WO2012030151A2 - Method for predicting contamination range of molten steel when switching ladles - Google Patents

Method for predicting contamination range of molten steel when switching ladles Download PDF

Info

Publication number
WO2012030151A2
WO2012030151A2 PCT/KR2011/006422 KR2011006422W WO2012030151A2 WO 2012030151 A2 WO2012030151 A2 WO 2012030151A2 KR 2011006422 W KR2011006422 W KR 2011006422W WO 2012030151 A2 WO2012030151 A2 WO 2012030151A2
Authority
WO
WIPO (PCT)
Prior art keywords
molten steel
ladle
proportional coefficient
pollution
amount
Prior art date
Application number
PCT/KR2011/006422
Other languages
French (fr)
Korean (ko)
Other versions
WO2012030151A3 (en
Inventor
안재환
김경수
문홍길
Original Assignee
현대제철 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020110086293A external-priority patent/KR101299094B1/en
Application filed by 현대제철 주식회사 filed Critical 현대제철 주식회사
Priority to CN201180041952.2A priority Critical patent/CN103209783B/en
Priority to JP2013527012A priority patent/JP5567214B2/en
Publication of WO2012030151A2 publication Critical patent/WO2012030151A2/en
Publication of WO2012030151A3 publication Critical patent/WO2012030151A3/en
Priority to US13/778,933 priority patent/US9460248B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/18Controlling or regulating processes or operations for pouring

Definitions

  • the present invention relates to a method for predicting a molten steel contamination range in ladle exchange for predicting molten steel contamination in a tundish upon ladle exchange.
  • a continuous casting machine is a facility for producing cast steel of a certain size by receiving a molten steel produced in a steelmaking furnace and transferred to a ladle (Tundish) and then supplied to a continuous casting machine mold.
  • the continuous casting machine includes a ladle for storing molten steel, a playing mold for cooling the tundish and the molten steel discharged from the tundish for the first time to form a casting cast having a predetermined shape, and the casting cast formed in the mold connected to the mold. It includes a plurality of pinch rolls.
  • the molten steel tapping out of the ladle and tundish is formed as a cast piece having a predetermined width, thickness and shape in a mold and is transferred through a pinch roll, and the cast piece transferred through the pinch roll is cut by a cutter. It is made of slabs (Slab), Bloom (Bloom), Billet (Billet) and the like having a predetermined shape.
  • the ladle is composed of a plurality of ladle, if the molten steel of the first ladle is all supplied to the tundish, the molten steel is supplied again to the tundish in the second ladle successively.
  • An object of the present invention is to provide a method for predicting a pollution range of molten steel during ladle exchange, which predicts and analyzes a pollution degree and a range thereof generated at the end of casting of the first ladle and the beginning of casting of the second ladle according to operating variables.
  • the first reference value is 0.01
  • the second reference value is a value when the pollution concentration is maximum
  • the Qplug is obtained by multiplying Qrm by the first proportional coefficient (g)
  • the Qpeak is Qrm and the second Obtained by multiplying the proportional coefficient h
  • the first proportional coefficient g is determined between 0 and 0.3
  • the second proportional coefficient h is determined between 0.1 and 0.4.
  • the estimation of the occurrence time for the molten steel contaminant that best represents the cast failure rate is It is possible to focus on the management of the source of contamination at the start of the second ladle and have the advantage of minimizing or eliminating the poor quality of the cast.
  • FIG. 1 is a side view showing a continuous casting machine according to an embodiment of the present invention.
  • FIG. 2 is a conceptual view illustrating the continuous casting machine of FIG. 1 based on the flow of molten steel M.
  • FIG. 3 is a perspective view from above of the tundish of FIG. 2;
  • Figure 4 is a flow chart showing a molten steel pollution prediction process in the tundish according to an embodiment of the present invention
  • 5 is a view showing the final casting situation of the first ladle.
  • FIG. 6 is a view showing the initial casting situation of the second ladle.
  • 7 and 8 are graphs showing the molten steel pollution degree at ladle exchange, respectively.
  • FIG. 1 is a side view showing a continuous casting machine according to an embodiment of the present invention.
  • the continuous casting machine may include a tundish 20, a mold 30, secondary cooling tables 60 and 65, a pinch roll 70, and a cutter 90.
  • the tundish 20 is a container that receives molten metal from the ladle 10 and supplies molten metal to the mold 30.
  • Ladle 10 is provided with a pair of first ladle 11 and the second ladle 12, and alternately receives the molten steel to be supplied to the tundish 20 alternately.
  • the supply rate of molten metal flowing into the mold 30 is adjusted, distribution of molten metal into each mold 30, storage of molten metal, separation of slag and nonmetallic inclusions, and the like are performed.
  • the mold 30 is typically made of water-cooled copper and allows the molten steel to be primary cooled.
  • the mold 30 forms a hollow portion in which molten steel is accommodated as a pair of structurally facing surfaces are opened.
  • the mold 30 includes a pair of barriers and a pair of end walls connecting the barriers.
  • the short wall has a smaller area than the barrier.
  • the walls of the mold 30, mainly short walls may be rotated away from or close to each other to have a certain level of taper. This taper is set to compensate for shrinkage caused by solidification of the molten steel M in the mold 30.
  • the degree of solidification of the molten steel (M) will vary depending on the carbon content, the type of powder (steel cold Vs slow cooling), casting speed and the like depending on the steel type.
  • the mold 30 is formed such that the cast steel drawn out from the mold 30 maintains its shape, and a strong solidification angle or solidifying shell (see FIG. 2) is formed so that molten metal, which is still less solidified, does not flow out. It plays a role.
  • the water cooling structure includes a method of using a copper pipe, a method of drilling a water cooling groove in the copper block, and a method of assembling a copper pipe having a water cooling groove.
  • the mold 30 is oscillated by the oscillator 40 to prevent the molten steel from sticking to the wall of the mold.
  • Lubricant is used to reduce the friction between the mold 30 and the cast steel during the oscillation and to prevent burning.
  • Lubricants include splattered flat oil and powder added to the molten metal surface in the mold 30.
  • the powder is added to the molten metal in the mold 30 to become slag, as well as the lubrication of the mold 30 and the cast steel, as well as the oxidation and nitriding prevention and thermal insulation of the molten metal in the mold 30, and the non-metallic inclusions on the surface of the molten metal. It also performs the function of absorption.
  • a powder feeder 50 is installed in order to inject the powder into the mold 30, a powder feeder 50 is installed. The part for discharging the powder of the powder feeder 50 faces the inlet of the mold 30.
  • the secondary cooling zones 60 and 65 further cool the molten steel primarily cooled in the mold 30.
  • the primary cooled molten steel is directly cooled by the spray means 65 for spraying water while maintaining the solidification angle by the support roll 60 not to be deformed.
  • the solidification of the cast steel is mostly made by the secondary cooling.
  • the drawing device adopts a multidrive method using a few sets of pinch rolls 70 and the like so as to pull out the cast pieces without slipping.
  • the pinch roll 70 pulls the solidified tip of the molten steel in the casting direction, thereby allowing the molten steel passing through the mold 30 to continuously move in the casting direction.
  • the cutter 90 is formed to cut a continuously produced cast piece to a certain size.
  • a gas torch, a hydraulic shear, or the like may be employed as the cutting machine 90.
  • FIG. 2 is a conceptual view illustrating the continuous casting machine of FIG. 1 based on the flow of molten steel M.
  • the molten steel (M) is to flow to the tundish 20 in the state accommodated in the ladle (10).
  • the ladle 10 is provided with a shroud nozzle 15 extending toward the tundish 20.
  • the shroud nozzle 15 extends to submerge in the molten steel in the tundish 20 so that the molten steel M is not exposed to air and oxidized and nitrided.
  • open casting The case where molten steel M is exposed to air due to breakage of shroud nozzle 15 is referred to as open casting.
  • the molten steel M in the tundish 20 flows into the mold 30 by a submerged entry nozzle 25 extending into the mold 30.
  • the immersion nozzle 25 is disposed in the center of the mold 30 so that the flow of molten steel M discharged from both discharge ports of the immersion nozzle 25 can be symmetrical.
  • the start, discharge speed, and stop of the discharge of the molten steel M through the immersion nozzle 25 are determined by a stopper 21 installed in the tundish 20 corresponding to the immersion nozzle 25. Specifically, the stopper 21 may be vertically moved along the same line as the immersion nozzle 25 to open and close the inlet of the immersion nozzle 25.
  • Control of the flow of the molten steel M through the immersion nozzle 25 may use a slide gate method, which is different from the stopper method.
  • the slide gate controls the discharge flow rate of the molten steel M through the immersion nozzle 25 while the sheet material slides in the horizontal direction in the tundish 20.
  • the molten steel M in the mold 30 starts to solidify from the part in contact with the wall surface forming the mold 30. This is because heat is more likely to be lost by the mold 30 in which the periphery is cooled rather than the center of the molten steel M.
  • the back portion along the casting direction of the cast steel 80 forms a shape in which the unsolidified molten steel 82 is wrapped in the solidified shell 81 on which the molten steel M is solidified.
  • the unsolidified molten steel 82 moves together with the solidified shell 81 in the casting direction.
  • the uncondensed molten steel 82 is cooled by the spray means 65 for spraying the cooling water in the above movement process. This causes the thickness of the non-solidified molten steel 82 in the playing cast 80 to gradually decrease.
  • the cast steel 80 reaches a point 85, the cast steel 80 is filled with the solidification shell 81 of the entire thickness.
  • the solidified cast piece 80 is cut to a certain size at the cutting point 91 is divided into slabs (P) such as slabs.
  • FIG. 3 is a perspective view from above of the tundish of FIG. 2;
  • the tundish 20 has a body 22 that is open at the top to receive the molten steel (M) that is stepped out of the ladle (10).
  • the body 22 may include an iron shell disposed outside and a refractory layer disposed inside the iron shell.
  • the shape of the body 22 may be a variety of forms, for example, straight, etc., in this embodiment illustrates the body 22 of the 'T' shape.
  • a portion 23 of the body 22 is formed with a pouring portion 23.
  • the pouring portion 23 is a portion where the molten steel M flowing through the shroud nozzle 15 of the ladle 10 falls.
  • the pouring portion 23 may communicate with the tapping portion 24 having a larger area.
  • the tapping part 24 is a part for guiding the molten steel M received through the pouring part 23 to the mold 30.
  • a plurality of tapping holes 24a may be opened in the tapping part 24.
  • An immersion nozzle 25 is connected to each tap 24a, and the immersion nozzle 25 guides the molten steel M of the tundish 20 to flow into the mold 30.
  • FIG. 4 is a flowchart illustrating a process of predicting molten steel pollution degree in a tundish according to an embodiment of the present invention, with reference to the accompanying drawings.
  • molten steel is contaminated much at the end of casting of the first ladle 11 and at the beginning of casting of the second ladle 12 when the ladle 10 is replaced.
  • the filler of the second ladle 12 may be mixed in the molten steel, or the molten steel height of the tundish 20 may be temporarily lower than that of the shroud nozzle 15.
  • FIG. 7 shows the molten steel pollution degree at the mold inlet side, which is injected into the mold 30 through the immersion nozzle 25 in the tundish 20, and then sets it linearly.
  • the pollution prediction system (not shown) includes a molten steel amount, that is, an amount of casting Q, which flows into the mold through the tundish 20 after the end of the first ladle 11, which is an operating variable.
  • the remaining molten steel Qrm remaining in the tundish 20 is set by the user as shown in FIG. 6 (S11).
  • the residual molten steel Qrm may be obtained by subtracting the intrinsic weight of the tundish 20 from the total weight of the tundish 20 and the molten steel at the start of the second ladle 12.
  • the contamination prediction system includes an input means for inputting various variables and parameters, a control unit for calculating contamination levels according to arithmetic algorithms and various variables and parameters stored in a memory, and the calculated contamination levels by a controller. It may be configured as a computer including a display unit for displaying.
  • the pollution prediction system sets the pollution concentration from the end of the first ladle 11 by using the tundish residual molten steel Qrm at the start of the ladle second ladle 12 and the set first proportional coefficient.
  • the casting amount Qplug when it becomes a 1st reference value and the casting amount Qpeak when it becomes a set 2nd reference value are respectively calculated by following relational formula 1 (S12, S13).
  • Qrm is the amount of remaining tundish molten steel at the start of the ladle second ladle
  • Qplug is the casting amount when the pollution concentration becomes 0.01 from the end of the first ladle
  • Qpeak is the source concentration.
  • the amount of casting when the pollution concentration becomes 0.01 from the end of the first ladle 11 is defined as Qplug.
  • Qplug refers to the amount of casting required for the ladle slag introduced from the ladle to be injected into the mold through the shortest path in the tundish 20 and has a proportional relationship with the remaining molten steel Qrm of the tundish at the time of inflow.
  • the first proportional factor g is a measure of how much plug flow characteristics the molten steel flow in the tundish 20 has, and is 0 to 0.2 depending on the shape of the tundish 20, that is, the plug flow characteristic. It can have a value between
  • the Qpeak is defined as the casting amount when the source concentration is "1".
  • the Qpeak value is a value determined by the flow characteristics in the tundish 20 and has a proportional relationship with the tundish residual molten steel Qrm at the inflow point.
  • the second proportional coefficient h has a value between 0.1 and 0.3. Can be.
  • Q is the casting amount (ton) after the end of the first ladle
  • Qrm is the remaining tundish molten steel (ton) at the start of the second ladle
  • Qplug is a pollution concentration of 0.01 from the end of the first ladle Is the casting amount at the time of ton
  • Qpeak is the casting amount when the source concentration is "1".
  • Contaminant concentration by the ladle slag increases linearly to "1" from when the casting amount is Qplug to Qpeak as shown in FIG. 7, and then decreases exponentially to approach "0".
  • the degree of exponential decrease is proportional to the ratio (Q / Qrm) of Qrm at the time when the ladle slag enters the tundish 20 and the casting amount cast thereafter, and the third proportional coefficient f is 3 It can have a value between.
  • each pollution degree obtained by the linear function and the exponential function is compared with each other, and the smaller of the two values is determined first as the molten steel pollution degree at the end of the first ladle 11 according to the specific casting amount (S15).
  • the reason for selecting the smaller of the two the pollution degree between Qplug and Qpeak in the graph of Figure 8 appears in the form of a linear function ( ⁇ ), where the value of the linear function ( ⁇ ) is an exponential function ( ⁇ ) This is because it is smaller than the value of.
  • the pollution degree is expressed in exponential form in the section above Qpeak, because the exponential function is smaller than the value of the linear function.
  • the above-described pollution degree and "0" are compared with each other, and the larger of the two values is finally determined as the molten steel pollution degree at the end of the first ladle 11 (S16 and S17).
  • the reason why the larger of the two values are selected by comparing the pollution degree with "0" is that the pollution degree cannot have a negative value (-).
  • the contamination prediction system (not shown) also includes the amount of molten steel flowing out of the mold through the tundish 20 after the end of the first ladle 11, that is, the casting amount Q and the start of the second ladle 12. As shown in FIG. 6, the remaining molten steel quantity Qrm remaining in the tundish 20 is set by the user (S11).
  • the contamination prediction system uses the tundish residual molten steel Qrm at the start of the second ladle 12 and the set secondary proportional coefficients g and h to contaminate from the end point of the first ladle 11.
  • the casting amount Qplug when the concentration becomes the set first reference value and the casting amount Qpeak when the concentration becomes the set second reference value are respectively calculated by the above relationship 1 (S12 and S18).
  • the second proportional coefficient is the same parameter as the above-described first proportional coefficient, and its value may be different.
  • the minimum pollution concentration is "0" and the maximum pollution concentration is "1".
  • the casting amount when the contamination concentration becomes 0.01 from the end of the first ladle 11 is defined as Qplug, and Qplug is calculated by the above relation 1
  • Can be Qplug refers to the amount of casting required for the ladle slag introduced from the ladle to be injected into the mold through the shortest path in the tundish 20 and has a proportional relationship with the remaining molten steel Qrm of the tundish at the time of inflow.
  • the first proportional coefficient (g) is a measure of how plug flow is characterized in that the molten steel flow in the tundish 20 is 0.1, depending on the shape of the tundish 20, that is, the plug flow characteristic. It can have a value between 0.3.
  • Qpeak is defined as the amount of casting when the pollutant concentration is "1"
  • Qpeak is calculated by the relationship 1
  • the Qpeak value is a value determined by the flow characteristics in the tundish 20 and has a proportional relationship with the remaining molten amount Qrm of the tundish at the inflow point.
  • the second proportional coefficient h has a value between 0.2 and 0.4.
  • the pollution degree according to the linear function and the exponential function is calculated based on the calculated Qplug and Qpeak and the set values (S19).
  • the linear function and the exponential function are the same as the relations 2 and 3.
  • Contaminant concentration by filler and tundish slag and molten steel reoxidation of the ladle increases linearly to "1" from the time of Qplug to Qpeak as shown in FIG. 7, and then decreases exponentially to "0". Close to.
  • the degree of exponential decrease is proportional to the ratio of Qrm at the time when the ladle slag is introduced and the casting amount (Q / Qrm) cast thereafter, and the third proportional coefficient f is a value between 3 and 8.
  • the tundish remaining molten steel quantity Qrm becomes a minimum amount immediately before the opening of the second ladle 12 and rises until it becomes a normal molten steel after the opening of the second ladle 12.
  • the third proportional coefficient f is larger in the range 3 to 8 as the amount of molten steel in the tundish immediately before the opening of the second ladle 12 becomes larger, and is until the normal amount of molten steel after opening of the second ladle 12.
  • each pollution degree obtained by the linear function and the exponential function is compared with each other, and the smaller of the two is first determined as the molten steel pollution degree at the start of the second ladle 12 according to the specific casting amount (S20).
  • the molten steel contamination at the end of the first ladle 11 and the molten steel pollution at the start of the second ladle 12 may include the first proportional coefficient g, the second proportional coefficient h, and the third proportional coefficient ( Only the values of f) are different and are calculated using the same relations and procedures.
  • the process of obtaining the molten steel pollution degree (C1) at the end of the first ladle 11 and the molten steel pollution degree (C2) at the start of the second ladle 12 is shown as the following equations 4 and 5.
  • the method for obtaining the molten steel pollution degree (C1, C2) is to select a smaller value by comparing the linear function and the exponential function determined as in relations 4 and 5, and then select the larger value by comparing the selected value with "0".
  • Q specific casting amount
  • the pollution prediction system determines the pollution degree C1 at the end of the first ladle 11 obtained by applying the first proportional coefficient and the pollution degree C2 at the start of the second ladle 12 obtained by applying the second proportional coefficient. Each addition is calculated to calculate the total molten steel pollution degree (Tc) as shown in Equation 6 below (S23).
  • C1 is a pollution degree at the end of the first ladle 11
  • C2 is a pollution degree at the start of the second ladle 12
  • A is a weight.
  • the weight A may be a value between 0.2 and 0.4, since the influence of the source at the end of the first ladle 11 is about 30% and the influence of the source at the start of the ladle is about 70%. As for (A), about 0.3 are preferable.
  • the contamination prediction process it is possible to estimate the occurrence time for the molten steel contaminant that best represents the failure rate of the cast steel according to the operation variables (Q, Qrm) and the shape of the tundish 20 to change the position of cutting the cast steel
  • the quality defect of the cast steel can be minimized, and the quality defect of the cast steel can be minimized or eliminated by focusing on the management of the pollution source at the start of the second ladle 12.

Abstract

The present invention relates to a method for predicting the contamination range of molten steel when switching ladles, comprising the following steps: setting a casting amount (Q) after a first ladle has finished and the remaining molten steel amount (Qrm) of a tundish when starting a second ladle, respectively; calculating the casting amount (Qplug) when the contamination concentration becomes a set first reference value and the casting amount (Qpeak) when the contamination concentration becomes a set second reference value from the finishing point of the first ladle, respectively, using the remaining molten steel amount (Qrm) and the first proportional coefficient or the second proportional coefficient; obtaining the degree of contamination with respect to a specific casting amount by substituting the obtained casting amounts (Q, Qplug, Qpeak) and the remaining molten steel amount (Qrm) into a set linear and exponential function; and comparing the degrees of contamination obtained by the linear function and the exponential function to determine the smaller value as the degree of contamination by the specific casting amount.

Description

래들 교환시 용강 오염범위 예측 방법Prediction Method of Molten Steel Contamination Range in Ladle Change
본 발명은 래들의 교환시에 턴디쉬 내의 용강 오염을 예측하기 위한 래들 교환시 용강 오염범위 예측 방법에 관한 것이다. The present invention relates to a method for predicting a molten steel contamination range in ladle exchange for predicting molten steel contamination in a tundish upon ladle exchange.
일반적으로, 연속주조기는 제강로에서 생산되어 래들(Ladle)로 이송된 용강을 턴디쉬(Tundish)에 받았다가 연속주조기용 몰드로 공급하여 일정한 크기의 주편을 생산하는 설비이다.      In general, a continuous casting machine is a facility for producing cast steel of a certain size by receiving a molten steel produced in a steelmaking furnace and transferred to a ladle (Tundish) and then supplied to a continuous casting machine mold.
연속주조기는 용강을 저장하는 래들과, 턴디쉬 및 상기 턴디쉬에서 출강되는 용강을 최초 냉각시켜 소정의 형상을 가지는 연주주편으로 형성하는 연주용 몰드와, 상기 몰드에 연결되어 몰드에서 형성된 연주주편을 이동시키는 다수의 핀치롤을 포함한다.The continuous casting machine includes a ladle for storing molten steel, a playing mold for cooling the tundish and the molten steel discharged from the tundish for the first time to form a casting cast having a predetermined shape, and the casting cast formed in the mold connected to the mold. It includes a plurality of pinch rolls.
다시 말해서, 상기 래들과 턴디쉬에서 출강된 용강은 몰드에서 소정의 폭과 두께 및 형상을 가지는 연주주편으로 형성되어 핀치롤을 통해 이송되고, 핀치롤을 통해 이송된 연주주편은 절단기에 의해 절단되어 소정 형상을 갖는 슬라브(Slab) 또는 블룸(Bloom), 빌렛(Billet) 등의 주편으로 제조된다. In other words, the molten steel tapping out of the ladle and tundish is formed as a cast piece having a predetermined width, thickness and shape in a mold and is transferred through a pinch roll, and the cast piece transferred through the pinch roll is cut by a cutter. It is made of slabs (Slab), Bloom (Bloom), Billet (Billet) and the like having a predetermined shape.
상기에서 래들의 경우 복수개의 래들로 이루어져 있고, 제1 래들의 용강이 턴디쉬로 모두 공급되면 연이어서 제2 래들에서 턴디쉬로 용강을 다시 공급하게 된다.In the case of the ladle is composed of a plurality of ladle, if the molten steel of the first ladle is all supplied to the tundish, the molten steel is supplied again to the tundish in the second ladle successively.
본 발명의 목적은 제1 래들의 주조 말기와 제2 래들의 주조 초기시에 발생되는 오염도와 그 범위를 조업 변수에 따라 예측 분석하는 래들 교환시 용강 오염범위 예측 방법을 제공하는 것이다.SUMMARY OF THE INVENTION An object of the present invention is to provide a method for predicting a pollution range of molten steel during ladle exchange, which predicts and analyzes a pollution degree and a range thereof generated at the end of casting of the first ladle and the beginning of casting of the second ladle according to operating variables.
본 발명이 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급되지 않은 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.Technical problems to be achieved by the present invention are not limited to the above-mentioned technical problems, and other technical problems not mentioned above may be clearly understood by those skilled in the art from the following description. There will be.
상기 과제를 실현하기 위한 본 발명의 용강 오염도 예측 방법은, 제1 래들의 종료 이후 주조량(Q)과 제2 래들의 개시시에 턴디쉬의 잔여 용강량(Qrm)이 각각 지정되는 제1 단계; 상기 Qrm와 설정된 1차 비례계수 또는 2차 비례계수를 이용하여, 제1 래들의 종료 시점부터 오염농도가 설정된 제1 기준값이 될 때의 주조량(Qplug)과 설정된 제2 기준값이 될 때의 주조량(Qpeak)을 각각 계산하는 제2 단계; 상기 제1 단계와 제2 단계에서 얻어진 값들을, 설정된 직선함수와 지수함수에 각각 대입하여 특정 주조량에 대한 오염도를 구하는 제3 단계; 및 상기 직선함수와 지수함수에 의해 얻어진 오염도를 서로 비교하고, 둘 중 더 작은 값을 특정 주조량에 따른 오염도로 결정하는 제4 단계;를 포함하는 것을 특징으로 한다.In the molten steel pollution prediction method of the present invention for realizing the above object, a first step in which the casting amount (Q) after the end of the first ladle and the remaining molten steel amount (Qrm) of the tundish at the start of the second ladle are respectively designated; ; Casting when the pollution concentration becomes the set first reference value from the end of the first ladle and the set second reference value using the Qrm and the set first or second proportional coefficient A second step of calculating quantities Qpeak respectively; A third step of substituting the values obtained in the first step and the second step into the set linear function and the exponential function, respectively, to obtain a degree of contamination for a specific casting amount; And a fourth step of comparing the pollution degree obtained by the linear function and the exponential function with each other, and determining a smaller value of the pollution degree according to a specific casting amount.
상기 제2 단계에서 제1 기준값은 0.01이고, 제2 기준값은 오염농도가 최대일 때의 값이며, 상기 Qplug는 Qrm와 제1 비례계수(g)를 곱하여 얻어지고, 상기 Qpeak는 Qrm와 제2 비례계수(h)를 곱하여 얻어지며, 상기 제1 비례계수(g)는 0 내지 0.3 사이에서 결정되고, 상기 제2 비례계수(h)는 0.1 내지 0.4 사이에서 결정되는 것을 특징으로 한다.In the second step, the first reference value is 0.01, the second reference value is a value when the pollution concentration is maximum, the Qplug is obtained by multiplying Qrm by the first proportional coefficient (g), and the Qpeak is Qrm and the second Obtained by multiplying the proportional coefficient h, the first proportional coefficient g is determined between 0 and 0.3, and the second proportional coefficient h is determined between 0.1 and 0.4.
상기 1차 비례계수를 적용하여 얻어진 제4 단계의 오염도와 상기 2차 비례계수를 적용하여 얻어진 제4 단계의 오염도를 각각 가산하여 종합 용강 오염도를 산출하는 것을 특징으로 하며, 상기 제4 단계에서 결정된 오염도와 "0"을 서로 비교하여 둘 중 더 큰 값을 선택하여 최종 오염도로 결정하는 단계를 더 포함하는 것을 특징으로 한다.Comprehensive molten steel pollution degree is calculated by adding the pollution degree of the fourth stage obtained by applying the first proportional coefficient and the pollution degree of the fourth stage obtained by applying the second proportional coefficient, respectively. And comparing the pollution degree and "0" with each other to select a larger value of the two to determine the final pollution degree.
상기와 같이 본 발명에 의하면, 제1 래들의 주조 말기와 제2 래들의 주조 초기시에 발생되는 오염도를 조업 변수에 따라 예측 분석함으로써, 주편 불량율을 가장 잘 나타내는 용강 오염원에 대한 발생 시점의 추정이 가능하고, 제2 래들 개시시의 오염원의 관리에 집중하여 주편의 품질 불량을 최소화 또는 제거할 수 있는 이점이 있다.As described above, according to the present invention, by predicting and analyzing the pollution degree generated at the end of the first ladle and the initial casting of the second ladle according to the operating variables, the estimation of the occurrence time for the molten steel contaminant that best represents the cast failure rate is It is possible to focus on the management of the source of contamination at the start of the second ladle and have the advantage of minimizing or eliminating the poor quality of the cast.
도 1은 본 발명의 실시예와 관련된 연속주조기를 보인 측면도이다.1 is a side view showing a continuous casting machine according to an embodiment of the present invention.
도 2는 용강(M)의 흐름을 중심으로 도 1의 연속주조기를 설명하기 위한 개념도이다.FIG. 2 is a conceptual view illustrating the continuous casting machine of FIG. 1 based on the flow of molten steel M. Referring to FIG.
도 3은 도 2의 턴디쉬를 위에서 본 사시도이다.3 is a perspective view from above of the tundish of FIG. 2;
도 4는 본 발명의 일실시예에 의한 턴디쉬내 용강 오염 예측 과정을 나타낸 순서도Figure 4 is a flow chart showing a molten steel pollution prediction process in the tundish according to an embodiment of the present invention
도 5는 제1 래들의 말기 주조 상황을 나타낸 도면이다.5 is a view showing the final casting situation of the first ladle.
도 6은 제2 래들의 초기 주조 상황을 나타낸 도면이다.6 is a view showing the initial casting situation of the second ladle.
도 7 및 도 8은 래들 교환시 용강 오염도를 각각 나타낸 그래프이다.7 and 8 are graphs showing the molten steel pollution degree at ladle exchange, respectively.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세하게 설명한다. 도면들 중 동일한 구성요소들은 가능한 어느 곳에서든지 동일한 부호로 표시한다. 또한 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 상세한 설명은 생략한다.  Hereinafter, with reference to the accompanying drawings will be described in detail a preferred embodiment of the present invention. Like elements in the figures are denoted by the same reference numerals wherever possible. In addition, detailed descriptions of well-known functions and configurations that may unnecessarily obscure the subject matter of the present invention will be omitted.
도 1은 본 발명의 실시예와 관련된 연속주조기를 보인 측면도이다.1 is a side view showing a continuous casting machine according to an embodiment of the present invention.
본 도면을 참조하면, 연속주조기는 턴디쉬(20)와, 몰드(30)와, 2차냉각대(60 및 65), 핀치롤(70), 그리고 절단기(90)를 포함할 수 있다. Referring to this drawing, the continuous casting machine may include a tundish 20, a mold 30, secondary cooling tables 60 and 65, a pinch roll 70, and a cutter 90.
턴디쉬(Tundish, 20)는 래들(Laddle, 10)로부터 용융금속을 받아 몰드(Mold, 30)로 용융금속을 공급하는 용기이다. 래들(10)은 한 쌍의 제1 래들(11)과 제2 래들(12)로 구비되어, 교대로 용강을 받아서 번갈아가며 턴디쉬(20)에 공급하게 된다. 턴디쉬(20)에서는 몰드(30)로 흘러드는 용융금속의 공급 속도조절, 각 몰드(30)로 용융금속 분배, 용융금속의 저장, 슬래그 및 비금속 개재물(介在物)의 분리 등이 이루어진다. The tundish 20 is a container that receives molten metal from the ladle 10 and supplies molten metal to the mold 30. Ladle 10 is provided with a pair of first ladle 11 and the second ladle 12, and alternately receives the molten steel to be supplied to the tundish 20 alternately. In the tundish 20, the supply rate of molten metal flowing into the mold 30 is adjusted, distribution of molten metal into each mold 30, storage of molten metal, separation of slag and nonmetallic inclusions, and the like are performed.
몰드(30)는 통상적으로 수냉식 구리제이며, 수강된 용강이 1차 냉각되게 한다. 몰드(30)는 구조적으로 마주보는 한 쌍의 면들이 개구된 형태로서 용강이 수용되는 중공부를 형성한다. 슬라브를 제조하는 경우에, 몰드(30)는 한 쌍의 장벽과, 장벽들을 연결하는 한 쌍의 단벽을 포함한다. 여기서, 단벽은 장벽보다 작은 넓이를 가지게 된다. 몰드(30)의 벽들, 주로는 단벽들은 서로에 대하여 멀어지거나 가까워지도록 회전되어 일정 수준의 테이퍼(Taper)를 가질 수 있다. 이러한 테이퍼는 몰드(30) 내에서 용강(M)의 응고로 이한 수축을 보상하기 위해 설정한다. 용강(M)의 응고 정도는 강종에 따른 탄소 함량, 파우더의 종류(강냉형 Vs 완냉형), 주조 속도 등에 의해 달라지게 된다. The mold 30 is typically made of water-cooled copper and allows the molten steel to be primary cooled. The mold 30 forms a hollow portion in which molten steel is accommodated as a pair of structurally facing surfaces are opened. In the case of manufacturing a slab, the mold 30 includes a pair of barriers and a pair of end walls connecting the barriers. Here, the short wall has a smaller area than the barrier. The walls of the mold 30, mainly short walls, may be rotated away from or close to each other to have a certain level of taper. This taper is set to compensate for shrinkage caused by solidification of the molten steel M in the mold 30. The degree of solidification of the molten steel (M) will vary depending on the carbon content, the type of powder (steel cold Vs slow cooling), casting speed and the like depending on the steel type.
몰드(30)는 몰드(30)에서 뽑아낸 연주주편이 모양을 유지하고, 아직 응고가 덜 된 용융금속이 유출되지 않게 강한 응고각 또는 응고쉘(Solidifying shell, 81, 도 2 참조)이 형성되도록 하는 역할을 한다. 수냉 구조에는 구리관을 이용하는 방식, 구리블록에 수냉홈을 뚫는 식, 수냉홈이 있는 구리관을 조립하는 방식 등이 있다. The mold 30 is formed such that the cast steel drawn out from the mold 30 maintains its shape, and a strong solidification angle or solidifying shell (see FIG. 2) is formed so that molten metal, which is still less solidified, does not flow out. It plays a role. The water cooling structure includes a method of using a copper pipe, a method of drilling a water cooling groove in the copper block, and a method of assembling a copper pipe having a water cooling groove.
몰드(30)는 용강이 몰드의 벽면에 붙는 것을 방지하기 위하여 오실레이터(40)에 의해 오실레이션(oscillation, 왕복운동)된다. 오실레이션시 몰드(30)와 연주주편과의 마찰을 줄이고 타는 것을 방지하기 위해 윤활제가 이용된다. 윤활제로는 뿜어 칠하는 평지 기름과 몰드(30) 내의 용융금속 표면에 첨가되는 파우더(Powder)가 있다. 파우더는 몰드(30) 내의 용융금속에 첨가되어 슬래그가 되며, 몰드(30)와 연주주편의 윤활뿐만 아니라 몰드(30) 내 용융금속의 산화·질화 방지와 보온, 용융금속의 표면에 떠오른 비금속 개재물의 흡수의 기능도 수행한다. 파우더를 몰드(30)에 투입하기 위하여, 파우더 공급기(50)가 설치된다. 파우더 공급기(50)의 파우더를 배출하는 부분은 몰드(30)의 입구를 지향한다.The mold 30 is oscillated by the oscillator 40 to prevent the molten steel from sticking to the wall of the mold. Lubricant is used to reduce the friction between the mold 30 and the cast steel during the oscillation and to prevent burning. Lubricants include splattered flat oil and powder added to the molten metal surface in the mold 30. The powder is added to the molten metal in the mold 30 to become slag, as well as the lubrication of the mold 30 and the cast steel, as well as the oxidation and nitriding prevention and thermal insulation of the molten metal in the mold 30, and the non-metallic inclusions on the surface of the molten metal. It also performs the function of absorption. In order to inject the powder into the mold 30, a powder feeder 50 is installed. The part for discharging the powder of the powder feeder 50 faces the inlet of the mold 30.
2차 냉각대(60 및 65)는 몰드(30)에서 1차로 냉각된 용강을 추가로 냉각한다. 1차 냉각된 용강은 지지롤(60)에 의해 응고각이 변형되지 않도록 유지되면서, 물을 분사하는 스프레이수단(65)에 의해 직접 냉각된다. 연주주편의 응고는 대부분 상기 2차 냉각에 의해 이루어진다. The secondary cooling zones 60 and 65 further cool the molten steel primarily cooled in the mold 30. The primary cooled molten steel is directly cooled by the spray means 65 for spraying water while maintaining the solidification angle by the support roll 60 not to be deformed. The solidification of the cast steel is mostly made by the secondary cooling.
인발장치는 연주주편이 미끄러지지 않게 뽑아내도록 몇 조의 핀치롤(70)들을 이용하는 멀티드라이브방식 등을 채용하고 있다. 핀치롤(70)은 용강의 응고된 선단부를 주조 방향으로 잡아당김으로써, 몰드(30)를 통과한 용강이 주조방향으로 연속적으로 이동할 수 있게 한다. The drawing device adopts a multidrive method using a few sets of pinch rolls 70 and the like so as to pull out the cast pieces without slipping. The pinch roll 70 pulls the solidified tip of the molten steel in the casting direction, thereby allowing the molten steel passing through the mold 30 to continuously move in the casting direction.
절단기(90)는 연속적으로 생산되는 연주주편을 일정한 크기로 절단하도록 형성된다. 절단기(90)로는 가스토치나 유압전단기 등이 채용될 수 있다.The cutter 90 is formed to cut a continuously produced cast piece to a certain size. As the cutting machine 90, a gas torch, a hydraulic shear, or the like may be employed.
도 2는 용강(M)의 흐름을 중심으로 도 1의 연속주조기를 설명하기 위한 개념도이다.FIG. 2 is a conceptual view illustrating the continuous casting machine of FIG. 1 based on the flow of molten steel M. Referring to FIG.
본 도면을 참조하면, 용강(M)은 래들(10)에 수용된 상태에서 턴디쉬(20)로 유동하게 된다. 이러한 유동을 위하여, 래들(10)에는 턴디쉬(20)를 향해 연장하는 슈라우드노즐(Shroud nozzle, 15)이 설치된다. 슈라우드노즐(15)은 용강(M)이 공기에 노출되어 산화·질화되지 않도록 턴디쉬(20) 내의 용강에 잠기도록 연장한다. 슈라우드노즐(15)의 파손 등으로 용강(M)이 공기 중에 노출된 경우를 오픈 캐스팅(Open casting)이라 한다.Referring to this figure, the molten steel (M) is to flow to the tundish 20 in the state accommodated in the ladle (10). For this flow, the ladle 10 is provided with a shroud nozzle 15 extending toward the tundish 20. The shroud nozzle 15 extends to submerge in the molten steel in the tundish 20 so that the molten steel M is not exposed to air and oxidized and nitrided. The case where molten steel M is exposed to air due to breakage of shroud nozzle 15 is referred to as open casting.
턴디쉬(20) 내의 용강(M)은 몰드(30) 내로 연장하는 침지노즐(Submerged Entry Nozzle, 25)에 의해 몰드(30) 내로 유동하게 된다. 침지노즐(25)은 몰드(30)의 중앙에 배치되어, 침지노즐(25)의 양 토출구에서 토출되는 용강(M)의 유동이 대칭을 이룰 수 있도록 한다. 침지노즐(25)을 통한 용강(M)의 토출의 시작, 토출 속도, 및 중단은 침지노즐(25)에 대응하여 턴디쉬(20)에 설치되는 스톱퍼(stopper, 21)에 의해 결정된다. 구체적으로, 스톱퍼(21)는 침지노즐(25)의 입구를 개폐하도록 침지노즐(25)과 동일한 라인을 따라 수직 이동될 수 있다. 침지노즐(25)을 통한 용강(M)의 유동에 대한 제어는, 스톱퍼 방식과 다른, 슬라이드 게이트(Slide gate) 방식을 이용할 수도 있다. 슬라이드 게이트는 판재가 턴디쉬(20) 내에서 수평 방향으로 슬라이드 이동하면서 침지노즐(25)을 통한 용강(M)의 토출 유량을 제어하게 된다.The molten steel M in the tundish 20 flows into the mold 30 by a submerged entry nozzle 25 extending into the mold 30. The immersion nozzle 25 is disposed in the center of the mold 30 so that the flow of molten steel M discharged from both discharge ports of the immersion nozzle 25 can be symmetrical. The start, discharge speed, and stop of the discharge of the molten steel M through the immersion nozzle 25 are determined by a stopper 21 installed in the tundish 20 corresponding to the immersion nozzle 25. Specifically, the stopper 21 may be vertically moved along the same line as the immersion nozzle 25 to open and close the inlet of the immersion nozzle 25. Control of the flow of the molten steel M through the immersion nozzle 25 may use a slide gate method, which is different from the stopper method. The slide gate controls the discharge flow rate of the molten steel M through the immersion nozzle 25 while the sheet material slides in the horizontal direction in the tundish 20.
몰드(30) 내의 용강(M)은 몰드(30)를 이루는 벽면에 접한 부분부터 응고하기 시작한다. 이는 용강(M)의 중심보다는 주변부가 수냉되는 몰드(30)에 의해 열을 잃기 쉽기 때문이다. 주변부가 먼저 응고되는 방식에 의해, 연주주편(80)의 주조 방향을 따른 뒷부분은 미응고 용강(82)이 용강(M)이 응고된 응고쉘(81)에 감싸여진 형태를 이루게 된다.The molten steel M in the mold 30 starts to solidify from the part in contact with the wall surface forming the mold 30. This is because heat is more likely to be lost by the mold 30 in which the periphery is cooled rather than the center of the molten steel M. By the way that the periphery is first solidified, the back portion along the casting direction of the cast steel 80 forms a shape in which the unsolidified molten steel 82 is wrapped in the solidified shell 81 on which the molten steel M is solidified.
핀치롤(70, 도 1)이 완전히 응고된 연주주편(80)의 선단부(83)를 잡아당김에 따라, 미응고 용강(82)은 응고쉘(81)과 함께 주조 방향으로 이동하게 된다. 미응고 용강(82)은 위 이동 과정에서 냉각수를 분사하는 스프레이수단(65)에 의해 냉각된다. 이는 연주주편(80)에서 미응고 용강(82)이 차지하는 두께가 점차로 작아지게 한다. 연주주편(80)이 일 지점(85)에 이르면, 연주주편(80)은 전체 두께가 응고쉘(81)로 채워지게 된다. 응고가 완료된 연주주편(80)은 절단 지점(91)에서 일정 크기로 절단되어 슬라브 등과 같은 주편(P)으로 나뉘어진다.As the pinch rolls 70 (FIG. 1) pull the front end portion 83 of the completely cast solid cast piece 80, the unsolidified molten steel 82 moves together with the solidified shell 81 in the casting direction. The uncondensed molten steel 82 is cooled by the spray means 65 for spraying the cooling water in the above movement process. This causes the thickness of the non-solidified molten steel 82 in the playing cast 80 to gradually decrease. When the cast steel 80 reaches a point 85, the cast steel 80 is filled with the solidification shell 81 of the entire thickness. The solidified cast piece 80 is cut to a certain size at the cutting point 91 is divided into slabs (P) such as slabs.
도 3은 도 2의 턴디쉬를 위에서 본 사시도이다.3 is a perspective view from above of the tundish of FIG. 2;
본 도면을 참조하면, 턴디쉬(20)는 래들(10)에서 출강되는 용강(M)을 수용하기 위하여 상부가 개구된 몸체(22)를 가진다. 몸체(22)는 외측에 배치되는 철피와, 상기 철피의 내측에 배치되는 내화물층을 포함할 수 있다. Referring to this figure, the tundish 20 has a body 22 that is open at the top to receive the molten steel (M) that is stepped out of the ladle (10). The body 22 may include an iron shell disposed outside and a refractory layer disposed inside the iron shell.
몸체(22)의 형태는 다양한 형태, 예를 들어 일자형 등이 있을 수 있으나, 본 실시예에서는 'T'자 형인 몸체(22)를 예시하고 있다. The shape of the body 22 may be a variety of forms, for example, straight, etc., in this embodiment illustrates the body 22 of the 'T' shape.
몸체(22)의 일부분에는 주탕부(23)가 형성된다. 주탕부(23)는 래들(10)의 슈라우드노즐(15)을 통해 유동하는 용강(M)이 낙하되는 부분이다. 주탕부(23)는 그 보다 넓은 면적을 가지는 출탕부(24)에 연통될 수 있다. A portion 23 of the body 22 is formed with a pouring portion 23. The pouring portion 23 is a portion where the molten steel M flowing through the shroud nozzle 15 of the ladle 10 falls. The pouring portion 23 may communicate with the tapping portion 24 having a larger area.
출탕부(24)는 주탕부(23)를 통해 수강한 용강(M)을 몰드(30)로 안내하는 부분이다. 출탕부(24)에는 복수의 출강구(24a)가 개구될 수 있다. 각 출강구(24a)에는 침지노즐(25)이 연결되고, 이 침지노즐(25)은 턴디쉬(20)의 용강(M)이 몰드(30)로 유동하도록 안내한다. The tapping part 24 is a part for guiding the molten steel M received through the pouring part 23 to the mold 30. A plurality of tapping holes 24a may be opened in the tapping part 24. An immersion nozzle 25 is connected to each tap 24a, and the immersion nozzle 25 guides the molten steel M of the tundish 20 to flow into the mold 30.
도 4는 본 발명의 실시예에 의한 턴디쉬내 용강 오염도 예측 과정을 나타낸 순서도로서, 첨부된 도면을 참조하여 오염 예측 과정을 설명한다.FIG. 4 is a flowchart illustrating a process of predicting molten steel pollution degree in a tundish according to an embodiment of the present invention, with reference to the accompanying drawings.
먼저, 래들(10)의 교환시 제1 래들(11)의 주조 말기와 제2 래들(12)의 주조 초기시에 용강이 많이 오염된다.First, molten steel is contaminated much at the end of casting of the first ladle 11 and at the beginning of casting of the second ladle 12 when the ladle 10 is replaced.
도 5와 같이 제1 래들(11)의 말기 주조시, 래들의 슬래그가 턴디쉬(20)를 통해 몰드로 공급되므로, 래들 말기시에 주편의 품질 불량율이 증가된다.In the final casting of the first ladle 11 as shown in Figure 5, since the slag of the ladle is supplied to the mold through the tundish 20, the quality defect rate of the slab at the end of the ladle is increased.
그리고, 도 6과 같이 제2 래들(12)의 초기 주조시, 제2 래들(12)의 필러가 용강에 혼입되거나 턴디쉬(20)의 용강 높이가 슈라우드노즐(15)보다 일시적으로 낮아져 턴디쉬(20)에 나탕이 발생되어 용강이 재산화되거나 또는 턴디쉬(20)의 슬래그가 몰드로 혼입되는 상황이 발생된다. 이와 같은 문제로 인해 주편의 불량율이 증가된다.In addition, as shown in FIG. 6, during the initial casting of the second ladle 12, the filler of the second ladle 12 may be mixed in the molten steel, or the molten steel height of the tundish 20 may be temporarily lower than that of the shroud nozzle 15. The situation arises that the molten steel is re-produced at 20 so that molten steel is reoxidized or the slag of the tundish 20 is incorporated into the mold. This problem increases the defective rate of cast steel.
따라서, 래들 교환시 용강 오염 범위의 정량적인 평가와 용강 오염도에 대한 예측이 필요하다.Therefore, it is necessary to quantitatively evaluate the extent of molten steel contamination and to predict the degree of molten steel pollution during ladle exchange.
이와 같은 용강 오염도를 수모델(water model)을 통해 실험한 결과, 도 7과 같은 결과를 얻을 수 있었다. 즉, 용강 오염도는 제1 래들(11)의 말기나 제2 래들(12)의 초기 주조시에는 시간 경과(주조량)에 따라 직선으로 증가하다가 최대의 오염도에 다다르면 지수적으로 감소하는 경향이 있음을 알 수 있었다. 즉, 래들 교환시 오염원의 농도는 주조량이 Qplug일 때부터 Qpeak가 될 때까지 선형적으로 "1"까지 증가하며, 이후 지수적으로 감소하여 "0"에 근접하게 된다. 도 7은 이와 같이 턴디쉬(20)에서 침지노즐(25)을 통해 몰드(30)로 주입되는 몰드 유입구 측에서 용강 오염도를 여러조건에서 테스트한 후 선형으로 세팅한 것이다.As a result of experimenting the molten steel pollution degree through a water model, the result as shown in FIG. 7 was obtained. That is, the molten steel pollution degree tends to increase linearly with the passage of time (casting amount) at the end of the first ladle 11 or the initial casting of the second ladle 12, and then decreases exponentially when the maximum pollution degree is reached. And it was found. That is, the concentration of the contaminant during ladle exchange increases linearly from "1" to "peak" from Qplug to Qpeak, and then decreases exponentially to approach "0". FIG. 7 shows the molten steel contamination at the mold inlet side, which is injected into the mold 30 through the immersion nozzle 25 in the tundish 20, and then sets it linearly.
이후, 도 5와 같은 상황에서 발생되는 제1 래들(11) 종료시의 용강 오염도와 도 6과 같은 상황에서 발생되는 제2 래들(12) 개시시의 용강 오염도를 구하는 절차를 각각 나누어서 설명한다.Hereinafter, the procedure for obtaining the molten steel contamination at the end of the first ladle 11 generated in the situation as shown in FIG. 5 and the molten steel contamination at the start of the second ladle 12 generated in the situation shown in FIG. 6 will be described.
먼저, 제1 래들(11) 종료시의 용강 오염도를 구하는 과정을 살펴본다. 도 4에 도시된 바와 같이, 오염예측시스템(미 도시)에는 조업 변수인 제1 래들(11)의 종료 이후에 턴디쉬(20)를 통해 몰드로 유출되는 용강량, 즉 주조량(Q)과, 제2 래들(12)의 개시시에 도 6과 같이 턴디쉬(20)에 남아있는 잔여 용강량(Qrm)이 사용자에 의해 각각 세팅된다(S11). 상기 잔여 용강량(Qrm)의 경우 제2 래들(12) 개시시의 턴디쉬(20)와 용강의 총 중량에서 턴디쉬(20)의 고유 중량을 감산하면 알 수 있다. 상기 오염예측시스템의 경우 도시하지는 않았지만, 각종 변수와 파라미터를 입력하는 입력수단과, 메모리에 저장된 연산 알고리즘과 각종 변수 및 파라미터에 따라 오염도를 계산하는 제어부, 및 계산된 오염도를 제어부에 의해 문자 또는 그래프로 디스플레이하는 표시부를 포함하는 컴퓨터로 구성될 수 있다.First, the process of obtaining the molten steel pollution degree at the end of the first ladle 11 will be described. As shown in FIG. 4, the pollution prediction system (not shown) includes a molten steel amount, that is, an amount of casting Q, which flows into the mold through the tundish 20 after the end of the first ladle 11, which is an operating variable. At the start of the second ladle 12, the remaining molten steel Qrm remaining in the tundish 20 is set by the user as shown in FIG. 6 (S11). The residual molten steel Qrm may be obtained by subtracting the intrinsic weight of the tundish 20 from the total weight of the tundish 20 and the molten steel at the start of the second ladle 12. Although not shown, the contamination prediction system includes an input means for inputting various variables and parameters, a control unit for calculating contamination levels according to arithmetic algorithms and various variables and parameters stored in a memory, and the calculated contamination levels by a controller. It may be configured as a computer including a display unit for displaying.
이어, 오염예측시스템은 후래들인 제2 래들(12)의 개시시의 턴디쉬 잔여 용강량(Qrm)과 설정된 1차 비례계수를 이용하여, 제1 래들(11)의 종료 시점부터 오염농도가 설정된 제1 기준값이 될 때의 주조량(Qplug)과 설정된 제2 기준값이 될 때의 주조량(Qpeak)을 아래 관계식 1에 의해 각각 계산한다(S12, S13). Then, the pollution prediction system sets the pollution concentration from the end of the first ladle 11 by using the tundish residual molten steel Qrm at the start of the ladle second ladle 12 and the set first proportional coefficient. The casting amount Qplug when it becomes a 1st reference value and the casting amount Qpeak when it becomes a set 2nd reference value are respectively calculated by following relational formula 1 (S12, S13).
관계식 1 Relationship 1
Figure PCTKR2011006422-appb-I000001
Figure PCTKR2011006422-appb-I000001
여기서, Qrm는 후래들인 제2 래들 개시시의 턴디쉬 잔여 용강량(ton)이고, Qplug는 제1 래들 종료 시점부터 오염농도가 0.01이 될 때의 주조량(ton)이고, Qpeak는 오염원 농도가 "1"일 때의 주조량이며, g는 제1 비례계수이고, h는 제2 비례계수이다.Here, Qrm is the amount of remaining tundish molten steel at the start of the ladle second ladle, Qplug is the casting amount when the pollution concentration becomes 0.01 from the end of the first ladle, and Qpeak is the source concentration. A casting amount when " 1 ", g is a first proportional coefficient, and h is a second proportional coefficient.
예컨대, 도 7에서 최소 오염농도가 "0"이고 최대 오염농도는 "1"이다. 제1 래들(11)의 종료 시점부터 오염농도가 0.01이 될 때의 주조량을 Qplug로 정의한다. Qplug는 래들로부터 유입된 래들 슬래그가 턴디쉬(20)내에서 최단경로를 거쳐 몰드로 주입되는데 필요한 주조량을 의미하는 것으로, 유입시점의 턴디쉬의 잔여 용강량(Qrm)과 비례 관계를 가진다. 제1 비례계수(g)는 턴디쉬(20)내 용강 흐름이 얼마나 플러그 플로우(plug flow) 특성을 갖느냐를 나타내는 척도로써, 턴디쉬(20)의 형상, 즉 플러그 플로우의 특성에 따라 0에서 0.2 사이의 값을 가질 수 있다.For example, in FIG. 7, the minimum pollution concentration is "0" and the maximum pollution concentration is "1". The amount of casting when the pollution concentration becomes 0.01 from the end of the first ladle 11 is defined as Qplug. Qplug refers to the amount of casting required for the ladle slag introduced from the ladle to be injected into the mold through the shortest path in the tundish 20 and has a proportional relationship with the remaining molten steel Qrm of the tundish at the time of inflow. The first proportional factor g is a measure of how much plug flow characteristics the molten steel flow in the tundish 20 has, and is 0 to 0.2 depending on the shape of the tundish 20, that is, the plug flow characteristic. It can have a value between
그리고, Qpeak는 오염원 농도가 "1"일 때의 주조량으로 정의한다. Qpeak값은 턴디쉬(20)내 유동 특성에 의해 결정되는 값으로써 유입시점의 턴디쉬 잔여 용강량(Qrm)과 비례 관계를 갖는데, 제2 비례계수(h)는 0.1에서 0.3 사이의 값을 가질 수 있다.And Qpeak is defined as the casting amount when the source concentration is "1". The Qpeak value is a value determined by the flow characteristics in the tundish 20 and has a proportional relationship with the tundish residual molten steel Qrm at the inflow point. The second proportional coefficient h has a value between 0.1 and 0.3. Can be.
이와 같이 Qplug와 Qpeak를 각각 계산한 후 계산된 Qplug와 Qpeak와 설정된 값들을 기초로 하여 직선함수와 지수함수에 따른 오염도를 각각 계산한다. 직선함수와 지수함수는 아래 관계식 2 및 3과 같다(S14).Thus, after calculating Qplug and Qpeak respectively, based on the calculated Qplug and Qpeak and the set values, the pollution degree according to the linear function and the exponential function is calculated. The straight line function and the exponential function are as shown in Equations 2 and 3 below (S14).
관계식 2Relation 2
Figure PCTKR2011006422-appb-I000002
Figure PCTKR2011006422-appb-I000002
여기서, Q는 제1 래들의 종료 이후 주조량(ton)이고, Qrm는 제2 래들의 개시시의 턴디쉬 잔여 용강량(ton)이고, Qplug는 제1 래들 종료 시점부터 오염농도가 0.01이 될 때의 주조량(ton)이고, Qpeak는 오염원 농도가 "1"일 때의 주조량이다.Here, Q is the casting amount (ton) after the end of the first ladle, Qrm is the remaining tundish molten steel (ton) at the start of the second ladle, Qplug is a pollution concentration of 0.01 from the end of the first ladle Is the casting amount at the time of ton and Qpeak is the casting amount when the source concentration is "1".
관계식 3Relationship 3
Figure PCTKR2011006422-appb-I000003
Figure PCTKR2011006422-appb-I000003
여기서, f는 제3 비례계수이다.Where f is a third proportional coefficient.
래들 슬래그에 의한 오염원 농도는 도 7과 같이 주조량이 Qplug일 때부터 Qpeak가 될 때까지 선형적으로 "1"까지 증가하며, 이후 지수적으로 감소하여 "0"에 근접하게 된다. 여기서, 지수적으로 감소하는 정도는 래들 슬래그가 턴디쉬(20)로 유입되는 시점에서의 Qrm와 이후 주조된 주조량의 비(Q/Qrm)에 비례하는데, 제3 비례계수(f)는 3에서 8 사이의 값을 가질 수 있다.Contaminant concentration by the ladle slag increases linearly to "1" from when the casting amount is Qplug to Qpeak as shown in FIG. 7, and then decreases exponentially to approach "0". Here, the degree of exponential decrease is proportional to the ratio (Q / Qrm) of Qrm at the time when the ladle slag enters the tundish 20 and the casting amount cast thereafter, and the third proportional coefficient f is 3 It can have a value between.
이와 같이 직선함수와 지수함수에 의해 얻어진 각 오염도를 서로 비교하고, 둘 중 더 작은 값을 특정 주조량에 따른 제1 래들(11) 종료시의 용강 오염도로 1차로 결정한다(S15). 여기서, 둘 중 더 작은값을 선택하는 이유는, 도 8의 그래프에서 Qplug와 Qpeak 사이에서의 오염도는 직선함수 형태(㉮)로 나타나는 데, 이때 직선함수(㉮)의 값이 지수함수(㉯)의 값보다 더 작기 때문이다. 또한, Qpeak 이상의 구간에서는 오염도가 지수함수(㉰) 형태로 나타나는 데, 이때 지수함수(㉰)가 직선함수(㉱)의 값보다 더 작기 때문이다. Thus, each pollution degree obtained by the linear function and the exponential function is compared with each other, and the smaller of the two values is determined first as the molten steel pollution degree at the end of the first ladle 11 according to the specific casting amount (S15). Here, the reason for selecting the smaller of the two, the pollution degree between Qplug and Qpeak in the graph of Figure 8 appears in the form of a linear function (㉮), where the value of the linear function (㉮) is an exponential function (㉯) This is because it is smaller than the value of. In addition, the pollution degree is expressed in exponential form in the section above Qpeak, because the exponential function is smaller than the value of the linear function.
이어, 상기에서 결정된 오염도와 "0"을 서로 비교하여 둘 중 더 큰 값을 제1 래들(11) 종료시의 용강 오염도로 최종 결정한다(S16, S17). 여기서, 오염도를 "0"과 비교하여 둘 중 더 큰값을 선택하는 이유는 오염도가 네거티브 값(-)을 가질 수 없기 때문이다.Subsequently, the above-described pollution degree and "0" are compared with each other, and the larger of the two values is finally determined as the molten steel pollution degree at the end of the first ladle 11 (S16 and S17). Here, the reason why the larger of the two values are selected by comparing the pollution degree with "0" is that the pollution degree cannot have a negative value (-).
한편, 제2 래들(12) 개시시의 용강 오염도를 구하는 과정을 살펴본다. 오염예측시스템(미 도시)에는 제1 래들(11)의 종료 이후에 턴디쉬(20)를 통해 몰드로 유출되는 용강량, 즉 주조량(Q)과 제2 래들(12)의 개시시에 도 6과 같이 턴디쉬(20)에 남아있는 잔여 용강량(Qrm)이 사용자에 의해 각각 세팅된다(S11). Meanwhile, the process of obtaining the molten steel pollution degree at the start of the second ladle 12 will be described. The contamination prediction system (not shown) also includes the amount of molten steel flowing out of the mold through the tundish 20 after the end of the first ladle 11, that is, the casting amount Q and the start of the second ladle 12. As shown in FIG. 6, the remaining molten steel quantity Qrm remaining in the tundish 20 is set by the user (S11).
이어, 오염예측시스템은 제2 래들(12)의 개시시의 턴디쉬 잔여 용강량(Qrm)과 설정된 2차 비례계수(g, h)를 이용하여, 제1 래들(11)의 종료 시점부터 오염농도가 설정된 제1 기준값이 될 때의 주조량(Qplug)과 설정된 제2 기준값이 될 때의 주조량(Qpeak)을 상기 관계식 1에 의해 각각 계산한다(S12, S18). 상기 2차 비례계수는 상술한 1차 비례계수와 동일한 파라미터이며, 단지 그 값이 다를 수 있다.Subsequently, the contamination prediction system uses the tundish residual molten steel Qrm at the start of the second ladle 12 and the set secondary proportional coefficients g and h to contaminate from the end point of the first ladle 11. The casting amount Qplug when the concentration becomes the set first reference value and the casting amount Qpeak when the concentration becomes the set second reference value are respectively calculated by the above relationship 1 (S12 and S18). The second proportional coefficient is the same parameter as the above-described first proportional coefficient, and its value may be different.
예컨대, 도 7에서 최소 오염농도가 "0"이고 최대 오염농도는 "1"이다. 제1 래들(11)의 종료 시점부터 오염농도가 0.01이 될 때의 주조량을 Qplug로 정의되며, Qplug는 상기 관계식 1에 의해 계산(
Figure PCTKR2011006422-appb-I000004
)될 수 있다. Qplug는 래들로부터 유입된 래들 슬래그가 턴디쉬(20)내에서 최단경로를 거쳐 몰드로 주입되는데 필요한 주조량을 의미하는 것으로, 유입시점의 턴디쉬의 잔여 용강량(Qrm)과 비례 관계를 가진다. 제1 비례계수(g)는 턴디쉬(20)내 용강 흐름이 얼마나 플러그 플로우(plug flow)의 특성을 갖느냐를 나타내는 척도로써, 턴디쉬(20)의 형상, 즉 플러그 플로우의 특성에 따라 0.1에서 0.3 사이의 값을 가질 수 있다.
For example, in FIG. 7, the minimum pollution concentration is "0" and the maximum pollution concentration is "1". The casting amount when the contamination concentration becomes 0.01 from the end of the first ladle 11 is defined as Qplug, and Qplug is calculated by the above relation 1
Figure PCTKR2011006422-appb-I000004
Can be Qplug refers to the amount of casting required for the ladle slag introduced from the ladle to be injected into the mold through the shortest path in the tundish 20 and has a proportional relationship with the remaining molten steel Qrm of the tundish at the time of inflow. The first proportional coefficient (g) is a measure of how plug flow is characterized in that the molten steel flow in the tundish 20 is 0.1, depending on the shape of the tundish 20, that is, the plug flow characteristic. It can have a value between 0.3.
그리고, Qpeak는 오염원 농도가 "1"일 때의 주조량으로 정의되며, Qpeak는 상기 관계식 1에 의해 계산(
Figure PCTKR2011006422-appb-I000005
)될 수 있다. Qpeak값은 턴디쉬(20)내 유동 특성에 의해 결정되는 값으로써 유입시점의 턴디쉬의 잔여 용강량(Qrm)과 비례 관계를 갖는데, 제2 비례계수(h)는 0.2에서 0.4 사이의 값을 가질 수 있다.
And, Qpeak is defined as the amount of casting when the pollutant concentration is "1", Qpeak is calculated by the relationship 1
Figure PCTKR2011006422-appb-I000005
Can be The Qpeak value is a value determined by the flow characteristics in the tundish 20 and has a proportional relationship with the remaining molten amount Qrm of the tundish at the inflow point. The second proportional coefficient h has a value between 0.2 and 0.4. Can have
이와 같이 Qplug와 Qpeak를 각각 계산한 후 계산된 Qplug와 Qpeak와 설정된 값들을 기초로 하여 직선함수와 지수함수에 따른 오염도를 각각 계산한다(S19). 직선함수와 지수함수는 상기 관계식 2 및 3과 같다.As described above, after calculating Qplug and Qpeak, respectively, the pollution degree according to the linear function and the exponential function is calculated based on the calculated Qplug and Qpeak and the set values (S19). The linear function and the exponential function are the same as the relations 2 and 3.
래들의 필러와 턴디쉬 슬래그 및 용강 재산화에 의한 오염원 농도는 도 7과 같이 주조량이 Qplug일 때부터 Qpeak가 될 때까지 선형적으로 "1"까지 증가하며, 이후 지수적으로 감소하여 "0"에 근접하게 된다. 여기서, 지수적으로 감소하는 정도는 래들 슬래그가 유입되는 시점에서의 Qrm와 이후 주조된 주조량의 비(Q/Qrm)에 비례하는데, 제3 비례계수(f)는 3에서 8 사이의 값을 가질 수 있다. 턴디쉬 잔여 용강량(Qrm)은 제2 래들(12)의 개공 직전에 최소량이 되고, 제2 래들(12)의 개공 후에 정상적인 용강량이 될 때까지 상승하게 된다. 제3 비례계수(f)는 제2 래들(12)의 개공 직전에 턴디쉬내 용강량이 적을수록 범위(3~8) 내에서 커지고, 제2 래들(12)의 개공 후 정상 용강량이 될 때까지 제2 래들(12)로부터 턴디쉬(30)로 공급되는 분당 용강량이 클수록 범위 내에서 커진다.Contaminant concentration by filler and tundish slag and molten steel reoxidation of the ladle increases linearly to "1" from the time of Qplug to Qpeak as shown in FIG. 7, and then decreases exponentially to "0". Close to. Here, the degree of exponential decrease is proportional to the ratio of Qrm at the time when the ladle slag is introduced and the casting amount (Q / Qrm) cast thereafter, and the third proportional coefficient f is a value between 3 and 8. Can have. The tundish remaining molten steel quantity Qrm becomes a minimum amount immediately before the opening of the second ladle 12 and rises until it becomes a normal molten steel after the opening of the second ladle 12. The third proportional coefficient f is larger in the range 3 to 8 as the amount of molten steel in the tundish immediately before the opening of the second ladle 12 becomes larger, and is until the normal amount of molten steel after opening of the second ladle 12. The larger the amount of molten steel per minute supplied from the second ladle 12 to the tundish 30, the larger the range is.
이와 같이 직선함수와 지수함수에 의해 얻어진 각 오염도를 서로 비교하고, 둘 중 더 작은 값을 특정 주조량에 따른 제2 래들(12) 개시시의 용강 오염도로 1차 결정한다(S20). Thus, each pollution degree obtained by the linear function and the exponential function is compared with each other, and the smaller of the two is first determined as the molten steel pollution degree at the start of the second ladle 12 according to the specific casting amount (S20).
이어, 상기에서 결정된 오염도와 "0"을 서로 비교하여 둘 중 더 큰 값을 제2 래들(12) 개시시의 용강 오염도로 최종 결정한다(S21, S22). Subsequently, the above-described pollution degree and "0" are compared with each other, and the larger of the two values is finally determined as the molten steel pollution level at the start of the second ladle 12 (S21 and S22).
상기에서 살펴본 바와 같이, 제1 래들(11) 종료시의 용강 오염도와 제2 래들(12) 개시시의 용강 오염도는 제1 비례계수(g)와 제2 비례계수(h) 및 제3 비례계수(f)의 값만 다를 뿐 동일한 관계식과 절차를 이용하여 계산된다. As described above, the molten steel contamination at the end of the first ladle 11 and the molten steel pollution at the start of the second ladle 12 may include the first proportional coefficient g, the second proportional coefficient h, and the third proportional coefficient ( Only the values of f) are different and are calculated using the same relations and procedures.
이와 같이 제1 래들(11) 종료시의 용강 오염도(C1)와, 제2 래들(12) 개시시의 용강 오염도(C2)를 구하는 과정을 전체적으로 나타내면 아래 관계식 4 및 5와 같다. 즉, 용강 오염도(C1, C2)를 구하는 방법은, 관계식 4 및 5와 같이 정해진 직선함수와 지수함수를 비교하여 더 작은 값을 선택한 후 선택된 값과 "0"을 서로 비교하여 더 큰 값을 선택하여 특정 주조량(Q)에 따른 오염도로 결정한다.Thus, the process of obtaining the molten steel pollution degree (C1) at the end of the first ladle 11 and the molten steel pollution degree (C2) at the start of the second ladle 12 is shown as the following equations 4 and 5. In other words, the method for obtaining the molten steel pollution degree (C1, C2) is to select a smaller value by comparing the linear function and the exponential function determined as in relations 4 and 5, and then select the larger value by comparing the selected value with "0". To determine the degree of contamination according to the specific casting amount (Q).
관계식 4Relationship 4
Figure PCTKR2011006422-appb-I000006
Figure PCTKR2011006422-appb-I000006
관계식 5Relationship 5
Figure PCTKR2011006422-appb-I000007
Figure PCTKR2011006422-appb-I000007
이어, 오염예측시스템은 1차 비례계수를 적용하여 얻어진 제1 래들(11) 종료시의 오염도(C1)와 상기 2차 비례계수를 적용하여 얻어진 제2 래들(12) 개시시의 오염도(C2)를 각각 가산하여 아래 관계식 6과 같이 종합 용강 오염도(Tc)를 산출하게 된다(S23).Then, the pollution prediction system determines the pollution degree C1 at the end of the first ladle 11 obtained by applying the first proportional coefficient and the pollution degree C2 at the start of the second ladle 12 obtained by applying the second proportional coefficient. Each addition is calculated to calculate the total molten steel pollution degree (Tc) as shown in Equation 6 below (S23).
관계식 6Relationship 6
Figure PCTKR2011006422-appb-I000008
Figure PCTKR2011006422-appb-I000008
여기서, C1은 제1 래들(11) 종료시 오염도이고, C2는 제2 래들(12)의 개시시 오염도이고, A는 가중치이다. Here, C1 is a pollution degree at the end of the first ladle 11, C2 is a pollution degree at the start of the second ladle 12, A is a weight.
상기 가중치(A)는 0.2에서 0.4 사이의 값이 될 수 있는 데, 제1 래들(11) 종료시의 오염원의 영향이 30% 내외이고, 후 래들 개시시의 오염원의 영향이 70% 내외이기 때문에 가중치(A)는 0.3 정도가 바람직하다.The weight A may be a value between 0.2 and 0.4, since the influence of the source at the end of the first ladle 11 is about 30% and the influence of the source at the start of the ladle is about 70%. As for (A), about 0.3 are preferable.
이와 같이 오염도 예측 과정을 통해, 조업 변수(Q, Qrm)와 턴디쉬(20)의 형상에 따른 주편 불량율을 가장 잘 나타내는 용강 오염원에 대한 발생 시점의 추정이 가능하여 연주주편을 절단하는 위치를 가변 조정함으로써, 주편의 품질 불량을 최소화할 수 있고, 제2 래들(12) 개시시의 오염원의 관리에 집중하여 주편의 품질 불량을 최소화 또는 제거할 수 있다.Thus, through the contamination prediction process, it is possible to estimate the occurrence time for the molten steel contaminant that best represents the failure rate of the cast steel according to the operation variables (Q, Qrm) and the shape of the tundish 20 to change the position of cutting the cast steel By adjusting, the quality defect of the cast steel can be minimized, and the quality defect of the cast steel can be minimized or eliminated by focusing on the management of the pollution source at the start of the second ladle 12.
상기의 본 발명은 바람직한 실시예를 중심으로 살펴보았으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 본질적 기술 범위 내에서 상기 본 발명의 상세한 설명과 다른 형태의 실시예들을 구현할 수 있을 것이다. 여기서 본 발명의 본질적 기술범위는 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.The present invention has been described with reference to the preferred embodiments, and those skilled in the art to which the present invention pertains to the detailed description of the present invention and other forms of embodiments within the essential technical scope of the present invention. Could be. Here, the essential technical scope of the present invention is shown in the claims, and all differences within the equivalent range will be construed as being included in the present invention.

Claims (11)

  1. 제1 래들의 종료 이후 주조량(Q)과 제2 래들의 개시시에 턴디쉬의 잔여 용강량(Qrm)이 각각 지정되는 제1 단계;A first step in which, after the end of the first ladle, the casting amount Q and the remaining molten steel Qrm of the tundish at the start of the second ladle are respectively designated;
    상기 잔여 용강량(Qrm)과 설정된 1차 비례계수 또는 2차 비례계수를 이용하여, 제1 래들의 종료 시점부터 오염농도가 설정된 제1 기준값이 될 때의 주조량(Qplug)과 설정된 제2 기준값이 될 때의 주조량(Qpeak)을 각각 계산하는 제2 단계;The amount of casting Qplug and the set second reference value when the contamination concentration becomes the set first reference value from the end of the first ladle using the residual molten steel Qrm and the set first proportional coefficient or the second proportional coefficient A second step of calculating the amount of casting Qpeak at each time;
    상기에서 얻어진 주조량(Q, Qplug, Qpeak) 및 잔여 용강량(Qrm)을, 설정된 직선함수와 지수함수에 각각 대입하여 특정 주조량에 대한 오염도를 구하는 제3 단계; 및A third step of substituting the obtained casting amount (Q, Qplug, Qpeak) and the remaining molten steel amount (Qrm) into the set linear function and the exponential function, respectively, to obtain the pollution degree for the specific casting amount; And
    상기 직선함수와 지수함수에 의해 얻어진 오염도를 서로 비교하고, 둘 중 더 작은 값을 특정 주조량에 따른 오염도로 결정하는 제4 단계;를 포함하는 래들 교환시 용강 오염범위 예측 방법.And comparing a contamination degree obtained by the linear function and the exponential function with each other, and determining a smaller value of the contamination degree according to a specific casting amount. 4.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 제2 단계에서 제1 기준값은 0.01이고, 제2 기준값은 오염농도가 최대일 때의 값인 래들 교환시 용강 오염범위 예측 방법.In the second step, the first reference value is 0.01, and the second reference value is the value when the contamination concentration is the maximum molten steel pollution range prediction method during ladle exchange.
  3. 청구항 1에 있어서,The method according to claim 1,
    상기 Qplug는 턴디쉬의 잔여 용강량(Qrm)과 제1 비례계수(g)를 곱하여 얻어지고, 상기 Qpeak는 턴디쉬의 잔여 용강량(Qrm)과 제2 비례계수(h)를 곱하여 얻어지는 래들 교환시 용강 오염범위 예측 방법.The Qplug is obtained by multiplying the remaining molten steel Qrm of the tundish by the first proportional coefficient g, and the Qpeak is the ladle exchange obtained by multiplying the remaining molten steel Qrm of the tundish by the second proportional coefficient h. Method of Predicting Pollution Range of Municipal Steel.
  4. 청구항 3에 있어서,The method according to claim 3,
    상기 제1 비례계수(g)는 0 내지 0.3 사이에서 결정되고, 상기 제2 비례계수(h)는 0.1 내지 0.4 사이에서 결정되는 래들 교환시 용강 오염범위 예측 방법.The first proportional coefficient (g) is determined between 0 and 0.3, and the second proportional coefficient (h) is determined between 0.1 to 0.4.
  5. 청구항 3에 있어서,       The method according to claim 3,
    상기 제1 비례계수(g)는, 상기 1차 비례계수에서 0 내지 0.2 사이에서 결정되고, 상기 2차 비례계수에서 0.1 내지 0.3 사이에서 결정되며,      The first proportional coefficient (g) is determined between 0 and 0.2 in the first proportional coefficient, and determined between 0.1 and 0.3 in the second proportional coefficient,
    상기 제2 비례계수(h)는, 상기 1차 비례계수에서 0.1 내지 0.3 사이에서 결정되고, 2차 비례계수에서 0.2 내지 0.4 사이에서 결정되는 래들 교환시 용강 오염범위 예측 방법.      The second proportional coefficient (h) is determined between 0.1 to 0.3 in the first proportional coefficient, the molten steel pollution range prediction method during ladle exchange is determined between 0.2 to 0.4 in the second proportional coefficient.
  6. 청구항 1에 있어서,       The method according to claim 1,
    상기 제3 단계에서 특정 주조량에 대한 오염도(C)는 하기 관계식 1의 직선함수와 하기 관계식 2의 지수함수에 의해 각각 계산되는 래들 교환시 용강 오염범위 예측 방법.The pollution degree (C) for the specific casting amount in the third step is calculated by the linear function of the following equation 1 and the exponential function of the following equation 2, respectively.
    관계식 1Relationship 1
    Figure PCTKR2011006422-appb-I000009
    Figure PCTKR2011006422-appb-I000009
    관계식 2Relation 2
    Figure PCTKR2011006422-appb-I000010
    Figure PCTKR2011006422-appb-I000010
    여기서, Q는 제1 래들의 종료 이후 주조량(ton)이고, Qrm는 제2 래들의 개시시의 턴디쉬 잔여 용강량(ton)이고, Qplug는 제1 래들 종료 시점부터 오염농도가 0.01이 될 때의 주조량(ton)이고, Qpeak는 오염원 농도가 1일 때의 주조량(ton)이며, f는 제3 비례계수임.Here, Q is the casting amount (ton) after the end of the first ladle, Qrm is the remaining tundish molten steel (ton) at the start of the second ladle, Qplug is a pollution concentration of 0.01 from the end of the first ladle Is the casting amount (ton) at the time, Qpeak is the casting amount (ton) when the source concentration is 1, and f is the third proportional coefficient.
  7. 청구항 6에 있어서,       The method according to claim 6,
    상기 제3 비례계수(f)는 3 내지 8 사이에서 결정되는 래들 교환시 용강 오염범위 예측 방법.The third proportional coefficient f is determined between 3 to 8 molten steel pollution range prediction method during ladle exchange.
  8. 청구항 1에 있어서,        The method according to claim 1,
    상기 1차 비례계수를 적용하여 얻어진 제4 단계의 오염도와 상기 2차 비례계수를 적용하여 얻어진 제4 단계의 오염도를 각각 가산하여 종합 용강 오염도(Tc)를 산출하는 래들 교환시 용강 오염범위 예측 방법.A method of predicting the molten steel pollution range during ladle exchange by adding the pollution degree in the fourth step obtained by applying the first proportional coefficient and the pollution degree in the fourth step obtained by applying the second proportional coefficient to calculate a comprehensive molten steel pollution degree (Tc). .
  9. 청구항 8에 있어서,        The method according to claim 8,
    상기 종합 용강 오염도(Tc)는 하기 관계식 3에 의해 계산되는 래들 교환시 용강 오염범위 예측 방법.The comprehensive molten steel pollution degree (Tc) is a method of predicting the molten steel pollution range when ladle exchange is calculated by the following equation (3).
    관계식 3Relationship 3
    Figure PCTKR2011006422-appb-I000011
    Figure PCTKR2011006422-appb-I000011
    여기서, C1은 제1 래들 종료시의 1차 비례계수를 적용하여 얻어진 오염도이고, C2는 제2 래들 개시시의 2차 비례계수를 적용하여 얻어진 오염도이며, A는 가중치임.Here, C1 is a pollution degree obtained by applying the first proportional coefficient at the end of the first ladle, C2 is a pollution degree obtained by applying the second proportional coefficient at the start of the second ladle, A is a weight.
  10. 청구항 9에 있어서,        The method according to claim 9,
    상기 가중치(A)는 0.25 내지 0.35 사이의 값인 래들 교환시 용강 오염범위 예측 방법.The weight (A) is a value between 0.25 to 0.35 molten steel pollution range prediction method during ladle exchange.
  11. 청구항 1에 있어서,        The method according to claim 1,
    상기 제4 단계에서 결정된 오염도와 "0"을 서로 비교하여 둘 중 더 큰 값을 선택하여 최종 오염도로 결정하는 단계를 더 포함하는 래들 교환시 용강 오염범위 예측 방법.And comparing the pollution degree determined in the fourth step with "0" and selecting a larger value of the two to determine a final pollution degree.
PCT/KR2011/006422 2010-08-30 2011-08-30 Method for predicting contamination range of molten steel when switching ladles WO2012030151A2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201180041952.2A CN103209783B (en) 2010-08-30 2011-08-30 Method for predicting contamination range of molten steel when switching ladles
JP2013527012A JP5567214B2 (en) 2010-08-30 2011-08-30 Method for predicting contamination range of molten steel when changing ladle
US13/778,933 US9460248B2 (en) 2010-08-30 2013-02-27 Method for predicting degree of contamination of molten steel during ladle exchange

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2010-0084133 2010-08-30
KR20100084133 2010-08-30
KR1020110086293A KR101299094B1 (en) 2010-08-30 2011-08-29 Method for estimating pollution range of molten steel on laddle change
KR10-2011-0086293 2011-08-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/778,933 Continuation US9460248B2 (en) 2010-08-30 2013-02-27 Method for predicting degree of contamination of molten steel during ladle exchange

Publications (2)

Publication Number Publication Date
WO2012030151A2 true WO2012030151A2 (en) 2012-03-08
WO2012030151A3 WO2012030151A3 (en) 2012-05-31

Family

ID=45773387

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/006422 WO2012030151A2 (en) 2010-08-30 2011-08-30 Method for predicting contamination range of molten steel when switching ladles

Country Status (1)

Country Link
WO (1) WO2012030151A2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3337692B2 (en) * 1995-03-29 2002-10-21 新日本製鐵株式会社 Quality prediction and quality control of continuous cast slab

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH067904A (en) * 1992-06-26 1994-01-18 Nippon Steel Corp Method and device for removing inclusion in tundish for continuous casting
JPH08267219A (en) * 1995-03-30 1996-10-15 Nippon Steel Corp Method for detecting and controlling outflow of slag from molten metal vessel
JPH08290259A (en) * 1995-04-18 1996-11-05 Sumitomo Metal Ind Ltd Method and device for detecting ladle slag and filling sand

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3337692B2 (en) * 1995-03-29 2002-10-21 新日本製鐵株式会社 Quality prediction and quality control of continuous cast slab

Also Published As

Publication number Publication date
WO2012030151A3 (en) 2012-05-31

Similar Documents

Publication Publication Date Title
KR101299094B1 (en) Method for estimating pollution range of molten steel on laddle change
KR101246207B1 (en) Device for estimating a pin-hole defect of solidified shell in continuous casting process and method therefor
WO2014003269A1 (en) Breakout prevention method in continuous casting
WO2013048083A2 (en) Method for predicting number of continuous casting processes when continuous casting
KR20120110584A (en) Device for controlling cooling of mold for thin slab and method therefor
WO2012030151A2 (en) Method for predicting contamination range of molten steel when switching ladles
KR101267341B1 (en) Device for preventing breakout of solidified shell in continuous casting process and method therefor
KR101246193B1 (en) Method for estimating steel component during mixed grade continuous casting
KR101277627B1 (en) Device for estimating breakout of solidified shell in continuous casting process and method therefor
KR101159598B1 (en) Method for estimating mold powder's viscosity
KR101344897B1 (en) Device for predicting quality of plate in continuous casting and method therefor
KR20130099293A (en) Device for prediction of carbon increase in molten steel and method thereof
KR20130099319A (en) Predicting method for thickness of solidified shell on continuous casting process
KR20140108410A (en) Method for predicting molten steel temperature of continuous casting
KR101400047B1 (en) Control method for casting of ultra low carbon steel
KR101400041B1 (en) Device for estimating carbon-increasing of molten steel and method thereof
KR101159604B1 (en) Apparatus for distinguishing non-symmetric flow in mold and method for controlling non-symmetric folw
KR101204944B1 (en) Device for controlling oscillation of mold in continuous casting process and method therefor
Dutta et al. Continuous casting (concast)
KR20110130650A (en) Tundish
WO2017099538A1 (en) Apparatus and method for processing terminating operation of continuous casting machine
KR20110130655A (en) Method for maintaining shroud nozzle and apparatus for maintaining shroud nozzle
KR101443584B1 (en) Method for scarfing slab of low carbon steel
KR101435113B1 (en) Method and device for reducing defect of hot coil edge
KR101377484B1 (en) Method for estimating carbon-increasing of molten steel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11822126

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase in:

Ref document number: 2013527012

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11822126

Country of ref document: EP

Kind code of ref document: A2