WO2012028755A1 - Multifocal ophthalmic lens and method for obtaining same - Google Patents

Multifocal ophthalmic lens and method for obtaining same Download PDF

Info

Publication number
WO2012028755A1
WO2012028755A1 PCT/ES2011/070559 ES2011070559W WO2012028755A1 WO 2012028755 A1 WO2012028755 A1 WO 2012028755A1 ES 2011070559 W ES2011070559 W ES 2011070559W WO 2012028755 A1 WO2012028755 A1 WO 2012028755A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
function
refractive
ophthalmic lens
aperiodic
Prior art date
Application number
PCT/ES2011/070559
Other languages
Spanish (es)
French (fr)
Inventor
Walter Daniel Furlan
Genaro Saavedra Tortosa
Amparo PONS MARTÍ
Juan Antonio Monsoriu Serra
Arnau Calatayud Calatayud
Laura REMÓN MARTÍN
Fernando GIMÉNEZ PALOMARES
Juan Luis Rojas Salegui
Eva Larra Mateos
Pedro José SALAZAR SALEGUI
Original Assignee
Universitat De Valencia
Universidad Politecnica De Valencia
Ajl Opthalmic, S.A.
ANDRÉS BOU, Pedro
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universitat De Valencia, Universidad Politecnica De Valencia, Ajl Opthalmic, S.A., ANDRÉS BOU, Pedro filed Critical Universitat De Valencia
Publication of WO2012028755A1 publication Critical patent/WO2012028755A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/04Contact lenses for the eyes
    • G02C7/041Contact lenses for the eyes bifocal; multifocal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
    • A61F2/16Intraocular lenses
    • A61F2/1613Intraocular lenses having special lens configurations, e.g. multipart lenses; having particular optical properties, e.g. pseudo-accommodative lenses, lenses having aberration corrections, diffractive lenses, lenses for variably absorbing electromagnetic radiation, lenses having variable focus
    • A61F2/1616Pseudo-accommodative, e.g. multifocal or enabling monovision
    • A61F2/1618Multifocal lenses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
    • A61F2/16Intraocular lenses
    • A61F2/1613Intraocular lenses having special lens configurations, e.g. multipart lenses; having particular optical properties, e.g. pseudo-accommodative lenses, lenses having aberration corrections, diffractive lenses, lenses for variably absorbing electromagnetic radiation, lenses having variable focus
    • A61F2/1654Diffractive lenses
    • A61F2/1656Fresnel lenses, prisms or plates
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C2202/00Generic optical aspects applicable to one or more of the subgroups of G02C7/00
    • G02C2202/20Diffractive and Fresnel lenses or lens portions
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C2202/00Generic optical aspects applicable to one or more of the subgroups of G02C7/00
    • G02C2202/22Correction of higher order and chromatic aberrations, wave front measurement and calculation

Definitions

  • the present invention applies to multifocal lenses that can be used as an intraocular lens or contact lens.
  • the invention relates to a lens with less chromatic aberration and greater depth of field than prior art lenses.
  • Multifocal ophthalmic lenses may be in the form of contact lenses, intraocular lenses or glasses.
  • the principle on which intraocular and contact multifocal lenses are based is the brain's natural ability to adapt to far or near vision by choosing between the images produced by the lens. When the visual system simultaneously receives two images on the retina, it selects the sharpest of the two, and deletes the other.
  • multifocal intraocular lens implants are becoming more frequent, with which optimal distance and near vision vision are sought at the same time. It is thus possible to avoid blurring in close distances that occurs with monofocal lenses.
  • multifocal designs try to avoid the presence of halos associated with chromatic aberration.
  • refractive multifocal intraocular lenses use a multizonal method, that is, two powers are defined that are incorporated within rings or circular refractive zones with different radii of curvature. These types of lenses are pupil-dependent since the size of the pupil limits the number of useful areas of the lens and consequently its response within the visual system.
  • Diffractive multifocal lenses use the optical principles of diffraction combined with those of refraction to generate two independent foci.
  • the bifocal effect is achieved by inducing the simultaneous formation of a distant focus (refractive effect) and a close one obtained by carving on one of its faces a Fresnel zonal plate diffractive lens "blazé" or "kinoform".
  • Fig. 1 Such an element is shown in Fig. 1, where it can be seen that it is a structure formed by circular rings with a pitch that increases proportionally to the radius r, such that it is periodic in A 2 .
  • the resulting diffractive multifocal lens has a characteristic "sawtooth" profile on one of its faces that follows the distribution of the zones (Fig. 1) of the zone plate of Fresnel With monochromatic illumination, a "blazé" zonal plate has a single focus, that is, it has a diffraction efficiency of 100% when working with the wavelength for which it has been designed.
  • the saw teeth of these lenses are difficult to produce using conventional turning techniques and applied to contact lenses would be uncomfortable for the user, which is why this application does not exist in the market.
  • An example of a lens that attempts to alleviate these problems can be found in US Patent 6536899 B1.
  • This patent describes a multifocal hybrid lens (diffractive-refractive) that is constituted by a set of annular zones of the same area, each divided into at least two sub-zones, so that the profile varies continuously as it passes from any Subzone to the adjacent.
  • This periodic structure in the square radial coordinate has at least two foci, whose number and intensity depends on the subdivision made, but on which only one of them is free of chromatic aberrations.
  • the object of the invention is to improve the depth of field and decrease the chromatic aberration of a multifocal ophthalmic lens in all foci.
  • a diffractive-refractive hybrid lens obtained from a refractive base lens, in which its surface is modified by a predetermined function.
  • This function G s (u) is an aperiodic step function, ordered by an iterative procedure, which is expressed as:
  • G can be any of the functions of the group Cantor, Thue-Morse, Paper Folding, Period-Doubling, Silver Mean, Bronze Mean, Copper Mean, Nickel Mean and Rudin-Shapiro.
  • the base refractive lens can be monofocal, toric and / or aspherical.
  • Figure 1 .- is a representation of a blazé diffractive lens with Fresnel zones according to the state of the art.
  • Figure 2.- is a representation of the Cantor function used as an example of an aperiodic function to generate the surface of the lens of the invention.
  • Figure 3.- is a graph that represents the profile of the lens of the invention according to the Cantor function.
  • Figure 4 shows a comparison between the foci in a refractive monofocal lens and the foci of the lens object of the invention based on the Cantor function.
  • Figure 5.- is a representation of the Thue-Morse function used as an example of an aperiodic function to generate the surface of the lens of the invention.
  • Figure 6 shows a comparison between the foci in a refractive monofocal lens and the foci of the lens object of the invention based on the Thue-Morse function.
  • the lens object of the invention is designed for use as an intraocular lens or as a contact lens since its surface is not serrated. It is a multifocal lens and therefore adapted for simultaneous correction of both the refractive defect associated with the eye in which it is placed (implanted), as well as its presbyopia.
  • the lens is generated on the basis of a refractive lens in which the thickness of one of the lens faces is increased using a function constructed from an aperiodic sequence but ordered by an iterative procedure.
  • the function that defines the thickness of the lens is defined as:
  • G s ⁇ ü is monotonously increasing in the N segments arranged aperiodic and constant between these segments.
  • the lens thus generated behaves like a diffractive-refractive hybrid lens in which annular zones alternate with two different radii of curvature that give rise to the main foci of the lens.
  • the diffraction produced by the different aperiodic distributed rings provides the internal structure of each of these foci and depends on the aperiodic function chosen. In a preferential example, it starts with the Cantor function as shown in Fig. 2.
  • This function is generated from the aperiodic sequence ordered by the Cantor fractal that can be constructed by the iterative procedure. Starting from two elements A and B, the sequence ⁇ ABA ⁇ is constructed first and then S times A is replaced by ABA and B by BBB, so the following sequences would be ⁇ ABABBBABA ⁇ ,
  • the profile of the lens face that gives rise to the multifocality is shown in Fig. 3 as the upper curve.
  • the stepped curve shows the difference (increased by a factor of 10) between the designed surface (upper curve) and the base refractive surface (lower curve) or lens starting surface, in this case monofocal, that is, it directly represents G s (or).
  • the aperiodic function takes a constant value the two surfaces share the same radii of curvature and therefore the same power, which would correspond to the power from afar.
  • the designed surface has a smaller radius of curvature so that the lens will have greater power (near power).
  • the lenses generated with a function based on an aperiodic sequence but ordered by an iterative procedure are multifocal and have several main foci surrounded by multiple secondary foci. These secondary foci appear as a result of the interferences between the different areas of the lens and being axially distributed in the vicinity of each main focus together provide a composite focus with a greater depth of field.
  • Fig. 4a shows the result that is obtained for the monofocal lens refractive starting in air.
  • the refractive index of the lens is 1,493.
  • each main focus of the lens object of the invention exhibits a greater axial extension thanks to the presence of the secondary foci, resulting in a partial overlap between them for the different wavelengths. That is, the focus for the red and the focus for the blue overlap in certain axial positions next to the foci of the intermediate wavelengths providing a quasi "white” focus and consequently with a smaller chromatic aberration.
  • the Thue-Morse function is taken as a G function.
  • the aperiodic function of Thue-Morse is defined as a monotonously increasing function in segments' A 'while takes a constant value in segments 'B'.
  • the profile that gives rise to the multifocality of the lens of the invention may be distributed over the entire diameter of the lens, or be located in the central area thereof.
  • the alternation between far and near zones can also be reversed if a negative value is assigned to the weight factor M.
  • Designs are also allowed to compensate for astigmatisms and aberrations of the eye, which are based on a base refractive lens that is toric and / or aspherical.
  • the designs in which the base refractive lens is toric are intended to compensate for the astigmatism of the cornea.
  • the designs in which the base refractive lens is aspherical are intended to compensate for the positive spherical aberration of the cornea.
  • Toricity and asphericity can be implemented on any of the lens faces.
  • the function F (x, y) that provides the thickness of the base lens is represented in this case as follows:
  • a (x, y) is the sagite of the toric surface at a point (x, y) of the surface y B (r) + a 4 r 4 + a 6 r 6 + a g r 8
  • a ray tracing program (OSLO, Lambda Research Corporation) has been used to obtain the aspherical profile (B (r)) of the front face of the lens that minimizes spherical aberration of the eye.
  • Another design-free parameter is the total number of zones, which is set by the number of iterations S used to generate the function ordinarily ordered.
  • S 2.
  • the lens of the invention can become apodized, making the relative height of the zones not the same in all of them.
  • the proposed lenses can be constructed with the same technology that is currently used for the manufacture of monofocal lenses, that is, with micrometric precision lathes.

Abstract

The invention relates to a hybrid diffractive/refractive multifocal ophthalmic lens which can be used as an intraocular lens or contact lens and which is produced on the basis of a refractive lens in which the thickness of one of the faces is increased using a function constructed from an aperiodic but ordered step function by means of an iterative method. Consequently, chromatic aberration is reduced and the depth of field of the lens is increased and, since no notched surfaces are required, the lens can be used as a contact lens.

Description

LENTE OFTÁLMICA MULTI FOCAL Y PROCEDIMIENTO PARA SU OBTENCIÓN  MULTI FOCAL OPHTHALMIC LENS AND PROCEDURE FOR OBTAINING
D E S C R I P C I Ó N D E S C R I P C I Ó N
CAMPO DE LA INVENCIÓN FIELD OF THE INVENTION
La presente invención se aplica a lentes multifocales que pueden ser utilizadas como lente intraocular o lente de contacto. En particular la invención se refiere a una lente con menor aberración cromática y mayor profundidad de campo que las lentes del estado de la técnica anterior.  The present invention applies to multifocal lenses that can be used as an intraocular lens or contact lens. In particular, the invention relates to a lens with less chromatic aberration and greater depth of field than prior art lenses.
ANTECEDENTES DE LA INVENCIÓN BACKGROUND OF THE INVENTION
Las lentes multifocales oftálmicas pueden presentarse en forma de lentes de contacto, intraoculares o lentes para gafas. El principio en el que están basadas las lentes multifocales intraoculares y de contacto es la habilidad natural del cerebro para adaptarse a la visión de lejos o cerca eligiendo entre las imágenes producidas por la lente. Cuando el sistema visual recibe simultáneamente dos imágenes en la retina, selecciona la más nítida de las dos, y suprime la otra. En cirugía de cataratas son cada vez más frecuentes los implantes de lente intraoculares multifocales con los que se busca al mismo tiempo una óptima visión de lejos y en visión próxima. Se consigue así evitar el desenfoque en distancias próximas que se produce con las lentes monofocales. Además, en los diseños multifocales se intenta evitar la presencia de halos asociados a la aberración cromática.  Multifocal ophthalmic lenses may be in the form of contact lenses, intraocular lenses or glasses. The principle on which intraocular and contact multifocal lenses are based is the brain's natural ability to adapt to far or near vision by choosing between the images produced by the lens. When the visual system simultaneously receives two images on the retina, it selects the sharpest of the two, and deletes the other. In cataract surgery, multifocal intraocular lens implants are becoming more frequent, with which optimal distance and near vision vision are sought at the same time. It is thus possible to avoid blurring in close distances that occurs with monofocal lenses. In addition, multifocal designs try to avoid the presence of halos associated with chromatic aberration.
Existen en el mercado diferentes diseños de lentes multifocales intraoculares. Estos diseños se pueden clasificar, en general, en diseños refractivos y diseños difractivos. En cambio, para lentes de contacto sólo existen modelos refractivos. En los diseños refractivos la lente se subdivide en diferentes zonas anulares en las que se alternan 2 radios de curvatura diferentes proporcionando 2 potencias asociadas cada una de ellas para la visión "de lejos" y "de cerca", respectivamente. Un ejemplo de este tipo de lentes es la lente intraocular ReZoom© de la empresa AMO. There are different designs of intraocular multifocal lenses on the market. These designs can be classified, in general, into refractive designs and diffractive designs. However, for contact lenses there are only refractive models. In refractive designs the lens is subdivided into different annular zones in which 2 different radii of curvature alternate providing 2 associated powers each of them for "far" and "near" vision, respectively. An example of this type of lens is the ReZoom © intraocular lens from AMO.
Dicho de otro modo, las lentes intraoculares multifocales refractivas utilizan un método multizonal, es decir, se definen dos potencias que están incorporadas dentro de anillos o zonas refractivas circulares con diferentes radios de curvatura. Este tipo de lentes son pupilo-dependientes puesto que el tamaño de la pupila limita el número de zonas útiles de la lente y en consecuencia su respuesta dentro del sistema visual. In other words, refractive multifocal intraocular lenses use a multizonal method, that is, two powers are defined that are incorporated within rings or circular refractive zones with different radii of curvature. These types of lenses are pupil-dependent since the size of the pupil limits the number of useful areas of the lens and consequently its response within the visual system.
Las lentes multifocales difractivas utilizan los principios ópticos de la difracción combinados con los de la refracción para generar dos focos independientes. El efecto bifocal se consigue induciendo la formación simultánea de un foco de lejos (efecto refractivo) y uno de cerca obtenido tallando en una de sus caras una lente difractiva tipo placa zonal de Fresnel "blazé" o "kinoform". Un elemento de este tipo se muestra en la Fig.1 , donde puede verse que es una estructura formada por anillos circulares con un paso que aumenta proporcionalmente al radio r, de tal forma que es periódica en A2. Por lo tanto, al incorporar la placa zonal "blazé", la lente multifocal difractiva resultante presenta en una de sus caras un perfil característico tipo "diente de sierra" que sigue la distribución de las zonas (Fig.1 ) de la placa zonal de Fresnel. Con iluminación monocromática, una placa zonal "blazé" presenta un único foco, es decir, tiene una eficiencia de difracción del 100% cuando trabaja con la longitud de onda para la que ha sido diseñada. Los dientes de sierra de estas lentes son difíciles de producir mediante técnicas convencionales de torneado y aplicados a lentes de contacto resultarían incómodos para el usuario, razón por la cual esta aplicación no existe en el mercado. Un ejemplo de lente que intenta paliar estos problemas se puede encontrar en la patente US 6536899 B1 . Esta patente describe una lente multifocal híbrida (difractiva-refractiva) que está constituida por un conjunto de zonas anulares de igual área, cada una de ellas dividida en al menos dos subzonas, de tal modo que el perfil varía de forma continua al pasar de cualquier subzona a la adyacente. Esta estructura periódica en la coordenada radial al cuadrado presenta al menos dos focos, cuyo número e intensidad depende de la subdivisión realizada, pero de los que sólo uno de ellos está libre de aberraciones cromáticas. Diffractive multifocal lenses use the optical principles of diffraction combined with those of refraction to generate two independent foci. The bifocal effect is achieved by inducing the simultaneous formation of a distant focus (refractive effect) and a close one obtained by carving on one of its faces a Fresnel zonal plate diffractive lens "blazé" or "kinoform". Such an element is shown in Fig. 1, where it can be seen that it is a structure formed by circular rings with a pitch that increases proportionally to the radius r, such that it is periodic in A 2 . Therefore, when incorporating the "blazé" zone plate, the resulting diffractive multifocal lens has a characteristic "sawtooth" profile on one of its faces that follows the distribution of the zones (Fig. 1) of the zone plate of Fresnel With monochromatic illumination, a "blazé" zonal plate has a single focus, that is, it has a diffraction efficiency of 100% when working with the wavelength for which it has been designed. The saw teeth of these lenses are difficult to produce using conventional turning techniques and applied to contact lenses would be uncomfortable for the user, which is why this application does not exist in the market. An example of a lens that attempts to alleviate these problems can be found in US Patent 6536899 B1. This patent describes a multifocal hybrid lens (diffractive-refractive) that is constituted by a set of annular zones of the same area, each divided into at least two sub-zones, so that the profile varies continuously as it passes from any Subzone to the adjacent. This periodic structure in the square radial coordinate has at least two foci, whose number and intensity depends on the subdivision made, but on which only one of them is free of chromatic aberrations.
OBJETO DE LA INVENCIÓN OBJECT OF THE INVENTION
La invención tiene por objeto mejorar la profundidad de campo y disminuir la aberración cromática de una lente oftálmica multifocal en todos los focos. Para ello, propone una lente híbrida difractiva-refractiva obtenida a partir de una lente de base, refractiva, en la que se modifica su superficie mediante una función predeterminada. Esta función Gs (u) es una función escalonada aperiódica, ordenada mediante un procedimiento iterativo, que se expresa como: The object of the invention is to improve the depth of field and decrease the chromatic aberration of a multifocal ophthalmic lens in all foci. For it, proposes a diffractive-refractive hybrid lens obtained from a refractive base lens, in which its surface is modified by a predetermined function. This function G s (u) is an aperiodic step function, ordered by an iterative procedure, which is expressed as:
/  /
si pSJ ≤u≤qSJ if p SJ ≤u≤q SJ
Gs (u) =
Figure imgf000005_0001
G s (u) =
Figure imgf000005_0001
donde S representa el número de iteraciones (mayor que 2) empleado para generar la secuencia ordenada aperiódicamente, Λ/ es el número de segmentos (escalones) de la función aperiódica, donde estos segmentos están separados por N- 1 regiones limitadas entre (ps,i, qs,¡) con /=1 ,2, ... ,/V-1 y que dependerán de la secuencia elegida; y u=1 -rW con valores 0<u<1 , donde A2=x2+ 2 siendo r ía coordenada radial y b el radio máximo de la zona difractiva. where S represents the number of iterations (greater than 2) used to generate the aperiodic sequence, Λ / is the number of segments (steps) of the aperiodic function, where these segments are separated by N- 1 regions limited by (p s , i, qs , ¡) with / = 1, 2, ..., / V-1 and which will depend on the sequence chosen; yu = 1 -rW with values 0 <u <1, where A 2 = x 2 + 2 is the radial coordinate and b is the maximum radius of the diffractive zone.
G puede ser cualquiera de las funciones del grupo Cantor, Thue-Morse, Paper Folding, Period-Doubling, Silver Mean, Bronze Mean, Copper Mean, Nickel Mean y Rudin-Shapiro. La lente refractiva de base puede ser monofocal, tórica y/o asférica.  G can be any of the functions of the group Cantor, Thue-Morse, Paper Folding, Period-Doubling, Silver Mean, Bronze Mean, Copper Mean, Nickel Mean and Rudin-Shapiro. The base refractive lens can be monofocal, toric and / or aspherical.
BREVE DESCRIPCIÓN DE LAS FIGURAS BRIEF DESCRIPTION OF THE FIGURES
Con objeto de ayudar a una mejor comprensión de las características de la invención de acuerdo con un ejemplo preferente de realización práctica de la misma, se acompaña la siguiente descripción de un juego de dibujos en donde con carácter ilustrativo se ha representado lo siguiente: In order to help a better understanding of the features of the invention in accordance with a preferred example of practical realization thereof, the following description of a set of drawings is attached, where the following has been represented by way of illustration:
Figura 1 .- es una representación de una lente difractiva blazé con zonas de Fresnel de acuerdo con el estado de la técnica.  Figure 1 .- is a representation of a blazé diffractive lens with Fresnel zones according to the state of the art.
Figura 2.- es una representación de la función de Cantor utilizada como ejemplo de función aperiódica para generar la superficie de la lente de la invención.  Figure 2.- is a representation of the Cantor function used as an example of an aperiodic function to generate the surface of the lens of the invention.
Figura 3.- es una gráfica que representa el perfil de la lente de la invención de acuerdo a la función de Cantor. Figure 3.- is a graph that represents the profile of the lens of the invention according to the Cantor function.
Figura 4.- muestra una comparativa entre los focos en una lente monofocal refractiva y los focos de la lente objeto de la invención basada en la función de Cantor. Figura 5.- es una representación de la función de Thue-Morse utilizada como ejemplo de función aperiódica para generar la superficie de la lente de la invención. Figura 6.- muestra una comparativa entre los focos en una lente monofocal refractiva y los focos de la lente objeto de la invención basada en la función de Thue-Morse. Figure 4 shows a comparison between the foci in a refractive monofocal lens and the foci of the lens object of the invention based on the Cantor function. Figure 5.- is a representation of the Thue-Morse function used as an example of an aperiodic function to generate the surface of the lens of the invention. Figure 6 shows a comparison between the foci in a refractive monofocal lens and the foci of the lens object of the invention based on the Thue-Morse function.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN DETAILED DESCRIPTION OF THE INVENTION
La lente objeto de la invención está diseñada para su uso como lente intraocular o como lente de contacto ya que su superficie no es dentada. Se trata de una lente multifocal y por lo tanto adaptada para la corrección simultánea tanto del defecto refractivo asociado al ojo en el que se coloca (implanta), como de su presbicia. La lente se genera sobre la base de una lente refractiva en la que se incrementa el espesor de una de las caras de la lente utilizando una función construida a partir de una secuencia aperiódica pero ordenada mediante un procedimiento iterativo. La función que define el espesor de la lente se define como: The lens object of the invention is designed for use as an intraocular lens or as a contact lens since its surface is not serrated. It is a multifocal lens and therefore adapted for simultaneous correction of both the refractive defect associated with the eye in which it is placed (implanted), as well as its presbyopia. The lens is generated on the basis of a refractive lens in which the thickness of one of the lens faces is increased using a function constructed from an aperiodic sequence but ordered by an iterative procedure. The function that defines the thickness of the lens is defined as:
e(x,y)=F(x,y)+M- Gs(u) , e (x, y) = F (x, y) + M- G s (u),
donde u=1 -rV¿>2, r es la coordenada radial definida como r2=x2+ 2 y b es el radio máximo de la zona difractiva. De este modo se modifica el espesor de la lente de partida F(x,y) con la función escalonada aperiódica Gs (u) normalizada, multiplicada por un factor de peso M que proporciona la diferencia de potencias entre las diferentes regiones de la lente y que puede ser positivo o negativo como se verá más adelante. Dicha función se construye de forma escalonada mediante la siguiente expresión matemática: where u = 1 -rV¿> 2 , r is the radial coordinate defined as r 2 = x 2 + 2 and b is the maximum radius of the diffractive zone. In this way the thickness of the starting lens F (x, y) is modified with the standard aperiodic step function G s (u), multiplied by a weight factor M that provides the difference in powers between the different regions of the lens and that it can be positive or negative as will be seen later. This function is constructed in a staggered way by means of the following mathematical expression:
/  /
si pSJ < u≤qs l if p SJ <u≤q sl
N  N
Gs (u) = G s (u) =
1 u -qSJ 1 u -q SJ
si qs ,≤u≤ps donde S representa el número de iteraciones (mayor que 2) empleado para generar la secuencia ordenada aperiódicamente, Λ/ es el número de segmentos (escalones) de la función aperiódica, donde estos segmentos están separados por N-1 regiones limitadas entre (ps,i, qs,¡) con /=1 ,2,...,/V-1 y que dependerán de la secuencia elegida; y u=1 -rW con valores 0<u<1 , donde r?=x2+ 2 siendo r ía coordenada radial y b el radio máximo de la zona difractiva. De este modo, la función Gs{ü) es monótonamente creciente en los N segmentos ordenados aperiódicamente y constante entre dichos segmentos. if q s , ≤u≤p s where S represents the number of iterations (greater than 2) used to generate the aperiodic sequence, Λ / is the number of segments (steps) of the aperiodic function, where these segments are separated by N-1 regions limited between (p s , i, qs , ¡) with / = 1, 2, ..., / V-1 and which will depend on the sequence chosen; yu = 1 -rW with values 0 <u <1, where r ? = x 2 + 2 being radial coordinate and b the maximum radius of the diffractive zone. In this way, the function G s {ü) is monotonously increasing in the N segments arranged aperiodic and constant between these segments.
La lente así generada se comporta como una lente híbrida de carácter difractivo- refractivo en la que se alternan zonas anulares con dos radios de curvatura diferentes que dan lugar a los focos principales de la lente. La difracción producida por los diferentes anillos distribuidos aperiódicamente proporciona la estructura interna de cada uno de estos focos y depende de la función aperiódica elegida. En un ejemplo preferencial, se parte de la función de Cantor tal y como se muestra en la Fig.2. Dicha función se genera a partir de la secuencia aperiódica ordenada mediante el fractal de Cantor que se puede construir mediante el procedimiento iterativo. Partiendo de dos elementos A y B se construye en primer lugar la secuencia {ABA} y luego se reemplaza S veces A por ABA y B por BBB, por lo que las siguientes secuencias serían {ABABBBABA},The lens thus generated behaves like a diffractive-refractive hybrid lens in which annular zones alternate with two different radii of curvature that give rise to the main foci of the lens. The diffraction produced by the different aperiodic distributed rings provides the internal structure of each of these foci and depends on the aperiodic function chosen. In a preferential example, it starts with the Cantor function as shown in Fig. 2. This function is generated from the aperiodic sequence ordered by the Cantor fractal that can be constructed by the iterative procedure. Starting from two elements A and B, the sequence {ABA} is constructed first and then S times A is replaced by ABA and B by BBB, so the following sequences would be {ABABBBABA},
{ABABBBABABBBBBBBBBABABBBABA},... y así sucesivamente. En este caso, el número de segmentos 'A' (barras negras de la Fig. 2) ordenados aperiódicamente hasta un nivel de generación S es N=2S. A partir de esta secuencia aperiódica, la función de Cantor Gs(u) es linealmente creciente en los N=2S escalones (segmentos 'Α') y constante entre dichos escalones (segmentos 'B'). {ABABBBABABBBBBBBBBABABBBABA}, ... and so on. In this case, the number of segments 'A' (black bars in Fig. 2) arranged aperiodic up to a generation level S is N = 2 S. From this aperiodic sequence, the Cantor function G s (u) is linearly increasing in the N = 2 S steps (segments 'Α') and constant between said steps (segments 'B').
El perfil de la cara de la lente que da lugar a la multifocalidad se muestra en la Fig. 3 como la curva superior. La curva escalonada muestra la diferencia (aumentada un factor 10) entre la superficie diseñada (curva superior) y la superficie refractiva de base (curva inferior) o superficie de partida de la lente, en este caso monofocal, es decir, representa directamente Gs(u). En las zonas en las que la función aperiódica toma un valor constante las dos superficies comparten los mismos radios de curvatura y por lo tanto la misma potencia, que correspondería a la potencia de lejos. En las zonas crecientes de la función de Cantor, la superficie diseñada presenta un radio de curvatura menor por lo que la lente tendrá una mayor potencia (potencia de cerca). The profile of the lens face that gives rise to the multifocality is shown in Fig. 3 as the upper curve. The stepped curve shows the difference (increased by a factor of 10) between the designed surface (upper curve) and the base refractive surface (lower curve) or lens starting surface, in this case monofocal, that is, it directly represents G s (or). In the areas where the aperiodic function takes a constant value the two surfaces share the same radii of curvature and therefore the same power, which would correspond to the power from afar. In the growing areas of the Cantor function, the designed surface has a smaller radius of curvature so that the lens will have greater power (near power).
Las lentes generadas con una función basada en una secuencia aperiódica pero ordenada mediante un procedimiento iterativo son multifocales y presentan varios focos principales rodeados de múltiples focos secundarios. Estos focos secundarios aparecen como consecuencia de las interferencias entre las diferentes zonas de la lente y al estar distribuidos axialmente en las cercanías de cada foco principal proporcionan en conjunto un foco compuesto con una mayor profundidad de campo. Este resultado, para una función aperiódica de Cantor con S=2 para iluminación monocromática (de longitud de onda, =550 nm), se muestra en la Fig. 4b. El radio de la lente esférica monofocal de partida es de 1 1 ,4 mm y /W=18 m. Para su comparación, en la Fig. 4a se muestra el resultado que se obtiene para la lente monofocal refractiva de partida en aire. El índice de refracción de la lente es 1 ,493. The lenses generated with a function based on an aperiodic sequence but ordered by an iterative procedure are multifocal and have several main foci surrounded by multiple secondary foci. These secondary foci appear as a result of the interferences between the different areas of the lens and being axially distributed in the vicinity of each main focus together provide a composite focus with a greater depth of field. This result, for an aperiodic Cantor function with S = 2 for monochromatic illumination (wavelength, = 550 nm), is shown in Fig. 4b. The radius of the monofocal spherical starting lens is 1 1, 4 mm and / W = 18 m. For comparison, Fig. 4a shows the result that is obtained for the monofocal lens refractive starting in air. The refractive index of the lens is 1,493.
Gracias a la presencia de estos focos secundarios se obtiene una lente con menores aberraciones cromáticas. En efecto, al utilizar iluminación policromática, la dispersión cromática provoca que las imágenes proporcionadas por una lente convencional no coincidan en un mismo plano para las diferentes longitudes de onda, provocando los típicos halos asociados a la aberración cromática. En cambio, cada foco principal de la lente objeto de la invención exhibe una mayor extensión axial gracias a la presencia de los focos secundarios, dando lugar a una superposición parcial entre los mismos para las diferentes longitudes de onda. Es decir, el foco para el rojo y el foco para el azul se solapan en determinadas posiciones axiales junto a los focos de las longitudes de onda intermedias proporcionando un foco cuasi "blanco" y en consecuencia con una aberración cromática menor. Thanks to the presence of these secondary foci, a lens with lower chromatic aberrations is obtained. Indeed, when using polychromatic illumination, the chromatic dispersion causes that the images provided by a conventional lens do not coincide in the same plane for the different wavelengths, causing the typical halos associated with the chromatic aberration. On the other hand, each main focus of the lens object of the invention exhibits a greater axial extension thanks to the presence of the secondary foci, resulting in a partial overlap between them for the different wavelengths. That is, the focus for the red and the focus for the blue overlap in certain axial positions next to the foci of the intermediate wavelengths providing a quasi "white" focus and consequently with a smaller chromatic aberration.
En otro ejemplo particular, se toma la función de Thue-Morse como función G. La secuencia ordenada aperiódicamente de Thue-Morse se genera mediante el método iterativo Hs={HS-iHs-i} para S>1 y /-/1 ={A}. Hs se obtiene a partir de Hs intercambiando 'A' y 'Β', por lo que H2={AB}, H2={BA}, H3={ABBA}, ¾={BAAB}, ... El número de segmentos 'A' o 'B' a un nivel de generación S es N=2S' Basándonos en esta secuencia se define la función aperiódica de Thue-Morse como una función monótonamente creciente en los segmentos 'A' mientras que toma un valor constante en los segmentos 'B'. En la Fig. 5 se muestra la función de Thue-Morse resultante para S=5. Siguiendo un procedimiento similar al realizado con el ejemplo preferencial basado en la función de Cantor, en la Fig. 6 se compara la irradiancia axial normalizada monocromática para una lente de tipo monofocal refractiva de índice de refracción 1 ,493 en un medio de índice 1 ,336 (lente esférica de base) y una lente multifocal basada en la secuencia aperiódica de Thue-Morse construida sobre la misma lente de base con S=4 y M=56 m. De nuevo se observan varios focos principales rodeados de múltiples focos secundarios como consecuencia de las interferencias entre las diferentes zonas de la lente que también proporcionan una extensión de la profundidad de campo y una menor aberración cromática en cada foco principal. In another particular example, the Thue-Morse function is taken as a G function. The thio-Morse aperiodic sequence is generated by the iterative method H s = {H S -iHs-i} for S> 1 and / - / 1 = {A}. H s is obtained from H s by exchanging 'A' and 'Β', whereby H 2 = {AB}, H 2 = {BA}, H 3 = {ABBA}, ¾ = {BAAB}, .. The number of segments' A 'or' B 'at a generation level S is N = 2 S' Based on this sequence, the aperiodic function of Thue-Morse is defined as a monotonously increasing function in segments' A 'while takes a constant value in segments 'B'. The resulting Thue-Morse function for S = 5 is shown in Fig. 5. Following a procedure similar to that performed with the preferential example based on the Cantor function, Fig. 6 compares Monochromatic normalized axial irradiance for a refractive monofocal type lens of refractive index 1, 493 on index 1, 336 (spherical base lens) and a multifocal lens based on the Thue-Morse aperiodic sequence constructed on it base lens with S = 4 and M = 56 m. Again, several main foci surrounded by multiple secondary foci are observed as a result of the interferences between the different areas of the lens that also provide an extension of the depth of field and a lower chromatic aberration in each main focus.
Al igual que las funciones de Cantor y Thue-Morse, para conseguir una mayor profundidad de campo y una menor aberración cromática se puede utilizar una de las funciones aperiódicas seleccionada del grupo que comprende: Period-Doubling, Silver Mean, Bronze Mean, Copper Mean, Nickel Mean, Rudin-Shapiro y Paper Folding. Like the functions of Cantor and Thue-Morse, to achieve a greater depth of field and a lower chromatic aberration, one of the aperiodic functions selected from the group comprising: Period-Doubling, Silver Mean, Bronze Mean, Copper Mean can be used , Nickel Mean, Rudin-Shapiro and Paper Folding.
El perfil que da origen a la multifocalidad de la lente de la invención puede estar distribuido en todo el diámetro de la lente, o bien estar localizado en la zona central de la misma. La alternancia entre zonas de lejos y cerca también puede invertirse si se le asigna al factor de peso M un valor negativo. The profile that gives rise to the multifocality of the lens of the invention may be distributed over the entire diameter of the lens, or be located in the central area thereof. The alternation between far and near zones can also be reversed if a negative value is assigned to the weight factor M.
También se admiten diseños para compensar astigmatismos y aberraciones del ojo, en los que se parte de una lente refractiva de base que es tórica y/o asférica. Designs are also allowed to compensate for astigmatisms and aberrations of the eye, which are based on a base refractive lens that is toric and / or aspherical.
Los diseños en los que la lente refractiva de base es tórica tienen como finalidad compensar el astigmatismo de la cornea. Los diseños en los que la lente refractiva de base es asférica tienen como finalidad compensar la aberración esférica positiva de la cornea. La toricidad y la asfericidad pueden implementarse en cualquiera de las caras de la lente. La función F(x, y) que proporciona el espesor de la lente base, se representa en este caso del siguiente modo: The designs in which the base refractive lens is toric are intended to compensate for the astigmatism of the cornea. The designs in which the base refractive lens is aspherical are intended to compensate for the positive spherical aberration of the cornea. Toricity and asphericity can be implemented on any of the lens faces. The function F (x, y) that provides the thickness of the base lens is represented in this case as follows:
F(x, y) = EC - A(x, y) - B(r)  F (x, y) = EC - A (x, y) - B (r)
Donde EC es el espesor central de la lente , A(x,y) es la sagita de la superficie tórica en un punto (x, y) de la superficie y B(r) + a4r 4+a6r6 + agr8 Where EC is the center thickness of the lens, A (x, y) is the sagite of the toric surface at a point (x, y) of the surface y B (r) + a 4 r 4 + a 6 r 6 + a g r 8
Figure imgf000010_0001
Figure imgf000010_0001
es la sagita de la superficie asférica en un punto de coordenada r (distancia radial medida desde del eje óptico de la lente). En la ecuación anterior c es la curvatura de la superficie en el vértice de la misma y k es la constante de asfericidad (k=0 implica una superficie esférica, k=-\ una superficie parabólica, -1 </ <0 elipsoide prolata, k<-\ hipérboloide y k>0 elipsoide oblata), siendo a4, a6 y a8 los coeficientes de asfericidad de cuarto, sexto y octavo orden respectivamente it is the sagite of the aspherical surface at a coordinate point r (radial distance measured from the optical axis of the lens). In the previous equation c is the curvature of the surface at the vertex of the same and k is the asphericity constant (k = 0 implies a spherical surface, k = - \ a parabolic surface, -1 </ <0 prolata ellipsoid, k <- \ hyperboloid yk> 0 Oblate ellipsoid), being 4 , 6 and 8 the fourth, sixth and eighth order aspherical coefficients respectively
Como ejemplo particular, para la obtención de la función B(r) se ha considerado el diseño a partir de una lente intraocular esférica monofocal de potencia 19,5 D e índice de refracción n2=1 ,4930, con radios de curvatura: 12,5 mm y 22,89 mm para la cara anterior y posterior respectivamente, que una vez implementada en el ojo queda sumergida en humor acuoso (n1 =1 ,336) Se ha considerado un ojo modelo con una córnea de potencia 43 D y constante de asfericidad -0.26. Se ha utilizado un programa de trazado de rayos (OSLO, Lambda Research Corporation) para obtener el perfil asférico (B(r)) de la cara anterior de la lente que minimiza la aberración esférica del ojo. Así para este ejemplo concreto se han obtenido los siguientes valores para los parámetros de diseño de la lente intraocular k=-2.8085, a4=-0.000194 mm"3, a6=3.2880e-6 mm"5y a8 =1 .4718e-8 mm"7. As a particular example, the design from a monofocal spherical intraocular lens of power 19.5 D and refractive index n 2 = 1, 4930, with radii of curvature has been considered for obtaining the function B (r). , 5 mm and 22.89 mm for the anterior and posterior face respectively, which once implemented in the eye is submerged in aqueous humor (n 1 = 1, 336) It has been considered a model eye with a cornea of power 43 D and asphericity constant -0.26. A ray tracing program (OSLO, Lambda Research Corporation) has been used to obtain the aspherical profile (B (r)) of the front face of the lens that minimizes spherical aberration of the eye. Thus, for this specific example, the following values have been obtained for the design parameters of the intraocular lens k = -2.8085, at 4 = -0.000194 mm "3 , at 6 = 3.2880e-6 mm " 5 and 8 = 1 .4718e -8 mm "7 .
Otro parámetro libre de diseño es el número total de zonas, que viene fijado por el número de iteraciones S empleado para generar la función ordenada aperiódicamente. El número mínimo de zonas viene dado por S=2. En general, a mayor número de zonas, mayor resolución o calidad de imagen, aunque resulta más complicada su construcción. Another design-free parameter is the total number of zones, which is set by the number of iterations S used to generate the function ordinarily ordered. The minimum number of zones is given by S = 2. In general, the greater the number of areas, the higher resolution or image quality, although its construction is more complicated.
Al igual que cualquier lente difractiva, la lente de la invención se puede apodizar, haciendo que la altura relativa de las zonas no sea la misma en todas ellas.  Like any diffractive lens, the lens of the invention can become apodized, making the relative height of the zones not the same in all of them.
Gracias a la invención se obtiene una gran profundidad de campo tanto para lentes intraoculares, como para lentes de contacto. En el contexto de las lentes de contacto esto supone una menor dependencia con el tamaño pupilar y por lo tanto es necesario un menor esfuerzo en el proceso de adaptación. Una ventaja adicional es que las zonas así producidas no tienen aristas como en el caso de las lentes de Fresnel, lo que posibilita su utilización como lentes de contacto y no sólo como lentes intraoculares. Thanks to the invention, a great depth of field is obtained for both intraocular lenses and contact lenses. In the context of contact lenses, this means less dependence on pupil size and therefore less effort is necessary in the adaptation process. An additional advantage is that the areas thus produced do not have edges as in the case of Fresnel lenses, which makes it possible to use them as contact lenses and not only as intraocular lenses.
Por otro lado, al ser diseños con variaciones suaves del perfil entre zonas, las lentes propuestas pueden ser construidas con la misma tecnología que se utiliza actualmente para la fabricación de lentes monofocales, es decir, con tornos de precisión micrométrica. On the other hand, being designs with smooth variations of the profile between zones, the proposed lenses can be constructed with the same technology that is currently used for the manufacture of monofocal lenses, that is, with micrometric precision lathes.

Claims

REIVINDICACIONES
1 . Lente oftálmica multifocal híbrida difractiva-refractiva caracterizada porque su espesor viene dado por la función e(x,y)=F(x,y)+/W Gs(u), con u=~\ -?/b2, siendo b el radio máximo de la zona difractiva, F(x,y) el espesor de una lente refractiva de base en función de las coordenadas cartesianas (x,y)y Gs(u) una función escalonada aperiódica y ordenada mediante un proceso iterativo, donde S es el número de iteraciones, y que se expresa como one . Diffractive-refractive hybrid multifocal ophthalmic lens characterized in that its thickness is given by the function e (x, y) = F (x, y) + / WG s (u), with u = ~ \ -? / B 2 , where b the maximum radius of the diffractive zone, F (x, y) the thickness of a base refractive lens based on the Cartesian coordinates (x, y) and G s (u) an aperiodic and ordered step function by an iterative process, where S is the number of iterations, and that is expressed as
/  /
si pSJ ≤u≤qs ¡ if p SJ ≤u≤q s
Gs (u) = G s (u) =
.  .
S1 <ls,i ≤u≤ Ps,i÷iS 1 <ls, i ≤u≤ Ps, i ÷ i
Figure imgf000012_0001
siendo 0<u<1 , y donde N es el número de escalones de la función aperiódica, donde estos escalones están separados por N-1 regiones limitadas entre (ps,i, qs,¡) con /=1 ,2,...,/V-1 y cuyo número dependerá de la secuencia elegida; y u=~\ -?/b2 con valores 0<u<1 , donde siendo r la coordenada radial y b el radio máximo de la zona difractiva.
Figure imgf000012_0001
where 0 <u <1, and where N is the number of steps of the aperiodic function, where these steps are separated by N-1 regions limited between (p s , i, qs , ¡) with / = 1, 2 ,. .., / V-1 and whose number will depend on the sequence chosen; yu = ~ \ -? / b 2 with values 0 <u <1, where r is the radial coordinate and b is the maximum radius of the diffractive zone.
2. Lente oftálmica según la reivindicación 1 caracterizada porque Gs es la función de Cantor, donde N=2S 2. Ophthalmic lens according to claim 1 characterized in that G s is the Cantor function, where N = 2 S
3. Lente oftálmica según la reivindicación 1 caracterizada porque Gs es la función de Thue-Morse, donde A/=2S 1 3. Ophthalmic lens according to claim 1 characterized in that G s is the Thue-Morse function, where A / = 2 S 1
4. Lente oftálmica según la reivindicación 1 caracterizada porque Gs es una función seleccionada del grupo que consiste en: Period-Doubling, Silver Mean, Bronze Mean, Copper Mean, Nickel Mean, Rudin-Shapiro y Paper Folding. 4. Ophthalmic lens according to claim 1 characterized in that G s is a function selected from the group consisting of: Period-Doubling, Silver Mean, Bronze Mean, Copper Mean, Nickel Mean, Rudin-Shapiro and Paper Folding.
5. Lente oftálmica según cualquiera de las reivindicaciones anteriores, caracterizada porque la lente refractiva de base es monofocal, tórica y/o asférica. 5. Ophthalmic lens according to any of the preceding claims, characterized in that the base refractive lens is monofocal, toric and / or aspherical.
6.- Lente oftálmica según la reivindicación 5 caracterizada porque la lente refractiva de base es asférica y/o tórica, y al menos una de sus caras presenta un espesor F definido por la función 6. Ophthalmic lens according to claim 5 characterized in that the base refractive lens is aspherical and / or toric, and at least one of its faces has a thickness F defined by the function
F(x, y) = EC - A(x, y) - B(r)  F (x, y) = EC - A (x, y) - B (r)
donde EC es el espesor central de la lente, A(x,y) es la sagita de la superficie tórica en un punto (x, y) de la superficie y where EC is the center thickness of the lens, A (x, y) is the sagite of the toric surface at a point (x, y) of the surface y
, 4 , 6 , 8  , 4, 6, 8
B{r) = - + aAr +a6r + asr B {r) = - + a A r + a 6 r + a s r
2 2  2 2
l + [l - (l + *) c r es la sagita de la superficie asférica en un punto de coordenada r, c es la curvatura de la superficie en el vértice de la misma y k es la constante de asfericidad, siendo a4, a6 y a8 los coeficientes de asfericidad de cuarto, sexto y octavo orden respectivamente l + [l - (l + *) cr is the sagite of the aspherical surface at a point of coordinate r, c is the curvature of the surface at the apex of it and k is the asphericity constant, being 4 , a 6 and 8 the fourth, sixth and eighth order asphericity coefficients respectively
7. Procedimiento de obtención de una lente oftálmica multifocal híbrida difractiva- refractiva, donde partiendo de una lente refractiva se modifica la superficie de dicha lente mediante una función, caracterizado porque la función es una función escalonada aperiódica ordenada mediante un procedimiento iterativo, que se expresa como 7. Procedure for obtaining a diffractive-refractive hybrid multifocal ophthalmic lens, where starting from a refractive lens the surface of said lens is modified by a function, characterized in that the function is an aperiodic stepped function ordered by an iterative procedure, which is expressed how
Gs (u ) =
Figure imgf000013_0001
G s (u) =
Figure imgf000013_0001
siendo 0<u<1 , y donde N es el número de escalones de la función aperiódica, donde estos escalones están separados por N-1 regiones limitadas entre (p qs,¡) con /=1 ,2, ... ,/V-1 y cuyo número dependerá de la secuencia elegida; y u=~\ -?/b2 con valores 0<u<1 , donde r=x2+y2 siendo r la coordenada radial y b el radio máximo de la zona difractiva. where 0 <u <1, and where N is the number of steps of the aperiodic function, where these steps are separated by N-1 regions bounded between (p qs , ¡) with / = 1, 2, ..., / V-1 and whose number will depend on the sequence chosen; yu = ~ \ -? / b 2 with values 0 <u <1, where r = x 2 + and 2 where r is the radial coordinate and b is the maximum radius of the diffractive zone.
PCT/ES2011/070559 2010-09-02 2011-07-28 Multifocal ophthalmic lens and method for obtaining same WO2012028755A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201031316 2010-09-02
ES201031316A ES2379164B2 (en) 2010-09-02 2010-09-02 MULTIFOCAL OPHTHALMIC LENS AND PROCEDURE FOR OBTAINING.

Publications (1)

Publication Number Publication Date
WO2012028755A1 true WO2012028755A1 (en) 2012-03-08

Family

ID=45772201

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2011/070559 WO2012028755A1 (en) 2010-09-02 2011-07-28 Multifocal ophthalmic lens and method for obtaining same

Country Status (2)

Country Link
ES (1) ES2379164B2 (en)
WO (1) WO2012028755A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11583392B2 (en) 2019-12-30 2023-02-21 Amo Groningen B.V. Achromatic lenses for vision treatment
US11844688B2 (en) 2019-12-30 2023-12-19 Amo Groningen B.V. Achromatic lenses with zone order mixing for vision treatment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2529378B1 (en) * 2013-06-10 2015-12-18 Universitat De València Multifocal ophthalmic lens and procedure for obtaining it, improved

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090153794A1 (en) * 2007-12-14 2009-06-18 Iyer Venkatramani S Refractive-diffractive multifocal lens
US20090240328A1 (en) * 2008-03-19 2009-09-24 Icon Lab Gmbh Multifocal intraocular lens
US20100066973A1 (en) * 2006-08-01 2010-03-18 Valdemar Portney Multifocal diffractive ophthalmic lens with multifocal base surface
US20100097569A1 (en) * 2008-10-20 2010-04-22 Advanced Medical Optics, Inc. Multifocal Intraocular Lens
US20100131060A1 (en) * 2008-11-20 2010-05-27 Simpson Michael J Diffractive multifocal intraocular lens with modified central distance zone

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100066973A1 (en) * 2006-08-01 2010-03-18 Valdemar Portney Multifocal diffractive ophthalmic lens with multifocal base surface
US20090153794A1 (en) * 2007-12-14 2009-06-18 Iyer Venkatramani S Refractive-diffractive multifocal lens
US20090240328A1 (en) * 2008-03-19 2009-09-24 Icon Lab Gmbh Multifocal intraocular lens
US20100097569A1 (en) * 2008-10-20 2010-04-22 Advanced Medical Optics, Inc. Multifocal Intraocular Lens
US20100131060A1 (en) * 2008-11-20 2010-05-27 Simpson Michael J Diffractive multifocal intraocular lens with modified central distance zone

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CALATAYUD A ET AL.: "Polyadic devil's lenses", JOURNAL OF THE OOPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE AND VISION, vol. 26, no. 12, December 2009 (2009-12-01), USA, pages 2532 - 2537 *
MONSORIU J A ET AL.: "Fractal conical lenses", OPTICS EXPRESS, vol. 14, no. 20, 2 October 2006 (2006-10-02), USA, pages 9077 - 9082 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11583392B2 (en) 2019-12-30 2023-02-21 Amo Groningen B.V. Achromatic lenses for vision treatment
US11844688B2 (en) 2019-12-30 2023-12-19 Amo Groningen B.V. Achromatic lenses with zone order mixing for vision treatment

Also Published As

Publication number Publication date
ES2379164A1 (en) 2012-04-23
ES2379164B2 (en) 2013-04-10

Similar Documents

Publication Publication Date Title
AU2005230194B2 (en) Ophthalmic lenses capable of reducing chromatic aberration
CA2590085C (en) Apodized aspheric diffractive lenses
CN110753528B (en) Diffractive multifocal implantable lens device
US11364111B2 (en) Multifocal lens having reduced visual disturbances
ES2809181T3 (en) Diffractive trifocal lens
US9690882B2 (en) Lens having an extended range of focus and method of making the same
CN101416096B (en) Pseudo-accomodative iol having diffractive zones with varying areas
JP6491106B2 (en) Method and system for providing an intraocular lens with improved depth of field
KR101937709B1 (en) Refractive multifocal intraocular lens with optimised optical quality in a range of focus and method to produce it
KR20080018146A (en) Truncated diffractive intraocular lenses
JP2014530638A (en) Method and apparatus including extended depth of focus intraocular lens
ZA200706457B (en) Apodized diffractive IOL with frustrated diffractive region
JP2009082723A (en) Zonal refractive multifocal intraocular lens
RU2013127185A (en) LENSES FOR CORRECTION OF PRESBIOPIA AND METHODS OF DESIGNING LENSES
JP2012509152A (en) Diffractive multifocal intraocular lens with altered center distance zone
RU2009130607A (en) OPTICAL SYSTEM WITH VARIABLE PARAMETERS: COMPOSITION AND AGREEMENT OF OPTICAL ELEMENTS FOR PRODUCING THE MAXIMUM ADVANTAGES OF BINOCULAR VISION
CN108938144A (en) A kind of diffractive multifocal intraocular lens of smooth position phase
WO2012028755A1 (en) Multifocal ophthalmic lens and method for obtaining same
JP2023513232A (en) diffractive ophthalmic lens
KR20220103913A (en) Intraocular lenses with extended depth of focus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11821151

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11821151

Country of ref document: EP

Kind code of ref document: A1