WO2012029920A1 - Process for production of porous carbon material, porous carbon material, electrode for capacitor, and capacitor - Google Patents

Process for production of porous carbon material, porous carbon material, electrode for capacitor, and capacitor Download PDF

Info

Publication number
WO2012029920A1
WO2012029920A1 PCT/JP2011/069936 JP2011069936W WO2012029920A1 WO 2012029920 A1 WO2012029920 A1 WO 2012029920A1 JP 2011069936 W JP2011069936 W JP 2011069936W WO 2012029920 A1 WO2012029920 A1 WO 2012029920A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous carbon
carbon material
producing
composite material
capacitor
Prior art date
Application number
PCT/JP2011/069936
Other languages
French (fr)
Japanese (ja)
Inventor
貴彦 井戸
真利 梅村
俊光 国貞
Original Assignee
イビデン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イビデン株式会社 filed Critical イビデン株式会社
Publication of WO2012029920A1 publication Critical patent/WO2012029920A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes

Definitions

  • the present invention relates to a method for producing a porous carbon material, a porous carbon material, a capacitor electrode, and a capacitor.
  • capacitors such as electric double layer capacitors (EDLC) and lithium ion capacitors (LIC) are attracting attention.
  • EDLC electric double layer capacitors
  • LIC lithium ion capacitors
  • the electric double layer capacitor is composed of a pair of polarizable electrodes sandwiching a separator, a case for housing them, an electrolytic solution as an electrolyte, and a current collector.
  • electricity is stored in an electric double layer formed at the polarizable electrode / electrolyte interface.
  • the same material as the electric double layer capacitor is used as the positive electrode material, whereas a carbon-based material capable of occluding lithium ions is used as the negative electrode material.
  • the energy density is improved by adding lithium ion to the carbonaceous material which is a negative electrode material.
  • a material constituting a polarizable electrode of an electric double layer capacitor and a positive electrode of a lithium ion capacitor (hereinafter simply referred to as a capacitor electrode) is required to have a high specific surface area, and is a porous material made of activated carbon. Carbonaceous materials are known.
  • the porous carbon material made of activated carbon includes pores having a pore diameter smaller than 2 nm (hereinafter also referred to as micropores), pores having a pore diameter of 2 to 50 nm (hereinafter also referred to as mesopores), and pores. Fine pores having a diameter exceeding 50 nm (hereinafter also referred to as macropores) are formed.
  • the porous carbon material Since the macropores contain air holes, the porous carbon material becomes bulky due to the presence of the air holes, and in the capacitor electrode using the porous carbon material, the charged amount per unit volume (below) , Also simply referred to as electrode density).
  • the micropore has a large specific surface area, it is considered that the size of the pore is too small to allow the electrolyte to enter sufficiently.
  • the electrolyte ions are estimated to form a solvation having a diameter of about 0.86 nm.
  • most of the micropores consist of pores with a pore diameter smaller than 1 nm, so the diameter of the electrolyte ions is close to the width of the micropores, and the electrolyte ions are sufficiently adsorbed by the micropores due to the ion sieve effect of the micropores. It is thought not to. Therefore, when a porous carbon material made of activated carbon is used for a capacitor electrode, it cannot be said that the charge / discharge characteristics are sufficiently high.
  • Patent Document 1 discloses a porous carbon material in which many mesopores are formed, and a manufacturing method thereof.
  • mesopores having a desired size can be obtained by controlling the particle diameter of the inorganic particles.
  • a porous carbon material has a high specific surface area due to a small number of macropores, and a capacitor electrode using such a porous carbon material is considered to have a high electrode density.
  • pores are formed in the space initially occupied by the inorganic particles by etching the remaining inorganic particles with a base or acid.
  • a dangerous chemical such as sodium hydroxide or a hydrofluoric acid solution
  • etching it is necessary to separately perform a process called etching, which leads to an increase in manufacturing time and cost.
  • the present invention has been made to solve the above-described problems, and is a safer method for producing a porous carbon material that can omit the step of forming pores, and the production method thereof. It is an object to provide a carbon material. Another object of the present invention is to provide a capacitor electrode made of the carbon material and a capacitor including the capacitor electrode.
  • the present inventors removed the pore source by heating the composite material including the pore source at a predetermined temperature when producing the porous carbon material.
  • the inventors have found that pores can be formed and completed the present invention.
  • the method for producing the porous carbon material of the present invention includes: A method for producing a porous carbon material, comprising: A first composite material in which a modifying group containing a pore source is bonded to a polymer chain constituting the first organic material, or a first composite material comprising an inorganic sol or metal alkoxide containing a pore source and a second organic material. And a heating step of heating the composite material at a temperature of 2200 ° C. or lower and a temperature at which a part of the pore source is decomposed and vaporized.
  • the first composite material in which the modifying group containing the pore source is bonded to the polymer chain constituting the first organic material, or A second composite material made of an inorganic sol or metal alkoxide and a second organic material is used as the material containing the pore source.
  • the heating step first, the first composite material or the second composite material can be carbonized. Further, the pore source can be removed from the composite material by the heating step. As a result, pores can be formed.
  • the first composite material is used as the material including the pore source, it is considered that pores are formed by the following mechanism.
  • the modifying group contained in the first composite material is an organosilicon compound
  • the heating step a part of silica generated by desorbing the organosilicon compound from the first composite material or the detached organic A part of the silicon compound is vaporized. As a result, pores are formed.
  • pores are considered to be formed by the following mechanism.
  • the inorganic sol when the inorganic sol is dispersed in the second organic material, the inorganic compound contained in the inorganic sol is vaporized in the heating step. As a result, pores are formed.
  • the carbonization of the composite material and the formation of pores can be performed by the heating step. Therefore, the process of forming pores can be omitted, and the manufacturing process can be simplified. As a result, manufacturing time and cost can be reduced. Furthermore, in the method for producing a porous carbon material of the present invention, pores can be formed by heating the first composite material or the second composite material, so that dangerous chemicals such as hydrofluoric acid are handled. And the porous carbon material can be produced safely.
  • the first composite material or the second composite material is heated at a temperature not lower than 2200 ° C. and not lower than a temperature at which a part of the pore source decomposes and vaporizes.
  • Many effective mesopores can be formed by heating the first composite material or the second composite material in the above temperature range.
  • the first composite material or the second composite material is heated below a temperature at which a part of the pore source vaporizes, the pore source is not sufficiently removed from the composite material, so that mesopores are not formed.
  • the shrinkage for example, graphitization
  • the porous carbon material produced by the method for producing a porous carbon material of the present invention has a low bulk because many effective mesopores are formed. And the electrode for capacitors using this porous carbon material becomes high in electrode density.
  • a porous carbon material suitable for the material constituting the capacitor electrode can be produced.
  • the temperature in the heating step is preferably more than 1500 ° C. and not more than 2200 ° C. Further, the temperature in the heating step is more preferably 1600 to 2200 ° C.
  • the modifying group contained in the first composite material is an organosilicon compound.
  • the organosilicon compound is more preferably an alkoxysilane.
  • Organosilicon compounds such as alkoxysilanes are easily bonded to a polymer chain constituting the first organic material.
  • the inorganic sol contained in the second composite material is desirably a silica sol, an alumina sol, or a magnesia sol.
  • Inorganic sols such as silica sol are excellent in availability and handling.
  • the metal alkoxide contained in the second composite material is preferably an alkoxysilane.
  • the first organic material or the second organic material is a phenol resin, an epoxy resin, a polyimide resin, a melamine resin, or a polyamideimide resin. It is desirable to be. Furthermore, the first organic material or the second organic material is more preferably a phenol resin or a polyimide resin having a network skeleton.
  • the method for producing a porous carbon material of the present invention may further include a post-treatment step of treating the obtained porous carbon material with a base or an acid after the heating step.
  • a post-treatment step of treating the obtained porous carbon material with a base or an acid after the heating step As described above, in the conventional method for producing a porous carbon material, the pore source is removed only by etching using a base or an acid. On the other hand, in the method for producing a porous carbon material of the present invention, the pore source is removed in the heating step. In the method for producing a porous carbon material of the present invention, after removing most of the pore sources by the heating step, the pore sources can be reliably removed by performing a post-treatment step with a base or acid.
  • the porous carbon material of the present invention is produced by any one of the methods for producing a porous carbon material of the present invention.
  • the capacitor electrode of the present invention is characterized by comprising a porous carbon material produced by any one of the methods for producing a porous carbon material of the present invention.
  • the capacitor of the present invention includes a capacitor electrode including a porous carbon material produced by any one of the methods for producing a porous carbon material of the present invention.
  • the mechanism by which pores are formed in the first composite material or the second composite material described above is merely an estimation mechanism. Therefore, as long as pores are formed by the configuration of the present invention, another mechanism may be used, and the mechanism is not construed as being limited to the above mechanism.
  • FIG. 1 is a cross-sectional view schematically showing an example of the lithium ion capacitor of the present invention.
  • a manufacturing method of porous carbon material which concerns on embodiment of this invention is the following.
  • a method for producing a porous carbon material comprising: A first composite material in which a modifying group containing a pore source is bonded to a polymer chain constituting the first organic material, or a first composite material comprising an inorganic sol or metal alkoxide containing a pore source and a second organic material. And a heating step of heating the composite material at a temperature of 2200 ° C. or lower and a temperature at which a part of the pore source is decomposed and vaporized.
  • a modifying group for example, an organosilicon compound included in the first composite material becomes a pore source.
  • a part of silica generated by desorbing an organosilicon compound or the like from the first composite material or a part of the desorbed organosilicon compound is vaporized in the heating step described later. . As a result, it is considered that pores are formed.
  • thermosetting resin is mentioned as a 1st organic material.
  • thermosetting resins include phenolic resins, epoxy resins, polyimide resins, melamine resins, polyamideimide resins, urethane resins, amino resins, unsaturated polyester resins, diallyl phthalate resins, alkyds. Resin, silicon resin and the like.
  • phenol-based resins, epoxy-based resins, polyimide-based resins, melamine-based resins, or polyamide-imide-based resins are preferable, and phenol-based resins or polyimide-based resins having a network skeleton are particularly preferable.
  • the phenolic resin refers to a phenol resin and a resin containing a phenol resin as a main component (for example, a modified phenol resin).
  • the epoxy resin refers to an epoxy resin and a resin mainly composed of an epoxy resin. The same applies to other resins.
  • the modifying group examples include an organosilicon compound.
  • the organosilicon compound has functional groups such as a vinyl group, a methacryl group, an epoxy group, an amino group, a nitrogen-containing group, a sulfur-containing alkyl group, and a hydroxyl group.
  • specific examples of the organosilicon compound include alkoxysilanes (for example, alkoxysilane compounds, alkoxysilane oligomers, polyalkoxysilanes, silane coupling agents, and the like).
  • the organosilicon compound has a reactive functional group such as a vinyl group, a methacryl group, an epoxy group, an amino group, a nitrogen-containing group, a sulfur-containing alkyl group, and a hydroxyl group. Therefore, the first composite material is formed by bonding a modifying group such as an organosilicon compound to the first organic material via these functional groups.
  • alkoxysilane compound examples include tetraalkoxysilanes such as tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetraisopropoxysilane, and tetrabutoxysilane; trialkoxysilanes; or a polymer thereof.
  • the alkoxysilane compound to be bonded is preferably an alkoxysilane oligomer that is a polymer.
  • tetraalkoxysilanes such as tetramethoxysilane and tetraethoxysilane or polymers thereof are preferable.
  • alkoxysilane compounds tetramethoxysilane or a polymer thereof is represented by chemical formula (1).
  • R represents a methyl group or a methoxy group.
  • N is an integer of 0 or more.
  • an alkoxysilane oligomer in which n in the chemical formula (1) is 2 to 10 can be used by reducing the polymerization degree of the alkoxysilane compound.
  • the alkoxysilane oligomer can form a large number of bonds with the first organic material such as a phenol resin, and a large number of uniform mesopores can be formed after the heating step.
  • silane coupling agent examples include vinyltriethoxysilane, vinyltrimethoxysilane, tris ( ⁇ -methoxyethoxy) vinylsilane, ⁇ -methacryloxypropyltrimethoxysilane, ⁇ -methacryloxypropyltriethoxysilane, ⁇ - (3 , 4-epoxycyclohexyl) ethyltrimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -aminopropyltriethoxysilane, ⁇ -aminopropyltrimethoxysilane, N- (2-aminoethyl) -3-aminopropyl Trimethoxysilane, (N-phenyl- ⁇ -aminopropyl) trimethoxysilane, ⁇ -ureidopropyltriethoxysilane, ⁇ -isocyanatopropyltriethoxysilane, ⁇ -
  • the silane coupling agent undergoes an addition reaction with the first organic material such as a phenol resin through the functional group to form a first composite material.
  • Silane coupling agents are those in which a hydrolyzable group that easily binds inorganic components and a functional group that easily bonds organic components are bonded to silicon atoms (Si), and are usually used as resin modifiers. It is. By the chemical reaction of the functional group of the silane coupling agent, it bonds with the first organic material, and a crosslinked structure by the silane coupling agent is formed in the first organic material.
  • the first composite material a phenol resin modified with an alkoxysilane compound, a polyamideimide resin modified with an alkoxysilane compound, and a polyimide resin modified with an alkoxysilane compound will be described.
  • a phenol resin modified with an alkoxysilane compound can be produced by reacting a phenol resin with an alkoxysilane oligomer that does not have a highly reactive functional group.
  • Chemical formula (2) shows the chemical structure of a phenol resin modified with an alkoxysilane compound.
  • part of a phenol resin and an alkoxysilane compound can be selected arbitrarily.
  • R represents a methyl group or a methoxy group.
  • M is an integer of 1 or more.
  • the phenolic resin modified with the alkoxysilane compound is mixed with a curing reagent and cured by heating at about 170 ° C. for about 30 minutes, at about 100 ° C. for about 30 minutes, at about 220 ° C. for about 120 minutes, etc. You may let them.
  • the curing reaction agent include hexamethylenetetramine, 2-ethyl-4-methyl-imidazole, formaldehyde and the like.
  • Polyamideimide resin modified with alkoxysilane compound is a sol-gel cure (alkoxysilane hydrolysis and condensation reaction) by reacting amide bond of polyamic acid and aromatic carboxylic acid with alkoxysilane (alkoxysilane oligomer). After that, the obtained gel is heat-cured at 120 to 250 ° C.
  • Chemical formula (3) shows the chemical structure of a polyamide-imide resin modified with an alkoxysilane compound. Note that the alkoxysilane compound can be bonded to any part of the polyamideimide resin.
  • X represents an alkyl spacer.
  • M is an integer of 1 or more, and n is an integer of 1 or more.
  • a polyimide resin modified with an alkoxysilane compound is a method for preparing a polyamideimide resin modified with an alkoxysilane compound described above, except that a polyamic acid is used instead of an amide conjugate of a polyamic acid and an aromatic carboxylic acid. It can be prepared by the same method. That is, a polyimide resin modified with an alkoxysilane compound is obtained by performing sol-gel curing (alkoxysilane hydrolysis and condensation reaction) by reacting polyamic acid with alkoxysilane (alkoxysilane oligomer), and then obtained. The gel can be produced by heating at 120 to 430 ° C. for imidization.
  • Chemical formula (4) shows the chemical structure of a polyimide resin modified with an alkoxysilane compound. Note that the alkoxysilane compound can be bonded to any part of the polyimide resin.
  • x is an integer of 1 or more
  • y is an integer of 1 or more
  • n is an integer of 1 or more.
  • a first composite material In order to form a first composite material by reacting an alkoxysilane (alkoxysilane oligomer) with a first organic material such as a phenol resin, an alkoxysilane (alkoxysilane oligomer) is added to the mixture in the sol state.
  • the polysiloxane is bonded to the first organic material by performing a polymerization reaction together with the hydrolysis. Then, for example, heating is performed at a temperature of 100 to 200 ° C. to form a bridge between the first organic materials by a sol-gel reaction, and the sol state is cured to the gel state.
  • an alkoxysilane (alkoxysilane oligomer) can be bonded to an arbitrary portion of the first organic material such as a phenol resin at a uniform interval, and the polysiloxane in the first organic material can be crosslinked and cured. Can be uniformly distributed.
  • the size and quantity of the pores can be controlled by adjusting the molecular weight and bonding point of the polysiloxane bonded in the first organic material such as phenol resin.
  • the first organic material such as phenol resin.
  • the bonding points of alkoxysilane (alkoxysilane oligomer) are increased in the first organic material, a large number of polysiloxane bonds in the first organic material.
  • the bonding points of alkoxysilane (alkoxysilane oligomer) are reduced, the bonding points of polysiloxane are reduced.
  • the fine structure of the carbon obtained by the heating process that is, the pore size and the number of pores are adjusted by the bonding point and bonding amount of the polysiloxane.
  • the structure of the second composite material may be a structure in which silica particles are dispersed in the phenol resin.
  • a structure in which is dispersed in a phenol resin crosslinked with a silica portion is also conceivable.
  • sica means not only ceramic silica (SiO 2 ) but also Si—O units in organic materials. The same applies to other inorganic compounds other than silica.
  • the inorganic compound contained in the inorganic sol is vaporized or vaporized after the inorganic compound contained in the second organic material is desorbed. As a result, it is considered that pores are formed.
  • Examples of the inorganic sol include silica sol, alumina sol, magnesia sol, zirconia sol, and titania sol. Among these, silica sol, alumina sol, or magnesia sol is desirable, and silica sol is more desirable from the viewpoint of evaporability.
  • Silica sol includes organosilica sol. Examples of the metal alkoxide include alkoxysilanes.
  • thermosetting resins include phenolic resins, epoxy resins, polyimide resins, melamine resins, polyamideimide resins, urethane resins, amino resins, unsaturated polyester resins, diallyl phthalate resins, alkyds. Resin, silicon resin and the like. Among these resins, phenol-based resins, epoxy-based resins, polyimide-based resins, melamine-based resins, or polyamide-imide-based resins are preferable, and phenol-based resins or polyimide-based resins having a network skeleton are particularly preferable.
  • the second organic material may be a first composite material.
  • the second composite material having a structure in which inorganic compound particles contained in the inorganic sol are dispersed in the second organic material is a mixture of an inorganic sol such as an organosilica sol and a second organic material such as a phenol resin. And it can produce
  • Heating process a heating process for obtaining a porous carbon material by heating the first composite material or the second composite material containing the pore source at a temperature not lower than 2200 ° C. and not lower than a temperature at which a part of the pore source decomposes and vaporizes will be described. To do.
  • a heating process is performed in inert gas atmosphere, such as nitrogen and argon.
  • the pressure in a heating process is not specifically limited, Usually, it is desirable that it is about a normal pressure.
  • the heating time in the heating step is not particularly limited, but is preferably 1 to 100 hours, and more preferably 2 to 10 hours.
  • the temperature in the heating step is not less than the temperature at which a part of the pore source contained in the first composite material or the second composite material is decomposed and vaporized, and not more than 2200 ° C. Therefore, the temperature in the heating step is appropriately determined according to the type of the first composite material or the second composite material and other heating conditions (temperature rise temperature, heating time, etc.), but exceeds 1500 ° C. It is preferably 2200 ° C.
  • the temperature rising rate in the heating step is usually about 10 to 400 ° C./hour, and preferably about 20 to 200 ° C./hour. Further, it is considered that the pore source can be efficiently vaporized by increasing the CO partial pressure in the heating step.
  • a post-treatment step of treating the obtained porous carbon material with a base or acid may be performed after the heating step. Residual components can be removed by the post-treatment process.
  • etching is performed using a base such as sodium hydroxide (NaOH) or an acid such as hydrofluoric acid (HF).
  • a base such as sodium hydroxide (NaOH) or an acid such as hydrofluoric acid (HF).
  • HF hydrofluoric acid
  • a pulverization step for obtaining a carbon powder having a predetermined particle diameter may be performed by pulverizing the produced porous carbon material.
  • the pulverization of the porous carbon material can be performed using an ultrafine pulverizer, a ball mill, a jet mill or the like.
  • the particle diameter (D50) of the carbon powder after the pulverization step is preferably 0.5 to 10 ⁇ m, and more preferably 1 to 5 ⁇ m. When the particle diameter of the carbon powder is 1 to 5 ⁇ m, a uniform electrode can be formed even when the thickness is small when used as an electrode for a capacitor.
  • the particle size of the porous carbon material can be obtained by measuring a pulverized carbon powder suspension with a particle size distribution measuring device and a particle size distribution measuring device (laser diffraction type).
  • a step of pulverizing the obtained porous carbon material (post-heating pulverization step) is performed, and the material obtained by the pulverization step is obtained.
  • the other conditions are the same as those in the heating step except that the material obtained in the post-heating pulverization step is heated at a temperature higher than the temperature in the heating step.
  • the temperature in the additional heating step is preferably from the heating temperature (temperature in the heating step) to 2200 ° C.
  • each condition in the post-processing step is the same as each condition in the post-processing step performed after the heating step.
  • the material containing the pore source is heated at a temperature lower than the temperature in the heating step (preheating step)
  • a step of crushing the material obtained by the preheating step may be performed. After removing a part of the pore source in the preheating step, the obtained material is pulverized, and the pulverized material is heated again, so that the pore source can be reliably removed.
  • the preheating step other conditions are the same as those in the heating step, except that the material including the pore source is heated at a temperature lower than the temperature in the heating step.
  • the temperature in the preheating step is desirably 400 ° C. to heating temperature (temperature in the heating step).
  • each condition in the post-processing step is the same as each condition in the post-processing step performed after the heating step.
  • Porous carbon material A porous carbon material according to an embodiment of the present invention is manufactured by the above-described method for manufacturing a porous carbon material.
  • pores are formed. Specifically, in the differential pore volume distribution curve obtained by analyzing the adsorption isotherm obtained by the N 2 adsorption method by the BJH method, pores included in the pore diameter range of 2 to 200 nm are formed.
  • the BJH method used here is a method proposed by Barrett, Joyner, Halenda for determining the distribution of mesopores (EP Barrett, LG Joyner and PP Halenda, J. et al. Am. Chem. Soc., 73, 373, (1951)).
  • the total value A of the pore volumes included in the pore diameter range of 2 to 15 nm is equal to the total value B of the pore volumes included in the pore diameter range of 2 to 200 nm. It is desirable to occupy 80% or more.
  • the total value B of the pore volumes included in the pore diameter range of 2 to 200 nm is desirably 0.3 cm 3 / g or more, and 0.4 to 1. More desirably, it is 2 cm 3 / g.
  • the total value B is 0.3 cm 3 / g or more, there are many pores for the electrolyte to enter, and the capacitor electrode using such a porous carbon material further improves the charge / discharge characteristics. be able to.
  • the total value B exceeds 1.2 cm 3 / g, the bulk density (weight per unit volume) of the porous carbon material decreases, and in the capacitor electrode using such a porous carbon material, the electrode density Becomes lower.
  • the porous carbon material of the present embodiment may further contain silicon carbide. If silicon carbide is contained in the porous carbon material, the porous carbon material can be easily pulverized, and the particle diameter of the carbon powder formed by pulverizing the porous carbon material can be more uniform.
  • a capacitor electrode according to an embodiment of the present invention is characterized by comprising a porous carbon material produced by the above-described method for producing a porous carbon material.
  • a capacitor according to an embodiment of the present invention includes a capacitor electrode including the porous carbon material manufactured by the above porous carbon material manufacturing method.
  • a lithium ion capacitor electrode which is a kind of hybrid capacitor electrode will be described as an example of the capacitor electrode
  • a lithium ion capacitor which is a kind of hybrid capacitor will be described as an example of the capacitor.
  • FIG. 1 is a cross-sectional view schematically showing an example of the lithium ion capacitor of the present invention.
  • a lithium ion capacitor 1 shown in FIG. 1 includes an electrode for a lithium ion capacitor (a positive electrode is denoted by reference numeral 2 and a negative electrode is denoted by reference numeral 3), a separator 4 and an electrolytic solution (not shown). Specifically, in the lithium ion capacitor 1, the positive electrode 2 and the negative electrode 3 are provided so as to face each other with the separator 4 interposed therebetween.
  • the positive electrode 2 includes the porous carbon material of the present embodiment described above.
  • the positive electrode 2 includes an electrode composition made of the porous carbon material of the present embodiment, a positive electrode current collector 2a on which the electrode composition is formed, and a positive electrode tab 2b attached to the positive electrode current collector 2a.
  • the positive electrode tab 2b is taken out from the casing 5 to the outside.
  • the thickness of the positive electrode 2 is preferably 30 to 300 ⁇ m, more preferably 40 to 200 ⁇ m, and still more preferably 50 to 150 ⁇ m.
  • the positive electrode current collector 2a is preferably made of metal, carbon, conductive polymer, etc., and more preferably made of metal.
  • metal for the positive electrode current collector 2a aluminum, platinum, nickel, tantalum, titanium, stainless steel, copper, other alloys, or the like can be used. Among these, it is preferable to use copper, aluminum or an aluminum alloy from the viewpoint of electrical conductivity and voltage resistance.
  • Examples of the shape of the positive electrode current collector 2a include current collectors such as metal foils and metal edged foils, and current collectors having through-holes such as expanded metal, punching metal, and net-like, but reduce diffusion resistance of electrolyte ions.
  • a positive electrode current collector having a through-hole is preferable in that the output density of the lithium ion capacitor can be improved, and among them, expanded metal or punching metal is more preferable in that the electrode strength is further excellent.
  • the ratio of the holes of the positive electrode current collector 2a is preferably 10 to 80 area%, more preferably 20 to 60 area%, and still more preferably 30 to 50 area%. When the ratio of the penetrating holes is within this range, the diffusion resistance of the electrolytic solution is reduced, and the internal resistance of the lithium ion capacitor is reduced.
  • the hole of a positive electrode electrical power collector should just be provided only in the case of a lithium ion capacitor, and the hole need not be provided in the case of an electric double layer capacitor.
  • the thickness of the positive electrode current collector 2a is preferably 5 to 100 ⁇ m, more preferably 10 to 70 ⁇ m, and still more preferably 20 to 50 ⁇ m. *
  • the negative electrode 3 is an electrode including a negative electrode active material that can occlude and release lithium ions.
  • the negative electrode 3 is provided with a negative electrode current collector 3a.
  • a negative electrode tab 3b is attached to the negative electrode current collector 3a, and the negative electrode tab 3b is taken out from the casing 5 to the outside.
  • the negative electrode current collector 3b is made of, for example, copper, nickel, stainless steel, and alloys thereof.
  • the negative electrode 3 is preferably preliminarily occluded with lithium ions. Lithium ions can be occluded in the negative electrode by a chemical method or an electrochemical method.
  • Examples of the chemical method include a method of immersing lithium ions by immersing in an electrolytic solution in a state where a negative electrode and a necessary amount of lithium metal are in contact with each other and applying heat.
  • Examples of the electrochemical method include a method in which lithium ions are occluded by making a negative electrode and lithium metal face each other through a separator and charging with constant current in an electrolytic solution.
  • the separator 4 is not particularly limited as long as it can insulate between lithium ion capacitor electrodes and allow ions to pass therethrough.
  • a polyolefin such as polyethylene or polypropylene, a microporous membrane made of rayon or glass fiber, a nonwoven fabric made of rayon or glass fiber, a porous membrane made mainly of pulp (commonly called electrolytic capacitor paper), or the like is used. be able to.
  • the thickness of the separator 4 is preferably 1 to 100 ⁇ m, more preferably 10 to 80 ⁇ m, and still more preferably 20 to 60 ⁇ m.
  • the casing 5 may be formed of a laminate film, a metal case, a resin case, a ceramic case, or the like.
  • the shape is not particularly limited, and may be a coin shape, a cylindrical shape, a square shape, or the like.
  • the electrolytic solution is composed of an electrolyte and a solvent.
  • a lithium salt can be used as the electrolyte. Therefore, lithium ions can be used as cations.
  • As anions PF 6 ⁇ , BF 4 ⁇ , AsF 6 ⁇ , SbF 6 ⁇ , N (RfSO 3 ) 2 ⁇ , C (RfSO 3 ) 3 ⁇ , RfSO 3 ⁇ (Rf is 1 to 12 carbon atoms, respectively) F ⁇ , ClO 4 ⁇ , AlCl 4 ⁇ , AlF 4 ⁇ and the like can be used.
  • These electrolytes can be used alone or in combination of two or more.
  • the concentration of the lithium salt as the electrolyte is preferably 0.1 to 2.5 mol / l.
  • a solvent will not be specifically limited if it is a non-aqueous electrolyte solution which can be used for a capacitor or a lithium ion capacitor.
  • Specific examples include carbonates such as propylene boat, ethylene carbonate, butylene carbonate, dimethyl carbonate, ethylmethyl carbonate, and diethyl carbonate; lactones such as ⁇ -butyrolactone; sulfolanes; nitriles such as acetonitrile.
  • These solvents can be used alone or as a mixed solvent of two or more. Of these, carbonates are preferred.
  • the electrode for a lithium ion capacitor of this embodiment can be manufactured through the following steps.
  • a positive electrode composition preparation step of preparing a positive electrode composition slurry is performed by mixing a carbon powder made of the porous carbon material of the present embodiment, a conductive material, a binder and water.
  • the porous carbon material of the present embodiment is pulverized to obtain carbon powder having a predetermined particle size.
  • the particle diameter (D50) of the carbon powder is preferably 0.5 to 10 ⁇ m, and more preferably 1 to 5 ⁇ m.
  • binder examples include polytetrafluoroethylene, styrene butadiene rubber, polytetrafluoroethylene, styrene butadiene rubber (SBR), and polyvinylidene fluoride (PVDF). These binders can be used alone or in combination of two or more.
  • polytetrafluoroethylene is preferable.
  • the binder is preferably a powder in order to facilitate the moldability.
  • the amount of the binder used is preferably, for example, 1 to 30 parts by weight with respect to 100 parts by weight of the carbon powder.
  • the conductive material is made of particulate carbon that has almost no pores that can form an electric double layer.
  • furnace black acetylene black, and ketjen black (registered by Akzo Nobel Chemicals Bethloten Fennaut Shap) Trade name) and the like.
  • acetylene black and furnace black are preferable.
  • These conductive materials can be used alone or in combination of two or more.
  • the average particle size of the conductive material is preferably smaller than the average particle size of the carbon powder made of the porous carbon material, more preferably 0.001 to 10 ⁇ m, still more preferably 0.05 to 5 ⁇ m, and particularly preferably 0.00. 01 to 1 ⁇ m. When the average particle diameter of the conductive material is within this range, high electrical conductivity can be obtained.
  • the amount of the conductive material is preferably in the range of 0.1 to 50 parts by weight, more preferably 0.5 to 15 parts by weight, and further preferably 1 to 10 parts by weight with respect to 100 parts by weight of the carbon powder. When the amount of the conductive material is within this range, the capacity of the lithium ion capacitor using the obtained lithium ion capacitor electrode can be increased, and the internal resistance can be decreased.
  • the positive electrode composition slurry is applied on the positive electrode current collector 2a, and then dried to produce a positive electrode.
  • the positive electrode 2 can be produced by such a wet molding method.
  • a method of laminating a positive electrode composition molded into a sheet shape on a positive electrode current collector (kneading sheet molding method), preparing composite particles of the positive electrode composition, forming a sheet on the positive electrode current collector, Examples thereof include a roll press method (dry molding method).
  • a wet molding method and a dry molding method are preferable, and a wet molding method is more preferable.
  • the negative electrode 3 is formed by mixing a negative electrode active material, a binder, and a conductive material, adding this to a solvent to prepare a slurry for a negative electrode composition, applying the slurry to the negative electrode current collector 3a, and drying the slurry.
  • the negative electrode may be produced by a kneading sheet molding method or a dry molding method.
  • the negative electrode active material may be any material that can reversibly carry lithium ions.
  • electrode active materials used in the negative electrode of lithium ion secondary batteries can be widely used.
  • crystalline carbon materials such as graphite and non-graphitizable carbon, carbon materials such as hard carbon and coke, and polyacene-based substances (PAS) are preferable.
  • These carbon materials and PAS are obtained by carbonizing a phenol resin or the like, activated as necessary, and then pulverized.
  • the same binder and conductive material as the positive electrode can be used.
  • the positive electrode 2 is attached to the upper casing, and the negative electrode 3 is attached to the lower casing.
  • the separator 4 is installed between the positive electrode 2 and the negative electrode 3, and after impregnating with electrolyte solution, a casing is sealed. Thereby, the lithium ion capacitor of this embodiment can be manufactured.
  • the first composite material in which a modifying group containing a pore source is bound to the polymer chain constituting the first organic material, or the pore source is used.
  • a heating step is included in which the second composite material including the inorganic sol or metal alkoxide and the second organic material is heated at a temperature not lower than the temperature at which a part of the pore source is decomposed and vaporized but not higher than 2200 ° C.
  • the heating step first, the first composite material or the second composite material can be carbonized.
  • the pore source can be removed from the composite material by the heating step. As a result, pores can be formed.
  • porous carbon material of this embodiment carbonization of a composite material and formation of pores can be performed by a heating process. Therefore, the process of forming pores can be omitted, and the manufacturing process can be simplified. As a result, manufacturing time and cost can be reduced. Furthermore, in the method for producing the porous carbon material of the present embodiment, since the pores can be formed by heating the first composite material or the second composite material, dangerous chemicals such as hydrofluoric acid are handled. A porous carbon material can be produced safely without any problems.
  • the first composite material or the second composite material is heated at a temperature not lower than 2200 ° C. and not lower than a temperature at which a part of the pore source is decomposed and vaporized.
  • Many effective mesopores can be formed by heating the first composite material or the second composite material in the above temperature range.
  • the porous carbon material of this embodiment is manufactured by the method for manufacturing a porous carbon material of this embodiment. Since the porous carbon material manufactured by the method for manufacturing the porous carbon material of the present embodiment has many effective mesopores, the bulk is low. And the electrode for capacitors using this porous carbon material becomes high in electrode density.
  • the capacitor electrode of the present embodiment is characterized by comprising a porous carbon material manufactured by the method for manufacturing a porous carbon material of the present embodiment.
  • a capacitor using such an electrode has a high electrode density.
  • the capacitor according to the present embodiment includes a capacitor electrode including the porous carbon material manufactured by the method for manufacturing a porous carbon material according to the present embodiment. Since such a capacitor includes an electrode having a high electrode density, the capacitor has a high electrode density.
  • the obtained curing reaction agent mixture was placed on a PET sheet fixed on a glass plate. Next, using a glass rod, the curing reaction agent mixture was formed into a film on a PET sheet, and cured in a dryer at 170 ° C. for 30 minutes. The obtained film was cut into a predetermined size and heated at 1800 ° C. for 2 hours under heating conditions in an N 2 atmosphere.
  • the porous carbon material of Example 1 was manufactured through the above steps.
  • Example 2 A porous material was produced in the same manner as in Example 1 except that the heating condition was changed to 1600 ° C. for 10 hours in an N 2 atmosphere.
  • Example 3 A porous material was produced in the same manner as in Example 1 except that the heating condition was changed to N 2 atmosphere at 2000 ° C. for 2 hours.
  • Example 4 2200 ° C. The heating conditions, it is 2 hours, except that the N 2 atmosphere to prepare a porous material in the same manner as in Example 1.
  • Example 5 A polyamide-imide resin modified with an alkoxysilane compound synthesized by introducing siloxane into the basic skeleton of an aromatic polyamide-imide synthesized from trimellitic anhydride and diphenylmethane-4,4′-diisocyanate was used. A film was obtained in the same manner as in Example 1 for the polyamideimide resin modified with the alkoxysilane compound. The obtained film was cut into a predetermined size and heated at 1600 ° C. for 2 hours under heating conditions in an N 2 atmosphere. By passing through the above process, the porous carbon material of Example 5 was manufactured.
  • Example 6 A polyimide resin (HBPI-SiO2-A, manufactured by Ibiden Resin Co., Ltd.) modified with an alkoxysilane compound was prepared, and a film was obtained in the same manner as in Example 1. The obtained film was cut into a predetermined size and heated at 1800 ° C. for 2 hours under heating conditions in an N 2 atmosphere. The porous carbon material of Example 6 was manufactured through the above steps.
  • HBPI-SiO2-A manufactured by Ibiden Resin Co., Ltd.
  • the composite material was obtained by mixing and dispersing the organosilica sol in the phenol resin. 10 g of the obtained composite material and 0.8 g of hexamethylenetetramine as a curing reaction agent were mixed to obtain a curing reaction agent mixture.
  • the obtained curing reaction agent mixture was placed on a PET sheet fixed on a glass plate. Next, using a glass rod, the curing reaction agent mixture was formed into a film on a PET sheet, and cured in a dryer at 170 ° C. for 30 minutes. The obtained film was cut into a predetermined size and heated at 1800 ° C. for 2 hours under heating conditions in an N 2 atmosphere.
  • the porous carbon material of Example 7 was manufactured through the above steps.
  • Example 1 A porous material was produced in the same manner as in Example 1 except that the heating conditions were changed to N 2 atmosphere at 1450 ° C. for 2 hours.
  • Comparative Example 2 2250 ° C. The heating conditions, it is 2 hours, except that the N 2 atmosphere to prepare a porous material in the same manner as in Example 1.
  • Example 3 A porous carbon material was produced in the same manner as in Example 1 except that the film was heated at 800 ° C. for 2 hours in an N 2 atmosphere and then treated with 48% hydrofluoric acid (HF aqueous solution) for 24 hours.
  • HF aqueous solution hydrofluoric acid
  • Comparative Example 4 As the porous carbon material of Comparative Example 4, commercially available activated carbon (Calgon Carbon Japan Co., Ltd., Diasorb (registered trademark) F 100D) was used.
  • porous carbon material manufactured by each Example and the comparative example was evaluated with the following method.
  • the porous carbon material produced in each example and comparative example was placed in a ball mill and pulverized with an alumina ball for 10 hours to produce a carbon powder having a particle diameter (D50) of 3 ⁇ m.
  • D50 particle diameter
  • the pore diameter range was 2 to 15 nm.
  • the total value B of the pore volumes included in the pore diameter range of 2 to 200 nm is 0.3 to 0.63 cm 3 / g.
  • the BET specific surface area is 301 to 428 m 2 / g. Therefore, the porous carbon materials produced in Examples 1 to 6 are sufficiently low in bulk, and it is considered that the capacitor electrode using the porous carbon material has a high electrode density.
  • many mesopores of a size that is easy for electrolyte to enter are formed, and it is considered that the surface of the capacitor electrode using such a porous carbon material can be effectively used as an electric double layer.
  • porous carbon material of Example 7 using the second composite material composed of the inorganic sol and the organic material can provide the same results as the porous carbon material of Examples 1 to 6.
  • the porous carbon material of Comparative Example 1 in which the first composite material in which the modifying group was bonded to the organic material was heated at 1450 ° C.
  • the porous material in Comparative Example 2 in which the composite material to which the modifying group was bonded were heated at 2250 ° C.
  • the total value A of the pore volume included in the range of the pore diameter of 2 to 15 nm is 82 to 85% of the total value B of the pore volume included in the range of the pore diameter of 2 to 200 nm. is occupying.
  • the total value B of the pore volumes included in the pore diameter range of 2 to 200 nm is a low value of 0.03 to 0.24 cm 3 / g.
  • the BET specific surface area is also a low value of 135 to 195 m 2 / g. Therefore, when the porous carbon material manufactured in Comparative Examples 1 and 2 is used for a capacitor electrode, the electrode density is considered to be low.
  • the total value A of the pore volumes included in the pore diameter range of 2 to 15 nm is included in the fine pore diameter range of 2 to 200 nm.
  • the ratio of the pore volume to the total value B is the same as that of the porous carbon materials of Examples 1 to 5.
  • the BET specific surface area is superior to the porous carbon materials of Examples 1 to 5.
  • the total value B of the pore volumes included in the pore diameter range of 2 to 200 nm is a high value of 1.25 cm 3 / g. Therefore, it is considered that the bulk density of the porous carbon material is lowered, and when such a porous carbon material is used for a capacitor electrode, the electrode density is lowered.
  • the BET specific surface area is superior to the porous carbon materials of Examples 1 to 5.
  • the total value A of the pore volumes included in the pore diameter range of 2 to 15 nm is the pores included in the pore diameter range of 2 to 200 nm. Only 44% of the total volume B is occupied. Therefore, it is considered that the mesopores are not sufficiently formed in the porous carbon material of Comparative Example 4.
  • the total value B of pore volumes included in the pore diameter range of 2 to 200 nm is a high value of 1.41 cm 3 / g. Therefore, it is considered that the bulk density of the porous carbon material is lowered, and when such a porous carbon material is used for a capacitor electrode, the electrode density is lowered.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

This process for producing a porous carbon material is a process for producing a porous carbon material having fine pores formed therein, and is characterized by comprising a heating step of heating a first composite material or a second composite material at a temperature not lower than a temperature at which a part of a porogen can be decomposed and gasified and not higher than 2000˚C, wherein the first composite material comprises a first organic material having a porogen-containing modifying group bound to a polymeric chain that constitutes the first organic material and the second composite material comprises a porogen-containing inorganic sol and a second organic material.

Description

多孔質炭素材料の製造方法、多孔質炭素材料、キャパシタ用電極、及び、キャパシタPorous carbon material manufacturing method, porous carbon material, capacitor electrode, and capacitor
本発明は、多孔質炭素材料の製造方法、多孔質炭素材料、キャパシタ用電極、及び、キャパシタに関する。 The present invention relates to a method for producing a porous carbon material, a porous carbon material, a capacitor electrode, and a capacitor.
近年、省資源や環境問題の意識の高まりとともに、蓄電デバイスの開発が急速に進められている。蓄電デバイスの中でも、電気二重層キャパシタ(EDLC)及びリチウムイオンキャパシタ(LIC)等のキャパシタが着目されている。 In recent years, with the growing awareness of resource saving and environmental issues, the development of power storage devices has been promoted rapidly. Among power storage devices, capacitors such as electric double layer capacitors (EDLC) and lithium ion capacitors (LIC) are attracting attention.
電気二重層キャパシタは、セパレ-タを挟んだ1組の分極性電極と、これらを収納するケ-スと、電解質である電解液と、集電体とからなる。電気二重層キャパシタでは、分極性電極/電解質界面に形成された電気二重層において電気を蓄積する。
リチウムイオンキャパシタでは、正極材料として電気二重層キャパシタと同じ材料を用いるのに対して、負極材料としてリチウムイオン吸蔵可能な炭素系材料を用いる。そして、負極材料である炭素系材料にリチウムイオンを添加することによりエネルギー密度を向上させている。
The electric double layer capacitor is composed of a pair of polarizable electrodes sandwiching a separator, a case for housing them, an electrolytic solution as an electrolyte, and a current collector. In an electric double layer capacitor, electricity is stored in an electric double layer formed at the polarizable electrode / electrolyte interface.
In the lithium ion capacitor, the same material as the electric double layer capacitor is used as the positive electrode material, whereas a carbon-based material capable of occluding lithium ions is used as the negative electrode material. And the energy density is improved by adding lithium ion to the carbonaceous material which is a negative electrode material.
電気二重層キャパシタの分極性電極、及び、リチウムイオンキャパシタの正極(以下、これらを単にキャパシタ用電極という)を構成する材料には、高比表面積を有することが求められており、活性炭からなる多孔質炭素材料が知られている。 A material constituting a polarizable electrode of an electric double layer capacitor and a positive electrode of a lithium ion capacitor (hereinafter simply referred to as a capacitor electrode) is required to have a high specific surface area, and is a porous material made of activated carbon. Carbonaceous materials are known.
活性炭からなる多孔質炭素材料には、細孔直径が2nmより小さい細孔(以下、ミクロ孔ともいう)、細孔直径2~50nmの細孔(以下、メソ孔ともいう)、及び、細孔直径が50nmを超える細孔(以下、マクロ孔ともいう)が形成されている。 The porous carbon material made of activated carbon includes pores having a pore diameter smaller than 2 nm (hereinafter also referred to as micropores), pores having a pore diameter of 2 to 50 nm (hereinafter also referred to as mesopores), and pores. Fine pores having a diameter exceeding 50 nm (hereinafter also referred to as macropores) are formed.
マクロ孔の中には、大気孔が含まれているため、大気孔の存在により多孔質炭素材料がかさ高くなり、多孔質炭素材料を用いたキャパシタ用電極では、単位体積あたりの蓄電量(以下、単に電極密度ともいう)が低くなると考えられる。 Since the macropores contain air holes, the porous carbon material becomes bulky due to the presence of the air holes, and in the capacitor electrode using the porous carbon material, the charged amount per unit volume (below) , Also simply referred to as electrode density).
一方、ミクロ孔は、比表面積が大きいものの、細孔のサイズが小さすぎて電解液が充分に入り込みにくいと考えられる。また、プロピレンカーボネートとテトラブチルアンモニウムイオンとからなる電解液中では、電解質イオンは直径約0.86nmの溶媒和を形成していると推定される。しかしながら、ミクロ孔の大部分は、細孔直径が1nmより小さい細孔からなるため、電解質イオンの直径がミクロ孔の幅に近く、ミクロ孔のイオン篩効果により電解質イオンが充分にミクロ孔に吸着しないと考えられる。
それゆえ、活性炭からなる多孔質炭素材料をキャパシタ用電極に使用した場合には、充放電特性が充分に高いとはいえないと考えられる。
On the other hand, although the micropore has a large specific surface area, it is considered that the size of the pore is too small to allow the electrolyte to enter sufficiently. In addition, in the electrolyte solution composed of propylene carbonate and tetrabutylammonium ions, the electrolyte ions are estimated to form a solvation having a diameter of about 0.86 nm. However, most of the micropores consist of pores with a pore diameter smaller than 1 nm, so the diameter of the electrolyte ions is close to the width of the micropores, and the electrolyte ions are sufficiently adsorbed by the micropores due to the ion sieve effect of the micropores. It is thought not to.
Therefore, when a porous carbon material made of activated carbon is used for a capacitor electrode, it cannot be said that the charge / discharge characteristics are sufficiently high.
このような問題を考慮した多孔質炭素材料として、例えば、特許文献1には、メソ孔が多く形成された多孔質炭素材料、及び、その製造方法が開示されている。
特許文献1に記載の多孔質炭素材料の製造方法では、シリカ等の無機粒子とフェノール等の炭素前駆体との複合体を調製する工程と、600~1500℃で上記複合体を加熱することによって炭素前駆体を炭化させる工程と、残留した無機粒子を塩基又は酸でエッチングする工程とを含むことが記載されている。
As a porous carbon material considering such a problem, for example, Patent Document 1 discloses a porous carbon material in which many mesopores are formed, and a manufacturing method thereof.
In the method for producing a porous carbon material described in Patent Document 1, a step of preparing a composite of inorganic particles such as silica and a carbon precursor such as phenol, and heating the composite at 600 to 1500 ° C. It describes that it includes a step of carbonizing the carbon precursor and a step of etching the remaining inorganic particles with a base or acid.
特表2004-503456号公報JP-T-2004-503456
特許文献1に記載の多孔質炭素材料の製造方法では、無機粒子の粒子径を制御することにより、所望のサイズのメソ孔を得ることができるとされている。
このような多孔質炭素材料は、マクロ孔が少ないため比表面積が高く、かかる多孔質炭素材料を使用したキャパシタ用電極は、高い電極密度を有すると考えられる。
In the method for producing a porous carbon material described in Patent Document 1, mesopores having a desired size can be obtained by controlling the particle diameter of the inorganic particles.
Such a porous carbon material has a high specific surface area due to a small number of macropores, and a capacitor electrode using such a porous carbon material is considered to have a high electrode density.
特許文献1に記載の多孔質炭素材料の製造方法では、残留した無機粒子を塩基又は酸でエッチングすることにより、無機粒子が初期に占めた空間に細孔が形成される。
しかしながら、細孔を形成するためには、水酸化ナトリウム又はフッ酸溶液といった危険な薬品を使用してエッチングを行う必要があるため、安全性に問題がある。
また、細孔を形成するために、エッチングという工程を別途行う必要があるため、製造時間及びコストの増大に繋がることになる。
In the method for producing a porous carbon material described in Patent Document 1, pores are formed in the space initially occupied by the inorganic particles by etching the remaining inorganic particles with a base or acid.
However, in order to form pores, it is necessary to perform etching using a dangerous chemical such as sodium hydroxide or a hydrofluoric acid solution, so that there is a problem in safety.
Further, in order to form the pores, it is necessary to separately perform a process called etching, which leads to an increase in manufacturing time and cost.
本発明は、上記の問題を解決するためになされたものであり、より安全で、細孔を形成する工程を省略することができる多孔質炭素材料の製造方法、及び、その製造方法により製造される炭素材料を提供することを目的とする。また、本発明は、上記炭素材料からなるキャパシタ用電極、及び、そのキャパシタ用電極を備えたキャパシタを提供することを目的とする。 The present invention has been made to solve the above-described problems, and is a safer method for producing a porous carbon material that can omit the step of forming pores, and the production method thereof. It is an object to provide a carbon material. Another object of the present invention is to provide a capacitor electrode made of the carbon material and a capacitor including the capacitor electrode.
本発明者らは、上述した課題を解決すべく鋭意検討を行った結果、多孔質炭素材料を製造する際、細孔源を含む複合材を所定の温度で加熱することにより細孔源を除去し、細孔を形成することができることを見出し、本発明を完成した。 As a result of intensive studies to solve the above-mentioned problems, the present inventors removed the pore source by heating the composite material including the pore source at a predetermined temperature when producing the porous carbon material. The inventors have found that pores can be formed and completed the present invention.
すなわち、本発明の多孔質炭素材料の製造方法は、
多孔質炭素材料の製造方法であって、
第1の有機材料を構成する高分子鎖に細孔源を含む修飾基が結合した第1の複合材、又は、細孔源を含む無機ゾルもしくは金属アルコキシドと第2の有機材料とからなる第2の複合材を、上記細孔源の一部が分解気化する温度以上2200℃以下で加熱する加熱工程を含むことを特徴とする。
That is, the method for producing the porous carbon material of the present invention includes:
A method for producing a porous carbon material, comprising:
A first composite material in which a modifying group containing a pore source is bonded to a polymer chain constituting the first organic material, or a first composite material comprising an inorganic sol or metal alkoxide containing a pore source and a second organic material. And a heating step of heating the composite material at a temperature of 2200 ° C. or lower and a temperature at which a part of the pore source is decomposed and vaporized.
本発明の多孔質炭素材料の製造方法では、細孔源を含む材料として、第1の有機材料を構成する高分子鎖に細孔源を含む修飾基が結合した第1の複合材、又は、無機ゾルもしくは金属アルコキシドと第2の有機材料とからなる第2の複合材を用いる。
上記加熱工程により、まず、第1の複合材又は第2の複合材を炭化させることができる。さらに、上記加熱工程により、複合材から細孔源を除去することができる。その結果、細孔を形成することができる。
In the method for producing a porous carbon material of the present invention, as the material containing the pore source, the first composite material in which the modifying group containing the pore source is bonded to the polymer chain constituting the first organic material, or A second composite material made of an inorganic sol or metal alkoxide and a second organic material is used.
By the heating step, first, the first composite material or the second composite material can be carbonized. Further, the pore source can be removed from the composite material by the heating step. As a result, pores can be formed.
細孔源を含む材料として、第1の複合材を用いる場合、以下のメカニズムにより細孔が形成されると考えられる。
例えば、第1の複合材に含まれる修飾基が有機珪素化合物である場合、加熱工程において、第1の複合材から有機珪素化合物が脱離して生成されたシリカの一部、又は、脱離有機珪素化合物の一部が気化する。その結果、細孔が形成される。
When the first composite material is used as the material including the pore source, it is considered that pores are formed by the following mechanism.
For example, when the modifying group contained in the first composite material is an organosilicon compound, in the heating step, a part of silica generated by desorbing the organosilicon compound from the first composite material or the detached organic A part of the silicon compound is vaporized. As a result, pores are formed.
また、細孔源を含む材料として、第2の複合材を用いる場合、以下のメカニズムにより細孔が形成されると考えられる。
例えば、第2の複合材において、無機ゾルが第2の有機材料中に分散している場合、加熱工程において、無機ゾルに含まれる無機化合物が気化する。その結果、細孔が形成される。
In addition, when the second composite material is used as the material including the pore source, pores are considered to be formed by the following mechanism.
For example, in the second composite material, when the inorganic sol is dispersed in the second organic material, the inorganic compound contained in the inorganic sol is vaporized in the heating step. As a result, pores are formed.
このように、本発明の多孔質炭素材料の製造方法では、上記加熱工程により、複合材の炭化及び細孔の形成を行うことができる。従って、細孔を形成する工程を省略することができ、製造工程を簡略化することができる。その結果、製造時間及びコストを低減することができる。
さらに、本発明の多孔質炭素材料の製造方法では、第1の複合材又は第2の複合材を加熱することにより細孔を形成することができるため、フッ酸等の危険な薬品を取り扱うことなく安全に多孔質炭素材料を製造することができる。
Thus, in the method for producing a porous carbon material of the present invention, the carbonization of the composite material and the formation of pores can be performed by the heating step. Therefore, the process of forming pores can be omitted, and the manufacturing process can be simplified. As a result, manufacturing time and cost can be reduced.
Furthermore, in the method for producing a porous carbon material of the present invention, pores can be formed by heating the first composite material or the second composite material, so that dangerous chemicals such as hydrofluoric acid are handled. And the porous carbon material can be produced safely.
また、本発明の多孔質炭素材料の製造方法では、第1の複合材又は第2の複合材を、細孔源の一部が分解気化する温度以上2200℃以下で加熱する。第1の複合材又は第2の複合材を上記温度範囲で加熱することにより、有効なメソ孔を多く形成することができる。
第1の複合材又は第2の複合材を細孔源の一部が気化する温度未満で加熱すると、複合材から充分に細孔源が除去されないため、メソ孔が形成されない。一方、第1の複合材又は第2の複合材を2200℃を越える温度で加熱すると、炭素材料の収縮(例えば、黒鉛化)が進み、細孔が減ってしまう。
In the method for producing a porous carbon material of the present invention, the first composite material or the second composite material is heated at a temperature not lower than 2200 ° C. and not lower than a temperature at which a part of the pore source decomposes and vaporizes. Many effective mesopores can be formed by heating the first composite material or the second composite material in the above temperature range.
When the first composite material or the second composite material is heated below a temperature at which a part of the pore source vaporizes, the pore source is not sufficiently removed from the composite material, so that mesopores are not formed. On the other hand, when the first composite material or the second composite material is heated at a temperature exceeding 2200 ° C., the shrinkage (for example, graphitization) of the carbon material proceeds and pores are reduced.
本発明の多孔質炭素材料の製造方法により製造される多孔質炭素材料は、有効なメソ孔が多く形成されているため、かさが低い。そして、かかる多孔質炭素材料を使用したキャパシタ用電極は、電極密度が高くなる。
このように、本発明の多孔質炭素材料の製造方法では、キャパシタ用電極を構成する材料に適した多孔質炭素材料を製造することができる。
The porous carbon material produced by the method for producing a porous carbon material of the present invention has a low bulk because many effective mesopores are formed. And the electrode for capacitors using this porous carbon material becomes high in electrode density.
Thus, in the method for producing a porous carbon material of the present invention, a porous carbon material suitable for the material constituting the capacitor electrode can be produced.
本発明の多孔質炭素材料の製造方法では、上記加熱工程における温度は、1500℃を超え2200℃以下であることが望ましい。さらに、上記加熱工程における温度は、1600~2200℃であることがより望ましい。
第1の複合材又は第2の複合材を上記の温度範囲で加熱することにより、キャパシタ用電極を構成する材料に適した多孔質炭素材料を製造することができる。
In the method for producing a porous carbon material of the present invention, the temperature in the heating step is preferably more than 1500 ° C. and not more than 2200 ° C. Further, the temperature in the heating step is more preferably 1600 to 2200 ° C.
By heating the first composite material or the second composite material in the above temperature range, a porous carbon material suitable for the material constituting the capacitor electrode can be produced.
本発明の多孔質炭素材料の製造方法では、上記第1の複合材に含まれる修飾基は、有機珪素化合物であることが望ましい。さらに、上記有機珪素化合物は、アルコキシシラン類であることがより望ましい。
アルコキシシラン類等の有機珪素化合物は、第1の有機材料を構成する高分子鎖と結合しやすい。
In the method for producing a porous carbon material of the present invention, it is desirable that the modifying group contained in the first composite material is an organosilicon compound. Furthermore, the organosilicon compound is more preferably an alkoxysilane.
Organosilicon compounds such as alkoxysilanes are easily bonded to a polymer chain constituting the first organic material.
本発明の多孔質炭素材料の製造方法において、上記第2の複合材に含まれる無機ゾルは、シリカゾル、アルミナゾル、又は、マグネシアゾルであることが望ましい。
シリカゾル等の無機ゾルは、入手容易性や取り扱い容易性に優れている。
In the method for producing a porous carbon material of the present invention, the inorganic sol contained in the second composite material is desirably a silica sol, an alumina sol, or a magnesia sol.
Inorganic sols such as silica sol are excellent in availability and handling.
本発明の多孔質炭素材料の製造方法において、上記第2の複合材に含まれる金属アルコキシドは、アルコキシシラン類であることが望ましい。 In the method for producing a porous carbon material of the present invention, the metal alkoxide contained in the second composite material is preferably an alkoxysilane.
本発明の多孔質炭素材料の製造方法において、上記第1の有機材料又は上記第2の有機材料は、フェノール系樹脂、エポキシ系樹脂、ポリイミド系樹脂、メラミン系樹脂、又は、ポリアミドイミド系樹脂であることが望ましい。さらに、上記第1の有機材料又は上記第2の有機材料は、フェノール系樹脂、又は、網状骨格を有するポリイミド系樹脂であることがより望ましい。 In the method for producing a porous carbon material of the present invention, the first organic material or the second organic material is a phenol resin, an epoxy resin, a polyimide resin, a melamine resin, or a polyamideimide resin. It is desirable to be. Furthermore, the first organic material or the second organic material is more preferably a phenol resin or a polyimide resin having a network skeleton.
本発明の多孔質炭素材料の製造方法は、上記加熱工程の後、得られた多孔質炭素材料を塩基又は酸で処理する後処理工程をさらに含んでもよい。
上述したように、従来の多孔質炭素材料の製造方法では、塩基又は酸を用いたエッチングのみによって細孔源を除去する。一方、本発明の多孔質炭素材料の製造方法では、加熱工程において細孔源を除去する。
本発明の多孔質炭素材料の製造方法において、加熱工程により大部分の細孔源を除去した後、塩基又は酸による後処理工程を行うことにより、細孔源を確実に除去することができる。
The method for producing a porous carbon material of the present invention may further include a post-treatment step of treating the obtained porous carbon material with a base or an acid after the heating step.
