WO2012029932A1 - Transmission device, transmission method, terminal device, and mounting method - Google Patents

Transmission device, transmission method, terminal device, and mounting method Download PDF

Info

Publication number
WO2012029932A1
WO2012029932A1 PCT/JP2011/069966 JP2011069966W WO2012029932A1 WO 2012029932 A1 WO2012029932 A1 WO 2012029932A1 JP 2011069966 W JP2011069966 W JP 2011069966W WO 2012029932 A1 WO2012029932 A1 WO 2012029932A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
frequency
occupied bandwidth
transmission
processing
Prior art date
Application number
PCT/JP2011/069966
Other languages
French (fr)
Japanese (ja)
Inventor
丸橋 建一
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2012531971A priority Critical patent/JPWO2012029932A1/en
Publication of WO2012029932A1 publication Critical patent/WO2012029932A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B1/0475Circuits with means for limiting noise, interference or distortion

Definitions

  • the present invention relates to a transmission device, a transmission method, a terminal device, and a mounting method.
  • millimeter wave band wireless communication As a high-speed wireless communication technology, millimeter wave band wireless communication is known. For example, as described in Non-Patent Document 1, millimeter wave wireless communication achieves a transmission rate of several Gbit / s by using a channel with a width of 2 GHz.
  • the millimeter wave band RF (Radio Frequency) signal is assigned to a frequency band of 57 GHz to 66 GHz, for example.
  • an RF (Radio Frequency) signal is generated using a quadrature modulator, the occupied bandwidth of the baseband signal is about 1 GHz per channel.
  • the occupied bandwidth of the IF signal is substantially the same as the occupied bandwidth of the RF signal, and is about 2 GHz per channel.
  • feeder power feeding
  • measures are taken such as supplying power with a wiring as short as possible (Non-Patent Document 2) or mounting an IC on which a wireless circuit is integrated on the back surface of the antenna substrate (Non-Patent Document 3).
  • the millimeter-wave wireless device is mounted on, for example, a notebook computer including a main body including a keyboard and a display including a display.
  • FIG. 11 shows an example of mounting a superheterodyne wireless device on a notebook computer.
  • the wireless device includes at least a baseband circuit, an RF front end, and an antenna.
  • the baseband circuit is mounted on the main body, while the RF front end and antenna having a function of converting to millimeter waves are mounted on the display.
  • FIG. 9 is a graph showing an example of loss characteristics of a fine coaxial cable with a connector. As can be seen from FIG. 9, the loss of the coaxial cable gradually increases as the frequency increases and rapidly increases when the frequency exceeds a predetermined frequency.
  • FIG. 10 is a graph showing the relationship between coaxial cable loss and signal frequency arrangement.
  • the loss characteristic of the coaxial cable in FIG. 10 is assumed to be equal to the loss characteristic shown in FIG. Basically, the in-band deviation ⁇ f1 of a signal with a wide occupied bandwidth is larger than the in-band deviation of a signal with a narrow occupied bandwidth.
  • a signal with a wide occupied bandwidth is, for example, a millimeter wave IF signal having a maximum occupied bandwidth of 2 GHz and transmitted in the 9-14 GHz band.
  • a signal having a narrow occupied bandwidth is, for example, a microwave RF signal having an occupied bandwidth of 20 MHz or 40 MHz and transmitted in a 2.4 GHz or 5 GHz band.
  • An object of the present invention is to provide a transmission device, a transmission method, a terminal device, and a mounting method for solving the problem of reducing in-band deviation, which is more problematic in broadband transmission.
  • the transmission apparatus of the present invention includes first processing means for performing baseband processing of a first signal having a first occupied bandwidth, second processing means for performing RF (Radio Frequency) processing of the first signal, and first processing. And a cable connecting the second processing means and the first signal and a second signal having a second occupied bandwidth that is narrower than the first occupied bandwidth, for transmission in the cable, The transmission frequency of the first signal is lower than the transmission frequency of the second signal.
  • the transmission method of the present invention includes a first processing unit that performs baseband processing of a first signal having a first occupied bandwidth and a second processing unit that performs RF processing of the first signal, which are connected via a cable.
  • the transmission frequency of the first signal is: The frequency is lower than the transmission frequency of the second signal.
  • the terminal device of the present invention is mounted with a main body portion on which a first processing circuit that performs baseband processing of a first signal having a first occupied bandwidth is mounted, and a second processing circuit that performs RF processing on the first signal. And a cable for connecting the first processing circuit and the second processing circuit, and the first signal and the second signal having a second occupied bandwidth narrower than the first occupied bandwidth in the cable.
  • the transmission frequency of the first signal is set to be lower than the transmission frequency of the second signal.
  • a wireless circuit including a first processing circuit that performs baseband processing of a first signal having a first occupied bandwidth and a second processing circuit that performs RF processing of the first signal is provided as a terminal device.
  • the first processing circuit is mounted on the main body of the terminal device, the second processing circuit is mounted on the display unit of the terminal device, and the first processing circuit and the second processing circuit are mounted.
  • the transmission frequency of the first signal is set to the second signal. The frequency is lower than the transmission frequency.
  • FIG. 1 is a block diagram illustrating a configuration example of a transmission apparatus 20 according to the first embodiment of the present invention.
  • the transmission device 20 includes a first processing unit 22 and a second processing unit 24.
  • the first processing unit 22 and the second processing unit 24 are connected by a cable 26.
  • the first processing unit 22 is mounted on the main body unit 32 of the terminal device 30, and the second processing unit 24 is mounted on the display unit 34.
  • the first processing unit 22 executes at least baseband processing of the first signal having the first occupied bandwidth.
  • the second processing unit 24 executes at least RF (Radio Frequency) processing of the first signal.
  • RF Radio Frequency
  • the first signal may be a signal used for, for example, millimeter-wave wireless communication
  • the second signal may be a wireless LAN (Local Area Network) signal, for example.
  • the cable 26 can be a coaxial cable, for example.
  • the transmission frequency of the first signal is set to the second signal.
  • the frequency is lower than the transmission frequency.
  • the cable 26 is, for example, a fine coaxial cable (for example, a coaxial cable having a low-profile connector), as described with reference to FIG. 9, the increase rate of the loss of the fine coaxial cable is When the frequency exceeds a predetermined frequency, it rapidly increases.
  • FIG. 2 is a block diagram illustrating a configuration example of a radio apparatus (transmission apparatus) according to the second embodiment of the present invention.
  • the main body 1 includes a baseband circuit 4a that handles a signal with a small occupied bandwidth (for example, a wireless LAN signal), a modulator / demodulator 5a, and an RF front end 6a.
  • the main unit 1 further includes a baseband circuit 4b that handles a signal with a wide occupied bandwidth (a signal used for millimeter-wave wireless communication), a modem 5b, and a duplexer 7.
  • the display unit 2 includes a duplexer 8, an RF front end 6b for millimeter waves, an antenna 9a (first antenna), and an antenna 9b (second antenna).
  • the duplexer 7 of the main unit 1 and the duplexer 8 of the display unit 2 are connected via a coaxial cable 10 (cable).
  • the duplexer 7 of the main body 1 superimposes the RF output signal from the RF front end 6a and the IF output signal from the modem 5b on one signal. Then, the duplexer 7 transmits the superimposed signal to the duplexer 8 of the display unit 2 through the coaxial cable 10.
  • the duplexer 8 separates the RF output signal and the IF output signal from the superimposed signal.
  • the RF output signal is transmitted from the antenna 9a.
  • the IF output signal is up-converted to an RF output signal by the millimeter wave RF front end 6b and transmitted from the antenna 9b.
  • the RF output signal from the RF front end 6a is, for example, the 2.4 GHz band or the 5 GHz band.
  • the IF output signal output from the modem 5b is a signal lower than 2.4 GHz, for example, up to 2 GHz.
  • the IF output signal with a wide occupied bandwidth (for example, 2 GHz / 1 channel) has a low frequency
  • the 2.4 GHz band and the 5 GHz band with a small occupied bandwidth have a high frequency (for example, 20 MHz or 40 MHz).
  • the signal is transmitted through the coaxial cable 10.
  • FIG. 7 is a graph showing the relationship between the coaxial cable loss and the signal frequency arrangement in the second embodiment.
  • the loss characteristics of the coaxial cables of FIGS. 7 and 10 are equal.
  • the in-band deviation ⁇ f2 shown in FIG. 7 is significantly smaller than the in-band deviation ⁇ f1 shown in FIG. The reason will be described.
  • the increase rate of the loss of a fine coaxial cable increases rapidly when a predetermined frequency is exceeded. Accordingly, a signal having a wide occupied bandwidth is transmitted at a frequency lower than the in-band deviation ⁇ f1 (see FIG.
  • a signal with a wide occupied bandwidth and “a signal with a narrow occupied bandwidth” mean that the occupied bandwidth of one signal is the other. It means that it is "relatively” wider (or narrower) than the occupied bandwidth of the signal.
  • the occupied bandwidth of the signal satisfies this condition, and the specific occupied bandwidth of each signal is not limited to the above.
  • the frequency of the signal satisfies this condition, and the specific frequency of each signal is not limited to the above.
  • a case where a signal with a large occupied bandwidth is transmitted at a frequency lower than a frequency at which a signal with a small occupied bandwidth is transmitted is described as an example, but the present invention is not limited to this.
  • FIG. 3 is a block diagram illustrating a configuration example of a radio apparatus (transmission apparatus) according to the third embodiment of the present invention.
  • a terminal device for example, a notebook personal computer
  • FIG. 3 shows a case where this wireless device is applied to a terminal device (for example, a notebook personal computer) composed of, for example, a main body 1 and a display 2.
  • the main body 1 includes a baseband circuit 4c and a modem 5c.
  • the display unit 2 includes a duplexer 8, an RF front end 6a, an RF front end 6b for millimeter waves, an antenna 9a, and an antenna 9b.
  • the modem 5 c of the main body 1 and the duplexer 8 of the display unit 2 are connected via a coaxial cable 10.
  • the baseband circuit 4c outputs a baseband signal of a signal with a narrow occupied bandwidth and a signal with a wide occupied bandwidth to the modem 5c.
  • a signal with a small occupied bandwidth is, for example, a wireless LAN signal
  • a signal with a large occupied bandwidth is, for example, a signal used for millimeter-wave wireless communication.
  • the baseband circuit 4c when the interface between the baseband circuit 4c and the modem 5c is one, the baseband circuit 4c outputs both baseband signals in a time division manner.
  • the modem 5c outputs an IF output signal including an IF signal having a narrow occupied bandwidth and an IF signal having a wide occupied bandwidth.
  • the frequency of the IF signal of the signal having a narrow occupied bandwidth is set higher than the frequency of the IF signal of the signal having a wide occupied bandwidth.
  • the IF output signal is transmitted to the duplexer 8 mounted on the display unit 2 via the coaxial cable 10.
  • the IF output signal is separated by the duplexer 8 according to the frequency.
  • the IF output signal having a narrow occupied bandwidth is up-converted to an RF signal by the RF front end 6a and transmitted by the antenna 9a.
  • the IF output signal having a wide occupied bandwidth is up-converted to an RF signal by the millimeter wave RF front end 6b and transmitted by the antenna 9b.
  • the reason why the in-band deviation can be reduced is the same as in the second embodiment, and thus the description thereof is omitted here.
  • the configuration can be simplified.
  • the modem 5c has a function of changing the frequency from the baseband signal to the IF signal as described above with respect to a signal having a small occupied bandwidth.
  • the modem 5c may generate the RF signal directly from the baseband signal without generating the IF signal. That is, the direct conversion method can be supported.
  • FIG. 4 is a block diagram illustrating a configuration example of a radio apparatus (transmission apparatus) according to the fourth embodiment of the present invention.
  • FIG. 4 is a block diagram illustrating a configuration example of a radio apparatus (transmission apparatus) according to the fourth embodiment of the present invention.
  • the main unit 1 is used for a baseband circuit 4a that handles a signal with a small occupied bandwidth (for example, a wireless LAN signal), a modem 5a, an RF front end 6a, and a signal with a large occupied bandwidth (for example, millimeter-wave radio).
  • a baseband circuit 4b for handling signals and a duplexer 7.
  • the display unit 2 includes a duplexer 8, a modem 5b, a millimeter wave RF front end 6b, an antenna 9a, and an antenna 9b.
  • the duplexer 7 of the main body 1 and the duplexer 8 of the display unit 2 are connected via a coaxial cable 10.
  • the duplexer 7 of the main body 1 superimposes the RF output signal from the RF front end 6a and the baseband output signal from the baseband circuit 4b.
  • the duplexer 7 transmits the superimposed signal to the duplexer 8 of the display unit 2 through the coaxial cable 10.
  • the RF output signal separated by the duplexer 8 is transmitted by the antenna 9a.
  • the baseband output signal separated by the duplexer 8 is up-converted by the millimeter wave RF front end 6b via the modulator / demodulator 5b and transmitted by the antenna 9b.
  • the RF output signal from the RF front end 6a is, for example, the 2.4 GHz band or the 5 GHz band.
  • the baseband output signal output from the baseband circuit 4b is a signal lower than 2.4 GHz, for example, up to 2 GHz.
  • baseband output signals with a large occupied bandwidth eg 2 GHz
  • 2.4 GHz and 5 GHz band RF output signals with a narrow occupied bandwidth eg 20 MHz or 40 MHz
  • the RF frequency of the wireless LAN is the upper limit for the frequency that passes through the coaxial cable, there is no need to select a special coaxial cable even if it is shared with the baseband signal of millimeter wave radio. It can also contribute to cost reduction. Therefore, according to the fourth embodiment, as in the second and third embodiments, it is possible to reduce the in-band deviation which is more problematic in wideband transmission. In the fourth embodiment, the reason why the in-band deviation can be reduced is the same as that in the second embodiment, and thus the description thereof is omitted here. Furthermore, according to the fourth embodiment, not only the IF signal but also the baseband signal can be sent by the coaxial cable, so that the selection range can be further expanded.
  • FIG. 5 is a block diagram illustrating a configuration example of a radio apparatus (transmission apparatus) according to the fifth embodiment of the present invention.
  • FIG. 5 shows a case where this wireless device is applied to a terminal device (for example, a notebook computer) composed of, for example, the main body 1 and the display 2.
  • the main body 1 includes a baseband circuit 4a that handles a signal with a small occupied bandwidth (for example, a wireless LAN signal), a modulator / demodulator 5a, and an RF front end 6a.
  • the main body 1 further includes a baseband circuit 4b that handles a signal with a wide occupied bandwidth (for example, a signal used for millimeter wave radio), a duplexer 7-1, and a duplexer 7-2.
  • the display unit 2 includes a duplexer 8-1, a duplexer 8-2, a modem 5b, a millimeter wave RF front end 6b, antennas 9a-1, 9a-2, and an antenna 9b. .
  • the duplexer 7-1 of the main body 1 and the duplexer 8-1 of the display unit 2 are connected via a coaxial cable 10-1.
  • the duplexer 7-2 of the main body 1 and the duplexer 8-2 of the display unit 2 are connected via a coaxial cable 10-2.
  • the wireless LAN corresponds to MIMO (Multiple Input Multiple Output). Therefore, the RF output signal from the RF front end 6a is divided into channel 1 (Ch1) and channel 2 (Ch2).
  • the baseband signal from the baseband circuit 4b is divided into orthogonal signals Ich and Qch. Ch1 and Ich are superimposed by the duplexer 7-1. This superimposed signal is transmitted to the duplexer 8-1 of the display unit 2 through the coaxial cable 10-1.
  • Ch2 and Qch are superimposed by the duplexer 7-2.
  • This superimposed signal is transmitted to the duplexer 8-2 of the display unit 2 through the coaxial cable 10-2.
  • the RF signals (Ch1, Ch2) separated by the duplexers 8-1, 8-2 are transmitted to the antennas 9a-1, 9a-2, respectively.
  • the baseband signals (Ich, Qch) are respectively modulated by the modem 5b, up-converted by the RF front end 6b, and transmitted by the antenna 9b.
  • the RF output signal from the RF front end 6a is, for example, the 2.4 GHz band or the 5 GHz band.
  • the baseband output signal output from the baseband circuit 4b is a signal lower than 2.4 GHz, for example, up to 1 GHz.
  • the occupied bandwidth of the signal used for millimeter-wave radio is about half of the occupied bandwidth of the second to fourth embodiments.
  • FIG. 8 is a graph showing the relationship between the coaxial cable loss and the signal frequency arrangement in the fifth embodiment.
  • FIG. 8 and FIG. 7 are compared. In this case, it is assumed that the loss characteristics of the coaxial cables of FIGS. 8 and 7 are equal.
  • the orthogonal signal has approximately half the occupied bandwidth (for example, 2 GHz ⁇ 1 GHz) compared to the RF signal and IF signal. Therefore, the in-band deviation ⁇ f3 shown in FIG. 8 is also smaller than the in-band deviation ⁇ f2 shown in FIG.
  • the in-band deviation can be further reduced.
  • the operation at the time of transmission is taken as an example, but at the time of reception, the signal is transmitted in the reverse direction.
  • the number of RF signals (number of channels) output from the RF front end 6a (or input to the RF front end 6a) is not fixed but varies depending on the MIMO specification.
  • the number of baseband signals output from the baseband circuit 4b (or input to the baseband circuit 4b) is not fixed, but varies depending on specifications such as when differential wiring is used or when transmission / reception wiring is used. Therefore, the number of the coaxial cables 10 and whether a part or all of the coaxial cables are shared are design matters and can be arbitrarily changed.
  • FIG. 6 is a block diagram illustrating a configuration example of a radio apparatus (transmission apparatus) according to the sixth embodiment of the present invention.
  • FIG. 6 shows a case where this wireless apparatus is applied to, for example, an information terminal (for example, a notebook computer) composed of a main body 1 and a display 2.
  • the sixth embodiment is different from the fifth embodiment (see FIG. 5) in the configuration of the display unit 2.
  • the quadrature signals Ich and Qch output from the duplexers 8-1 and 8-2 are divided into two systems of modulators / demodulators 5b-1 and 5b-2, and the RF front end. Modulated and up-converted by 6b-1 and 6b-2, and output by antennas 9b-1 and 9b-2.
  • the configuration of the main body 1 is the same as that of the fifth embodiment. According to the sixth embodiment, as in the second to fifth embodiments described above, since a signal having a wide occupied bandwidth is transmitted at a low frequency, the in-band deviation more problematic in wideband transmission. Can be reduced.
  • the in-band deviation can be further reduced.
  • the set of the RF front end 6b-1 and the antenna 9b-1 and the set of the RF front end 6b-2 and the antenna 9b-2 are separated in the display unit 2. Can be installed. Accordingly, it is possible to obtain shielding and diversity effect in the communication path. Furthermore, in such a configuration, it is not necessary to draw a signal at a high frequency such as millimeter waves.
  • the operation at the time of transmission is taken as an example, but at the time of reception, the signal is transmitted in the reverse direction.
  • the number of RF signals (number of channels) output from the RF front end 6a (or input to the RF front end 6a) is not fixed but varies depending on the MIMO specification.
  • the number of baseband signals output from the baseband circuit 4b (or input to the baseband circuit 4b) is not fixed, but varies depending on specifications such as when differential wiring is used or when transmission / reception wiring is used. That is, the number of the coaxial cables 10 and whether a part or all of the coaxial cables are shared are design matters and can be arbitrarily changed.
  • the wireless devices according to the second to sixth embodiments described above are not limited to notebook computers, but can be applied to other devices (for example, cellular phones and PDAs (Personal Digital Assistants)). Not too long.
  • the present invention has been described with reference to the embodiments, the present invention is not limited to the above-described embodiments. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention. This application claims the priority on the basis of Japanese application Japanese Patent Application No. 2010-195369 for which it applied on September 1, 2010, and takes in those the indications of all here.

Abstract

In order to reduce in-band deviation that is more of a problem in wide-band transmission, this transmission device is provided with: a first processing means that performs baseband processing of a first signal having a first occupied bandwidth; a second processing means that performs radio frequency (RF) processing of the first signal; and a cable that connects the first processing means and the second processing means. When a first signal and a second signal having a second occupied bandwidth that is narrower than the first occupied bandwidth are transmitted in a commonly used cable, the transmission frequency of the first signal is caused to be a lower frequency than the transmission frequency of the second signal.

Description

伝送装置、伝送方法、端末装置、および実装方法Transmission device, transmission method, terminal device, and mounting method
 本発明は、伝送装置、伝送方法、端末装置、および実装方法に関する。 The present invention relates to a transmission device, a transmission method, a terminal device, and a mounting method.
 高速無線通信技術として、ミリ波帯無線通信が知られている。ミリ波帯無線通信は、例えば、非特許文献1に記載されているように、2GHz幅のチャネルを使用することにより、数Gbit/sの伝送レートを実現している。
 ミリ波帯のRF(Radio Frequency)信号は、例えば、57GHz~66GHzの周波数帯に割り当てられている。なお、直交変調器を用いてRF(Radio Frequency)信号を生成する場合のベースバンド信号の占有帯域幅は、1チャネルあたり約1GHzである。直交変調器でIF(Intermediate Frequency)信号を生成しRF信号に変換する場合のIF信号の占有帯域幅は、RF信号の占有帯域幅と概ね同じで、1チャネルあたり2GHz程度となる。
 このような高い周波数の信号を、長い距離の配線で引き回すと、フィーダー(給電)損失が大きくなってしまう。従って、なるべく短い距離の配線で給電するか(非特許文献2)、あるいは、無線回路が集積されたICをアンテナ基板の裏面に実装する(非特許文献3)などの対策が施される。
 ここで、ミリ波無線装置を、例えば、キーボードを含む本体部とディスプレイを含む表示部とで構成されるノートパソコンに実装する場合について考察する。本体部側にアンテナを配置すると、キーボードを操作するユーザの手がアンテナ付近に位置するようになるため、通信が遮蔽される可能性が高くなる。従って、アンテナはキーボードから離間した表示部側に配置されるのが望ましい。この場合、表示部の実装エリアが限られていること、また、デジタル部については電源部やデータバスからの距離が長くならないようにすることを考慮する必要がある。図11は、スーパーヘテロダイン方式の無線装置のノートパソコンへの実装例である。無線装置は、ベースバンド回路、RFフロントエンド、およびアンテナを少なくとも含んでいる。ベースバンド回路は本体部に実装され、一方、ミリ波への周波数変換機能をもったRFフロントエンドおよびアンテナは表示部に実装される。すなわち、この場合、アンテナへの給電は、ミリ波より低い周波数で行われる。例えば、非特許文献4の無線チップではIF周波数帯として9−14GHzが採用されている。このため、ベースバンド回路の出力を比較的長い距離の配線で引き回しても、フィーダー損失は大きくない。
As a high-speed wireless communication technology, millimeter wave band wireless communication is known. For example, as described in Non-Patent Document 1, millimeter wave wireless communication achieves a transmission rate of several Gbit / s by using a channel with a width of 2 GHz.
The millimeter wave band RF (Radio Frequency) signal is assigned to a frequency band of 57 GHz to 66 GHz, for example. In addition, when an RF (Radio Frequency) signal is generated using a quadrature modulator, the occupied bandwidth of the baseband signal is about 1 GHz per channel. When an IF (Intermediate Frequency) signal is generated by a quadrature modulator and converted into an RF signal, the occupied bandwidth of the IF signal is substantially the same as the occupied bandwidth of the RF signal, and is about 2 GHz per channel.
When such a high-frequency signal is routed over a long distance wiring, feeder (power feeding) loss increases. Therefore, measures are taken such as supplying power with a wiring as short as possible (Non-Patent Document 2) or mounting an IC on which a wireless circuit is integrated on the back surface of the antenna substrate (Non-Patent Document 3).
Here, consider a case where the millimeter-wave wireless device is mounted on, for example, a notebook computer including a main body including a keyboard and a display including a display. When the antenna is disposed on the main body side, the user's hand operating the keyboard is positioned near the antenna, and thus there is a high possibility that communication is blocked. Therefore, it is desirable to arrange the antenna on the display unit side that is separated from the keyboard. In this case, it is necessary to consider that the mounting area of the display unit is limited and that the distance from the power supply unit and the data bus is not increased for the digital unit. FIG. 11 shows an example of mounting a superheterodyne wireless device on a notebook computer. The wireless device includes at least a baseband circuit, an RF front end, and an antenna. The baseband circuit is mounted on the main body, while the RF front end and antenna having a function of converting to millimeter waves are mounted on the display. That is, in this case, power is supplied to the antenna at a frequency lower than that of the millimeter wave. For example, in the wireless chip of Non-Patent Document 4, 9-14 GHz is adopted as the IF frequency band. For this reason, even if the output of the baseband circuit is routed by a relatively long distance wiring, the feeder loss is not large.
 ところで、ノートパソコンにはマイクロ波を用いる無線LAN(Local Area Network)が既に実装されている場合が多い。また、複数のアンテナを持ったMIMO(Multiple Input Multiple Output)対応のノートパソコンが知られている。しかし、このようなノートパソコンにおいても無線LANモジュールは本体部に実装され、全部若しくは複数のアンテナが表示部に実装される。すなわち、多くのアンテナへの給電が必要となる。しかし、本体部と表示部とを接続するヒンジ部の空間は限られているため、給電のための同軸ケーブルは必然的に径が細く、低背コネクタを使用した微細なものとなる。
 一方、当然のことながらミリ波無線装置に給電を行なう必要がある。しかし、上述したとおりヒンジ部の空間は限られているため、新規の給電線(同軸ケーブル)を設けることは困難である。そこで、ミリ波無線装置への給電に関し、既存の同軸ケーブル(例えば、無線LAN用の2.4GHz帯および5GHz帯を通過させる同軸ケーブル)をミリ波無線装置と共用することが望ましい。
 しかしながら、ミリ波無線装置への給電に共用される同軸ケーブルは、上述したとおり微細なものである。図9は、コネクタ付きの微細な同軸ケーブルの損失特性例を示すグラフである。図9から諒解されるように、同軸ケーブルの損失は、周波数が高くなるにつれて徐々に大きくなり、所定の周波数を越えると急激に増加する。
 図10は、同軸ケーブル損失と信号の周波数配置の関係を示すグラフである。なお、図10における同軸ケーブルの損失特性は、図9に示す損失特性と等しいものとする。基本的には、占有帯域幅が広い信号の帯域内偏差Δf1は、占有帯域幅が狭い信号の帯域内偏差よりも大きくなる。占有帯域幅が広い信号とは、例えば占有帯域幅が最大2GHzであり、9−14GHz帯で伝送されるミリ波IF信号である。占有帯域幅が狭い信号とは、例えば占有帯域幅が20MHzまたは40MHzであり、2.4GHzまたは5GHz帯で伝送されるマイクロ波RF信号である。さらに、占有帯域幅が広い信号を伝送する周波数が同軸ケーブルの損失の増加率が急激に増加する周波数以上である場合、帯域内偏差Δf1はより一層大きなものとなってしまう。OFDM(Orthogonal Frequency Division Multiplexing)変調の場合、搬送波が複数のサブキャリアに分割されているので、帯域内偏差が多少大きくても許容される。しかしながら、広帯域通信で必要とされる高速のADC(Analog to Digital Converter:アナログ−デジタル変換器)ではビット分解能が小さく、ダイナミックレンジがとれないため、帯域内偏差を小さく留めなければならない。
 本発明は、広帯域伝送においてより問題となる帯域内偏差を軽減させるという課題を解決するための伝送装置、伝送方法、端末装置、および実装方法を提供することを目的とする。
By the way, there are many cases where a wireless LAN (Local Area Network) using a microwave is already mounted on a notebook personal computer. In addition, a notebook computer compatible with MIMO (Multiple Input Multiple Output) having a plurality of antennas is known. However, even in such a notebook personal computer, the wireless LAN module is mounted on the main body, and all or a plurality of antennas are mounted on the display. That is, power supply to many antennas is required. However, since the space of the hinge part that connects the main body part and the display part is limited, the coaxial cable for power feeding is inevitably thin in diameter and is fine using a low-profile connector.
On the other hand, as a matter of course, it is necessary to feed power to the millimeter wave radio apparatus. However, since the space of the hinge portion is limited as described above, it is difficult to provide a new feeder line (coaxial cable). Therefore, it is desirable to share an existing coaxial cable (for example, a coaxial cable for passing a 2.4 GHz band and a 5 GHz band for a wireless LAN) with the millimeter wave radio apparatus for power supply to the millimeter wave radio apparatus.
However, the coaxial cable shared for power feeding to the millimeter wave radio apparatus is fine as described above. FIG. 9 is a graph showing an example of loss characteristics of a fine coaxial cable with a connector. As can be seen from FIG. 9, the loss of the coaxial cable gradually increases as the frequency increases and rapidly increases when the frequency exceeds a predetermined frequency.
FIG. 10 is a graph showing the relationship between coaxial cable loss and signal frequency arrangement. The loss characteristic of the coaxial cable in FIG. 10 is assumed to be equal to the loss characteristic shown in FIG. Basically, the in-band deviation Δf1 of a signal with a wide occupied bandwidth is larger than the in-band deviation of a signal with a narrow occupied bandwidth. A signal with a wide occupied bandwidth is, for example, a millimeter wave IF signal having a maximum occupied bandwidth of 2 GHz and transmitted in the 9-14 GHz band. A signal having a narrow occupied bandwidth is, for example, a microwave RF signal having an occupied bandwidth of 20 MHz or 40 MHz and transmitted in a 2.4 GHz or 5 GHz band. Furthermore, when the frequency at which a signal with a wide occupied bandwidth is transmitted is equal to or higher than the frequency at which the loss increase rate of the coaxial cable increases rapidly, the in-band deviation Δf1 becomes even larger. In the case of OFDM (Orthogonal Frequency Division Multiplexing) modulation, since the carrier wave is divided into a plurality of subcarriers, even a slightly large in-band deviation is allowed. However, in a high-speed ADC (Analog to Digital Converter) required for broadband communication, the bit resolution is small and the dynamic range cannot be taken, so the in-band deviation must be kept small.
An object of the present invention is to provide a transmission device, a transmission method, a terminal device, and a mounting method for solving the problem of reducing in-band deviation, which is more problematic in broadband transmission.
 本発明の伝送装置は、第1占有帯域幅をもつ第1信号のベースバンド処理を行う第1処理手段と、第1信号のRF(Radio Frequency)処理を行う第2処理手段と、第1処理手段と第2処理手段とを接続するケーブルと、を備え、第1信号と第1占有帯域幅よりも狭い第2占有帯域幅をもつ第2信号とをケーブル内を共用して伝送する際、第1信号の伝送周波数を、第2信号の伝送周波数よりも低い周波数とする。
 本発明の伝送方法は、ケーブルを介して接続される、第1占有帯域幅をもつ第1信号のベースバンド処理を行う第1処理手段と第1信号のRF処理を行う第2処理手段との間の伝送方法であって、第1信号と第1占有帯域幅よりも狭い第2占有帯域幅をもつ第2信号とをケーブル内を共用して伝送する際、第1信号の伝送周波数を、第2信号の伝送周波数よりも低い周波数とする。
 本発明の端末装置は、第1占有帯域幅をもつ第1信号のベースバンド処理を行う第1処理回路が実装される本体部と、第1信号のRF処理を行う第2処理回路が実装される表示部と、第1処理回路と第2処理回路とを接続するケーブルと、を備え、第1信号と第1占有帯域幅よりも狭い第2占有帯域幅をもつ第2信号とをケーブル内を共用して伝送する際、第1信号の伝送周波数を、第2信号の伝送周波数よりも低い周波数とする。
 本発明の実装方法は、第1占有帯域幅をもつ第1信号のベースバンド処理を行う第1処理回路と、第1信号のRF処理を行う第2処理回路とを含む無線回路を、端末装置へ実装する実装方法であって、第1処理回路を、端末装置の本体部に実装し、第2処理回路を、端末装置の表示部に実装し、第1処理回路と第2処理回路とをケーブルにより接続し、第1信号と第1占有帯域幅よりも狭い第2占有帯域幅をもつ第2信号とをケーブル内を共用して伝送する際、第1信号の伝送周波数を、第2信号の伝送周波数よりも低い周波数とする。
The transmission apparatus of the present invention includes first processing means for performing baseband processing of a first signal having a first occupied bandwidth, second processing means for performing RF (Radio Frequency) processing of the first signal, and first processing. And a cable connecting the second processing means and the first signal and a second signal having a second occupied bandwidth that is narrower than the first occupied bandwidth, for transmission in the cable, The transmission frequency of the first signal is lower than the transmission frequency of the second signal.
The transmission method of the present invention includes a first processing unit that performs baseband processing of a first signal having a first occupied bandwidth and a second processing unit that performs RF processing of the first signal, which are connected via a cable. When transmitting a first signal and a second signal having a second occupied bandwidth that is narrower than the first occupied bandwidth in the cable, the transmission frequency of the first signal is: The frequency is lower than the transmission frequency of the second signal.
The terminal device of the present invention is mounted with a main body portion on which a first processing circuit that performs baseband processing of a first signal having a first occupied bandwidth is mounted, and a second processing circuit that performs RF processing on the first signal. And a cable for connecting the first processing circuit and the second processing circuit, and the first signal and the second signal having a second occupied bandwidth narrower than the first occupied bandwidth in the cable. When transmitting in common, the transmission frequency of the first signal is set to be lower than the transmission frequency of the second signal.
According to an embodiment of the present invention, a wireless circuit including a first processing circuit that performs baseband processing of a first signal having a first occupied bandwidth and a second processing circuit that performs RF processing of the first signal is provided as a terminal device. The first processing circuit is mounted on the main body of the terminal device, the second processing circuit is mounted on the display unit of the terminal device, and the first processing circuit and the second processing circuit are mounted. When the first signal and the second signal having a second occupied bandwidth narrower than the first occupied bandwidth are transmitted by sharing in the cable, the transmission frequency of the first signal is set to the second signal. The frequency is lower than the transmission frequency.
 本発明によれば、広帯域伝送においてより問題となる帯域内偏差を軽減させることができる。 According to the present invention, it is possible to reduce in-band deviation, which is more problematic in broadband transmission.
本発明の第1の実施形態に係る伝送装置の構成例を説明するブロック図である。It is a block diagram explaining the structural example of the transmission apparatus which concerns on the 1st Embodiment of this invention. 本発明の第2の実施形態に係る無線装置の構成例を説明するブロック図である。It is a block diagram explaining the structural example of the radio | wireless apparatus which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る無線装置の構成例を説明するブロック図である。It is a block diagram explaining the structural example of the radio | wireless apparatus which concerns on the 3rd Embodiment of this invention. 本発明の第4の実施形態に係る無線装置の構成例を説明するブロック図である。It is a block diagram explaining the structural example of the radio | wireless apparatus which concerns on the 4th Embodiment of this invention. 本発明の第5の実施形態に係る無線装置の構成例を説明するブロック図である。It is a block diagram explaining the structural example of the radio | wireless apparatus which concerns on the 5th Embodiment of this invention. 本発明の第6の実施形態に係る無線装置の構成例を説明するブロック図である。It is a block diagram explaining the structural example of the radio | wireless apparatus which concerns on the 6th Embodiment of this invention. 第2の実施形態における、同軸ケーブル損失と信号の周波数配置の関係を示すグラフである。It is a graph which shows the relationship between the coaxial cable loss and the signal frequency arrangement in the second embodiment. 第5の実施形態における、同軸ケーブル損失と信号の周波数配置の関係を示すグラフである。It is a graph which shows the relationship between the coaxial cable loss and the signal frequency arrangement in the fifth embodiment. 同軸ケーブルの損失特性例を示すグラフである。It is a graph which shows the example of the loss characteristic of a coaxial cable. 同軸ケーブル損失と信号の周波数配置の関係を示すグラフである。It is a graph which shows the relationship between coaxial cable loss and signal frequency arrangement. スーパーヘテロダイン方式の無線装置のノートパソコンへの実装例である。This is an example of mounting a superheterodyne wireless device on a notebook computer.
 [第1の実施形態]
 図1は、本発明の第1の実施形態に係る伝送装置20の構成例を説明するブロック図である。伝送装置20は、第1処理部22と第2処理部24とを備える。第1処理部22と第2処理部24とは、ケーブル26により接続される。例えば、第1処理部22は端末装置30の本体部32に実装され、第2処理部24は表示部34に実装される。
 第1処理部22は、第1占有帯域幅をもつ第1信号のベースバンド処理を少なくとも実行する。第2処理部24は、第1信号のRF(Radio Frequency)処理を少なくとも実行する。
 なお、第1信号を例えばミリ波無線通信に用いる信号とし、第2信号を例えば無線LAN(Local Area Network)の信号とすることができる。また、ケーブル26は、例えば、同軸ケーブルとすることができる。
 上記構成において、第1信号と第1占有帯域幅よりも狭い第2占有帯域幅をもつ第2信号とをケーブル26内を共用して伝送する際、第1信号の伝送周波数を、第2信号の伝送周波数よりも低い周波数とする。
 ここで、ケーブル26が、例えば、微細な同軸ケーブル(例えば、低背なコネクタを有する同軸ケーブル)である場合、図9を用いて説明したように、その微細な同軸ケーブルの損失の増加率は、所定の周波数を越えると急激に増大する。従って、占有帯域幅の広い信号を高い周波数(この場合、同軸ケーブルの損失の増加率が増大する周波数以上の周波数)で伝送させる場合の帯域内偏差よりも、低い周波数で伝送させる場合の帯域内偏差の方が小さくなる。
 以上説明した第1の実施形態によれば、広い占有帯域幅を有する信号は低い周波数で伝送されるため、広帯域伝送においてより問題となる帯域内偏差を小さくすることができる。
 [第2の実施の形態]
 図2は、本発明の第2の実施形態に係る無線装置(伝送装置)の構成例を説明するブロック図である。図2は、この無線装置を、例えば、本体部1と表示部2とで構成される端末装置(例えば、ノートパソコン)に適用した場合を示す。
 本体部1は、占有帯域幅が狭い信号(例えば無線LANの信号)を扱うベースバンド回路4aと、変復調器5aと、RFフロントエンド6aとを備える。本体部1は、さらに、占有帯域幅が広い信号(ミリ波無線通信に用いる信号)を扱うベースバンド回路4bと、変復調器5bと、共用器7とを備える。表示部2は、共用器8と、ミリ波用のRFフロントエンド6bと、アンテナ9a(第1アンテナ)と、アンテナ9b(第2アンテナ)とを備える。本体部1の共用器7と表示部2の共用器8は、同軸ケーブル10(ケーブル)を介して接続される。
 本体部1の共用器7は、RFフロントエンド6aからのRF出力信号と変復調器5bからのIF出力信号とを1本の信号に重畳する。そして、共用器7は、重畳された信号を、同軸ケーブル10を介して、表示部2の共用器8に伝送する。共用器8は、重畳された信号からRF出力信号とIF出力信号を分離する。RF出力信号は、アンテナ9aから送信される。一方、IF出力信号は、ミリ波用のRFフロントエンド6bでRF出力信号にアップコンバートされ、アンテナ9bから送信される。
 ここで、RFフロントエンド6aからのRF出力信号は、例えば2.4GHz帯または5GHz帯である。一方、変復調器5bから出力されるIF出力信号は、2.4GHzよりも低い、例えば2GHzまでの信号とする。この結果、占有帯域幅の広いIF出力信号(例えば、2GHz/1チャネル)は低い周波数で、占有帯域幅の狭い2.4GHz帯および5GHz帯のRF出力信号(例えば、20MHzまたは40MHz)は高い周波数で、各々に同軸ケーブル10中を伝送する。
 図7は、第2の実施形態における、同軸ケーブル損失と信号の周波数配置の関係を示すグラフである。ここで、この図7と図10とを比較する。この場合、図7と図10の同軸ケーブルの損失特性は等しいものとする。図7に示す帯域内偏差Δf2は、図10に示す帯域内偏差Δf1よりも大幅に小さい。その理由について説明する。図9を用いて説明したように、微細な同軸ケーブル(例えば、低背なコネクタを有する同軸ケーブル)の損失の増加率は、所定の周波数を越えると急激に増大する。従って、占有帯域幅の広い信号を高い周波数(この場合、同軸ケーブルの損失の増加率が増大する周波数以上の周波数)で伝送させる場合の帯域内偏差Δf1(図10参照)よりも、低い周波数で伝送させる場合の帯域内偏差Δf2(図7参照)の方が小さくなる。
 すなわち、以上説明した第2の実施形態によれば、広い占有帯域幅を有する信号は低い周波数で伝送されるため、広帯域伝送においてより問題となる帯域内偏差を小さくすることができる。
 なお、上記の説明および以下で説明する第3~第6の実施形態において、「占有帯域幅が広い信号」および「占有帯域幅が狭い信号」とは、一方の信号の占有帯域幅が他方の信号の占有帯域幅よりも「相対的」に広いこと(あるいは狭いこと)を意味している。信号の占有帯域幅はこの条件さえ満足すれば十分であって、それぞれの信号の具体的な占有帯域幅は上記に限定されない。また、「高い周波数」と「低い周波数」についても上記と同様であり、一方の信号の周波数が他方の信号の周波数よりも「相対的」に高いこと(あるいは低いこと)を意味している。この場合も、信号の周波数はこの条件さえ満足されれば十分であって、それぞれの信号の具体的な周波数は上記に限定されない。
 また、以上の説明では、占有帯域幅が広い信号を、占有帯域幅が狭い信号を伝送する周波数よりも低い周波数で伝送させる場合を例に挙げたが、これに限定されない。例えば、同軸ケーブルの損失の増加率が一定の周波数範囲内であり且つ占有帯域幅の狭い信号を伝送する周波数とコンフリクトしなければ、占有帯域幅が広い信号を、占有帯域幅の狭い信号を伝送する周波数よりも高い周波数で伝送させてもよい。このことは以下に説明する第3~第6の実施形態でも同様である。
 [第3の実施の形態]
 図3は、本発明の第3の実施形態に係る無線装置(伝送装置)の構成例を説明するブロック図である。図3は、この無線装置を、例えば、本体部1と表示部2とで構成される端末装置(例えば、ノートパソコン)に適用した場合を示す。
 本体部1は、ベースバンド回路4cと、変復調器5cとを備える。表示部2は、共用器8と、RFフロントエンド6aと、ミリ波用のRFフロントエンド6bと、アンテナ9aと、アンテナ9bとを備える。本体部1の変復調器5cと表示部2の共用器8は、同軸ケーブル10を介して接続される。
 ベースバンド回路4cは、占有帯域幅の狭い信号と占有帯域幅の広い信号とのそれぞれのベースバンド信号を、変復調器5cに対して出力する。占有帯域幅の狭い信号は、例えば、無線LANの信号であり、占有帯域幅の広い信号は、例えば、ミリ波無線通信に用いる信号である。また、ベースバンド回路4cと変復調器5cとのインタフェースが1本の場合、ベースバンド回路4cは、両ベースバンド信号を時間分割に出力する。
 変復調器5cは、占有帯域幅の狭い信号のIF信号と占有帯域幅が広い信号のIF信号とを含むIF出力信号を出力する。ここで、占有帯域幅の狭い信号のIF信号の周波数は、占有帯域幅の広い信号のIF信号の周波数よりも高く設定されている。IF出力信号は、同軸ケーブル10を介して、表示部2に搭載された共用器8に伝送される。IF出力信号は、共用器8で周波数に応じて分離される。占有帯域幅の狭い信号のIF出力信号は、RFフロントエンド6aでRF信号にアップコンバートされ、アンテナ9aで送信される。一方、占有帯域幅の広い信号のIF出力信号は、ミリ波用のRFフロントエンド6bでRF信号にアップコンバートされ、アンテナ9bで送信される。
 この結果、第3の実施形態の場合も第2の実施形態と同様に、占有帯域幅が広い信号は低い周波数で、占有帯域幅が狭い信号は高い周波数で、各々に同軸ケーブル10中を伝送する。
 従って、第3の実施形態によれば、第2の実施形態と同様に、広帯域伝送においてより問題となる帯域内偏差を小さくすることができる。なお、第3の実施形態において、帯域内偏差を小さくすることができる理由については第2の実施形態と同様であるので、ここでの説明は省略する。
 さらに、第3の実施形態によれば、ベースバンド回路や変復調器を共用することができるため、構成を簡易なものとすることができる。
 なお、変復調器5cは、占有帯域幅が狭い信号に関して、上述したように、ベースバンド信号からIF信号へ周波数を変更する機能を備える。しかしながら、変復調器5cは、IF信号を生成せずに、ベースバンド信号から直接RF信号を生成してもよい。すなわち、ダイレクトコンバージョン方式に対応することができる。この場合、表示部2側のRFフロントエンド6aは、RF信号を直接受信できるので周波数変更機能を搭載する必要がなく、従って、回路構成を簡素なものとすることができる(例えば、増幅器、フィルタおよびスイッチなどのみで構成することができる)。
 また、以上の説明では、送信時の動作を例に挙げたが、受信時においては、信号は上記と逆方向に伝送される。説明が冗長となることを避けるため、受信時の動作説明については省略する。
 [第4の実施の形態]
 図4は、本発明の第4の実施形態に係る無線装置(伝送装置)の構成例を説明するブロック図である。図4は、この無線装置を、例えば、本体部1と表示部2とで構成される端末装置(例えば、ノートパソコン)に適用した場合を示す。
 本体部1は、占有帯域幅が狭い信号(例えば無線LANの信号)を扱うベースバンド回路4aと、変復調器5aと、RFフロントエンド6aと、占有帯域幅が広い信号(例えばミリ波無線に用いる信号)を扱うベースバンド回路4bと、共用器7とを備える。表示部2は、共用器8と、変復調器5bと、ミリ波用のRFフロントエンド6bと、アンテナ9aと、アンテナ9bとを備える。本体部1の共用器7と表示部2の共用器8は、同軸ケーブル10を介して接続される。
 本体部1の共用器7は、RFフロントエンド6aからのRF出力信号とベースバンド回路4bからのベースバンド出力信号を重畳する。そして、共用器7は、重畳された信号を、同軸ケーブル10を介して、表示部2の共用器8に伝送する。共用器8で分離されたRF出力信号は、アンテナ9aで送信される。一方、共用器8で分離されたベースバンド出力信号は、変復調器5bを介してミリ波用のRFフロントエンド6bでアップコンバートされ、アンテナ9bで送信される。
 ここで、RFフロントエンド6aからのRF出力信号は、例えば2.4GHz帯または5GHz帯である。一方、ベースバンド回路4bから出力されるベースバンド出力信号は、2.4GHzよりも低い、例えば2GHzまでの信号とする。この結果、占有帯域幅の広い(例えば、2GHz)ベースバンド出力信号は低い周波数で、占有帯域幅の狭い(例えば、20MHzまたは40MHz)2.4GHz帯および5GHz帯のRF出力信号は高い周波数で、各々が同軸ケーブル10中を伝送される。ここで、本構成において、同軸ケーブルを通過させる周波数は、無線LANのRF周波数が上限となるため、ミリ波無線のベースバンド信号と共用化させたとしても特別な同軸ケーブルを選択する必要がなく、低コスト化にも寄与できる。
 従って、第4の実施形態によれば、第2および第3の実施形態と同様に、広帯域伝送においてより問題となる帯域内偏差を小さくすることができる。なお、第4の実施形態において、帯域内偏差を小さくすることができる理由については第2の実施形態と同様であるので、ここでの説明は省略する。
 さらに、第4の実施形態によれば、IF信号だけではなくベースバンド信号も同軸ケーブルで送ることができるのでより選択の範囲を拡げることが可能となる。
 なお、ダイレクトコンバージョン方式の場合、RFフロントエンド6bに周波数変換機能を設ける必要はない。
 なお、以上の説明では、送信時の動作を例に挙げたが、受信時においては、信号は上記と逆方向に伝送される。説明が冗長となることを避けるため、受信時の動作説明については省略する。
 [第5の実施の形態]
 図5は、本発明の第5の実施形態に係る無線装置(伝送装置)の構成例を説明するブロック図である。図5は、この無線装置を、例えば、本体部1と表示部2とで構成される端末装置(例えば、ノートパソコン)に適用した場合を示す。
 本体部1は、占有帯域幅が狭い信号(例えば無線LANの信号)を扱うベースバンド回路4aと、変復調器5aと、RFフロントエンド6aとを備える。本体部1は、さらに、占有帯域幅が広い信号(例えばミリ波無線に用いる信号)を扱うベースバンド回路4bと、共有器7−1と、共用器7−2とを備える。表示部2は、共用器8−1と、共用器8−2と、変復調器5bと、ミリ波用のRFフロントエンド6bと、アンテナ9a−1と、9a−2と、アンテナ9bとを備える。本体部1の共用器7−1と表示部2の共用器8−1は、同軸ケーブル10−1を介して接続される。本体部1の共用器7−2と表示部2の共用器8−2は、同軸ケーブル10−2を介して接続される。
 ここで、無線LANは、MIMO(Multiple Input Multiple Output)に対応している。従って、RFフロントエンド6aからのRF出力信号は、チャンネル1(Ch1)とチャンネル2(Ch2)に分けられる。一方、ベースバンド回路4bからのベースバンド信号は、直交信号IchとQchに分けられている。Ch1とIchは共用器7−1により重畳される。この重畳信号は、同軸ケーブル10−1を介して、表示部2の共用器8−1に伝送される。一方、Ch2とQchは共用器7−2により重畳される。この重畳信号は、同軸ケーブル10−2を介して、表示部2の共用器8−2に伝送される。
 共用器8−1、8−2で分離されたRF信号(Ch1、Ch2)は、各々に、アンテナ9a−1、9a−2で送信される。一方、ベースバンド信号(Ich、Qch)は、各々に、変復調器5bで変調された後にRFフロントエンド6bでアップコンバートされ、アンテナ9bで送出される。
 ここで、RFフロントエンド6aからのRF出力信号は、例えば2.4GHz帯または5GHz帯である。一方、ベースバンド回路4bから出力されるベースバンド出力信号は、2.4GHzよりも低い、例えば1GHzまでの信号とする。ここで、ベースバンド信号として直交信号を用いるので、ミリ波無線に用いる信号の占有帯域幅は、第2~第4の実施形態の占有帯域幅に比べて約半分となる。
 図8は、第5の実施形態における、同軸ケーブル損失と信号の周波数配置の関係を示すグラフである。ここで、この図8と図7(第2~第4の実施形態におけるグラフ)とを比較する。この場合、図8と図7の同軸ケーブルの損失特性は等しいものとする。上述したとおり、直交信号は、RF信号やIF信号に比べ占有帯域幅はおよそ半分(例えば、2GHz→1GHz)になる。従って、図8に示す帯域内偏差Δf3も図7に示す帯域内偏差Δf2に比べより小さくなる。
 以上説明した第5の実施形態によれば、第2の実施形態と同様に、広い占有帯域幅を有する信号は低い周波数で伝送されるため、広帯域伝送においてより問題となる帯域内偏差を小さくすることができる。
 さらに、第5の実施形態によれば、ベースバンド信号として直交信号を用いるので、帯域内偏差をより一層小さくすることが可能となる。
 なお、以上の説明では、送信時の動作を例に挙げたが、受信時においては、信号は上記と逆方向に伝送される。説明が冗長となることを避けるため、受信時の動作説明については省略する。
 また、RFフロントエンド6aから出力(あるいは、RFフロントエンド6aへ入力)するRF信号の数(チャンネル数)は、固定ではなく、MIMOの仕様によって変わる。また、ベースバンド回路4bから出力(あるいは、ベースバンド回路4bへ入力)するベースバンド信号の数も、固定ではなく、差動配線を採用する場合や送受別配線にする場合などの仕様によって変わる。したがって、同軸ケーブル10の数や同軸ケーブルの一部または全部を共用するかどうかは設計事項であり、任意に変更可能である。
 また、第5の実施形態では、2.4GHzや5GHzのアンテナ、およびミリ波のアンテナの一部が少なくとも表示部2にあることが要件となるが、全てが表示部2にある必要はなく、残りが本体部1にあってもよい。
 [第6の実施の形態]
 図6は、本発明の第6の実施形態に係る無線装置(伝送装置)の構成例を説明するブロック図である。図6は、この無線装置を、例えば、本体部1と表示部2とで構成される情報端末(例えば、ノートパソコン)に適用した場合を示す。
 第6の実施形態は、第5の実施形態(図5参照)に対して、表示部2の構成が異なる。第5の実施形態の表示部2において、共用器8−1、8−2から出力される直交信号Ich、Qchが、変復調器5b−1、5b−2の2系統に分けられ、RFフロントエンド6b−1、6b−2で変調およびアップコンバートされ、アンテナ9b−1、9b−2で出力される。本体部1の構成は、第5の実施形態と同一である。
 第6の実施形態によれば、以上説明した第2~第5の実施形態と同様に、広い占有帯域幅を有する信号は低い周波数で伝送されるため、広帯域伝送でより問題となる帯域内偏差を小さくすることができる。
 さらに、第6の実施形態によれば、第5の実施形態と同様に、ベースバンド信号として直交信号を用いるので、帯域内偏差をより一層小さくすることが可能となる。
 さらに、第6の実施形態の場合、RFフロントエンド6b−1とアンテナ9b−1からなる組と、RFフロントエンド6b−2とアンテナ9b−2からなる組とを、表示部2内で離して設置することができる。従って、通信経路での遮蔽やダイバーシチ効果を得ることも可能である。さらに、このような構成では、ミリ波のような高い周波数で信号を引きまわす必要はない。
 なお、以上の説明では、送信時の動作を例に挙げたが、受信時においては、信号は上記と逆方向に伝送される。説明が冗長となることを避けるため、受信時の動作説明については省略する。
 また、RFフロントエンド6aから出力(あるいは、RFフロントエンド6aへ入力)するRF信号の数(チャンネル数)は、固定ではなく、MIMOの仕様によって変わる。また、ベースバンド回路4bから出力(あるいは、ベースバンド回路4bへ入力)するベースバンド信号の数も、固定ではなく、差動配線を採用する場合や送受別配線にする場合などの仕様によって変わる。すなわち、同軸ケーブル10の数や同軸ケーブルの一部または全部を共用するかどうかは設計事項であり、任意に変更可能である。
 また、第6の実施形態では、2.4GHzや5GHzのアンテナ、およびミリ波のアンテナの一部が少なくとも表示部2にあることが要件となるが、全てが表示部2にある必要はなく、残りが本体部1にあってもよい。
 なお、以上説明した第2~第6の実施形態の無線装置は、ノートパソコンに限らず、他の機器(例えば、携帯電話機やPDA(Personal Digital Assistants))にも適用可能であることは説明するまでもない。
 以上、実施形態を参照して本願発明を説明したが、本願発明は上述した実施形態に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 この出願は、2010年9月1日に出願された日本出願特願2010−195369を基礎とする優先権を主張し、その開示の全てをここに取り込む。
[First Embodiment]
FIG. 1 is a block diagram illustrating a configuration example of a transmission apparatus 20 according to the first embodiment of the present invention. The transmission device 20 includes a first processing unit 22 and a second processing unit 24. The first processing unit 22 and the second processing unit 24 are connected by a cable 26. For example, the first processing unit 22 is mounted on the main body unit 32 of the terminal device 30, and the second processing unit 24 is mounted on the display unit 34.
The first processing unit 22 executes at least baseband processing of the first signal having the first occupied bandwidth. The second processing unit 24 executes at least RF (Radio Frequency) processing of the first signal.
The first signal may be a signal used for, for example, millimeter-wave wireless communication, and the second signal may be a wireless LAN (Local Area Network) signal, for example. The cable 26 can be a coaxial cable, for example.
In the above configuration, when the first signal and the second signal having the second occupied bandwidth narrower than the first occupied bandwidth are transmitted through the cable 26, the transmission frequency of the first signal is set to the second signal. The frequency is lower than the transmission frequency.
Here, when the cable 26 is, for example, a fine coaxial cable (for example, a coaxial cable having a low-profile connector), as described with reference to FIG. 9, the increase rate of the loss of the fine coaxial cable is When the frequency exceeds a predetermined frequency, it rapidly increases. Therefore, within a band when transmitting a signal with a wide occupied bandwidth at a frequency lower than the in-band deviation when transmitting at a high frequency (in this case, a frequency higher than the frequency at which the rate of increase in loss of the coaxial cable increases). Deviation is smaller.
According to the first embodiment described above, since a signal having a wide occupied bandwidth is transmitted at a low frequency, an in-band deviation that is more problematic in broadband transmission can be reduced.
[Second Embodiment]
FIG. 2 is a block diagram illustrating a configuration example of a radio apparatus (transmission apparatus) according to the second embodiment of the present invention. FIG. 2 shows a case where this wireless device is applied to a terminal device (for example, a notebook computer) composed of, for example, a main body 1 and a display unit 2.
The main body 1 includes a baseband circuit 4a that handles a signal with a small occupied bandwidth (for example, a wireless LAN signal), a modulator / demodulator 5a, and an RF front end 6a. The main unit 1 further includes a baseband circuit 4b that handles a signal with a wide occupied bandwidth (a signal used for millimeter-wave wireless communication), a modem 5b, and a duplexer 7. The display unit 2 includes a duplexer 8, an RF front end 6b for millimeter waves, an antenna 9a (first antenna), and an antenna 9b (second antenna). The duplexer 7 of the main unit 1 and the duplexer 8 of the display unit 2 are connected via a coaxial cable 10 (cable).
The duplexer 7 of the main body 1 superimposes the RF output signal from the RF front end 6a and the IF output signal from the modem 5b on one signal. Then, the duplexer 7 transmits the superimposed signal to the duplexer 8 of the display unit 2 through the coaxial cable 10. The duplexer 8 separates the RF output signal and the IF output signal from the superimposed signal. The RF output signal is transmitted from the antenna 9a. On the other hand, the IF output signal is up-converted to an RF output signal by the millimeter wave RF front end 6b and transmitted from the antenna 9b.
Here, the RF output signal from the RF front end 6a is, for example, the 2.4 GHz band or the 5 GHz band. On the other hand, the IF output signal output from the modem 5b is a signal lower than 2.4 GHz, for example, up to 2 GHz. As a result, the IF output signal with a wide occupied bandwidth (for example, 2 GHz / 1 channel) has a low frequency, and the 2.4 GHz band and the 5 GHz band with a small occupied bandwidth have a high frequency (for example, 20 MHz or 40 MHz). Then, the signal is transmitted through the coaxial cable 10.
FIG. 7 is a graph showing the relationship between the coaxial cable loss and the signal frequency arrangement in the second embodiment. Here, FIG. 7 and FIG. 10 are compared. In this case, it is assumed that the loss characteristics of the coaxial cables of FIGS. 7 and 10 are equal. The in-band deviation Δf2 shown in FIG. 7 is significantly smaller than the in-band deviation Δf1 shown in FIG. The reason will be described. As described with reference to FIG. 9, the increase rate of the loss of a fine coaxial cable (for example, a coaxial cable having a low-profile connector) increases rapidly when a predetermined frequency is exceeded. Accordingly, a signal having a wide occupied bandwidth is transmitted at a frequency lower than the in-band deviation Δf1 (see FIG. 10) when transmitting a signal at a high frequency (in this case, a frequency equal to or higher than the frequency at which the increase rate of loss of the coaxial cable increases). The in-band deviation Δf2 (see FIG. 7) when transmitting is smaller.
That is, according to the second embodiment described above, since a signal having a wide occupied bandwidth is transmitted at a low frequency, the in-band deviation that is more problematic in wideband transmission can be reduced.
In the above description and the third to sixth embodiments described below, “a signal with a wide occupied bandwidth” and “a signal with a narrow occupied bandwidth” mean that the occupied bandwidth of one signal is the other. It means that it is "relatively" wider (or narrower) than the occupied bandwidth of the signal. It is sufficient that the occupied bandwidth of the signal satisfies this condition, and the specific occupied bandwidth of each signal is not limited to the above. The same applies to “high frequency” and “low frequency”, which means that the frequency of one signal is “relatively” higher (or lower) than the frequency of the other signal. Also in this case, it is sufficient that the frequency of the signal satisfies this condition, and the specific frequency of each signal is not limited to the above.
In the above description, a case where a signal with a large occupied bandwidth is transmitted at a frequency lower than a frequency at which a signal with a small occupied bandwidth is transmitted is described as an example, but the present invention is not limited to this. For example, if the rate of increase in loss of coaxial cable is within a certain frequency range and does not conflict with the frequency of transmitting a signal with a small occupied bandwidth, a signal with a large occupied bandwidth is transmitted and a signal with a small occupied bandwidth is transmitted. It may be transmitted at a frequency higher than the frequency to be transmitted. The same applies to the third to sixth embodiments described below.
[Third Embodiment]
FIG. 3 is a block diagram illustrating a configuration example of a radio apparatus (transmission apparatus) according to the third embodiment of the present invention. FIG. 3 shows a case where this wireless device is applied to a terminal device (for example, a notebook personal computer) composed of, for example, a main body 1 and a display 2.
The main body 1 includes a baseband circuit 4c and a modem 5c. The display unit 2 includes a duplexer 8, an RF front end 6a, an RF front end 6b for millimeter waves, an antenna 9a, and an antenna 9b. The modem 5 c of the main body 1 and the duplexer 8 of the display unit 2 are connected via a coaxial cable 10.
The baseband circuit 4c outputs a baseband signal of a signal with a narrow occupied bandwidth and a signal with a wide occupied bandwidth to the modem 5c. A signal with a small occupied bandwidth is, for example, a wireless LAN signal, and a signal with a large occupied bandwidth is, for example, a signal used for millimeter-wave wireless communication. Further, when the interface between the baseband circuit 4c and the modem 5c is one, the baseband circuit 4c outputs both baseband signals in a time division manner.
The modem 5c outputs an IF output signal including an IF signal having a narrow occupied bandwidth and an IF signal having a wide occupied bandwidth. Here, the frequency of the IF signal of the signal having a narrow occupied bandwidth is set higher than the frequency of the IF signal of the signal having a wide occupied bandwidth. The IF output signal is transmitted to the duplexer 8 mounted on the display unit 2 via the coaxial cable 10. The IF output signal is separated by the duplexer 8 according to the frequency. The IF output signal having a narrow occupied bandwidth is up-converted to an RF signal by the RF front end 6a and transmitted by the antenna 9a. On the other hand, the IF output signal having a wide occupied bandwidth is up-converted to an RF signal by the millimeter wave RF front end 6b and transmitted by the antenna 9b.
As a result, in the case of the third embodiment, similarly to the second embodiment, a signal with a wide occupied bandwidth is transmitted through the coaxial cable 10 at a low frequency, and a signal with a small occupied bandwidth is transmitted at a high frequency. To do.
Therefore, according to the third embodiment, as in the second embodiment, it is possible to reduce the in-band deviation that is more problematic in wideband transmission. In the third embodiment, the reason why the in-band deviation can be reduced is the same as in the second embodiment, and thus the description thereof is omitted here.
Furthermore, according to the third embodiment, since the baseband circuit and the modem can be shared, the configuration can be simplified.
The modem 5c has a function of changing the frequency from the baseband signal to the IF signal as described above with respect to a signal having a small occupied bandwidth. However, the modem 5c may generate the RF signal directly from the baseband signal without generating the IF signal. That is, the direct conversion method can be supported. In this case, since the RF front end 6a on the display unit 2 side can directly receive the RF signal, it is not necessary to mount a frequency changing function, and therefore the circuit configuration can be simplified (for example, an amplifier, a filter, etc.). And can consist of only switches etc.).
In the above description, the operation at the time of transmission is taken as an example, but at the time of reception, the signal is transmitted in the reverse direction. In order to avoid redundant description, description of operation at the time of reception is omitted.
[Fourth Embodiment]
FIG. 4 is a block diagram illustrating a configuration example of a radio apparatus (transmission apparatus) according to the fourth embodiment of the present invention. FIG. 4 shows a case where this wireless device is applied to a terminal device (for example, a notebook personal computer) composed of, for example, the main body 1 and the display 2.
The main unit 1 is used for a baseband circuit 4a that handles a signal with a small occupied bandwidth (for example, a wireless LAN signal), a modem 5a, an RF front end 6a, and a signal with a large occupied bandwidth (for example, millimeter-wave radio). A baseband circuit 4b for handling signals) and a duplexer 7. The display unit 2 includes a duplexer 8, a modem 5b, a millimeter wave RF front end 6b, an antenna 9a, and an antenna 9b. The duplexer 7 of the main body 1 and the duplexer 8 of the display unit 2 are connected via a coaxial cable 10.
The duplexer 7 of the main body 1 superimposes the RF output signal from the RF front end 6a and the baseband output signal from the baseband circuit 4b. Then, the duplexer 7 transmits the superimposed signal to the duplexer 8 of the display unit 2 through the coaxial cable 10. The RF output signal separated by the duplexer 8 is transmitted by the antenna 9a. On the other hand, the baseband output signal separated by the duplexer 8 is up-converted by the millimeter wave RF front end 6b via the modulator / demodulator 5b and transmitted by the antenna 9b.
Here, the RF output signal from the RF front end 6a is, for example, the 2.4 GHz band or the 5 GHz band. On the other hand, the baseband output signal output from the baseband circuit 4b is a signal lower than 2.4 GHz, for example, up to 2 GHz. As a result, baseband output signals with a large occupied bandwidth (eg 2 GHz) are at low frequencies, and 2.4 GHz and 5 GHz band RF output signals with a narrow occupied bandwidth (eg 20 MHz or 40 MHz) are at high frequencies, Each is transmitted through the coaxial cable 10. Here, in this configuration, since the RF frequency of the wireless LAN is the upper limit for the frequency that passes through the coaxial cable, there is no need to select a special coaxial cable even if it is shared with the baseband signal of millimeter wave radio. It can also contribute to cost reduction.
Therefore, according to the fourth embodiment, as in the second and third embodiments, it is possible to reduce the in-band deviation which is more problematic in wideband transmission. In the fourth embodiment, the reason why the in-band deviation can be reduced is the same as that in the second embodiment, and thus the description thereof is omitted here.
Furthermore, according to the fourth embodiment, not only the IF signal but also the baseband signal can be sent by the coaxial cable, so that the selection range can be further expanded.
In the case of the direct conversion method, it is not necessary to provide a frequency conversion function in the RF front end 6b.
In the above description, the operation at the time of transmission is taken as an example, but at the time of reception, the signal is transmitted in the reverse direction. In order to avoid redundant description, description of operation at the time of reception is omitted.
[Fifth Embodiment]
FIG. 5 is a block diagram illustrating a configuration example of a radio apparatus (transmission apparatus) according to the fifth embodiment of the present invention. FIG. 5 shows a case where this wireless device is applied to a terminal device (for example, a notebook computer) composed of, for example, the main body 1 and the display 2.
The main body 1 includes a baseband circuit 4a that handles a signal with a small occupied bandwidth (for example, a wireless LAN signal), a modulator / demodulator 5a, and an RF front end 6a. The main body 1 further includes a baseband circuit 4b that handles a signal with a wide occupied bandwidth (for example, a signal used for millimeter wave radio), a duplexer 7-1, and a duplexer 7-2. The display unit 2 includes a duplexer 8-1, a duplexer 8-2, a modem 5b, a millimeter wave RF front end 6b, antennas 9a-1, 9a-2, and an antenna 9b. . The duplexer 7-1 of the main body 1 and the duplexer 8-1 of the display unit 2 are connected via a coaxial cable 10-1. The duplexer 7-2 of the main body 1 and the duplexer 8-2 of the display unit 2 are connected via a coaxial cable 10-2.
Here, the wireless LAN corresponds to MIMO (Multiple Input Multiple Output). Therefore, the RF output signal from the RF front end 6a is divided into channel 1 (Ch1) and channel 2 (Ch2). On the other hand, the baseband signal from the baseband circuit 4b is divided into orthogonal signals Ich and Qch. Ch1 and Ich are superimposed by the duplexer 7-1. This superimposed signal is transmitted to the duplexer 8-1 of the display unit 2 through the coaxial cable 10-1. On the other hand, Ch2 and Qch are superimposed by the duplexer 7-2. This superimposed signal is transmitted to the duplexer 8-2 of the display unit 2 through the coaxial cable 10-2.
The RF signals (Ch1, Ch2) separated by the duplexers 8-1, 8-2 are transmitted to the antennas 9a-1, 9a-2, respectively. On the other hand, the baseband signals (Ich, Qch) are respectively modulated by the modem 5b, up-converted by the RF front end 6b, and transmitted by the antenna 9b.
Here, the RF output signal from the RF front end 6a is, for example, the 2.4 GHz band or the 5 GHz band. On the other hand, the baseband output signal output from the baseband circuit 4b is a signal lower than 2.4 GHz, for example, up to 1 GHz. Here, since an orthogonal signal is used as the baseband signal, the occupied bandwidth of the signal used for millimeter-wave radio is about half of the occupied bandwidth of the second to fourth embodiments.
FIG. 8 is a graph showing the relationship between the coaxial cable loss and the signal frequency arrangement in the fifth embodiment. Here, FIG. 8 and FIG. 7 (graphs in the second to fourth embodiments) are compared. In this case, it is assumed that the loss characteristics of the coaxial cables of FIGS. 8 and 7 are equal. As described above, the orthogonal signal has approximately half the occupied bandwidth (for example, 2 GHz → 1 GHz) compared to the RF signal and IF signal. Therefore, the in-band deviation Δf3 shown in FIG. 8 is also smaller than the in-band deviation Δf2 shown in FIG.
According to the fifth embodiment described above, as in the second embodiment, since signals having a wide occupied bandwidth are transmitted at a low frequency, the in-band deviation that is more problematic in wideband transmission is reduced. be able to.
Furthermore, according to the fifth embodiment, since the orthogonal signal is used as the baseband signal, the in-band deviation can be further reduced.
In the above description, the operation at the time of transmission is taken as an example, but at the time of reception, the signal is transmitted in the reverse direction. In order to avoid redundant description, description of operation at the time of reception is omitted.
Further, the number of RF signals (number of channels) output from the RF front end 6a (or input to the RF front end 6a) is not fixed but varies depending on the MIMO specification. In addition, the number of baseband signals output from the baseband circuit 4b (or input to the baseband circuit 4b) is not fixed, but varies depending on specifications such as when differential wiring is used or when transmission / reception wiring is used. Therefore, the number of the coaxial cables 10 and whether a part or all of the coaxial cables are shared are design matters and can be arbitrarily changed.
Further, in the fifth embodiment, it is a requirement that a 2.4 GHz or 5 GHz antenna and a part of the millimeter wave antenna are at least in the display unit 2, but it is not necessary that all are in the display unit 2, The rest may be in the main body 1.
[Sixth Embodiment]
FIG. 6 is a block diagram illustrating a configuration example of a radio apparatus (transmission apparatus) according to the sixth embodiment of the present invention. FIG. 6 shows a case where this wireless apparatus is applied to, for example, an information terminal (for example, a notebook computer) composed of a main body 1 and a display 2.
The sixth embodiment is different from the fifth embodiment (see FIG. 5) in the configuration of the display unit 2. In the display unit 2 of the fifth embodiment, the quadrature signals Ich and Qch output from the duplexers 8-1 and 8-2 are divided into two systems of modulators / demodulators 5b-1 and 5b-2, and the RF front end. Modulated and up-converted by 6b-1 and 6b-2, and output by antennas 9b-1 and 9b-2. The configuration of the main body 1 is the same as that of the fifth embodiment.
According to the sixth embodiment, as in the second to fifth embodiments described above, since a signal having a wide occupied bandwidth is transmitted at a low frequency, the in-band deviation more problematic in wideband transmission. Can be reduced.
Furthermore, according to the sixth embodiment, as in the fifth embodiment, since the orthogonal signal is used as the baseband signal, the in-band deviation can be further reduced.
Further, in the case of the sixth embodiment, the set of the RF front end 6b-1 and the antenna 9b-1 and the set of the RF front end 6b-2 and the antenna 9b-2 are separated in the display unit 2. Can be installed. Accordingly, it is possible to obtain shielding and diversity effect in the communication path. Furthermore, in such a configuration, it is not necessary to draw a signal at a high frequency such as millimeter waves.
In the above description, the operation at the time of transmission is taken as an example, but at the time of reception, the signal is transmitted in the reverse direction. In order to avoid redundant description, description of operation at the time of reception is omitted.
Further, the number of RF signals (number of channels) output from the RF front end 6a (or input to the RF front end 6a) is not fixed but varies depending on the MIMO specification. In addition, the number of baseband signals output from the baseband circuit 4b (or input to the baseband circuit 4b) is not fixed, but varies depending on specifications such as when differential wiring is used or when transmission / reception wiring is used. That is, the number of the coaxial cables 10 and whether a part or all of the coaxial cables are shared are design matters and can be arbitrarily changed.
Further, in the sixth embodiment, it is a requirement that a 2.4 GHz or 5 GHz antenna and a part of the millimeter wave antenna are at least in the display unit 2, but it is not necessary that all are in the display unit 2, The rest may be in the main body 1.
Note that the wireless devices according to the second to sixth embodiments described above are not limited to notebook computers, but can be applied to other devices (for example, cellular phones and PDAs (Personal Digital Assistants)). Not too long.
Although the present invention has been described with reference to the embodiments, the present invention is not limited to the above-described embodiments. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention.
This application claims the priority on the basis of Japanese application Japanese Patent Application No. 2010-195369 for which it applied on September 1, 2010, and takes in those the indications of all here.
 1 本体部
 2 表示部
 4a ベースバンド回路(狭帯域)
 4b ベースバンド回路(広帯域)
 4c ベースバンド回路(狭/広帯域)
 5a、5b、5c 変復調器
 5b−1、5b−2 変復調器
 6a RFフロントエンド(狭帯域)
 6b RFフロントエンド(広帯域)
 6b−1、6b−2 RFフロントエンド(広帯域)
 7、7−1、7−2 共用器
 8、8−1、8−2 共用器
 9a アンテナ(狭帯域)
 9a—1、9a−2 アンテナ(狭帯域)
 9b アンテナ(広帯域)
 9b—1、9b−2 アンテナ(広帯域)
 10 同軸ケーブル
 10—1、10−2 同軸ケーブル
 20 伝送装置
 22 第1処理部
 24 第2処理部
 26 ケーブル
 30 端末装置
 32 本体部
 34 表示部
1 Main body 2 Display 4a Baseband circuit (narrowband)
4b Baseband circuit (broadband)
4c Baseband circuit (narrow / broadband)
5a, 5b, 5c modem 5b-1, 5b-2 modem 6a RF front end (narrowband)
6b RF front end (broadband)
6b-1, 6b-2 RF front end (broadband)
7,7-1,7-2 duplexer 8,8-1,8-2 duplexer 9a antenna (narrowband)
9a-1, 9a-2 antenna (narrowband)
9b Antenna (broadband)
9b-1, 9b-2 antenna (broadband)
DESCRIPTION OF SYMBOLS 10 Coaxial cable 10-1, 10-2 Coaxial cable 20 Transmission apparatus 22 1st process part 24 2nd process part 26 Cable 30 Terminal apparatus 32 Main-body part 34 Display part

Claims (10)

  1.  第1占有帯域幅をもつ第1信号のベースバンド処理を行う第1処理手段と、
     前記第1信号のRF(Radio Frequency)処理を行う第2処理手段と、
     前記第1処理手段と前記第2処理手段とを接続するケーブルと、
     を備え、
     前記第1信号と前記第1占有帯域幅よりも狭い第2占有帯域幅をもつ第2信号とを前記ケーブル内を共用して伝送する際、前記第1信号の伝送周波数を、前記第2信号の伝送周波数よりも低い周波数とする
     ことを特徴とする伝送装置。
    First processing means for performing baseband processing of a first signal having a first occupied bandwidth;
    Second processing means for performing RF (Radio Frequency) processing of the first signal;
    A cable connecting the first processing means and the second processing means;
    With
    When the first signal and a second signal having a second occupied bandwidth narrower than the first occupied bandwidth are transmitted in the cable, the transmission frequency of the first signal is set to the second signal. A transmission device characterized in that the frequency is lower than the transmission frequency.
  2.  前記第1信号は、IF(Intermediate Frequency)信号であることを特徴とする請求項1記載の伝送装置。 The transmission apparatus according to claim 1, wherein the first signal is an IF (Intermediate Frequency) signal.
  3.  前記第1信号は、ベースバンド信号であることを特徴とする請求項1記載の伝送装置。 The transmission apparatus according to claim 1, wherein the first signal is a baseband signal.
  4.  前記ベースバンド信号として直交信号を用いることを特徴とする請求項3記載の伝送装置。 4. The transmission apparatus according to claim 3, wherein an orthogonal signal is used as the baseband signal.
  5.  前記ケーブルを複数備え、
     前記第1信号および前記第2信号は、各々複数の信号によって構成され、
     前記第1信号を構成する所定の信号と前記第2信号を構成する所定の信号のペアからなる複数の多重信号を前記ケーブルにて各々伝送することを特徴とする請求項1~4のいずれか1項に記載の伝送装置。
    A plurality of the cables,
    Each of the first signal and the second signal includes a plurality of signals,
    5. A plurality of multiplexed signals each consisting of a pair of a predetermined signal that constitutes the first signal and a predetermined signal that constitutes the second signal are each transmitted by the cable. The transmission apparatus according to item 1.
  6.  前記ケーブルは、同軸ケーブルであることを特徴とする請求項1~5のいずれか1項に記載の伝送装置。 The transmission apparatus according to any one of claims 1 to 5, wherein the cable is a coaxial cable.
  7.  ケーブルを介して接続される、第1占有帯域幅をもつ第1信号のベースバンド処理を行う第1処理手段と前記第1信号のRF処理を行う第2処理手段との間の伝送方法であって、
     前記第1信号と前記第1占有帯域幅よりも狭い第2占有帯域幅をもつ第2信号とを前記ケーブル内を共用して伝送する際、前記第1信号の伝送周波数を、前記第2信号の伝送周波数よりも低い周波数とする
     ことを特徴とする伝送方法。
    A transmission method between a first processing means for performing baseband processing of a first signal having a first occupied bandwidth and a second processing means for performing RF processing of the first signal, connected via a cable. And
    When the first signal and a second signal having a second occupied bandwidth narrower than the first occupied bandwidth are transmitted in the cable, the transmission frequency of the first signal is set to the second signal. A transmission method characterized in that the frequency is lower than the transmission frequency.
  8.  第1占有帯域幅をもつ第1信号のベースバンド処理を行う第1処理回路が実装される本体部と、
     前記第1信号のRF処理を行う第2処理回路が実装される表示部と、
     前記第1処理回路と前記第2処理回路とを接続するケーブルと、
     を備え、
     前記第1信号と前記第1占有帯域幅よりも狭い第2占有帯域幅をもつ第2信号とを前記ケーブル内を共用して伝送する際、前記第1信号の伝送周波数を、前記第2信号の伝送周波数よりも低い周波数とする
     ことを特徴とする端末装置。
    A main body on which a first processing circuit for performing baseband processing of a first signal having a first occupied bandwidth is mounted;
    A display unit on which a second processing circuit for performing RF processing of the first signal is mounted;
    A cable connecting the first processing circuit and the second processing circuit;
    With
    When the first signal and a second signal having a second occupied bandwidth narrower than the first occupied bandwidth are transmitted in the cable, the transmission frequency of the first signal is set to the second signal. A terminal device characterized by having a frequency lower than the transmission frequency.
  9.  第1占有帯域幅をもつ第1信号のベースバンド処理を行う第1処理回路と、前記第1信号のRF処理を行う第2処理回路とを含む無線回路を、端末装置へ実装する実装方法であって、
     前記第1処理回路を、前記端末装置の本体部に実装し、
     前記第2処理回路を、前記端末装置の表示部に実装し、
     前記第1処理回路と前記第2処理回路とをケーブルにより接続し、
     前記第1信号と前記第1占有帯域幅よりも狭い第2占有帯域幅をもつ第2信号とを前記ケーブル内を共用して伝送する際、前記第1信号の伝送周波数を、前記第2信号の伝送周波数よりも低い周波数とする
     ことを特徴とする実装方法。
    A mounting method for mounting a wireless circuit including a first processing circuit that performs baseband processing of a first signal having a first occupied bandwidth and a second processing circuit that performs RF processing of the first signal on a terminal device. There,
    The first processing circuit is mounted on the main body of the terminal device,
    The second processing circuit is mounted on the display unit of the terminal device,
    Connecting the first processing circuit and the second processing circuit by a cable;
    When the first signal and a second signal having a second occupied bandwidth narrower than the first occupied bandwidth are transmitted in the cable, the transmission frequency of the first signal is set to the second signal. A mounting method characterized in that the frequency is lower than the transmission frequency.
  10.  前記第2処理回路に接続し、第1信号のRF信号を送信または受信する第1アンテナと、
     前記第2処理回路に接続し、第2信号のRF信号を送信または受信する第2アンテナと、
     をさらに備え、
     前記第1アンテナおよび前記第2アンテナを、前記表示部に実装することを特徴とする請求項9記載の実装方法。
    A first antenna connected to the second processing circuit for transmitting or receiving an RF signal of the first signal;
    A second antenna connected to the second processing circuit for transmitting or receiving an RF signal of a second signal;
    Further comprising
    The mounting method according to claim 9, wherein the first antenna and the second antenna are mounted on the display unit.
PCT/JP2011/069966 2010-09-01 2011-08-26 Transmission device, transmission method, terminal device, and mounting method WO2012029932A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012531971A JPWO2012029932A1 (en) 2010-09-01 2011-08-26 Transmission device, transmission method, terminal device, and mounting method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010195369 2010-09-01
JP2010-195369 2010-09-01

Publications (1)

Publication Number Publication Date
WO2012029932A1 true WO2012029932A1 (en) 2012-03-08

Family

ID=45773007

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/069966 WO2012029932A1 (en) 2010-09-01 2011-08-26 Transmission device, transmission method, terminal device, and mounting method

Country Status (2)

Country Link
JP (1) JPWO2012029932A1 (en)
WO (1) WO2012029932A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021523646A (en) * 2018-05-18 2021-09-02 ナンヤン テクノロジカル ユニヴァーシティー Devices and methods for wireless communication

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000022574A (en) * 1998-07-06 2000-01-21 Sony Corp Satellite broadcast receiver and method therefor
JP2001267948A (en) * 2001-02-06 2001-09-28 Dx Antenna Co Ltd Satellite signal transmission system
JP2002199389A (en) * 2000-10-18 2002-07-12 Maspro Denkoh Corp Down converter, up converter and catv system
JP2009206996A (en) * 2008-02-28 2009-09-10 Toshiba Corp Information processor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001036427A (en) * 1999-07-15 2001-02-09 Alps Electric Co Ltd On-vehicle transmitter/receiver for etc
KR100703779B1 (en) * 2005-05-19 2007-04-06 삼성전자주식회사 System and method for transmitting wireline single-band orthogonal-frequency-division-multipleixing-based ultra wideband signal over the pipe-line carrying a CATV broadcasting signal
JP2007116455A (en) * 2005-10-20 2007-05-10 Toyota Motor Corp Antenna assembly

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000022574A (en) * 1998-07-06 2000-01-21 Sony Corp Satellite broadcast receiver and method therefor
JP2002199389A (en) * 2000-10-18 2002-07-12 Maspro Denkoh Corp Down converter, up converter and catv system
JP2001267948A (en) * 2001-02-06 2001-09-28 Dx Antenna Co Ltd Satellite signal transmission system
JP2009206996A (en) * 2008-02-28 2009-09-10 Toshiba Corp Information processor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021523646A (en) * 2018-05-18 2021-09-02 ナンヤン テクノロジカル ユニヴァーシティー Devices and methods for wireless communication
JP7178427B2 (en) 2018-05-18 2022-11-25 ナンヤン テクノロジカル ユニヴァーシティー Apparatus and method for wireless communication

Also Published As

Publication number Publication date
JPWO2012029932A1 (en) 2013-10-31

Similar Documents

Publication Publication Date Title
US8706049B2 (en) Platform integrated phased array transmit/receive module
US8509709B2 (en) Consumer electronic device having a distributed form factor millimeter wave receiver and transmitter
US11736132B2 (en) Radio frequency communication systems with coexistence management based on digital observation data
US11736133B2 (en) Coexistence management for radio frequency communication systems
US11165397B2 (en) Apparatus and methods for true power detection
US11736141B2 (en) Discrete time cancellation for providing coexistence in radio frequency applications
US20200067606A1 (en) Radio frequency communication systems with coexistence management
US11515608B2 (en) Remote compensators for mobile devices
WO2012029932A1 (en) Transmission device, transmission method, terminal device, and mounting method
Ariyarathna et al. Real-time digital baseband system for ultra-broadband THz communication
JP2021523646A (en) Devices and methods for wireless communication
US20220311470A1 (en) Antenna arrays with multiple feeds and varying pitch for wideband frequency coverage
JP2012175172A (en) Signal processing apparatus and signal processing method
US20220321151A1 (en) Reprogrammable array of selectable antenna elements for frequency adjustment
US20220302604A1 (en) Antenna arrays with separate resonances and termination networks for multiple millimeter wave frequency bands
US20230208451A1 (en) Crossbar switch for coarse phase shifting
US20240056250A1 (en) Efficient data transmission in unlicensed spectrum
US20230253991A1 (en) Radio frequency switch for simplified layout of phase shifter using switched delay lines
US20220312348A1 (en) Antenna arrays with signal feeds connected to switchable delay lines
US20230216192A1 (en) Honeycomb cavity waveguide
US20230208455A1 (en) Polyphase power amplifier architecture for load insensitivity
US20220385331A1 (en) Signal conditioning circuits for coupling to antenna

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11821947

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012531971

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11821947

Country of ref document: EP

Kind code of ref document: A1