WO2012029659A1 - Novel fluorene compound, dye for dye-sensitized solar cell using the compound, electrode containing dye for dye-sensitized solar cell, and dye-sensitized solar cell - Google Patents

Novel fluorene compound, dye for dye-sensitized solar cell using the compound, electrode containing dye for dye-sensitized solar cell, and dye-sensitized solar cell Download PDF

Info

Publication number
WO2012029659A1
WO2012029659A1 PCT/JP2011/069317 JP2011069317W WO2012029659A1 WO 2012029659 A1 WO2012029659 A1 WO 2012029659A1 JP 2011069317 W JP2011069317 W JP 2011069317W WO 2012029659 A1 WO2012029659 A1 WO 2012029659A1
Authority
WO
WIPO (PCT)
Prior art keywords
dye
group
solar cell
sensitized solar
electrode
Prior art date
Application number
PCT/JP2011/069317
Other languages
French (fr)
Japanese (ja)
Inventor
岡本 秀二
英樹 羽田
Original Assignee
綜研化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 綜研化学株式会社 filed Critical 綜研化学株式会社
Publication of WO2012029659A1 publication Critical patent/WO2012029659A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/0008Methine or polymethine dyes, e.g. cyanine dyes substituted on the polymethine chain
    • C09B23/005Methine or polymethine dyes, e.g. cyanine dyes substituted on the polymethine chain the substituent being a COOH and/or a functional derivative thereof
    • C09B23/0058Methine or polymethine dyes, e.g. cyanine dyes substituted on the polymethine chain the substituent being a COOH and/or a functional derivative thereof the substituent being CN
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/0008Methine or polymethine dyes, e.g. cyanine dyes substituted on the polymethine chain
    • C09B23/005Methine or polymethine dyes, e.g. cyanine dyes substituted on the polymethine chain the substituent being a COOH and/or a functional derivative thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/10The polymethine chain containing an even number of >CH- groups
    • C09B23/105The polymethine chain containing an even number of >CH- groups two >CH- groups
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/655Aromatic compounds comprising a hetero atom comprising only sulfur as heteroatom
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to a novel fluorene compound, a dye-sensitized solar cell dye using the compound, a dye-sensitized solar cell dye-containing electrode adsorbing the fluorene compound, and a dye-sensitized dye having such an electrode. It relates to solar cells.
  • a Ru metal complex dye As the sensitizing dye used in the dye-sensitized solar cell, a Ru metal complex dye is generally used. Such a Ru metal complex dye does not have a very high extinction coefficient and does not have a large light absorption ability as a single molecule. However, in a dye-sensitized solar cell, a nanoporous metal oxide can be used as an electrode. By increasing the film thickness, the amount of dye per unit area can be increased, and high photoelectric conversion efficiency can be realized by using such a function. However, since Ru, which is a rare metal, is used, there is anxiety in terms of stable supply in the future, and the amount of dye used increases in order to maintain high photoelectric conversion efficiency. Based on these backgrounds, organic dyes for dye-sensitized solar cells that do not use rare metals such as Ru complexes have attracted attention.
  • organic sensitizing dyes have a higher molar extinction coefficient than Ru-based dyes, but conversely, even if the thickness of the anode electrode is increased, the photoelectric conversion efficiency is not greatly improved.
  • the skeleton used for organic dyes requires a high conjugated structure in order to achieve both the light absorption ability and the charge transfer ability, but the development of these conjugated structures makes the solubility in solvents worse and the anode. It becomes difficult to dye the electrodes.
  • organic dyes for dye-sensitized solar cells often use a heterocycle containing nitrogen element and / or an amine group as a donor skeleton in order to efficiently transfer charges from iodine anions used as an electrolyte.
  • dye-sensitized solar cells usually use an electrolyte having redox ability such as I ⁇ / I 3 ⁇ (electrolyte capable of redox reaction) by combining iodine and an iodine anion such as lithium iodide. Is done.
  • the solution of I ⁇ / I 3 ⁇ is widely used because of its excellent stability, but such an I ⁇ / I 3 ⁇ solution is related to cell durability. corrosion of the wiring material by iodine, degradation has become a problem, I - / I 3 - is a dye capable of performing redox redox alternative to the solution is required, good ones have been reported little.
  • MK-2 was developed using N-ethylcarbazole as the donor part for the combination of oligo n-hexylthiophene (conjugated bond system) and cyanoacetic acid group (acceptor, anchor). Yes (see Non-Patent Document 1). MK-2 is an excellent dye that has a higher open-circuit voltage and higher conversion efficiency than conventional organic dyes, and has been confirmed to exhibit very high conversion efficiency as an organic dye. The structure of MK-2 is shown below as (MK-2).
  • An object of the present invention is to provide a novel fluorene compound using a fluorene compound containing a nitrogen-containing heterocycle and no amine group as a donor, and has a solubility in a general-purpose solvent such as toluene as a dye dyeing solvent.
  • An object of the present invention is to provide a sensitizing dye for a dye-sensitized solar cell which is good but has a high performance.
  • Another object of the present invention is to provide a dye-containing electrode for a dye-sensitized solar cell having high performance by using the fluorene compound. It is another object of the present invention to provide a dye-containing electrode for a dye-sensitized solar cell that can generate power using a non-iodine redox solution by adjusting the HOMO-LUMO level.
  • an object of the present invention is to provide a dye-sensitized solar cell having an electrode using the fluorene compound.
  • novel fluorene compound of the present invention can be represented by the following formula (I).
  • R 1 and R 2 each independently represents at least one atom or group selected from the group consisting of a hydrogen atom, an alkyl group, an aryl group and an alkoxy group, and X represents the following formula (1 ), At least one group selected from the group consisting of (2) and (3), and n is an integer from 1 to 12.
  • R 3 and R 4 are each independently at least one atom or group selected from the group consisting of a hydrogen atom, an alkyl group, an aryl group and an alkoxy group. Represents.
  • the dye for dye-sensitized solar cells of the present invention uses the fluorene compound represented by the above formula (I) as the sensitizing dye of the dye-sensitized solar cell.
  • the fluorene compound-coated metal oxide particles obtained by adsorbing the fluorene compound represented by the above formula (I) on the surface of the metal oxide particles are metal electrodes. It has the structure arrange
  • the dye-sensitized solar cell of the present invention has a transparent electrode having a fluorene compound-coated metal oxide particle disposed on the surface as described above as one electrode and a catalyst electrode as the other electrode. And the catalyst electrode.
  • the fluorene compound of the present invention is a novel compound.
  • This fluorene compound can be effectively used as a dye used in a dye-sensitized solar cell.
  • applying a fluorene compound containing a nitrogen element heterocycle and no amine group as a donor skeleton, and using a conjugated low-molecular oligothiophene having a side chain, etc. imparts solubility to general-purpose solvents such as toluene, dye As a dye to be used in dye-sensitized solar cells by controlling inter-stacking, suppressing charge leakage from photoelectrodes, etc., and adjusting the light absorption wavelength region and charge transferability by adjusting the conjugate length It can be used effectively.
  • the electrode in which the dye comprising the fluorene compound of the present invention is adsorbed on titanium oxide can be effectively used as an electrode for a dye-sensitized solar cell.
  • the dye-sensitized solar cell having this electrode has higher open-circuit voltage and short-circuit current density and higher conversion efficiency than the solar cell using MK-2.
  • the fluorene compound of the present invention has a lower extinction coefficient than that of MK-2, and by utilizing this characteristic, the photoelectrode for dye-sensitized solar cell having high conversion efficiency by increasing the effective area of the photoelectrode Can be provided.
  • an electrode containing a dye comprising the fluorene compound of the present invention it is possible to generate power with a non-iodine-based electrolyte, and in particular, a liquid electrolyte that has been an essential constituent requirement for dye-sensitized solar cells Instead of this, it is possible to generate electric power using a solid electrolyte such as a conductive polymer instead. Accordingly, it is possible to provide a new dye-sensitized solar cell that suppresses corrosion of cell wiring materials due to iodine redox and provides a long-life cell or does not cause leakage of electrolyte from the dye-sensitized solar cell. it can.
  • FIG. 1 is a drawing schematically showing an example of a cross section of a dye-sensitized solar cell ⁇ liquid photoelectric conversion element>.
  • FIG. 2 is a drawing schematically showing an example of a cross section of a dye-sensitized solar cell ⁇ fully solid-state photoelectric conversion element>.
  • FIG. 3 is a 1 H-NMR spectrum of the compound represented by formula (H).
  • FIG. 4 is an LC-MS spectrum of the compound represented by the formula (H).
  • FIG. 5 is a 1 H-NMR spectrum of the compound represented by formula (K).
  • FIG. 6 is an LC-MS spectrum of the compound represented by formula (K).
  • a fluorene compound of the present invention a dye for a dye-sensitized solar cell comprising the fluorene compound, a dye-containing electrode for a dye-sensitized solar cell and a dye-sensitized solar cell using the dye will be specifically described. .
  • the fluorene compound of the present invention can be represented by the following formula (I).
  • R 1 and R 2 are each independently at least one atom or group selected from the group consisting of a hydrogen atom, an alkyl group, an aryl group, and an alkoxy group.
  • both R 1 and R 2 are hydrogen atoms or alkyl groups, aryl groups and alkoxy groups having the same carbon number, and R 1 and R 2 are those having 1 to 12 carbon atoms.
  • An alkyl group, an aryl group having 1 to 12 carbon atoms, or an alkoxy group having 1 to 12 carbon atoms is preferable.
  • a compound in which R 1 and R 2 are both hydrogen atoms or alkyl groups is suitable as a fluorene compound that forms an electrode for a dye-sensitized solar cell.
  • a fluorene compound using a substituent is used as a dye compound used as an electrode of a dye-sensitized solar cell
  • an electrolyte that performs a redox reaction of the solar cell is, for example, I ⁇ / I 3 ⁇ .
  • a liquid electrolyte but also a solid electrolyte such as a conductive polymer can be suitably used.
  • n is an integer of 1 to 12, particularly preferably an integer of 2 to 10.
  • X is any group of the following formulas (1), (2), and (3).
  • R 3 and R 4 are each independently at least one atom or group selected from the group consisting of a hydrogen atom, an alkyl group, an aryl group and an alkoxy group. Represents.
  • R 3 and R 4 is a hydrogen atom
  • the other group is an alkyl group having 1 to 12 carbon atoms, an aryl group having 1 to 12 carbon atoms, or an alkoxy group having 1 to 12 carbon atoms.
  • the groups Preferably any of the groups.
  • R 3 and R 4 are linear groups. It is preferable.
  • X in the formula (I) is preferably the above formula (1) having a thiophene ring, and in this case, one of R 3 and R 4 bonded to the thiophene ring is It is preferably a hydrogen atom and the other is an alkyl group having 2 to 12 carbon atoms, an aryl group or an alkoxy group, and usually has 2 to 12 thiophene rings having such a substituent, preferably 3 It is particularly desirable that ⁇ 7 are bonded (that is, n in formula (I) is usually 2 to 12, preferably 3 to 7).
  • the dye for a dye-sensitized solar cell of the present invention a compound represented by the following formula can be used.
  • R 1 to R 4 and n are the same as described above.
  • a compound having n of 3 is shown as follows.
  • (II-1) having a thiophene ring is preferred as a dye for a dye-sensitized solar cell.
  • R 1 and R 2 may be hydrogen atoms, but are preferably linear alkyl groups.
  • R 1 and R 2 are alkyl groups having the same carbon number. Is particularly preferred.
  • R 3 and R 4 are at least one atom or group selected from the group consisting of a hydrogen atom, an alkyl group, an aryl group, and an alkoxy group, and either one of R 3 and R 4 Is a hydrogen atom, and the other is preferably an alkyl group, an aryl group and an alkoxy group.
  • Such a compound can be synthesized using 2-bromofluorene or a derivative thereof as a starting material.
  • the method for synthesizing the compound of the present invention will be described by taking 2-bromofluorene as an example where R 3 is a hydrogen atom and R 4 is a hexyl group.
  • 2-bromofluorene is converted to 3-hexylthiophene-5-boronic acid ester. React.
  • the mixture is refluxed in dimethoxyethane in the presence of bis (triphenylphosphine) palladium (II) dichloride and an aqueous sodium carbonate solution as a catalyst.
  • the reflux time at this time is usually 3 to 12 hours.
  • one fluorene ring having a hexyl group can be introduced into 2-bromofluorene. Then, using a brominating agent such as N-bromosuccinimide, it can be substituted with the bromine atom of the hydrogen atom to which the thiophene ring of the 3-hexylthiophene group is bonded.
  • a coupling reaction Sudzuki coupling reaction
  • thiophene rings can be bonded one after another.
  • a desired alkyl group, aryl group, and alkoxy group can be introduce
  • a hydrogen atom in the 9-position of the fluorene derivative is first used, by using the fluorene derivative substituted on R 1 and R 2, to give a compound wherein R 1 and R 2 is an alkyl group, an aryl group or an alkoxy group be able to.
  • N, N-dimethylformamide (DMF) is added dropwise to cooled phospholine chloride to prepare a Vilsmeier reagent.
  • An aldehyde group is introduced into the terminal thiophene ring by adding to the fluorene derivative bound with the thiophene ring prepared as described above.
  • the fluorene derivative aldehyde having an aldehyde group introduced into the terminal thiophene ring thus obtained is reacted with cyanoacetic acid in the presence of piperidine, and the reaction product is extracted with chloroform, and the extracted organic phase is extracted with hydrochloric acid or the like.
  • a cyano group and a carboxyl group that are both acceptors and anchors can be introduced into the terminal thiophene ring.
  • Such a compound can be suitably used as a dye for a dye-sensitized solar cell. That is, an electrode in which the fluorene compound of the present invention is dissolved in an organic solvent and adsorbed on a metal oxide layer (for example, a TiO 2 film (or layer)) disposed on the surface of the transparent electrode is used as one electrode. By disposing the other electrode through a layer that performs a redox reaction, the dye-sensitized solar cell of the present invention can be obtained.
  • a metal oxide layer for example, a TiO 2 film (or layer)
  • Such a dye-sensitized solar cell usually has a cross-sectional structure as shown in FIG.
  • a solid electrolyte such as a conductive polymer
  • the metal oxide layer for example, a TiO 2 film (or layer)
  • Such a dye-sensitized solar cell usually has a cross-sectional structure as shown in FIG.
  • photosensitization can be achieved by adsorbing the above-described dye compound in a particle layer of a metal oxide such as titanium oxide laminated on the surface of a transparent electrode disposed on the anode. it can.
  • the thickness (film thickness) of the metal oxide particles such as titanium oxide is usually 1 to 50 ⁇ m, preferably 10 to 30 ⁇ m.
  • One electrode of the dye-sensitized solar cell is an electrode in which the dye is adsorbed on the surface of the transparent electrode as described above, but the other electrode is formed by sputtering or depositing a conductive metal such as Pt on the surface of the substrate.
  • a catalyst electrode made of a laminated body having a thickness of 2 to 100 nm is used.
  • an electrolyte is filled between the electrodes as described above.
  • the electrolyte solution is formed from lithium iodide / iodine / t-butylpyridine / iodide 1,2-dimethyl-3-propyl imidazolium used conventionally I - / I 3 - as redox solution
  • an iodine-based electrolytic solution can be used, in the present invention, by introducing an alkyl group or the like into the fluorene ring, a conductive polymer can be used instead of the liquid electrolytic solution.
  • solid electrolyte examples include conductive polymers (polyaniline, polyethylenedioxythiophene, poly (3-hexylthiophene), polypyrrole, etc.) and international patent applications (PCT / JP2010 / 061514) filed earlier by the present applicant.
  • Composition for solid electrolyte according to the present invention solid electrolyte comprising a polymer compound obtained by polymerizing a monomer containing a monomer having a chelating ability, and a charge transfer material which is a carbon material and / or a ⁇ -conjugated polymer) Composition
  • solid electrolyte comprising a polymer compound obtained by polymerizing a monomer containing a monomer having a chelating ability, and a charge transfer material which is a carbon material and / or a ⁇ -conjugated polymer
  • the width of the gap between the electrodes filled with the above redox solution or conductive polymer usually needs to be determined by the balance with the titania film thickness. It is preferable to adjust within a range of 50 ⁇ m, preferably 10 to 30 ⁇ m.
  • the dye-sensitized solar cell using the conductive polymer as described above has a power generation efficiency equal to or higher than that of a dye-sensitized solar cell using a conventionally used dye.
  • the dye-sensitized solar cell of the present invention will be described from the step of producing a fluorene compound with specific examples. These examples show one embodiment of the present invention, and the present invention is not limited to these examples.
  • MK-2 was prepared according to the description in Example 2 of WO2007 / 119525.
  • Example 1 2.50 g of 2-bromofluorene represented by the following formula (A) (manufactured by Sigma-Aldrich) and 4.29 g of 3-hexylthiophene-5-boronic acid ester represented by the following formula (B) were mixed, The mixture was refluxed with heating in dimethoxyethane for 8 hours in the presence of 0.36 g of bis (triphenylphosphine) palladium (II) dichloride and 13.00 g of 25% aqueous sodium carbonate solution.
  • A 2-bromofluorene represented by the following formula (A) (manufactured by Sigma-Aldrich)
  • 3-hexylthiophene-5-boronic acid ester represented by the following formula (B) were mixed, The mixture was refluxed with heating in dimethoxyethane for 8 hours in the presence of 0.36 g of bis (triphenylphosphine) palladium (II) dichloride and 13.00 g of 25%
  • reaction solution was cooled to room temperature, diluted with ethyl acetate, and the organic phase was washed with water and saturated brine.
  • the obtained washed product was dried over magnesium sulfate, and then the solvent was distilled off under reduced pressure to obtain a crude product.
  • DMF N, N-dimethylformamide
  • a fluorene derivative represented by the formula (D) was dissolved in 4 ml of DMF.
  • the Vilsmeier reagent prepared by the above operation was added dropwise at room temperature and stirred at 70 ° C. for 1 hour. Thereafter, 50 g of 10% aqueous sodium acetate solution was added for neutralization, and the mixture was extracted with ethyl acetate.
  • the obtained organic phase was washed with water and saturated brine, dried over magnesium sulfate, and then the solvent was distilled off to obtain a crude product.
  • Example 2 In Example 1, 0.1 ml of phosphoryl chloride was cooled to 5 ° C., 0.21 ml of DMF was added dropwise, and the mixture was stirred for 1 hour to prepare a Vilsmeier reagent. 0.52 g of the fluorene derivative represented by the formula (E) was dissolved in 4 ml of DMF, and the Vilsmeier reagent prepared above was added dropwise thereto at room temperature and stirred at 70 ° C. for 1 hour. Thereafter, 50 g of 10% aqueous sodium acetate solution was added for neutralization, and extraction was performed with ethyl acetate. The organic phase was washed with water and saturated brine, dried over magnesium sulfate, and then the solvent was distilled off under reduced pressure to obtain a crude product.
  • FIG. 5 shows the 1 H-NMR result of the compound represented by the formula (K), and FIG. 6 shows the LC-MS result.
  • Example 3 0.06 ml of phosphoryl chloride was cooled to 5 ° C., 0.12 ml of DMF was added dropwise and stirred for 1 hour to prepare Vilsmeier reagent. 0.35 g of the fluorene derivative represented by the formula (F) was dissolved in 3 ml of DMF, and the Vilsmeier reagent prepared above was added dropwise thereto at room temperature, followed by stirring at 70 ° C. for 1 hour.
  • Example 4 A dimethyl sulfoxide solution of 5.00 g of 2-bromofluorene represented by formula (A) (manufactured by Sigma-Aldrich), 13.79 g of 1-bromooctane represented by formula (N), and 0.66 g of tetrabutylammonium bromide was added with 10 ml of 50 wt% sodium hydroxide aqueous solution and stirred at 70 ° C. for 12 hours for reaction. After the reaction, ethyl acetate was added, and the organic phase was washed with 2N hydrochloric acid, water and saturated brine, dried over magnesium sulfate, and then the solvent was distilled off under reduced pressure to obtain a crude product. The crude product was purified by column chromatography (solvent: hexane) to obtain 7.09 g of a 9,9-di-n-octylfluorene derivative represented by the formula (O). The yield was 70%.
  • A 2-bromoflu
  • Example 5 0.09 ml of phosphoryl chloride was cooled to 5 ° C., 0.18 ml of DMF was added dropwise and stirred for 1 hour to prepare Vilsmeier reagent.
  • Example 6 0.06 ml of sulforyl hydrochloride was cooled to 5 ° C., 0.12 m of DMF was added dropwise and stirred for 1 hour to prepare Vilsmeier reagent.
  • the organic phase was washed with water and saturated brine, dried over magnesium sulfate, and then the solvent was distilled off under reduced pressure to obtain a crude product.
  • Example 7 (Creation of dye-sensitized solar cell using liquid electrolyte) (1) ⁇ Creation of photoelectrode> Using a FTO glass with an FTO electrode coating formed on one side as a transparent electrode substrate, a commercially available titanium oxide paste (manufactured by Solaronix) was applied to the FTO surface of this transparent electrode by a screen printing method. The average particle diameter of this titanium oxide is 13 ⁇ m. This was fired in air at 450 ° C. to prepare a titanium oxide porous film layer, and this was treated with titanium tetrachloride to prepare a titanium oxide photoelectrode.
  • a commercially available titanium oxide paste manufactured by Solaronix
  • Table 1 shows the performance of the dye-sensitized solar cell using a liquid electrolyte depending on the dye used.
  • Jsc, Voc, FF, and Eff represent a short-circuit current, an open-circuit voltage, a fill factor, and conversion efficiency, respectively.
  • the dye MK-2 shown in the above table is a compound having the following structure.
  • Example 8 (Preparation of dye-sensitized solar cell using solid electrolyte) (1) ⁇ Creation of photoelectrode> Using FTO glass with an FTO electrode coating formed on one side as a transparent electrode substrate, an IPA solution of titanium alkoxide was applied to the FTO surface of this transparent electrode and heated to 120 ° C. to create a short-circuit prevention layer. On top of that, a commercially available titanium oxide paste (manufactured by Solaronix) was applied by screen printing. The average particle type of this titanium oxide is 37 ⁇ m. This was fired in air at 450 ° C. to prepare a titanium oxide porous film layer, and this was treated with titanium tetrachloride to prepare a titanium oxide photoelectrode.
  • IPA solution of titanium alkoxide was applied to the FTO surface of this transparent electrode and heated to 120 ° C. to create a short-circuit prevention layer.
  • a commercially available titanium oxide paste manufactured by Solaronix
  • Jsc, Voc, FF, and Eff represent a short-circuit current, an open-circuit voltage, a fill factor, and conversion efficiency, respectively.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Hybrid Cells (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

[Solution] The present invention provides a novel fluorene compound such as one represented by formula (I) and a fluorene derivative. An electrode for a dye-sensitized solar cell and a dye-sensitized solar cell using the electrode can be obtained by having the fluorene compound or a derivative thereof adsorbed on metal oxide particles such as titanium oxide particles that constitute a dye-sensitized solar cell. [Effect] A dye-sensitized solar cell using this fluorene compound or a derivative thereof can be operated at high efficiency. (In formula (I), R1 and R2 each represents a hydrogen atom, an alkyl group, an aryl group or an alkoxy group; X represents a cyclic structure such as a thiophene ring represented by formulae; and n represents an integer of 1-12.)

Description

新規なフルオレン化合物、該化合物を用いた色素増感型太陽電池用色素、色素増感型太陽電池用色素含有電極および色素増感型太陽電池Novel fluorene compound, dye for dye-sensitized solar cell using the compound, dye-containing electrode for dye-sensitized solar cell, and dye-sensitized solar cell
 本発明は新規なフルオレン化合物、この化合物を用いた色素増感型太陽電池用色素、このフルオレン化合物を吸着した色素増感型太陽電池用色素含有電極、および、このような電極を有する色素増感太陽電池に関する。 The present invention relates to a novel fluorene compound, a dye-sensitized solar cell dye using the compound, a dye-sensitized solar cell dye-containing electrode adsorbing the fluorene compound, and a dye-sensitized dye having such an electrode. It relates to solar cells.
 色素増感太陽電池に用いられる増感色素としては、一般にRu金属錯体系色素が用いられる。
 このようなRu金属錯体色素は吸光係数が余り高くなく、単分子として光吸収能は大きくは無いが、色素増感太陽電池においてはナノポーラスな金属酸化物を電極として用いる事が出来るためアノード電極の膜厚を厚くする事で、単位面積当たりの色素量を多くすることが可能であり、こうした機能を利用することにより高い光電変換効率を実現する事ができる。しかし、希少金属であるRuを用いているため将来的には供給安定面で不安さを有しており、また、高い光電変換効率を維持する為には色素使用量も増えてしまう。これら背景に基づきRu錯体などの希少金属を用いない色素増感太陽電池用有機色素が注目されている。
As the sensitizing dye used in the dye-sensitized solar cell, a Ru metal complex dye is generally used.
Such a Ru metal complex dye does not have a very high extinction coefficient and does not have a large light absorption ability as a single molecule. However, in a dye-sensitized solar cell, a nanoporous metal oxide can be used as an electrode. By increasing the film thickness, the amount of dye per unit area can be increased, and high photoelectric conversion efficiency can be realized by using such a function. However, since Ru, which is a rare metal, is used, there is anxiety in terms of stable supply in the future, and the amount of dye used increases in order to maintain high photoelectric conversion efficiency. Based on these backgrounds, organic dyes for dye-sensitized solar cells that do not use rare metals such as Ru complexes have attracted attention.
 一般的に有機増感色素はRu系色素に比べ高いモル吸光係数を有するが、逆にアノード電極の膜厚を厚くしても光電変換効率は大きくは向上しない。また、有機系色素に用いる骨格には光吸収能と電荷移動能を両立するために高い共役構造が必要とされるが、これら共役構造が発達する事で溶剤等への溶解性が悪くなりアノード電極への染色が困難となる。更に、色素増感太陽電池用の有機色素には電解質として使用されるヨウ素アニオンからの電荷移動を効率よく行うために窒素元素を含むヘテロ環及び/またはアミン基をドナー骨格に用いる事が多い。有機色素としては、これら各要素を取り入れた設計が重要であるが、吸収波長領域がルテニウム錯体とほぼ同等である有機色素の場合でも、ルテニウム錯体に比べて開放電圧が低いため変換効率が低いとの問題があった。 Generally, organic sensitizing dyes have a higher molar extinction coefficient than Ru-based dyes, but conversely, even if the thickness of the anode electrode is increased, the photoelectric conversion efficiency is not greatly improved. In addition, the skeleton used for organic dyes requires a high conjugated structure in order to achieve both the light absorption ability and the charge transfer ability, but the development of these conjugated structures makes the solubility in solvents worse and the anode. It becomes difficult to dye the electrodes. Further, organic dyes for dye-sensitized solar cells often use a heterocycle containing nitrogen element and / or an amine group as a donor skeleton in order to efficiently transfer charges from iodine anions used as an electrolyte. As an organic dye, a design that incorporates these elements is important. However, even in the case of an organic dye whose absorption wavelength region is almost the same as that of a ruthenium complex, the conversion efficiency is low because the open-circuit voltage is lower than that of the ruthenium complex. There was a problem.
 一方、色素増感太陽電池には電解質として通常はヨウ素及びヨウ化リチウムなどのヨウ素アニオンの組み合わせによるI-/I3 -のようなレドックス能を有する電解質(酸化還元反応が可能な電解質)が利用される。こうしたレドックス能を有する電解質のなかでも、I-/I3 -の溶液は安定性に優れている為に広汎に使用されているが、こうしたI-/I3 -溶液は、セル耐久性に関してはヨウ素による配線材料の腐食、劣化が問題となっており、I-/I3 -溶液に代わるレドックスとの酸化還元を行える色素が要求されているが、良好なものは殆ど報告されていない。 On the other hand, dye-sensitized solar cells usually use an electrolyte having redox ability such as I / I 3 (electrolyte capable of redox reaction) by combining iodine and an iodine anion such as lithium iodide. Is done. Among the electrolytes having such redox ability, the solution of I / I 3 is widely used because of its excellent stability, but such an I / I 3 solution is related to cell durability. corrosion of the wiring material by iodine, degradation has become a problem, I - / I 3 - is a dye capable of performing redox redox alternative to the solution is required, good ones have been reported little.
 この問題を解決すべく開発されたのがオリゴn-ヘキシルチオフェン(共役結合系)、シアノ酢酸基(アクセプター、アンカー)の組み合わせに対して、ドナー部としてN-エチルカルバゾールを用いたMK-2である(非特許文献1参照)。MK-2は従来の有機色素と比較して開放電圧が高く、また変換効率も高い優れた色素であり、有機色素としては非常に高い変換効率を発現する事が確認されている。MK-2の構造を下記に(MK-2)として示す。 To solve this problem, MK-2 was developed using N-ethylcarbazole as the donor part for the combination of oligo n-hexylthiophene (conjugated bond system) and cyanoacetic acid group (acceptor, anchor). Yes (see Non-Patent Document 1). MK-2 is an excellent dye that has a higher open-circuit voltage and higher conversion efficiency than conventional organic dyes, and has been confirmed to exhibit very high conversion efficiency as an organic dye. The structure of MK-2 is shown below as (MK-2).
Figure JPOXMLDOC01-appb-C000009
 しかし、前述のとおり高い吸光係数を有することで光電極の膜厚を厚くしても変換効率の向上は見込めず、未だRu系色素に勝る変換効率は達成できていない。更に、窒素元素を含むカルバゾール化合物をドナー骨格として用いている為にI-/I3 -レドックス溶液以外の電解液への適用は困難であった。
Figure JPOXMLDOC01-appb-C000009
However, since it has a high extinction coefficient as described above, improvement in conversion efficiency cannot be expected even if the film thickness of the photoelectrode is increased, and conversion efficiency superior to Ru-based dyes has not yet been achieved. Furthermore, I carbazole compound containing a nitrogen element in order is used as the donor framework - / I 3 - Application to the electrolyte of the non-redox solutions is difficult.
WO2007/119525A1公報WO2007 / 119525A1 Publication
 本発明は、窒素元素を含むヘテロ環及びアミン基を持たないフルオレン化合物をドナーとした、新規フルオレン化合物を提供することを目的としており、色素染色溶剤としてトルエン等への汎用溶剤への溶解性が良好でありながら、高性能な色素増感太陽電池用増感色素を提供することを目的としている。 An object of the present invention is to provide a novel fluorene compound using a fluorene compound containing a nitrogen-containing heterocycle and no amine group as a donor, and has a solubility in a general-purpose solvent such as toluene as a dye dyeing solvent. An object of the present invention is to provide a sensitizing dye for a dye-sensitized solar cell which is good but has a high performance.
 また本発明は、上記フルオレン化合物を用いる事で高性能な色素増感太陽電池用色素含有電極を提供することを目的としている。
 更には、HOMO-LUMO準位の調整による非ヨウ素系レドックス溶液を用いて発電が可能となる色素増感太陽電池用色素含有電極を提供する事を目的としている。
Another object of the present invention is to provide a dye-containing electrode for a dye-sensitized solar cell having high performance by using the fluorene compound.
It is another object of the present invention to provide a dye-containing electrode for a dye-sensitized solar cell that can generate power using a non-iodine redox solution by adjusting the HOMO-LUMO level.
 さらに本発明は、上記フルオレン化合物を用いた電極を有する色素増感太陽電池を提供することを目的としている。 Furthermore, an object of the present invention is to provide a dye-sensitized solar cell having an electrode using the fluorene compound.
 本発明の新規なフルオレン化合物は、次式(I)で表わすことができる。 The novel fluorene compound of the present invention can be represented by the following formula (I).
Figure JPOXMLDOC01-appb-C000010
 上記式(I)において、R1およびR2はそれぞれ独立に水素原子、アルキル基、アリール基およびアルコキシ基よりなる群から選ばれる少なくとも一種類の原子あるいは基を表わし、Xは、次式(1)、(2)および(3)よりなる群から選ばれる少なくとも一種類の基を表わし、nは1~12のいずれかの整数である。
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000010
In the above formula (I), R 1 and R 2 each independently represents at least one atom or group selected from the group consisting of a hydrogen atom, an alkyl group, an aryl group and an alkoxy group, and X represents the following formula (1 ), At least one group selected from the group consisting of (2) and (3), and n is an integer from 1 to 12.
Figure JPOXMLDOC01-appb-C000011
 但し、上記式(1)、(2)および(3)において、R3およびR4はそれぞれ独立に水素原子、アルキル基、アリール基およびアルコキシ基よりなる群から選ばれる少なくとも一種類の原子あるいは基を表わす。 However, in the above formulas (1), (2) and (3), R 3 and R 4 are each independently at least one atom or group selected from the group consisting of a hydrogen atom, an alkyl group, an aryl group and an alkoxy group. Represents.
 また、本発明の色素増感型太陽電池用色素は、上記式(I)で表されるフルオレン化合物を色素増感型太陽電池の増感色素として使用するものである。
 さらに、本発明の色素増感型太陽電池用色素含有電極は、上記の式(I)で表わされるフルオレン化合物を金属酸化物粒子の表面に吸着させたフルオレン化合物被覆金属酸化物粒子が金属製電極表面に配置された構成を有する。
Moreover, the dye for dye-sensitized solar cells of the present invention uses the fluorene compound represented by the above formula (I) as the sensitizing dye of the dye-sensitized solar cell.
Further, in the dye-containing electrode for a dye-sensitized solar cell of the present invention, the fluorene compound-coated metal oxide particles obtained by adsorbing the fluorene compound represented by the above formula (I) on the surface of the metal oxide particles are metal electrodes. It has the structure arrange | positioned on the surface.
 また本発明の色素増感型太陽電池は、上記のように表面にフルオレン化合物被覆金属酸化物粒子が配置された透明電極を一方の電極とし、他方の電極として触媒電極を配置し、該透明電極と触媒電極との間に電解質を挟持してなる。 Further, the dye-sensitized solar cell of the present invention has a transparent electrode having a fluorene compound-coated metal oxide particle disposed on the surface as described above as one electrode and a catalyst electrode as the other electrode. And the catalyst electrode.
 本発明のフルオレン化合物は新規な化合物である。このフルオレン化合物は色素増感型太陽電池に用いる色素として有効に利用することができる。
 すなわち、窒素元素を含むヘテロ環及びアミン基を持たないフルオレン化合物をドナー骨格として適用し、側鎖を有する共役系低分子のオリゴチオフェン等を用いることでトルエン等の汎用溶剤に対する溶解性付与、色素間スタックの抑制、光電極等からの電荷の漏れの抑制を可能にし、共役長の調整によって光吸収波長領域および電荷移動能の調整等の設計を行うことで色素増感太陽電池に用いる色素として有効に利用することができる。
The fluorene compound of the present invention is a novel compound. This fluorene compound can be effectively used as a dye used in a dye-sensitized solar cell.
In other words, applying a fluorene compound containing a nitrogen element heterocycle and no amine group as a donor skeleton, and using a conjugated low-molecular oligothiophene having a side chain, etc., imparts solubility to general-purpose solvents such as toluene, dye As a dye to be used in dye-sensitized solar cells by controlling inter-stacking, suppressing charge leakage from photoelectrodes, etc., and adjusting the light absorption wavelength region and charge transferability by adjusting the conjugate length It can be used effectively.
 本発明のフルオレン化合物からなる色素を酸化チタンに吸着した電極は、色素増感型太陽電池用の電極として有効に使用することができる。この電極を有する色素増感型太陽電池は、MK-2を用いた太陽電池よりも開放電圧および短絡電流密度が高く、さらに変換効率も高い値を示す。また、本発明のフルオレン化合物は、MK-2より低い吸光係数を有しており、この特性を利用して光電極の有効面積を増やすことで高い変換効率を有する色素増感太陽電池用光電極の提供が可能となる。 The electrode in which the dye comprising the fluorene compound of the present invention is adsorbed on titanium oxide can be effectively used as an electrode for a dye-sensitized solar cell. The dye-sensitized solar cell having this electrode has higher open-circuit voltage and short-circuit current density and higher conversion efficiency than the solar cell using MK-2. Further, the fluorene compound of the present invention has a lower extinction coefficient than that of MK-2, and by utilizing this characteristic, the photoelectrode for dye-sensitized solar cell having high conversion efficiency by increasing the effective area of the photoelectrode Can be provided.
 しかも、本発明のフルオレン化合物からなる色素を含有する電極を用いることにより、非ヨウ素系電解質での発電が可能になり、特に色素増感型の太陽電池では必須構成要件であった液体の電解液を使用せずに、これに代わって導電性ポリマーなどの固体電解質を用いて発電することが可能になる。従って、ヨウ素レドックスによるセル配線材料の腐食を抑制して高寿命なセルの提供又は色素増感型太陽電池からの電解液の漏れが発生しないという新たな色素増感型太陽電池を提供することができる。 Moreover, by using an electrode containing a dye comprising the fluorene compound of the present invention, it is possible to generate power with a non-iodine-based electrolyte, and in particular, a liquid electrolyte that has been an essential constituent requirement for dye-sensitized solar cells Instead of this, it is possible to generate electric power using a solid electrolyte such as a conductive polymer instead. Accordingly, it is possible to provide a new dye-sensitized solar cell that suppresses corrosion of cell wiring materials due to iodine redox and provides a long-life cell or does not cause leakage of electrolyte from the dye-sensitized solar cell. it can.
図1は、色素増感型太陽電池<液式光電変換素子>の断面の例を模式的に示す図面である。FIG. 1 is a drawing schematically showing an example of a cross section of a dye-sensitized solar cell <liquid photoelectric conversion element>. 図2は、色素増感型太陽電池<完全固体型光電変換素子>の断面の例を模式的に示す図面である。FIG. 2 is a drawing schematically showing an example of a cross section of a dye-sensitized solar cell <fully solid-state photoelectric conversion element>. 図3は、式(H)で示す化合物の1H-NMRのスペクトルである。FIG. 3 is a 1 H-NMR spectrum of the compound represented by formula (H). 図4は、式(H)で示す化合物のLC-MSのスペクトルである。FIG. 4 is an LC-MS spectrum of the compound represented by the formula (H). 図5は、式(K)で示す化合物の1H-NMRのスペクトルである。FIG. 5 is a 1 H-NMR spectrum of the compound represented by formula (K). 図6は、式(K)で示す化合物のLC-MSのスペクトルである。FIG. 6 is an LC-MS spectrum of the compound represented by formula (K).
 次の本発明のフルオレン化合物、このフルオレン化合物からなる色素増感型太陽電池用色素、この色素を用いた色素増感型太陽電池用色素含有電極および色素増感型太陽電池について具体的に説明する。 Next, a fluorene compound of the present invention, a dye for a dye-sensitized solar cell comprising the fluorene compound, a dye-containing electrode for a dye-sensitized solar cell and a dye-sensitized solar cell using the dye will be specifically described. .
 本発明のフルオレン化合物は下記式(I)で表すことができる。 The fluorene compound of the present invention can be represented by the following formula (I).
Figure JPOXMLDOC01-appb-C000012
 上記式(I)において、R1およびR2はそれぞれ独立に水素原子、アルキル基、アリール基およびアルコキシ基よりなる群から選ばれる少なくとも一種類の原子あるいは基である。
Figure JPOXMLDOC01-appb-C000012
In the above formula (I), R 1 and R 2 are each independently at least one atom or group selected from the group consisting of a hydrogen atom, an alkyl group, an aryl group, and an alkoxy group.
 特に本発明では、R1およびR2の両者が水素原子か、同一の炭素数を有するアルキル基、アリール基およびアルコキシ基であることが好ましく、R1およびR2が、炭素数1~12のアルキル基、炭素数1~12のアリール基、または、炭素数1~12のアルコキシ基のいずれかであることが好ましい。 In particular, in the present invention, it is preferable that both R 1 and R 2 are hydrogen atoms or alkyl groups, aryl groups and alkoxy groups having the same carbon number, and R 1 and R 2 are those having 1 to 12 carbon atoms. An alkyl group, an aryl group having 1 to 12 carbon atoms, or an alkoxy group having 1 to 12 carbon atoms is preferable.
 特に本発明では、R1およびR2が共に水素原子またはアルキル基である化合物は、色素増感型太陽電池用の電極を形成するフルオレン化合物として適している。このような置換基を用いたフルオレン化合物は、色素増感型太陽電池の電極として使用する色素化合物として使用した場合に、太陽電池の酸化還元反応を行う電解質は、I-/I3 -のような液体電解質のみならず、導電性ポリマーのような固体電解質でも好適に使用することが可能となる。 In particular, in the present invention, a compound in which R 1 and R 2 are both hydrogen atoms or alkyl groups is suitable as a fluorene compound that forms an electrode for a dye-sensitized solar cell. When such a fluorene compound using a substituent is used as a dye compound used as an electrode of a dye-sensitized solar cell, an electrolyte that performs a redox reaction of the solar cell is, for example, I / I 3 . Not only a liquid electrolyte but also a solid electrolyte such as a conductive polymer can be suitably used.
 上記式(I)において、nは1~12の整数であり、2~10の整数であることが特に好ましい。
 上記式(I)において、Xは、次式(1)、(2)、(3)のいずれかの基である。
In the above formula (I), n is an integer of 1 to 12, particularly preferably an integer of 2 to 10.
In the above formula (I), X is any group of the following formulas (1), (2), and (3).
Figure JPOXMLDOC01-appb-C000013
 但し、上記式(1)、(2)および(3)において、R3およびR4はそれぞれ独立に水素原子、アルキル基、アリール基およびアルコキシ基よりなる群から選ばれる少なくとも一種類の原子あるいは基を表わす。
Figure JPOXMLDOC01-appb-C000013
However, in the above formulas (1), (2) and (3), R 3 and R 4 are each independently at least one atom or group selected from the group consisting of a hydrogen atom, an alkyl group, an aryl group and an alkoxy group. Represents.
 これらの中でもR3およびR4のいずれか一方が水素原子であり、他方の基は、炭素数1~12のアルキル基、炭素数1~12のアリール基、または、炭素数1~12のアルコキシ基のいずれかであることが好ましい。 Among these, one of R 3 and R 4 is a hydrogen atom, and the other group is an alkyl group having 1 to 12 carbon atoms, an aryl group having 1 to 12 carbon atoms, or an alkoxy group having 1 to 12 carbon atoms. Preferably any of the groups.
 また、R3およびR4のいずれか一方が水素原子であり、他方の基は、アルキル基、アリール基、または、アルコキシ基のいずれかである場合、これらの基は直鎖状の基であることが好ましい。 When either one of R 3 and R 4 is a hydrogen atom and the other group is an alkyl group, an aryl group, or an alkoxy group, these groups are linear groups. It is preferable.
 特に本発明においては式(I)におけるXはチオフェン環を有する上記式(1)であることが好ましく、この場合、チオフェン環に結合しているR3,R4の内のいずれか一方は、水素原子であり、他方が炭素数2~12のアルキル基、アリール基またはアルコキシ基のいずれかであることが好ましく、このような置換基を有するチオフェン環が通常は2~12個、好ましくは3~7個結合していること(即ち式(I)におけるnが通常は2~12、好ましくは3~7である)が特に望ましい。 In particular, in the present invention, X in the formula (I) is preferably the above formula (1) having a thiophene ring, and in this case, one of R 3 and R 4 bonded to the thiophene ring is It is preferably a hydrogen atom and the other is an alkyl group having 2 to 12 carbon atoms, an aryl group or an alkoxy group, and usually has 2 to 12 thiophene rings having such a substituent, preferably 3 It is particularly desirable that ˜7 are bonded (that is, n in formula (I) is usually 2 to 12, preferably 3 to 7).
 さらに、本発明の色素増感型太陽電池用色素としては、以下に示す式で表す化合物を使用することができる。 Furthermore, as the dye for a dye-sensitized solar cell of the present invention, a compound represented by the following formula can be used.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
 上記式(II) ~(IV) において、R1~R4およびnは前記と同様である。
Figure JPOXMLDOC01-appb-C000016
In the above formulas (II) to (IV), R 1 to R 4 and n are the same as described above.
 このような本発明の色素増感型太陽電池用色素の具体的な例として、例えばnが3の化合物を示せば次のようになる。 As a specific example of such a dye-sensitized solar cell dye of the present invention, for example, a compound having n of 3 is shown as follows.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
 このような化合物の内、色素増感型太陽電池用の色素としては、チオフェン環を有する(II-1)が好ましい。
Figure JPOXMLDOC01-appb-C000019
Of these compounds, (II-1) having a thiophene ring is preferred as a dye for a dye-sensitized solar cell.
 また、R1およびR2は、水素原子であっても良いが、直鎖状のアルキル基であることが好ましく、この場合、R1およびR2は同一の炭素数を有するアルキル基であることが特に好ましい。このようにフルオレン構造中に同一炭素数の直鎖状の基が2個有する化合物を使用することにより、電解液を用いる代わりに導電性ポリマーなど固体の導電性物質を使用しやすくなる。 R 1 and R 2 may be hydrogen atoms, but are preferably linear alkyl groups. In this case, R 1 and R 2 are alkyl groups having the same carbon number. Is particularly preferred. Thus, by using a compound having two linear groups having the same carbon number in the fluorene structure, it becomes easy to use a solid conductive material such as a conductive polymer instead of using an electrolytic solution.
 また、本発明において、R3およびR4は、水素原子、アルキル基、アリール基およびアルコキシ基よりなる群から選ばれる少なくとも一種類の原子あるいは基であるが、R3およびR4のいずれか一方が水素原子であり、他方がアルキル基、アリール基およびアルコキシ基であることが好ましい。 In the present invention, R 3 and R 4 are at least one atom or group selected from the group consisting of a hydrogen atom, an alkyl group, an aryl group, and an alkoxy group, and either one of R 3 and R 4 Is a hydrogen atom, and the other is preferably an alkyl group, an aryl group and an alkoxy group.
 このような化合物は、2-ブロモフルオレンあるいはその誘導体を出発物質として合成することができる。
 2-ブロモフルオレンをR3が水素原子でR4がヘキシル基の場合を例にして本発明の化合物の合成方法を説明すると、まず2-ブロモフルオレンに3-ヘキシルチオフェン-5-ボロン酸エステルとを反応させる。このとき触媒としてビス(トリフェニルホスフィン)パラジウム(II)ジクロリドおよび炭酸ナトリウム水溶液の存在下にジメトキシエタン中で還流する。このときの還流時間は通常は3~12時間である。
Such a compound can be synthesized using 2-bromofluorene or a derivative thereof as a starting material.
The method for synthesizing the compound of the present invention will be described by taking 2-bromofluorene as an example where R 3 is a hydrogen atom and R 4 is a hexyl group. First, 2-bromofluorene is converted to 3-hexylthiophene-5-boronic acid ester. React. At this time, the mixture is refluxed in dimethoxyethane in the presence of bis (triphenylphosphine) palladium (II) dichloride and an aqueous sodium carbonate solution as a catalyst. The reflux time at this time is usually 3 to 12 hours.
 この反応により2-ブロモフルオレンにヘキシル基を有するフルオレン環を一個導入することができる。
 次いで、N-ブロモスクシンイミドのような臭素化剤を用いて、3-ヘキシルチオフェン基のチオフェン環の結合している水素原子のブロム原子に置換させることができ、このように臭素化したら上述のようにカップリング反応(スズキカップリング反応)を利用することにより、チオフェン環を次々と結合させることができる。そして、カップリングの際に使用するチオフェン環に結合している置換基を変えることにより、所望のアルキル基、アリール基、アルコキシ基を導入することができる。
By this reaction, one fluorene ring having a hexyl group can be introduced into 2-bromofluorene.
Then, using a brominating agent such as N-bromosuccinimide, it can be substituted with the bromine atom of the hydrogen atom to which the thiophene ring of the 3-hexylthiophene group is bonded. By using a coupling reaction (Suzuki coupling reaction), thiophene rings can be bonded one after another. And a desired alkyl group, aryl group, and alkoxy group can be introduce | transduced by changing the substituent couple | bonded with the thiophene ring used in the case of coupling.
 最初に使用するフルオレン誘導体の9位にある水素原子を、R1およびR2に置換したフルオレン誘導体を使用することにより、R1およびRがアルキル基、アリール基あるいはアルコキシ基である化合物を得ることができる。 A hydrogen atom in the 9-position of the fluorene derivative is first used, by using the fluorene derivative substituted on R 1 and R 2, to give a compound wherein R 1 and R 2 is an alkyl group, an aryl group or an alkoxy group be able to.
 上記のようにして所望の数のチオフェン環を結合させた後、例えば、冷却した塩化ホスホリンにN,N-ジメチルホルムアミド(DMF)を滴下してビルスマイヤー試薬を調製し、このビルスマイヤー試薬を上記のようにして調製したチオフェン環が結合したフルオレン誘導体に加えることにより、末端のチオフェン環にアルデヒド基を導入する。こうして得られた末端のチオフェン環にアルデヒド基が導入されたフルオレン誘導体アルデヒドとシアノ酢酸とを、ピペリジンの存在下に反応させ、反応物をクロロホルムなどで抽出して、抽出された有機相を塩酸などの鉱酸で処理することにより、末端のチオフェン環にアクセプターであると共にアンカーでもあるシアノ基およびカルボキシル基を導入することができる。 After a desired number of thiophene rings are bonded as described above, for example, N, N-dimethylformamide (DMF) is added dropwise to cooled phospholine chloride to prepare a Vilsmeier reagent. An aldehyde group is introduced into the terminal thiophene ring by adding to the fluorene derivative bound with the thiophene ring prepared as described above. The fluorene derivative aldehyde having an aldehyde group introduced into the terminal thiophene ring thus obtained is reacted with cyanoacetic acid in the presence of piperidine, and the reaction product is extracted with chloroform, and the extracted organic phase is extracted with hydrochloric acid or the like. By treating with a mineral acid, a cyano group and a carboxyl group that are both acceptors and anchors can be introduced into the terminal thiophene ring.
 このような化合物は、色素増感型太陽電池用の色素として好適に使用することができる。すなわち、本発明のフロオレン化合物を有機溶媒に溶解して、透明電極の表面に配置した金属酸化物の層(例えばTiO2膜(或いは層))に吸着させた電極を一方の電極とし、間に酸化還元反応を行う層を介して他方の電極を配置することにより、本発明の色素増感型太陽電池とすることができる。 Such a compound can be suitably used as a dye for a dye-sensitized solar cell. That is, an electrode in which the fluorene compound of the present invention is dissolved in an organic solvent and adsorbed on a metal oxide layer (for example, a TiO 2 film (or layer)) disposed on the surface of the transparent electrode is used as one electrode. By disposing the other electrode through a layer that performs a redox reaction, the dye-sensitized solar cell of the present invention can be obtained.
 このような色素増感型太陽電池は、通常は図1に示すような断面構造を有している。
 また、後述するように、酸化還元反応を行う層に導電性ポリマーなどのような固体電解質を用いる場合は、透明電極と金属酸化物の層(例えばTiO2膜(或いは層))の間に電荷の漏れを防止する短絡防止層をもうけることができる。
Such a dye-sensitized solar cell usually has a cross-sectional structure as shown in FIG.
As will be described later, when a solid electrolyte such as a conductive polymer is used for the layer that performs the oxidation-reduction reaction, a charge is generated between the transparent electrode and the metal oxide layer (for example, a TiO 2 film (or layer)). It is possible to provide a short-circuit prevention layer that prevents leakage of the material.
 このような色素増感太陽電池は、通常は図2に示すような断面構造を有している。
 色素増感型太陽電池では、上記のような色素化合物を陽極に配置された透明電極の表面に積層された酸化チタンなどの金属酸化物の粒子層中に吸着させることにより光増感させることができる。
Such a dye-sensitized solar cell usually has a cross-sectional structure as shown in FIG.
In dye-sensitized solar cells, photosensitization can be achieved by adsorbing the above-described dye compound in a particle layer of a metal oxide such as titanium oxide laminated on the surface of a transparent electrode disposed on the anode. it can.
 このときの酸化チタンなどの金属酸化物粒子の粒子層の厚さ(膜厚)は通常は1~50μm、好ましくは10~30μmである。
 色素増感型の太陽電池の一方の電極は、上記のように透明電極の表面に色素が吸着された電極であるが、他方の電極は基板の表面にPtなどの導電性金属をスパッタリング、蒸着などの方法により、例えば2~100nmの厚さに積層した積層体からなる触媒電極を使用する。
In this case, the thickness (film thickness) of the metal oxide particles such as titanium oxide is usually 1 to 50 μm, preferably 10 to 30 μm.
One electrode of the dye-sensitized solar cell is an electrode in which the dye is adsorbed on the surface of the transparent electrode as described above, but the other electrode is formed by sputtering or depositing a conductive metal such as Pt on the surface of the substrate. For example, a catalyst electrode made of a laminated body having a thickness of 2 to 100 nm is used.
 上記のような電極間には通常は電解液が充填されている。この電解液としては従来から使用されているヨウ化リチウム/ヨウ素/t-ブチルピリジン/ヨウ化1,2-ジメチル-3-プロピルイミダゾリウムから形成されるI-/I3 -レドックス溶液のようなヨウ素系の電解液を使用することもできるが、本発明では、フルオレン環にアルキル基などを導入することにより、液体である電解液の代わりに導電性ポリマーを使用することが可能になる。固体電解質としては、導電性ポリマー(ポリアニリン、ポリエチレンジオキシチオフェン、ポリ(3-ヘキシルチオフェン)、ポリピロールなど)や、本出願人が先に出願している国際特許出願(PCT/JP2010/061514)に係る発明である固体電解質用組成物(キレート能を有するモノマーを含むモノマーを重合して得られる高分子化合物と、炭素材料および/またはπ共役系高分子である電荷移動性材料とを含む固体電解質用組成物)などを挙げることができる。このような固体電解質を用いると、液体であるI-/I3 -の溶液のような電解液のように液漏れを起こすことがないので、長寿命の色素増感型太陽電池を使用することができる。 Usually, an electrolyte is filled between the electrodes as described above. As the electrolyte solution is formed from lithium iodide / iodine / t-butylpyridine / iodide 1,2-dimethyl-3-propyl imidazolium used conventionally I - / I 3 - as redox solution Although an iodine-based electrolytic solution can be used, in the present invention, by introducing an alkyl group or the like into the fluorene ring, a conductive polymer can be used instead of the liquid electrolytic solution. Examples of the solid electrolyte include conductive polymers (polyaniline, polyethylenedioxythiophene, poly (3-hexylthiophene), polypyrrole, etc.) and international patent applications (PCT / JP2010 / 061514) filed earlier by the present applicant. Composition for solid electrolyte according to the present invention (solid electrolyte comprising a polymer compound obtained by polymerizing a monomer containing a monomer having a chelating ability, and a charge transfer material which is a carbon material and / or a π-conjugated polymer) Composition) and the like. When such a solid electrolyte is used, liquid leakage does not occur as in the case of an electrolyte such as a liquid I / I 3 solution. Therefore, a long-life dye-sensitized solar cell should be used. Can do.
 本発明の色素増感型太陽電池において、上記のようなレドックス溶液あるいは導電性ポリマーを充填する電極間の間隙の幅は、通常チタニアの膜厚とのバランスで決定する必要があるが、1~50μm、好ましくは10~30μmの範囲内に調整するのが好ましい。 In the dye-sensitized solar cell of the present invention, the width of the gap between the electrodes filled with the above redox solution or conductive polymer usually needs to be determined by the balance with the titania film thickness. It is preferable to adjust within a range of 50 μm, preferably 10 to 30 μm.
 しかも、このように導電性ポリマーを用いた色素増感型太陽電池は、従来から使用されている色素を用いた色素増感型太陽電池と同等若しくは同等以上の発電効率を有している。 Moreover, the dye-sensitized solar cell using the conductive polymer as described above has a power generation efficiency equal to or higher than that of a dye-sensitized solar cell using a conventionally used dye.
 以下本発明の色素増感型太陽電池について、具体的に実施例を示してフルオレン化合物を製造する工程から説明する。
 これらの実施例は、本発明の一態様を示すものであり、本発明は、これら実施例によって限定されるものではない。
Hereinafter, the dye-sensitized solar cell of the present invention will be described from the step of producing a fluorene compound with specific examples.
These examples show one embodiment of the present invention, and the present invention is not limited to these examples.
 なお、本発明において、本発明の色素増感型太陽電池用色素の性能を評価させるために、MK-2を基準にして評価を行った。なお、MK-2は、WO2007/119525の実施例2の記載に従って調製した。 In addition, in this invention, in order to evaluate the performance of the pigment | dye for dye-sensitized solar cells of this invention, it evaluated on the basis of MK-2. MK-2 was prepared according to the description in Example 2 of WO2007 / 119525.
 次に本発明の実施例を示して本発明をさらに詳細に説明するが本発明はこれらによって限定されるものではない。
 なお、1HNMRおよびLC-MSは、以下の装置および条件で測定した。
1HNMR(装置:JNM-ECX500M、500MHz、溶媒:テトラヒドロフラン-d8)。
LC-MS(装置:LC部 Agilent 1100Series、MS部 Bruker  Daltonics esquire4000、APCI法)。
 また、太陽電池の性能は、以下の条件で測定した。
 1SUN、擬似太陽光(入射光強度100mW/cm2 (AM1..5))を光源として、光電変換素子の色素増感電極側から入射させ、電圧/電流発生器(R6243, ADVANTEST)によって電圧印加し、電池特性を測定した。
〔実施例1〕
 次式(A)で表わされる2-ブロモフルオレン(シグマアルドリッチ社製)2.50gと次式(B)で表わされる3-へキシルチオフェン-5-ボロン酸エステル4.29gとを混合し、この混合物中にビス(トリフェニルホスフィン)パラジウム(II)ジクロリド0.36gおよび、25%炭酸ナトリウム水溶液13.00gの存在下に、ジメトキシエタン中で8時間加熱環流を行った、
EXAMPLES Next, the present invention will be described in more detail with reference to examples of the present invention, but the present invention is not limited thereto.
1 HNMR and LC-MS were measured with the following apparatus and conditions.
1 HNMR (apparatus: JNM-ECX500M, 500 MHz, solvent: tetrahydrofuran-d8).
LC-MS (apparatus: LC part Agilent 1100Series, MS part Bruker Daltonics esquire4000, APCI method).
Moreover, the performance of the solar cell was measured under the following conditions.
1SUN, simulated sunlight (incident light intensity 100mW / cm 2 (AM1..5)) as a light source, incident from the dye-sensitized electrode side of the photoelectric conversion element, and voltage applied by voltage / current generator (R6243, ADVANTEST) The battery characteristics were measured.
[Example 1]
2.50 g of 2-bromofluorene represented by the following formula (A) (manufactured by Sigma-Aldrich) and 4.29 g of 3-hexylthiophene-5-boronic acid ester represented by the following formula (B) were mixed, The mixture was refluxed with heating in dimethoxyethane for 8 hours in the presence of 0.36 g of bis (triphenylphosphine) palladium (II) dichloride and 13.00 g of 25% aqueous sodium carbonate solution.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
 8時間経過後、反応液を室温にまで冷却した後、反応液を酢酸エチルで希釈し、有機相を水および飽和食塩水で洗浄した。得られた洗浄物を硫酸マグネシウムで乾燥後、溶媒を減圧下で留去して粗生成物を得た。
Figure JPOXMLDOC01-appb-C000021
After 8 hours, the reaction solution was cooled to room temperature, diluted with ethyl acetate, and the organic phase was washed with water and saturated brine. The obtained washed product was dried over magnesium sulfate, and then the solvent was distilled off under reduced pressure to obtain a crude product.
 得られた粗生成物をガラムクロマトグラフィー(溶媒:ヘキサン/酢酸エチル=50/1)で精製し、次式(C)で表わされるフルオレン誘導体2.69gを得た。収率は79%であった。 The obtained crude product was purified by galam chromatography (solvent: hexane / ethyl acetate = 50/1) to obtain 2.69 g of a fluorene derivative represented by the following formula (C). The yield was 79%.
Figure JPOXMLDOC01-appb-C000022
 式(C)で表わされるフルオレン誘導体2.40gのテトラヒドロフラン溶液15mlを-20℃に冷却し、この冷却液にN-ブロモスクシンイミド1.29gとテトラヒドロフラン8mlのスラリーを加え、1時間攪拌した。
Figure JPOXMLDOC01-appb-C000022
15 ml of a tetrahydrofuran solution of 2.40 g of the fluorene derivative represented by the formula (C) was cooled to −20 ° C., and a slurry of 1.29 g of N-bromosuccinimide and 8 ml of tetrahydrofuran was added to this cooling liquid and stirred for 1 hour.
 攪拌後、溶媒を減圧下で留去し、残留物を酢酸エチルに溶解した。
 有機相を10%炭酸ナトリウム水溶液、水および飽和食塩水で洗浄し、この洗浄物を硫酸マグネシウムで乾燥させた後、溶媒を減圧下に除去し粗成生物を得た。
After stirring, the solvent was distilled off under reduced pressure, and the residue was dissolved in ethyl acetate.
The organic phase was washed with 10% aqueous sodium carbonate solution, water and saturated brine, and the washed product was dried over magnesium sulfate, and then the solvent was removed under reduced pressure to obtain a crude product.
 この粗生成物から再結晶溶媒としてヘキサン/酢酸エチル=25/1の混合溶媒を用いて再結晶を行うことにより次式(C-1)で表されるフルオレン誘導体1.91gを得た。
 収率は64%であった。
Figure JPOXMLDOC01-appb-C000023
From this crude product, 1.91 g of a fluorene derivative represented by the following formula (C-1) was obtained by recrystallization using a mixed solvent of hexane / ethyl acetate = 25/1 as a recrystallization solvent.
The yield was 64%.
Figure JPOXMLDOC01-appb-C000023
 上記式(B)を用いたスズキカップリング反応および式(C)の化合物から式(C-1)の化合物を得た工程と同様の臭素化反応を繰り返すことにより、式(D)で表されるヘキシル置換チオフェンが三個連なったフルオレン誘導体、式(E)で表されるヘキシル置換チオフェンが四個連なったフルオレン誘導体、および式(F)で表されるヘキシル置換チオフェンが五個連なったフルオレン誘導体を合成することができた。 By repeating the Suzuki coupling reaction using the above formula (B) and the bromination reaction similar to the step of obtaining the compound of the formula (C-1) from the compound of the formula (C), it is represented by the formula (D). A fluorene derivative with three hexyl-substituted thiophenes, a fluorene derivative with four hexyl-substituted thiophenes represented by formula (E), and a fluorene derivative with five hexyl-substituted thiophenes represented by formula (F) Was able to be synthesized.
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
 塩化ホスホリル0.14mlを5℃に冷却し、N,N-ジメチルホルムアミド(以下、「DMF」と略記する)を0.25ml滴下し、1時間攪拌し、ビルスマイヤー試薬を調製した。
Figure JPOXMLDOC01-appb-C000026
0.14 ml of phosphoryl chloride was cooled to 5 ° C., 0.25 ml of N, N-dimethylformamide (hereinafter abbreviated as “DMF”) was added dropwise and stirred for 1 hour to prepare a Vilsmeier reagent.
 次に式(D)で表されるフルオレン誘導体0.5gをDMF4mlに溶解した。この溶液に上記の操作で調整したビルスマイヤー試薬を室温で滴下し、70℃で1時間攪拌した。
 その後、10%の酢酸ナトリウム水溶液を50g加えて中和し、酢酸エチルで抽出した。
Next, 0.5 g of a fluorene derivative represented by the formula (D) was dissolved in 4 ml of DMF. To this solution, the Vilsmeier reagent prepared by the above operation was added dropwise at room temperature and stirred at 70 ° C. for 1 hour.
Thereafter, 50 g of 10% aqueous sodium acetate solution was added for neutralization, and the mixture was extracted with ethyl acetate.
 得られた有機相を水および飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した後、溶媒を留去し粗生成物を得た。その粗生成物をカラムクロマトグラフィー(溶媒;ヘキサン/酢酸エチル=4/1)で精製し、式(G)で表されるフルオレン誘導体アルデヒドを0.29g得た。収率は56%であった。 The obtained organic phase was washed with water and saturated brine, dried over magnesium sulfate, and then the solvent was distilled off to obtain a crude product. The crude product was purified by column chromatography (solvent; hexane / ethyl acetate = 4/1) to obtain 0.29 g of a fluorene derivative aldehyde represented by the formula (G). The yield was 56%.
Figure JPOXMLDOC01-appb-C000027
 上記式(G)で表されたフルオレン誘導体アルデヒド0.29gとシアノ酢酸0.07gを、ピペリジン0.1mlの存在下に、トルエン/アセチニトリル=1/1混合溶媒4ml中で6時間加熱還流を行った。
Figure JPOXMLDOC01-appb-C000027
The fluorene derivative aldehyde represented by the above formula (G) (0.29 g) and cyanoacetic acid (0.07 g) were heated to reflux in 4 ml of toluene / acetylonitrile = 1/1 mixed solvent in the presence of 0.1 ml of piperidine for 6 hours. went.
 その後、反応液にクロロホルム50mlを加え、有機相を1N-塩酸で処理し、水および飽和食塩水で洗浄し、硫酸ナトリウムで乾燥し、溶媒を減圧下で留去し粗生成物を得た。
 得られた粗生成物をカラムクロマトグラフィー(溶媒:クロロホルム→クロロホルム/エタノール=10/1)により精製し、式(H)で表される色素化合物0.27gを得た。収率は84%であった。
Thereafter, 50 ml of chloroform was added to the reaction solution, the organic phase was treated with 1N hydrochloric acid, washed with water and saturated brine, dried over sodium sulfate, and the solvent was distilled off under reduced pressure to obtain a crude product.
The obtained crude product was purified by column chromatography (solvent: chloroform → chloroform / ethanol = 10/1) to obtain 0.27 g of a dye compound represented by the formula (H). The yield was 84%.
 得られた式(H)で表される化合物の1H-NMRの結果を図3に示すと共に、LC-MSの結果を図4に示す。 The 1 H-NMR result of the obtained compound represented by the formula (H) is shown in FIG. 3, and the LC-MS result is shown in FIG.
Figure JPOXMLDOC01-appb-C000028
〔実施例2〕
 実施例1において、塩化ホスホリル0.1mlを5℃に冷却し、DMFを0.21ml滴下し、1時間攪拌し、ビルスマイヤー試薬を調製した。式(E)で表されるフルオレン誘導体0.52gをDMF4mlで溶解し、そこへ上記で調製したビルスマイヤー試薬を室温で滴下し70℃で1時間攪拌した。その後、10%の酢酸ナトリウム水溶液を50g加えて中和し、酢酸エチルで抽出を行った。有機相を水および飽和食塩水で洗浄し、硫酸マグネシウムで乾燥後、溶媒を減圧下で留去し粗生成物を得た。
Figure JPOXMLDOC01-appb-C000028
[Example 2]
In Example 1, 0.1 ml of phosphoryl chloride was cooled to 5 ° C., 0.21 ml of DMF was added dropwise, and the mixture was stirred for 1 hour to prepare a Vilsmeier reagent. 0.52 g of the fluorene derivative represented by the formula (E) was dissolved in 4 ml of DMF, and the Vilsmeier reagent prepared above was added dropwise thereto at room temperature and stirred at 70 ° C. for 1 hour. Thereafter, 50 g of 10% aqueous sodium acetate solution was added for neutralization, and extraction was performed with ethyl acetate. The organic phase was washed with water and saturated brine, dried over magnesium sulfate, and then the solvent was distilled off under reduced pressure to obtain a crude product.
 得られた粗組成物を再結晶(溶媒:ヘキサン)で精製し、次式(J)で表されるフルオレン誘導体アルデヒドを0.49g得た。収率は91%であった。 The obtained crude composition was purified by recrystallization (solvent: hexane) to obtain 0.49 g of a fluorene derivative aldehyde represented by the following formula (J). The yield was 91%.
Figure JPOXMLDOC01-appb-C000029
 上記のようにして精製したフルオレン誘導体アルデヒド0.49gとシアノ酢酸0.09gをビペリジン0.2mlの存在下、トルエン/アセトニトリル=1/1混合溶媒6ml中で10時間加熱還流を行った。
Figure JPOXMLDOC01-appb-C000029
The fluorene derivative aldehyde 0.49 g and cyanoacetic acid 0.09 g purified as described above were heated to reflux for 10 hours in 6 ml of toluene / acetonitrile = 1/1 mixed solvent in the presence of 0.2 ml of biperidine.
 その後、反応液にクロロホルム100mlを加え、有機相を1N-塩酸で処理し、水および飽和食塩水で洗浄し、硫酸ナトリウムで乾燥後、溶媒を減圧下で留去し粗生成物を得た。得られた粗生成物をカラムクロマトグラフィー(溶媒:クロロホルム→クロロホルム/エタノール=10/1)により精製し、式(K)で表される色素化合物を得た。収率は87%であった。 Thereafter, 100 ml of chloroform was added to the reaction solution, the organic phase was treated with 1N-hydrochloric acid, washed with water and saturated brine, dried over sodium sulfate, and then the solvent was distilled off under reduced pressure to obtain a crude product. The obtained crude product was purified by column chromatography (solvent: chloroform → chloroform / ethanol = 10/1) to obtain a dye compound represented by the formula (K). The yield was 87%.
 得られた式(K)で表される化合物の1H-NMRの結果を図5に示すと共に、LC-MSの結果を図6に示す。 FIG. 5 shows the 1 H-NMR result of the compound represented by the formula (K), and FIG. 6 shows the LC-MS result.
Figure JPOXMLDOC01-appb-C000030
〔実施例3〕
 塩化ホスホリル0.06mlを5℃に冷却し、DMFを0.12ml滴下し、1時間攪拌し、ビルスマイヤー試薬を調製した。式(F)で表されるフルオレン誘導体0.35gをDMF3mlで溶解し、そこに上記で調製したビルスマイヤー試薬を室温で滴下し、70℃で1時間攪拌した。
Figure JPOXMLDOC01-appb-C000030
Example 3
0.06 ml of phosphoryl chloride was cooled to 5 ° C., 0.12 ml of DMF was added dropwise and stirred for 1 hour to prepare Vilsmeier reagent. 0.35 g of the fluorene derivative represented by the formula (F) was dissolved in 3 ml of DMF, and the Vilsmeier reagent prepared above was added dropwise thereto at room temperature, followed by stirring at 70 ° C. for 1 hour.
 その後、10%の酢酸ナトリウム水溶液を50g加えて中和し、酢酸エチルで中和した。
 有機相を水および飽和食塩水で洗浄し、酢酸マグネシウムで乾燥後、溶媒を減圧下で留去し粗生成物を得た。
Thereafter, 50 g of 10% aqueous sodium acetate solution was added for neutralization, and neutralized with ethyl acetate.
The organic phase was washed with water and saturated brine, dried over magnesium acetate, and then the solvent was distilled off under reduced pressure to obtain a crude product.
 その粗生成物を再結晶(溶媒:ヘキサン)で精製し、式(L)で表されるフルオレン誘導体アルデヒドを0.25g得た。収率は70%であった。 The crude product was purified by recrystallization (solvent: hexane) to obtain 0.25 g of a fluorene derivative aldehyde represented by the formula (L). The yield was 70%.
Figure JPOXMLDOC01-appb-C000031
 上記式(L)で表されるフルオレン誘導体アルデヒド0.25gとシアノ酢酸0.04gとをピペリジン0.1mlの存在下、トルエン/アセトニトリル=1/1混合溶媒3ml中で10時間加熱還流を行った。その後、反応液にクロロホルム100mlを加え、有機相を1N-塩酸で処理し、水および飽和食塩水で洗浄し、硫酸ナトリウムで乾燥後、溶媒を減圧下で留去し粗生成物を得た。
Figure JPOXMLDOC01-appb-C000031
The fluorene derivative aldehyde represented by the above formula (L) (0.25 g) and cyanoacetic acid (0.04 g) were heated to reflux in 3 ml of toluene / acetonitrile = 1/1 mixed solvent in the presence of 0.1 ml of piperidine for 10 hours. . Thereafter, 100 ml of chloroform was added to the reaction solution, the organic phase was treated with 1N-hydrochloric acid, washed with water and saturated brine, dried over sodium sulfate, and then the solvent was distilled off under reduced pressure to obtain a crude product.
 その後、粗生成物をカラムクロマトグラフィー(溶媒:クロロホルム→クロロホルム/エタノール=10/1)により精製し、式(M)で表される色素化合物0.21gを得た。収率は80%であった。 Thereafter, the crude product was purified by column chromatography (solvent: chloroform → chloroform / ethanol = 10/1) to obtain 0.21 g of a dye compound represented by the formula (M). The yield was 80%.
Figure JPOXMLDOC01-appb-C000032
〔実施例4〕
 式(A)で表される2-ブロモフルオレン(シグマアルドリッチ社製)5.00g、式(N)で表される1-ブロモオクタン13.79g、またテトラブチルアンモニウムブロミド0.66gのジメチルスルホキシド溶液に、50wt%水酸化ナトリウム水溶液10mlを加え、70℃で12時間攪拌し反応させた。反応後、酢酸エチルを加え、有機相を2N塩酸、水、及び飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した後、溶媒を減圧下で留去し粗生成物を得た。その粗生成物をカラムクロマトグラフィー(溶媒:ヘキサン)により精製し、式(O)で表される9,9-ジ-n-オクチルフルオレン誘導体7.09gを得た。収率は70%であった。
Figure JPOXMLDOC01-appb-C000032
Example 4
A dimethyl sulfoxide solution of 5.00 g of 2-bromofluorene represented by formula (A) (manufactured by Sigma-Aldrich), 13.79 g of 1-bromooctane represented by formula (N), and 0.66 g of tetrabutylammonium bromide Was added with 10 ml of 50 wt% sodium hydroxide aqueous solution and stirred at 70 ° C. for 12 hours for reaction. After the reaction, ethyl acetate was added, and the organic phase was washed with 2N hydrochloric acid, water and saturated brine, dried over magnesium sulfate, and then the solvent was distilled off under reduced pressure to obtain a crude product. The crude product was purified by column chromatography (solvent: hexane) to obtain 7.09 g of a 9,9-di-n-octylfluorene derivative represented by the formula (O). The yield was 70%.
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
 式(O)で表される9,9-ジ-n-オクチルフルオレン誘導体4,20gと式(B)で表される3-ヘキシルチオフェン-5-ボロン酸エステル3.76gを混合し、ビス(トリフェニルホスフィン)パラジウム(II)ジクロリド0.31gおよび25%炭酸ナトリウム水溶液12.00gの存在下に、ジメトキシエタン中で、8時間加熱還流を行った。
Figure JPOXMLDOC01-appb-C000034
4,9Og of 9,9-di-n-octylfluorene derivative represented by the formula (O) and 3.76 g of 3-hexylthiophene-5-boronic acid ester represented by the formula (B) were mixed, and bis ( The mixture was heated to reflux for 8 hours in dimethoxyethane in the presence of 0.31 g of triphenylphosphine) palladium (II) dichloride and 12.00 g of 25% aqueous sodium carbonate solution.
 室温に冷却後、酢酸エチルで希釈し、有機相を水および飽和食塩水で洗浄し、硫酸マグネシウムで乾燥後、溶媒を減圧下で留去し粗生成物を得た。
 得られた粗組成物をカラムクロマトグラフィー(溶媒:ヘキサン/酢酸エチル=50:1)で精製し、式(P)で表される9,9-ジ-n-オクチルフルオレン誘導体3.89gを得た。収率は78%である。
After cooling to room temperature, the mixture was diluted with ethyl acetate, the organic phase was washed with water and saturated brine, dried over magnesium sulfate, and the solvent was evaporated under reduced pressure to give a crude product.
The obtained crude composition was purified by column chromatography (solvent: hexane / ethyl acetate = 50: 1) to obtain 3.89 g of a 9,9-di-n-octylfluorene derivative represented by the formula (P). It was. The yield is 78%.
Figure JPOXMLDOC01-appb-C000035
 式(P)で表される9,9-ジ-n-オクチルフルオレン誘導体3.80gのテトラフラン溶液30mlを-20℃に冷却し、そこへN-ブロモスクシンイミド1.21gとテトラヒドロフラン12mlのスラリー溶液を加え、1時間攪拌した。
Figure JPOXMLDOC01-appb-C000035
30 ml of a tetrafuran solution of 3.80 g of the 9,9-di-n-octylfluorene derivative represented by the formula (P) is cooled to −20 ° C., and a slurry solution of 1.21 g of N-bromosuccinimide and 12 ml of tetrahydrofuran is added thereto. Was added and stirred for 1 hour.
 攪拌後、溶媒を減圧下で留去し、酢酸エチルで溶解した。有機相を10%炭酸ナトリウム、水および飽和食塩水で洗浄し、硫酸マグネシウムで乾燥後、溶媒を減圧下で留去して粗生成物を得た。 After stirring, the solvent was distilled off under reduced pressure and dissolved with ethyl acetate. The organic phase was washed with 10% sodium carbonate, water and saturated brine, dried over magnesium sulfate, and then the solvent was distilled off under reduced pressure to obtain a crude product.
 得られた粗生成物から再結晶(溶媒:ヘキサン/酢酸エチル=25/1)により、式(Q)で表される粗生成物2.91gを得た。収率は67%であった。 2.91 g of the crude product represented by the formula (Q) was obtained by recrystallization (solvent: hexane / ethyl acetate = 25/1) from the obtained crude product. The yield was 67%.
Figure JPOXMLDOC01-appb-C000036
 実施例1で採用したスズキカップリング反応および式(Q)で表される臭素化物を得る反応を繰り返し行うことにより、式(R)で表されるヘキシル置換チオフェンが三個連なった9,9-ジ-オクチルフルオレン誘導体、式(S)で表されるヘキシル置換チオフェンが四個連なった9,9-ジ-オクチルフルオレン誘導体、式(T)で表されるヘキシル置換チオフェンが五個連なった9,9-ジ-オクチルフルオレン誘導体を合成することができた。
Figure JPOXMLDOC01-appb-C000036
By repeating the Suzuki coupling reaction employed in Example 1 and the reaction for obtaining the bromide represented by the formula (Q), three hexyl-substituted thiophenes represented by the formula (R) were linked in a 9,9- Di-octylfluorene derivative, 9,9-di-octylfluorene derivative, four hexyl-substituted thiophene derivatives represented by formula (S), five hexyl-substituted thiophene derivatives, represented by formula (T) 9, A 9-di-octylfluorene derivative could be synthesized.
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
 塩化ホスホリン0.08mlを5℃に冷却し、DMFを0.16ml滴下し、1時間攪拌し、ビルスマイヤー試薬を調製した。
Figure JPOXMLDOC01-appb-C000039
0.08 ml of phospholine chloride was cooled to 5 ° C., 0.16 ml of DMF was added dropwise and stirred for 1 hour to prepare Vilsmeier reagent.
 式(R)で表される9,9-ジ-n-オクチルフルオレン誘導体0.40gをDMF4mlで溶解し、上記で調製したビルスマイヤー試薬を室温で滴下し、70℃で1時間攪拌した。
 その後、10%酢酸ナトリウム水溶液を50g加えて中和し、酢酸エチルで抽出した。
0.49 g of the 9,9-di-n-octylfluorene derivative represented by the formula (R) was dissolved in 4 ml of DMF, and the Vilsmeier reagent prepared above was added dropwise at room temperature, followed by stirring at 70 ° C. for 1 hour.
Thereafter, 50 g of 10% aqueous sodium acetate solution was added for neutralization, and the mixture was extracted with ethyl acetate.
 有機相を水および飽和食塩水で洗浄し、硫酸マグネシウムで乾燥後、溶媒を減圧下に留去して粗生成物を得た。
 得られた粗生成物をカラムクロマトグラフィー(溶媒:ヘキサン/酢酸エチル=4/1)で精製し、式(U)で得られる9,9-n-ジ-オクチルフルオレン誘導体アルデヒド0.28gを得た。収率は67%であった。
The organic phase was washed with water and saturated brine, dried over magnesium sulfate, and then the solvent was distilled off under reduced pressure to obtain a crude product.
The resulting crude product was purified by column chromatography (solvent: hexane / ethyl acetate = 4/1) to obtain 0.28 g of the 9,9-n-di-octylfluorene derivative aldehyde obtained by the formula (U). It was. The yield was 67%.
Figure JPOXMLDOC01-appb-C000040
 上記式(U)で表される9,9-n-ジ-オクチルフルオレン誘導体アルデヒド0.27gとシアノ酢酸0.05gをピペリジン0.1mlの存在下、トルエン/アセトニトリル=1/1混合溶媒4ml中で8時間加熱還流を行った。
Figure JPOXMLDOC01-appb-C000040
In the presence of 0.1 ml of piperidine, 0.27 g of the 9,9-n-di-octylfluorene derivative aldehyde represented by the above formula (U) and 0.05 g of cyanoacetic acid in 4 ml of toluene / acetonitrile = 1/1 mixed solvent. And refluxed for 8 hours.
 その後、反応液にクロロホルム50mlを加え有機相を1N-塩酸で処理し、水および飽和食塩水で洗浄し、硫酸マグネシウムで乾燥後、溶媒を減圧下で留去し粗生成物を得た。
 得られた粗生成物をカラムクロマトグラフィー(溶媒;クロロホルム→クロロホルム/エタノール=10:1)により精製し、式(V)で表される色素化合物0.23gを得た。収率は78%であった。
Thereafter, 50 ml of chloroform was added to the reaction solution, and the organic phase was treated with 1N-hydrochloric acid, washed with water and saturated brine, dried over magnesium sulfate, and then the solvent was distilled off under reduced pressure to obtain a crude product.
The obtained crude product was purified by column chromatography (solvent: chloroform → chloroform / ethanol = 10: 1) to obtain 0.23 g of a dye compound represented by the formula (V). The yield was 78%.
Figure JPOXMLDOC01-appb-C000041
〔実施例5〕
 塩化ホスホリル0.09mlを5℃に冷却し、DMFを0.18ml滴下し、1時間攪拌してビルスマイヤー試薬を調製した。
Figure JPOXMLDOC01-appb-C000041
Example 5
0.09 ml of phosphoryl chloride was cooled to 5 ° C., 0.18 ml of DMF was added dropwise and stirred for 1 hour to prepare Vilsmeier reagent.
 式(S)で表される9,9-ジ-n-オクチルフルオレン誘導体0.52gをDMF5mlで溶解し、そこへ上記で調製したビルスマイヤー試薬を室温で滴下して、70℃で1時間攪拌した。 Dissolve 0.52 g of the 9,9-di-n-octylfluorene derivative represented by the formula (S) with 5 ml of DMF, drop the Vilsmeier reagent prepared above at room temperature, and stir at 70 ° C. for 1 hour. did.
 その後、10%酢酸ナトリウム水溶液を50g加えて中和し、酢酸エチルで抽出をした。
 有機相を水および飽和食塩水で洗浄し、硫酸マグネシウムで乾燥後、溶媒を減圧下で留去し、粗生成物を得た。
Thereafter, 50 g of 10% aqueous sodium acetate solution was added for neutralization, and the mixture was extracted with ethyl acetate.
The organic phase was washed with water and saturated brine, dried over magnesium sulfate, and then the solvent was distilled off under reduced pressure to obtain a crude product.
 得られた粗生成物をカラムクロマトグラフィー(溶媒;ヘキサン/酢酸エチル=4/1)で精製し、式(W)で表される9,9-ジ-n-オクチルフルオレン誘導体アルデヒドを0,35g得た。収率は65%であった。 The resulting crude product was purified by column chromatography (solvent: hexane / ethyl acetate = 4/1), and 0.35 g of a 9,9-di-n-octylfluorene derivative aldehyde represented by the formula (W) was obtained. Obtained. The yield was 65%.
Figure JPOXMLDOC01-appb-C000042
 式(W)で表される9,9-ジ-n-オクチルフルオレン誘導体アルデヒドを0.34gとシアノ酢酸0.04gをピペリジン0.1mlの存在下、トルエン/アセトニトリル=1/1混合溶媒5ml中で8時間加熱還流を行った。
Figure JPOXMLDOC01-appb-C000042
In the presence of 0.34 g of 9,9-di-n-octylfluorene derivative aldehyde represented by formula (W) and 0.04 g of cyanoacetic acid in the presence of 0.1 ml of piperidine in 5 ml of toluene / acetonitrile = 1/1 mixed solvent. And refluxed for 8 hours.
 その後、反応液にクロロホルム50mlを加えて、有機相を1N-塩酸で処理し、水および飽和食塩水で洗浄し、硫酸ナトリウムで乾燥後、溶媒を減圧下で留去し粗生成物を得た。
 得られた粗生成物をカラムクロマトグラフィー(溶媒:クロロホルム/エタノール=10/1)により精製し、式(X)で表される色素化合物0.23gを得た。収率は81%であった。
Thereafter, 50 ml of chloroform was added to the reaction solution, and the organic phase was treated with 1N-hydrochloric acid, washed with water and saturated brine, dried over sodium sulfate, and then the solvent was distilled off under reduced pressure to obtain a crude product. .
The obtained crude product was purified by column chromatography (solvent: chloroform / ethanol = 10/1) to obtain 0.23 g of a dye compound represented by the formula (X). The yield was 81%.
Figure JPOXMLDOC01-appb-C000043
〔実施例6〕
 塩酸スルホリル0.06mlを5℃に冷却し、DMFを0.12m;滴下し、1時間攪拌し、ビルスマイヤー試薬を調製した。
Figure JPOXMLDOC01-appb-C000043
Example 6
0.06 ml of sulforyl hydrochloride was cooled to 5 ° C., 0.12 m of DMF was added dropwise and stirred for 1 hour to prepare Vilsmeier reagent.
 式(T)で示される9,9-ジ-n-オクチルフルオレン誘導体0.39gをDMF5mlに溶解し、そこに上記で調製したビルスマイヤー試薬を室温で滴下し、70℃で1時間攪拌した。
 その後10%酢酸ナトリウム水溶液50gを加えて中和し、酢酸エチルで抽出を行った。
0.39 g of the 9,9-di-n-octylfluorene derivative represented by the formula (T) was dissolved in 5 ml of DMF, and the Vilsmeier reagent prepared above was added dropwise thereto at room temperature, followed by stirring at 70 ° C. for 1 hour.
Thereafter, 50 g of a 10% aqueous sodium acetate solution was added for neutralization, and extraction was performed with ethyl acetate.
 有機相を水および飽和食塩水で洗浄し、硫酸マグネシウムで乾燥後、溶媒を減圧下で留去し粗生成物を得た。
 得られた粗生成物をカラムクロマトグラフィー(溶媒;ヘキサン/酢酸エチル=4/1)で精製し、式(Y)で表される9,9-ジ-n-オクチルフルオレン誘導体アルデヒド0.29gを得た。収率は72%であった。
The organic phase was washed with water and saturated brine, dried over magnesium sulfate, and then the solvent was distilled off under reduced pressure to obtain a crude product.
The obtained crude product was purified by column chromatography (solvent: hexane / ethyl acetate = 4/1), and 0.29 g of 9,9-di-n-octylfluorene derivative aldehyde represented by the formula (Y) was obtained. Obtained. The yield was 72%.
Figure JPOXMLDOC01-appb-C000044
 式(Y)で表される9,9-ジ-n-オクチルフルオレン誘導体アルデヒド0.28gとシアノ酢酸0.04gを、ピペリジン0.1mlの存在下、トルエン/アセトニトリル=1/1混合溶媒5ml中で8時間加熱還流を行った。
Figure JPOXMLDOC01-appb-C000044
In the presence of 0.1 ml of piperidine, 0.28 g of the 9,9-di-n-octylfluorene derivative aldehyde represented by the formula (Y) and 0.04 g of cyanoacetic acid in 5 ml of toluene / acetonitrile = 1/1 mixed solvent. And refluxed for 8 hours.
 その後、反応液にクロロホルム50mlを加え、有機相を1N-塩酸で処理し、水および飽和食塩水で洗浄し、硫酸ナトリウムで乾燥後、溶媒を減圧下で留去して粗生成物を得た。
 得られた粗生成物をカラムクロマトグラフィー(溶媒;クロロホルム→クロロホルム/エタノール=10/1)により精製し、式(Z)で表される色素化合物0.25gを得た。収率は85%であった。
Thereafter, 50 ml of chloroform was added to the reaction solution, the organic phase was treated with 1N-hydrochloric acid, washed with water and saturated brine, dried over sodium sulfate, and the solvent was distilled off under reduced pressure to obtain a crude product. .
The obtained crude product was purified by column chromatography (solvent: chloroform → chloroform / ethanol = 10/1) to obtain 0.25 g of a dye compound represented by the formula (Z). The yield was 85%.
Figure JPOXMLDOC01-appb-C000045
〔実施例7〕
 (液体電解質を用いた色素増感型太陽電池の作成)
 (1)<光電極の作成>
 透明電極基材として、片面にFTO電極被膜が形成されたFTOガラスを用いて、この透明電極のFTO面に市販の酸化チタンペースト(Solaronix社製)をスクリーン印刷法により塗布した。この酸化チタンの平均粒子径は13μmである。
 これを空気中で450℃で焼成することにより、酸化チタンの多孔膜層を作成し、これを四塩化チタン処理することにより酸化チタン光電極を作成した。
Figure JPOXMLDOC01-appb-C000045
Example 7
(Creation of dye-sensitized solar cell using liquid electrolyte)
(1) <Creation of photoelectrode>
Using a FTO glass with an FTO electrode coating formed on one side as a transparent electrode substrate, a commercially available titanium oxide paste (manufactured by Solaronix) was applied to the FTO surface of this transparent electrode by a screen printing method. The average particle diameter of this titanium oxide is 13 μm.
This was fired in air at 450 ° C. to prepare a titanium oxide porous film layer, and this was treated with titanium tetrachloride to prepare a titanium oxide photoelectrode.
 (2)<色素の吸着>
 上記のようにして調製した色素化合物を濃度が0.1~0.5mMになるようにトルエンに溶解させ、この色素溶液に上記で作成した酸化チタン光電極を室温で、18時間浸漬させて色素を酸化チタンに吸着させた。
 色素を吸着させた後、光電極をトルエンで充分に洗浄し室温で乾燥して色素吸着酸化チタン光電極を得た。
(2) <Dye adsorption>
The dye compound prepared as described above is dissolved in toluene so as to have a concentration of 0.1 to 0.5 mM, and the titanium oxide photoelectrode prepared above is immersed in this dye solution for 18 hours at room temperature. Was adsorbed on titanium oxide.
After adsorbing the dye, the photoelectrode was thoroughly washed with toluene and dried at room temperature to obtain a dye-adsorbed titanium oxide photoelectrode.
 (3)<電解液の作成>
 ヨウ化リチウム/ヨウ素/t-ブチルピリジン/ヨウ化1,2-ジメチル-3-プロピルイミダゾリウムをそれぞれ、0.1M/0.05M/0.5M/0.6Mの濃度になるようにアセトニトリルに溶解させて電解液を調製した。
(3) <Creation of electrolyte solution>
Lithium iodide / iodine / t-butylpyridine / iodine 1,2-dimethyl-3-propylimidazolium in acetonitrile to a concentration of 0.1M / 0.05M / 0.5M / 0.6M respectively. The electrolyte was prepared by dissolving.
 (4)<液体電解質を用いた色素増感型太陽電池の作成>
 前記(1)および(2)で作成した色素吸着酸化チタン光電極とFTOガラスにスパッタ法により作成したPt電極を、ポリエチレンフィルムスペーサーを介して重ね併せて、両者の間隙に電解液を注入し、クリップで止め液体電解質を用いた色素増感型太陽電池を得た。
(4) <Preparation of dye-sensitized solar cell using liquid electrolyte>
The dye-adsorbed titanium oxide photoelectrode prepared in (1) and (2) above and the Pt electrode prepared by sputtering on the FTO glass are overlapped via a polyethylene film spacer, and an electrolyte is injected into the gap between the two, A dye-sensitized solar cell using a liquid electrolyte was obtained by stopping with a clip.
 使用した色素による液体電解質を用いた色素増感型太陽電池の性能を表1に示す。 Table 1 shows the performance of the dye-sensitized solar cell using a liquid electrolyte depending on the dye used.
Figure JPOXMLDOC01-appb-T000046
なお表中、Jsc、Voc、FFおよびEffは、それぞれ短絡電流、開放電圧、フィルファクターおよび変換効率を表す。
また、上記表において示した色素MK-2は下記の構造を有する化合物である。
Figure JPOXMLDOC01-appb-T000046
In the table, Jsc, Voc, FF, and Eff represent a short-circuit current, an open-circuit voltage, a fill factor, and conversion efficiency, respectively.
In addition, the dye MK-2 shown in the above table is a compound having the following structure.
Figure JPOXMLDOC01-appb-C000047
〔実施例8〕
 (固体電解質を用いた色素増感型太陽電池の作成)
 (1)<光電極の作成>
 透明電極基材として、片面にFTO電極被膜が形成されたFTOガラスを用いて、この透明電極のFTO面にチタンアルコキシドのIPA溶液を塗布、120℃に加熱し短絡防止層を作成した。その上に、市販の酸化チタンペースト(Solaronix社製)をスクリーン印刷法により塗布した。この酸化チタンの平均粒子型は37μmである。
 これを空気中で450℃で焼成することにより、酸化チタンの多孔膜層を作成し、これを四塩化チタン処理することにより酸化チタン光電極を作成した。
Figure JPOXMLDOC01-appb-C000047
Example 8
(Preparation of dye-sensitized solar cell using solid electrolyte)
(1) <Creation of photoelectrode>
Using FTO glass with an FTO electrode coating formed on one side as a transparent electrode substrate, an IPA solution of titanium alkoxide was applied to the FTO surface of this transparent electrode and heated to 120 ° C. to create a short-circuit prevention layer. On top of that, a commercially available titanium oxide paste (manufactured by Solaronix) was applied by screen printing. The average particle type of this titanium oxide is 37 μm.
This was fired in air at 450 ° C. to prepare a titanium oxide porous film layer, and this was treated with titanium tetrachloride to prepare a titanium oxide photoelectrode.
 (2)<色素の吸着>
 上記のようにして調製した色素を濃度が0.1~0.5mMになるようにトルエンに溶解させ、この色素溶液に上記で作成した酸化チタン光電極を室温で、18時間浸漬させて色素を酸化チタンに吸着させた。
 色素を吸着させた後、光電極をトルエンで充分に洗浄し室温で乾燥して色素吸着酸化チタン光電極を得た。
(2) <Dye adsorption>
The dye prepared as described above is dissolved in toluene to a concentration of 0.1 to 0.5 mM, and the titanium oxide photoelectrode prepared above is immersed in this dye solution for 18 hours at room temperature. Adsorbed on titanium oxide.
After adsorbing the dye, the photoelectrode was thoroughly washed with toluene and dried at room temperature to obtain a dye-adsorbed titanium oxide photoelectrode.
 (3)<固体電解質層の作成>
 ポリ(3-ヘキシルチオフェン)(P3HT、Rieke Metals.Inc. Mw=50000)をo-ジクロロベンゼンに溶解し、1 wt%溶液とした。この溶液を用いて、前記の(1)~(2)で作成した色素吸着酸化チタン光電極上に、スピンコート法によりP3HT膜の電解質層を形成した。
(3) <Creation of solid electrolyte layer>
Poly (3-hexylthiophene) (P3HT, Rieke Metals. Inc. Mw = 50000) was dissolved in o-dichlorobenzene to obtain a 1 wt% solution. Using this solution, an electrolyte layer of a P3HT film was formed on the dye-adsorbed titanium oxide photoelectrode prepared in the above (1) and (2) by spin coating.
 (4)<Pt電極の形成、及び固体電解質を用いた色素増感型太陽電池の作成>
 前記(3)で作成した素子のP3HT上にPtをスパッタしPt電極を形成し、固体電解質を用いた色素増感型太陽電池を作成した。
 使用した色素による固体電解質を用いた色素増感型太陽電池の性能を表2に示す。
(4) <Formation of Pt electrode and creation of dye-sensitized solar cell using solid electrolyte>
Pt was sputtered on P3HT of the device prepared in the above (3) to form a Pt electrode, and a dye-sensitized solar cell using a solid electrolyte was prepared.
Table 2 shows the performance of the dye-sensitized solar cell using the solid electrolyte depending on the dye used.
Figure JPOXMLDOC01-appb-T000048
 なお表中、Jsc、Voc、FFおよびEffは、それぞれ短絡電流、開放電圧、フィルファクターおよび変換効率を表す。
Figure JPOXMLDOC01-appb-T000048
In the table, Jsc, Voc, FF, and Eff represent a short-circuit current, an open-circuit voltage, a fill factor, and conversion efficiency, respectively.
 1・・・透明電極基材(光電極)
 2・・・酸化チタン層
 3・・・色素
 4・・・電解液
 5・・・スペーサー
 6・・・Pt
 7・・・電極基材(対極)
 11・・・透明電極基材(光電極)
 12・・・短絡防止層
 13・・・酸化チタン層
 14・・・色素
 15・・・固体電解層
 16・・・スペーサー
 17・・・Pt
 18・・・電極基材(対極)
1 ... Transparent electrode substrate (photoelectrode)
2 ... Titanium oxide layer 3 ... Dye 4 ... Electrolyte 5 ... Spacer 6 ... Pt
7 ... Electrode substrate (counter electrode)
11 ... Transparent electrode substrate (photoelectrode)
12 ... Short-circuit prevention layer 13 ... Titanium oxide layer 14 ... Dye 15 ... Solid electrolytic layer 16 ... Spacer 17 ... Pt
18 ... Electrode substrate (counter electrode)

Claims (5)

  1.  次式(I)で表わす新規なフルオレン化合物;
    Figure JPOXMLDOC01-appb-C000001
     [但し、上記式(I)において、R1およびR2はそれぞれ独立に水素原子、アルキル基、アリール基およびアルコキシ基よりなる群から選ばれる少なくとも一種類の原子あるいは基を表わし、Xは、次式(1)、(2)および(3)よりなる群から選ばれる少なくとも一種類の基を表わし、nは1~12のいずれかの整数である。
    Figure JPOXMLDOC01-appb-C000002
     (但し、上記式(1)、(2)および(3)において、R3およびR4はそれぞれ独立に水素原子、アルキル基、アリール基およびアルコキシ基よりなる群から選ばれる少なくとも一種類の原子あるいは基を表わす。)]
    A novel fluorene compound represented by the following formula (I):
    Figure JPOXMLDOC01-appb-C000001
    [In the above formula (I), R 1 and R 2 each independently represents at least one atom or group selected from the group consisting of a hydrogen atom, an alkyl group, an aryl group and an alkoxy group; This represents at least one group selected from the group consisting of formulas (1), (2) and (3), and n is an integer from 1 to 12.
    Figure JPOXMLDOC01-appb-C000002
    (In the above formulas (1), (2) and (3), R 3 and R 4 are each independently at least one atom selected from the group consisting of a hydrogen atom, an alkyl group, an aryl group and an alkoxy group, or Represents a group)]
  2.  上記式(I)で表わさせるフルオレン化合物からなることを特徴とする色素増感型太陽電池用色素;
    Figure JPOXMLDOC01-appb-C000003
     [但し、上記式(I)において、R1およびR2はそれぞれ独立に水素原子、アルキル基、アリール基およびアルコキシ基よりなる群から選ばれる少なくとも一種類の原子あるいは基を表わし、Xは、次式(1)、(2)および(3)よりなる群から選ばれる少なくとも一種類の基を表わし、nは1~12のいずれかの整数である。
    Figure JPOXMLDOC01-appb-C000004
     (但し、上記式(1)、(2)および(3)において、R3およびR4はそれぞれ独立に水素原子、アルキル基、アリール基およびアルコキシ基よりなる群から選ばれる少なくとも一種類の原子あるいは基を表わす。)]
    A dye for dye-sensitized solar cells, comprising a fluorene compound represented by the above formula (I);
    Figure JPOXMLDOC01-appb-C000003
    [In the above formula (I), R 1 and R 2 each independently represents at least one atom or group selected from the group consisting of a hydrogen atom, an alkyl group, an aryl group and an alkoxy group; It represents at least one group selected from the group consisting of formulas (1), (2) and (3), and n is an integer from 1 to 12.
    Figure JPOXMLDOC01-appb-C000004
    (In the above formulas (1), (2) and (3), R 3 and R 4 are each independently at least one atom selected from the group consisting of a hydrogen atom, an alkyl group, an aryl group and an alkoxy group, or Represents a group)]
  3.  次式(I)で表わされるフルオレン化合物を金属酸化物粒子に吸着させたフルオレン化合物被覆金属酸化物粒子が金属製又は金属酸化物電極表面に配置された構成を有することを特徴とする色素増感型太陽電池用電極;
    Figure JPOXMLDOC01-appb-C000005
     [但し、上記式(I)において、R1およびR2はそれぞれ独立に水素原子、アルキル基、アリール基およびアルコキシ基よりなる群から選ばれる少なくとも一種類の原子あるいは基を表わし、Xは、次式(1)、(2)および(3)よりなる群から選ばれる少なくとも一種類の基を表わし、nは1~12のいずれかの整数である。
    Figure JPOXMLDOC01-appb-C000006
     (但し、上記式(1)、(2)および(3)において、R3およびR4はそれぞれ独立に水素原子、アルキル基、アリール基およびアルコキシ基よりなる群から選ばれる少なくとも一種類の原子あるいは基を表わす。)]
    Dye sensitization characterized in that the fluorene compound-coated metal oxide particles obtained by adsorbing the fluorene compound represented by the following formula (I) to the metal oxide particles are made of metal or disposed on the surface of the metal oxide electrode Type solar cell electrode;
    Figure JPOXMLDOC01-appb-C000005
    [In the above formula (I), R 1 and R 2 each independently represents at least one atom or group selected from the group consisting of a hydrogen atom, an alkyl group, an aryl group and an alkoxy group; It represents at least one group selected from the group consisting of formulas (1), (2) and (3), and n is an integer from 1 to 12.
    Figure JPOXMLDOC01-appb-C000006
    (In the above formulas (1), (2) and (3), R 3 and R 4 are each independently at least one atom selected from the group consisting of a hydrogen atom, an alkyl group, an aryl group and an alkoxy group, or Represents a group)]
  4.  表面を次式(I)で表わされるフルオレン化合物で被覆されたフルオレン化合物被覆金属酸化物粒子が電極表面に配置された透明電極を一方の電極とし、他方の電極として触媒電極を配置し、該透明電極と触媒電極との間に電解質が挟持されていることを特徴とする色素増感型太陽電池;
    Figure JPOXMLDOC01-appb-C000007
     [但し、上記式(I)において、R1およびR2はそれぞれ独立に水素原子、アルキル基、アリール基およびアルコキシ基よりなる群から選ばれる少なくとも一種類の原子あるいは基を表わし、Xは、次式(1)、(2)および(3)よりなる群から選ばれる少なくとも一種類の基を表わし、nは1~12のいずれかの整数である。
    Figure JPOXMLDOC01-appb-C000008
     (但し、上記式(1)、(2)および(3)において、R3およびR4はそれぞれ独立に水素原子、アルキル基、アリール基およびアルコキシ基よりなる群から選ばれる少なくとも一種類の原子あるいは基を表わす。)]
    The transparent electrode in which the fluorene compound-coated metal oxide particles whose surface is coated with the fluorene compound represented by the following formula (I) is disposed on the electrode surface is used as one electrode, and the catalyst electrode is disposed as the other electrode. A dye-sensitized solar cell, wherein an electrolyte is sandwiched between the electrode and the catalyst electrode;
    Figure JPOXMLDOC01-appb-C000007
    [In the above formula (I), R 1 and R 2 each independently represents at least one atom or group selected from the group consisting of a hydrogen atom, an alkyl group, an aryl group and an alkoxy group; It represents at least one group selected from the group consisting of formulas (1), (2) and (3), and n is an integer from 1 to 12.
    Figure JPOXMLDOC01-appb-C000008
    (In the above formulas (1), (2) and (3), R 3 and R 4 are each independently at least one atom selected from the group consisting of a hydrogen atom, an alkyl group, an aryl group and an alkoxy group, or Represents a group)]
  5.  前記電解質が固体電解質であることを特徴とする請求項第4項記載の色素増感型太陽電池。 The dye-sensitized solar cell according to claim 4, wherein the electrolyte is a solid electrolyte.
PCT/JP2011/069317 2010-08-31 2011-08-26 Novel fluorene compound, dye for dye-sensitized solar cell using the compound, electrode containing dye for dye-sensitized solar cell, and dye-sensitized solar cell WO2012029659A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010194307 2010-08-31
JP2010-194307 2010-08-31

Publications (1)

Publication Number Publication Date
WO2012029659A1 true WO2012029659A1 (en) 2012-03-08

Family

ID=45772749

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/069317 WO2012029659A1 (en) 2010-08-31 2011-08-26 Novel fluorene compound, dye for dye-sensitized solar cell using the compound, electrode containing dye for dye-sensitized solar cell, and dye-sensitized solar cell

Country Status (2)

Country Link
TW (1) TW201217320A (en)
WO (1) WO2012029659A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013042699A1 (en) * 2011-09-20 2013-03-28 日本電気株式会社 Spirobifluorene compound, colorant for photoelectric transducer, and photoelectric transducer using same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006004736A (en) * 2004-06-17 2006-01-05 Sumitomo Chemical Co Ltd Photoelectric transducer and colorant for photoelectric transducer
WO2007119525A1 (en) * 2006-03-31 2007-10-25 National Institute Of Advanced Industrial Science And Technology Organic compound, semiconductor thin film electrode using the same, photoelectric transducer, and photoelectrochemical solar cell
JP2009266633A (en) * 2008-04-25 2009-11-12 Konica Minolta Business Technologies Inc Photoelectric conversion element and solar battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006004736A (en) * 2004-06-17 2006-01-05 Sumitomo Chemical Co Ltd Photoelectric transducer and colorant for photoelectric transducer
WO2007119525A1 (en) * 2006-03-31 2007-10-25 National Institute Of Advanced Industrial Science And Technology Organic compound, semiconductor thin film electrode using the same, photoelectric transducer, and photoelectrochemical solar cell
JP2009266633A (en) * 2008-04-25 2009-11-12 Konica Minolta Business Technologies Inc Photoelectric conversion element and solar battery

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MIN-WOO LEE ET AL., BULL. KOREAN CHEM. SOC., vol. 30, no. 10, 2009, pages 2269 - 2279 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013042699A1 (en) * 2011-09-20 2013-03-28 日本電気株式会社 Spirobifluorene compound, colorant for photoelectric transducer, and photoelectric transducer using same

Also Published As

Publication number Publication date
TW201217320A (en) 2012-05-01

Similar Documents

Publication Publication Date Title
Shen et al. Efficient triphenylamine dyes for solar cells: effects of alkyl-substituents and π-conjugated thiophene unit
Sirohi et al. Novel di-anchoring dye for DSSC by bridging of two mono anchoring dye molecules: a conformational approach to reduce aggregation
Yang et al. Efficient and stable organic DSSC sensitizers bearing quinacridone and furan moieties as a planar π-spacer
Saito et al. Photo-sensitizing ruthenium complexes for solid state dye solar cells in combination with conducting polymers as hole conductors
Shen et al. Efficient triphenylamine-based dyes featuring dual-role carbazole, fluorene and spirobifluorene moieties
Shen et al. Effects of aromatic π-conjugated bridges on optical and photovoltaic properties of N, N-diphenylhydrazone-based metal-free organic dyes
Dai et al. Synthesis of phenothiazine-based di-anchoring dyes containing fluorene linker and their photovoltaic performance
JP5623396B2 (en) Novel organic dye compound and method for producing the same
Qian et al. Triazatruxene-based organic dyes containing a rhodanine-3-acetic acid acceptor for dye-sensitized solar cells
Cheng et al. Organic dyes containing indolodithienopyrrole unit for dye-sensitized solar cells
Farre et al. Synthesis and properties of new benzothiadiazole-based push-pull dyes for p-type dye sensitized solar cells
Zhang et al. Anti-recombination organic dyes containing dendritic triphenylamine moieties for high open-circuit voltage of DSSCs
Qian et al. Indeno [1, 2-b] indole-based organic dyes with different acceptor groups for dye-sensitized solar cells
Ji et al. Quinoxaline-based organic dyes for efficient dye-sensitized solar cells: Effect of different electron-withdrawing auxiliary acceptors on the solar cell performance
Zang et al. Impact of the position isomer of the linkage in the double D–A branch-based organic dyes on the photovoltaic performance
Raju et al. Effect of mono-and di-anchoring dyes based on o, m-difluoro substituted phenylene spacer in liquid and solid state dye sensitized solar cells
Chiu et al. A new series of azobenzene-bridged metal-free organic dyes and application on DSSC
Yu et al. Influence of different electron acceptors in organic sensitizers on the performance of dye-sensitized solar cells
Baheti et al. Synthesis, optical, electrochemical and photovoltaic properties of organic dyes containing trifluorenylamine donors
Long et al. Effect of conjugated side groups on the photovoltaic performances of triphenylamine-based dyes sensitized solar cells
KR20100136931A (en) Novel organic dye and preparation thereof
Raju et al. Twisted donor substituted simple thiophene dyes retard the dye aggregation and charge recombination in dye-sensitized solar cells
Wei et al. Synthesis and properties of organic sensitizers bearing asymmetric double donor-π-acceptor chains for dye-sensitized solar cells
Tamilavan et al. Synthesis of triphenylamine-based thiophene-(N-aryl) pyrrole-thiophene dyes for dye-sensitized solar cell applications
Xiao et al. Effect of substitution position on photoelectronic properties of indolo [3, 2-b] carbazole-based metal-free organic dyes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11821676

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11821676

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP