 갖는 입자, 또는 컬러 및/또는 전기 영동 이동도가 서로 다른 3 종류 이상의 입자들로 채워질 수도 있다. In addition, two types of particles having different colors and / or electrophoretic mobility may be dispersed in each of the cavities V1, V2, and V3 to implement a multi-color display device. However, this is exemplary, and each cavity may be filled with particles having one kind of color and electrophoretic mobility, or three or more kinds of particles having different color and / or electrophoretic mobility.
캐비티(V1, V2, V3) 내에 분산된 입자들(100R, 100G, 100B; PR, PG, PB)은 RGB 컬러 시스템에 의한 멀티 컬러를 구현하기 위해서, 각각, 적색, 녹색 및 청색 컬러를 가질 수 있다. 또는, 입자들(100R, 100G, 100B; PR, PG, PB)은 CMY 컬러 시스템에 의해 멀티 컬러를 구현할 수 있으며, 이 경우, 각각 시안색, 마젠타색 및 황색 컬러를 가질 수도 있다. 다른 입자들(100K; PK)은 컬러 시스템에 따라 백색 또는 흑색을 가질 수 있다.The particles 100R, 100G, 100B (PR, PG, PB) dispersed in the cavities V1, V2, and V3 may have red, green, and blue colors, respectively, in order to realize multi colors by the RGB color system. have. Alternatively, the particles 100R, 100G, 100B (PR, PG, PB) may implement a multi color by the CMY color system, and in this case, may have cyan, magenta, and yellow colors, respectively. The other particles 100K (PK) may have white or black depending on the color system.
도 3a의 입자들(100R, 100G, 100B)은, 본 발명의 실시예에 따라, 0.930 내지 1 미만의 원형도와 10 % 내지 40 %에 속하는 입도 분포를 가지며, 비교를 위하여 도 3b의 입자들(PR, PG, PB)은 원형도가 1인 완전한 구형을 가지며, 입도 분포는 0 % 이다. 설명의 편의를 위하여, 입자들(100R, 100G, 100B; PR, PG, PB)은 각각 적색, 녹색 및 청색을 가지고, + 로 대전되며, 다른 입자들(100K; PK)은 흑색이고, - 극성을 가짐을 가정한다.The particles 100R, 100G, 100B of FIG. 3A have a circularity of less than 0.930 to 1 and a particle size distribution of 10% to 40%, according to an embodiment of the present invention, and the particles of FIG. PR, PG, PB) have a perfect sphere with a circularity of 1 and a particle size distribution of 0%. For convenience of description, the particles 100R, 100G, 100B; PR, PG, PB have red, green and blue, respectively, charged with +, other particles 100K (PK) are black,-polarity Assume that we have
트랜지스터들(50)의 게이트 전극(50G)을 통하여 주사 신호가 수신되고, 소오스 전극(50S)을 통하여 데이터 신호가 수신되면, 개별 전극들(42R, 42G, 42B)과 공통 전극(41) 사이에는 소정의 전계가 인가될 수 있다. 예를 들면, 제 1 캐비티(V1)의 개별 전극(42R)에는 음의 전위, 제 2 및 제 3 캐비티들(V2, V3)의 개별 전극들(42G, 42B)에는 양의 전위, 그리고, 공통 전극(41)에는 접지 전위가 인가될 수 있다. 이 경우, 각 입자들(100R, 100G, 100B, 100K; PR, PG, PB, PK)은 도 2a 및 도 2b에 도시된 같이 각각 분포될 것이다.When the scan signal is received through the gate electrode 50G of the transistors 50 and the data signal is received through the source electrode 50S, between the individual electrodes 42R, 42G, 42B and the common electrode 41. Any electric field may be applied. For example, a negative potential is applied to the individual electrodes 42R of the first cavity V1, a positive potential is provided to the individual electrodes 42G and 42B of the second and third cavities V2 and V3, and common. The ground potential may be applied to the electrode 41. In this case, each particle 100R, 100G, 100B, 100K; PR, PG, PB, PK will be distributed as shown in Figs. 2A and 2B, respectively.
제 1 및 제 2 캐비티(V1, V2)에서는, 입사된 광(i)이 입자들(100R, 100G; PR, PG)에 의해 반사되고, 그 결과 관찰자(1)에게 각각 적색 및 녹색 컬러의 파장을 갖는 광이 전달될 것이다. 이와 달리, 제 3 캐비티(V3)에서는, 흑색 입자들(100K, PK)에 의해 입사 광(i)은 모두 흡수되어 턴오프되며, 관찰자(1)에게 광은 전달되지 않을 것이다. 컬러 가색 혼합법에 따라, 관찰자(1)는, 반사 광인 적색 광(iR; iR')과 녹색 광(iG; iG')이 혼합된 컬러를 관찰하게 된다.In the first and second cavities V1, V2, the incident light i is reflected by the particles 100R, 100G (PR, PG), and as a result, wavelengths of red and green color to the observer 1, respectively. Light with will be delivered. In contrast, in the third cavity V3, the incident light i is absorbed and turned off by the black particles 100K and PK, and no light is transmitted to the observer 1. By the color additive mixing method, the observer 1 observes the color in which the red light (iR; iR ') and the green light (iG; iG') which are reflected light are mixed.
본 발명의 실시예에 따른 입자들(100R, 100K, 100G)을 사용한 도 3a의 실시예에서는, 공통 전극 측에 분포하는 입자층(PL)의 충진 상태가 양호하여, 수 layer 만으로 우수한 광 차폐력을 얻을 수 있다. 그에 따라, 관찰자(1)에게 보이지 않아야 하는 흑색 입자들(100K)이 입자층(PL)에 의해 충분히 가려져 관찰자(1)에게 비치지 않게 된다. 특히, 유전성 유체(U)가 회색과 같이 흑색 입자들(100K)을 가릴 수 있는 염료나 안료로 착색되지 않고 투명하더라도, 컬러 입자들(100R, 100G)에 의해 뒤의 흑색 입자를 가릴 수 있기 때문에 대비도는 현저하게 개선되고, 색 재현력도 향상될 수 있다.In the embodiment of FIG. 3A using the particles 100R, 100K, and 100G according to the embodiment of the present invention, the filling state of the particle layer PL distributed on the common electrode side is good, so that only a few layers may provide excellent light shielding power. You can get it. Accordingly, the black particles 100K, which should not be visible to the observer 1, are sufficiently covered by the particle layer PL so that they are not reflected to the observer 1. In particular, even if the dielectric fluid U is transparent without being colored with a dye or pigment that may mask the black particles 100K, such as gray, since the black particles behind it may be covered by the color particles 100R and 100G. Contrast can be significantly improved, and color reproducibility can be improved.
이와 달리, 비교예에 관한 도 3b에서는, 공통 전극 측에 분포하는 입자층(PL)은 점 접촉과 균일한 크기로 인하여 충진 상태가 양호하지 못하여 입자층(PL) 내의 빈 공간에 의해 충분한 광 차폐력을 얻을 수 없다. 그에 따라, 반사 광의 세기가 감소되고, 표시 정보의 대비도와 색 재현력이 감소된다. 유전성 유체(U)가 투명한 경우, 투과된 광(iT)에 의해 관찰자(1)에게 보이지 않아야 하는 흑색 입자들(PK)이 비칠 수도 있다. 이러한 비침 현상은, 픽셀 또는 서브픽셀 내에 2 이상의 서로 다른 컬러를 갖는 입자들을 포함하는 디스플레이 장치에서 색 재현력을 감소시키는 원인이 된다.On the contrary, in FIG. 3B according to the comparative example, the particle layer PL distributed on the common electrode side has a poor filling state due to the point contact and the uniform size, thereby providing sufficient light shielding force by the empty space in the particle layer PL. Can not get Thus, the intensity of the reflected light is reduced, and the contrast and color reproducibility of the display information are reduced. If the dielectric fluid U is transparent, black particles PK may be illuminated which should not be visible to the observer 1 by transmitted light iT. This immersion phenomenon causes a reduction in color reproducibility in a display device including particles having two or more different colors in a pixel or subpixel.
도 3a 및 도 3b에서는, 선택적으로 컬러 입자들(100R, 100G, 100B)만이 본 발명의 실시예에 따른 소정의 원형도와 입도 분포를 갖는 것에 관하여 개시하고 있지만, 당업자라면, 동일 캐비티 내에 이들 컬러 입자들(100R, 100G, 100B)과 함께 분산되는 다른 흑색 또는 백색 입자들(100K)도 소정의 원형도와 입도 분포를 가질 수도 있음을 이해할 것이다. 그러나, 캐비티 내에 2 종류 이상의 입자들이 분산되는 2 파티클 또는 3 파티클 이상의 시스템에서, 어느 하나의 종류에 해당하는 입자들, 예를 들면, 컬러 입자들만이 소정의 원형도와 입도 분포를 갖도록 하는 것은, 극성이 서로 다른 이종 입자들 사이의 응집 현상을 방지 내지 감소시켜, 이로 인한 구동 전압의 증가를 방지할 수 있어 바람직할 수 있다.In Figures 3A and 3B, optionally only the colored particles 100R, 100G, 100B are disclosed with respect to having a certain circularity and particle size distribution according to an embodiment of the present invention, but those skilled in the art will appreciate that these colored particles in the same cavity It will be appreciated that other black or white particles 100K dispersed with the fields 100R, 100G, and 100B may also have a predetermined circularity and particle size distribution. However, in a two- or three-particle or more system in which two or more kinds of particles are dispersed in a cavity, it is polarity that only particles of any one type, for example color particles, have a certain circularity and particle size distribution. It may be desirable to prevent or reduce agglomeration between these different dissimilar particles, thereby preventing an increase in driving voltage.
이상에서는, 컬러 입자들에 대하여 개시하고 있지만, 당업자라면, 흑백의 모노크롬 디스플레이 장치에서도 흑색 및/또는 백색 입자들이 소정의 원형도 및/또는 입도 분포를 갖도록 설계함으로써 동일한 이점을 얻을 수 있음을 알 수 있다. 또한, 상기 실시예들에서는 격벽 구조를 갖는 전기 영동 디스플레이 장치에 관한 것이지만, 마이크로 캡슐 구조, 마이크로 컵 구조, 또는 다른 다양한 형태의 캐비티 구조, 폴리머 분산형 구조를 갖는 전기 영동 디스플레이 장치에서도 동일한 이점을 얻을 수 있음은 자명하다.Although the color particles have been described above, those skilled in the art can realize that the same advantages can be obtained by designing the black and / or white particles to have a predetermined circularity and / or particle size distribution even in a monochrome monochrome display device. have. In addition, although the above embodiments relate to an electrophoretic display device having a partition structure, the same advantages can be obtained in an electrophoretic display device having a microcapsule structure, a microcup structure, or other various types of cavity structures and polymer dispersed structures. It can be obvious.
전술한 실시예들은 완제품으로서 전기 영동 디스플레이 장치를 개시하고 있지만, 구동 소자를 포함하지 않는 지지 기판 사이에 적합한 분리 부재에 의해 정의되는 캐비티들을 형성하여, 도 3a의 70으로 지시되는 층(광 변환 층)을 포함하는 이미지 미디어 층(또는 이미지 시트)을 제조할 수도 있다. 상기 이미지 미디어 층을 완성한 후, 이를 구동 소자가 형성된 기판 상에 접착층을 이용하여 결합시킴으로써, 도 3a에 도시된 바와 같은 전기 영동 디스플레이 장치(1000)가 제공될 수 있다.The above-described embodiments disclose an electrophoretic display device as a finished product, but form cavities defined by suitable separating members between supporting substrates that do not include a drive element, so that the layer indicated by 70 in FIG. 3A (light conversion layer). May comprise an image media layer (or image sheet). After the image media layer is completed, the electrophoretic display apparatus 1000 as illustrated in FIG. 3A may be provided by bonding the image media layer to the substrate on which the driving element is formed by using an adhesive layer.
이상에서 설명한 본 발명이 전술한 실시예 및 첨부된 도면에 한정되지 않으며, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러가지 치환, 변형 및 변경이 가능하다는 것은, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 있어 명백할 것이다.The present invention described above is not limited to the above-described embodiments and the accompanying drawings, and various substitutions, modifications, and alterations are possible within the scope without departing from the technical spirit of the present invention, which are common in the art. It will be apparent to those who have knowledge.

Claims (12)

  1. 전기 영동 디스플레이 장치용 입자들로서, 상기 입자들의 원형도는 하기 수학식 1에 의해 정해지며, 상기 원형도는 0.930 이상 1 미만의 크기를 갖는 입자들.Particles for an electrophoretic display device, the circularity of the particles is determined by the following equation 1, the circularity is a particle having a size of more than 0.930 and less than 1.
    상기 A는 2차원적으로 투영된 입자의 투영 면적이고, 상기 P는 2 차원적으로 투영된 입자의 둘레 길이임)A is the projection area of the two-dimensionally projected particle, and P is the circumferential length of the two-dimensionally projected particle)
  2. 전기 영동 디스플레이 장치용 입자들로서, 상기 입자들의 입도 분포는 하기 수학 식 2에 의해 정해지며, 상기 입도 분포는 10 % 내지 40 %의 크기를 갖는 입자들.As particles for an electrophoretic display device, the particle size distribution of the particles is defined by Equation 2 below, wherein the particle size distribution has a size of 10% to 40%.
    [수학식 2] [Equation 2]
    입도 분포 = (β/α) × 100 (상기 α는 입자 크기의 산술 평균 직경이며, 상기 β는 상기 입자 크기의 표준 편차임)Particle size distribution = (β / α) × 100 (where α is the arithmetic mean diameter of particle size and β is the standard deviation of the particle size)
  3. 전기 영동 디스플레이 장치용 입자들로서, 상기 입자들의 원형도는 상기 식 1에 의해 정해지고, 상기 원형도는 0.930 이상 1 미만의 크기를 가지며, 상기 입자들의 입도 분포는 상기 식 2에 의해 정해지며, 상기 입도 분포는 10 % 내지 40 %의 크기를 갖는 입자들.As particles for an electrophoretic display device, the circularity of the particles is determined by Equation 1, the circularity is 0.930 or more and less than 1, the particle size distribution of the particles is determined by Equation 2, Particle size distribution has particles having a size of 10% to 40%.
  4. 제 1 항 내지 제 3 항 중 어느 하나의 항에 있어서, The method according to any one of claims 1 to 3,
    상기 입자들의 크기는, 0.02 ㎛ 내지 50 ㎛ 이하의 크기를 갖는 것을 특징으로 하는 입자들. The particles are particles, characterized in that having a size of 0.02 ㎛ to 50 ㎛ or less.
  5. 제 1 항 내지 제 3 항 중 어느 하나의 항에 있어서,The method according to any one of claims 1 to 3,
    상기 입자들은 컬러를 갖는 것을 특징으로 하는 입자들.Particles, wherein the particles have a color.
  6. 제 1 항 내지 제 3 항 중 어느 하나의 항에 있어서,The method according to any one of claims 1 to 3,
    상기 입자들은 안료, 염료, 금속 파티클, 금속 산화물 파티클 및 수지 중 어느 하나 또는 이들의 혼합물을 포함하는 것을 특징으로 하는 입자들.Said particles comprising any one or a mixture of pigments, dyes, metal particles, metal oxide particles and resins.
  7. 서로 대향하는 기판들;Substrates facing each other;
    상기 기판들 사이에 배치되는 적어도 하나 이상의 캐비티들; 및At least one cavity disposed between the substrates; And
    상기 캐비티들 내에 분산되고, 청구항 제 1 항 내지 제 3 항 중 어느 하나의 항에 기재된 입자들을 포함하는 전기 영동 디스플레이 장치.An electrophoretic display device dispersed in said cavities and comprising the particles of any one of claims 1 to 3.
  8. 제 7 항에 있어서,The method of claim 7, wherein
    상기 캐비티들 내의 상기 입자들은 컬러 및 전기 영동 이동도 중 적어도 어느 하나가 서로 다른 2 종류 이상의 입자들을 포함하는 것을 특징으로 하는 전기 영동 디스플레이 장치.And the particles in the cavities include two or more kinds of particles in which at least one of color and electrophoretic mobility is different from each other.
  9. 제 8 항에 있어서,The method of claim 8,
    상기 2 종류 이상의 입자들 중 어느 하나의 종류에 해당하는 입자들만 상기 원형도 및 입도 분포 중 적어도 어느 하나를 만족시키는 것을 특징으로 하는 전기 영동 디스플레이 장치.Only particles corresponding to any one of the two or more types of particles satisfy at least one of the circularity and the particle size distribution.
  10. 서로 대향하는 지지 기판들;Support substrates facing each other;
    상기 지지 기판들 사이에 배치되는 적어도 하나 이상의 캐비티들; 및At least one cavity disposed between the support substrates; And
    상기 캐비티들 내에 분산되고, 청구항 제 1 항 내지 제 3 항 중 어느 하나의 항에 기재된 입자들을 포함하는 이미지 시트.An image sheet dispersed in said cavities and comprising the particles of any one of claims 1 to 3.
  11. 제 10 항에 있어서,The method of claim 10,
    상기 캐비티들 내의 상기 입자들은 컬러 및 전기 영동 이동도 중 적어도 어느 하나가 서로 다른 2 종류 이상의 입자들을 포함하는 것을 특징으로 하는 이미지 시트.And said particles in said cavities comprise two or more kinds of particles in which at least one of color and electrophoretic mobility is different.
  12. 제 10 항에 있어서,The method of claim 10,
    상기 2 종류 이상의 입자들 중 어느 하나의 종류에 해당하는 입자들만 상기 원형도 및 입도 분포 중 적어도 어느 하나를 만족시키는 것을 특징으로 하는 이미지 시트.Only particles corresponding to any one of the two or more kinds of particles satisfy at least one of the circularity and the particle size distribution.
PCT/KR2011/006561 2010-09-03 2011-09-05 Electrophoretic particles, and display device and image sheet comprising same WO2012030199A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0086745 2010-09-03
KR1020100086745A KR20120024084A (en) 2010-09-03 2010-09-03 Electrophoretic particles, display device and image sheet having the same

Publications (2)

Publication Number Publication Date
WO2012030199A2 true WO2012030199A2 (en) 2012-03-08
WO2012030199A3 WO2012030199A3 (en) 2012-05-03

Family

ID=45773422

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/006561 WO2012030199A2 (en) 2010-09-03 2011-09-05 Electrophoretic particles, and display device and image sheet comprising same

Country Status (2)

Country Link
KR (1) KR20120024084A (en)
WO (1) WO2012030199A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112014297A (en) * 2020-09-22 2020-12-01 中建西部建设西南有限公司 Method for evaluating particle shape of machine-made sand particles

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002202531A (en) * 2000-12-28 2002-07-19 Fuji Xerox Co Ltd Image display medium and image forming apparatus
JP2004198882A (en) * 2002-12-20 2004-07-15 Fuji Xerox Co Ltd Particle group for display device, image display medium using the same, and image forming apparatus
JP2006292880A (en) * 2005-04-07 2006-10-26 Canon Inc Electrophoretic display element and electrophoretic display device
KR20100077095A (en) * 2008-12-27 2010-07-07 엘지디스플레이 주식회사 Electrophoretic display device and method of fabricating the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002202531A (en) * 2000-12-28 2002-07-19 Fuji Xerox Co Ltd Image display medium and image forming apparatus
JP2004198882A (en) * 2002-12-20 2004-07-15 Fuji Xerox Co Ltd Particle group for display device, image display medium using the same, and image forming apparatus
JP2006292880A (en) * 2005-04-07 2006-10-26 Canon Inc Electrophoretic display element and electrophoretic display device
KR20100077095A (en) * 2008-12-27 2010-07-07 엘지디스플레이 주식회사 Electrophoretic display device and method of fabricating the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112014297A (en) * 2020-09-22 2020-12-01 中建西部建设西南有限公司 Method for evaluating particle shape of machine-made sand particles
CN112014297B (en) * 2020-09-22 2024-04-02 中建西部建设西南有限公司 Evaluation method for grain shape of machine-made sand grains

Also Published As

Publication number Publication date
WO2012030199A3 (en) 2012-05-03
KR20120024084A (en) 2012-03-14

Similar Documents

Publication Publication Date Title
EP2054760B1 (en) Electrophoretic fluid, electrophoretic display medium, electrophoretic display element, and electrophoretic display device
TWI625584B (en) Colored electrophoretic displays and method of driving the same
US8570639B2 (en) Electrophoretic liquid, image display medium, and image display device
EP1491941B1 (en) Electrophoretic dispersion, electrophoretic display device, method of manufacturing electrophoretic display device, and electronic system
US7414777B2 (en) Image display medium, and image display device equipped with the image display medium
JP2002229074A (en) Electrophoretic display device
WO2004025361A1 (en) Electrophoretic display
WO2011027923A1 (en) Reflective display device having electrochromic filter
JP5464264B2 (en) Electrophoretic display device and electronic apparatus
WO2012047000A2 (en) Electrophoretic particles and a production method therefor, and a display device and drive method using the same
WO2012128495A2 (en) Multi-color electrophoretic display device and method for driving same
WO2012030198A2 (en) Electrophoretic particles, multi-color display device, and image sheet
CN114868078A (en) Color electrophoretic layer comprising microcapsules with non-ionic polymer walls
US20050012979A1 (en) Electrophoretic Display
WO2012030199A2 (en) Electrophoretic particles, and display device and image sheet comprising same
US6952305B2 (en) Electrophoretic display
JP2010210856A (en) Image display medium, image display device, and method of driving image display medium
JP2007148441A (en) Electrophoretic dispersion, electrophoretic display device, method of manufacturing electrophoretic display device, and electronic apparatus
JP2003121887A (en) Electrophoresis display device
JP2000194022A (en) Display device
WO2012067313A1 (en) Electrophoretic display device, image sheet, and manufacturing method thereof
WO2013062339A1 (en) Particle dispersion solution, sheet comprising same, and display device
WO2013062338A1 (en) Particle dispersion solution, sheet comprising same, and display device
KR20130063972A (en) Color electrophoretic particle, electrophoretic display using the same and method for manufacturing electrophoretic display
JP2003315845A (en) Electrophoretic display panel and its manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11822174

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 11.06.2013)

122 Ep: pct application non-entry in european phase

Ref document number: 11822174

Country of ref document: EP

Kind code of ref document: A2