As described above, in the conventional method for producing a porous carbon material, the pore source is removed only by etching using a base or an acid. On the other hand, in the method for producing a porous carbon material of the present invention, the pore source is removed in the heating step.
In the method for producing a porous carbon material of the present invention, after removing most of the pore sources by the heating step, the pore sources can be reliably removed by performing a post-treatment step with a base or acid.
本発明の多孔質炭素材料は、本発明のいずれかの多孔質炭素材料の製造方法により製造されたことを特徴とする。 The porous carbon material of the present invention is produced by any one of the methods for producing a porous carbon material of the present invention.
本発明のキャパシタ用電極は、本発明のいずれかの多孔質炭素材料の製造方法により製造された多孔質炭素材料からなることを特徴とする。 The capacitor electrode of the present invention is characterized by comprising a porous carbon material produced by any one of the methods for producing a porous carbon material of the present invention.
本発明のキャパシタは、本発明のいずれかの多孔質炭素材料の製造方法により製造された多孔質炭素材料を含むキャパシタ用電極を備えたことを特徴とする。 The capacitor of the present invention includes a capacitor electrode including a porous carbon material produced by any one of the methods for producing a porous carbon material of the present invention.
なお、上述した第1の複合材又は第2の複合材において細孔が形成されるメカニズムは、あくまでも推定メカニズムである。従って、本発明の構成によって細孔が形成される限り、他のメカニズムであってもよく、上記メカニズムに限定して解釈されるものではない。 Note that the mechanism by which pores are formed in the first composite material or the second composite material described above is merely an estimation mechanism. Therefore, as long as pores are formed by the configuration of the present invention, another mechanism may be used, and the mechanism is not construed as being limited to the above mechanism.
図1は、本発明のリチウムイオンキャパシタの一例を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing an example of the lithium ion capacitor of the present invention.
以下、本発明の実施形態について具体的に説明する。しかしながら、本発明は、以下の実施形態に限定されるものではなく、本発明の要旨を変更しない範囲において適宜変更して適用することができる。 Hereinafter, embodiments of the present invention will be specifically described. However, the present invention is not limited to the following embodiments, and can be applied with appropriate modifications without departing from the scope of the present invention.
(1)多孔質炭素材料の製造方法
本発明の実施形態に係る多孔質炭素材料の製造方法は、
多孔質炭素材料の製造方法であって、
第1の有機材料を構成する高分子鎖に細孔源を含む修飾基が結合した第1の複合材、又は、細孔源を含む無機ゾルもしくは金属アルコキシドと第2の有機材料とからなる第2の複合材を、上記細孔源の一部が分解気化する温度以上2200℃以下で加熱する加熱工程を含むことを特徴とする。
(1) Manufacturing method of porous carbon material The manufacturing method of the porous carbon material which concerns on embodiment of this invention is the following.
A method for producing a porous carbon material, comprising:
A first composite material in which a modifying group containing a pore source is bonded to a polymer chain constituting the first organic material, or a first composite material comprising an inorganic sol or metal alkoxide containing a pore source and a second organic material. And a heating step of heating the composite material at a temperature of 2200 ° C. or lower and a temperature at which a part of the pore source is decomposed and vaporized.
(第1の複合材)
まず、第1の有機材料を構成する高分子鎖に細孔源を含む修飾基が結合した第1の複合材について説明する。
この場合、第1の複合材に含まれる修飾基(例えば、有機珪素化合物等)が、細孔源となる。
第1の複合材を用いる場合、後述する加熱工程において、第1の複合材から有機珪素化合物等が脱離して生成されたシリカの一部、又は、脱離有機珪素化合物の一部が気化する。その結果、細孔が形成されると考えられる。
(First composite material)
First, the first composite material in which a modifying group containing a pore source is bonded to a polymer chain constituting the first organic material will be described.
In this case, a modifying group (for example, an organosilicon compound) included in the first composite material becomes a pore source.
In the case of using the first composite material, a part of silica generated by desorbing an organosilicon compound or the like from the first composite material or a part of the desorbed organosilicon compound is vaporized in the heating step described later. . As a result, it is considered that pores are formed.
第1の有機材料としては、熱硬化性樹脂が挙げられる。熱硬化性樹脂としては、例えば、フェノール系樹脂、エポキシ系樹脂、ポリイミド系樹脂、メラミン系樹脂、ポリアミドイミド系樹脂、ウレタン系樹脂、アミノ系樹脂、不飽和ポリエステル系樹脂、ジアリルフタレート系樹脂、アルキド系樹脂、及び、ケイ素系樹脂等が挙げられる。これらの樹脂の中では、フェノール系樹脂、エポキシ系樹脂、ポリイミド系樹脂、メラミン系樹脂、又は、ポリアミドイミド系樹脂が望ましく、特に、フェノール系樹脂、又は、網状骨格を有するポリイミド系樹脂が望ましい。
なお、本明細書において、フェノール系樹脂とは、フェノール樹脂及びフェノール樹脂を主成分とする樹脂(例えば、変性フェノール樹脂等)をいう。エポキシ系樹脂とは、エポキシ樹脂及びエポキシ樹脂を主成分とする樹脂をいう。他の樹脂についても同様である。
A thermosetting resin is mentioned as a 1st organic material. Examples of thermosetting resins include phenolic resins, epoxy resins, polyimide resins, melamine resins, polyamideimide resins, urethane resins, amino resins, unsaturated polyester resins, diallyl phthalate resins, alkyds. Resin, silicon resin and the like. Among these resins, phenol-based resins, epoxy-based resins, polyimide-based resins, melamine-based resins, or polyamide-imide-based resins are preferable, and phenol-based resins or polyimide-based resins having a network skeleton are particularly preferable.
In the present specification, the phenolic resin refers to a phenol resin and a resin containing a phenol resin as a main component (for example, a modified phenol resin). The epoxy resin refers to an epoxy resin and a resin mainly composed of an epoxy resin. The same applies to other resins.
修飾基としては、例えば、有機珪素化合物等が挙げられる。また、有機珪素化合物は、例えば、ビニル基、メタクリル基、エポキシ基、アミノ基、窒素含有基、硫黄含有アルキル基、及び、水酸基等の官能基を有している。
有機珪素化合物としては、具体的に、アルコキシシラン類(例えば、アルコキシシラン化合物、アルコキシシランオリゴマー、ポリアルコキシシラン、及び、シランカップリング剤等)が挙げられる。
Examples of the modifying group include an organosilicon compound. Moreover, the organosilicon compound has functional groups such as a vinyl group, a methacryl group, an epoxy group, an amino group, a nitrogen-containing group, a sulfur-containing alkyl group, and a hydroxyl group.
Specific examples of the organosilicon compound include alkoxysilanes (for example, alkoxysilane compounds, alkoxysilane oligomers, polyalkoxysilanes, silane coupling agents, and the like).
上記有機珪素化合物は、反応性の官能基、例えば、ビニル基、メタクリル基、エポキシ基、アミノ基、窒素含有基、硫黄含有アルキル基、及び、水酸基等を有している。
そのため、第1の複合材は、有機珪素化合物等の修飾基が、これらの官能基を介して第1の有機材料と結合することにより形成される。
The organosilicon compound has a reactive functional group such as a vinyl group, a methacryl group, an epoxy group, an amino group, a nitrogen-containing group, a sulfur-containing alkyl group, and a hydroxyl group.
Therefore, the first composite material is formed by bonding a modifying group such as an organosilicon compound to the first organic material via these functional groups.
アルコキシシラン化合物としては、例えば、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトライソプロポキシシラン、テトラブトキシシラン等のテトラアルコキシシラン類;トリアルコキシシラン類;又はこれらの重合物等が挙げられる。
結合させるアルコキシシラン化合物としては、重合物であるアルコキシシランオリゴマーであることが望ましい。アルコキシシラン化合物の中でも、テトラメトキシシラン、テトラエトキシシラン等のテトラアルコキシシラン類又はこれらの重合物が望ましい。
Examples of the alkoxysilane compound include tetraalkoxysilanes such as tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetraisopropoxysilane, and tetrabutoxysilane; trialkoxysilanes; or a polymer thereof.
The alkoxysilane compound to be bonded is preferably an alkoxysilane oligomer that is a polymer. Among the alkoxysilane compounds, tetraalkoxysilanes such as tetramethoxysilane and tetraethoxysilane or polymers thereof are preferable.
アルコキシシラン化合物のうち、テトラメトキシシラン又はその重合物を化学式(1)に示す。 Of the alkoxysilane compounds, tetramethoxysilane or a polymer thereof is represented by chemical formula (1).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
化学式(1)中、Rはメチル基又はメトキシ基を表す。また、nは0以上の整数である。 In chemical formula (1), R represents a methyl group or a methoxy group. N is an integer of 0 or more.
また、アルコキシシラン化合物の重合度を小さくして、化学式(1)中のnを2~10のアルコキシシランオリゴマーを用いることができる。この場合、アルコキシシランオリゴマーがフェノール樹脂等の第1の有機材料と多数の結合を形成し、加熱工程の後に多数の均一なメソ孔を形成することができる。 In addition, an alkoxysilane oligomer in which n in the chemical formula (1) is 2 to 10 can be used by reducing the polymerization degree of the alkoxysilane compound. In this case, the alkoxysilane oligomer can form a large number of bonds with the first organic material such as a phenol resin, and a large number of uniform mesopores can be formed after the heating step.
シランカップリング剤としては、例えば、ビニルトリエトキシシラン、ビニルトリメトキシシラン、トリス(β-メトキシエトキシ)ビニルシラン、γ-メタクリロキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルトリエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、(N-フェニル-γ-アミノプロピル)トリメトキシシラン、γ-ウレイドプロピルトリエトキシシラン、γ-イソシアネートプロピルトリエトキシシラン、γ-イソシアネートプロピルトリメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、ビス(3-トリエトキシシリルプロピル)テトラスルファン、ビス(3-トリエトキシシリルプロピル)ジスルファン、オクチルトリエトキシシラン、メチルトリエトキシシラン、メチルトリメトキシシラン等が挙げられる。 Examples of the silane coupling agent include vinyltriethoxysilane, vinyltrimethoxysilane, tris (β-methoxyethoxy) vinylsilane, γ-methacryloxypropyltrimethoxysilane, γ-methacryloxypropyltriethoxysilane, β- (3 , 4-epoxycyclohexyl) ethyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-aminopropyltriethoxysilane, γ-aminopropyltrimethoxysilane, N- (2-aminoethyl) -3-aminopropyl Trimethoxysilane, (N-phenyl-γ-aminopropyl) trimethoxysilane, γ-ureidopropyltriethoxysilane, γ-isocyanatopropyltriethoxysilane, γ-isocyanatopropyltrimethoxysilane, γ-mercap Trimethoxysilane, bis (3-triethoxysilylpropyl) tetrasulfane, bis (3-triethoxysilylpropyl) disulfane, octyltriethoxysilane, methyltriethoxysilane, methyl trimethoxysilane.
上記シランカップリング剤は、その官能基を介して、フェノール樹脂等の第1の有機材料に付加反応をして第1の複合材を形成する。なお、シランカップリング剤は、無機成分が結合しやすい加水分解基と有機成分が結合しやすい官能基とがシリコン原子(Si)に結合したものであり、通常、樹脂改質剤として用いられるものである。シランカップリング剤の官能基の化学反応によって、第1の有機材料と結合し、第1の有機材料にシランカップリング剤による架橋構造が形成される。 The silane coupling agent undergoes an addition reaction with the first organic material such as a phenol resin through the functional group to form a first composite material. Silane coupling agents are those in which a hydrolyzable group that easily binds inorganic components and a functional group that easily bonds organic components are bonded to silicon atoms (Si), and are usually used as resin modifiers. It is. By the chemical reaction of the functional group of the silane coupling agent, it bonds with the first organic material, and a crosslinked structure by the silane coupling agent is formed in the first organic material.
以下、第1の複合材の具体例として、アルコキシシラン化合物により修飾されたフェノール樹脂、アルコキシシラン化合物により修飾されたポリアミドイミド樹脂、及び、アルコキシシラン化合物により修飾されたポリイミド樹脂について説明する。 Hereinafter, as specific examples of the first composite material, a phenol resin modified with an alkoxysilane compound, a polyamideimide resin modified with an alkoxysilane compound, and a polyimide resin modified with an alkoxysilane compound will be described.
アルコキシシラン化合物により修飾されたフェノール樹脂は、フェノール樹脂に反応性の高い官能基を有しないアルコキシシランオリゴマーを反応させることにより生成することができる。
化学式(2)に、アルコキシシラン化合物により修飾されたフェノール樹脂の化学構造を示す。なお、フェノール樹脂とアルコキシシラン化合物との結合部位は、任意に選定することができる。
A phenol resin modified with an alkoxysilane compound can be produced by reacting a phenol resin with an alkoxysilane oligomer that does not have a highly reactive functional group.
Chemical formula (2) shows the chemical structure of a phenol resin modified with an alkoxysilane compound. In addition, the coupling | bonding site | part of a phenol resin and an alkoxysilane compound can be selected arbitrarily.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
化学式(2)中、Rはメチル基又はメトキシ基を表す。また、mは1以上の整数である。 In chemical formula (2), R represents a methyl group or a methoxy group. M is an integer of 1 or more.
アルコキシシラン化合物により修飾されたフェノール樹脂は、硬化反応剤と混合し、約170℃で約30分間、約100℃で約30分間、約220℃で約120分間等の条件で加熱することにより硬化させてもよい。
硬化反応剤としては、例えば、ヘキサメチレンテトラミン、2-エチル-4-メチル-イミダゾール、ホルムアルデヒド等が挙げられる。
The phenolic resin modified with the alkoxysilane compound is mixed with a curing reagent and cured by heating at about 170 ° C. for about 30 minutes, at about 100 ° C. for about 30 minutes, at about 220 ° C. for about 120 minutes, etc. You may let them.
Examples of the curing reaction agent include hexamethylenetetramine, 2-ethyl-4-methyl-imidazole, formaldehyde and the like.
アルコキシシラン化合物により修飾されたポリアミドイミド樹脂は、ポリアミック酸と芳香族カルボン酸のアミド結合体に、アルコキシシラン(アルコキシシランオリゴマー)を反応させることによりゾル-ゲル硬化(アルコキシシランの加水分解及び縮合反応)を行い、その後、得られたゲルを120~250℃で加熱硬化する。 Polyamideimide resin modified with alkoxysilane compound is a sol-gel cure (alkoxysilane hydrolysis and condensation reaction) by reacting amide bond of polyamic acid and aromatic carboxylic acid with alkoxysilane (alkoxysilane oligomer). After that, the obtained gel is heat-cured at 120 to 250 ° C.
化学式(3)に、アルコキシシラン化合物により修飾されたポリアミドイミド樹脂の化学構造を示す。なお、アルコキシシラン化合物は、ポリアミドイミド樹脂の任意の部位に結合させることも可能である。 Chemical formula (3) shows the chemical structure of a polyamide-imide resin modified with an alkoxysilane compound. Note that the alkoxysilane compound can be bonded to any part of the polyamideimide resin.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
化学式(3)中、Xはアルキルスペーサーを表す。また、mは1以上の整数、nは1以上の整数である。 In chemical formula (3), X represents an alkyl spacer. M is an integer of 1 or more, and n is an integer of 1 or more.
アルコキシシラン化合物により修飾されたポリイミド樹脂は、ポリアミック酸と芳香族カルボン酸のアミド結合体に代えて、ポリアミック酸を使用すること以外は、上述したアルコキシシラン化合物により修飾されたポリアミドイミド樹脂の調製方法と同様の方法により調製することができる。
すなわち、アルコキシシラン化合物により修飾されたポリイミド樹脂は、ポリアミック酸に、アルコキシシラン(アルコキシシランオリゴマー)を反応させることによりゾル-ゲル硬化(アルコキシシランの加水分解及び縮合反応)を行い、その後、得られたゲルを120~430℃で加熱してイミド化することにより生成することができる。
A polyimide resin modified with an alkoxysilane compound is a method for preparing a polyamideimide resin modified with an alkoxysilane compound described above, except that a polyamic acid is used instead of an amide conjugate of a polyamic acid and an aromatic carboxylic acid. It can be prepared by the same method.
That is, a polyimide resin modified with an alkoxysilane compound is obtained by performing sol-gel curing (alkoxysilane hydrolysis and condensation reaction) by reacting polyamic acid with alkoxysilane (alkoxysilane oligomer), and then obtained. The gel can be produced by heating at 120 to 430 ° C. for imidization.
化学式(4)に、アルコキシシラン化合物により修飾されたポリイミド樹脂の化学構造を示す。なお、アルコキシシラン化合物は、ポリイミド樹脂の任意の部位に結合させることも可能である。 Chemical formula (4) shows the chemical structure of a polyimide resin modified with an alkoxysilane compound. Note that the alkoxysilane compound can be bonded to any part of the polyimide resin.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
化学式(4)中、xは1以上の整数、yは1以上の整数、nは1以上の整数である。 In chemical formula (4), x is an integer of 1 or more, y is an integer of 1 or more, and n is an integer of 1 or more.
なお、フェノール樹脂等の第1の有機材料にアルコキシシラン(アルコキシシランオリゴマー)を反応させて第1の複合材を形成するには、ゾル状態の両者の混合物において、アルコキシシラン(アルコキシシランオリゴマー)を加水分解と共に重合反応をさせることで、第1の有機材料にポリシロキサンが結合される。
そして、例えば、100~200℃の温度で加熱を行い、ゾル-ゲル反応で第1の有機材料間に架橋を形成して、ゾル状態からゲル状態に硬化させる。
In order to form a first composite material by reacting an alkoxysilane (alkoxysilane oligomer) with a first organic material such as a phenol resin, an alkoxysilane (alkoxysilane oligomer) is added to the mixture in the sol state. The polysiloxane is bonded to the first organic material by performing a polymerization reaction together with the hydrolysis.
Then, for example, heating is performed at a temperature of 100 to 200 ° C. to form a bridge between the first organic materials by a sol-gel reaction, and the sol state is cured to the gel state.
また、フェノール樹脂等の第1の有機材料の任意の部位に、均一な間隔でアルコキシシラン(アルコキシシランオリゴマー)を結合させることができ、架橋硬化した状態において、第1の有機材料中のポリシロキサンを均一に分布させることができる。 In addition, an alkoxysilane (alkoxysilane oligomer) can be bonded to an arbitrary portion of the first organic material such as a phenol resin at a uniform interval, and the polysiloxane in the first organic material can be crosslinked and cured. Can be uniformly distributed.
また、フェノール樹脂等の第1の有機材料中に結合したポリシロキサンの分子量、結合点を調整することで、細孔の大きさ、数量を制御することができる。
例えば、第1の有機材料中に、アルコキシシラン(アルコキシシランオリゴマー)の結合点を多くすれば、ポリシロキサンが第1の有機材料中に多数結合する。一方、アルコキシシラン(アルコキシシランオリゴマー)の結合点を少なくすれば、ポリシロキサンの結合点は少なくなる。その結果、加熱工程により得られるカーボンの微細構造、すなわち、孔サイズ、孔の数はポリシロキサンの結合点と結合量によって調整されることになる。
In addition, the size and quantity of the pores can be controlled by adjusting the molecular weight and bonding point of the polysiloxane bonded in the first organic material such as phenol resin.
For example, if the number of bonding points of alkoxysilane (alkoxysilane oligomer) is increased in the first organic material, a large number of polysiloxane bonds in the first organic material. On the other hand, if the bonding points of alkoxysilane (alkoxysilane oligomer) are reduced, the bonding points of polysiloxane are reduced. As a result, the fine structure of the carbon obtained by the heating process, that is, the pore size and the number of pores are adjusted by the bonding point and bonding amount of the polysiloxane.
(第2の複合材)
次に、細孔源を含む無機ゾル又は金属アルコキシドと第2の有機材料とからなる第2の複合材について説明する。
この場合、無機ゾル又は第2の有機材料に含まれる無機化合物が、細孔源となる。
(Second composite material)
Next, a second composite material composed of an inorganic sol containing a pore source or a metal alkoxide and a second organic material will be described.
In this case, the inorganic compound contained in the inorganic sol or the second organic material becomes the pore source.
例えば、無機化合物がシリカであり、第2の有機材料がフェノール樹脂である場合、第2の複合材の構造としては、シリカ粒子がフェノール樹脂中に分散している構造も考えられるし、シリカ粒子がシリカ部分で架橋されたフェノール樹脂中に分散している構造も考えられる。このように、「シリカ」とは、セラミックのシリカ(SiO)だけでなく、有機材料中のSi-O単位をも意味することとする。シリカ以外の他の無機化合物についても同様である。
第2の複合材を用いる場合、後述する加熱工程において、無機ゾルに含まれる無機化合物が気化するか、又は、第2の有機材料に含まれる無機化合物が脱離した後に気化する。その結果、細孔が形成されると考えられる。
For example, when the inorganic compound is silica and the second organic material is a phenol resin, the structure of the second composite material may be a structure in which silica particles are dispersed in the phenol resin. A structure in which is dispersed in a phenol resin crosslinked with a silica portion is also conceivable. Thus, “silica” means not only ceramic silica (SiO 2 ) but also Si—O units in organic materials. The same applies to other inorganic compounds other than silica.
In the case of using the second composite material, in the heating step described later, the inorganic compound contained in the inorganic sol is vaporized or vaporized after the inorganic compound contained in the second organic material is desorbed. As a result, it is considered that pores are formed.
無機ゾルとしては、例えば、シリカゾル、アルミナゾル、マグネシアゾル、ジルコニアゾル、及び、チタニアゾル等が挙げられる。これらの中では、気化しやすさの観点から、シリカゾル、アルミナゾル、又は、マグネシアゾルが望ましく、シリカゾルがより望ましい。
なお、シリカゾルには、オルガノシリカゾルも含まれる。
金属アルコキシドとしては、例えば、アルコキシシラン類等が挙げられる。
Examples of the inorganic sol include silica sol, alumina sol, magnesia sol, zirconia sol, and titania sol. Among these, silica sol, alumina sol, or magnesia sol is desirable, and silica sol is more desirable from the viewpoint of evaporability.
Silica sol includes organosilica sol.
Examples of the metal alkoxide include alkoxysilanes.
第2の有機材料としては、熱硬化性樹脂が挙げられる。熱硬化性樹脂としては、例えば、フェノール系樹脂、エポキシ系樹脂、ポリイミド系樹脂、メラミン系樹脂、ポリアミドイミド系樹脂、ウレタン系樹脂、アミノ系樹脂、不飽和ポリエステル系樹脂、ジアリルフタレート系樹脂、アルキド系樹脂、及び、ケイ素系樹脂等が挙げられる。これらの樹脂の中では、フェノール系樹脂、エポキシ系樹脂、ポリイミド系樹脂、メラミン系樹脂、又は、ポリアミドイミド系樹脂が望ましく、特に、フェノール系樹脂、又は、網状骨格を有するポリイミド系樹脂が望ましい。 An example of the second organic material is a thermosetting resin. Examples of thermosetting resins include phenolic resins, epoxy resins, polyimide resins, melamine resins, polyamideimide resins, urethane resins, amino resins, unsaturated polyester resins, diallyl phthalate resins, alkyds. Resin, silicon resin and the like. Among these resins, phenol-based resins, epoxy-based resins, polyimide-based resins, melamine-based resins, or polyamide-imide-based resins are preferable, and phenol-based resins or polyimide-based resins having a network skeleton are particularly preferable.
第2の有機材料は、第1の複合材であってもよい。 The second organic material may be a first composite material.
無機ゾルに含まれる無機化合物の粒子が第2の有機材料中に分散している構造を有する第2の複合材は、オルガノシリカゾル等の無機ゾルとフェノール樹脂等の第2の有機材料とを混合し、無機ゾルを第2の有機材料に分散させることにより生成することができる。 The second composite material having a structure in which inorganic compound particles contained in the inorganic sol are dispersed in the second organic material is a mixture of an inorganic sol such as an organosilica sol and a second organic material such as a phenol resin. And it can produce | generate by disperse | distributing inorganic sol to a 2nd organic material.
(加熱工程)
以下、細孔源を含む第1の複合材又は第2の複合材を、細孔源の一部が分解気化する温度以上2200℃以下で加熱することにより多孔質炭素材料を得る加熱工程について説明する。
(Heating process)
Hereinafter, a heating process for obtaining a porous carbon material by heating the first composite material or the second composite material containing the pore source at a temperature not lower than 2200 ° C. and not lower than a temperature at which a part of the pore source decomposes and vaporizes will be described. To do.
加熱工程は、窒素、アルゴン等の不活性ガス雰囲気中で行われる。
加熱工程における圧力は、特に限定されないが、通常、常圧程度であることが望ましい。
加熱工程における加熱時間は、特に限定されないが、1~100時間であることが望ましく、2~10時間であることがより望ましい。
加熱工程における温度は、第1の複合材又は第2の複合材に含まれる細孔源の一部が分解気化する温度以上2200℃以下である。そのため、加熱工程における温度は、第1の複合材又は第2の複合材の種類、及び、他の加熱条件(昇温温度、加熱時間等)に応じて適宜決定されるが、1500℃を超え2200℃以下であることが望ましく、1600~2200℃であることがより望ましく、1600~2000℃であることが特に望ましい。
加熱工程における昇温速度は、通常、10~400℃/時間程度であり、20~200℃/時間程度であることが望ましい。
また、加熱工程において、CO分圧を上げることにより、細孔源を効率的に気化させることができると考えられる。
A heating process is performed in inert gas atmosphere, such as nitrogen and argon.
Although the pressure in a heating process is not specifically limited, Usually, it is desirable that it is about a normal pressure.
The heating time in the heating step is not particularly limited, but is preferably 1 to 100 hours, and more preferably 2 to 10 hours.
The temperature in the heating step is not less than the temperature at which a part of the pore source contained in the first composite material or the second composite material is decomposed and vaporized, and not more than 2200 ° C. Therefore, the temperature in the heating step is appropriately determined according to the type of the first composite material or the second composite material and other heating conditions (temperature rise temperature, heating time, etc.), but exceeds 1500 ° C. It is preferably 2200 ° C. or lower, more preferably 1600 to 2200 ° C., and particularly preferably 1600 to 2000 ° C.
The temperature rising rate in the heating step is usually about 10 to 400 ° C./hour, and preferably about 20 to 200 ° C./hour.
Further, it is considered that the pore source can be efficiently vaporized by increasing the CO partial pressure in the heating step.
(その他の工程)
本発明の実施形態に係る多孔質炭素材料の製造方法では、加熱工程の後、得られた多孔質炭素材料を塩基又は酸で処理する後処理工程を行ってもよい。
後処理工程により、残留分を除去することができる。
(Other processes)
In the method for producing a porous carbon material according to the embodiment of the present invention, a post-treatment step of treating the obtained porous carbon material with a base or acid may be performed after the heating step.
Residual components can be removed by the post-treatment process.
後処理工程では、水酸化ナトリウム(NaOH)等の塩基、又は、フッ酸(HF)等の酸を用いてエッチング処理を行う。
例えば、フッ酸を用いたエッチング処理を行う場合、多孔質炭素材料を、20~50%のフッ酸溶液中で0.5~10時間にわたり攪拌することが望ましい。
In the post-treatment process, etching is performed using a base such as sodium hydroxide (NaOH) or an acid such as hydrofluoric acid (HF).
For example, when performing an etching treatment using hydrofluoric acid, it is desirable to stir the porous carbon material in a 20 to 50% hydrofluoric acid solution for 0.5 to 10 hours.
本発明の実施形態に係る多孔質炭素材料の製造方法では、製造した多孔質炭素材料を粉砕することにより、所定の粒子径を有する炭素粉末を得る粉砕工程を行ってもよい。
多孔質炭素材料の粉砕は、超微粉砕機、ボールミル、ジェットミル等を用いて行うことができる。
粉砕工程後の炭素粉末の粒子径(D50)は、0.5~10μmであることが望ましく、1~5μmであることがより望ましい。
炭素粉末の粒子径が1~5μmであると、キャパシタ用電極とした場合に、厚みが薄くても均一な電極を形成することができる。
なお、多孔質炭素材料の粒子径は、粉砕した炭素粉末の懸濁液を、粒子径分布測定装置、粒度分布測定器(レーザー回折式)で測定することにより得ることができる。
In the method for producing a porous carbon material according to the embodiment of the present invention, a pulverization step for obtaining a carbon powder having a predetermined particle diameter may be performed by pulverizing the produced porous carbon material.
The pulverization of the porous carbon material can be performed using an ultrafine pulverizer, a ball mill, a jet mill or the like.
The particle diameter (D50) of the carbon powder after the pulverization step is preferably 0.5 to 10 μm, and more preferably 1 to 5 μm.
When the particle diameter of the carbon powder is 1 to 5 μm, a uniform electrode can be formed even when the thickness is small when used as an electrode for a capacitor.
The particle size of the porous carbon material can be obtained by measuring a pulverized carbon powder suspension with a particle size distribution measuring device and a particle size distribution measuring device (laser diffraction type).
本発明の実施形態に係る多孔質炭素材料の製造方法では、加熱工程の後、得られた多孔質炭素材料を粉砕する工程(加熱後粉砕工程)を行い、粉砕工程により得られた材料を、加熱工程における温度よりも高い温度で加熱する工程(追加加熱工程)を行ってもよい。
加熱工程により大部分の細孔源を除去した後、得られた材料を粉砕し、粉砕された材料を再度加熱することにより、残存する細孔源を確実に除去することができる。
In the method for producing a porous carbon material according to the embodiment of the present invention, after the heating step, a step of pulverizing the obtained porous carbon material (post-heating pulverization step) is performed, and the material obtained by the pulverization step is obtained. You may perform the process (additional heating process) heated at the temperature higher than the temperature in a heating process.
After removing most of the pore sources by the heating step, the obtained material is pulverized and the pulverized material is heated again, so that the remaining pore sources can be reliably removed.
追加加熱工程では、加熱後粉砕工程により得られた材料を、加熱工程における温度よりも高い温度で加熱することを除いて、その他の条件は加熱工程と同様である。
追加加熱工程における温度は、加熱温度(加熱工程における温度)~2200℃であることが望ましい。
In the additional heating step, the other conditions are the same as those in the heating step except that the material obtained in the post-heating pulverization step is heated at a temperature higher than the temperature in the heating step.
The temperature in the additional heating step is preferably from the heating temperature (temperature in the heating step) to 2200 ° C.
また、加熱後粉砕工程の後、加熱後粉砕工程又は追加加熱工程により得られた材料を塩基又は酸でエッチングする後処理工程を行ってもよい。
後処理工程における各条件は、加熱工程の後に行う後処理工程における各条件と同様である。
Moreover, you may perform the post-processing process which etches the material obtained by the post-heating grinding process or the additional heating process with a base or an acid after the post-heating grinding process.
Each condition in the post-processing step is the same as each condition in the post-processing step performed after the heating step.
本発明の実施形態に係る多孔質炭素材料の製造方法では、加熱工程の前に、細孔源を含む材料を、加熱工程における温度よりも低い温度で加熱する工程(予備加熱工程)を行い、予備加熱工程により得られた材料を粉砕する工程(加熱前粉砕工程)を行ってもよい。
予備加熱工程において細孔源の一部を除去した後、得られた材料を粉砕し、粉砕された材料を再度加熱することにより、細孔源を確実に除去することができる。
In the method for producing a porous carbon material according to the embodiment of the present invention, before the heating step, the material containing the pore source is heated at a temperature lower than the temperature in the heating step (preheating step), A step of crushing the material obtained by the preheating step (pre-heating crushing step) may be performed.
After removing a part of the pore source in the preheating step, the obtained material is pulverized, and the pulverized material is heated again, so that the pore source can be reliably removed.
予備加熱工程では、細孔源を含む材料を、加熱工程における温度よりも低い温度で加熱することを除いて、その他の条件は加熱工程と同様である。
予備加熱工程における温度は、400℃~加熱温度(加熱工程における温度)であることが望ましい。
In the preheating step, other conditions are the same as those in the heating step, except that the material including the pore source is heated at a temperature lower than the temperature in the heating step.
The temperature in the preheating step is desirably 400 ° C. to heating temperature (temperature in the heating step).
また、加熱前粉砕工程の後、加熱前粉砕工程又は加熱工程により得られた材料を塩基又は酸でエッチングする後処理工程を行ってもよい。
後処理工程における各条件は、加熱工程の後に行う後処理工程における各条件と同様である。
Moreover, you may perform the post-processing process which etches the material obtained by the pre-heating grinding process or the heating process with a base or an acid after the pre-heating grinding process.
Each condition in the post-processing step is the same as each condition in the post-processing step performed after the heating step.
(2)多孔質炭素材料
本発明の実施形態に係る多孔質炭素材料は、上記の多孔質炭素材料の製造方法により製造されたことを特徴とする。
(2) Porous carbon material A porous carbon material according to an embodiment of the present invention is manufactured by the above-described method for manufacturing a porous carbon material.
本実施形態の多孔質炭素材料には、細孔が形成されている。具体的には、N吸着法により得られた吸着等温線をBJH法により解析した微分細孔容積分布曲線において、細孔直径2~200nmの範囲に含まれる細孔が形成されている。
なお、ここで用いるBJH法とは、Barrett,Joyner,Halendaによって提唱された、メソ孔の分布を求める方法である(E.P.Barrett、L.G.Joyner and P.P.Halenda、J.Am.Chem.Soc.,73、373、(1951)参照)。
In the porous carbon material of the present embodiment, pores are formed. Specifically, in the differential pore volume distribution curve obtained by analyzing the adsorption isotherm obtained by the N 2 adsorption method by the BJH method, pores included in the pore diameter range of 2 to 200 nm are formed.
The BJH method used here is a method proposed by Barrett, Joyner, Halenda for determining the distribution of mesopores (EP Barrett, LG Joyner and PP Halenda, J. et al. Am. Chem. Soc., 73, 373, (1951)).
また、上記微分細孔容積分布曲線において、細孔直径2~15nmの範囲に含まれる細孔容積の合計値Aは、細孔直径2~200nmの範囲に含まれる細孔容積の合計値Bの80%以上を占めていることが望ましい。 In the differential pore volume distribution curve, the total value A of the pore volumes included in the pore diameter range of 2 to 15 nm is equal to the total value B of the pore volumes included in the pore diameter range of 2 to 200 nm. It is desirable to occupy 80% or more.
本実施形態の多孔質炭素材料においては、細孔直径2~200nmの範囲に含まれる細孔容積の合計値Bは、0.3cm/g以上であることが望ましく、0.4~1.2cm/gであることがより望ましい。
上記合計値Bが0.3cm/g以上であると、電解液が入り込むための細孔が多数空いており、かかる多孔質炭素材料を使用したキャパシタ用電極では、充放電特性をより向上させることができる。
また、上記合計値Bが1.2cm/gを超えると、多孔質炭素材料のかさ密度(単位体積あたりの重量)が低くなり、かかる多孔質炭素材料を使用したキャパシタ用電極では、電極密度が低くなる。
In the porous carbon material of the present embodiment, the total value B of the pore volumes included in the pore diameter range of 2 to 200 nm is desirably 0.3 cm 3 / g or more, and 0.4 to 1. More desirably, it is 2 cm 3 / g.
When the total value B is 0.3 cm 3 / g or more, there are many pores for the electrolyte to enter, and the capacitor electrode using such a porous carbon material further improves the charge / discharge characteristics. be able to.
In addition, when the total value B exceeds 1.2 cm 3 / g, the bulk density (weight per unit volume) of the porous carbon material decreases, and in the capacitor electrode using such a porous carbon material, the electrode density Becomes lower.
また、本実施形態の多孔質炭素材料には、さらに炭化ケイ素が含まれていてもよい。
多孔質炭素材料に炭化ケイ素が含まれていると、多孔質炭素材料を粉砕しやすくなり、多孔質炭素材料を粉砕してなる炭素粉末の粒子径をより均一に揃えることができると考えられる。
Further, the porous carbon material of the present embodiment may further contain silicon carbide.
If silicon carbide is contained in the porous carbon material, the porous carbon material can be easily pulverized, and the particle diameter of the carbon powder formed by pulverizing the porous carbon material can be more uniform.
(3)キャパシタ用電極、及び、キャパシタ
本発明の実施形態に係るキャパシタ用電極は、上記の多孔質炭素材料の製造方法により製造された多孔質炭素材料からなることを特徴とする。
また、本発明の実施形態に係るキャパシタは、上記の多孔質炭素材料の製造方法により製造された多孔質炭素材料を含むキャパシタ用電極を備えたことを特徴とする。
(3) Capacitor Electrode and Capacitor A capacitor electrode according to an embodiment of the present invention is characterized by comprising a porous carbon material produced by the above-described method for producing a porous carbon material.
In addition, a capacitor according to an embodiment of the present invention includes a capacitor electrode including the porous carbon material manufactured by the above porous carbon material manufacturing method.
ここでは、キャパシタ用電極として、ハイブリッドキャパシタ用電極の一種であるリチウムイオンキャパシタ用電極を例に説明し、キャパシタとして、ハイブリッドキャパシタの一種であるリチウムイオンキャパシタを例に説明する。 Here, a lithium ion capacitor electrode which is a kind of hybrid capacitor electrode will be described as an example of the capacitor electrode, and a lithium ion capacitor which is a kind of hybrid capacitor will be described as an example of the capacitor.
図1は、本発明のリチウムイオンキャパシタの一例を模式的に示す断面図である。 FIG. 1 is a cross-sectional view schematically showing an example of the lithium ion capacitor of the present invention.
図1に示すリチウムイオンキャパシタ1は、リチウムイオンキャパシタ用電極(正極を符号2で示し、負極を符号3で示す)、セパレータ4及び電解液(図示せず)から構成されている。
具体的には、リチウムイオンキャパシタ1では、正極2と負極3とが、セパレータ4を介して対向するように設けられている。
A lithium ion capacitor 1 shown in FIG. 1 includes an electrode for a lithium ion capacitor (a positive electrode is denoted by reference numeral 2 and a negative electrode is denoted by reference numeral 3), a separator 4 and an electrolytic solution (not shown).
Specifically, in the lithium ion capacitor 1, the positive electrode 2 and the negative electrode 3 are provided so as to face each other with the separator 4 interposed therebetween.
正極2は、上述した本実施形態の多孔質炭素材料を含んでなる。
正極2は、本実施形態の多孔質炭素材料からなる電極組成物と、電極組成物が形成される正極集電体2aと、正極集電体2aに取り付けられた正極タブ2bとからなる。正極タブ2bはケーシング5から外部に取り出されている。
The positive electrode 2 includes the porous carbon material of the present embodiment described above.
The positive electrode 2 includes an electrode composition made of the porous carbon material of the present embodiment, a positive electrode current collector 2a on which the electrode composition is formed, and a positive electrode tab 2b attached to the positive electrode current collector 2a. The positive electrode tab 2b is taken out from the casing 5 to the outside.
正極2の厚みは、好ましくは30~300μm、より好ましくは40~200μm、さらに好ましくは50~150μmである。 The thickness of the positive electrode 2 is preferably 30 to 300 μm, more preferably 40 to 200 μm, and still more preferably 50 to 150 μm.
正極集電体2aは、好ましくは金属、炭素、導電性高分子等から構成されており、金属から構成されていることがより好ましい。
正極集電体2a用の金属としては、アルミニウム、白金、ニッケル、タンタル、チタン、ステンレス鋼、銅、その他の合金等を使用することができる。
これらの中で電気伝導率、耐電圧性の面から銅、アルミニウムまたはアルミニウム合金を使用するのが好ましい。
The positive electrode current collector 2a is preferably made of metal, carbon, conductive polymer, etc., and more preferably made of metal.
As the metal for the positive electrode current collector 2a, aluminum, platinum, nickel, tantalum, titanium, stainless steel, copper, other alloys, or the like can be used.
Among these, it is preferable to use copper, aluminum or an aluminum alloy from the viewpoint of electrical conductivity and voltage resistance.
正極集電体2aの形状は、金属箔、金属エッジド箔などの集電体、エキスパンドメタル、パンチングメタル、網状などの貫通する孔を有する集電体が挙げられるが、電解質イオンの拡散抵抗を低減しかつリチウムイオンキャパシタの出力密度を向上できる点で貫通する孔を有する正極集電体が好ましく、その中でもさらに電極強度に優れる点で、エキスパンドメタル又はパンチングメタルがより好ましい。 Examples of the shape of the positive electrode current collector 2a include current collectors such as metal foils and metal edged foils, and current collectors having through-holes such as expanded metal, punching metal, and net-like, but reduce diffusion resistance of electrolyte ions. In addition, a positive electrode current collector having a through-hole is preferable in that the output density of the lithium ion capacitor can be improved, and among them, expanded metal or punching metal is more preferable in that the electrode strength is further excellent.
正極集電体2aの孔の割合は、好ましくは10~80面積%、より好ましくは20~60面積%、さらに好ましくは30~50面積%である。貫通する孔の割合がこの範囲にあると、電解液の拡散抵抗が低減し、リチウムイオンキャパシタの内部抵抗が低減する。
なお、正極集電体の孔はリチウムイオンキャパシタの場合にのみ設けられていればよく、電気二重層キャパシタの場合には孔が設けられている必要はない。
The ratio of the holes of the positive electrode current collector 2a is preferably 10 to 80 area%, more preferably 20 to 60 area%, and still more preferably 30 to 50 area%. When the ratio of the penetrating holes is within this range, the diffusion resistance of the electrolytic solution is reduced, and the internal resistance of the lithium ion capacitor is reduced.
In addition, the hole of a positive electrode electrical power collector should just be provided only in the case of a lithium ion capacitor, and the hole need not be provided in the case of an electric double layer capacitor.
正極集電体2aの厚みは、好ましくは5~100μmで、より好ましくは10~70μm、さらに好ましくは20~50μmである。  The thickness of the positive electrode current collector 2a is preferably 5 to 100 μm, more preferably 10 to 70 μm, and still more preferably 20 to 50 μm. *
負極3は、リチウムイオンを吸蔵し、放出し得る負極活物質を含む電極である。
負極3には、負極集電体3aが設けられており、負極集電体3aには負極タブ3bが取り付けられており、負極タブ3bはケーシング5から外部に取り出されている。
負極集電体3bは、例えば、銅、ニッケル、ステンレス及びそれらの合金等から形成されている。
The negative electrode 3 is an electrode including a negative electrode active material that can occlude and release lithium ions.
The negative electrode 3 is provided with a negative electrode current collector 3a. A negative electrode tab 3b is attached to the negative electrode current collector 3a, and the negative electrode tab 3b is taken out from the casing 5 to the outside.
The negative electrode current collector 3b is made of, for example, copper, nickel, stainless steel, and alloys thereof.
負極3には、リチウムイオンが予め吸蔵されていることが好ましい。
リチウムイオンは、化学的方法又は電気化学的方法等により負極に吸蔵させることができる。
The negative electrode 3 is preferably preliminarily occluded with lithium ions.
Lithium ions can be occluded in the negative electrode by a chemical method or an electrochemical method.
化学的方法としては、負極と必要量のリチウム金属を接触させた状態で電解液に浸漬し、熱をかけることにより、リチウムイオンを吸蔵させる方法等が挙げられる。電気化学的方法としては、負極とリチウム金属をセパレータを介して対向させ、電解液中で定電流充電することにより、リチウムイオンを吸蔵させる方法等が挙げられる。 Examples of the chemical method include a method of immersing lithium ions by immersing in an electrolytic solution in a state where a negative electrode and a necessary amount of lithium metal are in contact with each other and applying heat. Examples of the electrochemical method include a method in which lithium ions are occluded by making a negative electrode and lithium metal face each other through a separator and charging with constant current in an electrolytic solution.
セパレータ4は、リチウムイオンキャパシタ用電極の間を絶縁でき、イオンを通過させることができるものであれば特に限定されない。
具体的には、ポリエチレン又はポリプロピレンなどのポリオレフィン、レーヨン又はガラス繊維製の微孔膜、レーヨン又はガラス繊維製の不織布、パルプ(一般に電解コンデンサ紙と呼ばれる)を主原料とする多孔質膜などを用いることができる。
セパレータ4の厚みは、好ましくは1~100μmであり、より好ましくは10~80μmであり、さらに好ましくは20~60μmである。
The separator 4 is not particularly limited as long as it can insulate between lithium ion capacitor electrodes and allow ions to pass therethrough.
Specifically, a polyolefin such as polyethylene or polypropylene, a microporous membrane made of rayon or glass fiber, a nonwoven fabric made of rayon or glass fiber, a porous membrane made mainly of pulp (commonly called electrolytic capacitor paper), or the like is used. be able to.
The thickness of the separator 4 is preferably 1 to 100 μm, more preferably 10 to 80 μm, and still more preferably 20 to 60 μm.
また、ケーシング5は、ラミネートフィルム、金属ケース、樹脂ケース、セラミックケース等から形成されていてもよい。
その形状としては、特に限定されず、コイン型、円筒型、角型等であってもよい。
The casing 5 may be formed of a laminate film, a metal case, a resin case, a ceramic case, or the like.
The shape is not particularly limited, and may be a coin shape, a cylindrical shape, a square shape, or the like.
電解液は、電解質と溶媒とから構成されている。
電解質としては、リチウム塩を使用することができる。そのため、カチオンとしては、リチウムイオンを用いることができる。また、アニオンとしては、PF 、BF 、AsF 、SbF 、N(RfSO2-、C(RfSO3-、RfSO (Rfはそれぞれ炭素数1~12のフルオロアルキル基を表す)、F、ClO 、AlCl 、AlF 等を用いることができる。
これらの電解質は単独または二種類以上として使用することができる。
また、電解質であるリチウム塩の濃度は、0.1~2.5mol/lが好ましい。
The electrolytic solution is composed of an electrolyte and a solvent.
A lithium salt can be used as the electrolyte. Therefore, lithium ions can be used as cations. As anions, PF 6 , BF 4 , AsF 6 , SbF 6 , N (RfSO 3 ) 2− , C (RfSO 3 ) 3− , RfSO 3 (Rf is 1 to 12 carbon atoms, respectively) F , ClO 4 , AlCl 4 , AlF 4 − and the like can be used.
These electrolytes can be used alone or in combination of two or more.
The concentration of the lithium salt as the electrolyte is preferably 0.1 to 2.5 mol / l.
溶媒は、キャパシタやリチウムイオンキャパシタに用いることができる非水系電解液であれば特に限定されるものではない。
具体的には、プロピレンカーボート、エチレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート等のカーボネート類;γ-ブチロラクトンなどのラクトン類;スルホラン類;アセトニトリルなどのニトリル類;が挙げられる。これらの溶媒は単独または二種以上の混合溶媒として使用することができる。中でも、カーボネート類が好ましい。
A solvent will not be specifically limited if it is a non-aqueous electrolyte solution which can be used for a capacitor or a lithium ion capacitor.
Specific examples include carbonates such as propylene boat, ethylene carbonate, butylene carbonate, dimethyl carbonate, ethylmethyl carbonate, and diethyl carbonate; lactones such as γ-butyrolactone; sulfolanes; nitriles such as acetonitrile. These solvents can be used alone or as a mixed solvent of two or more. Of these, carbonates are preferred.
本実施形態のリチウムイオンキャパシタ用電極は、以下の工程を経て製造することができる。 The electrode for a lithium ion capacitor of this embodiment can be manufactured through the following steps.
まず、本実施形態の多孔質炭素材料からなる炭素粉末、導電材、バインダ及び水等の溶媒を混合することにより、正極組成物用スラリーを調製する正極組成物調製工程を行う。 First, a positive electrode composition preparation step of preparing a positive electrode composition slurry is performed by mixing a carbon powder made of the porous carbon material of the present embodiment, a conductive material, a binder and water.
本実施形態の多孔質炭素材料を粉砕することにより、所定の粒子径を有する炭素粉末にしておく。
炭素粉末の粒子径(D50)は、0.5~10μmであることが望ましく、1~5μmであることがより望ましい。
The porous carbon material of the present embodiment is pulverized to obtain carbon powder having a predetermined particle size.
The particle diameter (D50) of the carbon powder is preferably 0.5 to 10 μm, and more preferably 1 to 5 μm.
バインダとしては、ポリテトラフルオロエチレン、スチレンブタジエンゴム、ポリテトラフルオロエチレン、スチレンブタジエンゴム(SBR)、ポリフッ化ビニリデン(PVDF)等が挙げられる。これらのバインダは、それぞれ単独でまたは2種以上を組み合わせて使用できる。バインダとしては、ポリテトラフルオロエチレンが好ましい。
また、バインダは、成形性を容易にするため、粉末状のものが好ましい。
バインダの使用量は、例えば、炭素粉末100重量部に対し1~30重量部であることが好ましい。
Examples of the binder include polytetrafluoroethylene, styrene butadiene rubber, polytetrafluoroethylene, styrene butadiene rubber (SBR), and polyvinylidene fluoride (PVDF). These binders can be used alone or in combination of two or more. As the binder, polytetrafluoroethylene is preferable.
In addition, the binder is preferably a powder in order to facilitate the moldability.
The amount of the binder used is preferably, for example, 1 to 30 parts by weight with respect to 100 parts by weight of the carbon powder.
導電材としては、電気二重層を形成し得る細孔をほぼ有さない粒子状の炭素からなり、例えば、ファーネスブラック、アセチレンブラック、及び、ケッチェンブラック(アクゾノーベル ケミカルズ ベスローテン フェンノートシャップ社の登録商標)などの電気伝導率カーボンブラックが挙げられる。これらの中でも、アセチレンブラックおよびファーネスブラックが好ましい。
これらの導電材は、単独でまたは二種類以上を組み合わせて用いることができる。
The conductive material is made of particulate carbon that has almost no pores that can form an electric double layer. For example, furnace black, acetylene black, and ketjen black (registered by Akzo Nobel Chemicals Bethloten Fennaut Shap) Trade name) and the like. Among these, acetylene black and furnace black are preferable.
These conductive materials can be used alone or in combination of two or more.
導電材の平均粒子径は、多孔質炭素材料からなる炭素粉末の平均粒子径よりも小さいものが好ましく、より好ましくは0.001~10μm、さらに好ましくは0.05~5μm、特に好ましくは0.01~1μmである。導電材の平均粒子径がこの範囲にあると、高い電気伝導率が得られる。
導電材の量は、炭素粉末100重量部に対して、好ましくは0.1~50重量部、より好ましくは0.5~15重量部、さらに好ましくは1~10重量部の範囲である。
導電材の量がこの範囲にあると、得られるリチウムイオンキャパシタ用電極を使用したリチウムイオンキャパシタの容量を高くし、内部抵抗を低くすることができる。
The average particle size of the conductive material is preferably smaller than the average particle size of the carbon powder made of the porous carbon material, more preferably 0.001 to 10 μm, still more preferably 0.05 to 5 μm, and particularly preferably 0.00. 01 to 1 μm. When the average particle diameter of the conductive material is within this range, high electrical conductivity can be obtained.
The amount of the conductive material is preferably in the range of 0.1 to 50 parts by weight, more preferably 0.5 to 15 parts by weight, and further preferably 1 to 10 parts by weight with respect to 100 parts by weight of the carbon powder.
When the amount of the conductive material is within this range, the capacity of the lithium ion capacitor using the obtained lithium ion capacitor electrode can be increased, and the internal resistance can be decreased.
次に、正極組成物用スラリーを正極集電体2aの上に塗布した後、乾燥させる正極作製工程を行う。
このような湿式成形法により、正極2を作製することができる。
その他の方法として、シート状に成形した正極組成物を、正極集電体上に積層する方法(混練シート成形法)、正極組成物の複合粒子を調製し、正極集電体上にシート成形、ロールプレスする方法(乾式成形法)等が挙げられる。中でも、湿式成形法、乾式成形法が好ましく、湿式成形法がより好ましい。
Next, the positive electrode composition slurry is applied on the positive electrode current collector 2a, and then dried to produce a positive electrode.
The positive electrode 2 can be produced by such a wet molding method.
As other methods, a method of laminating a positive electrode composition molded into a sheet shape on a positive electrode current collector (kneading sheet molding method), preparing composite particles of the positive electrode composition, forming a sheet on the positive electrode current collector, Examples thereof include a roll press method (dry molding method). Among these, a wet molding method and a dry molding method are preferable, and a wet molding method is more preferable.
負極3は、負極活物質とバインダと導電材とを混合し、これを溶媒に添加して負極組成物用スラリーを作製し、このスラリーを負極集電体3aに塗布し、乾燥して形成することができる。
その他、混練シート成形法、乾式成形法により負極を作製してもよい。
The negative electrode 3 is formed by mixing a negative electrode active material, a binder, and a conductive material, adding this to a solvent to prepare a slurry for a negative electrode composition, applying the slurry to the negative electrode current collector 3a, and drying the slurry. be able to.
In addition, the negative electrode may be produced by a kneading sheet molding method or a dry molding method.
負極活物質としては、リチウムイオンを可逆的に担持できる物質であればよい。
具体的には、リチウムイオン二次電池の負極で用いられる電極活物質が広く使用できる。
中でも、黒鉛、難黒鉛化炭素等の結晶性炭素材料、ハードカーボン、コークス等の炭素材料、ポリアセン系物質(PAS)が好ましい。これらの炭素材料及びPASは、フェノール樹脂等を炭化させ、必要に応じて賦活され、次いで粉砕したものが用いられる。
バインダ及び導電材は、正極と同様のものを使用することができる。
The negative electrode active material may be any material that can reversibly carry lithium ions.
Specifically, electrode active materials used in the negative electrode of lithium ion secondary batteries can be widely used.
Among these, crystalline carbon materials such as graphite and non-graphitizable carbon, carbon materials such as hard carbon and coke, and polyacene-based substances (PAS) are preferable. These carbon materials and PAS are obtained by carbonizing a phenol resin or the like, activated as necessary, and then pulverized.
The same binder and conductive material as the positive electrode can be used.
次に、本実施形態のキャパシタの製造方法について説明する。
ここでは、上述したリチウムイオンキャパシタを例に、キャパシタの製造方法について説明する。
Next, a method for manufacturing the capacitor of this embodiment will be described.
Here, the manufacturing method of a capacitor is demonstrated taking the lithium ion capacitor mentioned above as an example.
まず、正極2を上部ケーシングに取り付け、負極3を下部ケーシングに取り付ける。
その後、正極2と負極3との間にセパレータ4を設置し、電解液を含浸させた後、ケーシングを封止する。
これにより、本実施形態のリチウムイオンキャパシタを製造することができる。
First, the positive electrode 2 is attached to the upper casing, and the negative electrode 3 is attached to the lower casing.
Then, the separator 4 is installed between the positive electrode 2 and the negative electrode 3, and after impregnating with electrolyte solution, a casing is sealed.
Thereby, the lithium ion capacitor of this embodiment can be manufactured.
以下に、本実施形態の多孔質炭素材料の製造方法、多孔質炭素材料、キャパシタ用電極、及び、キャパシタの作用効果を記載する。 Below, the manufacturing method of the porous carbon material of this embodiment, the porous carbon material, the electrode for capacitors, and the effect of a capacitor are described.
(1)本実施形態の多孔質炭素材料の製造方法では、第1の有機材料を構成する高分子鎖に細孔源を含む修飾基が結合した第1の複合材、又は、細孔源を含む無機ゾルもしくは金属アルコキシドと第2の有機材料とからなる第2の複合材を、上記細孔源の一部が分解気化する温度以上2200℃以下で加熱する加熱工程を含む。
上記加熱工程により、まず、第1の複合材又は第2の複合材を炭化させることができる。さらに、上記加熱工程により、複合材から細孔源を除去することができる。その結果、細孔を形成することができる。
このように、本実施形態の多孔質炭素材料の製造方法では、加熱工程により、複合材の炭化及び細孔の形成を行うことができる。従って、細孔を形成する工程を省略することができ、製造工程を簡略化することができる。その結果、製造時間及びコストを低減することができる。
さらに、本実施形態の多孔質炭素材料の製造方法では、第1の複合材又は第2の複合材を加熱することにより細孔を形成することができるため、フッ酸等の危険な薬品を取り扱うことなく安全に多孔質炭素材料を製造することができる。
(1) In the method for producing a porous carbon material of the present embodiment, the first composite material in which a modifying group containing a pore source is bound to the polymer chain constituting the first organic material, or the pore source is used. A heating step is included in which the second composite material including the inorganic sol or metal alkoxide and the second organic material is heated at a temperature not lower than the temperature at which a part of the pore source is decomposed and vaporized but not higher than 2200 ° C.
By the heating step, first, the first composite material or the second composite material can be carbonized. Further, the pore source can be removed from the composite material by the heating step. As a result, pores can be formed.
Thus, in the manufacturing method of the porous carbon material of this embodiment, carbonization of a composite material and formation of pores can be performed by a heating process. Therefore, the process of forming pores can be omitted, and the manufacturing process can be simplified. As a result, manufacturing time and cost can be reduced.
Furthermore, in the method for producing the porous carbon material of the present embodiment, since the pores can be formed by heating the first composite material or the second composite material, dangerous chemicals such as hydrofluoric acid are handled. A porous carbon material can be produced safely without any problems.
(2)本実施形態の多孔質炭素材料の製造方法では、第1の複合材又は第2の複合材を、細孔源の一部が分解気化する温度以上2200℃以下で加熱する。
第1の複合材又は第2の複合材を上記温度範囲で加熱することにより、有効なメソ孔を多く形成することができる。
(2) In the method for producing a porous carbon material of the present embodiment, the first composite material or the second composite material is heated at a temperature not lower than 2200 ° C. and not lower than a temperature at which a part of the pore source is decomposed and vaporized.
Many effective mesopores can be formed by heating the first composite material or the second composite material in the above temperature range.
(3)本実施形態の多孔質炭素材料は、本実施形態の多孔質炭素材料の製造方法により製造されたことを特徴とする。
本実施形態の多孔質炭素材料の製造方法により製造された多孔質炭素材料は、有効なメソ孔が多く形成されているため、かさが低い。そして、かかる多孔質炭素材料を用いたキャパシタ用電極は、電極密度が高くなる。
(3) The porous carbon material of this embodiment is manufactured by the method for manufacturing a porous carbon material of this embodiment.
Since the porous carbon material manufactured by the method for manufacturing the porous carbon material of the present embodiment has many effective mesopores, the bulk is low. And the electrode for capacitors using this porous carbon material becomes high in electrode density.
(4)本実施形態のキャパシタ用電極は、本実施形態の多孔質炭素材料の製造方法により製造された多孔質炭素材料からなることを特徴とする。かかる電極を使用したキャパシタは、高い電極密度を有する。 (4) The capacitor electrode of the present embodiment is characterized by comprising a porous carbon material manufactured by the method for manufacturing a porous carbon material of the present embodiment. A capacitor using such an electrode has a high electrode density.
(5)本実施形態のキャパシタは、本実施形態の多孔質炭素材料の製造方法により製造された多孔質炭素材料を含むキャパシタ用電極を備えたことを特徴とする。かかるキャパシタは、電極密度が高い電極を備えているため、高い電極密度を有する。 (5) The capacitor according to the present embodiment includes a capacitor electrode including the porous carbon material manufactured by the method for manufacturing a porous carbon material according to the present embodiment. Since such a capacitor includes an electrode having a high electrode density, the capacitor has a high electrode density.
以下、本発明の実施形態をより具体的に開示した実施例を示すが、本実施形態はこれらの実施例のみに限定されるものではない。 Hereinafter, examples that more specifically disclose the embodiments of the present invention will be shown, but the present embodiments are not limited to these examples.
(1)多孔質炭素材料の製造
(実施例1)
アルコキシシラン化合物により修飾されたフェノール樹脂(住友ベークライト株式会社製、スミライトレジン(登録商標)PR-54529)と、硬化反応剤としてのヘキサメチレンテトラミンとを、フェノール樹脂:硬化反応剤=5:1(重量比)で混合して硬化反応剤混合物を得た。
(1) Production of porous carbon material (Example 1)
A phenol resin modified with an alkoxysilane compound (Sumilite Resin (registered trademark) PR-54529, manufactured by Sumitomo Bakelite Co., Ltd.) and hexamethylenetetramine as a curing reaction agent are mixed with phenol resin: curing reaction agent = 5: 1. The mixture was mixed at a weight ratio to obtain a curing reaction agent mixture.
得られた硬化反応剤混合物を、ガラス板上に固定したPETシート上に載せた。
次に、ガラス棒を使用し、硬化反応剤混合物をPETシート上に製膜し、170℃、30分間の条件にて乾燥機内で硬化させた。
得られたフィルムを所定の大きさに切断し、1800℃、2時間、N雰囲気の加熱条件で加熱した。
以上の工程を経ることにより、実施例1の多孔質炭素材料を製造した。
The obtained curing reaction agent mixture was placed on a PET sheet fixed on a glass plate.
Next, using a glass rod, the curing reaction agent mixture was formed into a film on a PET sheet, and cured in a dryer at 170 ° C. for 30 minutes.
The obtained film was cut into a predetermined size and heated at 1800 ° C. for 2 hours under heating conditions in an N 2 atmosphere.
The porous carbon material of Example 1 was manufactured through the above steps.
(実施例2)
加熱条件を1600℃、10時間、N雰囲気に変更した以外は、実施例1と同様にして多孔質材料を製造した。
(Example 2)
A porous material was produced in the same manner as in Example 1 except that the heating condition was changed to 1600 ° C. for 10 hours in an N 2 atmosphere.
(実施例3)
加熱条件を2000℃、2時間、N雰囲気に変更した以外は、実施例1と同様にして多孔質材料を製造した。
(Example 3)
A porous material was produced in the same manner as in Example 1 except that the heating condition was changed to N 2 atmosphere at 2000 ° C. for 2 hours.
(実施例4)
加熱条件を2200℃、2時間、N雰囲気に変更した以外は、実施例1と同様にして多孔質材料を製造した。
Example 4
2200 ° C. The heating conditions, it is 2 hours, except that the N 2 atmosphere to prepare a porous material in the same manner as in Example 1.
(実施例5)
無水トリメリット酸とジフェニルメタン-4,4’-ジイソシアネートから合成した芳香族ポリアミドイミドの基本骨格にシロキサンを導入することによって合成された、アルコキシシラン化合物により修飾されたポリアミドイミド樹脂を用いた。
上記アルコキシシラン化合物により修飾されたポリアミドイミド樹脂について、実施例1と同様にフィルムを得た。
得られたフィルムを所定の大きさに切断し、1600℃、2時間、N雰囲気の加熱条件で加熱した。
以上の工程を経ることにより、実施例5の多孔質炭素材料を製造した。
(Example 5)
A polyamide-imide resin modified with an alkoxysilane compound synthesized by introducing siloxane into the basic skeleton of an aromatic polyamide-imide synthesized from trimellitic anhydride and diphenylmethane-4,4′-diisocyanate was used.
A film was obtained in the same manner as in Example 1 for the polyamideimide resin modified with the alkoxysilane compound.
The obtained film was cut into a predetermined size and heated at 1600 ° C. for 2 hours under heating conditions in an N 2 atmosphere.
By passing through the above process, the porous carbon material of Example 5 was manufactured.
(実施例6)
アルコキシシラン化合物により修飾されたポリイミド樹脂(イビデン樹脂株式会社製、HBPI-SiO2-A)を準備し、実施例1と同様にフィルムを得た。
得られたフィルムを所定の大きさに切断し、1800℃、2時間、N雰囲気の加熱条件で加熱した。
以上の工程を経ることにより、実施例6の多孔質炭素材料を製造した。
(Example 6)
A polyimide resin (HBPI-SiO2-A, manufactured by Ibiden Resin Co., Ltd.) modified with an alkoxysilane compound was prepared, and a film was obtained in the same manner as in Example 1.
The obtained film was cut into a predetermined size and heated at 1800 ° C. for 2 hours under heating conditions in an N 2 atmosphere.
The porous carbon material of Example 6 was manufactured through the above steps.
(実施例7)
オルガノシリカゾル(日産化学工業株式会社製、粒径10nm、シリカ濃度20%)と、フェノール樹脂(住友ベークライト株式会社製、ノボラック型)とを、オルガノシリカゾル:フェノール樹脂=5:4(重量比)で混合して、フェノール樹脂中にオルガノシリカゾルを分散させることにより複合材を得た。
得られた複合材10gと、硬化反応剤として、ヘキサメチレンテトラミン0.8gとを混合して硬化反応剤混合物を得た。
(Example 7)
Organosilica sol (manufactured by Nissan Chemical Industries, Ltd., particle size 10 nm, silica concentration 20%) and phenolic resin (manufactured by Sumitomo Bakelite Co., Ltd., novolak type) in organosilica sol: phenolic resin = 5: 4 (weight ratio) The composite material was obtained by mixing and dispersing the organosilica sol in the phenol resin.
10 g of the obtained composite material and 0.8 g of hexamethylenetetramine as a curing reaction agent were mixed to obtain a curing reaction agent mixture.
得られた硬化反応剤混合物を、ガラス板上に固定したPETシート上に載せた。
次に、ガラス棒を使用し、硬化反応剤混合物をPETシート上に製膜し、170℃、30分間の条件にて乾燥機内で硬化させた。
得られたフィルムを所定の大きさに切断し、1800℃、2時間、N雰囲気の加熱条件で加熱した。
以上の工程を経ることにより、実施例7の多孔質炭素材料を製造した。
The obtained curing reaction agent mixture was placed on a PET sheet fixed on a glass plate.
Next, using a glass rod, the curing reaction agent mixture was formed into a film on a PET sheet, and cured in a dryer at 170 ° C. for 30 minutes.
The obtained film was cut into a predetermined size and heated at 1800 ° C. for 2 hours under heating conditions in an N 2 atmosphere.
The porous carbon material of Example 7 was manufactured through the above steps.
(比較例1)
加熱条件を1450℃、2時間、N雰囲気に変更した以外は、実施例1と同様にして多孔質材料を製造した。
(比較例2)
加熱条件を2250℃、2時間、N雰囲気に変更した以外は、実施例1と同様にして多孔質材料を製造した。
(Comparative Example 1)
A porous material was produced in the same manner as in Example 1 except that the heating conditions were changed to N 2 atmosphere at 1450 ° C. for 2 hours.
(Comparative Example 2)
2250 ° C. The heating conditions, it is 2 hours, except that the N 2 atmosphere to prepare a porous material in the same manner as in Example 1.
(比較例3)
フィルムを800℃、2時間、N雰囲気で加熱し、その後、48%フッ酸(HF水溶液)で24時間処理したこと以外は、実施例1と同様にして多孔質炭素材料を製造した。
(Comparative Example 3)
A porous carbon material was produced in the same manner as in Example 1 except that the film was heated at 800 ° C. for 2 hours in an N 2 atmosphere and then treated with 48% hydrofluoric acid (HF aqueous solution) for 24 hours.
(比較例4)
比較例4の多孔質炭素材料として、市販の活性炭(カルゴンカーボンジャパン株式会社製、ダイアソーブ(登録商標)F 100D)を用いた。
(Comparative Example 4)
As the porous carbon material of Comparative Example 4, commercially available activated carbon (Calgon Carbon Japan Co., Ltd., Diasorb (registered trademark) F 100D) was used.
(2)多孔質炭素材料の評価
各実施例及び比較例で製造した多孔質炭素材料について、以下の方法により評価を行った。
なお、各実施例及び比較例で製造した多孔質炭素材料を、ボールミルに入れ、アルミナ製ボールとともに10時間粉砕することにより、3μmの粒子径(D50)を有する炭素粉末を作製し、この炭素材料を用いて各評価を行った。
(2) Evaluation of porous carbon material The porous carbon material manufactured by each Example and the comparative example was evaluated with the following method.
The porous carbon material produced in each example and comparative example was placed in a ball mill and pulverized with an alumina ball for 10 hours to produce a carbon powder having a particle diameter (D50) of 3 μm. Each evaluation was performed using.
(微分細孔容積分布曲線の作製)
上記炭素粉末を用いて、Nを吸着量を測定し、吸着等温線を作製した。
吸着量の測定には、カンタクローム社製 AUTOSORB-1MPを使用した。
得られた吸着等温線をBJH法で解析することにより、微分細孔容積分布曲線を得た。
その結果、各実施例及び比較例で製造した多孔質炭素材料には、細孔直径2~200nmの範囲に含まれる細孔が形成されていた。
また、各実施例及び比較例で製造した多孔質炭素材料について、細孔直径2~15nmの範囲に含まれる細孔容積の合計値Aが、細孔直径2~200nmの範囲に含まれる細孔容積の合計値Bに占める割合を求めた。その結果を表1に示す。
(Preparation of differential pore volume distribution curve)
Using the carbon powder, the adsorption amount of N 2 was measured, and an adsorption isotherm was prepared.
For the measurement of the N 2 adsorption amount, AUTOSORB-1MP manufactured by Cantachrome was used.
The obtained adsorption isotherm was analyzed by the BJH method to obtain a differential pore volume distribution curve.
As a result, the porous carbon material produced in each example and comparative example had pores included in the pore diameter range of 2 to 200 nm.
In addition, for the porous carbon materials produced in each of the examples and comparative examples, the total pore volume A included in the pore diameter range of 2 to 15 nm is the pores included in the pore diameter range of 2 to 200 nm. The proportion of the total volume B was determined. The results are shown in Table 1.
(BET比表面積の測定)
各実施例及び比較例で製造した多孔質炭素材料について、上記操作により得られた吸着等温線を使用し、BET法によりBET比表面積を求めた。その結果を表1に示す。
なお、BET比表面積は、JIS Z 8830(2001)に準じ、容量法、多点法により測定した。
(Measurement of BET specific surface area)
About the porous carbon material manufactured by each Example and the comparative example, the BET specific surface area was calculated | required by BET method using the adsorption isotherm obtained by the said operation. The results are shown in Table 1.
The BET specific surface area was measured by a capacity method and a multipoint method according to JIS Z 8830 (2001).
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
表1に示したように、有機材料に修飾基が結合した第1の複合材を1600~2200℃で加熱した実施例1~6の多孔質炭素材料においては、細孔直径2~15nmの範囲に含まれる細孔容積の合計値Aが、細孔直径2~200nmの範囲に含まれる細孔容積の合計値Bの80~87%を占めている。
よって、実施例1~6で製造した多孔質炭素材料には、高比表面積のメソ孔が低比表面積のマクロ孔よりも充分に多く形成されていることが分かる。
As shown in Table 1, in the porous carbon materials of Examples 1 to 6 in which the first composite material in which the modifying group was bonded to the organic material was heated at 1600 to 2200 ° C., the pore diameter range was 2 to 15 nm. The total value A of the pore volumes contained in 80% to 87% of the total value B of the pore volumes contained in the pore diameter range of 2 to 200 nm.
Therefore, it can be seen that the porous carbon materials produced in Examples 1 to 6 have sufficiently more mesopores with a high specific surface area than macropores with a low specific surface area.
さらに、実施例1~6の多孔質炭素材料においては、細孔直径2~200nmの範囲に含まれる細孔容積の合計値Bは、0.3~0.63cm/gである。
さらに、実施例1~6の多孔質炭素材料においては、BET比表面積は、301~428m/gである。
よって、実施例1~6で製造した多孔質炭素材料は、かさが充分に低く、これを用いたキャパシタ用電極は電極密度が高いと考えられる。また、電解液が入り込みやすいサイズのメソ孔が多く形成されており、かかる多孔質炭素材料を使用したキャパシタ用電極では、その表面を電気二重層として有効に活用することができると考えられる。
Further, in the porous carbon materials of Examples 1 to 6, the total value B of the pore volumes included in the pore diameter range of 2 to 200 nm is 0.3 to 0.63 cm 3 / g.
Further, in the porous carbon materials of Examples 1 to 6, the BET specific surface area is 301 to 428 m 2 / g.
Therefore, the porous carbon materials produced in Examples 1 to 6 are sufficiently low in bulk, and it is considered that the capacitor electrode using the porous carbon material has a high electrode density. In addition, many mesopores of a size that is easy for electrolyte to enter are formed, and it is considered that the surface of the capacitor electrode using such a porous carbon material can be effectively used as an electric double layer.
また、無機ゾルと有機材料とからなる第2の複合材を用いた実施例7の多孔質炭素材料においても、実施例1~6の多孔質炭素材料と同様の結果が得られることが分かる。 It can also be seen that the porous carbon material of Example 7 using the second composite material composed of the inorganic sol and the organic material can provide the same results as the porous carbon material of Examples 1 to 6.
一方、有機材料に修飾基が結合した第1の複合材を1450℃で加熱した比較例1の多孔質炭素材料、及び、修飾基が結合した複合材を2250℃で加熱した比較例2の多孔質炭素材料においては、細孔直径2~15nmの範囲に含まれる細孔容積の合計値Aが、細孔直径2~200nmの範囲に含まれる細孔容積の合計値Bの82~85%を占めている。
しかしながら、比較例1及び2の多孔質炭素材料においては、細孔直径2~200nmの範囲に含まれる細孔容積の合計値Bが、0.03~0.24cm/gと低い値であり、また、BET比表面積も、135~195m/gと低い値である。
従って、比較例1及び2で製造した多孔質炭素材料をキャパシタ用電極に使用した場合、電極密度が低くなると考えられる。
Meanwhile, the porous carbon material of Comparative Example 1 in which the first composite material in which the modifying group was bonded to the organic material was heated at 1450 ° C., and the porous material in Comparative Example 2 in which the composite material to which the modifying group was bonded were heated at 2250 ° C. In the carbonaceous material, the total value A of the pore volume included in the range of the pore diameter of 2 to 15 nm is 82 to 85% of the total value B of the pore volume included in the range of the pore diameter of 2 to 200 nm. is occupying.
However, in the porous carbon materials of Comparative Examples 1 and 2, the total value B of the pore volumes included in the pore diameter range of 2 to 200 nm is a low value of 0.03 to 0.24 cm 3 / g. The BET specific surface area is also a low value of 135 to 195 m 2 / g.
Therefore, when the porous carbon material manufactured in Comparative Examples 1 and 2 is used for a capacitor electrode, the electrode density is considered to be low.
また、フッ酸処理を行った比較例3の多孔質炭素材料では、細孔直径2~15nmの範囲に含まれる細孔容積の合計値Aが、細孔直径2~200nmの範囲に含まれる細孔容積の合計値Bに占める割合は、実施例1~5の多孔質炭素材料と同様である。そして、BET比表面積は、実施例1~5の多孔質炭素材料よりも優れている。
しかしながら、比較例3の多孔質炭素材料においては、細孔直径2~200nmの範囲に含まれる細孔容積の合計値Bが、1.25cm/gと高い値である。従って、多孔質炭素材料のかさ密度が低くなり、かかる多孔質炭素材料をキャパシタ用電極に使用した場合、電極密度が低くなると考えられる。
Further, in the porous carbon material of Comparative Example 3 subjected to hydrofluoric acid treatment, the total value A of the pore volumes included in the pore diameter range of 2 to 15 nm is included in the fine pore diameter range of 2 to 200 nm. The ratio of the pore volume to the total value B is the same as that of the porous carbon materials of Examples 1 to 5. The BET specific surface area is superior to the porous carbon materials of Examples 1 to 5.
However, in the porous carbon material of Comparative Example 3, the total value B of the pore volumes included in the pore diameter range of 2 to 200 nm is a high value of 1.25 cm 3 / g. Therefore, it is considered that the bulk density of the porous carbon material is lowered, and when such a porous carbon material is used for a capacitor electrode, the electrode density is lowered.
活性炭を用いた比較例4の多孔質炭素材料においては、BET比表面積は、実施例1~5の多孔質炭素材料よりも優れている。
しかしながら、活性炭を用いた比較例4の多孔質炭素材料においては、細孔直径2~15nmの範囲に含まれる細孔容積の合計値Aが、細孔直径2~200nmの範囲に含まれる細孔容積の合計値Bの44%しか占めていない。従って、比較例4の多孔質炭素材料においては、メソ孔が充分に形成されていないと考えられる。
さらに、比較例4の多孔質炭素材料においては、細孔直径2~200nmの範囲に含まれる細孔容積の合計値Bが、1.41cm/gと高い値である。従って、多孔質炭素材料のかさ密度が低くなり、かかる多孔質炭素材料をキャパシタ用電極に使用した場合、電極密度が低くなると考えられる。
In the porous carbon material of Comparative Example 4 using activated carbon, the BET specific surface area is superior to the porous carbon materials of Examples 1 to 5.
However, in the porous carbon material of Comparative Example 4 using activated carbon, the total value A of the pore volumes included in the pore diameter range of 2 to 15 nm is the pores included in the pore diameter range of 2 to 200 nm. Only 44% of the total volume B is occupied. Therefore, it is considered that the mesopores are not sufficiently formed in the porous carbon material of Comparative Example 4.
Further, in the porous carbon material of Comparative Example 4, the total value B of pore volumes included in the pore diameter range of 2 to 200 nm is a high value of 1.41 cm 3 / g. Therefore, it is considered that the bulk density of the porous carbon material is lowered, and when such a porous carbon material is used for a capacitor electrode, the electrode density is lowered.
以上より、有機材料に修飾基が結合した第1の複合材、又は、無機ゾルと有機材料とからなる第2の複合材を所定の温度範囲で加熱することによって、メソ孔が多く形成された多孔質炭素材料を製造することができると考えられる。 As described above, many mesopores were formed by heating the first composite material in which the modifying group was bonded to the organic material or the second composite material composed of the inorganic sol and the organic material in a predetermined temperature range. It is considered that a porous carbon material can be produced.
1  リチウムイオンキャパシタ
2  正極
2a 正極集電体
2b 正極タブ
3  負極
3a 負極集電体
3b 負極タブ
4  セパレータ
5  ケーシング
DESCRIPTION OF SYMBOLS 1 Lithium ion capacitor 2 Positive electrode 2a Positive electrode collector 2b Positive electrode tab 3 Negative electrode 3a Negative electrode collector 3b Negative electrode tab 4 Separator 5 Casing

Claims (13)

  1. 多孔質炭素材料の製造方法であって、
    第1の有機材料を構成する高分子鎖に細孔源を含む修飾基が結合した第1の複合材、又は、細孔源を含む無機ゾルもしくは金属アルコキシドと第2の有機材料とからなる第2の複合材を、前記細孔源の一部が分解気化する温度以上2200℃以下で加熱する加熱工程を含むことを特徴とする多孔質炭素材料の製造方法。
    A method for producing a porous carbon material, comprising:
    A first composite material in which a modifying group containing a pore source is bonded to a polymer chain constituting the first organic material, or a first composite material comprising an inorganic sol or metal alkoxide containing a pore source and a second organic material. 2. A method for producing a porous carbon material, comprising a heating step of heating the composite material 2 at a temperature not lower than a temperature at which a part of the pore source is decomposed and vaporized but not higher than 2200 ° C.
  2. 前記加熱工程における温度は、1500℃を超え2200℃以下である請求項1に記載の多孔質炭素材料の製造方法。 The method for producing a porous carbon material according to claim 1, wherein the temperature in the heating step is higher than 1500 ° C and not higher than 2200 ° C.
  3. 前記加熱工程における温度は、1600~2200℃である請求項2に記載の多孔質炭素材料の製造方法。 The method for producing a porous carbon material according to claim 2, wherein the temperature in the heating step is 1600 to 2200 ° C.
  4. 前記第1の複合材に含まれる修飾基は、有機珪素化合物である請求項1~3のいずれかに記載の多孔質炭素材料の製造方法。 The method for producing a porous carbon material according to any one of claims 1 to 3, wherein the modifying group contained in the first composite material is an organosilicon compound.
  5. 前記有機珪素化合物は、アルコキシシラン類である請求項4に記載の多孔質炭素材料の製造方法。 The method for producing a porous carbon material according to claim 4, wherein the organosilicon compound is an alkoxysilane.
  6. 前記第2の複合材に含まれる無機ゾルは、シリカゾル、アルミナゾル、又は、マグネシアゾルである請求項1~3のいずれかに記載の多孔質炭素材料の製造方法。 The method for producing a porous carbon material according to any one of claims 1 to 3, wherein the inorganic sol contained in the second composite material is silica sol, alumina sol, or magnesia sol.
  7. 前記第2の複合材に含まれる金属アルコキシドは、アルコキシシラン類である請求項1~3のいずれかに記載の多孔質炭素材料の製造方法。 The method for producing a porous carbon material according to any one of claims 1 to 3, wherein the metal alkoxide contained in the second composite material is an alkoxysilane.
  8. 前記第1の有機材料又は前記第2の有機材料は、フェノール系樹脂、エポキシ系樹脂、ポリイミド系樹脂、メラミン系樹脂、又は、ポリアミドイミド系樹脂である請求項1~7のいずれかに記載の多孔質炭素材料の製造方法。 The first organic material or the second organic material is a phenol resin, an epoxy resin, a polyimide resin, a melamine resin, or a polyamideimide resin. A method for producing a porous carbon material.
  9. 前記第1の有機材料又は前記第2の有機材料は、フェノール系樹脂、又は、網状骨格を有するポリイミド系樹脂である請求項8に記載の多孔質炭素材料の製造方法。 The method for producing a porous carbon material according to claim 8, wherein the first organic material or the second organic material is a phenol resin or a polyimide resin having a network skeleton.
  10. 前記加熱工程の後、得られた多孔質炭素材料を塩基又は酸で処理する後処理工程をさらに含む請求項1~9のいずれかに記載の多孔質炭素材料の製造方法。 The method for producing a porous carbon material according to any one of claims 1 to 9, further comprising a post-treatment step of treating the obtained porous carbon material with a base or an acid after the heating step.
  11. 請求項1~10のいずれかに記載の多孔質炭素材料の製造方法により製造されたことを特徴とする多孔質炭素材料。 A porous carbon material produced by the method for producing a porous carbon material according to any one of claims 1 to 10.
  12. 請求項1~10のいずれかに記載の多孔質炭素材料の製造方法により製造された多孔質炭素材料を含むことを特徴とするキャパシタ用電極。 A capacitor electrode comprising the porous carbon material produced by the method for producing a porous carbon material according to any one of claims 1 to 10.
  13. 請求項1~10のいずれかに記載の多孔質炭素材料の製造方法により製造された多孔質炭素材料を含むキャパシタ用電極を備えたことを特徴とするキャパシタ。 A capacitor comprising a capacitor electrode comprising a porous carbon material produced by the method for producing a porous carbon material according to any one of claims 1 to 10.
PCT/JP2011/069936 2010-09-02 2011-09-01 Process for production of porous carbon material, porous carbon material, electrode for capacitor, and capacitor WO2012029920A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-197167 2010-09-02
JP2010197167 2010-09-02

Publications (1)

Publication Number Publication Date
WO2012029920A1 true WO2012029920A1 (en) 2012-03-08

Family

ID=45772995

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/069936 WO2012029920A1 (en) 2010-09-02 2011-09-01 Process for production of porous carbon material, porous carbon material, electrode for capacitor, and capacitor

Country Status (1)

Country Link
WO (1) WO2012029920A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016006237A1 (en) * 2014-07-10 2016-01-14 パナソニックIpマネジメント株式会社 Capacitor
US9312077B2 (en) 2011-12-16 2016-04-12 Calgon Carbon Corporation Double layer capacitors
JP2019151525A (en) * 2018-03-02 2019-09-12 御国色素株式会社 Porous carbon particle, porous carbon particle dispersion, and manufacturing method for them

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004503456A (en) * 2000-05-24 2004-02-05 ファインセル カンパニー リミテッド Medium porous carbon material, carbon / metal oxide composite material, and electrochemical capacitor using the material
JP2007039263A (en) * 2005-08-01 2007-02-15 Univ Of Miyazaki Spherical carbon obtained by using resorcinol-based polymer particle as precursor, and its production method
JP2008120610A (en) * 2006-11-09 2008-05-29 Sumitomo Chemical Co Ltd Activated carbon and method for producing the same
JP2009526743A (en) * 2006-02-15 2009-07-23 ラドヤード, ライル イストバン, Mesoporous activated carbon
JP2010503214A (en) * 2006-09-01 2010-01-28 バッテル メモリアル インスティテュート Carbon nanotube nanocomposite, method for making carbon nanotube nanocomposite, and device comprising nanocomposite

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004503456A (en) * 2000-05-24 2004-02-05 ファインセル カンパニー リミテッド Medium porous carbon material, carbon / metal oxide composite material, and electrochemical capacitor using the material
JP2007039263A (en) * 2005-08-01 2007-02-15 Univ Of Miyazaki Spherical carbon obtained by using resorcinol-based polymer particle as precursor, and its production method
JP2009526743A (en) * 2006-02-15 2009-07-23 ラドヤード, ライル イストバン, Mesoporous activated carbon
JP2010503214A (en) * 2006-09-01 2010-01-28 バッテル メモリアル インスティテュート Carbon nanotube nanocomposite, method for making carbon nanotube nanocomposite, and device comprising nanocomposite
JP2008120610A (en) * 2006-11-09 2008-05-29 Sumitomo Chemical Co Ltd Activated carbon and method for producing the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9312077B2 (en) 2011-12-16 2016-04-12 Calgon Carbon Corporation Double layer capacitors
WO2016006237A1 (en) * 2014-07-10 2016-01-14 パナソニックIpマネジメント株式会社 Capacitor
JPWO2016006237A1 (en) * 2014-07-10 2017-04-27 パナソニックIpマネジメント株式会社 Capacitors
JP2019151525A (en) * 2018-03-02 2019-09-12 御国色素株式会社 Porous carbon particle, porous carbon particle dispersion, and manufacturing method for them
JP2021178772A (en) * 2018-03-02 2021-11-18 御国色素株式会社 Porous carbon particle, porous carbon particle dispersion, and method for producing the same
JP7283704B2 (en) 2018-03-02 2023-05-30 御国色素株式会社 Porous carbon particles, porous carbon particle dispersion and method for producing the same
JP7301294B2 (en) 2018-03-02 2023-07-03 御国色素株式会社 Porous carbon particles, porous carbon particle dispersion and method for producing the same

Similar Documents

Publication Publication Date Title
Zhang et al. Ultramicroporous carbons puzzled by graphene quantum dots: integrated high gravimetric, volumetric, and areal capacitances for supercapacitors
Lufrano et al. Mesoporous carbon materials as electrodes for electrochemical supercapacitors
Liu et al. Preparation of three-dimensional ordered mesoporous carbon sphere arrays by a two-step templating route and their application for supercapacitors
Li et al. Nitrogen-containing carbon spheres with very large uniform mesopores: the superior electrode materials for EDLC in organic electrolyte
TWI487180B (en) Anode material for nonaqueous lithium type electrical storage element
US6515845B1 (en) Method for preparing nanoporous carbon materials and electric double-layer capacitors using them
KR101811970B1 (en) Lithium ion capacitor
JP7148396B2 (en) Carbon materials, electrode materials for power storage devices, and power storage devices
JP2007008790A (en) Method for producing carbon fine particle, method for producing polarizable electrode, and electric double-layer capacitor
WO2012029918A1 (en) Porous carbon material, electrode for capacitor, electrode for hybrid capacitor, electrode for lithium ion capacitor, capacitor, hybrid capacitor, and lithium ion capacitor
WO2015042016A1 (en) Ultracapacitor with improved aging performance
US9640333B2 (en) High surface area carbon materials and methods for making same
Wang et al. Fabrication of high-pore volume carbon nanosheets with uniform arrangement of mesopores
Wang et al. Diaminohexane-assisted preparation of coral-like, poly (benzoxazine)-based porous carbons for electrochemical energy storage
WO2012029920A1 (en) Process for production of porous carbon material, porous carbon material, electrode for capacitor, and capacitor
Kurc Precipitated silica as filler for polymer electrolyte based on poly (acrylonitrile)/sulfolane
Lian et al. Curved fragmented graphenic hierarchical architectures for extraordinary charging capacities
KR101970134B1 (en) Electrode comprising activated carbon and graphene sheet, method of manufacturing the electrode, and super capacitor comprising the electrode
JP7425605B2 (en) Carbon material and its manufacturing method, electrode material for power storage device, and power storage device
JP2001274044A (en) Capacitor using nonaqueous electrolyte
Deng et al. Graphene-based ordered mesoporous carbon hybrids with large surface areas for supercapacitors
JP2013232602A (en) Method of producing electrode material for power storage device, electrode for power storage device, and power storage device
TWI556495B (en) Non-aqueous electrolyte secondary battery negative electrode carbonaceous material, nonaqueous electrolyte secondary battery and vehicle
JP2007269518A (en) Porous carbon material, method for producing the same, polarizable electrode for electrical double layer capacitor, and electrical double layer capacitor
KR100892154B1 (en) Manufacturing method of cnt and titanium dioxide composite electrode for electric double layer capacitor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11821935

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11821935

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP