WO2012029974A1 - Infrared ray detection sensor and electronic apparatus - Google Patents

Infrared ray detection sensor and electronic apparatus Download PDF

Info

Publication number
WO2012029974A1
WO2012029974A1 PCT/JP2011/070158 JP2011070158W WO2012029974A1 WO 2012029974 A1 WO2012029974 A1 WO 2012029974A1 JP 2011070158 W JP2011070158 W JP 2011070158W WO 2012029974 A1 WO2012029974 A1 WO 2012029974A1
Authority
WO
WIPO (PCT)
Prior art keywords
infrared detection
substrate
sensor
infrared
detection sensor
Prior art date
Application number
PCT/JP2011/070158
Other languages
French (fr)
Japanese (ja)
Inventor
純一郎 又賀
岩波 瑞樹
尚武 高橋
佐々木 康弘
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Publication of WO2012029974A1 publication Critical patent/WO2012029974A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/34Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using capacitors, e.g. pyroelectric capacitors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/0225Shape of the cavity itself or of elements contained in or suspended over the cavity
    • G01J5/024Special manufacturing steps or sacrificial layers or layer structures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/04Casings
    • G01J5/046Materials; Selection of thermal materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/34Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using capacitors, e.g. pyroelectric capacitors
    • G01J2005/345Arrays

Definitions

  • the present invention relates to an infrared detection sensor and an electronic device.
  • infrared sensors include pyroelectric infrared sensors that use the pyroelectric effect, resistance change types that use the temperature change rate of the resistance of materials, and sensors that use changes in the electrical characteristics of semiconductor pn junctions. Yes.
  • pyroelectric and variable resistance sensors that can operate at room temperature are used for fire detection and human body detection, and by arranging infrared detector elements in an array, infrared spatial distribution can be easily imaged with high resolution. It can be used to secure safety in the dark and search for structural materials.
  • Patent Document 1 describes a thermal infrared detection system for crime prevention and disaster prevention, an industrial thermal management system, and an infrared detector used for temperature distribution measurement.
  • this infrared detector a plurality of infrared detection elements are arranged in a one-dimensional manner so that the infrared receiving surfaces of adjacent infrared detecting elements have a step, and the receiving surfaces contact or overlap each other when viewed from the viewing direction. Or they are arranged in two dimensions. Thereby, there is no insensitive area
  • Patent Document 2 describes an infrared sensor array with improved infrared detection sensitivity.
  • the infrared sensor array is substantially orthogonal to an infrared sensor that is supported by legs on a substrate and includes an infrared detector having a temperature detection film and an infrared absorber supported by the support on the infrared detector. It is an infrared sensor array juxtaposed in two axial directions.
  • the infrared sensor is disposed adjacent to each other, and includes a first infrared sensor having a plate-like infrared absorbing portion whose distance from the substrate is a, a plate-like portion, and a plate-like portion provided around the plate-like portion.
  • a second infrared sensor having an infrared absorbing portion having a flange portion whose distance is larger than a. And in this infrared sensor array, the infrared absorption part of a 1st infrared sensor and a 2nd infrared sensor is arrange
  • Patent Document 3 a plurality of pyroelectric infrared detectors arranged one-dimensionally are used to detect the presence, position, and behavior of a human body in a living room at low cost and in a compact size.
  • An infrared sensor system to perform is described.
  • This infrared sensor system includes a signal converting means for converting a signal output from a pyroelectric infrared detector into a digital signal, a pulse counting means for counting pulses of the digital signal output from the signal converting means, and a pulse counting means.
  • area-specific information storage means for storing the pulse information counted in step (1), and determination means for determining data stored in the area-specific information storage means. Then, the determination unit compares the pulse information stored in the area-specific information storage unit with a preset threshold value.
  • Patent Document 4 describes a simple pyroelectric infrared sensor that detects a central region and its peripheral region.
  • a single element for forming a first dual element and a second dual element is sequentially arranged in a horizontal direction on a substrate made of a pyroelectric material.
  • infrared rays generated in different substantially continuous regions are condensed and irradiated by the Fresnel lens of the lens dome to realize a wide viewing angle.
  • human detection is performed in a region (center region) corresponding to the first dual element and a region (peripheral region) corresponding to the second dual element.
  • Patent Document 3 and Patent Document 4 since a plurality of infrared sensors are arranged in parallel or in a grid on the same plane, there is a limit to downsizing. Moreover, in patent document 1 and patent document 2, a plurality of infrared sensors are arranged apart from each other in the vertical direction (Z-axis direction) for the purpose of eliminating a dead area between the infrared sensors. However, this has a problem in that it is difficult to obtain sufficient sensitivity.
  • the sensitivity of the pyroelectric material is proportional to the pyroelectric current generated by the temperature change caused by the heat generated by the received infrared light and the light receiving area of the infrared detecting element. Therefore, if the sensor element is reduced in size and the mounting area of the sensor element is reduced, the sensitivity of each infrared detecting element is lowered and the sensitivity is reduced as a whole.
  • the present invention has been made in view of the above circumstances, and provides an infrared detection sensor and an electronic device that can be miniaturized and can perform highly accurate detection of infrared rays distributed in a wider spatial region.
  • the purpose is to do.
  • An infrared detection sensor provides: In an infrared detection sensor comprising a substrate and a plurality of infrared detection elements mounted and arranged on the substrate, The plurality of infrared detection elements are: A plurality of infrared detection elements located in a lower layer portion adjacent to the substrate; A plurality of infrared detection elements located in an upper layer portion separated from the substrate, When viewed from a direction perpendicular to the surface of the substrate, each infrared detection element located in the lower layer portion and each infrared detection element located in the upper layer portion are arranged so as to overlap each other in the vertical direction. ing, An infrared detection sensor characterized by that.
  • An electronic device is: An infrared detection sensor according to the first aspect is provided.
  • the present invention it is possible to reduce the size and to detect infrared rays distributed in a wider spatial region with high accuracy.
  • FIG. 1B is a sectional view taken along line MM in FIG. 1A.
  • FIG. It is a top view which shows an example of a pyroelectric infrared detection sensor.
  • FIG. 2B It is a schematic sectional drawing which shows an example of a structure of a pyroelectric infrared detection sensor.
  • FIG. 1A is a structural perspective view showing an example of a pyroelectric infrared detection sensor according to an embodiment of the present invention.
  • 1B is a cross-sectional view taken along line MM in FIG. 1A.
  • FIG. 1C is a plan view illustrating an example of a pyroelectric infrared detection sensor.
  • FIG. 2A is a schematic cross-sectional view showing an example of the configuration of a pyroelectric infrared detection sensor.
  • FIG. 2B is a plan view showing an example of an infrared sensor element.
  • 2C is a sectional view taken along line NN in FIG. 2B.
  • a pyroelectric infrared detection sensor 100 includes a plurality of infrared sensor elements that receive infrared rays. 12 (hereinafter simply referred to as sensor elements 12), and the plurality of sensor elements 12 are arranged in an array and in a grid (lattice) on the substrate 11 so as to be staggered in the vertical direction. Mounting is arranged.
  • the plurality of sensor elements 12 includes 15 (a plurality of) sensor elements 12a located in a lower layer portion close to the substrate 11 and eight (a plurality of) sensor elements 12b located in an upper layer portion separated from the substrate 11. Become.
  • the thickness of the substrate 11 is not particularly limited.
  • the sensor element 12 has a thickness of 1 ⁇ m or more and 100 ⁇ m or less.
  • each sensor element 12a located in the lower layer portion and each sensor element 12b located in the upper layer portion are arranged so as to overlap each other in the vertical direction.
  • one of the sensor elements 12 (lower layer part (first stage) sensor element 12a) is part of the other sensor element (upper layer part (second stage) sensor element 12b). It is mounted on the substrate 11 so as to overlap each other in the vertical direction.
  • Each sensor element 12b is arranged at the intersection of a cross-shaped gap formed between the four sensor elements 12a.
  • the sensor element 12a and the sensor element 12b in which a part of each other overlaps in the vertical direction as described above are referred to as adjacent sensor elements 12.
  • the adjacent sensor elements 12 have different heights (arrangement positions) from the substrate 11 in order to avoid contact between the sensor elements 12, that is, the sensor elements 12a and 12b. Further, the adjacent sensor elements 12 do not interfere with the arrangement so as not to contact each other when viewed from a direction perpendicular to the surface of the substrate 11 in order to eliminate the insensitive area of the infrared detection sensor 100. It is desirable to arrange them to be as dense as possible.
  • a sensor array portion composed of a plurality of sensor elements 12 arranged in an array and a peripheral circuit portion 16 surrounding the sensor array portion are formed on the substrate 11. And the infrared sensor element 12 and the peripheral circuit part 16 are electrically connected by the below-mentioned wiring and bonding wire (not shown).
  • the peripheral circuit unit 16 is connected to an image processing device (not shown).
  • image processing apparatus information for a mosaic image obtained by processing an electrical signal transmitted from the infrared detection sensor 100 (the plurality of sensor elements 12) is generated based on a detection target such as a human body, and the mosaic is displayed in a display apparatus (not shown). (See FIGS. 6A and 6B).
  • the sensor element 12 is a conventionally well-known element, and as shown in FIGS. 2B and 2C, the pyroelectric ceramic film 10 having a rectangular shape as a whole and having two main surfaces as a pyroelectric body,
  • the upper and lower electrode layers 18 and 19 are formed on both main surfaces of the pyroelectric ceramic film 10.
  • the upper main surface constitutes a detection surface 17d
  • a rectangular light receiving surface 17c is formed on the detection surface 17d.
  • the upper electrode layer 18 is disposed in the light receiving surface 17c.
  • the electrode layer 18 includes four (plural) rectangular electrodes 17a arranged in parallel to each other
  • the electrode layer 19 includes four (plural) plural rectangular electrodes arranged in parallel to each other. 17b is included.
  • the electrode patterns formed on the upper and lower electrode layers may be arbitrarily set as long as they can be electrically connected to other electric elements.
  • a pyroelectric effect proportional to the area of the light receiving surface 17c of the sensor element 12 is generated according to the irradiation amount and wavelength of the infrared rays.
  • the pyroelectric charge resulting from this pyroelectric effect is induced in the pyroelectric ceramic film 10, and this induced electric charge becomes a potential difference in the upper and lower electrode layers 18 and 19. Then, by measuring this potential difference as an electrical signal using an appropriate electrical circuit (here, the peripheral circuit unit 16), the irradiated infrared ray can be detected.
  • the infrared detection sensor 100 increases the movement of the human body by analyzing the time variation data. Detection is possible with detection sensitivity.
  • the material of the pyroelectric material used in the present embodiment is not particularly limited, and ceramic pyroelectric materials such as lead zirconate titanate ceramics (PZT) and lithium tantalate ceramics, and organic pyroelectrics such as polyvinylidene fluoride. Body material can be used.
  • ceramic pyroelectric materials such as lead zirconate titanate ceramics (PZT) and lithium tantalate ceramics, and organic pyroelectrics such as polyvinylidene fluoride.
  • Body material can be used.
  • PZT lead zirconate titanate ceramics
  • PZT lead zirconate titanate ceramics having a high pyroelectric coefficient and capable of maximizing the pyroelectric effect by polarization treatment can be cited as a desirable example.
  • the electrical connection between the substrate 11 and the electrode layer 19 (pyroelectric part) under the sensor element 12 is formed on the substrate 11 by plating. It is possible to use a metal wiring that has been made. Further, for the connection between the wiring and the upper electrode layer 18, a wire bonding method can be used in addition to the plating method.
  • the sensor element 12 is formed on the substrate 11 by a film forming process or pasting, and is integrally joined, and further, electrodes and wiring for electrical connection are formed. Then, it is manufactured by further sealing and packaging. As shown in FIG. 2A, the sealed package is provided with an optical filter 15 that transmits only infrared light having a wavelength suitable for a detection target. Further, as shown in FIG. 2A, in order to efficiently collect infrared light incident from a wide range and detect it with the array-shaped sensor element 12, an optical diffraction element 14 such as a Fresnel lens is provided near the optical filter 15. Can also be provided.
  • 3A to 3C show an example of a method for manufacturing the infrared detection sensor according to the present embodiment.
  • a plurality of sensor elements 12 a are formed on the prepared substrate 11.
  • the plurality of sensor elements 12a are arranged in a grid so that the adjacent sensor elements 12a are equidistant.
  • the material of the substrate 11 is not particularly limited, and a metal material (for example, aluminum alloy, copper alloy, iron, iron-based alloy, titanium, or titanium alloy) or a resin material (epoxy, acrylic, polyimide). , Polycarbonate, etc.) and ceramic materials (alumina, silica, magnesia, or their compounds, composites, etc.) can be selected and used according to the desired shape and use environment.
  • a metal material for example, aluminum alloy, copper alloy, iron, iron-based alloy, titanium, or titanium alloy
  • a resin material epoxy, acrylic, polyimide
  • ceramic materials alumina, silica, magnesia, or their compounds, composites, etc.
  • the sensor element 12a can be formed on the substrate 11 by using, for example, an aerosol deposition method in which ceramic fine particles are sprayed at a high speed, a solution method such as a sol-gel method, or a gas phase method (MOCVD method or the like). These methods can be appropriately selected and used according to the material and shape of the substrate 11.
  • a method of producing a pyroelectric ceramic plate by a method such as a tape casting method and bonding it to the substrate 11 using an adhesive can be used for manufacturing the sensor element 12a.
  • an epoxy adhesive can be used as the adhesive.
  • the thickness of the obtained adhesive layer is not particularly limited, but is 10 ⁇ m or more and 20 ⁇ m or less, preferably 5 ⁇ m or more and 20 ⁇ m or less.
  • the thickness of the adhesive layer exceeds 20 ⁇ m, unnecessary electrical resistance components increase, which is not preferable because the infrared detection sensitivity may decrease. If the thickness of the adhesive layer is less than 10 ⁇ m, the adhesive strength is low. Since it may be insufficient, it is not preferable.
  • a plurality of leg portions 13 are formed using a resin material having low thermal conductivity, and the leg portions 13 are respectively arranged in regions formed between the plurality of sensor elements 12a.
  • the plurality of leg portions 13 are arranged on the leg portions 13 and arranged in a grid so that adjacent sensor elements 12b are equally spaced (see FIG. 1A).
  • Each leg 13 is arranged at the intersection of a cross-shaped gap formed between the four sensor elements 12a (see FIGS. 1A and 1B).
  • the height of the leg part 13 is made higher than the sensor element 12a.
  • the sensor elements 12b are bonded and fixed on the respective leg portions 13 by using, for example, an epoxy adhesive.
  • the plurality of sensor elements 12 a are arranged in a grid on the substrate 11 via the legs 13.
  • the main surface (light receiving surface 17 c) of each sensor element 12 b is arranged to be parallel to the surface of the substrate 11.
  • the sensor element 12b is disposed so as to avoid contact between the sensor element 12b and the adjacent sensor element 12a and contact between the sensor element 12b and the closest sensor element 12b.
  • the sensor element 12 b was arranged so as to be parallel to the substrate 11.
  • the present invention is not limited to this, and the installation of the leg portion 13 in which the installation surface of the sensor element 12b is inclined in advance with respect to the surface of the substrate 11 in a range where it does not contact the adjacent sensor element 12a and the closest sensor element 12b.
  • the sensor element 12b may be bonded on the surface, and the main surface (light receiving surface 17c) of the sensor element 12b may be inclined with respect to the surface of the substrate 11.
  • the main surface (light receiving surface 17c) of the sensor element 12b can be inclined with respect to the surface of the substrate 11.
  • 4A to 4D show another example of the method for manufacturing the infrared detection sensor 100 according to the present embodiment.
  • a substrate 21 is prepared.
  • the same material as that of the substrate 11 described in the manufacturing method of FIGS. 3A to 3C can be used.
  • the substrate 21 is preferably thicker than the substrate 11 in order to form a plurality of recesses 21b.
  • the substrate 21 is subjected to grid-like pattern processing to form a plurality of recesses 21b that can be accommodated in the sensor elements 12a.
  • the sensor element 12a arranged in the step shown in FIG. 4C contacts the sensor element 12b arranged on the recess 21b in the step shown in FIG. 4D.
  • the depth of the recess 21b is set deeper than the height of the sensor element 12a.
  • the sensor element 12a is bonded and fixed on the portion constituting the bottom surface of each recess 21b (herein, referred to as “integrated substrate 21a”) using an epoxy adhesive. Then, the plurality of sensor elements 12a are sequentially arranged on the integrated substrate 21a. Thereby, the plurality of sensor elements 12a are arranged in a grid on the substrate 21 (integrated substrate 21a).
  • each concave portion 21b is already arranged in each concave portion 21b on a grid-like portion (herein referred to as “integrated leg portion 21c”) that constitutes a square cylindrical side wall.
  • integrated leg portion 21c a grid-like portion that constitutes a square cylindrical side wall.
  • the plurality of sensor elements 12b are bonded and fixed using an epoxy adhesive so as not to contact the sensor element 12a. Accordingly, the plurality of sensor elements 12b are arranged in a grid on the substrate 21 via the integrated leg portion 21c.
  • Each sensor element 12b is arranged at the intersection of a cross-shaped gap formed between the four sensor elements 12a.
  • the adjacent sensor elements 12a and 12b be as small as possible from each other as long as the elements do not contact each other. Further, the sensor element 12a and the sensor element 12b are arranged in three or more layers (three or more steps) even if they are arranged in two upper and lower layers (two steps) regardless of the angle, shape and size with respect to the substrate 11. May be.
  • 5A and 5B are schematic perspective views illustrating an example of the configuration of the infrared detection sensors 101 and 102 according to the related technology.
  • the measurement result by the infrared detection sensor 100 shown in FIG. 1A is taken as an example.
  • the measurement results by the infrared detection sensors 101 and 102 shown in FIGS. 5A and 5B are referred to as Comparative Example 1 and Comparative Example 2, respectively.
  • the mounting area where the infrared detection sensors 100, 101, and 102 corresponding to the example, comparative example 1, and comparative example 2 are mounted on the substrate 11 is the same, and infrared rays from the detection target are also detected under the same conditions.
  • the light is incident on the sensors 100, 101, and 102.
  • the same thing was used also about the electronic component etc. which are required for the sensor element 12 (sensor element 12a, sensor element 12b) to be used, and others.
  • the infrared detection sensors 100, 101, and 102 were supplied with the same electric power during the measurement of infrared rays, and the usage environments such as temperature, humidity, and pressure were also the same.
  • a MgO substrate having a rectangular shape with sides of 45 mm and 30 mm and a thickness of 100 ⁇ m (0.05 mm) was used as the substrate 11.
  • the pyroelectric ceramic film 10 of the sensor element 12 is made of lead zirconate titanate ceramic, and the upper and lower electrode layers 18 and 19 (electrodes 17a and 17b) are silver / palladium alloys (weight ratio 70%: 30%) was used.
  • a resin material having a low thermal conductivity for example, an epoxy resin, an acrylic resin, a polyimide resin, a polycarbonate resin, or the like is used for the leg portion 13 that fixes the sensor element 12b to the substrate 11.
  • the infrared detection sensors 100 shown in FIG. 1A that is, the sensor elements 12 in the upper layer portion and the lower layer portion are alternately arranged in the vertical direction, and two layers (multilayer) in a grid shape.
  • a pyroelectric infrared array sensor arranged in the above was used.
  • the sensor element 12 has a square shape with a side of 5 mm, and the upper and lower main surfaces of the pyroelectric ceramic film 10 with a thickness of 15 ⁇ m (0.015 mm) formed with electrode layers 18 and 19 with a thickness of 5 ⁇ m. did. Further, in the lower layer portion on the substrate 11, the sensor elements 12 a are separated from each other by 3 mm to form a 3 ⁇ 5 grid arrangement. Further, in the upper layer portion on the substrate 11, the sensor elements 12b are separated from each other by 3 mm to form a grid-like arrangement of 2 rows ⁇ 4 columns. Here, 23 sensor elements 12 were used in total (upper layer portion: 8 and lower layer portion: 15). Each sensor element 12b is arranged at the intersection of a cross-shaped gap formed between the four sensor elements 12a.
  • the infrared detection sensor 101 shown in FIG. 5A was used. Specifically, an infrared array sensor in which the sensor elements 12 (pyroelectric bodies) are mounted on the substrate 11 in a grid shape so as to have the same mounting area as the infrared detection sensor 100 of the example is used.
  • the sensor elements 12 are not arranged in the upper layer portion, the number of pyroelectric bodies, that is, the number of sensor elements 12 is 15, which is smaller than that of the embodiment.
  • the infrared detection sensor 102 shown in FIG. 5B was used. Specifically, the same number of sensor elements 12c as the infrared detection sensors 100 of the embodiment (the area of the light receiving surface 17c of each sensor element 12 is smaller than that of the sensor elements 12 of the embodiment) are formed on the substrate 11 in a grid pattern. An arrayed infrared array sensor was used.
  • FIG. 6A and 6B are diagrams showing mosaic images obtained by processing the electrical signals generated by the infrared detection sensors 100 and 101 in the example and the comparative example 1.
  • FIG. FIG. 6A is based on the example (infrared detection sensor 100), and
  • FIG. 6B is based on the comparative example 1 (infrared detection sensor 101).
  • different levels of electrical signals are generated in the sensor elements 12 of the plurality of sensor elements 12 (sensor array portions) depending on the detection target. Thus, it can be converted into information for a mosaic image.
  • the infrared detection sensor 100 of the above embodiment by using the infrared detection sensor 100 of the above embodiment, a larger number of sensor elements 12 can be mounted in the same mounting area on the substrate 11, and the comparative example shown in FIG. 6B. As compared with the first infrared detection sensor 101, it is possible to display a higher-definition image.
  • FIG. 7 shows a voltage sensitivity graph of a detection target detected by the infrared detection sensors 100 and 102 of the above-described example and comparative example 2.
  • Graph A and graph B show the results of the infrared detection sensor 100.
  • the graph A shows the result of the sensor element 12b in the upper layer part
  • the graph B shows the result of the sensor element 12a in the lower layer part.
  • Graph C shows the result of the infrared detection sensor 102.
  • both the detection by only the sensor element 12 b in the upper layer part and the detection by only the sensor element 12 a in the lower layer part are more than the infrared detection sensor 102.
  • the peak was high, and in the same mounting area on the substrate 11, the infrared detection area by the infrared detection sensor 100 was improved. As a result, high voltage sensitivity could be obtained.
  • the infrared detection sensor 100 of the present embodiment it is possible to reduce the size, and it is possible to detect the infrared rays distributed in a wider spatial region with high accuracy.
  • the infrared detection sensor 100 of the present embodiment by arranging a plurality of sensor elements 12 alternately in the vertical direction, the sensor element 12b in the upper layer part receives infrared rays on the entire detection surface 17d, and In the sensor element 12a, the heat of the light receiving surface 17c that receives infrared rays induces a temperature change other than the light receiving surface 17c due to heat conduction in the sensor element 12a. As a result, the temperature change of the sensor element 12a is made efficient with respect to the same amount of incident infrared rays, and a large amount of pyroelectric charge is obtained, so that an infrared detection sensor with high density and high sensitivity is realized.
  • the infrared detection sensor 100 and each sensor element 12 are rectangular.
  • the present invention is not limited to this, and the shapes of the infrared detection sensor 100 and each sensor element 12 may be circular or elliptical.
  • substrate 11 was comprised from the plane area
  • the sensor elements 12 are alternately arranged in a grid shape, but the present invention is not limited to this arrangement, and as long as adjacent sensor elements 12a and 12b are arranged without contact, other arrangements, for example, a staggered pattern, Also good.
  • the arrangement state of the sensor element 12 with respect to the substrate 11 is parallel to the surface of the substrate 11, but is not limited thereto, and may be inclined with respect to the substrate 11.
  • the sensor element 12 arranged directly on the substrate 11 may be inclined.
  • the sensor element 12 may be tilted by the substrate 11 when the sensor element 12 is arranged from the substrate 11.
  • both the sensor element 12 and the substrate 11 may be inclined. In short, it is only necessary that adjacent sensor elements 12 are arranged without contacting each other.
  • the material of the substrate 11 is not limited to the pyroelectric material used in the above-described example (having spontaneous polarization without applying an electric field from the outside). Even a ferroelectric whose direction can be reversed by an external electric field can be used.
  • the upper and lower electrode patterns to be formed are not limited as long as electrical connection between the sensor element 12 and an external circuit or the like is possible, and the mounting method, wiring drawing, wiring material, or wiring shape is not limited. It is possible to change arbitrarily.
  • an infrared detection sensor comprising a substrate and a plurality of infrared detection elements mounted and arranged on the substrate
  • the plurality of infrared detection elements are: A plurality of infrared detection elements located in a lower layer portion adjacent to the substrate; A plurality of infrared detection elements located in an upper layer portion separated from the substrate, When viewed from a direction perpendicular to the surface of the substrate, each infrared detection element located in the lower layer portion and each infrared detection element located in the upper layer portion are arranged so as to overlap each other in the vertical direction.
  • An infrared detection sensor characterized by that.
  • Appendix 2 The infrared detection sensor according to appendix 1, wherein the plurality of infrared detection elements located in the lower layer portion and the plurality of infrared detection elements located in the upper layer portion are all arranged in a grid.
  • Each infrared detecting element located in the upper layer part is located in the lower layer part, and is arranged at an intersection of a cross-shaped gap formed between four adjacent infrared detecting elements.
  • each of the infrared detection elements includes at least one of a pyroelectric material and a ferroelectric material.
  • Appendix 7 The infrared detection sensor according to appendix 6, wherein the two adjacent infrared detection elements are arranged at different angles with respect to the surface of the substrate.
  • a plurality of recesses are formed in the substrate,
  • the plurality of infrared detection elements positioned in the lower layer portion are respectively disposed on the bottom surfaces of the respective recesses, and the plurality of infrared detection elements positioned in the upper layer portion respectively exclude the plurality of recesses in the substrate.
  • the infrared detection sensor according to any one of appendices 1 to 7, characterized in that:
  • Each of the infrared detection elements located in the lower layer part has an effective detection area relatively small with respect to the area of the main surface of each of the infrared detection elements.
  • Each infrared detection element is a pyroelectric body, and the pyroelectric body is made of a ceramic material.
  • the infrared detection sensor according to any one of supplementary notes 1 to 10, wherein the pyroelectric body is made of a ceramic material.
  • each of the infrared detection elements includes a lead zirconate titanate ceramic material as a ceramic material that functions as a pyroelectric body.
  • Appendix 13 The infrared detection sensor according to any one of appendices 1 to 12, wherein at least one selected from a metal material, a resin material, and a ceramic material is used as a material of the substrate.
  • Appendix 14 An electronic apparatus comprising the infrared detection sensor according to any one of appendices 1 to 13.
  • the amount of infrared light received by each sensor element is analyzed based on time-varying data that varies according to the movement of the human body that is the detection target. Sensitivity can be detected. Moreover, since it is detected as a mosaic image, the detected person cannot be specified, and personal information is protected. Therefore, it can be applied to an infrared sensor for human body detection in consideration of privacy.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

This infrared ray detection sensor is provided with a substrate (11) and a plurality of infrared ray detection elements (12) that are mounted and disposed on the substrate (11). The plurality of infrared ray detection elements (12) include: a plurality of infrared ray detection elements (12a) that are positioned at a lower layer portion that is in the proximity of the substrate (11); and a plurality of infrared ray detection elements (12b) that are positioned at an upper layer portion that is spaced from the substrate (11). When viewing from a direction perpendicular to the surface of the substrate (11), the infrared ray detection elements (12a) positioned at the lower layer portion and the infrared ray detection elements (12b) positioned at the upper layer portion are disposed in a manner so as to overlap each other in the vertical direction.

Description

赤外線検知センサおよび電子機器Infrared detection sensor and electronic device
 本発明は、赤外線検知センサおよび電子機器に関する。 The present invention relates to an infrared detection sensor and an electronic device.
 従来、赤外線センサとしては、焦電効果を利用した焦電型赤外線センサ、材料の持つ抵抗の温度変化率を利用する抵抗変化型、半導体pn接合の電気特性変化を利用するもの等が知られている。特に、常温で動作可能な焦電型および抵抗変化型センサは、火災検知や人体検知に用いられるほか、赤外線検知素子をアレイ状に配置することにより、赤外線空間分布を高い解像度で容易に画像化できる利点があり、暗所での安全確保や構造材料の探索などに用いられる。 Conventional infrared sensors include pyroelectric infrared sensors that use the pyroelectric effect, resistance change types that use the temperature change rate of the resistance of materials, and sensors that use changes in the electrical characteristics of semiconductor pn junctions. Yes. In particular, pyroelectric and variable resistance sensors that can operate at room temperature are used for fire detection and human body detection, and by arranging infrared detector elements in an array, infrared spatial distribution can be easily imaged with high resolution. It can be used to secure safety in the dark and search for structural materials.
 一方、近年の情報通信技術の進展とネットワークインフラの拡充により、ビル空調の省エネルギー化や消費者行動の把握など新たなセンサ利用の動きがあり、同時に多数のセンサを利用するシステム実現のために小型で製造コストの低い高感度なセンサデバイスが望まれている。 On the other hand, with recent advances in information and communication technology and expansion of network infrastructure, there are new sensor usage movements such as energy saving in building air conditioning and grasping consumer behavior, and at the same time it is compact to realize a system that uses many sensors. Therefore, a highly sensitive sensor device with low manufacturing cost is desired.
 特許文献1には、防犯、防災用の熱赤外線検知システム、工業における熱管理システム、温度分布測定などに利用される赤外線検知器が記載されている。この赤外線検知器は、複数の赤外線検知素子を、隣り合う赤外線検知素子の赤外線の受光面が互いに段差を有し、かつ視野方向から見たときの受光面が互いに接触または重複するように一次元または二次元に配列している。これにより、赤外線検知素子間に、多素子型赤外線検知器における不感領域がなく、かつ相互の分離が可能となっている。 Patent Document 1 describes a thermal infrared detection system for crime prevention and disaster prevention, an industrial thermal management system, and an infrared detector used for temperature distribution measurement. In this infrared detector, a plurality of infrared detection elements are arranged in a one-dimensional manner so that the infrared receiving surfaces of adjacent infrared detecting elements have a step, and the receiving surfaces contact or overlap each other when viewed from the viewing direction. Or they are arranged in two dimensions. Thereby, there is no insensitive area | region in a multi-element type infrared detector between infrared detecting elements, and mutual isolation | separation is possible.
 特許文献2には、赤外線検知感度を向上させた赤外線センサアレイが記載されている。その赤外線センサアレイは、基板上に脚部で支持され、温度検知膜を有する赤外線検知部と、赤外線検知部の上に支持部で支持された赤外線吸収部とを含んだ赤外線センサを略直交する2軸方向に並置した赤外線センサアレイである。この赤外線センサは、互いに隣接するように配置され、基板からの距離がaである板状の赤外線吸収部を有する第1赤外線センサと、板状部分および板状部分の周囲に設けられ基板からの距離がaより大きい庇部分からなる赤外線吸収部を有する第2赤外線センサとからなる。そして、この赤外線センサアレイでは、第1赤外線センサおよび第2赤外線センサの赤外線吸収部が、基板の鉛直方向に離れて配置されている。 Patent Document 2 describes an infrared sensor array with improved infrared detection sensitivity. The infrared sensor array is substantially orthogonal to an infrared sensor that is supported by legs on a substrate and includes an infrared detector having a temperature detection film and an infrared absorber supported by the support on the infrared detector. It is an infrared sensor array juxtaposed in two axial directions. The infrared sensor is disposed adjacent to each other, and includes a first infrared sensor having a plate-like infrared absorbing portion whose distance from the substrate is a, a plate-like portion, and a plate-like portion provided around the plate-like portion. And a second infrared sensor having an infrared absorbing portion having a flange portion whose distance is larger than a. And in this infrared sensor array, the infrared absorption part of a 1st infrared sensor and a 2nd infrared sensor is arrange | positioned away in the perpendicular direction of a board | substrate.
 特許文献3には、一次元に配列された複数の焦電型赤外線検知器を用いて、安価に、また、コンパクトなサイズで、家庭内の居室における人体の存在や位置検知及び挙動検知などを行う赤外線センサシステムが記載されている。この赤外線センサシステムは、焦電型赤外線検知器から出力される信号をデジタル信号に変換する信号変換手段と、信号変換手段から出力されるデジタル信号のパルスを計数するパルス計数手段と、パルス計数手段で計数したパルス情報を格納するエリア別情報記憶手段と、エリア別情報記憶手段に記憶されたデータを判定する判定手段とを備えている。そして、エリア別情報記憶手段に格納されているパルス情報と、予め設定されている閾値とが判定手段で比較される。 In Patent Document 3, a plurality of pyroelectric infrared detectors arranged one-dimensionally are used to detect the presence, position, and behavior of a human body in a living room at low cost and in a compact size. An infrared sensor system to perform is described. This infrared sensor system includes a signal converting means for converting a signal output from a pyroelectric infrared detector into a digital signal, a pulse counting means for counting pulses of the digital signal output from the signal converting means, and a pulse counting means. Are provided with area-specific information storage means for storing the pulse information counted in step (1), and determination means for determining data stored in the area-specific information storage means. Then, the determination unit compares the pulse information stored in the area-specific information storage unit with a preset threshold value.
 特許文献4には、中心領域とその周辺領域とを検知する簡素な焦電型赤外線センサが記載されている。この焦電型赤外線センサにおいては、焦電体からなる基板に第1デュアル素子、第2デュアル素子を形成するシングル素子が順に水平方向に配列形成されている。このシングル素子には、それぞれ異なる略連続した領域で発生する赤外線がレンズドームのフレネルレンズにて集光されて照射され広い視野角を実現する。これにより、第1デュアル素子に対応した領域(中心領域)と、第2デュアル素子に対応した領域(周辺領域)とにおける人の検知が行なわれる。 Patent Document 4 describes a simple pyroelectric infrared sensor that detects a central region and its peripheral region. In this pyroelectric infrared sensor, a single element for forming a first dual element and a second dual element is sequentially arranged in a horizontal direction on a substrate made of a pyroelectric material. In this single element, infrared rays generated in different substantially continuous regions are condensed and irradiated by the Fresnel lens of the lens dome to realize a wide viewing angle. Thereby, human detection is performed in a region (center region) corresponding to the first dual element and a region (peripheral region) corresponding to the second dual element.
特開昭59-222731号公報JP 59-222731 A 特開2004-294296号公報JP 2004-294296 A 特開2007-187599号公報JP 2007-187599 A 特開2007-292461号公報JP 2007-292461 A
 特許文献3および特許文献4では、複数の赤外線センサを同一平面上において、並列もしくはグリッド状に並べて配列形成されているため、小型化を図るには限界があった。また、特許文献1および特許文献2では、赤外線センサ間の不感領域をなくすことを目的として、複数の赤外線センサが鉛直方向(Z軸方向)に離間されて配置されている。しかし、これによれば、充分な感度が得られにくいという問題があった。 In Patent Document 3 and Patent Document 4, since a plurality of infrared sensors are arranged in parallel or in a grid on the same plane, there is a limit to downsizing. Moreover, in patent document 1 and patent document 2, a plurality of infrared sensors are arranged apart from each other in the vertical direction (Z-axis direction) for the purpose of eliminating a dead area between the infrared sensors. However, this has a problem in that it is difficult to obtain sufficient sensitivity.
 焦電体の感度は、受光した赤外線により発生した熱による温度変化により生じる焦電電流と、赤外線検知素子の受光面積に比例する。よって、小型化されてセンサ素子の実装面積が小さくなれば一つの赤外線検知素子ごとの感度は低くなり全体として感度は減少してしまう。 The sensitivity of the pyroelectric material is proportional to the pyroelectric current generated by the temperature change caused by the heat generated by the received infrared light and the light receiving area of the infrared detecting element. Therefore, if the sensor element is reduced in size and the mounting area of the sensor element is reduced, the sensitivity of each infrared detecting element is lowered and the sensitivity is reduced as a whole.
 本発明は、上述の事情に鑑みてなされたもので、小型化が可能であるとともに、より広い空間領域に分布する赤外線について、精度の高い検知を行うことができる赤外線検知センサおよび電子機器を提供することを目的とする。 The present invention has been made in view of the above circumstances, and provides an infrared detection sensor and an electronic device that can be miniaturized and can perform highly accurate detection of infrared rays distributed in a wider spatial region. The purpose is to do.
 本発明の第1の観点に係る赤外線検知センサは、
 基板と、前記基板上に実装配置された複数の赤外線検知素子と、を備える赤外線検知センサにおいて、
 前記複数の赤外線検知素子は、
 前記基板に近接した下層部位に位置する複数の赤外線検知素子と、
 前記基板から離隔した上層部位に位置する複数の赤外線検知素子と、を含み、
 前記基板の表面に対して垂直な方向から見たときに、前記下層部位に位置する各赤外線検知素子と、前記上層部位に位置する各赤外線検知素子とは、互いに上下方向に重なり合うように配置されている、
 ことを特徴とする赤外線検知センサ。
An infrared detection sensor according to a first aspect of the present invention provides:
In an infrared detection sensor comprising a substrate and a plurality of infrared detection elements mounted and arranged on the substrate,
The plurality of infrared detection elements are:
A plurality of infrared detection elements located in a lower layer portion adjacent to the substrate;
A plurality of infrared detection elements located in an upper layer portion separated from the substrate,
When viewed from a direction perpendicular to the surface of the substrate, each infrared detection element located in the lower layer portion and each infrared detection element located in the upper layer portion are arranged so as to overlap each other in the vertical direction. ing,
An infrared detection sensor characterized by that.
 本発明の第2の観点に係る電子機器は、
 第1の観点に係る赤外線検知センサを備えることを特徴とする。
An electronic device according to a second aspect of the present invention is:
An infrared detection sensor according to the first aspect is provided.
 本発明によれば、小型化が可能となるとともに、より広い空間領域に分布する赤外線について、精度の高い検知を行うことができる。 According to the present invention, it is possible to reduce the size and to detect infrared rays distributed in a wider spatial region with high accuracy.
本発明の実施形態に係る焦電型赤外線検知センサの一例を示す構成斜視図である。It is a composition perspective view showing an example of a pyroelectric infrared detection sensor concerning an embodiment of the present invention. 図1AのM-M線断面図である。1B is a sectional view taken along line MM in FIG. 1A. FIG. 焦電型赤外線検知センサの一例を示す平面図である。It is a top view which shows an example of a pyroelectric infrared detection sensor. 焦電型赤外線検知センサの構成の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of a structure of a pyroelectric infrared detection sensor. 赤外線センサ素子の一例を示す平面図である。It is a top view which shows an example of an infrared sensor element. 図2BのN-N線断面図である。It is the NN sectional view taken on the line of FIG. 2B. 焦電型赤外線検知センサの製造方法の一例を示す図である。It is a figure which shows an example of the manufacturing method of a pyroelectric infrared detection sensor. 焦電型赤外線検知センサの製造方法の一例を示す図である。It is a figure which shows an example of the manufacturing method of a pyroelectric infrared detection sensor. 焦電型赤外線検知センサの製造方法の一例を示す図である。It is a figure which shows an example of the manufacturing method of a pyroelectric infrared detection sensor. 焦電型赤外線検知センサの製造方法の別の例を示す図である。It is a figure which shows another example of the manufacturing method of a pyroelectric infrared detection sensor. 焦電型赤外線検知センサの製造方法の別の例を示す図である。It is a figure which shows another example of the manufacturing method of a pyroelectric infrared detection sensor. 焦電型赤外線検知センサの製造方法の別の例を示す図である。It is a figure which shows another example of the manufacturing method of a pyroelectric infrared detection sensor. 焦電型赤外線検知センサの製造方法の別の例を示す図である。It is a figure which shows another example of the manufacturing method of a pyroelectric infrared detection sensor. 関連する技術に係る焦電型赤外線検知センサの構成の一例を示す概略斜視図である。It is a schematic perspective view which shows an example of the structure of the pyroelectric infrared detection sensor which concerns on a related technique. 関連する技術に係る焦電型赤外線検知センサの構成の別の例を示す概略斜視図である。It is a schematic perspective view which shows another example of a structure of the pyroelectric infrared detection sensor which concerns on a related technique. 焦電型赤外線検知センサで検知した電気信号をモザイク状画像に処理した一例を示す図である。It is a figure which shows an example which processed the electrical signal detected with the pyroelectric infrared detection sensor into the mosaic image. 焦電型赤外線検知センサで検知した電気信号をモザイク状画像に処理した別の例を示す図である。It is a figure which shows another example which processed the electrical signal detected with the pyroelectric infrared detection sensor into the mosaic image. 焦電型赤外線検知センサで検知した検知対象の電圧感度グラフである。It is the voltage sensitivity graph of the detection target detected with the pyroelectric infrared detection sensor.
 以下、本発明の実施の形態について図面を参照しながら詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 図1Aは、本発明の実施形態に係る焦電型赤外線検知センサの一例を示す構成斜視図である。図1Bは図1AのM-M線断面図である。図1Cは、焦電型赤外線検知センサの一例を示す平面図である。図2Aは、焦電型赤外線検知センサの構成の一例を示す概略断面図である。図2Bは、赤外線センサ素子の一例を示す平面図である。図2Cは、図2BのN-N線断面図である。 FIG. 1A is a structural perspective view showing an example of a pyroelectric infrared detection sensor according to an embodiment of the present invention. 1B is a cross-sectional view taken along line MM in FIG. 1A. FIG. 1C is a plan view illustrating an example of a pyroelectric infrared detection sensor. FIG. 2A is a schematic cross-sectional view showing an example of the configuration of a pyroelectric infrared detection sensor. FIG. 2B is a plan view showing an example of an infrared sensor element. 2C is a sectional view taken along line NN in FIG. 2B.
 図1A、図1B、図2Aに示すように、本発明の実施形態に係る焦電型赤外線検知センサ100(以下、単に赤外線検知センサ100とする。)は、赤外線を受光する複数の赤外線センサ素子12(以下、単にセンサ素子12とする。)を備えており、この複数のセンサ素子12が、上下方向に互い違いになるように、基板11上においてアレイ状、かつ、グリッド状(格子状)に実装配置されている。複数のセンサ素子12は、基板11に近接した下層部位に位置する15個(複数)のセンサ素子12aと、基板11から離隔した上層部位に位置する8個(複数)のセンサ素子12bと、からなる。ここで、基板11の厚みは、特に限定されない。また、センサ素子12の厚みは、1μm以上100μm以下である。 As shown in FIGS. 1A, 1B, and 2A, a pyroelectric infrared detection sensor 100 according to an embodiment of the present invention (hereinafter simply referred to as infrared detection sensor 100) includes a plurality of infrared sensor elements that receive infrared rays. 12 (hereinafter simply referred to as sensor elements 12), and the plurality of sensor elements 12 are arranged in an array and in a grid (lattice) on the substrate 11 so as to be staggered in the vertical direction. Mounting is arranged. The plurality of sensor elements 12 includes 15 (a plurality of) sensor elements 12a located in a lower layer portion close to the substrate 11 and eight (a plurality of) sensor elements 12b located in an upper layer portion separated from the substrate 11. Become. Here, the thickness of the substrate 11 is not particularly limited. The sensor element 12 has a thickness of 1 μm or more and 100 μm or less.
 図1A、図1B、図2Aに示すように、基板11の表面に対して垂直な方向から見たときに、下層部位に位置する各センサ素子12aと、上層部位に位置する各センサ素子12bとは、互いに上下方向に重なり合うように配置されている。詳しくは、センサ素子12の一方(下層部分(1段目)のセンサ素子12a)は、他方のセンサ素子(上層部分(2段目)のセンサ素子12b)に対して、それらの一部同士で上下方向に互いに重なり合うように基板11上に実装されている。また、各センサ素子12bは、4つのセンサ素子12aの間に形成される十字状の隙間の交点に配置されている。本実施形態では、このように、互いの一部同士が上下方向に重なり合っているセンサ素子12aおよびセンサ素子12bを、隣り合うセンサ素子12という。この隣り合うセンサ素子12は、互いのセンサ素子12、すなわちセンサ素子12aとセンサ素子12bとの接触を避けるために、基板11からの高さ(配置位置)が異なっている。また、隣り合うセンサ素子12は、赤外線検知センサ100の不感領域をなくすために、基板11の表面に対して垂直な方向から見たときに、互いに接触しない程度に、且つ、配置の妨げとならない程度に、できるだけ密集するように配置されていることが望ましい。 As shown in FIGS. 1A, 1B, and 2A, when viewed from a direction perpendicular to the surface of the substrate 11, each sensor element 12a located in the lower layer portion and each sensor element 12b located in the upper layer portion Are arranged so as to overlap each other in the vertical direction. Specifically, one of the sensor elements 12 (lower layer part (first stage) sensor element 12a) is part of the other sensor element (upper layer part (second stage) sensor element 12b). It is mounted on the substrate 11 so as to overlap each other in the vertical direction. Each sensor element 12b is arranged at the intersection of a cross-shaped gap formed between the four sensor elements 12a. In the present embodiment, the sensor element 12a and the sensor element 12b in which a part of each other overlaps in the vertical direction as described above are referred to as adjacent sensor elements 12. The adjacent sensor elements 12 have different heights (arrangement positions) from the substrate 11 in order to avoid contact between the sensor elements 12, that is, the sensor elements 12a and 12b. Further, the adjacent sensor elements 12 do not interfere with the arrangement so as not to contact each other when viewed from a direction perpendicular to the surface of the substrate 11 in order to eliminate the insensitive area of the infrared detection sensor 100. It is desirable to arrange them to be as dense as possible.
 図1Cに示すように、基板11の上には、アレイ状に配置された複数のセンサ素子12からなるセンサアレイ部分と、センサアレイ部分を取り囲む周辺回路部16とが形成されている。そして、後述する配線やボンディングワイヤ(図示せず)によって赤外線センサ素子12と、周辺回路部16とが電気的に接続されている。そして、周辺回路部16は、図示しない画像処理装置に接続される。この画像処理装置において、人体などの検知対象に基づき、赤外線検知センサ100(複数のセンサ素子12)から伝送された電気信号を処理したモザイク状画像用の情報が生成され、図示しない表示装置においてモザイク状画像として表示される(図6A、図6B参照)。 As shown in FIG. 1C, a sensor array portion composed of a plurality of sensor elements 12 arranged in an array and a peripheral circuit portion 16 surrounding the sensor array portion are formed on the substrate 11. And the infrared sensor element 12 and the peripheral circuit part 16 are electrically connected by the below-mentioned wiring and bonding wire (not shown). The peripheral circuit unit 16 is connected to an image processing device (not shown). In this image processing apparatus, information for a mosaic image obtained by processing an electrical signal transmitted from the infrared detection sensor 100 (the plurality of sensor elements 12) is generated based on a detection target such as a human body, and the mosaic is displayed in a display apparatus (not shown). (See FIGS. 6A and 6B).
 センサ素子12は、従来周知のものであり、図2B、図2Cに示すように、全体が矩形状とされ、焦電体としての上下に2つの主面を有する焦電体セラミックス膜10と、焦電体セラミックス膜10の両主面に形成された上下の対となる電極層18、19と、から構成されている。センサ素子12は、上の主面が検知面17dを構成しており、検知面17dには、矩形状の受光面17cが形成されている。そして、上の電極層18は、受光面17c内に配設されている。電極層18には、互いに平行に配置された4つ(複数)の矩形状の電極17aが含まれ、電極層19には、互いに平行に配置された4つ(複数)複数の矩形状の電極17bが含まれる。ここで、上下の電極層に形成する電極パターンは、他の電気素子との電気的接続が可能であればよく、任意に設定可能である。 The sensor element 12 is a conventionally well-known element, and as shown in FIGS. 2B and 2C, the pyroelectric ceramic film 10 having a rectangular shape as a whole and having two main surfaces as a pyroelectric body, The upper and lower electrode layers 18 and 19 are formed on both main surfaces of the pyroelectric ceramic film 10. In the sensor element 12, the upper main surface constitutes a detection surface 17d, and a rectangular light receiving surface 17c is formed on the detection surface 17d. The upper electrode layer 18 is disposed in the light receiving surface 17c. The electrode layer 18 includes four (plural) rectangular electrodes 17a arranged in parallel to each other, and the electrode layer 19 includes four (plural) plural rectangular electrodes arranged in parallel to each other. 17b is included. Here, the electrode patterns formed on the upper and lower electrode layers may be arbitrarily set as long as they can be electrically connected to other electric elements.
 そして、焦電体セラミックス膜10に赤外線が照射されると、該赤外線の照射量、波長に応じて、センサ素子12の受光面17cの面積)に比例した焦電効果が生じる。そして、この焦電効果に起因する焦電電荷が焦電体セラミックス膜10に誘起され、この誘起された電荷は、上下の対となる電極層18、19において電位差となる。そして、この電位差を適切な電気回路(ここでは、周辺回路部16)を用いて電気信号として計測することで照射された赤外線が検知可能になる。具体的には、各センサ素子12での赤外線受光量が、検知対象である人体の動きに応じて変動するので、赤外線検知センサ100において、その時間変動データを分析することで人体の移動を高い検知感度で検知することができる。 When the pyroelectric ceramic film 10 is irradiated with infrared rays, a pyroelectric effect proportional to the area of the light receiving surface 17c of the sensor element 12 is generated according to the irradiation amount and wavelength of the infrared rays. And the pyroelectric charge resulting from this pyroelectric effect is induced in the pyroelectric ceramic film 10, and this induced electric charge becomes a potential difference in the upper and lower electrode layers 18 and 19. Then, by measuring this potential difference as an electrical signal using an appropriate electrical circuit (here, the peripheral circuit unit 16), the irradiated infrared ray can be detected. Specifically, since the amount of infrared light received by each sensor element 12 varies according to the movement of the human body that is the detection target, the infrared detection sensor 100 increases the movement of the human body by analyzing the time variation data. Detection is possible with detection sensitivity.
 本実施形態で用いる焦電体の材質は特に限定されるものではなく、チタン酸ジルコン酸鉛系セラミックス(PZT)やタンタル酸リチウム系セラミックスなどのセラミックス系材料や、ポリフッ化ビニリデンなどの有機焦電体材料が使用できる。中でも、焦電係数が高く、分極処理によって焦電効果を最大限引き出すことが可能なチタン酸ジルコン酸鉛系セラミックス(PZT)を望ましい例として挙げることができる。 The material of the pyroelectric material used in the present embodiment is not particularly limited, and ceramic pyroelectric materials such as lead zirconate titanate ceramics (PZT) and lithium tantalate ceramics, and organic pyroelectrics such as polyvinylidene fluoride. Body material can be used. Among these, lead zirconate titanate ceramics (PZT) having a high pyroelectric coefficient and capable of maximizing the pyroelectric effect by polarization treatment can be cited as a desirable example.
 本実施形態では、図2Cを参照して、基板11とセンサ素子12の下の電極層19(焦電体部分)との間での電気的接続には、基板11に対してメッキ法により形成された金属製の配線を使用可能である。さらに、この配線と、上の電極層18との接続には、メッキ法のほか、ワイヤボンディング法を利用することができる。 In this embodiment, referring to FIG. 2C, the electrical connection between the substrate 11 and the electrode layer 19 (pyroelectric part) under the sensor element 12 is formed on the substrate 11 by plating. It is possible to use a metal wiring that has been made. Further, for the connection between the wiring and the upper electrode layer 18, a wire bonding method can be used in addition to the plating method.
 本実施形態に係る赤外線検知センサ100は、例えば、基板11にセンサ素子12を成膜プロセスまたは貼り付け等により形成するとともに、一体的に接合し、さらに電気的接続のための電極や配線の形成を経て、さらに密封してパッケージにすることにより製造される。図2Aに示すように、密封されたパッケージには検知対象に適した波長の赤外線のみ透過する光学フィルタ15が設けられる。さらに、図2Aに示すように、広い範囲から入射する赤外線を効率よく集め光し、アレイ状のセンサ素子12で検知可能とするために、光学フィルタ15の近傍にフレネルレンズなどの光学回折素子14を設けることもできる。 In the infrared detection sensor 100 according to the present embodiment, for example, the sensor element 12 is formed on the substrate 11 by a film forming process or pasting, and is integrally joined, and further, electrodes and wiring for electrical connection are formed. Then, it is manufactured by further sealing and packaging. As shown in FIG. 2A, the sealed package is provided with an optical filter 15 that transmits only infrared light having a wavelength suitable for a detection target. Further, as shown in FIG. 2A, in order to efficiently collect infrared light incident from a wide range and detect it with the array-shaped sensor element 12, an optical diffraction element 14 such as a Fresnel lens is provided near the optical filter 15. Can also be provided.
 図3A~図3Cに、本実施形態に係る赤外線検知センサの製造方法の一例を示す。 3A to 3C show an example of a method for manufacturing the infrared detection sensor according to the present embodiment.
 赤外線検知センサ100のように、複数のセンサ素子12が上下方向に互い違いになるように、かつ、2層(多層)になるように形成するには、図3Aの工程の後に、図3Bおよび図3Cに示される工程をさらに続けて行うことが必要である。 In order to form a plurality of sensor elements 12 so as to be staggered in the vertical direction and in two layers (multilayers) as in the infrared detection sensor 100, FIG. 3B and FIG. It is necessary to continue the process shown in 3C.
 まず、図3Aに示すように、用意した基板11上に複数のセンサ素子12a(センサ素子12)を形成する。ここでは、複数のセンサ素子12aは、隣接するセンサ素子12a同士が等間隔になるようにグリッド状に配置する。 First, as shown in FIG. 3A, a plurality of sensor elements 12 a (sensor elements 12) are formed on the prepared substrate 11. Here, the plurality of sensor elements 12a are arranged in a grid so that the adjacent sensor elements 12a are equidistant.
 ここで、基板11の材料としては、特に限定されるものではなく、金属材料(たとえばアルミ合金、銅合金、鉄、鉄系合金、チタン、またはチタン合金など)や樹脂材料(エポキシ、アクリル、ポリイミド、ポリカーボネートなど)、セラミックス材料(アルミナ、シリカ、マグネシア、またはそれらの化合物、複合物など)から選ばれる少なくとも1種を所望の形状、使用環境に合わせて選択して用いることができる。 Here, the material of the substrate 11 is not particularly limited, and a metal material (for example, aluminum alloy, copper alloy, iron, iron-based alloy, titanium, or titanium alloy) or a resin material (epoxy, acrylic, polyimide). , Polycarbonate, etc.) and ceramic materials (alumina, silica, magnesia, or their compounds, composites, etc.) can be selected and used according to the desired shape and use environment.
 センサ素子12aは、基板11に対し、例えば、セラミックス微粒子を高速で吹き付けるエアロゾルデポジション法、ゾルゲル法などの溶液法、気相法(MOCVD法など)を利用して形成することができる。これらの方法は、基板11の材質や形状に応じて適宜選択して利用できる。それ以外に、センサ素子12aの製造には、テープキャスティング法などの方法によって焦電体セラミックス板を作製し、接着材を用いて基板11に接着する方法も利用できる。この接着材には、例えば、エポキシ系接着材を使用可能である。得られる接着材層の厚みは特に限定されないが、10μm以上20μm以下、好ましくは5μm以上20μm以下であることがよい。接着材層の厚みが20μmを超えると、不要な電気抵抗成分が増大する原因となり、赤外線検知感度が低下することがあるので好ましくなく、接着材層の厚みが10μm未満であると、接着強度が不足する場合があるので好ましくない。 The sensor element 12a can be formed on the substrate 11 by using, for example, an aerosol deposition method in which ceramic fine particles are sprayed at a high speed, a solution method such as a sol-gel method, or a gas phase method (MOCVD method or the like). These methods can be appropriately selected and used according to the material and shape of the substrate 11. In addition, a method of producing a pyroelectric ceramic plate by a method such as a tape casting method and bonding it to the substrate 11 using an adhesive can be used for manufacturing the sensor element 12a. For example, an epoxy adhesive can be used as the adhesive. The thickness of the obtained adhesive layer is not particularly limited, but is 10 μm or more and 20 μm or less, preferably 5 μm or more and 20 μm or less. If the thickness of the adhesive layer exceeds 20 μm, unnecessary electrical resistance components increase, which is not preferable because the infrared detection sensitivity may decrease. If the thickness of the adhesive layer is less than 10 μm, the adhesive strength is low. Since it may be insufficient, it is not preferable.
 次に、図3Bに示すように、熱伝導性の低い樹脂材料を用いて脚部13を複数個作成し、この脚部13を、複数のセンサ素子12aの間に形成された領域にそれぞれ配置する。ここでは、複数の脚部13は、脚部13上に配置され、隣接するセンサ素子12b同士が等間隔になるようにグリッド状に配置する(図1A参照)。また、各脚部13は、4つのセンサ素子12aの間に形成される十字状の隙間の交点に配置されるようにする(図1A、図1B参照)。なお、脚部13の高さは、センサ素子12aよりも高くする。 Next, as shown in FIG. 3B, a plurality of leg portions 13 are formed using a resin material having low thermal conductivity, and the leg portions 13 are respectively arranged in regions formed between the plurality of sensor elements 12a. To do. Here, the plurality of leg portions 13 are arranged on the leg portions 13 and arranged in a grid so that adjacent sensor elements 12b are equally spaced (see FIG. 1A). Each leg 13 is arranged at the intersection of a cross-shaped gap formed between the four sensor elements 12a (see FIGS. 1A and 1B). In addition, the height of the leg part 13 is made higher than the sensor element 12a.
 続いて、図3Cに示すように、それぞれの脚部13上に、センサ素子12bを例えば、エポキシ系接着材を使用し、接着して固定する。これにより、複数のセンサ素子12aが脚部13を介して基板11上にグリッド状に配置される。ここでは、各センサ素子12bの主面(受光面17c)は、基板11の表面に対して平行となるように配置する。このとき、センサ素子12bと隣り合うセンサ素子12aとの接触、および、センサ素子12bと最も近接するセンサ素子12bとの接触を避けるようにしてセンサ素子12bを配置する。 Subsequently, as shown in FIG. 3C, the sensor elements 12b are bonded and fixed on the respective leg portions 13 by using, for example, an epoxy adhesive. As a result, the plurality of sensor elements 12 a are arranged in a grid on the substrate 11 via the legs 13. Here, the main surface (light receiving surface 17 c) of each sensor element 12 b is arranged to be parallel to the surface of the substrate 11. At this time, the sensor element 12b is disposed so as to avoid contact between the sensor element 12b and the adjacent sensor element 12a and contact between the sensor element 12b and the closest sensor element 12b.
 ここでは、図3Cに示すように、センサ素子12bは基板11に対して平行となるように配置した。しかしこれに限られず、隣り合うセンサ素子12aおよび最も近接するセンサ素子12bと接触しない範囲で、予め、基板11の表面に対してセンサ素子12bの設置面が傾斜している脚部13の当該設置面上にセンサ素子12bを接着し、センサ素子12bの主面(受光面17c)が、基板11の表面に対して傾斜するようにしてもよい。また、基板11にセンサ素子12aを配置する際に、予め基板11上に水平面(基板11の表面)から傾斜した複数の傾斜面を形成しておき、その傾斜面上にセンサ素子12aを配置することで、センサ素子12bの主面(受光面17c)を、基板11の表面に対して傾斜させることも可能である。 Here, as shown in FIG. 3C, the sensor element 12 b was arranged so as to be parallel to the substrate 11. However, the present invention is not limited to this, and the installation of the leg portion 13 in which the installation surface of the sensor element 12b is inclined in advance with respect to the surface of the substrate 11 in a range where it does not contact the adjacent sensor element 12a and the closest sensor element 12b. The sensor element 12b may be bonded on the surface, and the main surface (light receiving surface 17c) of the sensor element 12b may be inclined with respect to the surface of the substrate 11. Further, when the sensor element 12a is arranged on the substrate 11, a plurality of inclined surfaces inclined from the horizontal plane (the surface of the substrate 11) are previously formed on the substrate 11, and the sensor element 12a is arranged on the inclined surface. Thus, the main surface (light receiving surface 17c) of the sensor element 12b can be inclined with respect to the surface of the substrate 11.
 図4A~図4Dに、本実施形態に係る赤外線検知センサ100の製造方法の別の例を示す。 4A to 4D show another example of the method for manufacturing the infrared detection sensor 100 according to the present embodiment.
 赤外線検知センサ100のように、複数のセンサ素子12が上下方向に互い違いになるように、かつ、2層(多層)になるように形成するには、図4Aの工程の後に、図4B~図4Dに示される工程をさらに続けて行うことが必要である。 In order to form a plurality of sensor elements 12 so as to be staggered in the vertical direction and in two layers (multilayers) like the infrared detection sensor 100, after the step of FIG. 4A, FIG. 4B to FIG. It is necessary to continue the process shown in 4D.
 まず、図4Aに示すように、基板21を用意する。基板21の材料は、図3A~図3Cの製造方法で説明した基板11と同じ材料を使用することができる。なおここでは、基板21は、複数の凹部21bを形成するため、基板11よりも厚いものを使用することが好ましい。 First, as shown in FIG. 4A, a substrate 21 is prepared. As the material of the substrate 21, the same material as that of the substrate 11 described in the manufacturing method of FIGS. 3A to 3C can be used. Here, the substrate 21 is preferably thicker than the substrate 11 in order to form a plurality of recesses 21b.
 次に、図4Bに示すように、基板21にグリッド状のパターン加工を施し、センサ素子12aがそれぞれに収容可能な複数の凹部21bを形成する。ここで、各凹部21b内にセンサ素子12aを収容したときに、図4Cに示す工程で配置されるセンサ素子12aが、図4Dに示す工程で当該凹部21b上に配置されるセンサ素子12bと接触しないように、凹部21bの深さは、センサ素子12aの高さより深くしておく。 Next, as shown in FIG. 4B, the substrate 21 is subjected to grid-like pattern processing to form a plurality of recesses 21b that can be accommodated in the sensor elements 12a. Here, when the sensor element 12a is accommodated in each recess 21b, the sensor element 12a arranged in the step shown in FIG. 4C contacts the sensor element 12b arranged on the recess 21b in the step shown in FIG. 4D. In order to avoid this, the depth of the recess 21b is set deeper than the height of the sensor element 12a.
 続いて、図4Cに示すように、各凹部21bの底面を構成する部位(ここでは、「一体型基板21a」という。)上に、センサ素子12aをエポキシ系接着材を使用して接着、固定し、複数のセンサ素子12aを一体型基板21a上に順次配置する。これにより、複数のセンサ素子12aは、基板21(一体型基板21a)上にグリッド状に配置される。 Subsequently, as shown in FIG. 4C, the sensor element 12a is bonded and fixed on the portion constituting the bottom surface of each recess 21b (herein, referred to as “integrated substrate 21a”) using an epoxy adhesive. Then, the plurality of sensor elements 12a are sequentially arranged on the integrated substrate 21a. Thereby, the plurality of sensor elements 12a are arranged in a grid on the substrate 21 (integrated substrate 21a).
 続いて、図4Dに示すように、各凹部21bにおいて四角筒状の側壁を構成するグリッド状の部位(ここでは、「一体型脚部21c」という。)上に、既に各凹部21b内に配置したセンサ素子12aと接触しないように、複数のセンサ素子12bをエポキシ系接着材を使用して接着、固定する。これにより、複数個のセンサ素子12bが、一体型脚部21cを介して基板21上にグリッド状に配置される。また、各センサ素子12bは、4つのセンサ素子12aの間に形成される十字状の隙間の交点に配置される。 Subsequently, as shown in FIG. 4D, each concave portion 21b is already arranged in each concave portion 21b on a grid-like portion (herein referred to as “integrated leg portion 21c”) that constitutes a square cylindrical side wall. The plurality of sensor elements 12b are bonded and fixed using an epoxy adhesive so as not to contact the sensor element 12a. Accordingly, the plurality of sensor elements 12b are arranged in a grid on the substrate 21 via the integrated leg portion 21c. Each sensor element 12b is arranged at the intersection of a cross-shaped gap formed between the four sensor elements 12a.
 隣り合うセンサ素子12a、センサ素子12bは、素子同士が接触しない限り、なるべく互いの離間距離が小さくすることが好ましい。また、センサ素子12a、センサ素子12bは、基板11に対する角度や形状、大きさによらず、上下2層(2段)に配置されていても、3層以上(3段以上)に配置されていてもよい。 It is preferable that the adjacent sensor elements 12a and 12b be as small as possible from each other as long as the elements do not contact each other. Further, the sensor element 12a and the sensor element 12b are arranged in three or more layers (three or more steps) even if they are arranged in two upper and lower layers (two steps) regardless of the angle, shape and size with respect to the substrate 11. May be.
 以下、本実施形態に係る赤外線検知センサ100と、関連する技術に係る赤外線検知センサ101、102について、検知精度を比較した結果について説明する。図5A及び図5Bは、関連する技術に係る赤外線検知センサ101、102の構成の一例を示す概略斜視図である。 Hereinafter, the result of comparing the detection accuracy of the infrared detection sensor 100 according to the present embodiment and the infrared detection sensors 101 and 102 according to the related technology will be described. 5A and 5B are schematic perspective views illustrating an example of the configuration of the infrared detection sensors 101 and 102 according to the related technology.
 ここでは、図1Aに示す赤外線検知センサ100による測定結果を実施例とする。また、図5Aおよび図5Bに示す赤外線検知センサ101、102による測定結果を、それぞれ、比較例1、比較例2とする。 Here, the measurement result by the infrared detection sensor 100 shown in FIG. 1A is taken as an example. Moreover, the measurement results by the infrared detection sensors 101 and 102 shown in FIGS. 5A and 5B are referred to as Comparative Example 1 and Comparative Example 2, respectively.
 実施例、比較例1、比較例2に対応する赤外線検知センサ100、101、102が基板11上で実装される実装面積は同一になるようにし、検知対象からの赤外線も同一の条件で赤外線検知センサ100、101、102に入射するようにした。また、使用するセンサ素子12(センサ素子12a、センサ素子12b)、その他に必要となる電子部品などについても同一のものを使用した。また、赤外線検知センサ100、101、102には、赤外線の測定の間、同一の電力を供給し、温度、湿度、圧力などの使用環境も互いに同一とした。 The mounting area where the infrared detection sensors 100, 101, and 102 corresponding to the example, comparative example 1, and comparative example 2 are mounted on the substrate 11 is the same, and infrared rays from the detection target are also detected under the same conditions. The light is incident on the sensors 100, 101, and 102. Moreover, the same thing was used also about the electronic component etc. which are required for the sensor element 12 (sensor element 12a, sensor element 12b) to be used, and others. Further, the infrared detection sensors 100, 101, and 102 were supplied with the same electric power during the measurement of infrared rays, and the usage environments such as temperature, humidity, and pressure were also the same.
 実施例、比較例1、比較例2においては、基板11には、各辺の長さがそれぞれ45mm、30mmの長方形状、厚みが100μm(0.05mm)のMgO基板を使用した。また、センサ素子12の焦電体セラミックス膜10には、チタン酸ジルコン酸鉛系セラミックスを用い、上下の電極層18、19(電極17a、17b)には銀/パラジウム合金(重量比70%:30%)を用いた。また、実施例において、センサ素子12bを基板11に固定する脚部13には、熱伝導率の低い樹脂材料、例えば、エポキシ樹脂、アクリル樹脂、ポリイミド樹脂、ポリカーボネート樹脂などを用いた。 In Examples, Comparative Examples 1 and 2, a MgO substrate having a rectangular shape with sides of 45 mm and 30 mm and a thickness of 100 μm (0.05 mm) was used as the substrate 11. The pyroelectric ceramic film 10 of the sensor element 12 is made of lead zirconate titanate ceramic, and the upper and lower electrode layers 18 and 19 ( electrodes 17a and 17b) are silver / palladium alloys (weight ratio 70%: 30%) was used. In the embodiment, a resin material having a low thermal conductivity, for example, an epoxy resin, an acrylic resin, a polyimide resin, a polycarbonate resin, or the like is used for the leg portion 13 that fixes the sensor element 12b to the substrate 11.
 <実施例>
 本実施例では、上述したように、図1Aに示す赤外線検知センサ100、即ち、上下方向に互い違いに配置され、かつ、上層部分と下層部分の各センサ素子12がグリッド状に2層(多層)に配置された焦電型赤外線アレイセンサを使用した。
<Example>
In the present embodiment, as described above, the infrared detection sensors 100 shown in FIG. 1A, that is, the sensor elements 12 in the upper layer portion and the lower layer portion are alternately arranged in the vertical direction, and two layers (multilayer) in a grid shape. A pyroelectric infrared array sensor arranged in the above was used.
 ここでは、センサ素子12は、一辺5mmの正方形状、厚み15μm(0.015mm)の焦電体セラミックス膜10の上下の主面に、厚み5μmの電極層18、19が形成されたものを使用した。また、基板11上の下層部分では、センサ素子12aを互いに3mmずつ離間させて3行×5列のグリッド状の配列とした。また、基板11上の上層部分では、センサ素子12bを互いに3mmずつ離間させて2行×4列のグリッド状の配列とした。ここでは、使用したセンサ素子12は全部で23個(上層部分:8個、下層部分:15個)とした。また、各センサ素子12bは、4つのセンサ素子12aの間に形成される十字状の隙間の交点に配置されるようにした。 Here, the sensor element 12 has a square shape with a side of 5 mm, and the upper and lower main surfaces of the pyroelectric ceramic film 10 with a thickness of 15 μm (0.015 mm) formed with electrode layers 18 and 19 with a thickness of 5 μm. did. Further, in the lower layer portion on the substrate 11, the sensor elements 12 a are separated from each other by 3 mm to form a 3 × 5 grid arrangement. Further, in the upper layer portion on the substrate 11, the sensor elements 12b are separated from each other by 3 mm to form a grid-like arrangement of 2 rows × 4 columns. Here, 23 sensor elements 12 were used in total (upper layer portion: 8 and lower layer portion: 15). Each sensor element 12b is arranged at the intersection of a cross-shaped gap formed between the four sensor elements 12a.
 <比較例1>
 本比較例1では、図5Aに示す赤外線検知センサ101を使用した。具体的には、実施例の赤外線検知センサ100と同じ実装面積になるように、センサ素子12(焦電体)を基板11上にグリッド状に実装した赤外線アレイセンサを用いた。ここでは、センサ素子12は、上層部分には配置していないので、焦電体の数、すなわちセンサ素子12の数は15個と実施例よりも少ない。
<Comparative Example 1>
In this comparative example 1, the infrared detection sensor 101 shown in FIG. 5A was used. Specifically, an infrared array sensor in which the sensor elements 12 (pyroelectric bodies) are mounted on the substrate 11 in a grid shape so as to have the same mounting area as the infrared detection sensor 100 of the example is used. Here, since the sensor elements 12 are not arranged in the upper layer portion, the number of pyroelectric bodies, that is, the number of sensor elements 12 is 15, which is smaller than that of the embodiment.
 <比較例2>
 本比較例2では、図5Bに示す赤外線検知センサ102を使用した。具体的には、実施例の赤外線検知センサ100と同数(各センサ素子12の受光面17cの面積は、実施例のセンサ素子12よりも小さい。)のセンサ素子12cを基板11上にグリッド状に配列した赤外線アレイセンサを使用した。
<Comparative Example 2>
In this comparative example 2, the infrared detection sensor 102 shown in FIG. 5B was used. Specifically, the same number of sensor elements 12c as the infrared detection sensors 100 of the embodiment (the area of the light receiving surface 17c of each sensor element 12 is smaller than that of the sensor elements 12 of the embodiment) are formed on the substrate 11 in a grid pattern. An arrayed infrared array sensor was used.
 図6A、図6Bは、実施例、比較例1における赤外線検知センサ100、101で生成された電気信号を処理して得られたモザイク状画像を示す図である。図6Aは、実施例(赤外線検知センサ100)によるもの、図6Bは、比較例1(赤外線検知センサ101)によるものである。このように、赤外線検知センサ100、101においては、複数のセンサ素子12(センサアレイ部分)の各々のセンサ素子12において検知対象に応じて異なるレベルの電気信号が生成されるので、画像処理装置において、モザイク状画像用情報に変換可能となる。 6A and 6B are diagrams showing mosaic images obtained by processing the electrical signals generated by the infrared detection sensors 100 and 101 in the example and the comparative example 1. FIG. FIG. 6A is based on the example (infrared detection sensor 100), and FIG. 6B is based on the comparative example 1 (infrared detection sensor 101). As described above, in the infrared detection sensors 100 and 101, different levels of electrical signals are generated in the sensor elements 12 of the plurality of sensor elements 12 (sensor array portions) depending on the detection target. Thus, it can be converted into information for a mosaic image.
 図6Aに示すように、上記実施形態の赤外線検知センサ100を用いることで、基板11上の同一の実装面積において、さらに多数のセンサ素子12を実装することが可能となり、図6Bに示す比較例1の赤外線検知センサ101と比較して、より高精細な画像を表示することが可能となった。 As shown in FIG. 6A, by using the infrared detection sensor 100 of the above embodiment, a larger number of sensor elements 12 can be mounted in the same mounting area on the substrate 11, and the comparative example shown in FIG. 6B. As compared with the first infrared detection sensor 101, it is possible to display a higher-definition image.
 図7に、上記実施例、比較例2の赤外線検知センサ100、102で検知した検知対象の電圧感度グラフを示す。グラフAおよびグラフBは赤外線検知センサ100による結果を示す。ここで、グラフAは上層部分のセンサ素子12bによる結果、グラフBは下層部分のセンサ素子12aによる結果、をそれぞれ示す。また、グラフCは、赤外線検知センサ102による結果を示す。 FIG. 7 shows a voltage sensitivity graph of a detection target detected by the infrared detection sensors 100 and 102 of the above-described example and comparative example 2. Graph A and graph B show the results of the infrared detection sensor 100. Here, the graph A shows the result of the sensor element 12b in the upper layer part, and the graph B shows the result of the sensor element 12a in the lower layer part. Graph C shows the result of the infrared detection sensor 102.
 図7より、上記実施形態の赤外線検知センサ100を用いることで、上層部分のセンサ素子12bのみでの検知、および下層部分のセンサ素子12aのみでの検知のいずれによっても、赤外線検知センサ102よりもピークが高く、基板11上の同一の実装面積において、赤外線検知センサ100による赤外線の検知面積が向上した結果、高い電圧感度を得ることができた。 From FIG. 7, by using the infrared detection sensor 100 of the above embodiment, both the detection by only the sensor element 12 b in the upper layer part and the detection by only the sensor element 12 a in the lower layer part are more than the infrared detection sensor 102. The peak was high, and in the same mounting area on the substrate 11, the infrared detection area by the infrared detection sensor 100 was improved. As a result, high voltage sensitivity could be obtained.
 また、下層部位のセンサ素子12aについては、その上の主面(検知面17d)の面積が同じ場合に、その受光面17cの面積が小さい方が良好な赤外線の検知結果が得られた。この現象は、赤外線の受光面17cからの熱伝導によってセンサ素子全面(検知面17d)の温度変化が迅速になったためと考えられる。 In addition, regarding the sensor element 12a in the lower layer part, when the area of the main surface (detection surface 17d) on the same is the same, a better infrared detection result is obtained when the area of the light receiving surface 17c is smaller. This phenomenon is thought to be due to the rapid temperature change of the entire sensor element (detection surface 17d) due to heat conduction from the infrared light receiving surface 17c.
 以上の結果から、上層部位のセンサ素子12aおよび下層部位のセンサ素子12bの検知結果を総合して赤外線検知センサ100全体として捉えることで、さらに高い電圧感度が得られることが容易に推察できる。 From the above results, it can be easily inferred that higher voltage sensitivity can be obtained by combining the detection results of the sensor element 12a in the upper layer part and the sensor element 12b in the lower layer part as the entire infrared detection sensor 100.
 以上説明したように、本実施形態の赤外線検知センサ100によれば、小型化が可能となるとともに、より広い空間領域に分布する赤外線について、精度の高い検知を行うことができる。 As described above, according to the infrared detection sensor 100 of the present embodiment, it is possible to reduce the size, and it is possible to detect the infrared rays distributed in a wider spatial region with high accuracy.
 本実施形態の赤外線検知センサ100によれば、上下方向に互い違いに複数のセンサ素子12を配置することで、上層部位のセンサ素子12bでは赤外線をその検知面17dの全体で受光し、下層部位のセンサ素子12aでは赤外線を受光した受光面17cの熱がセンサ素子12a内の熱伝導によって受光面17c以外の温度変化を誘起するようになる。この結果、同一の赤外線入射量に対して、センサ素子12aの温度変化が効率化され、多くの焦電電荷が得られるので、高密度かつ高感度な赤外線検知センサが実現される。 According to the infrared detection sensor 100 of the present embodiment, by arranging a plurality of sensor elements 12 alternately in the vertical direction, the sensor element 12b in the upper layer part receives infrared rays on the entire detection surface 17d, and In the sensor element 12a, the heat of the light receiving surface 17c that receives infrared rays induces a temperature change other than the light receiving surface 17c due to heat conduction in the sensor element 12a. As a result, the temperature change of the sensor element 12a is made efficient with respect to the same amount of incident infrared rays, and a large amount of pyroelectric charge is obtained, so that an infrared detection sensor with high density and high sensitivity is realized.
 なお、実施の形態で説明した赤外線検知素子などの構成は一例であり、本発明の技術思想を逸脱しない範囲で変更を行うことが可能である。 Note that the configuration of the infrared detection element described in the embodiment is an example, and can be changed without departing from the technical idea of the present invention.
 例えば、上記実施形態では、赤外線検知センサ100、各センサ素子12の形状は、矩形状とした。しかしこれに限定されず、赤外線検知センサ100、各センサ素子12の形状は、円状形や楕円状であってもよい。また、基板11の表面は、水平面に平行な平面領域から構成されるようにしたが、これに限られず、平面領域、斜面領域、及び曲面領域とが混在していてもよい。これにより、センサ素子12の多様な配置が可能となる。センサ素子12は、グリッド状に互い違いに配置したが、この配置に限定されず、隣り合うセンサ素子12a、12bが接触せずに配置されている限り、その他の配置、例えば、千鳥状であってもよい。 For example, in the above embodiment, the infrared detection sensor 100 and each sensor element 12 are rectangular. However, the present invention is not limited to this, and the shapes of the infrared detection sensor 100 and each sensor element 12 may be circular or elliptical. Moreover, although the surface of the board | substrate 11 was comprised from the plane area | region parallel to a horizontal surface, it is not restricted to this, A plane area | region, a slope area | region, and a curved surface area | region may be mixed. Thereby, various arrangement | positioning of the sensor element 12 is attained. The sensor elements 12 are alternately arranged in a grid shape, but the present invention is not limited to this arrangement, and as long as adjacent sensor elements 12a and 12b are arranged without contact, other arrangements, for example, a staggered pattern, Also good.
 また、基板11に対するセンサ素子12の配置状態は、基板11の表面に対して平行としたが、これに限らず、基板11に対して傾斜していてもよい。基板11に直接に配置するセンサ素子12自体が傾斜するようにしてもよい。また、センサ素子12を基板11から配置するときに基板11によって傾斜させるようにしてもよい。さらに、センサ素子12及び基板11の両方を傾斜させるようにしてもよい。要するに、隣り合うセンサ素子12同士が互いに接触することなく配置されればよい。 Further, the arrangement state of the sensor element 12 with respect to the substrate 11 is parallel to the surface of the substrate 11, but is not limited thereto, and may be inclined with respect to the substrate 11. The sensor element 12 arranged directly on the substrate 11 may be inclined. Further, the sensor element 12 may be tilted by the substrate 11 when the sensor element 12 is arranged from the substrate 11. Further, both the sensor element 12 and the substrate 11 may be inclined. In short, it is only necessary that adjacent sensor elements 12 are arranged without contacting each other.
 また、基板11の材料なども上述した例で使用した焦電体(外から電界を与えなくても自発的な分極を有しているもの)に限定されず、このような焦電体のうち、外部からの電界によって方向を反転させることのできる強誘電体であっても使用可能である。さらに形成する上下の電極パターンについては、センサ素子12と外部の回路などとの電気的接続が可能であればよく、実装方法、配線の引き出し、配線の材質、または配線の形状は限定されず、任意に変更することが可能である。 Further, the material of the substrate 11 is not limited to the pyroelectric material used in the above-described example (having spontaneous polarization without applying an electric field from the outside). Even a ferroelectric whose direction can be reversed by an external electric field can be used. Further, the upper and lower electrode patterns to be formed are not limited as long as electrical connection between the sensor element 12 and an external circuit or the like is possible, and the mounting method, wiring drawing, wiring material, or wiring shape is not limited. It is possible to change arbitrarily.
 上記の実施形態の一部または全部は、以下の付記のようにも記載されうるが、以下には限られない。 Some or all of the above embodiments may be described as in the following supplementary notes, but are not limited to the following.
 (付記1)
 基板と、前記基板上に実装配置された複数の赤外線検知素子と、を備える赤外線検知センサにおいて、
 前記複数の赤外線検知素子は、
 前記基板に近接した下層部位に位置する複数の赤外線検知素子と、
 前記基板から離隔した上層部位に位置する複数の赤外線検知素子と、を含み、
 前記基板の表面に対して垂直な方向から見たときに、前記下層部位に位置する各赤外線検知素子と、前記上層部位に位置する各赤外線検知素子とは、互いに上下方向に重なり合うように配置されている、
 ことを特徴とする赤外線検知センサ。
(Appendix 1)
In an infrared detection sensor comprising a substrate and a plurality of infrared detection elements mounted and arranged on the substrate,
The plurality of infrared detection elements are:
A plurality of infrared detection elements located in a lower layer portion adjacent to the substrate;
A plurality of infrared detection elements located in an upper layer portion separated from the substrate,
When viewed from a direction perpendicular to the surface of the substrate, each infrared detection element located in the lower layer portion and each infrared detection element located in the upper layer portion are arranged so as to overlap each other in the vertical direction. ing,
An infrared detection sensor characterized by that.
 (付記2)
 前記下層部位に位置する複数の赤外線検知素子と、上層部位に位置する複数の赤外線検知素子とは、いずれもグリッド状に配列されていることを特徴とする付記1に記載の赤外線検知センサ。
(Appendix 2)
The infrared detection sensor according to appendix 1, wherein the plurality of infrared detection elements located in the lower layer portion and the plurality of infrared detection elements located in the upper layer portion are all arranged in a grid.
 (付記3)
 前記上層部位に位置する各赤外線検知素子は、前記下層部位に位置し、互いに隣接する4つの赤外線検知素子の間に形成される十字状の隙間の交点に配置されていることを特徴とする付記2に記載の赤外線検知センサ。
(Appendix 3)
Each infrared detecting element located in the upper layer part is located in the lower layer part, and is arranged at an intersection of a cross-shaped gap formed between four adjacent infrared detecting elements. 2. An infrared detection sensor according to 2.
 (付記4)
 前記各赤外線検知素子は、焦電体および強誘電体の内の少なくとも1つを含んでいることを特徴とする付記1ないし3のいずれか1つに記載の赤外線検知センサ。
(Appendix 4)
The infrared detection sensor according to any one of appendices 1 to 3, wherein each of the infrared detection elements includes at least one of a pyroelectric material and a ferroelectric material.
 (付記5)
 前記複数の赤外線検知素子は、その受光面が、前記基板の表面に対して平行になるように配置されることを特徴とする付記1ないし4のいずれか1つに記載の赤外線検知センサ。
(Appendix 5)
The infrared detection sensor according to any one of supplementary notes 1 to 4, wherein the plurality of infrared detection elements are arranged such that light receiving surfaces thereof are parallel to the surface of the substrate.
 (付記6)
 前記複数の赤外線検知素子は、その受光面が、前記基板の表面に対して傾斜するように配置されることを特徴とする付記1ないし4のいずれか1つに記載の赤外線検知センサ。
(Appendix 6)
The infrared detection sensor according to any one of appendices 1 to 4, wherein the plurality of infrared detection elements are arranged such that light receiving surfaces thereof are inclined with respect to the surface of the substrate.
 (付記7)
 隣り合う2つの前記赤外線検知素子が、前記基板の表面に対して互いに異なる角度で傾斜して配置されることを特徴とする付記6に記載の赤外線検知センサ。
(Appendix 7)
The infrared detection sensor according to appendix 6, wherein the two adjacent infrared detection elements are arranged at different angles with respect to the surface of the substrate.
 (付記8)
 前記下層部位に位置する複数の赤外線検知素子は、前記基板に対して直接的に配置され、前記上層部位に位置する複数の赤外線検知素子は、前記基板に設置された脚部を介して配置されることを特徴とする付記1ないし7のいずれか1つに記載の赤外線検知センサ。
(Appendix 8)
The plurality of infrared detection elements located in the lower layer part are directly arranged with respect to the substrate, and the plurality of infrared detection elements located in the upper layer part are arranged via legs installed on the substrate. The infrared detection sensor according to any one of appendices 1 to 7, characterized in that:
 (付記9)
 前記基板には複数の凹部が形成されており、
 前記下層部位に位置する複数の赤外線検知素子は、それぞれ、前記各凹部の底面に配置されるとともに、前記上層部分に位置する複数の赤外線検知素子は、それぞれ、前記基板において前記複数の凹部を除く部分に配置される、
 ことを特徴とする付記1ないし7のいずれか1つに記載の赤外線検知センサ。
(Appendix 9)
A plurality of recesses are formed in the substrate,
The plurality of infrared detection elements positioned in the lower layer portion are respectively disposed on the bottom surfaces of the respective recesses, and the plurality of infrared detection elements positioned in the upper layer portion respectively exclude the plurality of recesses in the substrate. Placed in the part,
The infrared detection sensor according to any one of appendices 1 to 7, characterized in that:
 (付記10)
 前記下層部位に位置する各赤外線検知素子は、その有効検知面積が、当該各赤外線検知素子の主面の面積に対して相対的に小さいことを特徴とする付記1ないし9のいずれか1項に記載の赤外線検知センサ。
(Appendix 10)
Each of the infrared detection elements located in the lower layer part has an effective detection area relatively small with respect to the area of the main surface of each of the infrared detection elements. The infrared detection sensor described.
 (付記11)
 前記各赤外線検知素子が、焦電体であり、当該焦電体が、セラミック材料からなることを特徴とする付記1ないし10のいずれか1つに記載の赤外線検知センサ。
(Appendix 11)
Each infrared detection element is a pyroelectric body, and the pyroelectric body is made of a ceramic material. The infrared detection sensor according to any one of supplementary notes 1 to 10, wherein the pyroelectric body is made of a ceramic material.
 (付記12)
 前記各赤外線検知素子が、焦電体として機能するセラミック材料として、チタン酸ジルコン酸鉛系セラミック材料を有することを特徴とする付記11に記載の赤外線検知センサ。
(Appendix 12)
The infrared detection sensor according to appendix 11, wherein each of the infrared detection elements includes a lead zirconate titanate ceramic material as a ceramic material that functions as a pyroelectric body.
 (付記13)
 前記基板の材料として、金属材料、樹脂材料、セラミックス材料から選ばれる少なくとも1種が使用されることを特徴とする付記1ないし12のいずれか1つに記載の赤外線検知センサ。
(Appendix 13)
The infrared detection sensor according to any one of appendices 1 to 12, wherein at least one selected from a metal material, a resin material, and a ceramic material is used as a material of the substrate.
 (付記14)
 付記1ないし13のいずれか1つに記載の赤外線検知センサを備えることを特徴とする電子機器。
(Appendix 14)
An electronic apparatus comprising the infrared detection sensor according to any one of appendices 1 to 13.
 なお、本発明は、本発明の広義の精神と範囲を逸脱することなく、様々な実施形態及び変形が可能とされるものである。また、上述した実施形態は、本発明の一実施例を説明するためのものであり、本発明の範囲を限定するものではない。 It should be noted that the present invention can be variously modified and modified without departing from the broad spirit and scope of the present invention. Further, the above-described embodiment is for explaining an example of the present invention, and does not limit the scope of the present invention.
 本出願は、2010年9月3日に出願された日本国特許出願2010-197931に基づく。本明細書中に日本国特許出願2010-197931の明細書、特許請求の範囲、図面全体を参照として取り込むものとする。 This application is based on Japanese Patent Application 2010-197931 filed on September 3, 2010. The specification, claims, and entire drawings of Japanese Patent Application 2010-197931 are incorporated herein by reference.
 本発明の赤外線検知センサによれば、各センサ素子(赤外線検知素子)の赤外線受光量が検知対象である人体の動きに応じて変動する時間変動データを分析することで、人体の移動を高い検知感度で検知することができる。また、モザイク状画像として検知されるので、検知された人物の特定ができず、個人情報が保護される。したがって、プライバシーに配慮した人体検知用赤外線センサなどに適用可能である。 According to the infrared detection sensor of the present invention, the amount of infrared light received by each sensor element (infrared detection element) is analyzed based on time-varying data that varies according to the movement of the human body that is the detection target. Sensitivity can be detected. Moreover, since it is detected as a mosaic image, the detected person cannot be specified, and personal information is protected. Therefore, it can be applied to an infrared sensor for human body detection in consideration of privacy.
 11、21  基板
 12、12a、12b、12c  センサ素子(赤外線検知素子)
 13  脚部
 14  光学回折素子
 15  光学フィルタ
 16  周辺回路部
 17a、17b  電極
 17c  受光面
 17d  検知面
 18  上の電極層
 19  下の電極層
 21a  一体型基板
 21b  凹部
 21c  一体型脚部
 100、101、102  焦電型赤外線検知センサ(赤外線アレイセンサ)
11, 21 Substrate 12, 12a, 12b, 12c Sensor element (infrared detector)
DESCRIPTION OF SYMBOLS 13 Leg part 14 Optical diffraction element 15 Optical filter 16 Peripheral circuit part 17a, 17b Electrode 17c Light-receiving surface 17d Detection surface 18 Upper electrode layer 19 Lower electrode layer 21a Integrated substrate 21b Recessed part 21c Integrated leg part 100, 101, 102 Pyroelectric infrared sensor (infrared array sensor)

Claims (10)

  1.  基板と、前記基板上に実装配置された複数の赤外線検知素子と、を備える赤外線検知センサにおいて、
     前記複数の赤外線検知素子は、
     前記基板に近接した下層部位に位置する複数の赤外線検知素子と、
     前記基板から離隔した上層部位に位置する複数の赤外線検知素子と、を含み、
     前記基板の表面に対して垂直な方向から見たときに、前記下層部位に位置する各赤外線検知素子と、前記上層部位に位置する各赤外線検知素子とは、互いに上下方向に重なり合うように配置されている、
     ことを特徴とする赤外線検知センサ。
    In an infrared detection sensor comprising a substrate and a plurality of infrared detection elements mounted and arranged on the substrate,
    The plurality of infrared detection elements are:
    A plurality of infrared detection elements located in a lower layer portion adjacent to the substrate;
    A plurality of infrared detection elements located in an upper layer portion separated from the substrate,
    When viewed from a direction perpendicular to the surface of the substrate, each infrared detection element located in the lower layer portion and each infrared detection element located in the upper layer portion are arranged so as to overlap each other in the vertical direction. ing,
    An infrared detection sensor characterized by that.
  2.  前記下層部位に位置する複数の赤外線検知素子と、上層部位に位置する複数の赤外線検知素子とは、いずれもグリッド状に配列されていることを特徴とする請求項1に記載の赤外線検知センサ。 2. The infrared detection sensor according to claim 1, wherein the plurality of infrared detection elements located in the lower layer portion and the plurality of infrared detection elements located in the upper layer portion are all arranged in a grid.
  3.  前記上層部位に位置する各赤外線検知素子は、前記下層部位に位置し、互いに隣接する4つの赤外線検知素子の間に形成される十字状の隙間の交点に配置されていることを特徴とする請求項2に記載の赤外線検知センサ。 Each infrared detecting element located in the upper layer part is located in an intersection of four cross-shaped gaps formed between four infrared detecting elements located in the lower layer part and adjacent to each other. Item 3. The infrared detection sensor according to Item 2.
  4.  前記各赤外線検知素子は、焦電体および強誘電体の内の少なくとも1つを含んでいることを特徴とする請求項1ないし3のいずれか1項に記載の赤外線検知センサ。 The infrared detection sensor according to any one of claims 1 to 3, wherein each of the infrared detection elements includes at least one of a pyroelectric material and a ferroelectric material.
  5.  前記複数の赤外線検知素子は、その受光面が、前記基板の表面に対して平行になるように配置されることを特徴とする請求項1ないし4のいずれか1項に記載の赤外線検知センサ。 The infrared detection sensor according to any one of claims 1 to 4, wherein the plurality of infrared detection elements are arranged such that light receiving surfaces thereof are parallel to a surface of the substrate.
  6.  前記複数の赤外線検知素子は、その受光面が、前記基板の表面に対して傾斜するように配置されることを特徴とする請求項1ないし4のいずれか1項に記載の赤外線検知センサ。 The infrared detection sensor according to any one of claims 1 to 4, wherein the plurality of infrared detection elements are arranged such that light receiving surfaces thereof are inclined with respect to a surface of the substrate.
  7.  隣り合う2つの前記赤外線検知素子が、前記基板の表面に対して互いに異なる角度で傾斜して配置されることを特徴とする請求項6に記載の赤外線検知センサ。 The infrared detection sensor according to claim 6, wherein the two adjacent infrared detection elements are arranged at different angles with respect to the surface of the substrate.
  8.  前記下層部位に位置する複数の赤外線検知素子は、前記基板に対して直接的に配置され、前記上層部位に位置する複数の赤外線検知素子は、前記基板に設置された脚部を介して配置されることを特徴とする請求項1ないし7のいずれか1項に記載の赤外線検知センサ。 The plurality of infrared detection elements located in the lower layer part are directly arranged with respect to the substrate, and the plurality of infrared detection elements located in the upper layer part are arranged via legs installed on the substrate. The infrared detection sensor according to any one of claims 1 to 7, wherein:
  9.  前記基板には複数の凹部が形成されており、
     前記下層部位に位置する複数の赤外線検知素子は、それぞれ、前記各凹部の底面に配置されるとともに、前記上層部分に位置する複数の赤外線検知素子は、それぞれ、前記基板において前記複数の凹部を除く部分に配置される、
     ことを特徴とする請求項1ないし7のいずれか1項に記載の赤外線検知センサ。
    A plurality of recesses are formed in the substrate,
    The plurality of infrared detection elements positioned in the lower layer portion are respectively disposed on the bottom surfaces of the respective recesses, and the plurality of infrared detection elements positioned in the upper layer portion respectively exclude the plurality of recesses in the substrate. Placed in the part,
    The infrared detection sensor according to claim 1, wherein:
  10.  請求項1ないし9のいずれか1項に記載の赤外線検知センサを備えることを特徴とする電子機器。 An electronic apparatus comprising the infrared detection sensor according to any one of claims 1 to 9.
PCT/JP2011/070158 2010-09-03 2011-09-05 Infrared ray detection sensor and electronic apparatus WO2012029974A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010197931 2010-09-03
JP2010-197931 2010-09-03

Publications (1)

Publication Number Publication Date
WO2012029974A1 true WO2012029974A1 (en) 2012-03-08

Family

ID=45773043

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/070158 WO2012029974A1 (en) 2010-09-03 2011-09-05 Infrared ray detection sensor and electronic apparatus

Country Status (1)

Country Link
WO (1) WO2012029974A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112563292A (en) * 2020-12-11 2021-03-26 上海集成电路研发中心有限公司 Novel multilayer infrared detector and preparation method thereof
TWI815208B (en) * 2020-11-25 2023-09-11 大陸商深圳幀觀德芯科技有限公司 Imaging method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59222731A (en) * 1983-06-02 1984-12-14 Matsushita Electric Ind Co Ltd Infrared-ray detecting device
JPS6449921A (en) * 1987-07-10 1989-02-27 Philips Nv Infrared detector element array
JP2004119955A (en) * 2002-09-27 2004-04-15 Koji Eto High function imaging device
JP2004294296A (en) * 2003-03-27 2004-10-21 Mitsubishi Electric Corp Infrared ray sensor array
JP2007214832A (en) * 2006-02-09 2007-08-23 Sony Corp Solid-state image pickup device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59222731A (en) * 1983-06-02 1984-12-14 Matsushita Electric Ind Co Ltd Infrared-ray detecting device
JPS6449921A (en) * 1987-07-10 1989-02-27 Philips Nv Infrared detector element array
JP2004119955A (en) * 2002-09-27 2004-04-15 Koji Eto High function imaging device
JP2004294296A (en) * 2003-03-27 2004-10-21 Mitsubishi Electric Corp Infrared ray sensor array
JP2007214832A (en) * 2006-02-09 2007-08-23 Sony Corp Solid-state image pickup device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI815208B (en) * 2020-11-25 2023-09-11 大陸商深圳幀觀德芯科技有限公司 Imaging method
CN112563292A (en) * 2020-12-11 2021-03-26 上海集成电路研发中心有限公司 Novel multilayer infrared detector and preparation method thereof
WO2022121737A1 (en) * 2020-12-11 2022-06-16 上海集成电路研发中心有限公司 Novel multi-layer infrared detector and preparation method therefor

Similar Documents

Publication Publication Date Title
WO2010134255A1 (en) An infrared sensor, an electronic device, and a method of manufacturing an infrared sensor
JP5685980B2 (en) Thermal photodetector, thermal photodetector, and electronic device
TWI443317B (en) Photodetector
JP6123397B2 (en) Imaging device
TWI457547B (en) Photodetector
JP2014235145A (en) Terahertz wave detecting apparatus, camera, imaging apparatus, and measuring apparatus
KR20110088422A (en) Thermal photodetector, thermal photo-detecting device, and electronic instrument
JP2014235146A (en) Terahertz wave detecting apparatus, camera, imaging apparatus, and measuring apparatus
WO2012111851A1 (en) Infrared detection sensor array and infrared detection device
WO2012029974A1 (en) Infrared ray detection sensor and electronic apparatus
JP2014235144A (en) Terahertz wave detecting apparatus, camera, imaging apparatus, and measuring apparatus
KR20120022975A (en) Infrared light sensor having a high signal voltage and a high signal/noise ratio
JP2013246021A (en) Thermal electromagnetic wave detection element, manufacturing method of thermal electromagnetic wave detection element, thermal electromagnetic wave detection device and electronic apparatus
WO2011101938A1 (en) Infrared ray sensor, infrared ray detection device, and electronic apparatus
JP2008039570A (en) Thermal-type infrared solid-state imaging device and infrared camera
JP6164819B2 (en) Infrared thermal detector and manufacturing method thereof
JP6413070B2 (en) Infrared detector and infrared detector
JP6007477B2 (en) Pyroelectric detector, pyroelectric detector and electronic device
US9423304B2 (en) Infrared ray detecting element and infrared ray detector including the same
JP5915020B2 (en) Infrared detector and electronic device
JP2022089432A (en) Electromagnetic wave sensor
JP2013217786A (en) Thermal electromagnetic wave detection element, method for manufacturing thermal electromagnetic wave detection element, thermal electromagnetic wave detection device, and electronic apparatus
JP2013096788A (en) Pyroelectric type photodetector, pyroelectric type photodetecting apparatus and electronic apparatus
JP2013148492A (en) Terahertz camera and electronic apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11821985

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11821985

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP