WO2012029764A1 - Cooling system control device and cooling system provided therewith - Google Patents

Cooling system control device and cooling system provided therewith Download PDF

Info

Publication number
WO2012029764A1
WO2012029764A1 PCT/JP2011/069577 JP2011069577W WO2012029764A1 WO 2012029764 A1 WO2012029764 A1 WO 2012029764A1 JP 2011069577 W JP2011069577 W JP 2011069577W WO 2012029764 A1 WO2012029764 A1 WO 2012029764A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling system
value
low pressure
database
temperature
Prior art date
Application number
PCT/JP2011/069577
Other languages
French (fr)
Japanese (ja)
Inventor
宮治 伸
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Publication of WO2012029764A1 publication Critical patent/WO2012029764A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/11Fan speed control
    • F25B2600/111Fan speed control of condenser fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21151Temperatures of a compressor or the drive means therefor at the suction side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21171Temperatures of an evaporator of the fluid cooled by the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21174Temperatures of an evaporator of the refrigerant at the inlet of the evaporator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to a cooling system control device and a cooling system including the same.
  • a low-pressure side pressure set value set for a refrigerator that cools a low-temperature showcase is stored in a database of a controller in association with an environmental condition such as an in-store temperature or an out-of-store temperature.
  • the low-pressure side pressure setting value corresponding to the acquired environmental condition is read from the database and set in the refrigerator, thereby reducing the power consumption of the refrigerator while maintaining a good cooling state in the low-temperature showcase. I'm trying to lower it.
  • the present invention has been made in view of such a background, and in the case of controlling the cooling system according to the measurement value, the cooling system capable of appropriately continuing the control even when the measurement value cannot be acquired. It is an object of the present invention to provide a control device and a cooling system including the control device.
  • a main invention of the present invention for solving the above-mentioned problems is a control device for controlling the cooling system by setting a parameter for the operation of the cooling system in the cooling system, and an environment in which the cooling system is installed
  • a measurement value acquisition unit for acquiring a measurement value for evaluating the parameter, a parameter determination unit for determining a parameter to be set in the cooling system according to the measurement value, and a parameter to be set in the cooling system
  • a controller configured to set in the system, and a database that accumulates the parameters set in the cooling system in the past in association with the measured values, and the parameter determining unit cannot acquire the measured values If one of the parameters stored in the database is And determining the parameter to be set to the stem.
  • FIG. 2 is a diagram illustrating a hardware configuration of an integrated management controller 10 and device controllers 3 and 4.
  • FIG. 3 is a diagram illustrating a software configuration of a device controller 3.
  • FIG. It is a figure which shows the flow of the process which performs low voltage
  • 3 is a diagram illustrating a software configuration of a device controller 4.
  • FIG. It is a figure which shows the flow of the process which performs suitable temperature control.
  • 2 is a diagram showing a software configuration of an integrated management controller 10.
  • FIG. It is a figure which shows the structural example of the database.
  • FIG. 3 is a diagram illustrating a configuration example of a setting information storage unit 14.
  • FIG. It is a figure which shows the flow of the accumulation process of the data to the database. It is a figure which shows the flow of the process which sets the low voltage
  • FIG. 25 It is an example of a three-dimensional graph 25 in which the low pressure set value Ps is plotted with the outside temperature as the X axis, the inside temperature as the Y axis, and the time as the Z axis. It is an example of the histogram 80 showing the appearance frequency counted for every low voltage
  • control system 1 including a cooling system control device according to an embodiment of the present invention will be described.
  • the control system 1 according to the present embodiment is for adjusting the internal temperature of the cooling showcases 60 and 70 installed in the store 2.
  • the control system 1 includes a cooling system 5 installed in the store 2 and an integrated management controller 10 (cooling system control device) for controlling the cooling system 5.
  • an integrated management controller 10 cooling system control device
  • Each component constituting the cooling system 5 can be roughly divided into a cooling facility for cooling (freezing or refrigeration) the showcases 60 and 70 and a control facility for controlling the cooling facility.
  • the cooling equipment includes, for example, compressors (compressors) 30 and 40, condensers (condensers) 50, expansion valves 61 and 71, evaporators (evaporators) 62 and 72, and refrigerant piping 8 that connects them to each other.
  • the compressors 30 and 40 and the condenser 50 are collectively referred to as a refrigerator 20.
  • the refrigerator 20 may be configured as a single device, or may be configured such that the compressors 30 and 40 and the condenser 50 are installed in physically separated locations.
  • the control equipment for controlling the two compressors 30 and 40 and the condenser 50 includes, for example, temperature sensors 31, 38 and 41, current sensors 32 and 42, and pressure sensors 39 and 40 installed in the compressors 30 and 40. 49, a sensor group of the pressure sensor 59 installed in the condenser 50, and the device controller 3.
  • Temperature sensors 31 and 41 are installed so as to measure the discharge temperatures Td3 and Td4 of the refrigerant gas discharged from the compressors 30 and 40, respectively.
  • Current sensors 32 and 42 are installed to measure currents I3 and I4 of compressors 30 and 40, respectively.
  • the temperature sensor 38 and the pressure sensor 39 are installed so as to measure the suction temperature Ti and the suction pressure Pi of the refrigerant gas sucked into the compressors 30 and 40, respectively.
  • the pressure sensor 49 is installed so as to measure the discharge pressure Pd of the refrigerant gas discharged from both the compressors 30 and 40.
  • the measured values of these sensor groups are input to the device controller 3, and switch signals S1 and S2 indicating the open / closed state of a hydraulic pressure protection switch (not shown) are input from the compressors 30 and 40, respectively.
  • Relay signals R1 and R2 are input from the device controller 3 to the compressors 30 and 40, respectively.
  • the device controller 3 outputs the relay signals R1 and R2 based on the measured values of the connected sensor group and the switch signals S1 and S2 from the compressors 30 and 40, thereby improving the compression capacity of the compressors 30 and 40.
  • the device controller 3 operates with a predetermined target pressure (hereinafter referred to as “low pressure set value Ps”) as an operation parameter.
  • the device controller 3 controls the compressors 30 and 40 so that the suction pressure Pi measured by the pressure sensor 39 is maintained at a constant low pressure set value Ps. This control is called “low pressure control”.
  • the compressors 30 and 40 are operated or stopped by a relay (not shown) being controlled to open and close by relay signals R1 and R2, respectively.
  • a relay not shown
  • the refrigerant gas in the low temperature and low pressure state supplied from the evaporators 62 and 72 through the refrigerant pipe 8 is appropriately compressed, Set to high temperature and pressure.
  • the pressure sensor 59 is installed so as to measure the pressure P5 of the refrigerant gas in the condenser 50.
  • a measured value of the pressure P5 is input to the device controller 3.
  • the condenser 50 includes three fans 51 to 53, and control signals F1 to F3 are input from the device controller 3 to the fans 51 to 53, respectively.
  • the device controller 3 outputs control signals F1 to F3 based on the measured value of the pressure P5.
  • the condenser 50 controls the rotation of the fans 51 to 53 by control signals F1 to F3, respectively, cools the refrigerant gas supplied from the compressors 30 and 40 through the refrigerant pipe 8, and condenses them into a liquid state.
  • the showcase 60 includes an expansion valve 61 and an evaporator 62.
  • the showcase 70 includes an expansion valve 71 and an evaporator 72.
  • the refrigerant pipe 8 is filled with a refrigerant such as ammonia or fluorocarbon.
  • the showcases 60 and 70 are cooled by the evaporators 62 and 72 vaporizing (evaporating) the refrigerant liquid.
  • the control facility for controlling these cooling facilities includes, for example, temperature sensors 68 and 78, temperature sensors 69 and 79, and the device controller 4.
  • Temperature sensors 69 and 79 are installed so as to measure the internal temperatures T6 and T7 of the showcases 60 and 70, respectively.
  • the temperature sensors 68 and 78 are installed so as to measure temperatures (hereinafter referred to as “in-store temperatures”) T8 and T9 of the environment where the showcases 60 and 70 are installed, respectively. Only either the temperature sensor 68 or 78 may be installed.
  • the device controller 4 receives the measured values of temperatures T6 to T9.
  • Control signals V1 and V2 are input from the device controller 4 to the expansion valves 61 and 71, respectively.
  • the equipment controller 4 controls the expansion valves 61 and 71 by outputting control signals V1 and V2 based on the measured values of the internal temperatures T6 and T7.
  • the device controller 4 operates with a predetermined target temperature (hereinafter referred to as “appropriate temperature Ts”) as an operation parameter.
  • the equipment controller 4 controls the expansion valves 61 and 71 so that the inside temperatures T6 and T7 measured by the temperature sensors 69 and 79 are held at the appropriate temperature Ts. This control is called “appropriate temperature control”.
  • the expansion valves 61 and 71 are controlled to open and close by control signals V1 and V2, respectively, to reduce the pressure of the refrigerant liquid supplied from the condenser 50 through the refrigerant pipe 8 and lower the boiling point.
  • the evaporators 62 and 72 vaporize the refrigerant liquid having the lowered boiling point.
  • the temperature sensor 7 is installed outside the store 2 so as to measure the outside temperature To, and the integrated management controller 10 receives the measured value of the outside temperature To from the temperature sensor 7 via the communication line 93.
  • the integrated management controller 10 is also connected to the device controllers 3 and 5 via the communication line 91, and communicates with and manages the device controllers 3 and 5 via the communication line 91, and the state of the devices to be controlled is controlled. Monitor.
  • the integrated management controller 10 is further connected to a communication network 92, communicated with the remote management controller 6 and the like via the communication network 92, is remotely controlled, and is remotely monitored.
  • the communication lines 91 and 93 perform communication according to standards such as RS232C, RS485, and Ethernet (registered trademark), for example.
  • the integrated management controller 10 controls the device controllers 3 and 4.
  • a value for determining the state of the cooling system 5 such as a measured value by the sensor group and an open / closed state of the switch is acquired, and according to the acquired measured value.
  • the cooling system 5 is controlled by evaluating the cooling state of the showcase, determining the low pressure set value Ps to realize energy saving in accordance with this, and setting the determined low pressure set value Ps in the device controller 3.
  • the integrated management controller 10 accumulates the measurement values of each sensor so that the low-pressure set value Ps of the device controller 3 can be set based on the history even when the measurement value cannot be acquired from the sensor. ing.
  • FIG. 3 is a diagram illustrating a hardware configuration of the integrated management controller 10 and the device controllers 3 and 4.
  • the integrated management controller 10 includes a main control unit 101, a RAM (Random Access Memory) 102, a storage device 103, a communication control unit 104, and an external input / output interface 105.
  • the RAM 102 is a volatile memory
  • the storage device 103 is a nonvolatile memory.
  • the storage device 103 stores various data and programs.
  • the storage device 103 is, for example, a flash memory or a hard disk drive.
  • the storage device 103 stores at least the control program 11.
  • the main control unit 101 is a processor such as a CPU (Central Processing Unit) or an MPU (Micro Processing Unit) that controls the operation of the integrated management controller 10. Various functions are realized by the main control unit 101 reading out the program stored in the storage device 103 to the RAM 102 and executing the program.
  • the communication control unit 104 performs processing for communicating with the remote management controller 6 and the device controllers 3 and 4.
  • the communication control unit 104 includes, for example, a communication interface circuit for performing serial communication in accordance with standards such as RS232C and RS485, an adapter for connecting to Ethernet (registered trademark), a wireless communication device for performing wireless communication, a telephone For example, a modem for connecting to a network.
  • the external input / output interface 105 is an interface for connecting an input device such as a keyboard and a mouse, an output device such as a display, a printer, and a speaker.
  • the integrated management controller 10 receives input of data from the user via the external input / output interface 105, and displays and prints data to the user.
  • the device controller 3 includes a processing device 301, a RAM 302, a flash memory 303, a communication control unit 304, and an input / output interface 305.
  • the device controller 4 includes a processing device 401, a RAM 402, a flash memory 403, a communication control unit 404, and an input / output interface 405. Since the device controller 4 has the same configuration as the device controller 3, only the device controller 3 will be described with respect to common parts.
  • the RAM 302 is a volatile memory
  • the flash memory 303 is a nonvolatile memory.
  • the flash memory 303 stores various programs and data.
  • a storage device such as a hard disk drive may be employed instead of the flash memory 303.
  • the flash memory 303 stores at least a control program 33 and a low pressure set value Ps34.
  • the flash memory 403 of the device controller 4 stores at least a control program 43 and an appropriate temperature Ts44.
  • a predetermined default value that is considered appropriate by the user is recorded in advance in the flash memory 303 as a low pressure set value Ps, and a predetermined default value is recorded in advance in the flash memory 403 as an appropriate temperature Ts. It is assumed that
  • the processing device 301 is a processor such as a CPU or MPU that controls the operation of the device controller 3. Various functions are realized by the processing device 301 reading the program stored in the flash memory 303 to the RAM 302 and executing the program.
  • the communication control unit 304 performs communication with the integrated management controller 10.
  • the communication control unit 304 includes, for example, a communication interface circuit for performing serial communication according to a standard such as RS232C and RS485, an adapter for connecting to Ethernet (registered trademark), a wireless communication device for performing wireless communication, a telephone For example, a modem for connecting to a network.
  • the input / output interface 305 receives data from an input device such as a switch, button, or keyboard, and outputs the data to a display, a printer, or the like.
  • FIG. 4 is a diagram illustrating a software configuration of the device controller 3.
  • the device controller 3 includes a low pressure set value management unit 311, a measurement value providing unit 312, a low pressure control unit 313, and a low pressure set value storage unit 314.
  • the low pressure set value management unit 311, the measurement value providing unit 312, and the low pressure control unit 313 are realized by the processing device 301 of the device controller 3 reading out the control program 33 stored in the flash memory 303 to the RAM 302 and executing it.
  • the low pressure set value storage unit 314 is realized as a part of a storage area provided by the flash memory 303. Note that the low pressure set value storage unit 313 may be realized as a part of the storage area of the RAM 302.
  • the low pressure set value storage unit 314 stores the low pressure set value Ps.
  • the low pressure set value management unit 311 receives the low pressure set value Ps transmitted from the integrated management controller 10, and registers the received low pressure set value Ps in the low pressure set value storage unit 314.
  • the measurement value providing unit 312 provides various measurement values input to the device controller 3 to the integrated management controller 10.
  • the measurement value providing unit 312 receives a command for acquiring a measurement value (hereinafter simply referred to as “acquisition command”) transmitted from the integrated management controller 10, and according to the acquisition command, Low pressure set value Ps stored in low pressure set value storage unit 314, refrigerant gas discharge temperatures Td3 and Td4 input from temperature sensors 31 and 41, currents I3 and I4 input from current sensors 32 and 42, temperature sensor 38, the refrigerant gas suction temperature Ti and the suction pressure Pi, the discharge pressure Pd input from the pressure sensor 49, and the refrigerant gas pressure P5 input from the pressure sensor 59 are transmitted to the integrated management controller 10. To do.
  • the low pressure control unit 313 performs low pressure control.
  • FIG. 5 is a diagram showing a flow of processing for performing low-pressure control.
  • the low pressure control unit 313 When the suction pressure Pi falls below the low pressure set value Ps (S321: YES), the low pressure control unit 313 outputs a relay signal R1 or R2 so as to reduce the compression capacity of the compressor 30 or 40 (S322), and the suction pressure
  • relay signals R1 and R2 are output so as to increase the compression capacity of the compressors 30 and 40 (S324).
  • the compressors 30 and 40 are controlled so that the suction pressure Pi is maintained near the low pressure set value Ps.
  • FIG. 6 is a diagram illustrating a software configuration of the device controller 4.
  • the device controller 4 includes an appropriate temperature management unit 411, a measurement value providing unit 412, an appropriate temperature control unit 413, and an appropriate temperature storage unit 414.
  • the appropriate temperature management unit 411, the measurement value providing unit 412 and the appropriate temperature control unit 413 are realized by the processing device 401 of the device controller 4 reading out the control program 43 stored in the flash memory 403 to the RAM 402 and executing it.
  • the appropriate temperature storage unit 414 is realized as a part of the storage area provided by the flash memory 403.
  • the appropriate temperature storage unit 414 may be realized as a part of the storage area of the RAM 402.
  • the appropriate temperature storage unit 414 stores the appropriate temperature Ts.
  • the set temperature of the showcase can be set on the showcase side, and in this embodiment as well, it is assumed that the appropriate temperature Ts input by the user is stored in the appropriate temperature storage unit 414 in advance.
  • the appropriate temperature management unit 411 may register the received appropriate temperature Ts in the appropriate temperature storage unit 414.
  • the measurement value providing unit 412 provides various measurement values input to the device controller 4 to the integrated management controller 10.
  • the measurement value providing unit 412 receives the acquisition command transmitted from the integrated management controller 10, and, according to the acquisition command, the appropriate temperature Ts, the temperature sensor 69, and the temperature sensor 69 that are stored in the appropriate temperature storage unit 414.
  • the in-store temperatures T6 and T7 input from 79 and the in-store temperatures T8 and T9 input from the temperature sensors 68 and 78 are transmitted to the integrated management controller 10. Note that only one of the in-store temperatures T8 and T9 or an average value of the in-store temperatures T8 and T9 may be transmitted to the integrated management controller 10 as the in-store temperature.
  • the optimal temperature control unit 413 performs optimal temperature control.
  • FIG. 7 is a diagram showing a flow of processing for performing appropriate temperature control.
  • the appropriate temperature control unit 413 performs the following processing for each showcase 60 and 70.
  • the appropriate temperature control unit 413 adds a predetermined value to the appropriate temperature Ts to obtain an upper limit value (S421), and when the internal temperature T6 or T7 exceeds the upper limit temperature (S422: YES), expansion is performed according to the exceeded temperature.
  • Control signals V1 and V2 are output so that the opening degree of the valve 61 or 71 is increased (S423).
  • the appropriate temperature control unit 413 subtracts a predetermined value from the appropriate temperature Ts as the lower limit value (S424), and the internal temperature T6 or T7 is the lower limit temperature. (S425: YES), the control signals V1 and V2 are output so that the opening degree of the expansion valve 61 or 71 is reduced in accordance with the lower temperature (S426).
  • the predetermined value may be different depending on the showcases 60 and 70, or may be the same value for all the showcases.
  • the expansion valves 61 and 71 are controlled so that the inside temperatures T6 and T7 are maintained near the appropriate temperature Ts.
  • FIG. 8 is a diagram illustrating a software configuration of the integrated management controller 10.
  • the integrated management controller 10 includes a measurement value acquisition unit 111, a low pressure set value determination unit 112, a control unit 113, a database 13, and a setting information storage unit 14.
  • the measurement value acquisition unit 111, the low-pressure set value determination unit 112, and the control unit 113 are realized by the main control unit 101 of the integrated management controller 10 reading the control program 11 stored in the storage device 103 into the RAM 102 and executing it.
  • the database 13 and the setting information storage unit 14 are realized as storage areas provided by the RAM 102 and the storage device 103.
  • Measured value acquisition unit 111 acquires various measured values every predetermined time (in this embodiment, 5 minutes). In the present embodiment, the measurement value acquisition unit 111 receives from the device controller 3 the low pressure set value Ps set in the device controller 3, the refrigerant gas discharge temperatures Td3 and Td4 measured by the temperature sensors 31 and 41, and the current sensor 32.
  • the measurement value from the temperature sensor 7 is acquired by a method of acquiring a value from a general sensor. For example, an analog sensor signal output from the temperature sensor 7 is acquired as a digital value by an AD converter. To be able to. A controller (outside store temperature sensor controller) connected to the temperature sensor 7 is installed, and the measurement value acquisition unit 111 transmits an acquisition command to the outside store temperature sensor controller in the same manner as the device controllers 3 and 4.
  • the temperature sensor controller may transmit the measurement value from the temperature sensor 7 to the integrated management controller 10 in response to the acquisition command. Further, the measurement values may be periodically transmitted from the device controllers 3 and 4 to the integrated management controller 10, and an outside temperature sensor controller connected to the temperature sensor 7 is installed, and the outside temperature sensor controller periodically Specifically, the measurement value may be transmitted to the integrated management controller 10.
  • the low pressure set value determination unit 112 determines the low pressure set value Ps to be set in the device controller 3. As will be described later, the low pressure set value determination unit 112 determines whether the cooling state of the showcases 60 and 70 is good or not according to the average value of the temperature difference between the appropriate temperature Ts and the internal temperature, and when the cooling state is good. Increases the low pressure set value Ps, and lowers the low pressure set value Ps when the cooling state is not good. When the measured value acquisition unit 111 cannot acquire the internal temperature T6 and T7 or the outside temperature To from the sensor, the low pressure set value determination unit 112 stores the past low pressure set value Ps accumulated in the database 13. The low pressure set value Ps to be set is determined according to.
  • the control unit 113 controls the device controllers 3 and 4.
  • the control unit 113 performs various types of control related to the operations of the device controllers 3 and 4. In the present embodiment, only the low pressure control for setting the low pressure set value Ps determined by the low pressure set value determination unit 112 in the device controller 3 will be described. To do. In the present embodiment, when the control unit 113 transmits the low pressure set value Ps to the device controller 3, the received low pressure set value Ps is stored in the flash memory 303 on the device controller 3 side.
  • FIG. 9 is a diagram illustrating a configuration example of the database 13.
  • Each record recorded in the database 13 includes a value specifying a showcase (hereinafter referred to as “showcase number”), date and time, time zone, internal temperature, in-store temperature, in-store rounding temperature, in-store temperature, in-store temperature, store The outer rounding temperature, the appropriate temperature Ts, and the low pressure set value Ps are included.
  • the time zone is a time zone to which the time included in the date and time belongs. In the present embodiment, the length of the time zone is 2 hours. Therefore, any value of 0, 2, 4,..., 22 is set in the time zone.
  • the in-store rounding temperature is a value obtained by rounding the in-store temperature by a predetermined rounding width (in this embodiment, 5 ° C., but can be an arbitrary value). A value rounded by a predetermined rounding width.
  • a predetermined rounding width in this embodiment, 5 ° C., but can be an arbitrary value.
  • any calculation method such as rounding down, rounding up, and rounding off can be used.
  • the in-store temperature and the outside temperature may be rounded with different rounding widths.
  • the record includes, for example, currents I3 and I4 measured by the current sensors 32 and 42, a suction temperature Ti and a suction pressure Pi measured by the temperature sensor 38 and the pressure sensor 39, and a pressure sensor 49.
  • the history of the low-pressure set value Ps is managed in association with the outside temperature rounding value, the inside temperature rounding value, and the time zone. Therefore, as shown in FIG. 10, when the low pressure set value Ps is plotted on a three-dimensional graph 21 in which the outside temperature is the X axis, the in-store temperature is the Y axis, and the time is the Z axis, the X axis and the Y axis are each 5
  • the low pressure set value Ps is included in each cell divided by degrees Celsius and time divided by 2 hours.
  • the low pressure set value Ps related to the record having the showcase number “1” and the date and time “2010/06/01 00:00:00” is the cell 22 in the graph 21 of FIG. include.
  • the setting information storage unit 14 stores various setting information.
  • FIG. 11 is a diagram illustrating a configuration example of the setting information storage unit 14.
  • the setting information storage unit 14 stores an energy saving mode, an analysis period, a temperature difference allowable value, an adjustment value, and a low pressure setting lower limit value.
  • the energy saving mode is any one of “energy saving priority mode”, “safety priority mode”, and “safe absolute mode”.
  • the low pressure set value determination unit 112 acquires the measured value from the sensor according to the energy saving mode. If it is not possible, the low pressure set value Ps to be newly set is calculated by a different calculation method.
  • the analysis period is a value that specifies the range of records to be analyzed.
  • the temperature difference allowable value is a value for determining the quality of the cooling state of the showcases 60 and 70, and when the difference between the internal temperature and the appropriate temperature Ts exceeds the temperature difference allowable value, the showcase 60 and It is determined that the cooling state at 70 is poor (overcooling or insufficient cooling).
  • the adjustment value is a step value for increasing or decreasing the low pressure set value Ps when the low pressure set value Ps is adjusted.
  • the low pressure setting lower limit value is the lowest value that can be set as the low pressure setting value Ps.
  • FIG. 12 is a diagram showing a flow of data accumulation processing to the database 13 in the integrated management controller 10.
  • the measured value acquisition unit 111 sets the variable error count to 0 (S501), sets the communication abnormality flag to false (S502), and performs initialization processing.
  • the measurement value acquisition unit 111 transmits an acquisition command to the device controllers 3 and 4 and the temperature sensor 7 (S503). From the device controller 3 or 4 or the temperature sensor 7, the internal temperature, the in-store temperature, the outside temperature, and the appropriate temperature If either of Ts and low pressure set value Ps cannot be received (S504: NO), the error count is incremented (S505).
  • a communication abnormality flag Is set to true S507.
  • the measured value acquisition unit 111 sets the error count to 0 (S508).
  • the communication abnormality flag is set to false (S509).
  • the measurement value acquisition unit 111 acquires the current date and time (S510), the showcase number, the current date and time, the time zone to which the current date and time belongs, the in-store temperature, the in-store temperature, the in-store rounding temperature obtained by rounding the in-store temperature by 5 ° C., A record in which the store outside temperature, the store outside rounding temperature obtained by rounding the store outside temperature by 5 ° C., the appropriate temperature Ts, and the low pressure set value Ps is added to the database 13 (S511). If there is no end instruction (S512: NO), measurement value acquisition unit 111 repeats the processing from step S503. Note that the measurement value acquisition unit 111 performs standby processing so that the processing from step S503 is repeated every five minutes.
  • the measured value acquisition unit 111 accumulates the in-store temperature, the outside temperature, the appropriate temperature Ts, the low pressure set value Ps, and the like acquired from the device controllers 3 and 4 and the temperature sensor 7 in the database 13.
  • FIG. 13 is a diagram showing a flow of processing for setting the low pressure set value Ps.
  • the low pressure set value determination unit 112 acquires the current time (S521).
  • the current time is obtained by a general method. For example, the current time can be acquired from a clock provided in the integrated management controller 10. Subsequently, the following processing is performed for each of the showcases 60 and 70.
  • the communication abnormality flag is false (S522: NO)
  • the low-pressure set value determination unit 112 determines the low-pressure set value Ps (which should be set based on the measured values acquired from the device controllers 3 and 4 and the temperature sensor 7).
  • the setting value is simply determined (S523).
  • the setting value is determined based on the data accumulated in the database 13 (S524). ). The setting value determination process will be described later.
  • the control unit 113 sets the setting value determined by the low pressure setting value determination unit 112 in the device controller 3 (S525).
  • step S521 After the above processing is repeated for each of the showcases 60 and 70, if there is no end instruction (S526: NO), the processing from step S521 is repeated.
  • the low-pressure control setting process is repeatedly executed at a predetermined time interval, for example, at a cycle of 1 minute.
  • FIG. 14 is a diagram illustrating a flow of a setting value determination process based on a measurement value.
  • the low pressure set value determination unit 112 reads a record of the latest date and time corresponding to the showcase number indicating the showcase to be processed from the database 13 (S541), and the inside rounding temperature and the store included in the read record.
  • the latest low pressure setting value Ps corresponding to the outer rounding temperature and the time zone to which the current time belongs is read from the database 13 (S542).
  • the low-pressure set value determination unit 112 reads a record that corresponds to the showcase number and is a date and time within the past analysis period from the current time from the database 13 (S543), and for each of the read records, the temperature from the internal temperature to the appropriate temperature A temperature difference obtained by subtracting Ts is calculated, and an average value of the calculated temperature differences is obtained as an average temperature difference (S544).
  • the temperature difference between the current internal temperature and the appropriate temperature Ts may be replaced with an average temperature difference, regardless of past records.
  • the low pressure set value determination unit 112 sets the low pressure set value Ps as the set value (S546), and the absolute value of the average temperature difference is the temperature difference.
  • the allowable value S545: NO
  • the average temperature difference is a positive value, that is, when the internal temperature is higher than the appropriate temperature Ts and the cooling is insufficient (S547: YES)
  • the adjustment value is subtracted from the low pressure set value Ps read out in step S542 to obtain a set value (S548).
  • the low pressure set value determination unit 112 adds the adjustment value to the low pressure set value Ps to obtain a set value (S548).
  • the low pressure set value Ps set in the device controller 3 is not changed, and the show
  • the cooling state of the case is a supercooling state
  • a value higher than the current low pressure set value Ps by the adjustment value is set in the device controller 3 in step S525 of FIG. 13, and the cooling state of the showcase is the cooling state. If the state is insufficient, a value lower than the current low pressure set value Ps by the adjustment value is set in the device controller 3.
  • the equipment controller 3 performs control so that the compressors 30 and 40 do not compress much, so that the compression capacities of the compressors 30 and 40 are reduced. It is suppressed and energy saving is realized. Therefore, it is possible to control the cooling system 5 so as to save energy as much as possible while improving the cooling state of the showcase.
  • FIG. 15 is a diagram illustrating a flow of processing for determining the low pressure set value Ps based on the records stored in the database 13.
  • the low-pressure set value determination unit 112 reads, from the database 13, a record whose date corresponds to the time zone to which the current time belongs and is within the past analysis period from the current time (S561). As shown in FIG. 16, in the three-dimensional graph 25 with the store outside temperature, the store temperature, and the time as the X axis, Y axis, and Z axis, respectively, it corresponds to the low pressure set value Ps included in the cell group indicated by the hatched portion 26. Record to be read.
  • the low pressure set value determination unit 112 counts the appearance frequency for each low pressure set value Ps (S562).
  • FIG. 17 is a histogram 80 showing the appearance frequency counted for each low pressure set value Ps.
  • the low pressure set value determining unit 112 sets the low pressure set value Ps having the highest appearance frequency as the set value ( S564). In the example of FIG. 17, the low pressure set value 81 having the highest appearance frequency is determined as the set value.
  • the energy saving mode is the “safety priority mode” (S565: YES)
  • the low pressure set value determination unit 112 determines the lowest value among the appeared low pressure set values Ps as the set value (S566). In the example of FIG. 17, the lowest low pressure set value 82 among those whose appearance frequency is not 0 is determined as the set value.
  • the energy saving mode is the “safe absolute mode” (S565: NO)
  • the low pressure setting lower limit value is determined as the setting value (S567). In the example of FIG. 17, the low pressure setting lower limit value is determined as the set value regardless of the appearance frequency.
  • the device controllers 3 and 5 control each device to be controlled, and the integrated management controller 10 and the remote management controller 6 control and monitor each device controller.
  • the temperatures of the showcases 60 and 70 can be adjusted efficiently by linking each device.
  • the integrated management controller 10 of this embodiment is set in the device controller 3 according to the measurement value acquisition unit 111 that acquires the measurement value for evaluating the environment of the cooling system 5 and the measurement value.
  • a low pressure set value determining unit 112 that determines a low pressure set value Ps to be set, a control unit 113 that sets a low pressure set value Ps to be set in the device controller 3, and a low pressure set value Ps set in the past.
  • the database 13 that accumulates in association with the in-store temperature and the outside temperature, and the low-pressure set value determination unit 112 stores the low-pressure set value stored in the database 13 when the measured value cannot be acquired.
  • One of Ps can be determined as the low pressure set value Ps to be set in the device controller 3 according to the appearance frequency. Therefore, even if the integrated controller 10 cannot acquire measurement values or setting values from the device controllers 3 and 4 and the temperature sensor 7, the integrated management controller 10 supplies the device controller 3 to the device controller 3 based on the past records accumulated in the database 13. The setting of the low pressure set value Ps can be continued.
  • the low pressure set value Ps is controlled to be increased to save energy, and if the cooling state is not good, the low pressure set value Ps is decreased. Therefore, while the operation is continued, the low pressure set value Ps approaches the optimum value that provides a good cooling state and energy saving. Therefore, when the integrated management controller 10 periodically acquires the low pressure set value Ps set in the device controller 3 and adds it to the database 10, many low pressure set values Ps close to the optimum value are accumulated. become. Therefore, even if the measured value cannot be obtained, the set value can be determined from the low pressure set value Ps stored in the database 13 according to the appearance frequency and set in the device controller 3. And it becomes possible to set the low pressure set value Ps in consideration of energy saving in the device controller 3.
  • the measurement value acquisition unit 111 of the integrated management controller 10 of the present embodiment acquires at least the in-store temperature and the out-store temperature measured by the sensor that measures the in-store temperature and the out-store temperature as measured values. Therefore, the environment of the cooling system 5 can be evaluated with reference to not only the temperature inside the store where the showcase is set but also the temperature outside the store (outside temperature). The outside temperature also affects the temperature of the building of the store and the temperature inside the store, and also affects the temperature inside the showcase. Evaluation can be made.
  • the low pressure set value determining unit 112 when the measured value cannot be acquired, is the low pressure set value Ps having the highest appearance frequency in the energy saving mode of the “energy saving priority mode”.
  • the energy saving mode of the “safety priority mode” the lowest value among the low pressure set values Ps appearing in the database 13, that is, the value with the highest cooling capacity among the past operation results of the cooling system 5, “ In the energy saving mode “safe absolute mode”, the low pressure setting lower limit value for operating the cooling system 5 with the maximum cooling capacity can be determined as a parameter to be set in the device controller 3.
  • the low pressure set value Ps close to the optimum value can be set in the device controller 3 by adopting the low pressure set value Ps having a high frequency of appearance in the past. it can. Thereby, even if it is a case where a measured value cannot be acquired, the cooling system 5 can be controlled to implement
  • the lowest low pressure set value Ps that has appeared in the past is adopted, so that the lowest low pressure set value Ps is set in the past and the cooling capacity is increased most. It is possible to cause the compressors 30 and 40 to perform the same operation as that of the time. There are various factors that should increase the cooling capacity, such as an increase in the outside air temperature, display of uncooled products in the showcase, and an increase in store visitors. By operating the compressors 30 and 40 in the same state as when the cooling capacity is increased, it is possible to reduce the possibility that the cooling state in the showcase is deteriorated, and to prevent the cooling system 5 from being increased more than necessary. Can be controlled.
  • the energy saving mode is the “safe absolute mode”
  • the lowest value that can be set as the low pressure set value Ps is set in the device controller 3, so that the cooling capacity in the cooling system 5 can be maximized. it can. Therefore, for example, in a showcase of a frozen product that is not allowed to be thawed, control can be performed so that the frozen product is not thawed.
  • the database 13 accumulates the low pressure set value Ps in association with the time zone, the in-store temperature, and the outside temperature, and the low pressure set value determination unit 112 can acquire the measurement value. If not, one of the low pressure set values Ps corresponding to the time zone including the current time can be determined as the low pressure set value Ps to be set in the device controller 3 according to the appearance frequency.
  • the cooling system 5 is controlled by setting the low pressure set value Ps in the device controller 3 by the integrated management controller 10.
  • the function of the controller 10 may be provided to determine the low pressure set value Ps set by the device controller 3 itself.
  • the device controller 3 controls the compressors 30 and 40 and the condenser 50
  • the device controller 4 controls the expansion valves 61 and 71 and the evaporators (evaporators) 62 and 72.
  • one device controller 3 may control all of them.
  • the integrated management controller 10 controls the device controllers 3 and 5 to set the low pressure set value Ps.
  • the device controller 3 includes the functions of the integrated management controller 10. The device controller 3 itself may determine the low pressure set value Ps.
  • the past low pressure setting value Ps corresponding to the time zone including the current time is read.
  • One of the low pressure set values Ps corresponding to the date and time belonging to the included month or season may be determined as the low pressure set value Ps to be set in the device controller 3 according to the appearance frequency.
  • one of the low pressure set values Ps corresponding to the month or season in which the current time is included and also corresponding to the current time zone is determined as the low pressure set value Ps to be set in the device controller 3 according to the appearance frequency. You may make it do. It is assumed that the environmental conditions that can affect the cooling state of the showcase, such as the temperature outside the store, will be similar for each month and season, so measurements cannot be obtained and the environment can be evaluated.
  • the low pressure set value Ps actually set in the environment similar to the current environment is used. There is a high possibility that control can be performed. Therefore, even when a measured value cannot be acquired, the possibility of realizing energy saving while maintaining a good cooling state can be increased.
  • the history of the past low-pressure set value Ps is accumulated in the database 13, but not limited to this, for example, an accumulation period (for example, 24 hours, 1 week, 1 month, 3 (Any length such as one month or one year) may be stored in the setting information storage unit 14 and only the history for the accumulation period may be accumulated.
  • an accumulation period for example, 24 hours, 1 week, 1 month, 3 (Any length such as one month or one year) may be stored in the setting information storage unit 14 and only the history for the accumulation period may be accumulated.
  • records before the date and time before the accumulation period from the current date and time can be deleted from the database 13.
  • the integrated management controller 10 may save data outside the accumulation period in the external database 151 as shown in FIG.
  • the database 13 stores the low-pressure set value Ps set in the device controller 3 within a predetermined accumulation period in association with the time, the in-store temperature, and the outside temperature, and obtains the measured value.
  • the unit 111 saves the record stored in the database 13 to the database 151, deletes the record from the database 13, and the low-pressure set value determination unit 112 sets the set value shown in FIG.
  • one of the low pressure set values Ps stored in the database 13 and the database 151 is set in the device controller 3 in accordance with the appearance frequency, after the current time and before the cumulative period.
  • the low pressure set value Ps to be determined can be determined.
  • a save period shorter than the accumulation period may be provided, and every time the accumulation period ends, records from the date and time of the oldest record to the date and time after the save period may be saved in the database 151.
  • the accumulation period and the analysis period may be the same value or different values.
  • the low pressure set value storage unit 314 of the device controller 3 only one low pressure set value Ps is stored in the low pressure set value storage unit 314 of the device controller 3, but the low pressure set value Ps for each time zone may be stored. Good.
  • a configuration example of the low pressure set value storage unit 314 in this case is shown in FIG.
  • the low pressure set value storage unit 314 stores the low pressure set value Ps in association with the time zone.
  • the flow of the low-pressure control process in this case is shown in FIG.
  • the low-pressure control process shown in FIG. 20 is a modification of the process shown in FIG. As shown in FIG. 20, the low-pressure control unit 313 first acquires the current time (S341).
  • the current time can be acquired by, for example, a clock.
  • the low pressure control unit 313 reads the low pressure set value Ps corresponding to the time zone to which the current time belongs from the low pressure set value storage unit 314 (S342). Thereafter, the low-pressure control unit 313 executes steps S321 to S324 in the same manner as the above-described process of FIG.
  • the integrated management controller 10 transmits the low pressure set value Ps for each time zone to the device controller 3 in the setting process of the low pressure set value Ps shown in FIG. In this case, as shown in FIG. 21, after the processing of steps S523 and S524 in FIG. 13, the low pressure setting value determination unit 112 sets the setting value calculated in step S523 or S524 for the time zone to which the current time belongs.
  • the low pressure set value Ps shown in FIG. 15 is determined for each time zone other than the time zone to which the current time belongs (S602). Note that in step S561 in FIG. 15, a record corresponding to the time zone within the past analysis period is read from the start time of the time zone subject to processing, corresponding to the time zone to be processed. In addition, the control unit 113 transmits the low pressure set value Ps for each time zone to the device controller 3 (S525).
  • the device controller 3 stores the low pressure set value Ps for each time zone, and for the current time zone, if the measurement value can be obtained, it is based on the measurement value, and if it cannot be obtained, the database
  • the low pressure set value Ps is determined on the basis of the record accumulated in 13, and the low pressure set value Ps is determined on the basis of the record accumulated in the database 13 for all other time zones.
  • the low pressure set value Ps for each time zone set in is updated.
  • the integrated management controller 10 since the low pressure control is performed based on the low pressure set value Ps for each time zone, the integrated management controller 10 is activated when the operation of the integrated management controller 10 is stopped or noise is generated in the communication line 91.
  • the device controller 3 can continue the low pressure control using the low pressure set value Ps for each time zone. Further, as described above, as the integrated management controller 10 continues operation, the low pressure set value Ps calculated based on the current measurement value approaches the optimum value, and is accumulated in the database 13. Therefore, the low pressure set value Ps calculated based on the current measured value and the low pressure set value Ps determined according to the appearance frequency from the low pressure set value Ps accumulated in the database 13 are Expected to be close to optimal value.
  • low-pressure set values Ps are transmitted to the device controller 3 and used for low-pressure control in the device controller 3, so even if the low-pressure set value Ps is not set in the device controller 3 from the integrated management controller 10, the device In the controller 3, the low pressure control can be performed based on the low pressure set value Ps close to the optimum value.
  • the low pressure set value Ps is adjusted based on the measured value, but the appropriate temperature Ts may be adjusted based on the measured value instead of the low pressure set value Ps. Both the set value Ps and the appropriate temperature Ts may be adjusted.
  • the appropriate temperature Ts is also stored in the database 13 in association with the in-store temperature, the outside temperature, and the time similarly to the low pressure set value Ps described above, and the integrated management controller 10 measures the measured value. If the record of the appropriate temperature Ts corresponding to the time zone to which the current time belongs is read from the database 13 and the appearance frequency is counted for each appropriate temperature Ts, the appearance frequency is determined according to the energy saving mode. Can be determined as the appropriate temperature Ts to be set in the device controller 4. The appropriate temperature Ts having the highest value, the lowest temperature among the appeared appropriate temperatures Ts, and the lowest value that can be set as the appropriate temperature Ts can be determined.
  • the setting value is determined based on the acquired measurement value and the appearance frequency of the low pressure setting value Ps accumulated in the database 13. May be.
  • the setting is more compliant with the environmental conditions than when the setting value is determined based only on the appearance frequency of the low pressure setting value Ps accumulated in the database 13. The value can be determined.

Abstract

[Problem] To make it possible to appropriately continue control even if a measurement value cannot be obtained in the case where a cooling system is to be controlled according to the measurement value. [Solution] An integrated management controller (10) is provided with a measurement value obtaining unit (111) that obtains a measurement value, a low pressure setting value determination unit (112) that determines a low pressure setting value Ps which is to be set for a device controller (3), a control unit (113) that sets the low pressure setting value Ps, which is to be set for the device controller (3), for the device controller (3), and a database (13) that accumulates the low pressure setting values Ps which have been set for the device controller (3) while associating the setting values with the measurement values, and in the case where the measurement value cannot be obtained, the low pressure setting value determination unit (112) determines one of the low pressure setting values Ps stored in the database (13) as a low pressure setting value Ps which is to be set for the device controller (3) according to an appearance frequency.

Description

冷却システム制御装置およびこれを備えた冷却システムCOOLING SYSTEM CONTROL DEVICE AND COOLING SYSTEM HAVING THE SAME
 本発明は、冷却システム制御装置およびこれを備えた冷却システムに関する。 The present invention relates to a cooling system control device and a cooling system including the same.
 店舗や工場などにおいて、環境に応じて異なる設定になるように冷却機器を制御することで省エネルギーを実現しようとすることが行われている。例えば、特許文献1では、低温ショーケースを冷却する冷凍機に設定する低圧側圧力設定値を店内温度や店外温度などの環境条件に対応付けてコントローラのデータベースに記憶しておき、コントローラが現在の環境条件を取得し、取得した環境条件に対応する低圧側圧力設定値をデータベースから読み出して冷凍機に設定することで、低温ショーケースでの冷却状態を良好に保ちつつ冷凍機の消費電力を下げようとしている。 In stores and factories, it is attempted to save energy by controlling the cooling equipment so that the settings differ depending on the environment. For example, in Patent Document 1, a low-pressure side pressure set value set for a refrigerator that cools a low-temperature showcase is stored in a database of a controller in association with an environmental condition such as an in-store temperature or an out-of-store temperature. The low-pressure side pressure setting value corresponding to the acquired environmental condition is read from the database and set in the refrigerator, thereby reducing the power consumption of the refrigerator while maintaining a good cooling state in the low-temperature showcase. I'm trying to lower it.
特開2004-257666号公報JP 2004-257666 A
 ところで、店舗や工場が大規模である場合などには、機器間の距離が長くなり、そこを接続する通信線にノイズが発生し、情報が伝達されない状況が生じうる。しかしながら、特許文献1に記載の技術では、測定機器からコントローラに環境条件が伝達されなかった場合には、コントローラはデータベースから低圧側圧力設定値を読み出すことができないために冷凍機を適切に制御することができない。 By the way, when a store or a factory is large-scale, the distance between devices becomes long, and noise may be generated in a communication line connecting the devices, and information may not be transmitted. However, in the technique described in Patent Document 1, when the environmental condition is not transmitted from the measuring device to the controller, the controller cannot appropriately read the low pressure side pressure set value from the database, and thus appropriately controls the refrigerator. I can't.
 本発明は、このような背景を鑑みてなされたものであり、測定値に応じて冷却システムを制御する場合に、測定値を取得できなかったときでも適切に制御を継続することのできる冷却システム制御装置およびこれを備えた冷却システムを提供することを目的とする。 The present invention has been made in view of such a background, and in the case of controlling the cooling system according to the measurement value, the cooling system capable of appropriately continuing the control even when the measurement value cannot be acquired. It is an object of the present invention to provide a control device and a cooling system including the control device.
 上記課題を解決するための本発明の主たる発明は、冷却システムの動作に対するパラメータを前記冷却システムに設定することにより前記冷却システムを制御する制御装置であって、前記冷却システムが設置されている環境を評価するための測定値を取得する測定値取得部と、前記測定値に応じて、前記冷却システムに設定すべきパラメータを決定するパラメータ決定部と、前記冷却システムに設定すべきパラメータを前記冷却システムに設定する制御部と、過去に前記冷却システムに設定された前記パラメータを前記測定値に対応付けて累積していくデータベースと、を備え、前記パラメータ決定部は、前記測定値が取得できなかった場合に、前記データベースに記憶されている前記パラメータのひとつを、出現頻度に応じて、前記冷却システムに設定すべきパラメータとして決定することとする。 A main invention of the present invention for solving the above-mentioned problems is a control device for controlling the cooling system by setting a parameter for the operation of the cooling system in the cooling system, and an environment in which the cooling system is installed A measurement value acquisition unit for acquiring a measurement value for evaluating the parameter, a parameter determination unit for determining a parameter to be set in the cooling system according to the measurement value, and a parameter to be set in the cooling system A controller configured to set in the system, and a database that accumulates the parameters set in the cooling system in the past in association with the measured values, and the parameter determining unit cannot acquire the measured values If one of the parameters stored in the database is And determining the parameter to be set to the stem.
 その他本願が開示する課題やその解決方法については、発明の実施形態の欄および図面により明らかにされる。 Other problems and solutions to be disclosed by the present application will be clarified by the embodiments of the present invention and the drawings.
 測定値に応じて冷却システムを制御する場合に、測定値を取得できなかったときでも適切に制御を継続することができる。 When controlling the cooling system according to the measured value, it is possible to continue the control appropriately even when the measured value cannot be obtained.
制御システム1の全体構成を説明する図である。It is a figure explaining the whole structure of control system. 制御システム1の全体構成を説明する図である。It is a figure explaining the whole structure of control system. 統合管理コントローラ10ならびに機器コントローラ3および4のハードウェア構成を示す図である。2 is a diagram illustrating a hardware configuration of an integrated management controller 10 and device controllers 3 and 4. FIG. 機器コントローラ3のソフトウェア構成を示す図である。3 is a diagram illustrating a software configuration of a device controller 3. FIG. 低圧制御を行う処理の流れを示す図である。It is a figure which shows the flow of the process which performs low voltage | pressure control. 機器コントローラ4のソフトウェア構成を示す図である。3 is a diagram illustrating a software configuration of a device controller 4. FIG. 適温制御を行う処理の流れを示す図である。It is a figure which shows the flow of the process which performs suitable temperature control. 統合管理コントローラ10のソフトウェア構成を示す図である。2 is a diagram showing a software configuration of an integrated management controller 10. FIG. データベース13の構成例を示す図である。It is a figure which shows the structural example of the database. 店外温度をX軸、店内温度をY軸、時刻をZ軸として低圧設定値Psをプロットする3次元のグラフ21の一例である。It is an example of a three-dimensional graph 21 in which the low pressure set value Ps is plotted with the outside temperature as the X axis, the inside temperature as the Y axis, and the time as the Z axis. 設定情報記憶部14の構成例を示す図である。3 is a diagram illustrating a configuration example of a setting information storage unit 14. FIG. データベース13へのデータの累積処理の流れを示す図である。It is a figure which shows the flow of the accumulation process of the data to the database. 低圧設定値Psを機器コントローラ3に設定する処理の流れを示す図である。It is a figure which shows the flow of the process which sets the low voltage | pressure setting value Ps to the apparatus controller. 測定値に基づく設定値の決定処理の流れを示す図である。It is a figure which shows the flow of the determination process of the setting value based on a measured value. データベース13に記憶されたレコードに基づいて低圧設定値Psを決定する処理の流れを示す図である。It is a figure which shows the flow of the process which determines the low voltage | pressure setting value Ps based on the record memorize | stored in the database. 店外温度をX軸、店内温度をY軸、時刻をZ軸として低圧設定値Psをプロットする3次元のグラフ25の一例である。It is an example of a three-dimensional graph 25 in which the low pressure set value Ps is plotted with the outside temperature as the X axis, the inside temperature as the Y axis, and the time as the Z axis. 低圧設定値Psごとにカウントされた出現頻度を表すヒストグラム80の一例である。It is an example of the histogram 80 showing the appearance frequency counted for every low voltage | pressure setting value Ps. 外部データベース151を加えた制御システム1の変形例を示す図である。It is a figure which shows the modification of the control system 1 which added the external database 151. FIG. 時間帯ごとの低圧設定値Psを記憶する場合における低圧設定値記憶部314の構成例を示す図である。It is a figure which shows the structural example of the low voltage | pressure setting value memory | storage part 314 in the case of memorize | storing the low voltage | pressure setting value Ps for every time slot | zone. 時間帯ごとの低圧設定値Psを記憶する場合における低圧制御処理の流れを示す図である。It is a figure which shows the flow of the low voltage | pressure control process in the case of memorize | storing the low voltage | pressure setting value Ps for every time slot | zone. 時間帯ごとの低圧設定値Psを記憶する場合における低圧設定値Psの設定処理の流れを示す図である。It is a figure which shows the flow of the setting process of the low voltage | pressure setting value Ps in the case of memorize | storing the low voltage | pressure setting value Ps for every time slot | zone.
===全体構成===
 以下、本発明の一実施形態に係る冷却システム制御装置を含む制御システム1について説明する。本実施形態に係る制御システム1は、店舗2に設置された冷却用のショーケース60および70の庫内温度を調整するためのものである。
=== Overall structure ===
Hereinafter, a control system 1 including a cooling system control device according to an embodiment of the present invention will be described. The control system 1 according to the present embodiment is for adjusting the internal temperature of the cooling showcases 60 and 70 installed in the store 2.
 図1および図2は、制御システム1の全体構成を説明する図である。制御システム1は、店舗2内に設置される冷却システム5と、冷却システム5を制御するための統合管理コントローラ10(冷却システム制御装置)とを含んで構成されている。 1 and 2 are diagrams for explaining the overall configuration of the control system 1. The control system 1 includes a cooling system 5 installed in the store 2 and an integrated management controller 10 (cooling system control device) for controlling the cooling system 5.
 冷却システム5を構成する各構成要素は、ショーケース60および70を冷却(冷凍または冷蔵)する冷却設備と、冷却設備を制御する制御設備とに大別することができる。冷却設備は、例えば圧縮機(コンプレッサ)30および40、凝縮器(コンデンサ)50、膨張弁61および71、蒸発器(エバポレータ)62および72、およびこれらを互いに接続する冷媒配管8を含んで構成される。圧縮機30および40ならびに凝縮器50をまとめて冷凍機20と称する。冷凍機20は、1台の機器として構成してもよいし、圧縮機30および40ならびに凝縮器50を物理的に離れた場所に設置するように構成してもよい。 Each component constituting the cooling system 5 can be roughly divided into a cooling facility for cooling (freezing or refrigeration) the showcases 60 and 70 and a control facility for controlling the cooling facility. The cooling equipment includes, for example, compressors (compressors) 30 and 40, condensers (condensers) 50, expansion valves 61 and 71, evaporators (evaporators) 62 and 72, and refrigerant piping 8 that connects them to each other. The The compressors 30 and 40 and the condenser 50 are collectively referred to as a refrigerator 20. The refrigerator 20 may be configured as a single device, or may be configured such that the compressors 30 and 40 and the condenser 50 are installed in physically separated locations.
 2台の圧縮機30および40ならびに凝縮器50を制御する制御設備は、例えば、圧縮機30および40内部に設置される温度センサ31、38および41、電流センサ32および42、ならびに圧力センサ39および49、および、凝縮器50に設置される圧力センサ59のセンサ群と、機器コントローラ3とを含んで構成される。 The control equipment for controlling the two compressors 30 and 40 and the condenser 50 includes, for example, temperature sensors 31, 38 and 41, current sensors 32 and 42, and pressure sensors 39 and 40 installed in the compressors 30 and 40. 49, a sensor group of the pressure sensor 59 installed in the condenser 50, and the device controller 3.
 温度センサ31および41は、それぞれ圧縮機30および40から吐出される冷媒ガスの吐出温度Td3およびTd4を測定するように設置される。電流センサ32および42は、それぞれ圧縮機30および40の電流I3およびI4を測定するように設置される。温度センサ38および圧力センサ39は、両圧縮機30および40に吸入される冷媒ガスの吸入温度Tiおよび吸入圧力Piをそれぞれ測定するように設置される。圧力センサ49は、両圧縮機30および40から吐出される冷媒ガスの吐出圧力Pdを測定するように設置される。 Temperature sensors 31 and 41 are installed so as to measure the discharge temperatures Td3 and Td4 of the refrigerant gas discharged from the compressors 30 and 40, respectively. Current sensors 32 and 42 are installed to measure currents I3 and I4 of compressors 30 and 40, respectively. The temperature sensor 38 and the pressure sensor 39 are installed so as to measure the suction temperature Ti and the suction pressure Pi of the refrigerant gas sucked into the compressors 30 and 40, respectively. The pressure sensor 49 is installed so as to measure the discharge pressure Pd of the refrigerant gas discharged from both the compressors 30 and 40.
 機器コントローラ3には、これらのセンサ群の測定値が入力され、圧縮機30および40からそれぞれ、油圧保護スイッチ(不図示)の開閉状態をそれぞれ示すスイッチ信号S1およびS2が入力される。機器コントローラ3から圧縮機30および40には、それぞれリレー信号R1およびR2が入力される。機器コントローラ3は、接続されたセンサ群の測定値や、圧縮機30および40からスイッチ信号S1およびS2に基づいて、リレー信号R1およびR2を出力することにより、圧縮機30および40の圧縮能力を制御する。機器コントローラ3は、所定の目標圧力(以下、「低圧設定値Ps」という。)を動作パラメータとして動作する。機器コントローラ3は、圧力センサ39により測定される吸入圧力Piが一定の低圧設定値Psに保持されるように、圧縮機30および40の制御を行う。この制御を「低圧制御」という。 The measured values of these sensor groups are input to the device controller 3, and switch signals S1 and S2 indicating the open / closed state of a hydraulic pressure protection switch (not shown) are input from the compressors 30 and 40, respectively. Relay signals R1 and R2 are input from the device controller 3 to the compressors 30 and 40, respectively. The device controller 3 outputs the relay signals R1 and R2 based on the measured values of the connected sensor group and the switch signals S1 and S2 from the compressors 30 and 40, thereby improving the compression capacity of the compressors 30 and 40. Control. The device controller 3 operates with a predetermined target pressure (hereinafter referred to as “low pressure set value Ps”) as an operation parameter. The device controller 3 controls the compressors 30 and 40 so that the suction pressure Pi measured by the pressure sensor 39 is maintained at a constant low pressure set value Ps. This control is called “low pressure control”.
 圧縮機30および40は、それぞれリレー信号R1およびR2によってリレー(不図示)が開閉制御されて、運転、あるいは停止される。複数の圧縮機の運転、停止の組合せにより、全体の圧縮能力を制御することで、冷媒配管8を通って蒸発器62および72から供給される低温低圧状態の冷媒ガスを適度に圧縮して、高温高圧状態にする。 The compressors 30 and 40 are operated or stopped by a relay (not shown) being controlled to open and close by relay signals R1 and R2, respectively. By controlling the overall compression capacity by a combination of operation and stop of a plurality of compressors, the refrigerant gas in the low temperature and low pressure state supplied from the evaporators 62 and 72 through the refrigerant pipe 8 is appropriately compressed, Set to high temperature and pressure.
 圧力センサ59は、凝縮器50における冷媒ガスの圧力P5を測定するように設置される。機器コントローラ3には圧力P5の測定値が入力される。凝縮器50は3個のファン51ないし53を備え、機器コントローラ3からファン51ないし53には、それぞれ制御信号F1ないしF3が入力される。機器コントローラ3は、圧力P5の測定値に基づいて、制御信号F1ないしF3を出力する。凝縮器50は、それぞれ制御信号F1ないしF3によってファン51ないし53の回転が制御されて、冷媒配管8を通って圧縮機30および40から供給される冷媒ガスを冷却し、液体状態に凝縮させる。 The pressure sensor 59 is installed so as to measure the pressure P5 of the refrigerant gas in the condenser 50. A measured value of the pressure P5 is input to the device controller 3. The condenser 50 includes three fans 51 to 53, and control signals F1 to F3 are input from the device controller 3 to the fans 51 to 53, respectively. The device controller 3 outputs control signals F1 to F3 based on the measured value of the pressure P5. The condenser 50 controls the rotation of the fans 51 to 53 by control signals F1 to F3, respectively, cools the refrigerant gas supplied from the compressors 30 and 40 through the refrigerant pipe 8, and condenses them into a liquid state.
 なお、圧縮機30および40の吐出圧力Pdと、凝縮器50の圧力P5とは略等しいため、圧力センサ49または59の何れか一方で兼用してもよい。 Since the discharge pressure Pd of the compressors 30 and 40 and the pressure P5 of the condenser 50 are substantially equal, either the pressure sensor 49 or 59 may be used.
 ショーケース60は、膨張弁61および蒸発器62を備える。ショーケース70も同様に、膨張弁71および蒸発器72を備える。冷媒配管8中には、例えばアンモニアやフルオロカーボンなどの冷媒が充填される。この冷媒液体を、蒸発器62および72が気化(蒸発)させることによりショーケース60および70が冷却される。これらの冷却設備を制御する制御設備は、例えば温度センサ68および78と、温度センサ69および79と、機器コントローラ4とを含んで構成される。 The showcase 60 includes an expansion valve 61 and an evaporator 62. Similarly, the showcase 70 includes an expansion valve 71 and an evaporator 72. The refrigerant pipe 8 is filled with a refrigerant such as ammonia or fluorocarbon. The showcases 60 and 70 are cooled by the evaporators 62 and 72 vaporizing (evaporating) the refrigerant liquid. The control facility for controlling these cooling facilities includes, for example, temperature sensors 68 and 78, temperature sensors 69 and 79, and the device controller 4.
 温度センサ69および79は、それぞれショーケース60および70の庫内温度T6およびT7を測定するように設置される。温度センサ68および78は、それぞれショーケース60および70が設置されている環境の温度(以下、「店内温度」という。)T8およびT9を測定するように設置される。なお、温度センサ68または78のいずれかのみを設置するようにしてもよい。機器コントローラ4には、温度T6~T9の測定値が入力される。機器コントローラ4から膨張弁61および71には、それぞれ制御信号V1およびV2が入力される。機器コントローラ4は、庫内温度T6およびT7の測定値に基づいて、制御信号V1およびV2を出力することにより、膨張弁61および71を制御する。機器コントローラ4は、所定の目標温度(以下、「適正温度Ts」という。)を動作パラメータとして動作する。機器コントローラ4は、温度センサ69および79により測定される庫内温度T6およびT7が適正温度Tsに保持されるように膨張弁61および71の制御を行う。この制御を「適温制御」という。 Temperature sensors 69 and 79 are installed so as to measure the internal temperatures T6 and T7 of the showcases 60 and 70, respectively. The temperature sensors 68 and 78 are installed so as to measure temperatures (hereinafter referred to as “in-store temperatures”) T8 and T9 of the environment where the showcases 60 and 70 are installed, respectively. Only either the temperature sensor 68 or 78 may be installed. The device controller 4 receives the measured values of temperatures T6 to T9. Control signals V1 and V2 are input from the device controller 4 to the expansion valves 61 and 71, respectively. The equipment controller 4 controls the expansion valves 61 and 71 by outputting control signals V1 and V2 based on the measured values of the internal temperatures T6 and T7. The device controller 4 operates with a predetermined target temperature (hereinafter referred to as “appropriate temperature Ts”) as an operation parameter. The equipment controller 4 controls the expansion valves 61 and 71 so that the inside temperatures T6 and T7 measured by the temperature sensors 69 and 79 are held at the appropriate temperature Ts. This control is called “appropriate temperature control”.
 膨張弁61および71は、それぞれ制御信号V1およびV2によって開閉制御されて、冷媒配管8を通って凝縮器50から供給される冷媒液体を減圧し、沸点を低下させる。蒸発器62および72は、当該沸点が低下した冷媒液体を気化させる。 The expansion valves 61 and 71 are controlled to open and close by control signals V1 and V2, respectively, to reduce the pressure of the refrigerant liquid supplied from the condenser 50 through the refrigerant pipe 8 and lower the boiling point. The evaporators 62 and 72 vaporize the refrigerant liquid having the lowered boiling point.
 温度センサ7は店舗2の外で店外温度Toを測定するように設置され、統合管理コントローラ10には、通信線93を介して温度センサ7から店外温度Toの測定値が入力される。 
 統合管理コントローラ10はまた、機器コントローラ3および5とも、通信線91を介して接続され、通信線91を介して機器コントローラ3および5と通信して統御するとともに、それらの制御対象機器の状態を監視する。 
 統合管理コントローラ10はさらに、通信網92にも接続され、通信網92を介して、遠隔管理コントローラ6などと通信して遠隔制御されるとともに、遠隔監視される。通信線91および93では、例えば、RS232CやRS485、イーサネット(登録商標)などの規格に従って通信が行われる。
The temperature sensor 7 is installed outside the store 2 so as to measure the outside temperature To, and the integrated management controller 10 receives the measured value of the outside temperature To from the temperature sensor 7 via the communication line 93.
The integrated management controller 10 is also connected to the device controllers 3 and 5 via the communication line 91, and communicates with and manages the device controllers 3 and 5 via the communication line 91, and the state of the devices to be controlled is controlled. Monitor.
The integrated management controller 10 is further connected to a communication network 92, communicated with the remote management controller 6 and the like via the communication network 92, is remotely controlled, and is remotely monitored. The communication lines 91 and 93 perform communication according to standards such as RS232C, RS485, and Ethernet (registered trademark), for example.
 統合管理コントローラ10は、機器コントローラ3および4を制御する。本実施形態では、センサ群による測定値やスイッチの開閉状態など、冷却システム5の状態を判定するための値(以下、単に「測定値」という。)を取得し、取得した測定値に応じてショーケースの冷却状態を評価し、これに応じて省エネルギーを実現するべく低圧設定値Psを決定し、決定した低圧設定値Psを機器コントローラ3に設定することにより、冷却システム5を制御する。また、統合管理コントローラ10は、各センサの測定値を累積しておき、センサから測定値が取得できなかった場合でも、履歴に基づいて機器コントローラ3の低圧設定値Psを設定可能にするようにしている。 The integrated management controller 10 controls the device controllers 3 and 4. In the present embodiment, a value for determining the state of the cooling system 5 (hereinafter simply referred to as “measured value”) such as a measured value by the sensor group and an open / closed state of the switch is acquired, and according to the acquired measured value. The cooling system 5 is controlled by evaluating the cooling state of the showcase, determining the low pressure set value Ps to realize energy saving in accordance with this, and setting the determined low pressure set value Ps in the device controller 3. In addition, the integrated management controller 10 accumulates the measurement values of each sensor so that the low-pressure set value Ps of the device controller 3 can be set based on the history even when the measurement value cannot be acquired from the sensor. ing.
===ハードウェア構成===
 図3は、統合管理コントローラ10ならびに機器コントローラ3および4のハードウェア構成を示す図である。
=== Hardware configuration ===
FIG. 3 is a diagram illustrating a hardware configuration of the integrated management controller 10 and the device controllers 3 and 4.
 統合管理コントローラ10は、主制御部101、RAM(Random Access Memory)102、記憶装置103、通信制御部104、外部入出力インタフェース105を備える。RAM102は揮発性のメモリであり、記憶装置103は不揮発性のメモリである。記憶装置103は各種のデータやプログラムを記憶する。記憶装置103は、例えばフラッシュメモリやハードディスクドライブなどである。記憶装置103には少なくとも制御プログラム11が記憶されている。 The integrated management controller 10 includes a main control unit 101, a RAM (Random Access Memory) 102, a storage device 103, a communication control unit 104, and an external input / output interface 105. The RAM 102 is a volatile memory, and the storage device 103 is a nonvolatile memory. The storage device 103 stores various data and programs. The storage device 103 is, for example, a flash memory or a hard disk drive. The storage device 103 stores at least the control program 11.
 主制御部101は、統合管理コントローラ10の動作を司る、例えばCPU(Central Processing Unit)やMPU(Micro Processing Unit)などのプロセッサである。主制御部101が記憶装置103に記憶されているプログラムをRAM102に読み出して実行することにより各種の機能が実現される。通信制御部104は、遠隔管理コントローラ6や機器コントローラ3および4などとの間で通信を行うための処理を行う。通信制御部104は、例えばRS232CやRS485などの規格にしたがったシリアル通信を行うための通信インタフェース回路や、イーサネット(登録商標)に接続するためのアダプタ、無線通信を行うための無線通信機、電話回線網に接続するためのモデムなどである。外部入出力インタフェース105は、キーボードやマウスなどの入力装置、ディスプレイやプリンタ、スピーカなどの出力装置などを接続するためのインタフェースである。統合管理コントローラ10は、外部入出力インタフェース105を介して、ユーザからデータの入力を受け付け、またユーザに対してデータを表示したり印刷したりする。 The main control unit 101 is a processor such as a CPU (Central Processing Unit) or an MPU (Micro Processing Unit) that controls the operation of the integrated management controller 10. Various functions are realized by the main control unit 101 reading out the program stored in the storage device 103 to the RAM 102 and executing the program. The communication control unit 104 performs processing for communicating with the remote management controller 6 and the device controllers 3 and 4. The communication control unit 104 includes, for example, a communication interface circuit for performing serial communication in accordance with standards such as RS232C and RS485, an adapter for connecting to Ethernet (registered trademark), a wireless communication device for performing wireless communication, a telephone For example, a modem for connecting to a network. The external input / output interface 105 is an interface for connecting an input device such as a keyboard and a mouse, an output device such as a display, a printer, and a speaker. The integrated management controller 10 receives input of data from the user via the external input / output interface 105, and displays and prints data to the user.
 機器コントローラ3は、処理装置301、RAM302、フラッシュメモリ303、通信制御部304、入出力インタフェース305を備える。機器コントローラ4は、処理装置401、RAM402、フラッシュメモリ403、通信制御部404、入出力インタフェース405を備えている。機器コントローラ4は機器コントローラ3と同様の構成であるので、共通する部分については機器コントローラ3についてのみ説明する。 The device controller 3 includes a processing device 301, a RAM 302, a flash memory 303, a communication control unit 304, and an input / output interface 305. The device controller 4 includes a processing device 401, a RAM 402, a flash memory 403, a communication control unit 404, and an input / output interface 405. Since the device controller 4 has the same configuration as the device controller 3, only the device controller 3 will be described with respect to common parts.
 RAM302は揮発性のメモリであり、フラッシュメモリ303は不揮発性のメモリである。フラッシュメモリ303は各種のプログラムやデータを記憶する。フラッシュメモリ303に代えてハードディスクドライブなどの記憶装置を採用してもよい。フラッシュメモリ303には少なくとも制御プログラム33および低圧設定値Ps34が記憶されている。機器コントローラ4のフラッシュメモリ403には少なくとも制御プログラム43および適正温度Ts44が記憶されている。なお、フラッシュメモリ303には、ユーザにより適正と考えられている所定のデフォルト値が低圧設定値Psとして予め記録されており、またフラッシュメモリ403には、所定のデフォルト値が適正温度Tsとして予め記録されているものとする。 The RAM 302 is a volatile memory, and the flash memory 303 is a nonvolatile memory. The flash memory 303 stores various programs and data. A storage device such as a hard disk drive may be employed instead of the flash memory 303. The flash memory 303 stores at least a control program 33 and a low pressure set value Ps34. The flash memory 403 of the device controller 4 stores at least a control program 43 and an appropriate temperature Ts44. A predetermined default value that is considered appropriate by the user is recorded in advance in the flash memory 303 as a low pressure set value Ps, and a predetermined default value is recorded in advance in the flash memory 403 as an appropriate temperature Ts. It is assumed that
 処理装置301は、機器コントローラ3の動作を司る、例えばCPUやMPUなどのプロセッサである。処理装置301がフラッシュメモリ303に記憶されているプログラムをRAM302に読み出して実行することにより各種の機能が実現される。通信制御部304は、統合管理コントローラ10との間の通信を行う。通信制御部304は、例えばRS232CやRS485などの規格にしたがったシリアル通信を行うための通信インタフェース回路や、イーサネット(登録商標)に接続するためのアダプタ、無線通信を行うための無線通信機、電話回線網に接続するためのモデムなどである。入出力インタフェース305は、スイッチやボタン、キーボードなどの入力装置からのデータを受け付け、またディスプレイやプリンタなどにデータを出力する。 The processing device 301 is a processor such as a CPU or MPU that controls the operation of the device controller 3. Various functions are realized by the processing device 301 reading the program stored in the flash memory 303 to the RAM 302 and executing the program. The communication control unit 304 performs communication with the integrated management controller 10. The communication control unit 304 includes, for example, a communication interface circuit for performing serial communication according to a standard such as RS232C and RS485, an adapter for connecting to Ethernet (registered trademark), a wireless communication device for performing wireless communication, a telephone For example, a modem for connecting to a network. The input / output interface 305 receives data from an input device such as a switch, button, or keyboard, and outputs the data to a display, a printer, or the like.
==機器コントローラ3のソフトウェア構成==
 図4は、機器コントローラ3のソフトウェア構成を示す図である。機器コントローラ3は、低圧設定値管理部311、測定値提供部312、低圧制御部313および低圧設定値記憶部314を備える。低圧設定値管理部311、測定値提供部312および低圧制御部313は、機器コントローラ3の処理装置301が、フラッシュメモリ303に記憶されている制御プログラム33をRAM302に読み出して実行することにより実現され、低圧設定値記憶部314はフラッシュメモリ303が提供する記憶領域の一部として実現される。なお、低圧設定値記憶部313は、RAM302の記憶領域の一部として実現されるようにしてもよい。
== Software Configuration of Device Controller 3 ==
FIG. 4 is a diagram illustrating a software configuration of the device controller 3. The device controller 3 includes a low pressure set value management unit 311, a measurement value providing unit 312, a low pressure control unit 313, and a low pressure set value storage unit 314. The low pressure set value management unit 311, the measurement value providing unit 312, and the low pressure control unit 313 are realized by the processing device 301 of the device controller 3 reading out the control program 33 stored in the flash memory 303 to the RAM 302 and executing it. The low pressure set value storage unit 314 is realized as a part of a storage area provided by the flash memory 303. Note that the low pressure set value storage unit 313 may be realized as a part of the storage area of the RAM 302.
 低圧設定値記憶部314は、低圧設定値Psを記憶する。低圧設定値管理部311は、統合管理コントローラ10から送信される低圧設定値Psを受信し、受信した低圧設定値Psを低圧設定値記憶部314に登録する。 The low pressure set value storage unit 314 stores the low pressure set value Ps. The low pressure set value management unit 311 receives the low pressure set value Ps transmitted from the integrated management controller 10, and registers the received low pressure set value Ps in the low pressure set value storage unit 314.
 測定値提供部312は、機器コントローラ3に入力された各種の測定値を統合管理コントローラ10に提供する。本実施形態では、測定値提供部312は、統合管理コントローラ10から送信される、測定値を取得するためのコマンド(以下、単に「取得コマンド」という。)を受信し、取得コマンドに応じて、低圧設定値記憶部314に記憶されている低圧設定値Ps、温度センサ31および41から入力される冷媒ガスの吐出温度Td3およびTd4、電流センサ32および42から入力される電流I3およびI4、温度センサ38および圧力センサ39から入力される冷媒ガスの吸入温度Tiおよび吸入圧力Pi、圧力センサ49から入力される吐出圧力Pd、圧力センサ59から入力される冷媒ガスの圧力P5を統合管理コントローラ10に送信する。 The measurement value providing unit 312 provides various measurement values input to the device controller 3 to the integrated management controller 10. In the present embodiment, the measurement value providing unit 312 receives a command for acquiring a measurement value (hereinafter simply referred to as “acquisition command”) transmitted from the integrated management controller 10, and according to the acquisition command, Low pressure set value Ps stored in low pressure set value storage unit 314, refrigerant gas discharge temperatures Td3 and Td4 input from temperature sensors 31 and 41, currents I3 and I4 input from current sensors 32 and 42, temperature sensor 38, the refrigerant gas suction temperature Ti and the suction pressure Pi, the discharge pressure Pd input from the pressure sensor 49, and the refrigerant gas pressure P5 input from the pressure sensor 59 are transmitted to the integrated management controller 10. To do.
 低圧制御部313は、低圧制御を行う。図5は低圧制御を行う処理の流れを示す図である。低圧制御部313は、吸入圧力Piが低圧設定値Psを下回った場合(S321:YES)、圧縮機30または40の圧縮能力を下げるようにリレー信号R1またはR2を出力し(S322)、吸入圧力Piが低圧設定値Psを上回った場合(S323:YES)、圧縮機30および40の圧縮能力を上げるようにリレー信号R1およびR2を出力する(S324)。これにより、吸入圧力Piが低圧設定値Ps近くに保持されるように圧縮機30および40の制御がなされる。 The low pressure control unit 313 performs low pressure control. FIG. 5 is a diagram showing a flow of processing for performing low-pressure control. When the suction pressure Pi falls below the low pressure set value Ps (S321: YES), the low pressure control unit 313 outputs a relay signal R1 or R2 so as to reduce the compression capacity of the compressor 30 or 40 (S322), and the suction pressure When Pi exceeds the low pressure set value Ps (S323: YES), relay signals R1 and R2 are output so as to increase the compression capacity of the compressors 30 and 40 (S324). Thus, the compressors 30 and 40 are controlled so that the suction pressure Pi is maintained near the low pressure set value Ps.
==機器コントローラ4のソフトウェア構成==
 図6は、機器コントローラ4のソフトウェア構成を示す図である。機器コントローラ4は、適正温度管理部411、測定値提供部412、適温制御部413および適正温度記憶部414を備える。適正温度管理部411、測定値提供部412および適温制御部413は、機器コントローラ4の処理装置401が、フラッシュメモリ403に記憶されている制御プログラム43をRAM402に読み出して実行することにより実現され、適正温度記憶部414はフラッシュメモリ403が提供する記憶領域の一部として実現される。なお、適正温度記憶部414は、RAM402の記憶領域の一部として実現されるようにしてもよい。
== Software Configuration of Device Controller 4 ==
FIG. 6 is a diagram illustrating a software configuration of the device controller 4. The device controller 4 includes an appropriate temperature management unit 411, a measurement value providing unit 412, an appropriate temperature control unit 413, and an appropriate temperature storage unit 414. The appropriate temperature management unit 411, the measurement value providing unit 412 and the appropriate temperature control unit 413 are realized by the processing device 401 of the device controller 4 reading out the control program 43 stored in the flash memory 403 to the RAM 402 and executing it. The appropriate temperature storage unit 414 is realized as a part of the storage area provided by the flash memory 403. The appropriate temperature storage unit 414 may be realized as a part of the storage area of the RAM 402.
 適正温度記憶部414は、適正温度Tsを記憶する。一般にショーケースの設定温度はショーケース側で設定できるようになっており、本実施形態でも、ユーザから入力された適正温度Tsが予め適正温度記憶部414に記憶されているものとする。なお、適正温度管理部411は、統合管理コントローラ10から適正温度Tsを受信した場合には、受信した適正温度Tsを適正温度記憶部414に登録するようにしてもよい。 The appropriate temperature storage unit 414 stores the appropriate temperature Ts. In general, the set temperature of the showcase can be set on the showcase side, and in this embodiment as well, it is assumed that the appropriate temperature Ts input by the user is stored in the appropriate temperature storage unit 414 in advance. When the appropriate temperature management unit 411 receives the appropriate temperature Ts from the integrated management controller 10, the appropriate temperature management unit 411 may register the received appropriate temperature Ts in the appropriate temperature storage unit 414.
 測定値提供部412は、機器コントローラ4に入力された各種の測定値を統合管理コントローラ10に提供する。本実施形態では、測定値提供部412は、統合管理コントローラ10から送信される取得コマンドを受信し、取得コマンドに応じて、適正温度記憶部414に記憶されている適正温度Ts、温度センサ69および79から入力される庫内温度T6およびT7、温度センサ68および78から入力される店内温度T8およびT9を統合管理コントローラ10に送信する。なお、店内温度T8またはT9のいずれかのみ、あるいは、店内温度T8およびT9の平均値を、店内温度として統合管理コントローラ10に送信するようにしてもよい。 The measurement value providing unit 412 provides various measurement values input to the device controller 4 to the integrated management controller 10. In the present embodiment, the measurement value providing unit 412 receives the acquisition command transmitted from the integrated management controller 10, and, according to the acquisition command, the appropriate temperature Ts, the temperature sensor 69, and the temperature sensor 69 that are stored in the appropriate temperature storage unit 414. The in-store temperatures T6 and T7 input from 79 and the in-store temperatures T8 and T9 input from the temperature sensors 68 and 78 are transmitted to the integrated management controller 10. Note that only one of the in-store temperatures T8 and T9 or an average value of the in-store temperatures T8 and T9 may be transmitted to the integrated management controller 10 as the in-store temperature.
 適温制御部413は、適温制御を行う。図7は適温制御を行う処理の流れを示す図である。適温制御部413は、各ショーケース60および70について以下の処理を行う。すなわち、適温制御部413は、適正温度Tsに所定値を足して上限値とし(S421)、庫内温度T6またはT7が上限温度を超えた場合(S422:YES)、超えた温度に応じて膨張弁61または71の開度が大きくなるように、制御信号V1およびV2を出力する(S423)。庫内温度が上限値を超えていない場合には(S422:NO)、適温制御部413は、適正温度Tsから所定値を引いて下限値とし(S424)、庫内温度T6またはT7が下限温度を下回った場合には(S425:YES)、下回った温度に応じて膨張弁61または71の開度が小さくなるように、制御信号V1およびV2を出力する(S426)。なお、所定値はショーケース60および70に応じて異なる値でもよいし、全てのショーケースについて同じ値でもよい。 The optimal temperature control unit 413 performs optimal temperature control. FIG. 7 is a diagram showing a flow of processing for performing appropriate temperature control. The appropriate temperature control unit 413 performs the following processing for each showcase 60 and 70. In other words, the appropriate temperature control unit 413 adds a predetermined value to the appropriate temperature Ts to obtain an upper limit value (S421), and when the internal temperature T6 or T7 exceeds the upper limit temperature (S422: YES), expansion is performed according to the exceeded temperature. Control signals V1 and V2 are output so that the opening degree of the valve 61 or 71 is increased (S423). When the internal temperature does not exceed the upper limit value (S422: NO), the appropriate temperature control unit 413 subtracts a predetermined value from the appropriate temperature Ts as the lower limit value (S424), and the internal temperature T6 or T7 is the lower limit temperature. (S425: YES), the control signals V1 and V2 are output so that the opening degree of the expansion valve 61 or 71 is reduced in accordance with the lower temperature (S426). The predetermined value may be different depending on the showcases 60 and 70, or may be the same value for all the showcases.
 以上の処理を各ショーケース60および70について行うことにより、庫内温度T6およびT7が適正温度Ts近くに保持されるように、膨張弁61および71の制御が行われる。 By performing the above processing for each of the showcases 60 and 70, the expansion valves 61 and 71 are controlled so that the inside temperatures T6 and T7 are maintained near the appropriate temperature Ts.
==統合管理コントローラ10のソフトウェア構成==
 図8は、統合管理コントローラ10のソフトウェア構成を示す図である。統合管理コントローラ10は、測定値取得部111、低圧設定値決定部112、制御部113、データベース13、設定情報記憶部14を備える。測定値取得部111、低圧設定値決定部112および制御部113は、統合管理コントローラ10の主制御部101が記憶装置103に記憶されている制御プログラム11をRAM102に読み出して実行することにより実現され、データベース13および設定情報記憶部14は、RAM102および記憶装置103が提供する記憶領域として実現される。
== Software configuration of the integrated management controller 10 ==
FIG. 8 is a diagram illustrating a software configuration of the integrated management controller 10. The integrated management controller 10 includes a measurement value acquisition unit 111, a low pressure set value determination unit 112, a control unit 113, a database 13, and a setting information storage unit 14. The measurement value acquisition unit 111, the low-pressure set value determination unit 112, and the control unit 113 are realized by the main control unit 101 of the integrated management controller 10 reading the control program 11 stored in the storage device 103 into the RAM 102 and executing it. The database 13 and the setting information storage unit 14 are realized as storage areas provided by the RAM 102 and the storage device 103.
 測定値取得部111は、所定時間(本実施形態では5分とする。)ごとに、各種の測定値を取得する。本実施形態では、測定値取得部111は、機器コントローラ3から、機器コントローラ3に設定されている低圧設定値Ps、温度センサ31および41が測定する冷媒ガスの吐出温度Td3およびTd4、電流センサ32および42が測定する電流I3およびI4、温度センサ38および圧力センサ39が測定する冷媒ガスの吸入温度Tiおよび吸入圧力Pi、圧力センサ49が測定する冷媒ガスの吐出圧力Pd、圧力センサ59が測定する冷媒ガスの圧力P5を取得し、機器コントローラ4から、機器コントローラ4に設定されている適正温度Ts、温度センサ68および78が測定する店内温度T8およびT9、温度センサ69および79が測定する庫内温度T6およびT7を取得し、温度センサ7から店外温度Toを取得する。機器コントローラ3および4からの測定値の取得は、測定値取得部111から機器コントローラ3および4に対し、通信線91および93を介して取得コマンドを送信し、取得コマンドに応じて機器コントローラ3および4から測定値を送信することにより行われるものとする。また、温度センサ7からの測定値の取得は、一般的なセンサからの値を取得する方法で行うものとし、例えば、温度センサ7から出力されるアナログのセンサ信号をADコンバータによりデジタル値として取得するようにすることができる。なお、温度センサ7に接続するコントローラ(店外温度センサコントローラ)を設置して、機器コントローラ3および4と同様に、測定値取得部111が店外温度センサコントローラに取得コマンドを送信し、店外温度センサコントローラが取得コマンドに応じて温度センサ7からの測定値を統合管理コントローラ10に送信するようにしてもよい。また、機器コントローラ3および4側から定期的に統合管理コントローラ10に測定値を送信するようにしてもよく、温度センサ7に接続する店外温度センサコントローラを設置し、店外温度センサコントローラから定期的に統合管理コントローラ10に測定値を送信するようにしてもよい。 Measured value acquisition unit 111 acquires various measured values every predetermined time (in this embodiment, 5 minutes). In the present embodiment, the measurement value acquisition unit 111 receives from the device controller 3 the low pressure set value Ps set in the device controller 3, the refrigerant gas discharge temperatures Td3 and Td4 measured by the temperature sensors 31 and 41, and the current sensor 32. Currents I3 and I4 measured by pressure sensors 42 and 42, suction temperature Ti and suction pressure Pi of refrigerant gas measured by temperature sensor 38 and pressure sensor 39, discharge pressure Pd of refrigerant gas measured by pressure sensor 49, and pressure sensor 59 The pressure P5 of the refrigerant gas is acquired, the appropriate temperature Ts set in the device controller 4 from the device controller 4, the in-store temperatures T8 and T9 measured by the temperature sensors 68 and 78, and the interior measured by the temperature sensors 69 and 79 The temperatures T6 and T7 are acquired, and the outside temperature To is acquired from the temperature sensor 7. Acquisition of the measurement values from the device controllers 3 and 4 is performed by transmitting an acquisition command from the measurement value acquisition unit 111 to the device controllers 3 and 4 via the communication lines 91 and 93. It is assumed that the measurement value is transmitted from 4. The measurement value from the temperature sensor 7 is acquired by a method of acquiring a value from a general sensor. For example, an analog sensor signal output from the temperature sensor 7 is acquired as a digital value by an AD converter. To be able to. A controller (outside store temperature sensor controller) connected to the temperature sensor 7 is installed, and the measurement value acquisition unit 111 transmits an acquisition command to the outside store temperature sensor controller in the same manner as the device controllers 3 and 4. The temperature sensor controller may transmit the measurement value from the temperature sensor 7 to the integrated management controller 10 in response to the acquisition command. Further, the measurement values may be periodically transmitted from the device controllers 3 and 4 to the integrated management controller 10, and an outside temperature sensor controller connected to the temperature sensor 7 is installed, and the outside temperature sensor controller periodically Specifically, the measurement value may be transmitted to the integrated management controller 10.
 低圧設定値決定部112は、機器コントローラ3に設定すべき低圧設定値Psを決定する。低圧設定値決定部112は、後述するように、適正温度Tsと庫内温度との温度差の平均値に応じてショーケース60および70の冷却状態の良否を判定し、冷却状態が良い場合には低圧設定値Psを上げ、冷却状態が良くない場合には低圧設定値Psを下げるようにする。また、測定値取得部111がセンサから庫内温度T6およびT7や店外温度Toなどを取得できなかった場合には、低圧設定値決定部112は、データベース13に累積した過去の低圧設定値Psに応じて、設定すべき低圧設定値Psを決定する。 The low pressure set value determination unit 112 determines the low pressure set value Ps to be set in the device controller 3. As will be described later, the low pressure set value determination unit 112 determines whether the cooling state of the showcases 60 and 70 is good or not according to the average value of the temperature difference between the appropriate temperature Ts and the internal temperature, and when the cooling state is good. Increases the low pressure set value Ps, and lowers the low pressure set value Ps when the cooling state is not good. When the measured value acquisition unit 111 cannot acquire the internal temperature T6 and T7 or the outside temperature To from the sensor, the low pressure set value determination unit 112 stores the past low pressure set value Ps accumulated in the database 13. The low pressure set value Ps to be set is determined according to.
 制御部113は、機器コントローラ3および4の制御を行う。制御部113は、機器コントローラ3および4の動作に関する各種の制御を行うが、本実施形態では、低圧設定値決定部112が決定した低圧設定値Psを機器コントローラ3に設定する低圧制御についてのみ説明する。なお、本実施形態では、制御部113が低圧設定値Psを機器コントローラ3に送信すると、機器コントローラ3側では、受信した低圧設定値Psがフラッシュメモリ303に記憶されるものとする。 The control unit 113 controls the device controllers 3 and 4. The control unit 113 performs various types of control related to the operations of the device controllers 3 and 4. In the present embodiment, only the low pressure control for setting the low pressure set value Ps determined by the low pressure set value determination unit 112 in the device controller 3 will be described. To do. In the present embodiment, when the control unit 113 transmits the low pressure set value Ps to the device controller 3, the received low pressure set value Ps is stored in the flash memory 303 on the device controller 3 side.
 データベース13は、測定値に対応づけて、機器コントローラ3に設定されている低圧設定値Psを累積する。図9はデータベース13の構成例を示す図である。データベース13に記録される各レコードには、ショーケースを特定する値(以下、「ショーケース番号」という。)、日時、時間帯、庫内温度、店内温度、店内丸め温度、店外温度、店外丸め温度、適正温度Ts、低圧設定値Psが含まれる。時間帯は、日時に含まれる時刻が属する時間帯であり、本実施形態では、時間帯の長さは2時間であるものとする。したがって、時間帯には、0、2、4、…、22のいずれかの値が設定される。店内丸め温度は、店内温度を所定の丸め幅(本実施形態では5℃とするが、任意の値とすることができる。)で丸めた値であり、店外丸め温度は店外温度を上記所定の丸め幅で丸めた値である。丸め演算には、切り捨て、切り上げ、四捨五入など任意の演算方法を用いることができる。なお、店内温度と店外温度とを異なる丸め幅で丸めるようにしてもよい。また、レコードには、これら以外にも、例えば、電流センサ32、42が測定する電流I3およびI4や、温度センサ38および圧力センサ39が測定する吸入温度Tiおよび吸入圧力Pi、圧力センサ49が測定する吐出圧力Pd、圧縮機30および40から取得されるスイッチ信号S1およびS2、圧力センサ59が測定する圧力P5など、機器コントローラ3および4が取得している各種のデータをレコードに含めるようにしてもよい。また、温度センサ7以外にも各種のセンサを店舗2の内外に設置して、そのセンサが取得した測定値をレコードに含めるようにしてもよい。 The database 13 accumulates the low pressure set value Ps set in the device controller 3 in association with the measured value. FIG. 9 is a diagram illustrating a configuration example of the database 13. Each record recorded in the database 13 includes a value specifying a showcase (hereinafter referred to as “showcase number”), date and time, time zone, internal temperature, in-store temperature, in-store rounding temperature, in-store temperature, in-store temperature, store The outer rounding temperature, the appropriate temperature Ts, and the low pressure set value Ps are included. The time zone is a time zone to which the time included in the date and time belongs. In the present embodiment, the length of the time zone is 2 hours. Therefore, any value of 0, 2, 4,..., 22 is set in the time zone. The in-store rounding temperature is a value obtained by rounding the in-store temperature by a predetermined rounding width (in this embodiment, 5 ° C., but can be an arbitrary value). A value rounded by a predetermined rounding width. For the rounding calculation, any calculation method such as rounding down, rounding up, and rounding off can be used. The in-store temperature and the outside temperature may be rounded with different rounding widths. In addition to these, the record includes, for example, currents I3 and I4 measured by the current sensors 32 and 42, a suction temperature Ti and a suction pressure Pi measured by the temperature sensor 38 and the pressure sensor 39, and a pressure sensor 49. Various records acquired by the device controllers 3 and 4 such as the discharge pressure Pd to be performed, the switch signals S1 and S2 acquired from the compressors 30 and 40, and the pressure P5 measured by the pressure sensor 59 are included in the record. Also good. In addition to the temperature sensor 7, various sensors may be installed inside and outside the store 2, and the measurement value acquired by the sensor may be included in the record.
 後述する処理において、低圧設定値Psの履歴は、店外温度丸め値、店内温度丸め値および時間帯に対応づけて管理される。したがって、図10に示すように、店外温度をX軸、店内温度をY軸、時刻をZ軸とした3次元のグラフ21において低圧設定値Psをプロットすると、X軸およびY軸をそれぞれ5℃ずつ区切り、時刻を2時間ずつ区切った各セルの中に、低圧設定値Psが含まれることになる。例えば、図9の例における、ショーケース番号が「1」で、日時が「2010/06/01 00:00:00」であるレコードに係る低圧設定値Psは、図10のグラフ21においてセル22に含まれる。 In the process described later, the history of the low-pressure set value Ps is managed in association with the outside temperature rounding value, the inside temperature rounding value, and the time zone. Therefore, as shown in FIG. 10, when the low pressure set value Ps is plotted on a three-dimensional graph 21 in which the outside temperature is the X axis, the in-store temperature is the Y axis, and the time is the Z axis, the X axis and the Y axis are each 5 The low pressure set value Ps is included in each cell divided by degrees Celsius and time divided by 2 hours. For example, in the example of FIG. 9, the low pressure set value Ps related to the record having the showcase number “1” and the date and time “2010/06/01 00:00:00” is the cell 22 in the graph 21 of FIG. include.
 設定情報記憶部14には、各種の設定情報が記憶される。図11は設定情報記憶部14の構成例を示す図である。本実施形態では、設定情報記憶部14には、省エネモード、解析期間、温度差許容値、調整値および低圧設定下限値が記憶される。省エネモードは、「省エネ優先モード」、「安全優先モード」および「安全絶対モード」のいずれかであり、後述するように、省エネモードによって、低圧設定値決定部112が、センサから測定値を取得できなかった場合に異なる算出方法によって、新たに設定すべき低圧設定値Psを算出することになる。解析期間は、解析対象とするレコードの範囲を指定する値である。温度差許容値は、ショーケース60および70の冷却状態の良否を判定するための値であり、庫内温度と適正温度Tsとの差が温度差許容値を超えた場合に、ショーケース60および70における冷却状態が悪い(過冷却、または冷却不足)と判定される。調整値は、低圧設定値Psを調整する際に、低圧設定値Psを増加または減少させるステップ値である。低圧設定下限値は、低圧設定値Psとして設定可能な最低値である。 The setting information storage unit 14 stores various setting information. FIG. 11 is a diagram illustrating a configuration example of the setting information storage unit 14. In the present embodiment, the setting information storage unit 14 stores an energy saving mode, an analysis period, a temperature difference allowable value, an adjustment value, and a low pressure setting lower limit value. The energy saving mode is any one of “energy saving priority mode”, “safety priority mode”, and “safe absolute mode”. As will be described later, the low pressure set value determination unit 112 acquires the measured value from the sensor according to the energy saving mode. If it is not possible, the low pressure set value Ps to be newly set is calculated by a different calculation method. The analysis period is a value that specifies the range of records to be analyzed. The temperature difference allowable value is a value for determining the quality of the cooling state of the showcases 60 and 70, and when the difference between the internal temperature and the appropriate temperature Ts exceeds the temperature difference allowable value, the showcase 60 and It is determined that the cooling state at 70 is poor (overcooling or insufficient cooling). The adjustment value is a step value for increasing or decreasing the low pressure set value Ps when the low pressure set value Ps is adjusted. The low pressure setting lower limit value is the lowest value that can be set as the low pressure setting value Ps.
==累積処理==
 図12は、統合管理コントローラ10におけるデータベース13へのデータの累積処理の流れを示す図である。 
 測定値取得部111は、変数のエラーカウントを0に設定し(S501)、通信異常フラグを偽に設定して(S502)、初期化処理を行う。測定値取得部111は、取得コマンドを機器コントローラ3および4ならびに温度センサ7に送信し(S503)、機器コントローラ3もしくは4または温度センサ7から、庫内温度、店内温度、店外温度、適正温度Tsおよび低圧設定値Psのいずれかを受信できなければ(S504:NO)、エラーカウントをインクリメントし(S505)、エラーカウントが所定の閾値を超えた場合には(S506:YES)、通信異常フラグに真を設定する(S507)。 
 一方、庫内温度、店内温度、店外温度、適正温度Tsおよび低圧設定値Psを全て受信した場合には(S504:YES)、測定値取得部111は、エラーカウントを0に設定し(S508)、通信異常フラグを偽に設定する(S509)。測定値取得部111は、現在日時を取得し(S510)、ショーケース番号、現在日時、現在日時が属する時間帯、庫内温度、店内温度、店内温度を5℃幅で丸めた店内丸め温度、店外温度、店外温度を5℃幅で丸めた店外丸め温度、適正温度Ts、低圧設定値Psを設定したレコードをデータベース13に追加する(S511)。 
 測定値取得部111は、終了の指示がなければ(S512:NO)、ステップS503からの処理を繰り返す。なお、測定値取得部111は、5分ごとにステップS503からの処理を繰り返すように待機処理を行うようにする。
== Cumulative processing ==
FIG. 12 is a diagram showing a flow of data accumulation processing to the database 13 in the integrated management controller 10.
The measured value acquisition unit 111 sets the variable error count to 0 (S501), sets the communication abnormality flag to false (S502), and performs initialization processing. The measurement value acquisition unit 111 transmits an acquisition command to the device controllers 3 and 4 and the temperature sensor 7 (S503). From the device controller 3 or 4 or the temperature sensor 7, the internal temperature, the in-store temperature, the outside temperature, and the appropriate temperature If either of Ts and low pressure set value Ps cannot be received (S504: NO), the error count is incremented (S505). If the error count exceeds a predetermined threshold (S506: YES), a communication abnormality flag Is set to true (S507).
On the other hand, when all of the inside temperature, the inside temperature, the outside temperature, the appropriate temperature Ts, and the low pressure set value Ps are received (S504: YES), the measured value acquisition unit 111 sets the error count to 0 (S508). ), The communication abnormality flag is set to false (S509). The measurement value acquisition unit 111 acquires the current date and time (S510), the showcase number, the current date and time, the time zone to which the current date and time belongs, the in-store temperature, the in-store temperature, the in-store rounding temperature obtained by rounding the in-store temperature by 5 ° C., A record in which the store outside temperature, the store outside rounding temperature obtained by rounding the store outside temperature by 5 ° C., the appropriate temperature Ts, and the low pressure set value Ps is added to the database 13 (S511).
If there is no end instruction (S512: NO), measurement value acquisition unit 111 repeats the processing from step S503. Note that the measurement value acquisition unit 111 performs standby processing so that the processing from step S503 is repeated every five minutes.
 以上のようにして、測定値取得部111により、機器コントローラ3および4ならびに温度センサ7から取得した店内温度、店外温度、適正温度Tsおよび低圧設定値Psなどがデータベース13に累積される。 As described above, the measured value acquisition unit 111 accumulates the in-store temperature, the outside temperature, the appropriate temperature Ts, the low pressure set value Ps, and the like acquired from the device controllers 3 and 4 and the temperature sensor 7 in the database 13.
==低圧制御設定処理==
 図13は、低圧設定値Psを設定する処理の流れを示す図である。 
 まず低圧設定値決定部112が現在時刻を取得する(S521)。現在時刻は一般的な手法により取得する。例えば現在時刻は統合管理コントローラ10が備えるクロックから取得することができる。続いてショーケース60および70のそれぞれについて以下の処理が行われる。 
 低圧設定値決定部112は、通信異常フラグが偽である場合には(S522:NO)、機器コントローラ3および4ならびに温度センサ7から取得した測定値に基づいて、設定すべき低圧設定値Ps(以下、単に「設定値」という。)を決定し(S523)、通信異常フラグが真である場合には(S522:YES)、データベース13に累積されたデータに基づいて設定値を決定する(S524)。なお、これら設定値の決定処理については後述する。制御部113は、低圧設定値決定部112が決定した設定値を機器コントローラ3に設定する(S525)。
== Low pressure control setting process ==
FIG. 13 is a diagram showing a flow of processing for setting the low pressure set value Ps.
First, the low pressure set value determination unit 112 acquires the current time (S521). The current time is obtained by a general method. For example, the current time can be acquired from a clock provided in the integrated management controller 10. Subsequently, the following processing is performed for each of the showcases 60 and 70.
When the communication abnormality flag is false (S522: NO), the low-pressure set value determination unit 112 determines the low-pressure set value Ps (which should be set based on the measured values acquired from the device controllers 3 and 4 and the temperature sensor 7). Hereinafter, the setting value is simply determined (S523). If the communication abnormality flag is true (S522: YES), the setting value is determined based on the data accumulated in the database 13 (S524). ). The setting value determination process will be described later. The control unit 113 sets the setting value determined by the low pressure setting value determination unit 112 in the device controller 3 (S525).
 以上の処理をショーケース60および70のそれぞれについて繰り返した後、終了の指示がなければ(S526:NO)、ステップS521からの処理を繰り返す。なお、低圧制御設定処理は所定の時間間隔、例えば1分周期で繰り返し実行される。 After the above processing is repeated for each of the showcases 60 and 70, if there is no end instruction (S526: NO), the processing from step S521 is repeated. The low-pressure control setting process is repeatedly executed at a predetermined time interval, for example, at a cycle of 1 minute.
==測定値に基づく低圧設定値Psの決定処理==
 図14は、測定値に基づく設定値の決定処理の流れを示す図である。 
 低圧設定値決定部112は、処理対象のショーケースを示すショーケース番号に対応する、最新の日時のレコードをデータベース13から読み出し(S541)、読み出したレコードに含まれている庫内丸め温度および店外丸め温度と、現在時刻が属する時間帯とに対応する最新の日時の低圧設定値Psをデータベース13から読み出す(S542)。低圧設定値決定部112は、上記ショーケース番号に対応し、現在時刻から過去解析期間内の日時であるレコードをデータベース13から読み出し(S543)、読み出したレコードのそれぞれについて、庫内温度から適正温度Tsを引いた温度差を算出し、算出した温度差の平均値を求めて平均温度差とする(S544)。あるいは、もっと単純に過去のレコードとは無関係に、現在の庫内温度と適正温度Tsとの温度差を平均温度差に置き換えても良い。
== Low pressure set value Ps determination process based on measured value ==
FIG. 14 is a diagram illustrating a flow of a setting value determination process based on a measurement value.
The low pressure set value determination unit 112 reads a record of the latest date and time corresponding to the showcase number indicating the showcase to be processed from the database 13 (S541), and the inside rounding temperature and the store included in the read record. The latest low pressure setting value Ps corresponding to the outer rounding temperature and the time zone to which the current time belongs is read from the database 13 (S542). The low-pressure set value determination unit 112 reads a record that corresponds to the showcase number and is a date and time within the past analysis period from the current time from the database 13 (S543), and for each of the read records, the temperature from the internal temperature to the appropriate temperature A temperature difference obtained by subtracting Ts is calculated, and an average value of the calculated temperature differences is obtained as an average temperature difference (S544). Alternatively, the temperature difference between the current internal temperature and the appropriate temperature Ts may be replaced with an average temperature difference, regardless of past records.
 低圧設定値決定部112は、平均温度差の絶対値が温度差許容値以下であれば(S545:YES)、低圧設定値Psを設定値とし(S546)、平均温度差の絶対値が温度差許容値より大きい場合(S545:NO)、平均温度差が正の値であるとき、すなわち、庫内温度の方が適正温度Tsよりも高い、冷却不足の状態であるときには(S547:YES)、ステップS542で読み出した低圧設定値Psから調整値を減算して設定値とする(S548)。一方、平均温度差の絶対値が温度差許容値より大きい場合で(S545:NO)、平均温度差が負の値であるとき、すなわち、庫内温度の方が適正温度Tsよりも低い、過冷却の状態であるときには(S546:NO)、低圧設定値決定部112は、低圧設定値Psに調整値を加算して設定値とする(S548)。 If the absolute value of the average temperature difference is less than the temperature difference allowable value (S545: YES), the low pressure set value determination unit 112 sets the low pressure set value Ps as the set value (S546), and the absolute value of the average temperature difference is the temperature difference. When larger than the allowable value (S545: NO), when the average temperature difference is a positive value, that is, when the internal temperature is higher than the appropriate temperature Ts and the cooling is insufficient (S547: YES), The adjustment value is subtracted from the low pressure set value Ps read out in step S542 to obtain a set value (S548). On the other hand, when the absolute value of the average temperature difference is larger than the allowable temperature difference (S545: NO), when the average temperature difference is a negative value, that is, the internal temperature is lower than the appropriate temperature Ts. When it is in a cooling state (S546: NO), the low pressure set value determination unit 112 adds the adjustment value to the low pressure set value Ps to obtain a set value (S548).
 以上のように、平均温度差が温度差許容値以下である場合、すなわち、ショーケースの冷却状態が良好である場合には、機器コントローラ3に設定される低圧設定値Psに変化はなく、ショーケースの冷却状態が過冷却の状態である場合には、現在の低圧設定値Psよりも調整値分だけ高い値が図13のステップS525において機器コントローラ3に設定され、ショーケースの冷却状態が冷却不足の状態である場合には、現在の低圧設定値Psよりも調整値分だけ低い値が機器コントローラ3に設定される。これにより、ショーケースが過冷却の状態である場合には、機器コントローラ3は、圧縮機30および40による圧縮があまりなされないように制御することになるので、圧縮機30および40の圧縮能力が抑制されて、省エネルギーが実現される。したがって、ショーケースの冷却状態が良好になるようにしつつ、なるべく省エネルギーになるように冷却システム5を制御することが可能となる。 As described above, when the average temperature difference is less than the temperature difference allowable value, that is, when the cooling state of the showcase is good, the low pressure set value Ps set in the device controller 3 is not changed, and the show When the cooling state of the case is a supercooling state, a value higher than the current low pressure set value Ps by the adjustment value is set in the device controller 3 in step S525 of FIG. 13, and the cooling state of the showcase is the cooling state. If the state is insufficient, a value lower than the current low pressure set value Ps by the adjustment value is set in the device controller 3. As a result, when the showcase is in a supercooled state, the equipment controller 3 performs control so that the compressors 30 and 40 do not compress much, so that the compression capacities of the compressors 30 and 40 are reduced. It is suppressed and energy saving is realized. Therefore, it is possible to control the cooling system 5 so as to save energy as much as possible while improving the cooling state of the showcase.
 一方、平均温度差が温度差許容値を超えた場合、すなわち、ショーケースの冷却状態が良好でない場合には、現在の低圧設定値Psよりも調整値分だけ低い値が機器コントローラ3に設定されることになる。これにより圧縮機30および40の冷却能力が上がり、冷却状態を改善することが可能となる。 On the other hand, when the average temperature difference exceeds the allowable temperature difference value, that is, when the cooling state of the showcase is not good, a value lower than the current low pressure set value Ps by the adjustment value is set in the device controller 3. Will be. As a result, the cooling capacity of the compressors 30 and 40 is increased, and the cooling state can be improved.
==データベースに基づく低圧設定値Psの決定処理==
 図15は、データベース13に記憶されたレコードに基づいて低圧設定値Psを決定する処理の流れを示す図である。 
 低圧設定値決定部112は、データベース13から、日時が現在時刻の所属する時間帯に対応し、かつ現在時刻から過去解析期間内であるレコードを読み出す(S561)。図16に示すように、店外温度、店内温度、時刻をそれぞれX軸、Y軸、Z軸とする3次元のグラフ25において、斜線部26で示すセル群に含まれる低圧設定値Psに対応するレコードが読み出されることになる。 
 低圧設定値決定部112は、低圧設定値Psごとに出現頻度をカウントする(S562)。図17は低圧設定値Psごとにカウントされた出現頻度を表すヒストグラム80である。
== Low pressure set value Ps determination process based on database ==
FIG. 15 is a diagram illustrating a flow of processing for determining the low pressure set value Ps based on the records stored in the database 13.
The low-pressure set value determination unit 112 reads, from the database 13, a record whose date corresponds to the time zone to which the current time belongs and is within the past analysis period from the current time (S561). As shown in FIG. 16, in the three-dimensional graph 25 with the store outside temperature, the store temperature, and the time as the X axis, Y axis, and Z axis, respectively, it corresponds to the low pressure set value Ps included in the cell group indicated by the hatched portion 26. Record to be read.
The low pressure set value determination unit 112 counts the appearance frequency for each low pressure set value Ps (S562). FIG. 17 is a histogram 80 showing the appearance frequency counted for each low pressure set value Ps.
 低圧設定値決定部112は、設定情報記憶部14に設定されている省エネモードが「省エネ優先モード」である場合(S563:YES)、出現頻度の最も高い低圧設定値Psを設定値とする(S564)。図17の例では、最も出現頻度が高い低圧設定値81が設定値として決定される。 
 省エネモードが「安全優先モード」である場合には(S565:YES)、低圧設定値決定部112は、出現した低圧設定値Psの中で最も低い値を設定値として決定する(S566)。図17の例では、出現頻度が0でないもののうち最も低い低圧設定値82が設定値として決定される。 
 省エネモードが「安全絶対モード」である場合には(S565:NO)、低圧設定下限値が設定値として決定される(S567)。図17の例では、出現頻度に関わらず、低圧設定下限値が設定値として決定されることになる。
When the energy saving mode set in the setting information storage unit 14 is the “energy saving priority mode” (S563: YES), the low pressure set value determining unit 112 sets the low pressure set value Ps having the highest appearance frequency as the set value ( S564). In the example of FIG. 17, the low pressure set value 81 having the highest appearance frequency is determined as the set value.
When the energy saving mode is the “safety priority mode” (S565: YES), the low pressure set value determination unit 112 determines the lowest value among the appeared low pressure set values Ps as the set value (S566). In the example of FIG. 17, the lowest low pressure set value 82 among those whose appearance frequency is not 0 is determined as the set value.
When the energy saving mode is the “safe absolute mode” (S565: NO), the low pressure setting lower limit value is determined as the setting value (S567). In the example of FIG. 17, the low pressure setting lower limit value is determined as the set value regardless of the appearance frequency.
 上記のようにして、本実施形態の制御システム1では、機器コントローラ3および5が各制御対象機器を制御し、統合管理コントローラ10や遠隔管理コントローラ6が各機器コントローラを制御・監視することによって、各機器を連携させて効率的にショーケース60および70の温度を調整することができる。 As described above, in the control system 1 of the present embodiment, the device controllers 3 and 5 control each device to be controlled, and the integrated management controller 10 and the remote management controller 6 control and monitor each device controller. The temperatures of the showcases 60 and 70 can be adjusted efficiently by linking each device.
 また、本実施形態の統合管理コントローラ10は、上述したように、冷却システム5の環境を評価するための測定値を取得する測定値取得部111と、測定値に応じて、機器コントローラ3に設定すべき低圧設定値Psを決定する低圧設定値決定部112と、機器コントローラ3に設定すべき低圧設定値Psを機器コントローラ3に設定する制御部113と、過去に設定された低圧設定値Psを、店内温度および店外温度に対応付けて累積していくデータベース13と、を備え、低圧設定値決定部112は、測定値が取得できなかった場合に、データベース13に記憶されている低圧設定値Psのひとつを、出現頻度に応じて、機器コントローラ3に設定すべき低圧設定値Psとして決定することができる。したがって、統合管理コントローラ10は、機器コントローラ3および4ならびに温度センサ7から測定値や設定値が取得できなかった場合にも、データベース13に蓄積されていた過去のレコードに基づいて機器コントローラ3への低圧設定値Psの設定を継続することができる。 In addition, as described above, the integrated management controller 10 of this embodiment is set in the device controller 3 according to the measurement value acquisition unit 111 that acquires the measurement value for evaluating the environment of the cooling system 5 and the measurement value. A low pressure set value determining unit 112 that determines a low pressure set value Ps to be set, a control unit 113 that sets a low pressure set value Ps to be set in the device controller 3, and a low pressure set value Ps set in the past. And the database 13 that accumulates in association with the in-store temperature and the outside temperature, and the low-pressure set value determination unit 112 stores the low-pressure set value stored in the database 13 when the measured value cannot be acquired. One of Ps can be determined as the low pressure set value Ps to be set in the device controller 3 according to the appearance frequency. Therefore, even if the integrated controller 10 cannot acquire measurement values or setting values from the device controllers 3 and 4 and the temperature sensor 7, the integrated management controller 10 supplies the device controller 3 to the device controller 3 based on the past records accumulated in the database 13. The setting of the low pressure set value Ps can be continued.
 本実施形態の制御システム1では、ショーケースの冷却状態が過冷却気味である限り低圧設定値Psは上げられて省エネルギーとなるように制御され、冷却状態が良好でなければ低圧設定値Psは下げられて冷却状態を改善するように制御されるので、運転を継続しているうちに、低圧設定値Psは、冷却状態が良好かつ省エネルギーとなる最適値に近づいていく。したがって、統合管理コントローラ10が定期的に機器コントローラ3に設定されている低圧設定値Psを取得してデータベース10に追加していくことにより、最適値に近い低圧設定値Psが数多く蓄積されることになる。よって、測定値が取得できない場合であっても、データベース13に蓄積されている低圧設定値Psから、出現頻度に応じて設定値を決定して機器コントローラ3に設定することができるので、冷却状態および省エネルギーを考慮した低圧設定値Psを機器コントローラ3に設定することが可能となる。 In the control system 1 of the present embodiment, as long as the cooling state of the showcase is subcooled, the low pressure set value Ps is controlled to be increased to save energy, and if the cooling state is not good, the low pressure set value Ps is decreased. Therefore, while the operation is continued, the low pressure set value Ps approaches the optimum value that provides a good cooling state and energy saving. Therefore, when the integrated management controller 10 periodically acquires the low pressure set value Ps set in the device controller 3 and adds it to the database 10, many low pressure set values Ps close to the optimum value are accumulated. become. Therefore, even if the measured value cannot be obtained, the set value can be determined from the low pressure set value Ps stored in the database 13 according to the appearance frequency and set in the device controller 3. And it becomes possible to set the low pressure set value Ps in consideration of energy saving in the device controller 3.
 また、本実施形態の統合管理コントローラ10の測定値取得部111は、少なくとも、店内温度および店外温度を測定するセンサが測定した店内の温度および店外の温度を測定値として取得している。したがって、冷却システム5の環境を、ショーケースが設定されている店舗の中の温度のみでなく、店舗の外の温度(外気温)も参考にして評価することができる。外気温は店舗の建物の温度や店舗内の気温にも影響を及ぼし、またショーケースの庫内温度にも影響を及ぼすため、店外温度も評価対象とすることにより、より精度の高い環境の評価を行うことができる。 In addition, the measurement value acquisition unit 111 of the integrated management controller 10 of the present embodiment acquires at least the in-store temperature and the out-store temperature measured by the sensor that measures the in-store temperature and the out-store temperature as measured values. Therefore, the environment of the cooling system 5 can be evaluated with reference to not only the temperature inside the store where the showcase is set but also the temperature outside the store (outside temperature). The outside temperature also affects the temperature of the building of the store and the temperature inside the store, and also affects the temperature inside the showcase. Evaluation can be made.
 また、本実施形態の統合管理コントローラ10では、低圧設定値決定部112は、測定値が取得できなかった場合に、「省エネ優先モード」の省エネモードのときには、出現頻度が最も多い低圧設定値Psを、「安全優先モード」の省エネモードのときには、データベース13に出現した低圧設定値Psのうち最も低い値、すなわち冷却システム5の過去の運転実績の中で冷却能力が最も高くなる値を、「安全絶対モード」の省エネモードのときには、冷却システム5を最大の冷却能力で動作させる低圧設定下限値を、機器コントローラ3に設定すべきパラメータとして決定することができる。 Further, in the integrated management controller 10 of the present embodiment, the low pressure set value determining unit 112, when the measured value cannot be acquired, is the low pressure set value Ps having the highest appearance frequency in the energy saving mode of the “energy saving priority mode”. In the energy saving mode of the “safety priority mode”, the lowest value among the low pressure set values Ps appearing in the database 13, that is, the value with the highest cooling capacity among the past operation results of the cooling system 5, “ In the energy saving mode “safe absolute mode”, the low pressure setting lower limit value for operating the cooling system 5 with the maximum cooling capacity can be determined as a parameter to be set in the device controller 3.
 ここで、省エネモードが「省エネ優先モード」である場合には、過去の出現頻度の多い低圧設定値Psを採用することにより、最適値に近い低圧設定値Psを機器コントローラ3に設定することができる。これにより、測定値が取得できない場合であっても、省エネルギーを実現するように冷却システム5を制御することができる。 Here, when the energy saving mode is the “energy saving priority mode”, the low pressure set value Ps close to the optimum value can be set in the device controller 3 by adopting the low pressure set value Ps having a high frequency of appearance in the past. it can. Thereby, even if it is a case where a measured value cannot be acquired, the cooling system 5 can be controlled to implement | achieve energy saving.
 省エネモードが「安全優先モード」である場合には、過去に出現した最も低い値の低圧設定値Psを採用することにより、過去に最も低圧設定値Psを低く設定して最も冷却能力を高めたときと同様の動作を圧縮機30および40に行わせることができる。冷却能力を高めるべき要因としては、例えば、外気温の上昇や、ショーケースへの冷却されていない商品の陳列、店舗内への来店客の増加など様々なものが想定されるが、過去に最も冷却能力を高めたときと同じ状態で圧縮機30および40を動作させることによって、ショーケースにおける冷却状態が悪くなる可能性を低くするとともに、必要以上に冷却能力を上げないように冷却システム5を制御することができる。 When the energy saving mode is the “safety priority mode”, the lowest low pressure set value Ps that has appeared in the past is adopted, so that the lowest low pressure set value Ps is set in the past and the cooling capacity is increased most. It is possible to cause the compressors 30 and 40 to perform the same operation as that of the time. There are various factors that should increase the cooling capacity, such as an increase in the outside air temperature, display of uncooled products in the showcase, and an increase in store visitors. By operating the compressors 30 and 40 in the same state as when the cooling capacity is increased, it is possible to reduce the possibility that the cooling state in the showcase is deteriorated, and to prevent the cooling system 5 from being increased more than necessary. Can be controlled.
 省エネモードが「安全絶対モード」である場合には、低圧設定値Psとして設定可能な最も低い値が機器コントローラ3に設定されることになるので、冷却システム5における冷却能力を最大にすることができる。したがって、例えば解凍が許されない冷凍製品のショーケースにおいて、冷凍製品が解凍されないように制御することができる。 When the energy saving mode is the “safe absolute mode”, the lowest value that can be set as the low pressure set value Ps is set in the device controller 3, so that the cooling capacity in the cooling system 5 can be maximized. it can. Therefore, for example, in a showcase of a frozen product that is not allowed to be thawed, control can be performed so that the frozen product is not thawed.
 このように、測定値が取得できない場合にどのような動作をするのかを、省エネモードとして細やかに設定することができる。 In this way, it is possible to finely set the operation to be performed when the measured value cannot be acquired as the energy saving mode.
 また、本実施形態の統合管理コントローラ10では、データベース13は、時間帯、店内温度および店外温度に対応付けて低圧設定値Psを累積し、低圧設定値決定部112は、測定値が取得できなかった場合に、現時点が含まれる時間帯に対応する低圧設定値Psのひとつを、出現頻度に応じて、機器コントローラ3に設定すべき低圧設定値Psとして決定することができる。 Further, in the integrated management controller 10 of the present embodiment, the database 13 accumulates the low pressure set value Ps in association with the time zone, the in-store temperature, and the outside temperature, and the low pressure set value determination unit 112 can acquire the measurement value. If not, one of the low pressure set values Ps corresponding to the time zone including the current time can be determined as the low pressure set value Ps to be set in the device controller 3 according to the appearance frequency.
 以上、本実施形態について説明したが、上記実施形態は本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更、改良され得ると共に、本発明にはその等価物も含まれる。 As mentioned above, although this embodiment was described, the said embodiment is for making an understanding of this invention easy, and is not for limiting and interpreting this invention. The present invention can be changed and improved without departing from the gist thereof, and the present invention includes equivalents thereof.
 例えば、上記実施形態では、統合管理コントローラ10により、機器コントローラ3に低圧設定値Psを設定することにより冷却システム5を制御するものとしたが、これに限らず、例えば、機器コントローラ3に統合管理コントローラ10の機能を持たせて、機器コントローラ3が自身に設定する低圧設定値Psを決定するようにしてもよい。 For example, in the above-described embodiment, the cooling system 5 is controlled by setting the low pressure set value Ps in the device controller 3 by the integrated management controller 10. The function of the controller 10 may be provided to determine the low pressure set value Ps set by the device controller 3 itself.
 また、本実施形態では、機器コントローラ3が、圧縮機30および40と凝縮器50とを制御し、機器コントローラ4が、膨張弁61および71と蒸発器(エバポレータ)62および72とを制御するものとしたが、1台の機器コントローラ3が全てを制御するようにしてもよい。また、圧縮機30および40と、凝縮器50とを異なる機器コントローラから制御するようにしてもよい。また、本実施形態では、統合管理コントローラ10が機器コントローラ3および5を制御して低圧設定値Psを設定するものとしたが、機器コントローラ3が統合管理コントローラ10の各機能を備えるようにして、機器コントローラ3自身が低圧設定値Psを決定するようにしてもよい。 In the present embodiment, the device controller 3 controls the compressors 30 and 40 and the condenser 50, and the device controller 4 controls the expansion valves 61 and 71 and the evaporators (evaporators) 62 and 72. However, one device controller 3 may control all of them. Moreover, you may make it control the compressors 30 and 40 and the condenser 50 from a different apparatus controller. In the present embodiment, the integrated management controller 10 controls the device controllers 3 and 5 to set the low pressure set value Ps. However, the device controller 3 includes the functions of the integrated management controller 10. The device controller 3 itself may determine the low pressure set value Ps.
 また、本実施形態では、測定値が取得できなかった場合に、現在時刻が含まれる時間帯に対応する過去の低圧設定値Psを読み出すものとしたが、低圧設定値決定部112は、現時点が含まれる月または季節に属する日時に対応する低圧設定値Psのひとつを、出現頻度に応じて、機器コントローラ3に設定すべき低圧設定値Psとして決定するようにしてもよい。さらに、現時点が含まれる月または季節に対応し、かつ、現在の時間帯にも対応する低圧設定値Psのひとつを、出現頻度に応じて、機器コントローラ3に設定すべき低圧設定値Psとして決定するようにしてもよい。月や季節ごとに、例えば店外気温などのショーケースの冷却状態に影響しうる環境条件は似たものになることが想定されるので、測定値が取得できず、環境を評価することができなかった場合でも、月や季節に対応する過去の低圧設定値Psを用いて低圧制御を行うことにより、現在の環境と似た環境において実際に設定されていた低圧設定値Psを利用して低圧制御を行うことができる可能性が高い。よって、測定値が取得できない場合でも、良好な冷却状態を保ちつつ省エネルギーを実現する可能性を高めることができる。 In the present embodiment, when the measurement value cannot be acquired, the past low pressure setting value Ps corresponding to the time zone including the current time is read. One of the low pressure set values Ps corresponding to the date and time belonging to the included month or season may be determined as the low pressure set value Ps to be set in the device controller 3 according to the appearance frequency. Further, one of the low pressure set values Ps corresponding to the month or season in which the current time is included and also corresponding to the current time zone is determined as the low pressure set value Ps to be set in the device controller 3 according to the appearance frequency. You may make it do. It is assumed that the environmental conditions that can affect the cooling state of the showcase, such as the temperature outside the store, will be similar for each month and season, so measurements cannot be obtained and the environment can be evaluated. Even if not, by performing the low pressure control using the past low pressure set value Ps corresponding to the month or season, the low pressure set value Ps actually set in the environment similar to the current environment is used. There is a high possibility that control can be performed. Therefore, even when a measured value cannot be acquired, the possibility of realizing energy saving while maintaining a good cooling state can be increased.
 また、本実施形態では、データベース13には過去の低圧設定値Psの履歴を全て累積するものとしたが、これに限らず、例えば、累積期間(例えば、24時間、1週間、1ヶ月、3ヶ月、1年など任意の長さ)を設定情報記憶部14に記憶しておき、その累積期間分の履歴のみを累積するようにしてもよい。この場合、図12の累積処理において、データベース13から、現在日時から累積期間前の日時以前のレコードを削除するようにすることができる。あるいは、統合管理コントローラ10は、図18に示すように累積期間外のデータを外部のデータベース151に退避させるようにしてもよい。この場合、統合管理コントローラ10において、データベース13は、所定の累積期間内に機器コントローラ3に設定された低圧設定値Psを、時刻、店内温度、店外温度に対応付けて記憶し、測定値取得部111は、累積期間が終了するごとに、データベース13に記憶されていたレコードをデータベース151に退避し、データベース13からレコードを削除し、低圧設定値決定部112は、図15に示す設定値の決定処理において、データベース13およびデータベース151に記憶されている低圧設定値Psのうち、現在時点から上記累積期間の長さ前の時点以後のもののひとつを、出現頻度に応じて、機器コントローラ3に設定すべき低圧設定値Psとして決定することができる。また、累積期間よりも短い退避期間を設けて、累積期間が終了するごとに、最も古いレコードの日時から退避期間後の日時までのレコードをデータベース151に退避するようにしてもよい。これにより、統合管理コントローラ10において常に管理しているデータ量を一定量以下にすることができる。なお、累積期間と解析期間とは同じ値であってもよいし、異なる値であってもよい。 In the present embodiment, the history of the past low-pressure set value Ps is accumulated in the database 13, but not limited to this, for example, an accumulation period (for example, 24 hours, 1 week, 1 month, 3 (Any length such as one month or one year) may be stored in the setting information storage unit 14 and only the history for the accumulation period may be accumulated. In this case, in the accumulation process of FIG. 12, records before the date and time before the accumulation period from the current date and time can be deleted from the database 13. Alternatively, the integrated management controller 10 may save data outside the accumulation period in the external database 151 as shown in FIG. In this case, in the integrated management controller 10, the database 13 stores the low-pressure set value Ps set in the device controller 3 within a predetermined accumulation period in association with the time, the in-store temperature, and the outside temperature, and obtains the measured value. Each time the accumulation period ends, the unit 111 saves the record stored in the database 13 to the database 151, deletes the record from the database 13, and the low-pressure set value determination unit 112 sets the set value shown in FIG. In the determination process, one of the low pressure set values Ps stored in the database 13 and the database 151 is set in the device controller 3 in accordance with the appearance frequency, after the current time and before the cumulative period. The low pressure set value Ps to be determined can be determined. Alternatively, a save period shorter than the accumulation period may be provided, and every time the accumulation period ends, records from the date and time of the oldest record to the date and time after the save period may be saved in the database 151. As a result, the amount of data that is always managed by the integrated management controller 10 can be kept below a certain amount. The accumulation period and the analysis period may be the same value or different values.
 また、本実施形態では、機器コントローラ3の低圧設定値記憶部314には1つの低圧設定値Psのみが記憶されるものとしたが、時間帯ごとの低圧設定値Psを記憶するようにしてもよい。この場合の低圧設定値記憶部314の構成例を図19に示す。低圧設定値記憶部314は、時間帯に対応づけて低圧設定値Psを記憶する。また、この場合の低圧制御処理の流れを図20に示す。図20に示す低圧制御処理は、図5に示す処理を変形したものである。図20に示すように、低圧制御部313は、まず現在時刻を取得する(S341)。現在時刻は例えばクロックなどにより取得することができる。低圧制御部313は、現在時刻が属する時間帯に対応する低圧設定値Psを低圧設定値記憶部314から読み出す(S342)。その後、低圧制御部313は、上述した図5の処理と同様にステップS321~S324を実行する。一方、統合管理コントローラ10では、上述した図13に示す低圧設定値Psの設定処理において、時間帯ごとの低圧設定値Psを機器コントローラ3に送信するようにする。この場合、図21に示すように、図13におけるステップS523およびS524の処理の後に、低圧設定値決定部112は、ステップS523またはS524で算出した設定値を、現在時刻が属する時間帯についての設定値とし(S601)、現在時刻が属する時間帯以外の各時間帯について、図15に示す低圧設定値Psの決定処理を行う(S602)。なお、図15のステップS561においては、処理対象の時間帯に対応し、処理対象の時間帯の開始時点から過去解析期間内の日時に対応するレコードを読み出すようにする。また、制御部113は、時間帯別の低圧設定値Psを機器コントローラ3に送信する(S525)。このようにして、機器コントローラ3において時間帯ごとの低圧設定値Psが記憶され、現在の時間帯については、測定値が取得できた場合は測定値に基づいて、取得できなかった場合にはデータベース13に累積されているレコードに基づいて低圧設定値Psが決定され、それ以外の時間帯については全て、データベース13に累積されているレコードに基づいて低圧設定値Psが決定されて、機器コントローラ3に設定されている時間帯ごとの低圧設定値Psが更新される。機器コントローラ3では、時間帯ごとの低圧設定値Psに基づいて低圧制御が行われるので、統合管理コントローラ10の動作が停止した場合や、通信線91にノイズが発生することなどにより統合管理コントローラ10から機器コントローラ3に低圧設定値Psが到達しなかった場合などでも、機器コントローラ3では、時間帯別の低圧設定値Psを用いて低圧制御を継続することができる。また、上述したように、統合管理コントローラ10が運転を継続していくうちに、現在の測定値に基づいて算出される低圧設定値Psは最適値に近づいていき、またそれがデータベース13に累積されていくのであるから、現在の測定値に基づいて算出された低圧設定値Psも、データベース13に累積された低圧設定値Psの中から出現頻度に応じて決定された低圧設定値Psも、最適値に近いことが期待される。そして、これらの低圧設定値Psが機器コントローラ3に送信されて、機器コントローラ3における低圧制御に使われるので、統合管理コントローラ10から低圧設定値Psが機器コントローラ3に設定されなかった場合でも、機器コントローラ3において、最適値に近い低圧設定値Psに基づいて低圧制御を行うことが可能となる。 In the present embodiment, only one low pressure set value Ps is stored in the low pressure set value storage unit 314 of the device controller 3, but the low pressure set value Ps for each time zone may be stored. Good. A configuration example of the low pressure set value storage unit 314 in this case is shown in FIG. The low pressure set value storage unit 314 stores the low pressure set value Ps in association with the time zone. Moreover, the flow of the low-pressure control process in this case is shown in FIG. The low-pressure control process shown in FIG. 20 is a modification of the process shown in FIG. As shown in FIG. 20, the low-pressure control unit 313 first acquires the current time (S341). The current time can be acquired by, for example, a clock. The low pressure control unit 313 reads the low pressure set value Ps corresponding to the time zone to which the current time belongs from the low pressure set value storage unit 314 (S342). Thereafter, the low-pressure control unit 313 executes steps S321 to S324 in the same manner as the above-described process of FIG. On the other hand, the integrated management controller 10 transmits the low pressure set value Ps for each time zone to the device controller 3 in the setting process of the low pressure set value Ps shown in FIG. In this case, as shown in FIG. 21, after the processing of steps S523 and S524 in FIG. 13, the low pressure setting value determination unit 112 sets the setting value calculated in step S523 or S524 for the time zone to which the current time belongs. As a value (S601), the low pressure set value Ps shown in FIG. 15 is determined for each time zone other than the time zone to which the current time belongs (S602). Note that in step S561 in FIG. 15, a record corresponding to the time zone within the past analysis period is read from the start time of the time zone subject to processing, corresponding to the time zone to be processed. In addition, the control unit 113 transmits the low pressure set value Ps for each time zone to the device controller 3 (S525). In this way, the device controller 3 stores the low pressure set value Ps for each time zone, and for the current time zone, if the measurement value can be obtained, it is based on the measurement value, and if it cannot be obtained, the database The low pressure set value Ps is determined on the basis of the record accumulated in 13, and the low pressure set value Ps is determined on the basis of the record accumulated in the database 13 for all other time zones. The low pressure set value Ps for each time zone set in is updated. In the device controller 3, since the low pressure control is performed based on the low pressure set value Ps for each time zone, the integrated management controller 10 is activated when the operation of the integrated management controller 10 is stopped or noise is generated in the communication line 91. Even if the low pressure set value Ps does not reach the device controller 3, the device controller 3 can continue the low pressure control using the low pressure set value Ps for each time zone. Further, as described above, as the integrated management controller 10 continues operation, the low pressure set value Ps calculated based on the current measurement value approaches the optimum value, and is accumulated in the database 13. Therefore, the low pressure set value Ps calculated based on the current measured value and the low pressure set value Ps determined according to the appearance frequency from the low pressure set value Ps accumulated in the database 13 are Expected to be close to optimal value. These low-pressure set values Ps are transmitted to the device controller 3 and used for low-pressure control in the device controller 3, so even if the low-pressure set value Ps is not set in the device controller 3 from the integrated management controller 10, the device In the controller 3, the low pressure control can be performed based on the low pressure set value Ps close to the optimum value.
 また、本実施形態では、測定値に基づいて低圧設定値Psを調整するものとしたが、低圧設定値Psに代えて測定値に基づいて適正温度Tsを調整するようにしてもよいし、低圧設定値Psおよび適正温度Tsの両方を調整するようにしてもよい。この場合、適正温度Tsについても、上述した低圧設定値Psと同様に、店内温度、店外温度、時刻に対応づけて適正温度Tsをデータベース13に蓄積するようにし、統合管理コントローラ10が測定値を取得できなかった場合に、データベース13から現在時刻が属する時間帯に対応する、適正温度Tsに係るレコードを読み出し、適正温度Tsごとに出現頻度をカウントして、省エネモードに応じて、出現頻度の最も多い適正温度Ts、出現した適正温度Tsの中で最も低い温度、適正温度Tsとして設定可能な最低値のいずれかを、機器コントローラ4に設定すべき適正温度Tsとして決定することができる。 In the present embodiment, the low pressure set value Ps is adjusted based on the measured value, but the appropriate temperature Ts may be adjusted based on the measured value instead of the low pressure set value Ps. Both the set value Ps and the appropriate temperature Ts may be adjusted. In this case, the appropriate temperature Ts is also stored in the database 13 in association with the in-store temperature, the outside temperature, and the time similarly to the low pressure set value Ps described above, and the integrated management controller 10 measures the measured value. If the record of the appropriate temperature Ts corresponding to the time zone to which the current time belongs is read from the database 13 and the appearance frequency is counted for each appropriate temperature Ts, the appearance frequency is determined according to the energy saving mode. Can be determined as the appropriate temperature Ts to be set in the device controller 4. The appropriate temperature Ts having the highest value, the lowest temperature among the appeared appropriate temperatures Ts, and the lowest value that can be set as the appropriate temperature Ts can be determined.
 また、本実施形態では、測定値のいずれかが取得できなかった場合に、取得できた測定値とデータベース13に蓄積されている低圧設定値Psの出現頻度に基づいて設定値を決定するようにしてもよい。この場合、取得できた測定値を考慮することができるため、データベース13に蓄積されている低圧設定値Psの出現頻度のみに基づいて設定値を決定する場合よりも、より環境条件に則した設定値を決定することができる。 In the present embodiment, when any of the measurement values cannot be acquired, the setting value is determined based on the acquired measurement value and the appearance frequency of the low pressure setting value Ps accumulated in the database 13. May be. In this case, since the acquired measurement value can be taken into consideration, the setting is more compliant with the environmental conditions than when the setting value is determined based only on the appearance frequency of the low pressure setting value Ps accumulated in the database 13. The value can be determined.
  1       制御システム
  2       店舗
  3、4     機器コントローラ
  5       冷却システム
  6       遠隔管理コントローラ
  7       温度センサ
  8       冷媒配管
  10      統合管理コントローラ
  11      制御プログラム
  13      データベース
  14      設定情報記憶部
  20      冷凍機
  30、40   圧縮機(コンプレッサ)
  31、41   温度センサ
  32、42   電流センサ
  33、43   制御プログラム
  34      低圧設定値Ps
  44      適正温度Ts
  38      温度センサ
  39、49   圧力センサ
  50      凝縮器(コンデンサ)
  51~53   ファン
  59      圧力センサ
  60、70   ショーケース
  61、71   膨張弁
  62、72   蒸発器(エバポレータ)
  68、78   温度センサ
  69、79   温度センサ
  91、93   通信線
  92      通信網
  101     主制御部
  102     RAM
  103     記憶装置
  104     通信制御部
  105     外部入出力インタフェース
  111     測定値取得部
  112     低圧設定値決定部
  113     制御部
  301、401 処理装置
  302、402 RAM
  303、403 フラッシュメモリ
  304、404 通信制御部
  305、405 入出力インタフェース
  311     低圧設定値管理部
  312     測定値提供部
  313     低圧制御部
  314     低圧設定値記憶部
  411     適正温度管理部
  412     測定値提供部
  413     適温制御部
  414     適正温度記憶部
DESCRIPTION OF SYMBOLS 1 Control system 2 Store 3, 4 Equipment controller 5 Cooling system 6 Remote management controller 7 Temperature sensor 8 Refrigerant piping 10 Integrated management controller 11 Control program 13 Database 14 Setting information storage part 20 Refrigerator 30, 40 Compressor (compressor)
31, 41 Temperature sensor 32, 42 Current sensor 33, 43 Control program 34 Low pressure set value Ps
44 Appropriate temperature Ts
38 Temperature sensor 39, 49 Pressure sensor 50 Condenser (condenser)
51 to 53 Fan 59 Pressure sensor 60, 70 Showcase 61, 71 Expansion valve 62, 72 Evaporator (evaporator)
68, 78 Temperature sensor 69, 79 Temperature sensor 91, 93 Communication line 92 Communication network 101 Main controller 102 RAM
DESCRIPTION OF SYMBOLS 103 Memory | storage device 104 Communication control part 105 External input / output interface 111 Measurement value acquisition part 112 Low voltage | pressure setting value determination part 113 Control part 301,401 Processing apparatus 302,402 RAM
303, 403 Flash memory 304, 404 Communication control unit 305, 405 Input / output interface 311 Low pressure set value management unit 312 Measurement value providing unit 313 Low pressure control unit 314 Low pressure set value storage unit 411 Appropriate temperature management unit 412 Measurement value providing unit 413 Optimal temperature Control unit 414 Appropriate temperature storage unit

Claims (8)

  1.  冷却システムの動作に対するパラメータを前記冷却システムに設定することにより前記冷却システムを制御する制御装置であって、
     前記冷却システムの環境を評価するための測定値を取得する測定値取得部と、
     前記測定値に応じて、前記冷却システムに設定すべきパラメータを決定するパラメータ決定部と、
     前記冷却システムに設定すべきパラメータを前記冷却システムに設定する制御部と、
     過去に前記冷却システムに設定された前記パラメータを前記測定値に対応付けて累積していくデータベースと、
     を備え、
     前記パラメータ決定部は、前記測定値が取得できなかった場合に、前記データベースに記憶されている前記パラメータのひとつを、出現頻度に応じて、前記冷却システムに設定すべきパラメータとして決定すること、
     を特徴とする冷却システム制御装置。
    A control device for controlling the cooling system by setting parameters for the operation of the cooling system in the cooling system;
    A measurement value acquisition unit for acquiring a measurement value for evaluating the environment of the cooling system;
    A parameter determining unit for determining a parameter to be set in the cooling system according to the measured value;
    A control unit for setting parameters to be set in the cooling system in the cooling system;
    A database that accumulates the parameters set in the cooling system in the past in association with the measured values;
    With
    The parameter determination unit, when the measured value could not be acquired, determining one of the parameters stored in the database as a parameter to be set in the cooling system according to the appearance frequency;
    Cooling system control device characterized by.
  2.  請求項1に記載の冷却システム制御装置であって、
     前記冷却システムが設置されている建物内の温度および建物外の温度を測定するセンサをさらに備え、
     前記測定値取得部は、少なくとも前記センサが測定した前記建物内の温度および前記建物外の温度を前記測定値として取得すること、
     を特徴とする冷却システム制御装置。
    The cooling system control device according to claim 1,
    A sensor for measuring a temperature inside the building where the cooling system is installed and a temperature outside the building;
    The measurement value acquisition unit acquires at least the temperature inside the building and the temperature outside the building measured by the sensor as the measurement values;
    Cooling system control device characterized by.
  3.  請求項1に記載の冷却システム制御装置であって、
     前記パラメータ決定部は、前記測定値が取得できなかった場合に、
      出現頻度が最も多い前記パラメータと、
      前記データベースに累積されている前記パラメータのうち、前記冷却システムに設定したときに前記冷却システムの冷却能力が最も高くなるものと、
      前記冷却システムを最大の冷却能力で動作させる定格値と、
    のいずれかを前記冷却システムに設定すべきパラメータとして決定すること、
     を特徴とする冷却システム制御装置。
    The cooling system control device according to claim 1,
    The parameter determination unit, when the measurement value could not be acquired,
    The parameter with the highest appearance frequency, and
    Of the parameters accumulated in the database, the cooling system having the highest cooling capacity when set in the cooling system;
    A rated value for operating the cooling system with maximum cooling capacity;
    Determining as a parameter to be set in the cooling system,
    Cooling system control device characterized by.
  4.  請求項1に記載の冷却システム制御装置であって、
     前記データベースは、時間帯および前記測定値に対応付けて前記パラメータを累積し、
     前記パラメータ決定部は、前記測定値が取得できなかった場合に、現時点が含まれる前記時間帯に対応する前記パラメータのひとつを、出現頻度に応じて、前記冷却システムに設定すべきパラメータとして決定すること、
     を特徴とする冷却システム制御装置。
    The cooling system control device according to claim 1,
    The database accumulates the parameters in association with time zones and the measured values,
    The parameter determination unit determines one of the parameters corresponding to the time zone including the current time as a parameter to be set in the cooling system according to the appearance frequency when the measurement value cannot be acquired. thing,
    Cooling system control device characterized by.
  5.  請求項1に記載の冷却システム制御装置であって、
     前記データベースは、日時および前記測定値に対応付けて前記パラメータを累積し、
     前記パラメータ決定部は、前記測定値が取得できなかった場合に、現時点が含まれる月または季節に属する日時に対応する前記パラメータのひとつを、出現頻度に応じて、前記冷却システムに設定すべきパラメータとして決定すること、
     を特徴とする冷却システム制御装置。
    The cooling system control device according to claim 1,
    The database accumulates the parameters in association with date and time and the measured value,
    The parameter determination unit is configured to set one of the parameters corresponding to the date and time belonging to the month or season in which the current time is included in the cooling system according to the appearance frequency when the measurement value cannot be acquired. To decide as,
    Cooling system control device characterized by.
  6.  請求項1に記載の冷却システム制御装置であって、
     前記データベースである第1のデータベースは、所定の累積期間内に前記冷却システムに設定された前記パラメータを、時刻および前記測定値に対応付けて累積し、
     前記冷却システム制御装置は、
     前記第1のデータベースに累積されていた前記パラメータを退避するための第2のデータベースと、
     前記累積期間が終了するごとに、前記第1のデータベースに累積されていた前記パラメータを前記第2のデータベースに退避し、前記第1のデータベースから前記パラメータを削除するパラメータ管理部と、
     をさらに備え、
     前記パラメータ決定部は、前記第1および第2のデータベースに記憶されている前記パラメータのうち、現在時点から前記累積期間の長さ前の時点以後のもののひとつを、出現頻度に応じて、前記冷却システムに設定すべきパラメータとして決定すること、
     を特徴とする冷却システム制御装置。
    The cooling system control device according to claim 1,
    The first database, which is the database, accumulates the parameters set in the cooling system within a predetermined accumulation period in association with the time and the measured value,
    The cooling system control device includes:
    A second database for saving the parameters accumulated in the first database;
    A parameter management unit that saves the parameters accumulated in the first database to the second database and deletes the parameters from the first database each time the accumulation period ends;
    Further comprising
    The parameter determination unit selects one of the parameters stored in the first and second databases after the time point before the accumulation period from the current time point according to the appearance frequency. Determine the parameters to be set in the system,
    Cooling system control device characterized by.
  7.  請求項1に記載の冷却システム制御装置であって、
     前記パラメータ決定部は、前記測定値のうちいずれかの値が取得できなかった場合に、前記データベースに記憶されている前記パラメータのひとつを、出現頻度及び取得することができた前記測定値に応じて、前記冷却システムに設定すべきパラメータとして決定すること、
     を特徴とする冷却システム制御装置。
    The cooling system control device according to claim 1,
    When one of the measured values cannot be obtained, the parameter determining unit determines one of the parameters stored in the database according to the appearance frequency and the obtained measured value. Determining as a parameter to be set in the cooling system,
    Cooling system control device characterized by.
  8.  請求項1乃至請求項7に記載される冷却システム制御装置のいずれかの冷却システム制御装置を備えることを特徴とする冷却システム。 A cooling system comprising the cooling system control device according to any one of the cooling system control devices according to claim 1.
PCT/JP2011/069577 2010-08-31 2011-08-30 Cooling system control device and cooling system provided therewith WO2012029764A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010194993A JP2013231519A (en) 2010-08-31 2010-08-31 Cooling system control device
JP2010-194993 2010-08-31

Publications (1)

Publication Number Publication Date
WO2012029764A1 true WO2012029764A1 (en) 2012-03-08

Family

ID=45772847

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/069577 WO2012029764A1 (en) 2010-08-31 2011-08-30 Cooling system control device and cooling system provided therewith

Country Status (2)

Country Link
JP (1) JP2013231519A (en)
WO (1) WO2012029764A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014019033A1 (en) * 2012-08-03 2014-02-06 Atlas Copco Airpower, Naamloze Vennootschap Cooling circuit, dry cooling installation and method for controlling the cooling circuit

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7434094B2 (en) 2020-07-27 2024-02-20 東芝キヤリア株式会社 Refrigeration cycle equipment and refrigerator

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04347477A (en) * 1991-05-22 1992-12-02 Hoshizaki Electric Co Ltd Operation control device for cooling device of constant temperature machine
JPH05196311A (en) * 1992-01-21 1993-08-06 Daikin Ind Ltd Operation control method of refrigerating plant
JP2000171131A (en) * 1998-12-02 2000-06-23 Sanyo Electric Co Ltd Controller for cooling apparatus
JP2004116862A (en) * 2002-09-25 2004-04-15 Sanyo Electric Co Ltd Refrigeration storage shed
JP2004116861A (en) * 2002-09-25 2004-04-15 Sanyo Electric Co Ltd Refrigeration storage shed
JP2004257666A (en) * 2003-02-26 2004-09-16 Sanyo Electric Co Ltd Controller of cooling system
JP2006189175A (en) * 2004-12-30 2006-07-20 New Japan Eco System Corp Automatic control method for refrigerator and its device
JP2008101897A (en) * 2006-09-19 2008-05-01 Daikin Ind Ltd Intermediary device for air-conditioning control, air-conditioning control system, air-conditioning control method and air-conditioning control program
JP2008151478A (en) * 2006-12-20 2008-07-03 Sanyo Electric Co Ltd Control device for inverter refrigerator, and power consumption system
JP2009198026A (en) * 2008-02-19 2009-09-03 Hoshizaki Electric Co Ltd Cooling storage
JP2009228931A (en) * 2008-03-19 2009-10-08 Sanyo Electric Co Ltd Temperature controller, air conditioner, and electric blanket
JP2009539154A (en) * 2006-06-01 2009-11-12 ワールプール,ソシエダッド アノニマ Control system and control method for operating cooling system
JP2010060166A (en) * 2008-09-01 2010-03-18 Yazaki Corp Cooling tower and heat source machine system

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04347477A (en) * 1991-05-22 1992-12-02 Hoshizaki Electric Co Ltd Operation control device for cooling device of constant temperature machine
JPH05196311A (en) * 1992-01-21 1993-08-06 Daikin Ind Ltd Operation control method of refrigerating plant
JP2000171131A (en) * 1998-12-02 2000-06-23 Sanyo Electric Co Ltd Controller for cooling apparatus
JP2004116862A (en) * 2002-09-25 2004-04-15 Sanyo Electric Co Ltd Refrigeration storage shed
JP2004116861A (en) * 2002-09-25 2004-04-15 Sanyo Electric Co Ltd Refrigeration storage shed
JP2004257666A (en) * 2003-02-26 2004-09-16 Sanyo Electric Co Ltd Controller of cooling system
JP2006189175A (en) * 2004-12-30 2006-07-20 New Japan Eco System Corp Automatic control method for refrigerator and its device
JP2009539154A (en) * 2006-06-01 2009-11-12 ワールプール,ソシエダッド アノニマ Control system and control method for operating cooling system
JP2008101897A (en) * 2006-09-19 2008-05-01 Daikin Ind Ltd Intermediary device for air-conditioning control, air-conditioning control system, air-conditioning control method and air-conditioning control program
JP2008151478A (en) * 2006-12-20 2008-07-03 Sanyo Electric Co Ltd Control device for inverter refrigerator, and power consumption system
JP2009198026A (en) * 2008-02-19 2009-09-03 Hoshizaki Electric Co Ltd Cooling storage
JP2009228931A (en) * 2008-03-19 2009-10-08 Sanyo Electric Co Ltd Temperature controller, air conditioner, and electric blanket
JP2010060166A (en) * 2008-09-01 2010-03-18 Yazaki Corp Cooling tower and heat source machine system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014019033A1 (en) * 2012-08-03 2014-02-06 Atlas Copco Airpower, Naamloze Vennootschap Cooling circuit, dry cooling installation and method for controlling the cooling circuit
BE1021071B1 (en) * 2012-08-03 2015-04-21 Atlas Copco Airpower, Naamloze Vennootschap COOLING CIRCUIT, COOLING DRYER AND METHOD FOR CONTROLLING A COOLING CIRCUIT
US9915455B2 (en) 2012-08-03 2018-03-13 Atlas Copco Airpower, Naamloze Vennootschap Cooling circuit, cold drying installation and method for controlling a cooling circuit
US10060663B2 (en) 2012-08-03 2018-08-28 Atlas Copco Airpower, Naamloze Vennootschap Cooling circuit, cold drying installation and method for controlling a cooling circuit

Also Published As

Publication number Publication date
JP2013231519A (en) 2013-11-14

Similar Documents

Publication Publication Date Title
US8341970B2 (en) Refrigeration equipment with control system and device for controlling defrosting operation
CN106482441A (en) Refrigeration plant method of work and refrigeration plant
WO2016145238A1 (en) Method and apparatus for environmental sensing
CN112197489B (en) Evaporator defrosting method and device, refrigerator, computer equipment and storage medium
WO2012029764A1 (en) Cooling system control device and cooling system provided therewith
US20200217535A1 (en) Digital smart real showcase control system, method, and program
KR101594152B1 (en) Apparatus and method for monitoring state of cryogenic freezer
US9664433B2 (en) Refrigerator with energy consumption optimization using adaptive fan delay
CN107014150B (en) Self-lifting freezing and refrigerating cabinet group control system
JP6529661B2 (en) Refrigeration apparatus and control method of refrigeration apparatus
US20200018537A1 (en) Digital smart real showcase warning system, method, and program
CN113865218B (en) Method for adjusting precooling time before defrosting, refrigeration equipment and storage medium
CN112179035B (en) Refrigerator management method and device
CN206113457U (en) Refrigerator
CN112179036B (en) Method and device for calculating refrigerator environment temperature
JP2023089435A (en) Information processing device, program, abnormality detection method, abnormality detection system, and cooling storage shed
CN110332760B (en) Control method and device for pre-refrigeration of refrigerator
JP2014222127A (en) Precooling method of cooling storage and cooling storage
CN105783407B (en) The control method and control system of refrigerator
CN110345705B (en) Optimal control method and device for temperature control valve of refrigeration system and refrigeration system
JP6587131B2 (en) Refrigeration system
JP2017053587A (en) Refrigeration system
JP6610998B2 (en) Refrigeration system
CN211782253U (en) Cold-stored freezing loss prevention monitor terminal based on LPWAN
KR102345719B1 (en) Temperature controller of a cold storage room

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11821780

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11821780

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP