WO2012028580A1 - Herbizid wirksame pyridyl-ketosultame - Google Patents

Herbizid wirksame pyridyl-ketosultame Download PDF

Info

Publication number
WO2012028580A1
WO2012028580A1 PCT/EP2011/064821 EP2011064821W WO2012028580A1 WO 2012028580 A1 WO2012028580 A1 WO 2012028580A1 EP 2011064821 W EP2011064821 W EP 2011064821W WO 2012028580 A1 WO2012028580 A1 WO 2012028580A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkyl
substituted
alkoxy
radicals
methyl
Prior art date
Application number
PCT/EP2011/064821
Other languages
English (en)
French (fr)
Inventor
Christian Waldraff
Stefan Lehr
Elmar Gatzweiler
Isolde HÄUSER-HAHN
Ines Heinemann
Christopher Hugh Rosinger
Original Assignee
Bayer Cropscience Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Cropscience Ag filed Critical Bayer Cropscience Ag
Priority to EP11748430.3A priority Critical patent/EP2611815A1/de
Priority to CN2011800528286A priority patent/CN103189382A/zh
Priority to CA2809491A priority patent/CA2809491A1/en
Priority to JP2013526431A priority patent/JP2013540710A/ja
Priority to BR112013005068A priority patent/BR112013005068A2/pt
Publication of WO2012028580A1 publication Critical patent/WO2012028580A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D513/00Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00
    • C07D513/02Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00 in which the condensed system contains two hetero rings
    • C07D513/04Ortho-condensed systems
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/90Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having two or more relevant hetero rings, condensed among themselves or with a common carbocyclic ring system

Definitions

  • the invention relates to the technical field of herbicides, in particular that of herbicides for the selective control of weeds and weeds in
  • WO 2009/063180 A1 describes pyrazinyl-substituted keto-sultam derivatives having herbicidal properties.
  • WO 2010/02931 1 A2 discloses pyrido [2,3-b] pyrazine-6 (5H) -ones having herbicidal properties.
  • WO 2010/049269 A1 mention various heteroaryl-fused pyridinones having herbicidal properties.
  • Ketosultame that are particularly suitable as herbicides.
  • An object of the present invention are pyridyl-substituted Ketosultame the general formula (I) or their salts
  • X 1 , X 2 , X 3 and X 4 independently of one another are each N or CR 1 , where exactly one of these four elements is N, R 1 is hydrogen, (C 1 -C 4 ) -alkyl, (C 1 -C 4 ) - Haloalkyl, halogen, cyano, hydroxy, (C 1 -C 4 ) -alkoxy, (C 1 -C 4 ) -haloalkyoxy, (C 1 -C 4 ) -alkylthio, in each case aryl or heteroaryl substituted by s radicals R 5 ,
  • R 2 represents hydrogen or (C 1 -C 6 ) -alkenyl, (C 2 -C 6 ) -alkenyl, (C 2 -C 6 ) -alkynyl, (C 3 -C 6 ) -cycloalkyl (C 1 -C 6 ) -cycloalkyl, in each case substituted by n halogen atoms) -C) alkoxy- (Ci-C) - alkyl, di- (Ci-C) -alkoxy- (Ci-C) -alkyl, (Ci-C) -alkylthio (Ci-C) -alkyl or (C 3 -C 6 ) - cycloalkyl- (C 1 -C 6 ) -alkyl,
  • R 3 is aryl substituted by t radicals R 6 or s radicals R 6
  • R 5 denotes halogen, cyano, nitro, hydroxy, (C 1 -C 4 ) -alkyl, (C 2 -C 6 ) -alkenyl substituted by n halogen atoms in each case C 3 -C 6) -alkynyl, (C 3 -C 6) cycloalkyl, (Ci C 4) alkoxy (Ci-C 4) alkyl, (Ci-C 4) -alkylcarbonyl or (Ci-C 4 ) alkoxycarbonyl,
  • R 6 is (Ci-C) -alkyl, (C 3 -C 6 ) -cycloalkyl, halogen, cyano, nitro, (Ci-C) - haloalkyl, (Ci-C) -haloalkoxy, (C 3 -C 6 ) Cycloalkyl, (C 1 -C 4) -alkoxy, (C 1 -C 4) -alkoxy- (C 1 -C 4) -alkyl or (C 1 -C 4) -haloalkoxy- (C 1 -C 4) -alkyl,
  • R 7 is in each case substituted by n halogen atoms (C 1 -C 4 ) -alkyl, (C 2 -C 6) -alkenyl, (C 1 -C 4 ) -alkoxy- (C 1 -C 4 ) -alkyl, di- (C 1 -C 4 ) - alkoxy- (C 1 -C 4) -alkyl or (C 1 -C 4) -alkylthio (C 1 -C 4) -alkyl,
  • n radicals from the group consisting of halogen, (Ci-C 4 ) alkyl and (d- C 4 ) alkoxy substituted from 3 to 5 carbon atoms and 1 to 3 heteroatoms from the group oxygen, sulfur and nitrogen,
  • R 8 is in each case substituted by n halogen atoms (C 1 -C 4 ) -alkyl, (C 2 -C 4 ) -alkenyl, (C 1 -C 4 ) -alkoxy- (C 1 -C 4) -alkyl or di (C 1 -C 4) -alkoxy - (Ci-C) -alkyl, or by in each case n radicals from the group consisting of halogen, (Ci-C 4 ) -alkyl and (Ci-C 4 ) - alkoxy substituted (C3-C6) -cycloalkyl, phenyl or benzyl .
  • R 9 , R 10 , R 11 are each independently substituted by n halogen atoms substituted (Ci-C) alkyl, (Ci-C) alkoxy, N- (Ci-C) alkylamino, N, N-di- (Ci -C) -alkylamino, (C 1 -C 4) -alkylthio, (C 2 -C 6 ) -alkenyl or (C 3 -C 6 ) -cycloalkylthio,
  • n radicals from the group consisting of halogen, (C 1 -C 4 ) -alkyl and (C 1 -C 4 ) -alkoxy-substituted phenyl, benzyl, phenoxy or phenylthio,
  • R 12 , R 13 independently of one another are each hydrogen, (C 1 -C 4 ) -alkyl, (C 3 -C 6) -cycloalkyl, (C 2 -C 6) -alkenyl, (C 1 -C 6) -alkoxy or (n-halogen) -substituted by C 1 -C 4 -alkoxy- (C 1 -C 4) -alkyl,
  • R 12 and R 13 together with the N-atom to which they are attached form a 3- to 6-membered ring consisting of 2 to 5 carbon atoms and 0 or 1 oxygen or sulfur atoms,
  • R 14 is in each case by n halogen atoms substituted (Ci-C 4) -alkyl, (C2-C6) - alkenyl, (C 2 -C 6) -alkynyl, (Ci-C) alkoxy (Ci-C) alkyl , (C 1 -C 4) -alkylthio (C 1 -C 4) -alkyl or di (C 1 -C 4) -alkoxy (C 1 -C 4) -alkyl,
  • n radicals from the group consisting of halogen, (Ci-C 4) -alkyl and (Ci-C 4) - alkoxy substituted phenyl, phenyl (Ci-C 4) alkyl, phenoxy (Ci-C 4) - alkyl or heteroaryloxy- (C 1 -C 4 ) -alkyl,
  • L, and M are each independently oxygen or sulfur
  • E is a metal ion equivalent or an ammonium ion, n is 0, 1, 2 or 3, s is 0, 1, 2, 3, 4 or 5, t is 1, 2, 3, 4 or 5.
  • Alkyl is saturated, straight-chain or branched hydrocarbon radicals having 1 to 8 carbon atoms, for example C 1 -C 6 -alkyl, such as methyl, ethyl, propyl, 1-methylethyl, butyl, 1-methyl-propyl, 2-methylpropyl, 1, 1-dimethylethyl, Pentyl, 1-methylbutyl, 2-methylbutyl, 3-methylbutyl, 2,2-dimethylpropyl, 1-ethylpropyl, hexyl, 1, 1-dimethylpropyl, 1, 2-dimethylpropyl, 1-methylpentyl, 2-methylpentyl, 3 Methylpentyl, 4-methylpentyl, 1, 1-dimethylbutyl, 1, 2-dimethylbutyl, 1, 3-dimethylbutyl, 2,2-
  • Haloalkyl means straight-chain or branched alkyl groups having 1 to 8
  • Hydrogen atoms may be replaced by halogen atoms, for example C 1 -C 2 - Haloalkyl such as chloromethyl, bromomethyl, dichloromethyl, trichloromethyl,
  • Alkenyl means unsaturated, straight-chain or branched hydrocarbon radicals having 2 to 8 carbon atoms and a double bond in any position, e.g. C2-C6 alkenyl such as ethenyl, 1-propenyl, 2-propenyl, 1-methylethenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-methyl-1-propenyl, 2-methyl-1-propenyl, 1 - Methyl-2-propenyl, 2-methyl-2-propenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 4-pentenyl, 1-methyl-1-butenyl, 2-methyl-1-butenyl, 3-methyl 1-butenyl, 1-methyl-2-butenyl, 2-methyl-2-butenyl, 3-methyl-2-butenyl, 1-methyl-3-butenyl, 2-methyl-3-butenyl, 3-methyl-3 butenyl, 1, 1-dimethyl-2-propenyl, 1,
  • Alkynyl means straight-chain or branched hydrocarbon radicals having 2 to 8 carbon atoms and a triple bond in any position, for example C 2 -C 6 -alkynyl, such as ethynyl, 1-propynyl, 2-propynyl (or propargyl), 1-butynyl, 2-butynyl, 3 Butynyl, 1-methyl-2-propynyl, 1-pentynyl, 2-pentynyl, 3-pentynyl, 4-pentynyl, 3-methyl 1-butynyl, 1-methyl-2-butynyl, 1-methyl-3-butynyl, 2-methyl-3-butynyl, 1, 1-dimethyl-2-propynyl, 1-ethyl-2-propynyl, 1-hexynyl, 2-hexynyl, 3-hexynyl, 4-hexynyl, 5-hexynyl, 3-methyl-1-pent
  • Alkoxy means saturated, straight or branched alkoxy radicals of 1 to 8 carbon atoms, e.g. C 1 -C 6 -alkoxy, such as methoxy, ethoxy, propoxy, 1 -
  • Methylethoxy butoxy, 1-methylpropoxy, 2-methylpropoxy, 1, 1-dimethylethoxy, pentoxy, 1-methylbutoxy, 2-methylbutoxy, 3-methylbutoxy, 2,2-dimethylpropoxy, 1-ethylpropoxy, hexoxy, 1, 1-dimethylpropoxy, 1, 2-dimethylpropoxy, 1-methylpentoxy,
  • Haloalkoxy means straight-chain or branched alkoxy groups having 1 to 8 carbon atoms (as mentioned above), wherein in these groups some or all of the hydrogen atoms may be replaced by halogen atoms as mentioned above, e.g.
  • C 1 -C 2 -haloalkoxy such as chloromethoxy, bromomethoxy, dichloromethoxy, trichloromethoxy, fluoromethoxy, difluoromethoxy, trifluoromethoxy, chlorofluoromethoxy, dichlorofluoromethoxy, chlorodifluoromethoxy, 1-chloroethoxy, 1-bromoethoxy, 1-fluoroethoxy, 2-fluoroethoxy, 2,2-difluoroethoxy, 2 , 2,2-trifluoroethoxy, 2-chloro-2-fluoroethoxy, 2-chloro, 2-difluoroethoxy, 2,2-dichloro-2-fluoroethoxy, 2,2,2-trichloroethoxy, pentafluoroethoxy and 1,1,1 -Trifluorprop-2-oxy.
  • Alkylthio means saturated, straight-chain or branched alkylthio radicals having 1 to 8 carbon atoms, e.g. C 1 -C 6 -alkylthio, such as methylthio, ethylthio, propylthio, 1-methylethylthio, butylthio, 1-methylpropylthio, 2-methylpropylthio, 1, 1 -
  • Haloalkylthio means straight-chain or branched alkylthio groups having 1 to 8 carbon atoms (as mentioned above), where in these groups some or all of the hydrogen atoms may be replaced by halogen atoms as mentioned above, for example C 1 -C 2 -haloalkylthio, such as chloromethylthio,
  • Heteroaryl is especially 2-furyl, 3-furyl, 2-thienyl, 3-thienyl, 1-pyrrolyl, 2-pyrrolyl, 3-pyrrolyl, 3-isoxazolyl, 4-isoxazolyl, 5-isoxazolyl, 3-isothiazolyl, 4-isothiazolyl , 5-isothiazolyl, 1-pyrazolyl, 3-pyrazolyl, 4-pyrazolyl, 5-pyrazolyl, 2-oxazolyl, 4-oxazolyl, 5-oxazolyl, 2-thiazolyl, 4-thiazolyl, 5-thiazolyl, 1 -imidazolyl, 2 -imidazolyl, 4-imidazolyl, 5-imidazolyl, 1, 2,4-oxadiazol-3-yl, 1, 2,4-oxadiazol-5-yl, 1, 2,4-thiadiazol-3-yl, 1, 2 , 4-thiadiazol-5-yl, 1, 3,4-oxadiazol-2-yl
  • Tetrazol-5-yl indol-1-yl, indol-2-yl, indol-3-yl, isoindol-1-yl, isoindol-2-yl, benzofur-2-yl, benzothiophene-2-yl, benzofuran 3-yl, benzothiophene-3-yl, benzoxazol-2-yl,
  • Benzothiazol-2-yl benzimidazol-2-yl, indazol-1-yl, indazol-2-yl, indazol-3-yl, 2-pyridinyl, 3-pyridinyl, 4-pyridinyl, 3-pyridazinyl, 4-pyridazinyl, 2-pyrimidinyl, 4-pyrimidinyl, 5-pyrimidinyl, 2-pyrazinyl, 1, 3,5-triazin-2-yl, 1, 2,4-triazin-3-yl, 1, 2,4-triazine-5 yl or 1,2,4-triazin-6-yl.
  • this heteroaryl is unsubstituted or in each case mono- or polysubstituted by identical or different substituents by radicals selected from fluorine, chlorine, bromine, iodine, cyano, Hydroxy, mercapto, amino, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, cyclopropyl, 1-chlorocyclopropyl, vinyl, ethynyl, methoxy, ethoxy, isopropoxy, methylthio, ethylthio, Trifluoromethylthio, chlorodifluoromethyl,
  • Ethoxycarbonyl N-methylamino, ⁇ , ⁇ -dimethylamino, N-ethylamino, N, N-diethylamino, aminocarbonyl, methylaminocarbonyl, dimethylaminocarbonyl, dimethylcarbamoylamino, methoxycarbonylamino, methoxycarbonyloxy,
  • Ethoxycarbonylamino ethoxycarbonyloxy, methylsulfamoyl, dimethylsulfamoyl, phenyl or phenoxy.
  • Aryl is phenyl or naphthyl which, unless stated otherwise, is in each case mono- or polysubstituted by identical or different substituents by the radicals indicated in the definition of heteroaryl.
  • the compounds of the formula (I) can be present in different compositions as geometric and / or optical isomers or mixtures of isomers, which can optionally be separated in a customary manner. Both the pure isomers and the mixtures of isomers, their preparation and use and agents containing them are the subject of the present invention. However, in the following, for the sake of simplicity, reference is always made to compounds of the formula (I), although both the pure compounds and optionally also mixtures with different proportions of isomeric compounds are meant.
  • a metal ion equivalent means a metal ion having a positive charge such as Na + , K + , (Mg 2+ ) 1/2 , (Ca 2+ ) 1/2 , MgH + , CaH + , (Al 3+ ) 1/3 (Fe 2+ ) 1/2 or (Fe 3+ ) 1/3 .
  • Halogen means fluorine, chlorine, bromine and iodine. If a group is repeatedly substituted by radicals, it is to be understood that this group is substituted by one or more identical or different radicals.
  • the compounds of the formula (I) have acidic or basic properties and can form salts with inorganic or organic acids or with bases or with metal ions, optionally also internal salts or adducts. If the compounds of the formula (I) bear amino, alkylamino or other basic-property-inducing groups, these compounds can be reacted with acids to form salts or are obtained directly as salts by the synthesis.
  • inorganic acids examples include hydrohalic acids such as
  • Sulfuric acid, phosphoric acid and nitric acid and acid salts such as NaHS0 4 and KHS0 4 .
  • organic acids for example, formic acid,
  • Carbonic acid and alkanoic acids such as acetic acid, trifluoroacetic acid,
  • Trichloroacetic acid and propionic acid as well as glycolic acid, thiocyanic acid, lactic acid, succinic acid, citric acid, benzoic acid, cinnamic acid, oxalic acid,
  • Alkylsulfonklaren sulfonic acids with straight-chain or branched alkyl radicals having 1 to 20 carbon atoms
  • Arylsulfon yarnren or -disulfonTalkren aromatic radicals such as phenyl and naphthyl which carry one or two sulfonic acid groups
  • alkylphosphonic acids phosphonic acids with straight-chain or branched
  • Alkyl radicals having 1 to 20 carbon atoms having 1 to 20 carbon atoms
  • arylphosphonic acids or - diphosphonic acids aromatic radicals such as phenyl and naphthyl which carry one or two phosphonic acid radicals
  • the alkyl or aryl radicals being further
  • the metal ions are in particular the ions of the elements of the second
  • Main group especially calcium and magnesium
  • Main group especially aluminum, tin and lead, as well as the first to eighth Subgroup, in particular chromium, manganese, iron, cobalt, nickel, copper, zinc and others into consideration.
  • the metals can be different in them
  • bases are, for example, hydroxides, carbonates, bicarbonates of the alkali metals and alkaline earth metals, in particular those of sodium, potassium, magnesium and calcium, furthermore ammonia, primary, secondary and tertiary amines with (C 1 -C 4 ) -alkyl groups, mono-, , Di- and
  • the compounds of the general formula (I) can exist as stereoisomers.
  • stereoisomers can be obtained from the mixtures obtained in the preparation by customary separation methods, for example by chromatographic separation methods.
  • stereoisomers can be selectively prepared by using stereoselective reactions using optically active sources and / or adjuvants.
  • the invention also relates to all stereoisomers and mixtures thereof which include but are not specifically defined by the general formula (I). In all of the formulas below, the substituents and symbols, unless otherwise defined, have the same meaning as described for formula (I).
  • X 4 is N, R 1 is hydrogen,
  • R 2 is 2,2-difluoroethyl, 2,2,2-trifluoroetyl, allyl or propynyl,
  • R 3 represents phenyl substituted by 1, 2 or 3 radicals R 6 ,
  • R 8 is (C 1 -C 4 ) -alkyl
  • R 12 , R 13 are each (C 1 -C 4) -alkyl
  • L is oxygen
  • M is sulfur.
  • R 6 is fluorine, chlorine, bromine, iodine, methyl, trifluoromethyl, methoxy, nitro or cyano,
  • R 8 is (C 1 -C 4 ) -alkyl
  • R 12 , R 13 are each (Ci-C) -alkyl
  • L is oxygen
  • M is sulfur
  • R 1 is hydrogen
  • R 2 is 2,2-difluoroethyl, 2,2,2-trifluoroetyl, allyl or propynyl,
  • R 3 represents phenyl substituted by 1, 2 or 3 radicals R 6 ,
  • R 1 is hydrogen
  • R 2 is 2,2-difluoroethyl, 2,2,2-trifluoroethyl, allyl or propynyl
  • R 3 is phenyl substituted by 1, 2 or 3 radicals R 6 ,
  • R 6 is fluorine, chlorine, bromine, iodine, methyl, trifluoromethyl, methoxy, nitro or cyano,
  • R 8 is (C 1 -C 4) -alkyl
  • R 12 , R 13 are each (Ci-C) -alkyl
  • L means oxygen
  • M means sulfur
  • X 1 , X 2 and X 3 are each CR 1 ,
  • X 4 is N, R 1 is hydrogen, R 2 is 2, 2-difluoroethyl,
  • R 3 is phenyl which is substituted by 1, 2 or 3 radicals R 6 , R 4 is hydrogen, C (LL) MR 8 or C (LL) NR 12 R 13 ,
  • R 6 is fluorine, chlorine, bromine, iodine, methyl, trifluoromethyl, methoxy, nitro or cyano,
  • R 8 is methyl, ethyl or iso-propyl
  • R 12 , R 13 are each methyl
  • L is oxygen
  • M is sulfur
  • carboxylic acid or sulfonic anhydride be used derivatives of R 4 .
  • the reactions are preferably in the presence of a base, such as pyridine, 4-dimethyl-aminopyridine, N, N-diisopropyl-N-ethylamine, potassium carbonate or cesium carbonate in suitable solvents, such as.
  • a base such as pyridine, 4-dimethyl-aminopyridine, N, N-diisopropyl-N-ethylamine, potassium carbonate or cesium carbonate
  • suitable solvents such as.
  • acetonitrile or dichloromethane at temperatures ranging from -20 ° C to the boiling point of the solvent, optionally also carried out with the aid of microwave radiation.
  • Carboxylic acid halides of the formula Hal-CO-R 7 or with carboxylic anhydrides of the formula R 7 -CO-0-CO-R 7 are prepared.
  • R is E
  • metal compounds of the formula Met (OR 15 ) t or with amines In this Met means a monovalent or divalent metal ion, preferably an alkali metal or alkaline earth metal such as lithium, sodium, potassium, magnesium or calcium.
  • the subscript t is 1 or 2.
  • R 15 is (C 1 -C 4 ) -alkyl, preferably methyl, ethyl or t-butyl.
  • An ammonium ion denotes the group NH 4 + or R 16 R 17 R 18 R 19 N + , in which R 16 , R 17 , R 18 and R 19 independently of one another are preferably (C 1 -C 4) -alkyl, hydroxy- (C 1 -C 4) alkyl, (Ci-C) alkoxy (Ci-C) alkyl or benzyl mean.
  • the reactions are preferably in the presence of a base such as pyridine, 4-dimethyl-aminopyridine, triethylamine, N, N-diisopropyl-N-ethylamine, potassium carbonate or cesium carbonate in suitable solvents, such.
  • a base such as pyridine, 4-dimethyl-aminopyridine, triethylamine, N, N-diisopropyl-N-ethylamine, potassium carbonate or cesium carbonate
  • suitable solvents such as acetonitrile or
  • Temperatures in the range of -20 ° C to the boiling point of the solvent possibly also carried out using microwave radiation.
  • Triethylamine or pyridine in suitable solvents e.g. Acetonitrile or
  • Dichloromethane at temperatures in the range of -20 ° C to the boiling point of the solvent possibly also be produced using microwave radiation.
  • Collections of compounds of formula (I) and / or their salts, which may be synthesized following the above reactions, may also be prepared in a parallelized manner, which may be done in a manual, partially automated or fully automated manner. It is possible, for example, to automate the reaction procedure, the work-up or the purification of the products or intermediates. Overall, this is understood to mean a procedure as described, for example, by D. Tiebes in Combinatorial Chemistry - Synthesis, Analysis, Screening (publisher Günther Jung), Verlag Wiley 1999, on pages 1 to 34.
  • accumulating intermediates are, inter alia, chromatography equipment available, for example, the company ISCO, Inc., 4700 Superior Street, Lincoln, NE 68504, USA.
  • the listed equipment leads to a modular procedure, in which the individual work steps are automated, but between the work steps, manual operations must be performed.
  • This can be circumvented by the use of partially or fully integrated automation systems in which the respective automation modules are operated, for example, by robots.
  • Such automation systems can be obtained, for example, from Caliper, Hopkinton, MA 01748, USA.
  • the implementation of single or multiple synthetic steps can be supported by the use of polymer-supported reagents / Scavanger resins.
  • a number of experimental protocols are described in the literature, for example in ChemFiles, Vol. 1, Polymer-Supported Scavengers and Reagents for Solution Phase Synthesis (Sigma-Aldrich).
  • the preparation according to the methods described herein provides compounds of formula (I) and their salts in the form of substance collections called libraries.
  • the present invention also provides libraries containing at least two compounds of formula (I) and their salts.
  • the compounds of the formula (I) according to the invention (and / or their salts), hereinafter collectively referred to as "compounds of the invention" have an excellent herbicidal activity against a broad spectrum
  • Root sticks or other permanent organs are well detected by the active ingredients.
  • the present invention therefore also provides a process for
  • Compound (s) of the invention are applied to the plants (e.g., weeds such as monocotyledonous or dicotyledonous weeds or undesired crops), the seeds (e.g.
  • the compounds of the invention may be e.g. in Vorsaat- (possibly also by incorporation into the soil), pre-emergence or
  • Crops harmful weed competition is eliminated very early and sustainably.
  • the compounds of the invention have excellent herbicidal activity against mono- and dicotyledonous weeds
  • Crops of economically important crops e.g. dicotyledonous cultures of the genera Arachis, Beta, Brassica, Cucumis, Cucurbita, Helianthus, Daucus, Glycine, Gossypium, Ipomoea, Lactuca, Linum, Lycopersicon, Nicotiana, Phaseolus, Pisum, Solanum, Vicia, or monocotyledonous cultures of the genera Allium, Pineapple, Asparagus , Avena, Hordeum, Oryza, Panicum, Saccharum, Seeal, Sorghum, Triticale, Triticum, Zea, in particular Zea and Triticum, depending on the structure of the respective compound of the invention and their application rate only insignificantly or not at all damaged.
  • the present compounds are very well suited for the selective control of undesired plant growth in crops such as agricultural crops or ornamental plants.
  • the compounds according to the invention (depending on their respective structure and the applied application rate) have excellent growth-regulatory properties in crop plants. They regulate the plant's metabolism and can thus be used to specifically influence plant constituents and facilitate harvesting, such as be used by triggering desiccation and stunted growth.
  • they are also suitable for the general control and inhibition of undesirable vegetative growth, without killing the plants. Inhibition of vegetative growth plays an important role in many monocotyledonous and dicotyledonous crops, since, for example, storage formation can thereby be reduced or completely prevented.
  • the active compounds can also be used for controlling harmful plants in crops of known or yet to be developed genetically modified plants.
  • the transgenic plants are usually characterized by particular advantageous properties, for example by resistance to certain pesticides, especially certain herbicides, resistance against plant diseases or pathogens of plant diseases such as certain insects or microorganisms such as fungi, bacteria or viruses.
  • transgenic plants with increased starch content or altered quality of the starch or those with other fatty acid composition of the crop are known.
  • Other particular properties may include tolerance or resistance to abiotic stressors, e.g. Heat, cold, drought, salt and ultraviolet radiation are present.
  • abiotic stressors e.g. Heat, cold, drought, salt and ultraviolet radiation are present.
  • cereals such as wheat, barley, rye, oats, millet, rice, manioc and maize or also crops of sugar beet, cotton, soya, rapeseed, potato, tomato, pea and other vegetables.
  • Crop plants are used, which are resistant to the phytotoxic effects of herbicides or have been made genetically resistant.
  • Glufosinate cf., for example, EP 0242236 A, EP 0242246 A
  • glyphosate WO 92/000377 A
  • sulfonylureas EP 0257993 A, US 5,013,659
  • gene stacking resistant such as transgenic crops such as corn or soybean with the trade name or the name Optimum TM GAT TM (Glyphosate ALS Tolerant).
  • Transgenic crops such as cotton, with the ability to produce Bacillus thuringiensis toxins (Bt toxins), which make the plants resistant to certain pests (EP 0142924 A, EP 0193259 A).
  • Bacillus thuringiensis toxins Bacillus thuringiensis toxins
  • transgenic crops characterized by a combination of e.g. the o. g. characterize new properties ("gene stacking")
  • nucleic acid molecules can be introduced into plasmids that allow mutagenesis or sequence alteration by recombination of DNA sequences.
  • Standard procedures can, for example, carry out base exchanges, partial sequences removed or natural or synthetic sequences are added.
  • adapters or linkers can be attached to the fragments, see eg Sambrook et al., 1989, Molecular Cloning, A Laboratory Manual, 2nd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY; or Winnacker "Genes and Clones", VCH Weinheim 2nd edition 1996
  • Gene product can be obtained, for example, by the expression of at least one corresponding antisense RNA, a sense RNA to obtain a
  • Cosuppressions canes or the expression of at least one appropriately engineered ribozyme, specifically transcripts of the above
  • DNA molecules may be used which comprise the entire coding sequence of a gene product, including any flanking sequences that may be present, as well as DNA molecules which comprise only parts of the coding sequence, which parts must be long enough to be present in the cells to cause an antisense effect. Also possible is the use of DNA sequences encoding a high degree of homology to the ones
  • the synthesized protein may be located in any compartment of the plant cell.
  • the coding region can be linked to DNA sequences that ensure localization in a particular compartment.
  • sequences are known to those of skill in the art (see, for example, Braun et al., EMBO J. 11 (1992), 3219-3227; Wolter et al., Proc. Natl. Acad., U.S.A. 85 (1988), 846-850; Sonnewald et al., Plant J. 1 (1991), 95-106).
  • the expression of the nucleic acid molecules can also take place in the organelles of the plant cells.
  • the transgenic plant cells can be regenerated to whole plants by known techniques.
  • the transgenic plants may in principle be plants of any plant species, ie both monocotyledonous and dicotyledonous plants.
  • transgenic plants are available, the altered properties by
  • the compounds (I) according to the invention can be used in transgenic cultures which are resistant to growth factors, such as e.g. 2,4 D, dicamba or against herbicides containing essential plant enzymes, e.g. Acetolactate synthases (ALS), EPSP synthases, glutamine synthases (GS) or Hydoxyphenylpyruvat Dioxygenases (HPPD) inhibit or resistant to herbicides from the group of sulfonylureas, the glyphosate, glufosinate or Benzoylisoxazole and analogues, or against any combination of these agents resistant.
  • growth factors such as e.g. 2,4 D, dicamba or against herbicides containing essential plant enzymes, e.g. Acetolactate synthases (ALS), EPSP synthases, glutamine synthases (GS) or Hydoxyphenylpyruvat Dioxygenases (HPPD) inhibit or resistant to herbicides from the group of sulfon
  • the compounds according to the invention can particularly preferably be used in transgenic crop plants which are resistant to a combination of glyphosates and glufosinates, glyphosates and sulfonylureas or imidazolinones. Most preferably, the compounds of the invention in transgenic crops such. As corn or soybean with the trade name or the name Optimum TM GAT TM (Glyphosate ALS Tolerant) are used.
  • Harmful plants often have effects that are specific for application in the particular transgenic culture, such as altered or specially extended weed spectrum that can be controlled
  • the invention therefore also relates to the use of
  • the compounds of the invention may be in the form of wettable powders, emulsifiable concentrates, sprayable solutions, dusts or
  • Granules are used in the usual preparations.
  • the invention therefore also relates to herbicidal and plant growth-regulating agents which contain the compounds according to the invention.
  • the compounds according to the invention can be formulated in various ways, depending on which biological and / or chemical-physical parameters are predetermined. As formulation options come
  • wettable powder WP
  • water-soluble powder SP
  • EC emulsifiable concentrates
  • EW emulsions
  • SC Suspension concentrates
  • CS capsule suspensions
  • DP dusts
  • mordants granules for litter and soil application
  • granules GR
  • WG water-dispersible granules
  • SG water-soluble granules
  • the necessary formulation auxiliaries such as inert materials, surfactants,
  • Solvents and other additives are also known and are described, for example, in: Watkins, "Handbook of Insecticides Dust Diluents and Carriers, 2nd Ed., Darland Books, Caldwell NJ, Hv Olphen, "Introduction to Clay Colloid Chemistry", 2nd Ed., J. Wiley & Sons, NY, C. Marsden, “Solvent Guide”, 2nd Ed., Interscience , NY 1963, McCutcheon's "Detergents and Emulsifiers
  • Fungicides as well as with safeners, fertilizers and / or growth regulators, e.g. in the form of a ready-made formulation or as a tank mix.
  • Suitable safeners are, for example, mefenpyr-diethyl, cyprosulfamide, isoxadifen-ethyl, cloquintocet-mexyl and dichloromide.
  • Injectable powders are preparations which are uniformly dispersible in water and contain surfactants of the ionic and / or nonionic type (wetting agents, dispersants) in addition to the active ingredient except a diluent or inert substance.
  • surfactants of the ionic and / or nonionic type wetting agents, dispersants
  • the herbicidal active ingredients are finely ground, for example, in conventional apparatus such as hammer mills, blower mills and air-jet mills and simultaneously or subsequently with the
  • Formulation aids mixed.
  • Emulsifiable concentrates are made by dissolving the active ingredient in one
  • organic solvents such as butanol, cyclohexanone, dimethylformamide, xylene or higher-boiling aromatics or hydrocarbons or mixtures of organic solvents with the addition of one or more surfactants ionic and / or nonionic type (emulsifiers) produced.
  • surfactants ionic and / or nonionic type (emulsifiers) produced.
  • suitable emulsifiers are: alkylarylsulfonic acid calcium salts such as calcium dodecylbenzenesulfonate or nonionic emulsifiers such as
  • Fatty acid polyglycol esters alkylaryl polyglycol ethers, fatty alcohol polyglycol ethers, propylene oxide-ethylene oxide condensation products, alkyl polyethers, sorbitan esters such as e.g. Sorbitan fatty acid esters or polyoxethylenesorbitan esters such as e.g.
  • Dusts are obtained by milling the active ingredient with finely divided solids, e.g. Talc, natural clays such as kaolin, bentonite and pyrophyllite, or diatomaceous earth.
  • finely divided solids e.g. Talc, natural clays such as kaolin, bentonite and pyrophyllite, or diatomaceous earth.
  • Suspension concentrates may be water or oil based. They can be prepared, for example, by wet grinding using commercially available bead mills and, if appropriate, addition of surfactants, as described, for example, in US Pat. upstairs with the others
  • Emulsions e.g. Oil-in-water emulsions (EW) can be prepared, for example, by means of stirrers, colloid mills and / or static mixers using aqueous organic solvents and optionally surfactants, as described e.g. listed above for the other formulation types.
  • EW Oil-in-water emulsions
  • Granules can be prepared either by spraying the active ingredient on adsorptive, granulated inert material or by applying
  • Active substance concentrates by means of adhesives, e.g. Polyvinyl alcohol, polyacrylic acid sodium or mineral oils, on the surface of carriers such as sand, kaolinites or granulated inert material. It is also possible to granulate suitable active ingredients in the manner customary for the production of fertilizer granules, if desired in admixture with fertilizers.
  • adhesives e.g. Polyvinyl alcohol, polyacrylic acid sodium or mineral oils
  • carriers such as sand, kaolinites or granulated inert material. It is also possible to granulate suitable active ingredients in the manner customary for the production of fertilizer granules, if desired in admixture with fertilizers.
  • Water-dispersible granules are usually by the usual methods such as spray drying, fluidized bed granulation, plate granulation, mixing with High-speed mixers and extrusion produced without solid inert material.
  • the agrochemical preparations generally contain from 0.1 to 99% by weight, in particular from 0.1 to 95% by weight, of compounds according to the invention.
  • the drug concentration is e.g. about 10 to 90 wt .-%, the balance to 100 wt .-% consists of conventional formulation ingredients.
  • the active ingredient concentration may be about 1 to 90, preferably 5 to 80 wt .-%.
  • Dust-like formulations contain 1 to 30 wt .-% of active ingredient, preferably usually 5 to 20 wt .-% of active ingredient, sprayable solutions contain about 0.05 to 80, preferably 2 to 50 wt .-% of active ingredient.
  • the active ingredient content depends, in part, on whether the active compound is liquid or solid and which
  • Granulation aids, fillers, etc. are used. In the water
  • the content of active ingredient is for example between 1 and 95 wt .-%, preferably between 10 and 80 wt .-%.
  • the above-mentioned active ingredient formulations optionally contain the customary adhesive, wetting, dispersing, emulsifying, penetrating, preserving, antifreeze and solvent, fillers, carriers and dyes, antifoams,
  • Pesticide-active substances such as insecticides, acaricides, herbicides, fungicides, and with safeners, fertilizers and / or growth regulators produce, for example in the form of a ready-made formulation or as a tank mix.
  • Pesticide-active substances such as insecticides, acaricides, herbicides, fungicides, and with safeners, fertilizers and / or growth regulators produce, for example in the form of a ready-made formulation or as a tank mix.
  • Active substances which are based on an inhibition of, for example, acetolactate synthase, acetyl-CoA carboxylase, cellulose synthase, enolpyruvylshikimate-3-phosphate synthase, glutamine synthetase, p-hydroxyphenylpyruvate dioxygenase, phytoene desaturase, photosystem I, photosystem II, protoporphyrinogen Oxidase based, can be used, as for example from Weed Research 26 (1986) 441-445 or "The Pesticide Manual", 15th edition, The British Crop Protection Council and the Royal Soc. of Chemistry, 2009 and cited therein.
  • herbicides or plant growth regulators which can be combined with the compounds according to the invention are e.g. to name the following active ingredients (the
  • Bicyclopyrone Bifenox, Bilanafos, Bilanafos Sodium, Bispyribac, Bispyribac Sodium, Bromacil, Bromobutide, Bromofenoxime, Bromoxynil, Bromuron, Buminafos,
  • Chlorofluorol-methyl Chloridazon, Chlorimuron, Chlorimuron-ethyl, Chlormequat-chloride, Chloronitrofen, Chlorophthalim, Chlorthal-dimethyl, Chlorotoluron,
  • Clodinafop Clodinafop-propargyl, Clofenacet, Clomazone, Clomeprop, Cloprop, Clopyralid, Cloransulam, Cloransulam-methyl, Cumyluron, Cyanamide, Cyanazine, Cyclanilide, Cycloate, Cyclosulfamuron, Cycloxydim, Cycluron, Cyhalofop,
  • Cyhalofop-butyl Cyperquat, Cyprazine, Cyprazole, 2,4-D, 2,4-DB,
  • Fluorodifene Fluorodifene, fluoroglycofen, fluoroglycofen-ethyl, flupoxam, flupropacil,
  • Indoleacetic acid (IAA), 4-indol-3-yl-butyric acid (IBA), iodosulfuron, iodosulfuron-methyl-sodium, loxynil, isoparbazone, isocarbamide, isopropalin, isoproturon, isourone, isoxaben, isoxachlorotole, isoxaflutole, isoxapyrifop, KUH-043, d. H.
  • Pelargonic acid nonanoic acid
  • pendimethalin pendimethalin
  • pendralin penoxsulam
  • pentanochlor pentoxazone
  • pentoxazone pentoxazone
  • perfluidone pethoxamide
  • phenisopham phenmedipham
  • TCA trichloroacetic acid
  • the formulations present in commercial form are optionally diluted in a customary manner, e.g. for wettable powders, emulsifiable concentrates, dispersions and water-dispersible granules by means of water. Dust-like preparations, ground or scattered granules and sprayable solutions are usually no longer diluted with other inert substances before use.
  • herbicides used i.a. varies the required application rate of
  • reaction mixture is stirred for 8 h at 60 ° C, the reaction mixture is stirred at RT overnight, then at 60 ° C for a further 8h. Then the reaction mixture is evaporated in dryness. The residue is taken up in ethyl acetate and purified by column chromatography (S1O2, eluent:
  • Methyl 2 - nicotinate [(2,2-difluoroethyl) ⁇ [2- (trifluoromethyl) benzyl] sulfonyl ⁇ amino]
  • Methyl 2 - ⁇ [(2-chlorobenzyl) sulfonyl] amino ⁇ nicotinate (Compound 11a-3)
  • a dust is obtained by mixing 10 parts by weight of a compound of general formula (I) and 90 parts by weight of talc as an inert material and comminuting in a hammer mill.
  • a wettable powder easily dispersible in water is obtained by mixing 25 parts by weight of a compound of the general formula (I), 64 parts by weight of kaolin-containing quartz as an inert substance, 10 parts by weight of potassium lignosulfonate and 1 part by weight of sodium oleoylmethyltaurate as wetting and dispersing agent, and grinded in a pin mill. 3. Dispersion concentrate
  • a water-dispersible dispersion concentrate is obtained by adding 20 parts by weight of a compound of the general formula (I), 6 parts by weight Alkylphenol polyglycol ether ( ⁇ Triton X 207), 3 parts by weight
  • Isotridecanol polyglycol ether (8 EO) and 71 parts by weight paraffinic mineral oil (boiling range, for example, about 255 to about 277 ° C) mixed and ground in a ball mill to a fineness of less than 5 microns.
  • An emulsifiable concentrate is obtained from 15 parts by weight of a compound of general formula (I), 75 parts by weight of cyclohexanone as solvent and 10 parts by weight of ethoxylated nonylphenol as emulsifier.
  • a water-dispersible granule is obtained by
  • a water-dispersible granule is also obtained by
  • Monocotyledonous and dicotyledonous weed plants are placed in sandy loam soil in pots from 9 to 13 cm in diameter and covered with soil.
  • the formulated as emulsifiable concentrates or dusts herbicides are in the form of aqueous dispersions or suspensions or
  • Emulsions with a water application amount of the equivalent of 300 to 800l / ha applied in different dosages on the surface of the cover soil Emulsions with a water application amount of the equivalent of 300 to 800l / ha applied in different dosages on the surface of the cover soil.
  • the pots are kept in optimal conditions for further cultivation of the plants in the greenhouse.
  • the effect of the compounds of the invention is determined by optical Bonitur.
  • Seeds of monocotyledonous and dicotyledonous weeds are placed in sandy loam soil in cardboard pots, covered with soil and grown in the greenhouse under good growth conditions. Two to three weeks after sowing, the test plants are treated in a trefoil study.
  • the compounds of the invention formulated as wettable powders or as emulsion concentrates are sprayed onto the surface of the green parts of the plant at a rate of 600 to 800 l / ha of water. After 3 to 4 weeks of life of the test plants in the greenhouse under optimal growth conditions, the effect of the compounds of the invention is determined by optical Bonitur.
  • the compounds of No. 1a-1, la-2 and lb-4 at an application rate of 1280 grams per hectare each show at least 80% activity against Matricaria inodora, Veronica persica and Stellaria media.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Plant Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Agronomy & Crop Science (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
  • Pyridine Compounds (AREA)

Abstract

Es werden Herbizid wirksame Pyridyl-Ketosultame der allgemeinen Formel (I) und ihre Verwendung als Herbizide beschrieben. In dieser Formel (I) stehen X1, X2, X3 und X4 jeweils für N oder C-R1. R1, R2, R3 und R4 stehen für für Reste wie Wasserstoff und organische Reste wie Alkyl.

Description

Beschreibung
Herbizid wirksame Pyridyl-Ketosultame
Die Erfindung betrifft das technische Gebiet der Herbizide, insbesondere das der Herbizide zur selektiven Bekämpfung von Unkräutern und Ungräsern in
Nutzpflanzenkulturen.
WO 2009/063180 A1 beschreibt pyrazinyl-substituierte Ketosultam-Derivate mit herbiziden Eigenschaften. WO 2010/02931 1 A2 offenbart Pyrido[2,3-b]pyrazin- 6(5H)-one mit herbiziden Eigenschaften. WO 2009/090401 A2 und
WO 2010/049269 A1 nennen verschiedene heteroaryl-kondensierte Pyridinone mit herbiziden Eigenschaften.
Die dort beschriebenen Verbindungen zeigen jedoch häufig eine nicht ausreichende herbizide Wirksamkeit und/oder eine nicht ausreichende Selektivität in
Nutzpflanzenkulturen.
Es wurden pyridyl-substituierte Ketosultame gefunden, die besonders gut als Herbizide geeignet sind. Ein Gegenstand der vorliegenden Erfindung sind pyridyl-substituierte Ketosultame der allgemeinen Formel (I) oder deren Salze
(I)
Figure imgf000002_0001
worin
X1, X2, X3 und X4 bedeuten unabhängig voneinander jeweils N oder C-R1, wobei genau eines dieser vier Elemente N bedeutet, R1 bedeutet Wasserstoff, (Ci-C4)-Alkyl, (Ci-C4)-Haloalkyl, Halogen, Cyano, Hydroxy, (Ci-C4)-Alkyoxy, (Ci-C4)-Haloalkyoxy, (Ci-C4)-Alkylthio, jeweils durch s Reste R5 substituiertes Aryl oder Heteroaryl,
R2 bedeutet Wasserstoff oder jeweils durch n Halogenatome substituiertes (d- C )-Alkyl, (C2-C6)-Alkenyl, (C2-C6)-Alkinyl, (C3-C6)-Cycloalkyl, (Ci-C )-Alkoxy-(Ci-C )- alkyl, Di-(Ci-C )-alkoxy-(Ci-C )-alkyl, (Ci-C )-Alkylthio-(Ci-C )-alkyl oder (C3-C6)- Cycloalkyl-(Ci-C6)-alkyl,
R3 bedeutet durch t Reste R6 substituiertes Aryl oder durch s Reste R6
substituiertes Heteroaryl,
R4 bedeutet Wasserstoff, C(=0)R7, C(=L)MR8, S02R9, P(=L)R10R11,
C(=L)NR12R13, E oder R14, R5 bedeutet Halogen, Cyano, Nitro, Hydroxy, jeweils durch n Halogenatome substituiertes (Ci-C )-Alkyl, (C2-C6)-Alkenyl, (C3-C6)-Alkinyl, (C3-C6)-Cycloalkyl, (Ci- C4)-Alkoxy-(Ci-C4)-alkyl, (Ci-C4)-Alkylcarbonyl oder (Ci-C4)-Alkoxycarbonyl,
R6 bedeutet (Ci-C )-Alkyl, (C3-C6)-Cycloalkyl, Halogen, Cyano, Nitro, (Ci-C )- Haloalkyl, (Ci-C )-Haloalkoxy, (C3-C6)-Cycloalkyl, (Ci-C )-Alkoxy, (Ci-C )-Alkoxy - (Ci-C )-alkyl oder (Ci-C )-Haloalkoxy-(Ci-C )-alkyl,
R7 bedeutet jeweils durch n Halogenatome substituiertes (Ci-C4)-Alkyl, (C2-Ce)- Alkenyl, (Ci-C )-Alkoxy-(Ci-C )-alkyl, Di-(Ci-C )-alkoxy-(Ci-C )-alkyl oder (Ci-C )- Alkylthio-(Ci-C )-alkyl,
einen durch n Reste aus der Gruppe bestehend aus Halogen, (Ci-C4)-Alkyl und (d- C4)-Alkoxy substituierten, vollständig gesättigten, 3- bis 6-gliedrigen Ring bestehend aus 3 bis 5 Kohlenstoffatomen und 1 bis 3 Heteroatomen aus der Gruppe Sauerstoff, Schwefel und Stickstoff,
oder jeweils durch n Reste aus der Gruppe bestehend aus Halogen, (Ci-C4)-Alkyl und (Ci-C4)-Alkoxy substituiertes (C3-C6)-Cycloalkyl, Phenyl, Phenyl-(Ci-C4)-alkyl, Phenoxy-(Ci-C4)-alkyl oder Heteroaryloxy-(Ci-C4)-alkyl,
R8 bedeutet jeweils durch n Halogenatome substituiertes (Ci-C4)-Alkyl, (C2-C4)- Alkenyl, (Ci-C )-Alkoxy-(Ci-C )-alkyl oder Di-(Ci-C )-alkoxy-(Ci-C )-alkyl, oder durch jeweils n Reste aus der Gruppe bestehend aus Halogen, (Ci-C4)-Alkyl und (Ci-C4)- Alkoxy substituiertes (C3-C6)-Cycloalkyl, Phenyl oder Benzyl,
R9, R10, R11 bedeuten unabhängig voneinander jeweils durch n Halogenatome substituiertes (Ci-C )-Alkyl, (Ci-C )-Alkoxy, N-(Ci-C )-Alkylamino, N,N-Di-(Ci-C )- Alkylamino, (Ci-C )-Alkylthio, (C2-C )-Alkenyl oder (C3-C6)-Cycloalkylthio,
oder jeweils durch n Reste aus der Gruppe bestehend aus Halogen, (Ci-C4)-Alkyl und (Ci-C4)-Alkoxy substituiertes Phenyl, Benzyl, Phenoxy oder Phenylthio,
R12, R13 bedeuten unabhängig voneinander jeweils Wasserstoff, jeweils durch n Halogenatome substituiertes (Ci-C4)-Alkyl, (C3-C6)-Cycloalkyl, (C2-Ce)-Alkenyl, (d- C )-Alkoxy oder (Ci-C )-Alkoxy-(Ci-C )-alkyl,
durch jeweils n Reste aus der Gruppe bestehend aus Halogen, (Ci-C4)-Alkyl und (Ci-C4)-Alkoxy substituiertes Phenyl oder Benzyl,
oder R12 und R13 bilden gemeinsam mit dem N-Atom, an das sie gebunden sind, einen 3- bis 6-gliedrigen Ring bestehend 2 bis 5 Kohlenstoffatomen und 0 oder 1 Sauerstoff- oder Schwefelatome,
R14 bedeutet jeweils durch n Halogenatome substituiertes (Ci-C4)-Alkyl, (C2-C6)- Alkenyl, (C2-C6)-Alkinyl, (Ci-C )-Alkoxy-(Ci-C )-alkyl, (Ci-C )-Alkylthio-(Ci-C )-alkyl oder Di-(Ci-C )-alkoxy-(Ci-C )-alkyl,
jeweils durch n Reste aus der Gruppe bestehend aus Halogen, (Ci-C4)-Alkyl und (Ci-C4)-Alkoxy substituiertes (C3-C6)-Cycloalkyl, einen durch n Reste aus der Gruppe bestehend aus Halogen, (Ci-C4)-Alkyl und (d- C4)-Alkoxy substituierten, vollständig gesättigten, 3- bis 6-gliedrigen Ring bestehend aus 3 bis 5 Kohlenstoffatomen und 1 bis 3 Heteroatomen aus der Gruppe Sauerstoff, Schwefel und Stickstoff,
durch n Reste aus der Gruppe bestehend aus Halogen, (Ci-C4)-Alkyl und (Ci-C4)- Alkoxy substituiertes Phenyl, Phenyl-(Ci-C4)-alkyl, Phenoxy-(Ci-C4)-alkyl oder Heteroaryloxy-(Ci-C4)-alkyl,
L, und M bedeuten unabhängig voneinander jeweils Sauerstoff oder Schwefel,
E bedeutet ein Metallionäquivalent oder ein Ammoniumion, n bedeutet 0, 1 , 2 oder 3, s bedeutet 0, 1 , 2, 3, 4 oder 5, t bedeutet 1 , 2, 3, 4 oder 5.
Alkyl bedeutet gesättigte, geradkettige oder verzweigte Kohlenwasserstoffreste mit 1 bis 8 Kohlenstoffatomen, z.B. Ci-C6-Alkyl wie Methyl, Ethyl, Propyl, 1 -Methylethyl, Butyl, 1 -Methyl-propyl, 2-Methylpropyl, 1 ,1 -Dimethylethyl, Pentyl, 1 -Methylbutyl, 2- Methylbutyl, 3-Methylbutyl, 2,2-Di-methylpropyl, 1 -Ethylpropyl, Hexyl, 1 , 1 - Dimethylpropyl, 1 ,2-Dimethylpropyl, 1 -Methylpentyl, 2-Methylpentyl, 3-Methylpentyl, 4-Methylpentyl, 1 ,1 -Dimethylbutyl, 1 ,2-Dimethylbutyl, 1 ,3-Dimethylbutyl, 2,2-
Dimethylbutyl, 2,3-Dimethylbutyl, 3,3-Dimethylbutyl, 1 -Ethylbutyl, 2-Ethylbutyl, 1 , 1 ,2- Trimethylpropyl, 1 ,2,2-Trimethylpropyl, 1 -Ethyl-1 -methylpropyl und 1 -Ethyl-2-methyl- propyl. Halogenalkyl bedeutet geradkettige oder verzweigte Alkylgruppen mit 1 bis 8
Kohlenstoffatomen, wobei in diesen Gruppen teilweise oder vollständig die
Wasserstoffatome durch Halogenatome ersetzt sein können, z.B. C1-C2- Halogenalkyl wie Chlormethyl, Brommethyl, Dichlormethyl, Trichlormethyl,
Fluormethyl, Difluormethyl, Trifluormethyl, Chlorfluormethyl, Dichlorfluormethyl, Chlordifluormethyl, 1 -Chlorethyl, 1 -Bromethyl, 1 -Fluorethyl, 2-Fluorethyl, 2,2- Difluorethyl, 2,2,2-Trifluorethyl, 2-Chlor-2-fluorethyl, 2-Chlor,2-difluorethyl, 2,2- Dichlor-2-fluorethyl, 2,2,2-Trichlorethyl, Pentafluorethyl und 1 , 1 , 1 -Trifluorprop-2-yl.
Alkenyl bedeutet ungesättigte, geradkettige oder verzweigte Kohlenwasserstoffreste mit 2 bis 8 Kohlenstoffatomen und einer Doppelbindung in einer beliebigen Position, z.B. C2-C6-Alkenyl wie Ethenyl, 1 -Propenyl, 2-Propenyl, 1 -Methylethenyl, 1 -Butenyl, 2-Butenyl, 3-Butenyl, 1 -Methyl-1 -propenyl, 2-Methyl-1 -propenyl, 1 -Methyl-2- propenyl, 2-Methyl-2-propenyl, 1 -Pentenyl, 2-Pentenyl, 3-Pentenyl, 4-Pentenyl, 1 - Methyl-1 -butenyl, 2-Methyl-1 -butenyl, 3-Methyl-1 -butenyl, 1 -Methyl-2-butenyl, 2- Methyl-2-butenyl, 3-Methyl-2-butenyl, 1 -Methyl-3-butenyl, 2-Methyl-3-butenyl, 3- Methyl-3-butenyl, 1 , 1 -Dimethyl-2-propenyl, 1 ,2-Dimethyl-1 -propenyl, 1 ,2-Dimethyl-2- propenyl, 1 -Ethyl-1 -propenyl, 1 -Ethyl-2-propenyl, 1 -Hexenyl, 2-Hexenyl, 3-Hexenyl, 4-Hexenyl, 5-Hexenyl, 1 -Methyl-1 -pentenyl, 2-Methyl-1 -pentenyl, 3-Methyl-1 - pentenyl, 4-Methyl-1 -pentenyl, 1 -Methyl-2-pentenyl, 2-Methyl-2-pentenyl, 3-Methyl-2- pentenyl, 4-Methyl-2-pentenyl, 1 -Methyl-3-pentenyl, 2-Methyl-3-pentenyl, 3-Methyl-3- pentenyl, 4-Methyl-3-pentenyl, 1 -Methyl-4-pentenyl, 2-Methyl-4-pentenyl, 3-Methyl-4- pentenyl, 4-Methyl-4-pentenyl, 1 , 1 -Dimethyl-2-butenyl, 1 , 1 -Dimethyl-3-butenyl, 1 ,2- Dimethyl-1 -butenyl, 1 ,2-Dimethyl-2-butenyl, 1 ,2-Dimethyl-3-butenyl, 1 ,3-Dimethyl-1 - butenyl, 1 ,3-Dimethyl-2-butenyl, 1 ,3-Dimethyl-3-butenyl, 2,2-Dimethyl-3-butenyl, 2,3- Dimethyl-1 -butenyl, 2,3-Dimethyl-2-butenyl, 2,3-Dimethyl-3-butenyl, 3,3-Dimethyl-1 - butenyl, 3,3-Dimethyl-2-butenyl, 1 -Ethyl-1 -butenyl, 1 -Ethyl-2-butenyl, 1 -Ethyl-3- butenyl, 2-Ethyl-1 -butenyl, 2-Ethyl-2-butenyl, 2-Ethyl-3-butenyl, 1 , 1 ,2-Trimethyl-2- propenyl, 1 -Ethyl-1 -methyl-2-propenyl, 1 -Ethyl-2-methyl-1 -propenyl und 1 -Ethyl-2- methyl-2-propenyl.
Alkinyl bedeutet geradkettige oder verzweigte Kohlenwasserstoff reste mit 2 bis 8 Kohlenstoffatomen und einer Dreifachbindung in einer beliebigen Position, z.B. C2- Ce-Alkinyl wie Ethinyl, 1 -Propinyl, 2-Propinyl (oder Propargyl), 1 -Butinyl, 2-Butinyl, 3- Butinyl, 1 -Methyl-2-propinyl, 1 -Pentinyl, 2-Pentinyl, 3-Pentinyl, 4-Pentinyl, 3-Methyl- 1 - butinyl, 1 -Methyl-2-butinyl, 1 -Methyl-3-butinyl, 2-Methyl-3-butinyl, 1 , 1 -Dimethyl-2- propinyl, 1 -Ethyl-2-propinyl, 1 -Hexinyl, 2-Hexinyl, 3-Hexinyl, 4-Hexinyl, 5-Hexinyl, 3- Methyl-1 -pentinyl, 4-Methyl-1 -pentinyl, 1 -Methyl-2-pentinyl, 4-Methyl-2-pentinyl, 1 - Methyl-3-pentinyl, 2-Methyl-3-pentinyl, 1 -Methyl-4-pentinyl, 2-Methyl-4-pentinyl, 3- Methyl-4-pentinyl, 1 , 1 -Dimethyl-2-butinyl, 1 , 1 -Dimethyl-3-butinyl, 1 ,2-Dimethyl-3- butinyl, 2,2-Dimethyl-3-butinyl, 3,3-Dimethyl-1 -butinyl, 1 -Ethyl-2-butinyl, 1 -Ethyl-3- butinyl, 2-Ethyl-3-butinyl und 1 -Ethyl-1 -methyl-2-propinyl.
Alkoxy bedeutet gesättigte, geradkettige oder verzweigte Alkoxyreste mit 1 bis 8 Kohlenstoffatomen, z.B. Ci-C6-Alkoxy wie Methoxy, Ethoxy, Propoxy, 1 -
Methylethoxy, Butoxy, 1 -Methyl-propoxy, 2-Methylpropoxy, 1 , 1 -Dimethylethoxy, Pentoxy, 1 -Methylbutoxy, 2-Methylbutoxy, 3-Methylbutoxy, 2,2-Di-methylpropoxy, 1 - Ethylpropoxy, Hexoxy, 1 , 1 -Dimethylpropoxy, 1 ,2-Dimethylpropoxy, 1 -Methylpentoxy,
2- Methylpentoxy, 3-Methylpentoxy, 4-Methylpentoxy, 1 , 1 -Dimethylbutoxy, 1 ,2- Dimethylbutoxy, 1 ,3-Dimethylbutoxy, 2,2-Dimethylbutoxy, 2,3-Dimethylbutoxy, 3,3- Dimethylbutoxy, 1 -Ethylbutoxy, 2-Ethylbutoxy, 1 , 1 ,2-Trimethylpropoxy, 1 ,2,2-Tri- methylpropoxy, 1 -Ethyl-1 -methylpropoxy und 1 -Ethyl-2-methylpropoxy;
Halogenalkoxy bedeutet geradkettige oder verzweigte Alkoxygruppen mit 1 bis 8 Kohlenstoffatomen (wie vorstehend genannt), wobei in diesen Gruppen teilweise oder vollständig die Wasserstoffatome durch Halogenatome wie vorstehend genannt ersetzt sein können, z.B. Ci-C2-Halogenalkoxy wie Chlormethoxy, Brommethoxy, Dichlormethoxy, Trichlormethoxy, Fluormethoxy, Difluormethoxy, Trifluorm ethoxy, Chlorfluormethoxy, Dichlorfluormethoxy, Chlordifluormethoxy, 1 -Chlorethoxy, 1 - Bromethoxy, 1 -Fluorethoxy, 2-Fluorethoxy, 2,2-Difluorethoxy, 2,2,2-Trifluorethoxy, 2- Chlor-2-fluorethoxy, 2-Chlor,2-difluorethoxy, 2,2-Dichlor-2-fluorethoxy, 2,2,2- Trichlorethoxy, Pentafluor-ethoxy und 1 , 1 , 1 -Trifluorprop-2-oxy.
Alkylthio bedeutet gesättigte, geradkettige oder verzweigte Alkylthioreste mit 1 bis 8 Kohlenstoffatomen, z.B. Ci-C6-Alkylthio wie Methylthio, Ethylthio, Propylthio, 1 - Methylethylthio, Butylthio, 1 -Methyl-propylthio, 2-Methylpropylthio, 1 , 1 -
Dimethylethylthio, Pentylthio, 1 -Methylbutylthio, 2-Methylbutylthio, 3-Methylbutylthio, 2,2-Di-methylpropylthio, 1 -Ethylpropylthio, Hexylthio, 1 , 1 -Dimethylpropylthio, 1 ,2-Di- methylpropylthio, 1 -Methylpentylthio, 2-Methylpentylthio, 3-Methyl-pentylthio, 4- Methylpentylthio, 1 , 1 -Dimethylbutylthio, 1 ,2-Dimethylbutylthio, 1 ,3-Dimethyl-butylthio, 2,2-Dimethylbutylthio, 2,3-Dimethylbutylthio, 3,3-Dimethylbutylthio, 1 -Ethylbutylthio, 2-Ethylbutylthio, 1 , 1 ,2-Trimethylpropylthio, 1 ,2,2-Trimethylpropylthio, 1 -Ethyl-1 - methylpropyl-thio und 1 -Ethyl-2-methylpropylthio;
Halogenalkylthio bedeutet geradkettige oder verzweigte Alkylthiogruppen mit 1 bis 8 Kohlenstoffatomen (wie vorstehend genannt), wobei in diesen Gruppen teilweise oder vollständig die Wasserstoffatome durch Halogenatome wie vorstehend genannt ersetzt sein können, z.B. Ci-C2-Halogenalkylthio wie Chlormethylthio,
Brommethylthio, Dichlormethylthio, Trichlormethylthio, Fluormethylthio,
Difluormethylthio, Trifluormethylthio, Chlorfluormethylthio, Dichlorfluor-methylthio, Chlordifluormethylthio, 1 -Chlorethylthio, 1 -Bromethylthio, 1 -Fluorethylthio, 2- Fluorethylthio, 2,2-Difluorethylthio, 2,2,2-Trifluorethylthio, 2-Chlor-2-fluorethylthio, 2- Chlor,2-difluorethylthio, 2,2-Dichlor-2-fluorethylthio, 2,2,2-Trichlorethylthio,
Pentafluorethylthio und 1 ,1 , 1 -Trifluorprop-2-ylthio.
Heteroaryl bedeutet insbesondere 2-Furyl, 3-Furyl, 2-Thienyl, 3-Thienyl, 1 -Pyrrolyl, 2-Pyrrolyl, 3-Pyrrolyl, 3-lsoxazolyl, 4-lsoxazolyl, 5-lsoxazolyl, 3-lsothiazolyl, 4- Isothiazolyl, 5-lsothiazolyl, 1 -Pyrazolyl, 3-Pyrazolyl, 4-Pyrazolyl, 5-Pyrazolyl, 2- Oxazolyl, 4-Oxazolyl, 5-Oxazolyl, 2-Thiazolyl, 4-Thiazolyl, 5-Thiazolyl, 1 -lmidazolyl, 2-lmidazolyl, 4-lmidazolyl, 5-lmidazolyl, 1 ,2,4-Oxadiazol-3-yl, 1 ,2,4-Oxadiazol-5-yl, 1 ,2,4-Thiadiazol-3-yl, 1 ,2,4-Thiadiazol-5-yl, 1 ,3,4-Oxadiazol-2-yl, 1 ,3,4-Thiadiazol-2- yl, 1 ,2,4-Triazol-1 -yl, 1 ,2,4-Triazol-3-yl, 1 ,2,4-Triazol-4-yl, 1 ,2,4-Triazol-5-yl, 1 ,2,3- Triazol-1 -yl, 1 ,2,3-Triazol-2-yl, 1 ,2,3-Triazol-4-yl, Tetrazol-1 -yl, Tetrazol-2-yl,
Tetrazol-5-yl, lndol-1 -yl, lndol-2-yl, lndol-3-yl, lsoindol-1 -yl, lsoindol-2-yl, Benzofur-2- yl, Benzothiophen-2-yl, Benzofur-3-yl, Benzothiophen-3-yl, Benzoxazol-2-yl,
Benzothiazol-2-yl, Benzimidazol-2-yl, lndazol-1 -yl, lndazol-2-yl, lndazol-3-yl, 2- Pyridinyl, 3-Pyridinyl, 4-Pyridinyl, 3-Pyridazinyl, 4-Pyridazinyl, 2-Pyrimidinyl, 4- Pyrimidinyl, 5-Pyrimidinyl, 2-Pyrazinyl, 1 ,3,5-Triazin-2-yl, 1 ,2,4-Triazin-3-yl, 1 ,2,4- Triazin-5-yl oder 1 ,2,4-Triazin-6-yl. Dieses Heteroaryl ist - sofern nicht anders angegeben - jeweils unsubstituiert oder jeweils einfach oder mehrfach gleich oder verschieden substituiert durch Reste ausgewählt aus Fluor, Chlor, Brom, lod, Cyano, Hydroxy, Mercapto, Amino, Methyl, Ethyl, n-Propyl, Isopropyl, n-Butyl, Isobutyl, sek- Butyl, tert-Butyl, Cyclopropyl, 1 -Chlorcyclopropyl, Vinyl, Ethinyl, Methoxy, Ethoxy, Isopropoxy, Methylthio, Ethylthio, Trifluormethylthio, Chlordifluormethyl,
Dichlorfluormethyl, Chlorfluormethyl, Chlormethyl, Dichlormethyl, Trichlormethyl, Fluormethyl, Difluormethyl, Trifluormethyl, 2,2,2-Trifluorethyl, Trifluormethoxy, Trifluormethylthio, 2,2,2-Trifluor-thoxy, 2,2-Dichlor-2-fluorethyl, 2,2-Difluor-2- chlorethyl, 2-Chlor-2-fluorethyl, 2,2,2-Trichlorethyl, 2,2,2-Trifluorethyl, 2-Fluorethyl, 2,2-Difluorethyl, 2-Methoxyethoxy, Acetyl, Propionyl, Methoxycarbonyl,
Ethoxycarbonyl, N-Methylamino, Ν,Ν-Dimethylamino, N-Ethylamino, N,N- Diethylamino, Aminocarbonyl, Methylaminocarbonyl, Dimethylaminocarbonyl, Dimethylcarbamoylamino, Methoxycarbonylamino, Methoxycarbonyloxy,
Ethoxycarbonylamino, Ethoxycarbonyloxy, Methylsulfamoyl, Dimethylsulfamoyl, Phenyl oder Phenoxy. Aryl bedeutet Phenyl oder Naphthyl, das - sofern nicht anders angegeben - jeweils einfach oder mehrfach gleich oder verschieden durch die in der Definition von Heteroaryl angegebenen Reste substituiert ist.
Die Verbindungen der Formel (I) können, auch in Abhängigkeit von der Art der Substituenten, als geometrische und/oder optische Isomere oder Isomerengemische, in unterschiedlicher Zusammensetzung vorliegen, die gegebenenfalls in üblicher Art und Weise getrennt werden können. Sowohl die reinen Isomeren als auch die Isomerengemische, deren Herstellung und Verwendung sowie diese enthaltende Mittel sind Gegenstand der vorliegenden Erfindung. Im Folgenden wird der Einfachheit halber jedoch stets von Verbindungen der Formel (I) gesprochen, obwohl sowohl die reinen Verbindungen als gegebenenfalls auch Gemische mit unterschiedlichen Anteilen an isomeren Verbindungen gemeint sind.
Ein Metallionäquivalent bedeutet ein Metallion mit einer positiven Ladung wie Na+, K+, (Mg2+)1/2, (Ca2+)1/2, MgH+, CaH+, (AI3+)1/3 (Fe2+)1/2 oder (Fe3+)1/3.
Halogen bedeutet Fluor, Chlor, Brom und Jod. Ist eine Gruppe mehrfach durch Reste substituiert, so ist darunter zu verstehen, daß diese Gruppe durch ein oder mehrere gleiche oder verschiedene der genannten Reste substituiert ist.
Je nach Art der oben definierten Substituenten weisen die Verbindungen der Formel (I) saure oder basische Eigenschaften auf und können mit anorganischen oder organischen Säuren oder mit Basen oder mit Metallionen Salze, gegebenenfalls auch innere Salze oder Addukte bilden. Tragen die Verbindungen der Formel (I) Amino, Alkylamino oder andere, basische Eigenschaften induzierende Gruppen, so können diese Verbindungen mit Säuren zu Salzen umgesetzt werden oder fallen durch die Synthese direkt als Salze an.
Beispiele für anorganische Säuren sind Halogenwasserstoffsäuren wie
Fluorwasserstoff, Chlorwasserstoff, Bromwasserstoff und lodwasserstoff,
Schwefelsäure, Phosphorsäure und Salpetersäure und saure Salze wie NaHS04 und KHS04. Als organische Säuren kommen beispielsweise Ameisensäure,
Kohlensäure und Alkansäuren wie Essigsäure, Trifluoressigsäure,
Trichloressigsäure und Propionsäure sowie Glycolsäure, Thiocyansäure, Milchsäure, Bernsteinsäure, Zitronensäure, Benzoesäure, Zimtsäure, Oxal-säure,
Alkylsulfonsäuren (Sulfonsäuren mit geradkettigen oder verzweigten Alkylresten mit 1 bis 20 Kohlenstoffatomen), Arylsulfonsäuren oder -disulfonsäuren (aromatische Reste wie Phenyl und Naphthyl welche ein oder zwei Sulfonsäuregruppen tragen), Alkylphosphon-säuren (Phosphonsäuren mit geradkettigen oder verzweigten
Alkylresten mit 1 bis 20 Kohlenstoffatomen), Arylphosphonsäuren oder - diphosphonsäuren (aromatische Reste wie Phenyl und Naphthyl welche ein oder zwei Phosphonsäurereste tragen), wobei die Alkyl- bzw. Arylreste weitere
Substituenten tragen können, z.B. p-Toluolsulfonsäure, Salicylsäure, p- Aminosalicylsäure, 2-Phenoxybenzoesäure, 2-Acetoxybenzoesäure etc.
Als Metallionen kommen insbesondere die Ionen der Elemente der zweiten
Hauptgruppe, insbesondere Calzium und Magnesium, der dritten und vierten
Hauptgruppe, insbesondere Aluminium, Zinn und Blei, sowie der ersten bis achten Nebengruppe, insbesondere Chrom, Mangan, Eisen, Kobalt, Nickel, Kupfer, Zink und andere in Betracht. Besonders bevorzugt sind die Metallionen der Elemente der vierten Periode. Die Metalle können dabei in den verschiedenen ihnen
zukommenden Wertigkeiten vorliegen.
Tragen die Verbindungen der Formel (I) Hydroxy, Carboxy oder andere, saure Eigenschaften induzierende Gruppen, so können diese Verbindungen mit Basen zu Salzen umgesetzt werden. Geeignete Basen sind beispielsweise Hydroxide, Carbonate, Hydrogencarbonate der Alkali- und Erdalkalimetalle, insbesondere die von Natrium, Kalium, Magnesium und Calcium, weiterhin Ammoniak, primäre, sekundäre und teritäre Amine mit (Ci-C4-)-Alkyl-Gruppen, Mono-, Di- und
Trialkanolamine von (Ci-C4)-Alkanolen, Cholin sowie Chlorcholin.
Die Verbindungen der allgemeinen Formel (I) können je nach Art und Verknüpfung der Substituenten als Stereoisomere vorliegen. Sind beispielsweise ein oder mehrere asymmetrisch substiuierte Kohlenstoffatome oder Sulfoxide vorhanden, so können Enantiomere und Diastereomere auftreten. Stereoisomere lassen sich aus den bei der Herstellung anfallenden Gemischen nach üblichen Trennmethoden, beispielsweise durch chromatographische Trennverfahren, erhalten. Ebenso können Stereoisomere durch Einsatz stereoselektiver Reaktionen unter Verwendung optisch aktiver Ausgangs- und/oder Hilfsstoffe selektiv hergestellt werden. Die Erfindung betrifft auch alle Stereoisomeren und deren Gemische, die von der allgemeinen Formel (I) umfaßt, jedoch nicht spezifisch definiert sind. In allen nachfolgend genannten Formeln haben die Substituenten und Symbole, sofern nicht anders definiert, dieselbe Bedeutung wie unter Formel (I) beschrieben.
Bevorzugt sind Verbindungen der allgemeinen Formel (I), worin X1 , X2 und X3 bedeuten jeweils C-R1 ,
X4 bedeutet N, R1 bedeutet Wasserstoff,
R2 bedeutet 2,2-Difluorethyl, 2,2,2-Trifluoretyl, Allyl oder Propinyl,
R3 bedeutet durch 1 , 2 oder 3 Reste R6 substituiertes Phenyl,
R4 bedeutet Wasserstoff, C(=L)MR8 oder C (=L)NR12R13, R6 bedeutet Fluor, Chlor, Brom, lod, Methyl, Trifluomethyl, Methoxy, Nitro oder Cyano,
R8 bedeutet (Ci-C4)-Alkyl, R12, R13 bedeuten jeweils (Ci-C )-Alkyl, L bedeutet Sauerstoff, M bedeutet Schwefel.
Bevorzugt sind auch Verbindungen der allgemeinen Formel (I), worin X1 , X2 und X4 bedeuten jeweils C-R1 ,
X3 bedeutet N, R1 bedeutet Wasserstoff, R2 bedeutet 2,2-Difluorethyl, 2,2,2-Trifluoretyl, Allyl oder Propinyl, R3 bedeutet durch 1 , 2 oder 3 Reste R6 substituiertes Phenyl, R4 bedeutet Wasserstoff, C(=L)MR8 oder C (=L)NR12R13,
R6 bedeutet Fluor, Chlor, Brom, lod, Methyl, Trifluomethyl, Methoxy, Nitro oder Cyano,
R8 bedeutet (Ci-C4)-Alkyl,
R12, R13 bedeuten jeweils (Ci-C )-Alkyl,
L bedeutet Sauerstoff, M bedeutet Schwefel.
Bevorzugt sind auch Verbindungen der allgemeinen Formel (I), worin X1 , X3 und X4 bedeuten jeweils C-R1 , X2 bedeutet N,
R1 bedeutet Wasserstoff,
R2 bedeutet 2,2-Difluorethyl, 2,2,2-Trifluoretyl, Allyl oder Propinyl,
R3 bedeutet durch 1 , 2 oder 3 Reste R6 substituiertes Phenyl,
R4 bedeutet Wasserstoff, C(=L)MR8 oder C (=L)NR12R13, R6 bedeutet Fluor, Chlor, Brom, lod, Methyl, Trifluomethyl, Methoxy, Nitro oder Cyano, R8 bedeutet (Ci-C4)-Alkyl, R12, R13 bedeuten jeweils (Ci-C )-Alkyl, L bedeutet Sauerstoff, M bedeutet Schwefel.
Bevorzugt sind auch Verbindungen der allgemeinen Formel (I), worin X2, X3 und X4 bedeuten jeweils C-R1 , X1 bedeutet N,
R1 bedeutet Wasserstoff,
R2 bedeutet 2,2-Difluorethyl, 2,2,2-Trifluoretyl, Allyl oder Propinyl, R3 bedeutet durch 1 , 2 oder 3 Reste R6 substituiertes Phenyl,
R4 bedeutet Wasserstoff, C(=L)MR8 oder C (=L)NR12R13,
R6 bedeutet Fluor, Chlor, Brom, lod, Methyl, Trifluomethyl, Methoxy, Nitro oder Cyano,
R8 bedeutet (Ci-C )-Alkyl,
R12, R13 bedeuten jeweils (Ci-C )-Alkyl,
L bedeutet Sauerstoff, M bedeutet Schwefel.
Besonders bevorzugt sind Verbindungen der allgemeinen Formel (I), worin
X1 , X2 und X3 bedeuten jeweils C-R1 ,
X4 bedeutet N, R1 bedeutet Wasserstoff, R2 bedeutet 2, 2-Difluorethyl,
R3 bedeutet durch 1 , 2 oder 3 Reste R6 substituiertes Phenyl, R4 bedeutet Wasserstoff, C(=L)MR8 oder C (=L)NR12R13,
R6 bedeutet Fluor, Chlor, Brom, lod, Methyl, Trifluomethyl, Methoxy, Nitro oder Cyano,
R8 bedeutet Methyl, Ethyl oder iso-Propyl,
R12, R13 bedeuten jeweils Methyl,
L bedeutet Sauerstoff, M bedeutet Schwefel.
Verbindungen der Formel (I), worin R4 einen anderen Rest als Wasserstoff bedeutet, können beispielsweise gemäß Schema 1 aus Verbindungen der Formel (la) durch Reaktion mit einer Verbindung der Formel R -FG, worin FG eine Fluchtgruppe bedeutet und für chemisch austauschbare funktionelle Gruppen wie Halogen,
Trifluormethylsulfonyl, Methylsulfonyl und (4-Methylphenyl)sulfonyl steht, hergestellt werden. Gegebenenfalls können auch Carbonsäure- oder Sulfonsäureanhydrid- derivate von R4 eingesetzt werden. Die Reaktionen werden bevorzugt in Anwesenheit einer Base, wie z.B. Pyridin, 4-Dimethyl-aminopyridin, N.N-Diisopropyl- N-ethylamin, Kaliumcarbonat oder Cäsiumcarbonat in geeigneten Lösemitteln, wie z. B. Acetonitril oder Dichlormethan bei Temperaturen im Bereich von -20°C bis zur Siedetemperatur des Lösemittels, gegebenenfalls auch unter Zuhilfenahme von Mikrowellenstrahlung durchgeführt.
Schema 1
Figure imgf000016_0001
(la) (I)
Erfindungsgemäße Verbindungen der Formel (I), wobei R4 für C(=0)R7 steht, können beispielsweise durch dem Fachmann bekannte Reaktionen von
Verbindungen der Formel (la), wobei R4 für Wasserstoff steht, mit
Carbonsäurehalogeniden der Formel Hal-CO-R7 oder mit Carbonsäureanhydriden der Formel R7-CO-0-CO- R7 hergestellt werden.
Erfindungsgemäße Verbindungen der Formel (I), worin R4 für C(=L)MR8 steht, können beispielsweise durch dem Fachmann bekannte Reaktionen von
Verbindungen der Formel (la) a) mit Chlorameisen-säureestern oder Chlorameisen- säurethioestern der Formel R8-M-COOR7 oder b) mit Chlorameisensäure- halogeniden oder Chlorameisensäurethiohalogeniden hergestellt werden.
Erfindungsgemäße Verbindungen der Formel (I), worin R für SO2R9 steht, können beispielsweise durch dem Fachmann bekannte Reaktionen von Verbindungen der Formel (la) mit Sulfonsäurechloriden der Formel R9-S02-Cl hergestellt werden. Erfindungsgemäße Verbindungen der Formel (I), worin R4 für P(=L)R10R11 steht, können beispielsweise durch dem Fachmann bekannte Reaktionen von
Verbindungen der Formel (la) mit Phosphorsäurechloriden der Formel
Hal-P(=L)R10R11 hergestellt werden.
Erfindungsgemäße Verbindungen der Formel (I), worin R für E steht, können beispielsweise durch dem Fachmann bekannte Reaktionen von Verbindungen der Formel (la) mit Metallverbindungen der Formel Met(OR15)t oder mit Aminen hergestellt werden. Darin bedeutet Met ein ein- oder zweiwertiges Metallion, bevorzugt ein Alkali- oder Erdalkalimetall wie Lithium, Natrium, Kalium, Magnesium oder Calcium. Der Index t steht für 1 oder 2. R15 steht für (Ci-C4)-Alkyl, bevorzugt, Methyl, Ethyl oder t-Butyl. Ein Ammoniumion bedeutet die Gruppe NH4 + oder R16R17R18R19N+, worin R16, R17, R18 und R19 unabhängig voneinander vorzugsweise (Ci-C )-Alkyl, Hydroxy-(Ci-C )-alkyl, (Ci-C )-Alkoxy-(Ci-C )-alkyl oder Benzyl bedeuten.
Erfindungsgemäße Verbindungen der Formel (I), worin R4 für C(=L)NR12R13 steht, können beispielsweise durch dem Fachmann bekannte Reaktionen von
Verbindungen der Formel (I) mit Isocyanaten oder Isothiocyanaten der Formel R12- N=C=L oder mit Carbamidsäurechloriden oder Thiocarbamidsäurechloriden der Formel R12R13N-C(=L)CI hergestellt werden.
Verbindungen der Formel (la) können beispielsweise gemäß Schema 2 durch Cyclisierung von Verbindungen der Formel (II) erhalten werden, worin Rx für (d-Ce)- Alkyl oder Phenyl-(Ci-C4)-Alkyl steht. Diese Reaktionen können in Anwesenheit von Basen, wie z.B. Lithium- oder Natriumhexamethyldisilazid, Kaliumcarbonat,
Caesiumcarbonat oder Natriumhydrid in geeigneten Lösemitteln, wie z.B.
Tetrahydrofuran oder Dimethylformamid bei Temperaturen im Bereich von -20°C bis zur Siedetemperatur des Lösemittels, gegebenenfalls auch unter Anwendung von Mikrowellenstrahlung durchgeführt werden. Schema 2
Figure imgf000018_0001
Verbindungen der Formel (II) können beispielsweise gemäß Schema 3 durch Reaktion von Verbindungen der Formel (IIa) mit Verbindungen der Formel R2-FG, worin FG Fluchtgruppe bedeutet und für chemisch austauschbare funktionelle Gruppen wie z. B. Halogen, Trifluormethylsulfonyl, Methylsulfonyl oder (4- Methylphenyl)sulfonyl steht, erhalten werden. X1, X2, X3, X4 und R3 sind wie im Anspruch für (I) definiert und Rx steht für (Ci-C6)-Alkyl oder Phenyl-(Ci-C4)-Alkyl. Die Reaktionen werden bevorzugt in Anwesenheit einer Base, wie z.B. Pyridin, 4- Dimethyl-aminopyridin, Triethylamin, N.N-Diisopropyl-N-ethylamin, Kaliumcarbonat oder Cäsiumcarbonat in geeigneten Lösemitteln, wie z. B. Acetonitril oder
Dichlormethan bei Temperaturen im Bereich von -20°C bis zur Siedetemperatur des Lösemittels, gegebenenfalls auch unter Zuhilfenahme von Mikrowellenstrahlung durchgeführt.
Schema 3
Figure imgf000018_0002
(IIa) (Ii)
Verbindungen der Formel (IIa) können beispielsweise gemäß Schema 4 aus Verbindungen der Formel (III), worin Rx für (Ci-Ce)-Alkyl oder Phenyl-(Ci-C4)-Alkyl steht, durch Umsetzung mit Verbindungen der Formel (IV), worin X für Halogen steht, hergestellt werden Die Umsetzungen werden in geeigneten Lösemitteln, wie z.B. Acetonitril oder Dichlormethan in Anwesenheit einer Base, wie z. B. Pyridin, 4- Dimethylaminopyridin, Triethylamin oder N,N-Diisopropyl-N-ethylamin bei
Temperaturen im Bereich von -20°C bis zur Siedetemperatur des Lösemittels, gegebenenfalls auch unter Anwendung von Mikrowellenstrahlung durchgeführt.
Figure imgf000019_0001
Verbindungen der Formel (IV), soweit nicht kommerziell erhältlich sind, lassen sich gemäß dem Fachmann bekannten Reaktionen herstellen, wie sie beispielsweise in WO2009/063180 beschrieben sind.
Verbindungen der Formel (la) können auch gemäß Schema 5 durch Umsetzung von Verbindungen der Formel (V), worin Rx für (Ci-Ce)-Alkyl oder Phenyl-(Ci-C4)-Alkyl steht, mit Verbindungen der Formel (VI) in Anwesenheit einer Base, z.B.
Triethylamin oder Pyridin in geeigneten Lösemittel wie z.B. Acetonitril oder
Dichlormethan bei Temperaturen im Bereich von -20°C bis zur Siedetemperatur des Lösemittels, gegebenenfalls auch unter Anwendung von Mikrowellenstrahlung hergestellt werden.
Schema 5
Figure imgf000019_0002
(V) (VI) (la) Verbindungen der Formel (I) können auch gemäß Schema 6 durch Umsetzung von Verbindungen der Formel (VII) mit bleiorganischen Verbindungen der Formel (VIII) in Anwesenheit einer Base, wie z.B. Pyridin oder 4-Dimethylaminopyridin in einem geeigneten Lösemittel, wie z.B. Chloroform oder Toluol und nachfolgender ebenfalls basenkatalysierter Umsetzung analog Schema 1 hergestellt werden. Die Synthese der Verbindungen der Formel (VII) kann analog der aus WO2009/063180 bekannten Methoden durchgeführt werden. Die Synthese der bleiorganischen Verbindungen der Formel (VIII) sind beispielsweise aus Aust. J. Chem. 19979, 32, 1561 ; Chem. Soc. Perkin Trans. 1 1990, 3, 715, bekannt.
Schema 6
Figure imgf000020_0001
(VII) (I)
Besonders bevorzugt sind die in den Tabellen 1 bis 18 genannten Verbindungen der Formel (I), die analog der hier genannten Methoden hergestellt werden können.
Tabelle 1 a. Erfindungsgemäße Verbindungen der Formel (I), worin X1, X2 und X3 jeweils für C-H, X4 für Stickstoff, R4 für Wasserstoff, R2 für 2,2-Difluorethyl und R3 für substituiertes Phenyl steht:
Figure imgf000020_0002
Nr. X Y Z
1 F H H
2 Cl H H
3 Br H H
4 I H H
5 CF3 H H
6 N02 H H
7 CN H H
8 OCF3 H H
9 Cl 3-CI H
10 Cl 4-CI H
1 1 Cl 5-CI H
12 Cl 6-CI H
13 Cl 4-I H
14 Cl 5-I H
15 Cl 3-CF3 H
16 Cl 5-CF3 H
17 Cl 6-CF3 H
18 Cl 6-F H
19 Cl 6-Br H
20 Cl 4-Me H
21 F 6-CF3 H
22 F 6-F H
23 Br 5-CF3 H
24 CF3 4-CI H
25 CF3 5-CI H
26 CF3 4-Br H
27 CF3 4-CF3 H
28 CF3 6-CF3 H
29 Et 4-CI H
30 Cl 3-CI 6-CI
31 Cl 4-CI 6-CI
32 Cl 3-CI 6-F
33 Cl 4-CI 5-F
34 Cl 4-CI 6-Me
Figure imgf000022_0001
Tabelle 1 b. Erfindungsgemäße Verbindungen der Formel (I), worin X2, X3 und X4 jeweils für C-H, X1 für Stickstoff, R4 für Wasserstoff, R2 für 2,2-Difluorethyl und R3 für substituiertes Phenyl steht:
Figure imgf000022_0002
Nr. X Y Z
1 F H H
2 Cl H H Nr. X Y Z
3 Br H H
4 I H H
5 CF3 H H
6 N02 H H
7 CN H H
8 OCF3 H H
9 Cl 3-CI H
10 Cl 4-CI H
1 1 Cl 5-CI H
12 Cl 6-CI H
13 Cl 4-I H
14 Cl 5-I H
15 Cl 3-CF3 H
16 Cl 5-CF3 H
17 Cl 6-CF3 H
18 Cl 6-F H
19 Cl 6-Br H
20 Cl 4-Me H
21 F 6-CF3 H
22 F 6-F H
23 Br 5-CF3 H
24 CF3 4-CI H
25 CF3 5-CI H
26 CF3 4-Br H
27 CF3 4-CF3 H
28 CF3 6-CF3 H
29 Et 4-CI H
30 Cl 3-CI 6-CI
31 Cl 4-CI 6-CI
32 Cl 3-CI 6-F
33 Cl 4-CI 5-F
34 Cl 4-CI 6-Me
35 Cl 4-CI 6-Et
36 Cl 4-CI 6-cPr
Figure imgf000024_0001
Tabelle 2. Erfindungsgemäße Verbindungen der Formel (I), worin X1, X2 und X3 jeweils für C-H, X4 für Stickstoff, R4 für Wasserstoff, R2 für 2,2,2-Trifluorethyl und R3 für substituiertes Phenyl mit jeweils den in Tabellen 1 a und 1 b angegebenen Bedeutungen steht:
Figure imgf000024_0002
Tabelle 3. Erfindungsgemäße Verbindungen der Formel (I), worin X1, X2 und X3 jeweils für C-H, X4 für Stickstoff, R4 für Wasserstoff, R2 für Propinyl und R3 für substituiertes Phenyl mit jeweils den in Tabellen 1 a und 1 b angegebenen
Bedeutungen steht:
Figure imgf000025_0001
Tabelle 4. Erfindungsgemäße Verbindungen der Formel (I), worin X1, X2 und X3 jeweils für C-H, X4 für Stickstoff, R4 für Wasserstoff, R2 für Allyl und R3 für
substituiertes Phenyl mit jeweils den in Tabellen 1 a und 1 b angegebenen
Bedeutungen steht:
Figure imgf000025_0002
Tabelle 5. Erfindungsgemäße Verbindungen der Formel (I), worin X2, X3 und X4 jeweils für C-H, X1 für Stickstoff, R4 für Wasserstoff, R2 für 2,2-Difluorethyl und R3 für substituiertes Phenyl mit jeweils den in Tabellen 1 a und 1 b angegebenen
Bedeutungen steht:
Figure imgf000025_0003
Tabelle 6. Erfindungsgemäße Verbindungen der Formel (I), worin X2, X3 und X4 jeweils für C-H, X1 für Stickstoff, R4 für Wasserstoff, R2 für 2,2,2-Trifluorethyl und R3 für substituiertes Phenyl mit jeweils den in Tabellen 1 a und 1 b angegebenen Bedeutungen steht:
Figure imgf000026_0001
Tabelle 7. Erfindungsgemäße Verbindungen der Formel (I), worin X2, X3 und X4 jeweils für C-H, X1 für Stickstoff, R4 für Wasserstoff, R2 für Propinyl und R3 für substituiertes Phenyl mit jeweils den in Tabellen 1 a und 1 b angegebenen
Bedeutungen steht:
Figure imgf000026_0002
Tabelle 8. Erfindungsgemäße Verbindungen der Formel (I), worin X2, X3 und X4 jeweils für C-H, X1 für Stickstoff, R4 für Wasserstoff, R2 für Allyl und R3 für substituiertes Phenyl mit jeweils den in Tabellen 1 a und 1 b angegebenen
Bedeutungen steht:
Figure imgf000026_0003
Tabelle 9. Erfindungsgemäße Verbindungen der Formel (I), worin X1, X3 und X4 jeweils für C-H, X2 für Stickstoff, R4 für Wasserstoff, R2 für 2,2-Difluorethyl und R3 für substituiertes Phenyl mit jeweils den in Tabellen 1 a und 1 b angegebenen
Bedeutungen steht:
Figure imgf000027_0001
Tabelle 10. Erfindungsgemäße Verbindungen der Formel (I), worin X1, X3 und X4 jeweils für C-H, X2 für Stickstoff, R4 für Wasserstoff, R2 für 2,2,2-Trifluorethyl und R3 für substituiertes Phenyl mit jeweils den in Tabellen 1 a und 1 b angegebenen
Bedeutungen steht:
Figure imgf000027_0002
Tabelle 1 1. Erfindungsgemäße Verbindungen der Formel (I), worin X1, X3 und X4 jeweils für C-H, X2 für Stickstoff, R4 für Wasserstoff, R2 für Propinyl und R3 für substituiertes Phenyl mit jeweils den in Tabellen 1 a und 1 b angegebenen
Bedeutungen steht:
Figure imgf000028_0001
Tabelle 12. Erfindungsgemäße Verbindungen der Formel (I), worin X1, X3 und X4 jeweils für C-H, X2 für Stickstoff, R4 für Wasserstoff, R2 für Allyl und R3 für
substituiertes Phenyl mit jeweils den in Tabellen 1 a und 1 b angegebenen
Bedeutungen steht:
Figure imgf000028_0002
Tabelle 13. Erfindungsgemäße Verbindungen der Formel (I), worin X1, X2 und X4 jeweils für C-H, X3 für Stickstoff, R4 für Wasserstoff, R2 für 2,2-Difluorethyl und R3 für substituiertes Phenyl mit jeweils den in Tabellen 1 a und 1 b angegebenen
Bedeutungen steht:
Figure imgf000028_0003
Tabelle 14. Erfindungsgemäße Verbindungen der Formel (I), worin X1, X2 und X4 jeweils für C-H, X3 für Stickstoff, R4 für Wasserstoff, R2 für 2,2,2-Trifluor-ethyl und R3 für substituiertes Phenyl mit jeweils den in Tabellen 1 a und 1 b angegebenen
Bedeutungen steht:
Figure imgf000029_0001
Tabelle 15. Erfindungsgemäße Verbindungen der Formel (I), worin X1, X2 und X4 jeweils für C-H, X3 für Stickstoff, R4 für Wasserstoff, R2 für Propargyl und R3 für substituiertes Phenyl mit jeweils den in Tabellen 1 a und 1 b angegebenen
Bedeutungen steht:
Figure imgf000029_0002
Tabelle 16. Erfindungsgemäße Verbindungen der Formel (I), worin X1, X2 und X4 jeweils für C-H, X3 für Stickstoff, R4 für Wasserstoff, R2 für Allyl und R3 für substituiertes Phenyl mit den in Tabelle 1 angegebenen Bedeutungen steht:
Figure imgf000030_0001
Tabelle 17. Erfindungsgemäße Verbindungen der Formel (I), worin R4 für Wasserstoff und R3 für substituiertes Phenyl steht.
Figure imgf000030_0002
Tabelle 18. Erfindungsgemäße Verbindungen der Formel (I), worin R3 für substituiertes Phenyl steht.
Figure imgf000031_0001
Nr. X1 X2 X3 X4 R2 R4 X Y Z Analytische Daten
H-NMR (400 MHz,CDCI3): δ = 8.56 (dd, 1H); 7.88 (dd, 1H); 7.82 lb-1 CH CH CH N CH2CHF2 C(0)SMe CF3 H H (m, 1H); 7.66 (m, 3H); 7.28 (m,
1H); 6.26 (m, 1H); 4.83 (m, 1H);4.50 (m, 1H); 2.24 (s, 3H) H-NMR (400 MHz,CDCI3): δ = 8.56 (dd, 1H); 7.89 (dd, 1H); 7.82 (m, 1H); 7.65 (m, 3H); 7.28 (m, lb-2 CH CH CH N CH2CHF2 C(0)SEt CF3 H H
1H); 6.26 (m, 1H); 4.84 (m, 1H); 4.50 (m, 1H); 2.74 (m, 2H); 1.15 (t, 3H)
H-NMR (400 MHz,CDCI3): δ = 8.55 (dd, 1H); 7.81 (m, 1H); 7.76 (dd, 1H); 7.64 (m, 3H); 7.25 (m, lb-3 CH CH CH N CH2CHF2 C(0)iPr CF3 H H
1H); 6.26 (m, 1H); 4.84 (m, 1H); 4.51 (m, 1H); 2.55 (m, 1H); 0.94 (d, 3H); 0.82 (d, 3H)
H-NMR (400 MHz,CDCI3): δ = 8.53 (dd, 1H); 7.90 (dd, 1H); 7.81 (m, 1H); 7.67 (m, 3H); 7.24 (m, lb-4 CH CH CH N CH2CHF2 C(0)NMe2 CF3 H H
1H); 6.26 (m, 1H); 4.84 (m, 1H); 4.50 (m, 1H); 2.76 (s, 3H); 2.72 (s, 3H)
H-NMR (400 MHz,CDCI3): δ = 8.55 (dd, 1H); 7.92 (dd, 1H); 7.54 (m, 2H); 7.44 (m, 1H); 7.38 (m, lb-5 CH CH CH N CH2CHF2 C(0)SMe F H H
1H); 7.27 (dd, 1H); 6.29 (tt, 1H); 4.75 (m, 1H); 4.60 (m, 1H); 2.26 (s, 3H)
H-NMR (400 MHz,CDCI3): δ = 8.54 (dd, 1H); 7.80 (dd, 1H); 7.52 (m, 2H); 7.39 (m, 2H); 7.24 (dd, lb-6 CH CH CH N CH2CHF2 C(0)iPr F H H
1H); 6.29 (tt, 1H); 4.75 (m, 1H); 4.61 (m, 1H); 2.59 (m, 1H); 0.98 (d, 3H); 0.91 (m, 3H) H-NMR (400 MHz,CDCI3): δ = 8.55 (dd, 1H); 7.91 (dd, 1H); 7.52 lb-7 CH CH CH N CH2CHF2 C(0)SMe Cl H H
(m, 2H); 7.24 (m, 3H); 6.30 (tt, 1H); 4.64 (brt, 2H); 2.29 (s, 3H)
Figure imgf000032_0001
Kollektionen aus Verbindungen der Formel (I) und/oder deren Salzen, die nach den oben genannten Reaktionen synthetisiert werden können, können auch in parallelisierter Weise hergestellt werden, wobei dies in manueller, teilweise automatisierter oder vollständig automatisierter Weise geschehen kann. Dabei ist es beispielsweise möglich, die Reaktionsdurchführung, die Aufarbeitung oder die Reinigung der Produkte bzw. Zwischenstufen zu automatisieren. Insgesamt wird hierunter eine Vorgehensweise verstanden, wie sie beispielsweise durch D. Tiebes in Combinatorial Chemistry - Synthesis, Analysis, Screening (Herausgeber Günther Jung), Verlag Wiley 1999, auf den Seiten 1 bis 34 beschrieben ist.
Zur parallehsierten Reaktionsdurchführung und Aufarbeitung können eine Reihe von im Handel erhältlichen Geräten verwendet werden, beispielsweise Calpyso- Reaktionsblöcke (Caylpso reaction blocks) der Firma Barnstead International,
Dubuque, Iowa 52004-0797, USA oder Reaktionsstationen (reaction stations) der Firma Radleys, Shirehill, Saffron Waiden, Essex, CB 1 1 3AZ, England oder
MultiPROBE Automated Workstations der Firma Perkin Elmar, Waltham, Massachusetts 02451 , USA. Für die parallelisierte Aufreinigung von Verbindungen der Formel (I) und deren Salzen beziehungsweise von bei der Herstellung
anfallenden Zwischenprodukten stehen unter anderem Chromatographieapparaturen zur Verfügung, beispielsweise der Firma ISCO, Inc., 4700 Superior Street, Lincoln, NE 68504, USA.
Die aufgeführten Apparaturen führen zu einer modularen Vorgehensweise, bei der die einzelnen Arbeitsschritte automatisiert sind, zwischen den Arbeitsschritten jedoch manuelle Operationen durchgeführt werden müssen. Dies kann durch den Einsatz von teilweise oder vollständig integrierten Automationssystemen umgangen werden, bei denen die jeweiligen Automationsmodule beispielsweise durch Roboter bedient werden. Derartige Automationssysteme können zum Beispiel von der Firma Caliper, Hopkinton, MA 01748, USA bezogen werden. Die Durchführung einzelner oder mehrerer Syntheseschritte kann durch den Einsatz von Polymer-supported reagents/Scavanger-Harze unterstützt werden. In der Fachliteratur sind eine Reihe von Versuchsprotokollen beschrieben, beispielsweise in ChemFiles, Vol. 4, No. 1 , Polymer-Supported Scavengers and Reagents for Solution-Phase Synthesis (Sigma-Aldrich).
Neben den hier beschriebenen Methoden kann die Herstellung von Verbindungen der Formel (I) und deren Salzen vollständig oder partiell durch Festphasen unterstützte Methoden erfolgen. Zu diesem Zweck werden einzelne Zwischenstufen oder alle Zwischenstufen der Synthese oder einer für die entsprechende
Vorgehensweise angepassten Synthese an ein Syntheseharz gebunden.
Festphasen- unterstützte Synthesemethoden sind in der Fachliteratur hinreichend beschrieben, z.B. Barry A. Bunin in "The Combinatorial Index", Verlag Academic Press, 1998 und Combinatorial Chemistry - Synthesis, Analysis, Screening
(Herausgeber Günther Jung), Verlag Wiley, 1999. Die Verwendung von Festphasen- unterstützten Synthesemethoden erlaubt eine Reihe von literaturbekannten
Protokollen, die wiederum manuell oder automatisiert ausgeführt werden können. Die Reaktionen können beispielsweise mittels IRORI-Technologie in Mikroreaktoren (microreactors) der Firma Nexus Biosystems, 12140 Community Road, Poway, CA92064, USA durchgeführt werden.
Sowohl an fester als auch in flüssiger Phase kann die Durchführung einzelner oder mehrerer Syntheseschritte durch den Einsatz der Mikrowellen-Technologie unterstützt werden. In der Fachliteratur sind eine Reihe von Versuchsprotokollen beschrieben, beispielsweise in Microwaves in Organic and Medicinal Chemistry (Herausgeber C. 0. Kappe und a. Stadler), Verlag Wiley, 2005.
Die Herstellung gemäß der hier beschriebenen Verfahren liefert Verbindungen der Formel (I) und deren Salze in Form von Substanzkollektionen, die Bibliotheken genannt werden. Gegenstand der vorliegenden Erfindung sind auch Bibliotheken, die mindestens zwei Verbindungen der Formel (I) und deren Salzen enthalten. Die erfindungsgemäßen Verbindungen der Formel (I) (und/oder deren Salze), im folgenden zusammen als„erfindungsgemäße Verbindungen" bezeichnet, weisen eine ausgezeichnete herbizide Wirksamkeit gegen ein breites Spektrum
wirtschaftlich wichtiger mono- und dikotyler annueller Schadpflanzen auf. Auch schwer bekämpfbare perennierende Schadpflanzen, die aus Rhizomen,
Wurzelstöcken oder anderen Dauerorganen austreiben, werden durch die Wirkstoffe gut erfaßt.
Gegenstand der vorliegenden Erfindung ist daher auch ein Verfahren zur
Bekämpfung von unerwünschten Pflanzen oder zur Wachstumsregulierung von Pflanzen, vorzugsweise in Pflanzenkulturen, worin eine oder mehrere
erfindungsgemäße Verbindung(en) auf die Pflanzen (z.B. Schadpflanzen wie mono- oder dikotyle Unkräuter oder unerwünschte Kulturpflanzen), das Saatgut (z.B.
Körner, Samen oder vegetative Vermehrungsorgane wie Knollen oder Sprossteile mit Knospen) oder die Fläche, auf der die Pflanzen wachsen (z.B. die Anbaufläche), ausgebracht werden. Dabei können die erfindungsgemäßen Verbindungen z.B. im Vorsaat- (ggf. auch durch Einarbeitung in den Boden), Vorauflauf- oder
Nachauflaufverfahren ausgebracht werden. Im einzelnen seien beispielhaft einige Vertreter der mono- und dikotylen Unkrautflora genannt, die durch die
erfindungsgemäßen Verbindungen kontrolliert werden können, ohne dass durch die Nennung eine Beschränkung auf bestimmte Arten erfolgen soll. Monokotyle Schadpflanzen der Gattungen: Aegilops, Agropyron, Agrostis,
Alopecurus, Apera, Avena, Brachiaria, Bromus, Cenchrus, Commelina, Cynodon, Cyperus, Dactyloctenium, Digitaria, Echinochloa, Eleocharis, Eleusine, Eragrostis, Eriochloa, Festuca, Fimbristylis, Heteranthera, Imperata, Ischaemum, Leptochloa, Lolium, Monochoria, Panicum, Paspalum, Phalaris, Phleum, Poa, Rottboellia, Sagittaria, Scirpus, Setaria, Sorghum.
Dikotyle Unkräuter der Gattungen: Abutilon, Amaranthus, Ambrosia, Anoda,
Anthemis, Aphanes, Artemisia, Atriplex, Bellis, Bidens, Capsella, Carduus, Cassia, Centaurea, Chenopodium, Cirsium, Convolvulus, Datura, Desmodium, Emex, Erysimum, Euphorbia, Galeopsis, Galinsoga, Galium, Hibiscus, Ipomoea, Kochia, Lamium, Lepidium, Lindernia, Matricaria, Mentha, Mercurialis, Mullugo, Myosotis, Papaver, Pharbitis, Plantago, Polygonum, Portulaca, Ranunculus, Raphanus, Rorippa, Rotala, Rumex, Salsola, Senecio, Sesbania, Sida, Sinapis, Solanum, Sonchus, Sphenoclea, Stellaria, Taraxacum, Thlaspi, Trifolium, Urtica, Veronica, Viola, Xanthium.
Werden die erfindungsgemäßen Verbindungen vor dem Keimen auf die
Erdoberfläche appliziert, so wird entweder das Auflaufen der Unkrautkeimlinge vollständig verhindert oder die Unkräuter wachsen bis zum Keimblattstadium heran, stellen jedoch dann ihr Wachstum ein und sterben schließlich nach Ablauf von drei bis vier Wochen vollkommen ab.
Bei Applikation der Wirkstoffe auf die grünen Pflanzenteile im Nachauflaufverfahren tritt nach der Behandlung Wachstumsstop ein und die Schadpflanzen bleiben in dem zum Applikationszeitpunkt vorhandenen Wachstumsstadium stehen oder sterben nach einer gewissen Zeit ganz ab, so dass auf diese Weise eine für die
Kulturpflanzen schädliche Unkrautkonkurrenz sehr früh und nachhaltig beseitigt wird. Obgleich die erfindungsgemäßen Verbindungen eine ausgezeichnete herbizide Aktivität gegenüber mono- und dikotylen Unkräutern aufweisen, werden
Kulturpflanzen wirtschaftlich bedeutender Kulturen z.B. dikotyler Kulturen der Gattungen Arachis, Beta, Brassica, Cucumis, Cucurbita, Helianthus, Daucus, Glycine, Gossypium, Ipomoea, Lactuca, Linum, Lycopersicon, Nicotiana, Phaseolus, Pisum, Solanum, Vicia, oder monokotyler Kulturen der Gattungen Allium, Ananas, Asparagus, Avena, Hordeum, Oryza, Panicum, Saccharum, Seeale, Sorghum, Triticale, Triticum, Zea, insbesondere Zea und Triticum, abhängig von der Struktur der jeweiligen erfindungsgemäßen Verbindung und deren Aufwandmenge nur unwesentlich oder gar nicht geschädigt. Die vorliegenden Verbindungen eignen sich aus diesen Gründen sehr gut zur selektiven Bekämpfung von unerwünschtem Pflanzenwuchs in Pflanzenkulturen wie landwirtschaftlichen Nutzpflanzungen oder Zierpflanzungen. Darüberhinaus weisen die erfindungsgemäßen Verbindungen (abhängig von ihrer jeweiligen Struktur und der ausgebrachten Aufwandmenge) hervorragende wachstumsregulatorische Eigenschaften bei Kulturpflanzen auf. Sie greifen regulierend in den pflanzeneigenen Stoffwechsel ein und können damit zur gezielten Beeinflussung von Pflanzeninhaltsstoffen und zur Ernteerleichterung wie z.B. durch Auslösen von Desikkation und Wuchsstauchung eingesetzt werden. Desweiteren eignen sie sich auch zur generellen Steuerung und Hemmung von unerwünschtem vegetativen Wachstum, ohne dabei die Pflanzen abzutöten. Eine Hemmung des vegetativen Wachstums spielt bei vielen mono- und dikotylen Kulturen eine große Rolle, da beispielsweise die Lagerbildung hierdurch verringert oder völlig verhindert werden kann.
Aufgrund ihrer herbiziden und pflanzenwachstumsregulatorischen Eigenschaften können die Wirkstoffe auch zur Bekämpfung von Schadpflanzen in Kulturen von bekannten oder noch zu entwickelnden gentechnisch veränderten Pflanzen eingesetzt werden. Die transgenen Pflanzen zeichnen sich in der Regel durch besondere vorteilhafte Eigenschaften aus, beispielsweise durch Resistenzen gegenüber bestimmten Pestiziden, vor allem bestimmten Herbiziden, Resistenzen gegenüber Pflanzenkrankheiten oder Erregern von Pflanzenkrankheiten wie bestimmten Insekten oder Mikroorganismen wie Pilzen, Bakterien oder Viren.
Andere besondere Eigenschaften betreffen z.B. das Erntegut hinsichtlich Menge, Qualität, Lagerfähigkeit, Zusammensetzung und spezieller Inhaltsstoffe. So sind transgene Pflanzen mit erhöhtem Stärkegehalt oder veränderter Qualität der Stärke oder solche mit anderer Fettsäurezusammensetzung des Ernteguts bekannt.
Weitere besondere Eigenschaften können in einer Toleranz oder Resistenz gegen abiotische Stressoren z.B. Hitze, Kälte, Trockenheit, Salz und ultraviolette Strahlung liegen.
Bevorzugt ist die Anwendung der erfindungsgemäßen Verbindungen der Formel (I) oder deren Salze in wirtschaftlich bedeutenden transgenen Kulturen von Nutz-und Zierpflanzen, z.B. von Getreide wie Weizen, Gerste, Roggen, Hafer, Hirse, Reis, Maniok und Mais oder auch Kulturen von Zuckerrübe, Baumwolle, Soja, Raps, Kartoffel, Tomate, Erbse und anderen Gemüsesorten.
Vorzugsweise können die Verbindungen der Formel (I) als Herbizide in
Nutzpflanzenkulturen eingesetzt werden, welche gegenüber den phytotoxischen Wirkungen der Herbizide resistent sind bzw. gentechnisch resistent gemacht worden sind.
Herkömmliche Wege zur Herstellung neuer Pflanzen, die im Vergleich zu bisher vorkommenden Pflanzen modifizierte Eigenschaften aufweisen, bestehen
beispielsweise in klassischen Züchtungsverfahren und der Erzeugung von Mutanten. Alternativ können neue Pflanzen mit veränderten Eigenschaften mit Hilfe
gentechnischer Verfahren erzeugt werden (siehe z.B. EP 0221044, EP 0131624). Beschrieben wurden beispielsweise in mehreren Fällen
gentechnische Veränderungen von Kulturpflanzen zwecks Modifikation der in den Pflanzen synthetisierten Stärke (z.B. WO 92/01 1376 A, WO 92/014827 A, WO 91/019806 A),
transgene Kulturpflanzen, welche gegen bestimmte Herbizide vom Typ
Glufosinate (vgl. z.B. EP 0242236 A, EP 0242246 A) oder Glyphosate (WO 92/000377 A) oder der Sulfonylharnstoffe (EP 0257993 A, US 5,013,659) oder gegen Kombinationen oder Mischungen dieser Herbizide durch„gene stacking" resistent sind, wie transgenen Kulturpflanzen z. B. Mais oder Soja mit dem Handelsnamen oder der Bezeichnung Optimum™ GAT™ (Glyphosate ALS Tolerant).
transgene Kulturpflanzen, beispielsweise Baumwolle, mit der Fähigkeit Bacillus thuringiensis-Toxine (Bt-Toxine) zu produzieren, welche die Pflanzen gegen bestimmte Schädlinge resistent machen (EP 0142924 A, EP 0193259 A).
transgene Kulturpflanzen mit modifizierter Fettsäurezusammensetzung (WO 91/013972 A).
gentechnisch veränderte Kulturpflanzen mit neuen Inhalts- oder
Sekundärstoffen z.B. neuen Phytoalexinen, die eine erhöhte
Krankheitsresistenz verursachen (EP 0309862 A, EP 0464461 A)
gentechnisch veränderte Pflanzen mit reduzierter Photorespiration, die höhere Erträge und höhere Stresstoleranz aufweisen (EP 0305398 A)
transgene Kulturpflanzen, die pharmazeutisch oder diagnostisch wichtige Proteine produzieren („molecular pharming")
transgene Kulturpflanzen, die sich durch höhere Erträge oder bessere Qualität auszeichnen
transgene Kulturpflanzen die sich durch eine Kombinationen z.B. der o. g. neuen Eigenschaften auszeichnen („gene stacking")
Zahlreiche molekularbiologische Techniken, mit denen neue transgene Pflanzen mit veränderten Eigenschaften hergestellt werden können, sind im Prinzip bekannt; siehe z.B. I. Potrykus und G. Spangenberg (eds.) Gene Transfer to Plants, Springer Lab Manual (1995), Springer Verlag Berlin, Heidelberg, oder Christou, "Trends in Plant Science" 1 (1996) 423-431 ).
Für derartige gentechnische Manipulationen können Nucleinsäuremoleküle in Plasmide eingebracht werden, die eine Mutagenese oder eine Sequenzveränderung durch Rekombination von DNA-Sequenzen erlauben. Mit Hilfe von
Standardverfahren können z.B. Basenaustausche vorgenommen, Teilsequenzen entfernt oder natürliche oder synthetische Sequenzen hinzugefügt werden. Für die Verbindung der DNA-Fragmente untereinander können an die Fragmente Adaptoren oder Linker angesetzt werden, siehe z.B. Sambrook et al., 1989, Molecular Cloning, A Laboratory Manual, 2. Aufl. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY; oder Winnacker "Gene und Klone", VCH Weinheim 2. Auflage 1996
Die Herstellung von Pflanzenzellen mit einer verringerten Aktivität eines
Genprodukts kann beispielsweise erzielt werden durch die Expression mindestens einer entsprechenden antisense-RNA, einer sense-RNA zur Erzielung eines
Cosuppressionseffektes oder die Expression mindestens eines entsprechend konstruierten Ribozyms, das spezifisch Transkripte des obengenannten
Genprodukts spaltet.
Hierzu können zum einen DNA-Moleküle verwendet werden, die die gesamte codierende Sequenz eines Genprodukts einschließlich eventuell vorhandener flankierender Sequenzen umfassen, als auch DNA-Moleküle, die nur Teile der codierenden Sequenz umfassen, wobei diese Teile lang genug sein müssen, um in den Zellen einen antisense-Effekt zu bewirken. Möglich ist auch die Verwendung von DNA-Sequenzen, die einen hohen Grad an Homologie zu den codiereden
Sequenzen eines Genprodukts aufweisen, aber nicht vollkommen identisch sind.
Bei der Expression von Nucleinsäuremolekülen in Pflanzen kann das synthetisierte Protein in jedem beliebigen Kompartiment der pflanzlichen Zelle lokalisiert sein. Um aber die Lokalisation in einem bestimmten Kompartiment zu erreichen, kann z.B. die codierende Region mit DNA-Sequenzen verknüpft werden, die die Lokalisierung in einem bestimmten Kompartiment gewährleisten. Derartige Sequenzen sind dem Fachmann bekannt (siehe beispielsweise Braun et al., EMBO J. 1 1 (1992), 3219- 3227; Wolter et al., Proc. Natl. Acad. Sei. USA 85 (1988), 846-850; Sonnewald et al., Plant J. 1 (1991 ), 95-106). Die Expression der Nukleinsäuremoleküle kann auch in den Organellen der Pflanzenzellen stattfinden. Die transgenen Pflanzenzellen können nach bekannten Techniken zu ganzen Pflanzen regeneriert werden. Bei den transgenen Pflanzen kann es sich prinzipiell um Pflanzen jeder beliebigen Pflanzenspezies handeln, d.h., sowohl monokotyle als auch dikotyle Pflanzen.
So sind transgene Pflanzen erhältlich, die veränderte Eigenschaften durch
Überexpression, Suppression oder Inhibierung homologer (= natürlicher) Gene oder Gensequenzen oder Expression heterologer (= fremder) Gene oder Gensequenzen aufweisen.
Vorzugsweise können die erfindungsgemäßen Verbindungen (I) in transgenen Kulturen eingesetzt werden, welche gegen Wuchsstoffe, wie z.B. 2,4 D, Dicamba oder gegen Herbizide, die essentielle Pflanzenenzyme, z.B. Acetolactatsynthasen (ALS), EPSP Synthasen, Glutaminsynthasen (GS) oder Hydoxyphenylpyruvat Dioxygenasen (HPPD) hemmen, respektive gegen Herbizide aus der Gruppe der Sulfonylharnstoffe, der Glyphosate, Glufosinate oder Benzoylisoxazole und analogen Wirkstoffe, oder gegen beliebige Kombinationen dieser Wirkstoffe, resistent sind.
Besonders bevorzugt können die erfindungsgemäßen Verbindungen in transgenen Kulturpflanzen eingesetzt werden, die gegen eine Kombination von Glyphosaten und Glufosinaten, Glyphosaten und Sulfonylharnstoffen oder Imidazolinonen resistent sind. Ganz besonders bevorzugt können die erfindungsgemäßen Verbindungen in transgenen Kulturpflanzen wie z. B. Mais oder Soja mit dem Handelsnamen oder der Bezeichnung Optimum™ GAT™ (Glyphosate ALS Tolerant) eingesetzt werden.
Bei der Anwendung der erfindungsgemäßen Wirkstoffe in transgenen Kulturen treten neben den in anderen Kulturen zu beobachtenden Wirkungen gegenüber
Schadpflanzen oftmals Wirkungen auf, die für die Applikation in der jeweiligen transgenen Kultur spezifisch sind, beispielsweise ein verändertes oder speziell erweitertes Unkrautspektrum, das bekämpft werden kann, veränderte
Aufwandmengen, die für die Applikation eingesetzt werden können, vorzugsweise gute Kombinierbarkeit mit den Herbiziden, gegenüber denen die transgene Kultur resistent ist, sowie Beeinflussung von Wuchs und Ertrag der transgenen Kulturpflanzen.
Gegenstand der Erfindung ist deshalb auch die Verwendung der
erfindungsgemäßen Verbindungen der Formel (I) als Herbizide zur Bekämpfung von Schadpflanzen in transgenen Kulturpflanzen.
Die erfindungsgemäßen Verbindungen können in Form von Spritzpulvern, emulgierbaren Konzentraten, versprühbaren Lösungen, Stäubemitteln oder
Granulaten in den üblichen Zubereitungen angewendet werden. Gegenstand der Erfindung sind deshalb auch herbizide und pflanzenwachstumsregulierende Mittel, welche die erfindungsgemäßen Verbindungen enthalten.
Die erfindungsgemäßen Verbindungen können auf verschiedene Art formuliert werden, je nachdem welche biologischen und/oder chemisch-physikalischen Parameter vorgegeben sind. Als Formulierungsmöglichkeiten kommen
beispielsweise in Frage: Spritzpulver (WP), wasserlösliche Pulver (SP),
wasserlösliche Konzentrate, emulgierbare Konzentrate (EC), Emulsionen (EW), wie Öl-in-Wasser- und Wasser-in-ÖI-Emulsionen, versprühbare Lösungen,
Suspensionskonzentrate (SC), Dispersionen auf Öl- oder Wasserbasis, ölm ischbare Lösungen, Kapselsuspensionen (CS), Stäubemittel (DP), Beizmittel, Granulate für die Streu- und Bodenapplikation, Granulate (GR) in Form von Mikro-, Sprüh-, Aufzugs- und Adsorptionsgranulaten, wasserdispergierbare Granulate (WG), wasserlösliche Granulate (SG), ULV-Formulierungen, Mikrokapseln und Wachse. Diese einzelnen Formulierungstypen sind im Prinzip bekannt und werden
beispielsweise beschrieben in: Winnacker-Küchler, "Chemische Technologie", Band 7, C. Hanser Verlag München, 4. Aufl. 1986, Wade van Valkenburg, "Pesticide Formulations", Marcel Dekker, N.Y., 1973, K. Martens, "Spray Drying" Handbook, 3rd Ed. 1979, G. Goodwin Ltd. London.
Die notwendigen Formulierungshilfsmittel wie Inertmaterialien, Tenside,
Lösungsmittel und weitere Zusatzstoffe sind ebenfalls bekannt und werden beispielsweise beschrieben in: Watkins, "Handbook of Insecticide Dust Diluents and Carriers", 2nd Ed., Darland Books, Caldwell N.J., H.v. Olphen, "Introduction to Clay Colloid Chemistry", 2nd Ed., J. Wiley & Sons, N.Y., C. Marsden, "Solvente Guide", 2nd Ed., Interscience, N.Y. 1963, McCutcheon's "Detergents and Emulsifiers
Annual", MC Publ. Corp., Ridgewood N.J., Sisley and Wood, "Encyclopedia of Surface Active Agents", Chem. Publ. Co. Inc., N.Y. 1964, Schönfeldt,
"Grenzflächenaktive Äthylenoxidaddukte", Wiss. Verlagsgesell., Stuttgart 1976, Winnacker-Küchler, "Chemische Technologie", Band 7, C. Hanser Verlag München, 4. Aufl. 1986. Auf der Basis dieser Formulierungen lassen sich auch Kombinationen mit anderen Pestizid wirksamen Stoffen, wie z.B. Insektiziden, Akariziden, Herbiziden,
Fungiziden, sowie mit Safenern, Düngemitteln und/oder Wachstumsregulatoren herstellen, z.B. in Form einer Fertigformulierung oder als Tankmix. Geeignete Safener sind beispielsweise Mefenpyr-diethyl, Cyprosulfamid, Isoxadifen-ethyl, Cloquintocet-mexyl und Dichlormid.
Spritzpulver sind in Wasser gleichmäßig dispergierbare Präparate, die neben dem Wirkstoff außer einem Verdünnungs- oder Inertstoff noch Tenside ionischer und/oder nichtionischer Art (Netzmittel, Dispergiermittel), z.B. polyoxyethylierte Alkylphenole, polyoxethylierte Fettalkohole, polyoxethylierte Fettamine,
Fettalkoholpolyglykolethersulfate, Alkansulfonate, Alkylbenzolsulfonate,
ligninsulfonsaures Natrium, 2,2'-dinaphthylmethan-6,6'-disulfonsaures Natrium, dibutylnaphthalin-sulfonsaures Natrium oder auch oleoylmethyltaunnsaures Natrium enthalten. Zur Herstellung der Spritzpulver werden die herbiziden Wirkstoffe beispielsweise in üblichen Apparaturen wie Hammermühlen, Gebläsemühlen und Luftstrahlmühlen feingemahlen und gleichzeitig oder anschließend mit den
Formulierungshilfsmitteln vermischt.
Emulgierbare Konzentrate werden durch Auflösen des Wirkstoffes in einem
organischen Lösungsmittel z.B. Butanol, Cyclohexanon, Dimethylformamid, Xylol oder auch höhersiedenden Aromaten oder Kohlenwasserstoffen oder Mischungen der organischen Lösungsmittel unter Zusatz von einem oder mehreren Tensiden ionischer und/oder nichtionischer Art (Emulgatoren) hergestellt. Als Emulgatoren können beispielsweise verwendet werden: Alkylarylsulfonsaure Calzium-Salze wie Ca-Dodecylbenzolsulfonat oder nichtionische Emulgatoren wie
Fettsäurepolyglykolester, Alkylarylpolyglykolether, Fettalkoholpolyglykolether, Propylenoxid-Ethylenoxid-Kondensationsprodukte, Alkylpolyether, Sorbitanester wie z.B. Sorbitanfettsäureester oder Polyoxethylensorbitanester wie z.B.
Polyoxyethylensorbitanfettsäureester.
Stäubemittel erhält man durch Vermählen des Wirkstoffes mit fein verteilten festen Stoffen, z.B. Talkum, natürlichen Tonen, wie Kaolin, Bentonit und Pyrophyllit, oder Diatomeenerde.
Suspensionskonzentrate können auf Wasser- oder Ölbasis sein. Sie können beispielsweise durch Naß-Vermahlung mittels handelsüblicher Perlmühlen und gegebenenfalls Zusatz von Tensiden, wie sie z.B. oben bei den anderen
Formulierungstypen bereits aufgeführt sind, hergestellt werden.
Emulsionen, z.B. ÖI-in-Wasser-Emulsionen (EW), lassen sich beispielsweise mittels Rührern, Kolloidmühlen und/oder statischen Mischern unter Verwendung von wäßrigen organischen Lösungsmitteln und gegebenenfalls Tensiden, wie sie z.B. oben bei den anderen Formulierungstypen bereits aufgeführt sind, herstellen.
Granulate können entweder durch Verdüsen des Wirkstoffes auf adsorptionsfähiges, granuliertes Inertmaterial hergestellt werden oder durch Aufbringen von
Wirkstoffkonzentraten mittels Klebemitteln, z.B. Polyvinylalkohol, polyacrylsaurem Natrium oder auch Mineralölen, auf die Oberfläche von Trägerstoffen wie Sand, Kaolinite oder von granuliertem Inertmaterial. Auch können geeignete Wirkstoffe in der für die Herstellung von Düngemittelgranulaten üblichen Weise - gewünschtenfalls in Mischung mit Düngemitteln - granuliert werden.
Wasserdispergierbare Granulate werden in der Regel nach den üblichen Verfahren wie Sprühtrocknung, Wirbelbett-Granulierung, Teller-Granulierung, Mischung mit Hochgeschwindigkeitsmischern und Extrusion ohne festes Inertmaterial hergestellt.
Zur Herstellung von Teller-, Fließbett-, Extruder- und Sprühgranulate siehe z.B.
Verfahren in "Spray-Drying Handbook" 3rd ed. 1979, G. Goodwin Ltd., London, J.E. Browning, "Agglomeration", Chemical and Engineering 1967, Seiten 147 ff, "Perry's Chemical Engineer's Handbook", 5th Ed., McGraw-Hill, New York 1973, S. 8-57.
Für weitere Einzelheiten zur Formulierung von Pflanzenschutzmitteln siehe z.B. G.C. Klingman, "Weed Control as a Science", John Wiley and Sons, Inc., New York, 1961 , Seiten 81 -96 und J.D. Freyer, S.A. Evans, "Weed Control Handbook", 5th Ed., Blackwell Scientific Publications, Oxford, 1968, Seiten 101 -103.
Die agrochemischen Zubereitungen enthalten in der Regel 0.1 bis 99 Gew.-%, insbesondere 0.1 bis 95 Gew.-%, erfindungsgemäße Verbindungen.
In Spritzpulvern beträgt die Wirkstoffkonzentration z.B. etwa 10 bis 90 Gew.-%, der Rest zu 100 Gew.-% besteht aus üblichen Formulierungsbestandteilen. Bei emulgierbaren Konzentraten kann die Wirkstoff konzentration etwa 1 bis 90, vorzugsweise 5 bis 80 Gew.-% betragen. Staubförmige Formulierungen enthalten 1 bis 30 Gew.-% Wirkstoff, vorzugsweise meistens 5 bis 20 Gew.-% an Wirkstoff, versprühbare Lösungen enthalten etwa 0.05 bis 80, vorzugsweise 2 bis 50 Gew.-% Wirkstoff. Bei wasserdispergierbaren Granulaten hängt der Wirkstoffgehalt zum Teil davon ab, ob die wirksame Verbindung flüssig oder fest vorliegt und welche
Granulierhilfsmittel, Füllstoffe usw. verwendet werden. Bei den in Wasser
dispergierbaren Granulaten liegt der Gehalt an Wirkstoff beispielsweise zwischen 1 und 95 Gew.-%, vorzugsweise zwischen 10 und 80 Gew.-%.
Daneben enthalten die genannten Wirkstofformuherungen gegebenenfalls die jeweils üblichen Haft-, Netz-, Dispergier-, Emulgier-, Penetrations-, Konservierungs-, Frostschutz- und Lösungsmittel, Füll-, Träger- und Farbstoffe, Entschäumer,
Verdunstungshemmer und den pH-Wert und die Viskosität beeinflussende Mittel.
Auf der Basis dieser Formulierungen lassen sich auch Kombinationen mit anderen Pestizid wirksamen Stoffen, wie z.B. Insektiziden, Akariziden, Herbiziden, Fungiziden, sowie mit Safenern, Düngemitteln und/oder Wachstumsregulatoren herstellen, z.B. in Form einer Fertigformulierung oder als Tankmix. Als Kombinationspartner für die erfindungsgemäßen Verbindungen in
Mischungsformulierungen oder im Tank-Mix sind beispielsweise bekannte
Wirkstoffe, die auf einer Inhibition von beispielsweise Acetolactat-Synthase, Acetyl- CoA-Carboxylase, Cellulose-Synthase, Enolpyruvylshikimat-3-phosphat-Synthase, Glutamin-Synthetase, p-Hydroxyphenylpyruvat-Dioxygenase, Phytoendesaturase, Photosystem I, Photosystem II, Protoporphyrinogen-Oxidase beruhen, einsetzbar, wie sie z.B. aus Weed Research 26 (1986) 441 -445 oder "The Pesticide Manual", 15th edition, The British Crop Protection Council and the Royal Soc. of Chemistry, 2009 und dort zitierter Literatur beschrieben sind. Als bekannte Herbizide oder Pflanzenwachstumsregulatoren, die mit den erfindungsgemäßen Verbindungen kombiniert werden können, sind z.B. folgende Wirkstoffe zu nennen (die
Verbindungen sind entweder mit dem "common name" nach der International Organization for Standardization (ISO) oder mit dem chemischen Namen oder mit der Codenummer bezeichnet) und umfassen stets sämtliche Anwendungsformen wie Säuren, Salze, Ester und Isomere wie Stereoisomere und optische Isomere. Dabei sind beispielhaft eine und zum Teil auch mehrere Anwendungsformen genannt:
Acetochlor, Acibenzolar, Acibenzolar-S-methyl, Acifluorfen, Acifluorfen-sodium, Aclonifen, Alachlor, Allidochlor, Alloxydim, Alloxydim-sodium, Ametryn,
Amicarbazone, Amidochlor, Amidosulfuron, Aminocyclopyrachlor, Aminopyralid, Amitrole, Ammoniumsulfamat, Ancymidol, Anilofos, Asulam, Atrazine, Azafenidin, Azimsulfuron, Aziprotryn, Beflubutamid, Benazolin, Benazolin-ethyl, Bencarbazone, Benfluralin, Benfuresate, Bensulide, Bensulfuron, Bensulfuron-methyl, Bentazone, Benzfendizone, Benzobicyclon, Benzofenap, Benzofluor, Benzoylprop,
Bicyclopyrone, Bifenox, Bilanafos, Bilanafos-natrium, Bispyribac, Bispyribac-natrium, Bromacil, Bromobutide, Bromofenoxim, Bromoxynil, Bromuron, Buminafos,
Busoxinone, Butachlor, Butafenacil, Butamifos, Butenachlor, Butralin, Butroxydim, Butylate, Cafenstrole, Carbetamide, Carfentrazone, Carfentrazone-ethyl, Chlomethoxyfen, Chloramben, Chlorazifop, Chlorazifop-butyl, Chlorbromuron, Chlorbufam, Chlorfenac, Chlorfenac-natrium, Chlorfenprop, Chlorflurenol,
Chlorflurenol-methyl, Chloridazon, Chlorimuron, Chlorimuron-ethyl, Chlormequat- chlorid, Chlornitrofen, Chlorophthalim, Chlorthal-dimethyl, Chlorotoluron,
Chlorsulfuron, Cinidon, Cinidon-ethyl, Cinmethylin, Cinosulfuron, Clethodim,
Clodinafop, Clodinafop-propargyl, Clofencet, Clomazone, Clomeprop, Cloprop, Clopyralid, Cloransulam, Cloransulam-methyl, Cumyluron, Cyanamide, Cyanazine, Cyclanilide, Cycloate, Cyclosulfamuron, Cycloxydim, Cycluron, Cyhalofop,
Cyhalofop-butyl, Cyperquat, Cyprazine, Cyprazole, 2,4-D, 2,4-DB,
Daimuron/Dymron, Dalapon, Daminozide, Dazomet, n-Decanol, Desmedipham, Desmetryn, Detosyl-Pyrazolate (DTP), Diallate, Dicamba, Dichlobenil, Dichlorprop, Dichlorprop-P, Diclofop, Diclofop-methyl, Diclofop-P-methyl, Diclosulam, Diethatyl, Diethatyl-ethyl, Difenoxuron, Difenzoquat, Diflufenican, Diflufenzopyr, Diflufenzopyr- natrium, Dimefuron, Dikegulac-sodium, Dimefuron, Dimepiperate, Dimethachlor, Dimethametryn, Dimethenamid, Dimethenamid-P, Dimethipin, Dimetrasulfuron, Dinitramine, Dinoseb, Dinoterb, Diphenamid, Dipropetryn, Diquat, Diquat-dibromide, Dithiopyr, Diuron, DNOC, Eglinazine-ethyl, Endothal, EPTC, Esprocarb, Ethalfluralin, Ethametsulfuron, Ethametsulfuron-methyl, Ethephon, Ethidimuron, Ethiozin,
Ethofumesate, Ethoxyfen, Ethoxyfen-ethyl, Ethoxysulfuron, Etobenzanid, F-5331 , d.h. N-[2-Chlor-4-fluor-5-[4-(3-fluorpropyl)-4,5-dihydro-5-oxo-1 H-tetrazol-1 -yl]- phenyl]-ethansulfonamid, F-7967, d. h. 3-[7-Chlor-5-fluor-2-(trifluormethyl)-1 H- benzimidazol-4-yl]-1 -methyl-6-(trifluormethyl)pyrimidin-2,4(1 H,3H)-dion, Fenoprop, Fenoxaprop, Fenoxaprop-P, Fenoxaprop-ethyl, Fenoxaprop-P-ethyl, Fenoxasulfone, Fentrazamide, Fenuron, Flamprop, Flamprop-M-isopropyl, Flamprop-M-methyl,
Flazasulfuron, Florasulam, Fluazifop, Fluazifop-P, Fluazifop-butyl, Fluazifop-P-butyl, Fluazolate, Flucarbazone, Flucarbazone-sodium, Flucetosulfuron, Fluchloralin, Flufenacet (Thiafluamide), Flufenpyr, Flufenpyr-ethyl, Flumetralin, Flumetsulam, Flumiclorac, Flumiclorac-pentyl, Flumioxazin, Flumipropyn, Fluometuron,
Fluorodifen, Fluoroglycofen, Fluoroglycofen-ethyl, Flupoxam, Flupropacil,
Flupropanate, Flupyrsulfuron, Flupyrsulfuron-methyl-sodium, Flurenol, Flurenol-butyl, Fluridone, Flurochloridone, Fluroxypyr, Fluroxypyr-meptyl, Flurprimidol, Flurtamone, Fluthiacet, Fluthiacet-methyl, Fluthiamide, Fomesafen, Foramsulfuron, Forchlorfenuron, Fosamine, Furyloxyfen, Gibberellinsäure, Glufosinate, Glufosinate- ammonium, Glufosinate-P, Glufosinate-P-ammonium, Glufosinate-P-natrium, Glyphosate, Glyphosate-isopropylammonium, H-9201 , d. h. 0-(2,4-Dimethyl-6- nitrophenyl)-0-ethyl-isopropylphosphoramidothioat, Halosafen, Halosulfuron,
Halosulfuron-methyl, Haloxyfop, Haloxyfop-P, Haloxyfop-ethoxyethyl, Haloxyfop-P- ethoxyethyl, Haloxyfop-methyl, Haloxyfop-P-methyl, Hexazinone, HW-02, d. h. 1 - (Dimethoxyphosphoryl)-ethyl(2,4-dichlorphenoxy)acetat, Imazamethabenz,
Imazamethabenz-methyl, Imazamox, Imazamox-ammonium, Imazapic, Imazapyr, Imazapyr-isopropylammonium, Imazaquin, Imazaquin-ammonium, Imazethapyr, Imazethapyr-ammonium, Imazosulfuron, Inabenfide, Indanofan, Indaziflam,
Indolessigsäure (IAA), 4-lndol-3-ylbuttersäure (IBA), lodosulfuron, lodosulfuron- methyl-natrium, loxynil, Ipfencarbazone, Isocarbamid, Isopropalin, Isoproturon, Isouron, Isoxaben, Isoxachlortole, Isoxaflutole, Isoxapyrifop, KUH-043, d. h. 3-({[5- (Difluormethyl)-I -methyl-3-(trifluormethyl)-1 H-pyrazol-4-yl]methyl}sulfonyl)-5,5- dimethyl-4,5-dihydro-1 ,2-oxazol, Karbutilate, Ketospiradox, Lactofen, Lenacil, Linuron, Maleinsäurehydrazid, MCPA, MCPB, MCPB-methyl, -ethyl und -natrium, Mecoprop, Mecoprop-natrium, Mecoprop-butotyl, Mecoprop-P-butotyl, Mecoprop-P- dimethylammonium, Mecoprop-P-2-ethylhexyl, Mecoprop-P-kalium, Mefenacet, Mefluidide, Mepiquat-chlorid, Mesosulfuron, Mesosulfuron-m ethyl, Mesotrione,
Methabenzthiazuron, Metam, Metamifop, Metamitron, Metazachlor, Metazasulfuron, Methazole, Methiopyrsulfuron, Methiozolin, Methoxyphenone, Methyldymron, 1 - Methylcyclopropen, Methylisothiocyanat, Metobenzuron, Metobromuron,
Metolachlor, S-Metolachlor, Metosulam, Metoxuron, Metribuzin, Metsulfuron, Metsulfuron-methyl, Molinate, Monalide, Monocarbamide, Monocarbamide- dihydrogensulfat, Monolinuron, Monosulfuron, Monosulfuron-ester, Monuron, MT- 128, d. h. 6-Chlor-N-[(2E)-3-chlorprop-2-en-1 -yl]-5-methyl-N-phenylpyridazin-3-amin, MT-5950, d. h. N-[3-Chlor-4-(1 -methylethyl)-phenyl]-2-methylpentanamid, NGGC- 01 1 , Naproanilide, Napropamide, Naptalam, NC-310, d.h. 4-(2,4-Dichlorobenzoyl)-1 - methyl-5-benzyloxypyrazole, Neburon, Nicosulfuron, Nipyraclofen, Nitralin, Nitrofen, Nitrophenolat-natrium (Isomerengemisch), Nitrofluorfen, Nonansäure, Norflurazon, Orbencarb, Orthosulfamuron, Oryzalin, Oxadiargyl, Oxadiazon, Oxasulfuron, Oxaziclomefone, Oxyfluorfen, Paclobutrazol, Paraquat, Paraquat-dichlorid,
Pelargonsäure (Nonansäure), Pendimethalin, Pendralin, Penoxsulam, Pentanochlor, Pentoxazone, Perfluidone, Pethoxamid, Phenisopham, Phenmedipham,
Phenmedipham-ethyl, Picloram, Picolinafen, Pinoxaden, Piperophos, Pirifenop, Pirifenop-butyl, Pretilachlor, Primisulfuron, Primisulfuron-methyl, Probenazole, Profluazol, Procyazine, Prodiamine, Prifluraline, Profoxydim, Prohexadione,
Prohexadione-calcium, Prohydrojasmone, Prometon, Prometryn, Propachlor, Propanil, Propaquizafop, Propazine, Propham, Propisochlor, Propoxycarbazone, Propoxycarbazone-natrium, Propyrisulfuron, Propyzamide, Prosulfalin, Prosulfocarb, Prosulfuron, Prynachlor, Pyraclonil, Pyraflufen, Pyraflufen-ethyl, Pyrasulfotole, Pyrazolynate (Pyrazolate), Pyrazosulfuron, Pyrazosulfuron-ethyl, Pyrazoxyfen, Pyribambenz, Pyribambenz-isopropyl, Pyribambenz-propyl, Pyribenzoxim,
Pyributicarb, Pyridafol, Pyridate, Pyriftalid, Pyriminobac, Pyriminobac-methyl, Pyrimisulfan, Pyrithiobac, Pyrithiobac-natrium, Pyroxasulfone, Pyroxsulam,
Quinclorac, Quinmerac, Quinoclamine, Quizalofop, Quizalofop-ethyl, Quizalofop-P, Quizalofop-P-ethyl, Quizalofop-P-tefuryl, Rimsulfuron, Saflufenacil, Secbumeton, Sethoxydim, Siduron, Simazine, Simetryn, SN-106279, d. h. Methyl-(2R)-2-({7-[2- chlor-4-(trifluormethyl)phenoxy]-2-naphthyl}oxy)propanoat, Sulcotrione, Sulfallate (CDEC), Sulfentrazone, Sulfometuron, Sulfometuron-methyl, Sulfosate (Glyphosate- trimesium), Sulfosulfuron, SYN-523, SYP-249, d. h. 1 -Ethoxy-3-methyl-1 -oxobut-3- en-2-yl-5-[2-chlor-4-(trifluormethyl)phenoxy]-2-nitrobenzoat, SYP-300, d. h. 1 -[7- Fluor-3-oxo-4-(prop-2-in-1 -yl)-3,4-dihydro-2H-1 ,4-benzoxazin-6-yl]-3-propyl-2- thioxoimidazolidin-4,5-dion, Tebutam, Tebuthiuron, Tecnazene, Tefuryltrione, Tembotrione, Tepraloxydim, Terbacil, Terbucarb, Terbuchlor, Terbumeton,
Terbuthylazine, Terbutryn, Thenylchlor, Thiafluamide, Thiazafluron, Thiazopyr,
Thidiazimin, Thidiazuron, Thiencarbazone, Thiencarbazone-methyl, Thifensulfuron, Thifensulfuron-methyl, Thiobencarb, Tiocarbazil, Topramezone, Tralkoxydim, Triallate, Triasulfuron, Triaziflam, Triazofenamide, Tribenuron, Tribenuron-methyl, Trichloressigsäure (TCA), Triclopyr, Tridiphane, Trietazine, Trifloxysulfuron,
Trifloxysulfuron-natrium, Trifluralin, Triflusulfuron, Triflusulfuron-methyl, Trimeturon, Trinexapac, Trinexapac-ethyl, Tritosulfuron, Tsitodef, Uniconazole, Uniconazole-P, Vernolate, ZJ-0862, d. h. 3,4-Dichlor-N-{2-[(4,6-dimethoxypyrimidin-2- yl)oxy]benzyl}anilin, sowie die folgenden Verbindungen:
Figure imgf000049_0001
Zur Anwendung werden die in handelsüblicher Form vorliegenden Formulierungen gegebenenfalls in üblicher Weise verdünnt z.B. bei Spritzpulvern, emulgierbaren Konzentraten, Dispersionen und wasserdispergierbaren Granulaten mittels Wasser. Staubförmige Zubereitungen, Boden- bzw. Streugranulate sowie versprühbare Lösungen werden vor der Anwendung üblicherweise nicht mehr mit weiteren inerten Stoffen verdünnt.
Mit den äußeren Bedingungen wie Temperatur, Feuchtigkeit, der Art des
verwendeten Herbizids, u.a. variiert die erforderliche Aufwandmenge der
Verbindungen der Formel (I). Sie kann innerhalb weiter Grenzen schwanken, z.B. zwischen 0,001 und 1 ,0 kg/ha oder mehr Aktivsubstanz, vorzugsweise liegt sie jedoch zwischen 0,005 und 750 g/ha. Die nachstehenden Beispiele erläutern die Erfindung näher.
A. Chemische Beispiele
1 . Herstellung von 0-{1 -(2,2-Difluorethyl)-2,2-dioxido-3-[2-(trifluormethyl)phenyl]- 1 H-pyrido[2,3-c][1 ,2]thiazin-4-yl}-S-methylthiocarbonat (Verbindung Nr. lb-1 )
Zu einer Lösung von 100 mg (0.246 mmol) 1 -(2,2-Difluorethyl)-3-[2-(trifluormethyl)- phenyl]-1 H-pyrido[2,3-c][1 ,2]thiazin-4-ol-2,2-dioxid (Verbindung la-1 ) in 5 ml
Dichlormethan werden 0.03 ml (0.369 mmol) Pyridin gegeben. Anschließend werden bei Raumtemperatur (RT) 32.65 mg (0.295 mmol) S-Methylchlorothiocarbonat zugetropft. Bei RT wird 3 h nachgerührt. Danach wird das Lösemittel unter reduziertem Druck destillativ entfernt. Der Rückstand wird mit Ethylacetat
aufgenommen und säulenchromatographisch (S1O2, Eluent: EtOAc / n-Heptan 10:90 nach 100:0) gereinigt. Man erhält 120 mg (99%) Verbindung lb-1 .
In analoger Weise erhält man:
0-[3-(2-Chlorphenyl)-1 -(2,2-difluorethyl)-2,2-dioxido-1 H-pyrido[2,3-c][1 ,2]thiazin-4- yl]-S-methylthiocarbonat (Verbindung lb-7),
0-[1 -(2,2-Difluorethyl)-3-(2-fluorphenyl)-2,2-dioxido-1 H-pyrido[2,3-c][1 ,2]thiazin-4-yl]- S-methylthiocarbonat (Verbindung lb-5),
0-[1 -(2,2-Difluorethyl)-3-(2-iodphenyl)-2,2-dioxido-1 H-pyrido[2,3-c][1 ,2]thiazin-4-yl]- S-methylthiocarbonat (Verbindung lb-9).
2. Herstellung von 0-{1 -(2,2-Difluorethyl)-2,2-dioxido-3-[2-(trifluormethyl)phenyl]- 1 H-pyrido[2,3-c][1 ,2]thiazin-4-yl}-S-ethylthiocarbonat (Verbindung Nr. lb-2)
Zu einer Lösung von 100 mg (0.246 mmol) 1 -(2,2-Difluorethyl)-3-[2-(trifluormethyl)- phenyl]-1 H-pyrido[2,3-c][1 ,2]thiazin-4-ol-2,2-dioxid (Verbindung la-1 ) in 5 ml
Dichlormethan werden 0.03 ml (0.369 mmol) Pyridin gegeben. Anschließend werden bei RT 36.8 mg (0.295 mmol) S-Ethylchlorothiocarbonat zugetropft. Bei RT wird 3 h nachgerührt. Danach wird das Lösemittel unter reduziertem Druck destillativ entfernt. Der Rückstand wird mit Ethylacetat aufgenommen und säulenchromatographisch (Si02, Eluent: EtOAc / n-Heptan 10:90 nach 100:0) gereinigt. Man erhält 120 mg (97%) Verbindung lb-2. In analoger Weise erhält man:
0-[1 -(2,2-Difluorethyl)-3-(2-iodphenyl)-2,2-dioxido-1 H-pyrido[2,3-c][1 ,2]thiazin-4-yl]- S-ethylthiocarbonat (Verbindung lb-10). 3. Herstellung von 1 -(2,2-Difluorethyl)-2,2-dioxido-3-[2-(trifluormethyl)phenyl]- 1 H-pyrido[2,3-c][1 ,2]thiazin-4-yl-2-methylpropanoat (Verbindung Nr. lb-3)
Zu einer Lösung von 100 mg (0.246 mmol) 1 -(2,2-Difluorethyl)-3-[2-(trifluormethyl)- phenyl]-1 H-pyrido[2,3-c][1 ,2]thiazin-4-ol-2,2-dioxid (Verbindung la-1 ) in 5 ml
Dichlormethan werden 0.03 ml (0.369 mmol) Pyridin gegeben. Anschließend werden bei RT 0.03 ml (0.295 mmol) 2-Methylpropanoylchlorid zugetropft. Bei RT wird 3 h nachgerührt. Danach wird das Lösemittel unter reduziertem Druck destillativ entfernt. Der Rückstand wird mit Ethylacetat aufgenommen und säulenchromatographisch (Si02, Eluent: EtOAc / n-Heptan 10:90 nach 100:0) gereinigt. Man erhält 92 mg (75%) Verbindung lb-3.
In analoger Weise erhält man:
3-(2-Chlorphenyl)-1 -(2,2-difluorethyl)-2,2-dioxido-1 H-pyrido[2,3-c][1 ,2]thiazin-4-yl-2- methylpropanoat (Verbindung lb-8),
1 -(2,2-Difluorethyl)-3-(2-fluorphenyl)-2,2-dioxido-1 H-pyrido[2,3-c][1 ,2]thiazin-4-yl-2- methylpropanoat (Verbindung lb-6),
1 -(2,2-Difluorethyl)-3-(2-iodphenyl)-2,2-dioxido-1 H-pyrido[2,3-c][1 ,2]thiazin-4-yl-2- methylpropanoat (Verbindung lb-1 1 ).
4. Herstellung von 1 -(2,2-Difluorethyl)-2,2-dioxido-3-[2-(trifluormethyl)phenyl]- 1 H-pyrido[2,3-c][1 ,2]thiazin-4-yl-dimethylcarbamat (Verbindung Nr. lb-4)
Zu einer Lösung von 100 mg (0.246 mmol) 1 -(2,2-Difluorethyl)-3-[2-(trifluormethyl)- phenyl]-1 H-pyrido[2,3-c][1 ,2]thiazin-4-ol-2,2-dioxid (Verbindung la-1 ) in 5 ml
Dichlormethan werden 0.03 ml (0.369m mol) Pyridin gegeben. Anschließend werden bei RT 0.03 ml (0.295 mmol) Dimethylcarbaminicchlorid zugetropft. Bei RT wird 3 h nachgerührt. Danach wird das Lösemittel unter reduziertem Druck destillativ entfernt. Der Rückstand wird mit Ethylacetat aufgenommen und säulenchromatographisch (Si02, Eluent: EtOAc / n-Heptan 10:90 nach 100:0) gereinigt. Man erhält 92 mg (76%) Verbindung lb-4. 5. Herstellung von 1 -(2,2-Difluorethyl)-3-[2-(trifluormethyl)phenyl]-1 H-pyrido[2,3- c][1 ,2]thiazin-4-ol-2,2-dioxid (Verbindung Nr. la-1 )
Zu einer Lösung von 965 mg (2.201 mmol) Methyl-2-[(2,2-difluorethyl){[2- (trifluormethyl)benzyl]sulfonyl}amino]nicotinat (Verbindung 11-1 ) in 25 ml THF werden bei RT 5.5 ml (5.5 mmol) einer 1 M Natriumbis(trimethylsilyl)amid in THF zugetropft und bei RT nachgerührt. Nach 30 min werden 10 ml 1 N HCl zugegeben und nochmals 10 min nachgerührt. Danach wird die wässrige Phase getrennt und mit Ethylacetat gewaschen. Die vereinigten organischen Phasen werden mit Wasser gewaschen, über Natriumsulfat getrocknet und in Trockne eingedampft. Der
Rückstand wird säulenchromatographisch (S1O2, Eluent: EtOAc / n-Heptan 20:80 nach 50:50) getrennt. Man erhält 638 mg (71 %) der Verbindung la-1 . In analoger Weise erhält man:
3-(2-Chlorphenyl)-1 -(2,2-difluorethyl)-1 H-pyrido[2,3-c][1 ,2]thiazin-4-ol-2,2-dioxid (Verbindung la-3),
1 -(2,2-Difluorethyl)-3-(2-fluorphenyl)-1 H-pyrido[2,3-c][1 ,2]thiazin-4-ol-2,2-dioxid (Verbindung la-2),
1 -(2,2-Difluorethyl)-3-(2-iodphenyl)-1 H-pyrido[2,3-c][1 ,2]thiazin-4-ol-2,2-dioxid (Verbindung la-4),
3-(2,6-Dichlorphenyl)-1 -(2,2-difluorethyl)-1 H-pyrido[3,2-c][1 ,2]thiazin-4-ol-2,2-dioxid (Verbindung la-5).
6. Herstellung von Methyl-2-{(2,2-difluorethyl)[(2-fluorbenzyl)sulfonyl]amino}- nicotinat (Verbindung Nr. II-2)
Zu einer Lösung von 600 mg (1.85 mmol) Methyl-2-{[(2-fluorbenzyl)-sulfonyl]- amino}nicotinat (Verbindung I la-2) in 20 ml Acetonitril werden bei RT 0.35 ml N,N- Diisopropyl-N-ethylamin zugetropft. Nach 5 min Rühren bei RT werden bei dieser Temperatur innerhalb 10 min 594 mg (2.775 mmol) 2,2-Difluorethyltrifluor- methansulfonat zugetropft. Die Reaktionsmischung wird 8 h bei 60°C gerührt, über Nacht wird die Reaktionsmischung bei RT gerührt, danach weitere 8h bei 60°C. Anschließend wird das Reaktionsgemisch in Trockne eingedampft. Der Rückstand wird in Ethylacetat aufgenommen und säulenchromatographisch (S1O2, Eluent:
EtOAc / n-Heptan 20:80 nach 50:50). Man erhält 612 mg (85%) der Verbindung II-2. 1H-NMR (400 MHz,CDCI3):ü δ = 8.53 (dd, 1H); 8.23 (dd, 1H); 7.49 (td, 1H); 7.35 (dd, 1H); 7.31 (m, 1H); 7.10 (m, 1H); 6.06 (tt, 1H); 4.42 (s, 2H); 4.18 (td, 2H); 3.92 (s, 3H). In analoger Weise erhält man:
Methyl-2-[(2,2-difluorethyl){[2-(trifluormethyl)benzyl]sulfonyl}amino]nicotinat
(Verbindung 11-1),
1H-NMR(400MHz,CDCI3):ü 6 = 8.59 (dd, 1H); 8.27 (dd, 1H); 7.68 (brd, 1H); 7.45 (m, 2H); 7.41 (dd, 1H); 6.13 (tt, 1H); 4.58 (s, 2H); 4.27 (td, 2H); 3.92 (s, 3H).
Methyl-2-{[(2-chlorbenzyl)sulfonyl](2,2-difluorethyl)amino}nicotinat (Verbindung II-3) 1H-NMR (400 MHz,CDCI3):ü δ = 8.56 (dd, 1H); 8.25 (dd, 1H); 7.54 (dd, 1H); 7.42 (dd, 1H); 7.37 (dd, 1H); 7.27 (td, 1H); 7.21 (td, 1H); 6.09 (tt, 1H); 4.57 (s, 2H); 4.23 (td, 2H); 3.92 (s, 3H),
Methyl-2-{(2,2-difluorethyl)[(2-iodbenzyl)sulfonyl]amino}nicotinat (Verbindung II-4) 1H-NMR (400 MHz,CDCI3):ü δ = 8.61 (dd, 1H); 8.28 (dd, 1H); 7.87 (dd, 1H); 7.56 (dd, 1H); 7.40 (dd, 1H); 7.30 (td, 1H); 7.01 (td, 1H); 6.10 (tt, 1H); 4.59 (s, 2H); 4.26 (td, 2H); 3.92 (s, 3H),
Methyl-3-{[(2,6-dichlorbenzyl)sulfonyl](2,2-difluorethyl)amino}pyridin-2-carboxylat (Verbindung II-5)
1H-NMR(400MHz,CDCI3):D δ = 8.75 (dd, 1H); 7.98 (brs, 1H); 7.58 (dd, 1H); 7.35 (m, 2H); 7.23 (dd, 1H); 6.15 (tt, 1H); 4.92 (brs, 2H); 4.05 (s, 3H).
7. Herstellung von Methyl-2-{[(2-iodbenzyl)sulfonyl]amino}nicotinat (Verbindung Nr. lla-4)
Zu einer Lösung von 2 g (6.318 mmol) (2-lodphenyl)methansulfonylchlorid und 961 mg (6.318 mmol) Methyl-2-aminonicotinat in 20 ml Dichlormethan werden bei RT 2.6 ml Pyridin langsam zugetropft. Die Reaktionsmischung wird 12 h bei RT gerührt. Danach werden 50 ml Dichlormethan zugegeben und mit 1N HCI-Lösung dreimal gewaschen. Die organische Phase wird getrocknet (Natriumsulfat) und ins Trockne eingedampft. Der Rückstand wird säulenchromato-graphisch (S1O2, Eluent: EtOAc / n-Heptan 20:80 nach 50:50) getrennt. Man erhält 1.72 g (63%) der Verbindung lla-4. 1H-NMR (400 MHz,CDCI3): ü δ = 10.26 (s, 1 H); 8.59 (dd, 1 H); 8.31 (dd, 1 H); 7.87 (br d, 1 H); 7.50 (dd, 1 H); 7.33 (t, 1 H); 7.08 (dd, 1 H); 7.03 (td, 1 H); 5.20 (s, 2H); 3.93 (s, 3H). In analoger Weise erhält man:
Methyl-2-({[2-(trifluormethyl)benzyl]sulfonyl}amino)nicotinat (Verbindung lla-1 ) 1H-NMR (400 MHz,CDCI3): ü δ = 10.36 (s, 1 H); 8.56 (dd, 1 H); 8.31 (dd, 1 H); 7.79 (d, 1 H); 7.70 (d, 1 H); 7.57 (t, 1 H); 7.48 (t, 1 H); 7.09 (dd, 1 H); 5.22 (s, 2H); 3.94 (s, 3H). Methyl-2-{[(2-chlorbenzyl)sulfonyl]amino}nicotinat (Verbindung lla-3)
1H-NMR (400 MHz,CDCI3): ü δ = 10.25 (s, 1 H); 8.59 (dd, 1 H); 8.30 (dd, 1 H); 7.49 (dd, 1 H); 7.39 (dd, 1 H); 7.27 (m, 2H); 7.08 (dd, 1 H); 5.17 (s, 2H); 3.92 (s, 3H).
Methyl-2-{[(2-fluorbenzyl)sulfonyl]amino}nicotinat (Verbindung lla-2)
1H-NMR (400 MHz,CDCI3): ü δ = 10.21 (s, 1 H); 8.60 (dd, 1 H); 8.32 (dd, 1 H); 7.42 (td, 1 H); 7.33 (m, 1 H); 7.14 (t, 1 H); 7.09 (dd, 1 H); 7.04 (t, 1 H); 5.03 (s, 2H); 3.91 (s, 3H). Methyl-3-{[(2,6-dichlorbenzyl)sulfonyl]amino}pyridin-2-carboxylat (Verbindung lla-5) 1H-NMR (400 MHz,CDCI3): D δ = 10.64 (s, 1 H); 8.35 (dd, 1 H); 7.97 (dd, 1 H); 7.29 (m, 3H); 7.18 (dd, 1 H); 4.97 (s, 2H); 4.03 (s, 3H).
B. Formulierungsbeispiele
1 . Stäubemittel
Ein Stäubemittel wird erhalten, indem man 10 Gew. -Teile einer Verbindung der allgemeinen Formel (I) und 90 Gew. -Teile Talkum als Inertstoff mischt und in einer Schlagmühle zerkleinert.
2. Dispergierbares Pulver
Ein in Wasser leicht dispergierbares, benetzbares Pulver wird erhalten, indem man 25 Gewichtsteile einer Verbindung der allgemeinen Formel (I), 64 Gewichtsteile kaolinhaltigen Quarz als Inertstoff, 10 Gewichtsteile ligninsulfonsaures Kalium und 1 Gew.-Teil oleoylmethyltaurinsaures Natrium als Netz- und Dispergiermittel mischt und in einer Stiftmühle mahlt. 3. Dispersionskonzentrat
Ein in Wasser leicht dispergierbares Dispersionskonzentrat wird erhalten, indem man 20 Gewichtsteile einer Verbindung der allgemeinen Formel (I), 6 Gew.-Teile Alkylphenolpolyglykolether (©Triton X 207), 3 Gew.-Teile
Isotridecanolpolyglykolether (8 EO) und 71 Gew.-Teile paraffinischem Mineralöl (Siedebereich z.B. ca. 255 bis über 277°C) mischt und in einer Reibkugelmühle auf eine Feinheit von unter 5 Mikron vermahlt.
4. Emulgierbares Konzentrat
Ein emulgierbares Konzentrat wird erhalten aus 15 Gew.-Teilen einer Verbindung der allgemeinen Formel (I), 75 Gew.Teilen Cyclohexanon als Lösemittel und 10 Gew.-Teilen oxethyliertes Nonylphenol als Emulgator.
5. Wasserdispergierbares Granulat
Ein in Wasser dispergierbares Granulat wird erhalten, indem man
75 Gew.-Teile einer Verbindung der allgemeinen Formel (I),
10 " ligninsulfonsaures Calcium,
5 " Natriumlaurylsulfat,
3 " Polyvinylalkohol und
7 " Kaolin
mischt, auf einer Stiftmühle mahlt und das Pulver in einem Wirbelbett durch
Aufsprühen von Wasser als Granulierflüssigkeit granuliert.
Ein in Wasser dispergierbares Granulat wird auch erhalten, indem man
25 Gew.-Teile einer Verbindung der allgemeinen Formel (I),
2,2'-dinaphthylmethan-6,6'-disulfonsaures Natrium,
oleoylmethyltaurinsaures Natrium,
Polyvinylalkohol,
Calciumcarbonat und
Wasser
auf einer Kolloidmühle homogenesiert und vorzerkleinert, anschließend auf einer Perlmühle mahlt und die so erhaltene Suspension in einem Sprühturm mittels einer Einstoffdüse zerstäubt und trocknet. C. Biologische Beispiele
1 . Herbizide Wirkung gegen Schadpflanzen im Vorauflauf
Samen beziehungsweise Rhizomstücke Mono- und dikotyier Schadpflanzen werden in Töpfen von 9 bis 13 cm Durchmesser in sandiger Lehmerde ausgelegt und mit Erde bedeckt. Die als emulgierbare Konzentrate oder Stäubemittel formulierten Herbizide werden in Form wäßriger Dispersionen oder Suspensionen bzw.
Emulsionen mit einer Wasseraufwandmenge von umgerechnet 300 bis 800l/ha in unterschiedlichen Dosierungen auf die Oberfläche der Abdeckerde appliziert.
Anschließend werden die Töpfe zur weiteren Kultivierung der Pflanzen im Gewächs- haus unter optimalen Bedingungen gehalten. Nach 3 bis 4 Wochen Standzeit der Versuchspflanzen im Gewächshaus unter optimalen Wachstumsbedingungen wird die Wirkung der erfindungsgemäßen Verbindungen durch optische Bonitur ermittelt. So zeigen beispielsweise die Verbindungen der Nr. la-1 und lb-1 bei einer
Aufwandmenge von 1280 Gramm pro Hektar jeweils eine mindestens 80%-ige Wirkung gegen Matricaria inodora, Veronica persica und Stellaria media.
2. Herbizide Wirkung gegen Schadpflanzen im Nachauflauf
Samen von mono- und dikotylen Schadpflanzen werden in Papptöpfen in sandigem Lehmboden ausgelegt, mit Erde abgedeckt und im Gewächshaus unter guten Wachstumsbedingungen angezogen. Zwei bis drei Wochen nach der Aussaat werden die Versuchspflanzen im Dreiblattstudium behandelt. Die als Spritzpulver bzw. als Emulsionskonzentrate formulierten erfindungsgemäßen Verbindungen werden mit einer Wasseraufwandmenge von umgerechnet 600 bis 800 l/ha auf die Oberfläche der grünen Pflanzenteile gesprüht. Nach 3 bis 4 Wochen Standzeit der Versuchspflanzen im Gewächshaus unter optimalen Wachstumsbedingungen wird die Wirkung der erfindungsgemäßen Verbindungen durch optische Bonitur ermittelt. So zeigen beispielsweise die Verbindungen der Nr. la-1 , la-2 und lb-4 bei einer Aufwandmenge von 1280 Gramm pro Hektar jeweils eine mindestens 80%-ige Wirkung gegen Matricaria inodora, Veronica persica und Stellaria media.

Claims

Patentansprüche:
Pyridyl-Ketosultame der Formel (I) oder deren Salze
Figure imgf000057_0001
worin
X1, X2, X3 und X4 bedeuten unabhängig voneinander jeweils N oder C-R1, wobei genau eines dieser vier Elemente N bedeutet,
R1 bedeutet Wasserstoff, (Ci-C4)-Alkyl, (Ci-C4)-Haloalkyl, Halogen, Cyano, Hydroxy, (Ci-C4)-Alkyoxy, (Ci-C4)-Haloalkyoxy, (Ci-C4)-Alkylthio, jeweils durch s Reste R5 substituiertes Aryl oder Heteroaryl,
R2 bedeutet Wasserstoff oder jeweils durch n Halogenatome substituiertes (d- C )-Alkyl, (C2-C6)-Alkenyl, (C2-C6)-Alkinyl, (C3-C6)-Cycloalkyl, (Ci-C )-Alkoxy-(Ci-C )- alkyl, Di-(Ci-C )-alkoxy-(Ci-C )-alkyl, (Ci-C )-Alkylthio-(Ci-C )-alkyl oder (C3-C6)- Cycloalkyl-(Ci-C6)-alkyl,
R3 bedeutet durch t Reste R6 substituiertes Aryl oder durch s Reste R6
substituiertes Heteroaryl,
R4 bedeutet Wasserstoff, C(=0)R7, C(=L)MR8, S02R9, P(=L)R10R11,
C(=L)NR12R13, E oder R14,
R5 bedeutet Halogen, Cyano, Nitro, Hydroxy, jeweils durch n Halogenatome substituiertes (Ci-C )-Alkyl, (C2-C6)-Alkenyl, (C3-C6)-Alkinyl, (C3-C6)-Cycloalkyl, (Ci- C4)-Alkoxy-(Ci-C4)-alkyl, (Ci-C4)-Alkylcarbonyl oder (Ci-C4)-Alkoxycarbonyl, R6 bedeutet (Ci-C4)-Alkyl, (C3-C6)-Cycloalkyl, Halogen, Cyano, Nitro, (Ci-C4)- Haloalkyl, (Ci-C )-Haloalkoxy, (C3-C6)-Cycloalkyl, (Ci-C )-Alkoxy, (Ci-C )-Alkoxy - (Ci-C )-alkyl oder (Ci-C )-Haloalkoxy-(Ci-C )-alkyl,
R7 bedeutet jeweils durch n Halogenatome substituiertes (Ci-C4)-Alkyl, (C2-C6)- Alkenyl, (Ci-C )-Alkoxy-(Ci-C )-alkyl, Di-(Ci-C )-alkoxy-(Ci-C )-alkyl oder (Ci-C )- Alkylthio-(Ci-C )-alkyl,
einen durch n Reste aus der Gruppe bestehend aus Halogen, (Ci-C4)-Alkyl und (d- C4)-Alkoxy substituierten, vollständig gesättigten, 3- bis 6-gliedrigen Ring bestehend aus 3 bis 5 Kohlenstoffatomen und 1 bis 3 Heteroatomen aus der Gruppe Sauerstoff, Schwefel und Stickstoff,
oder jeweils durch n Reste aus der Gruppe bestehend aus Halogen, (Ci-C4)-Alkyl und (Ci-C4)-Alkoxy substituiertes (C3-C6)-Cycloalkyl, Phenyl, Phenyl-(Ci-C4)-alkyl, Phenoxy-(Ci-C4)-alkyl oder Heteroaryloxy-(Ci-C4)-alkyl,
R8 bedeutet jeweils durch n Halogenatome substituiertes (Ci-C4)-Alkyl, (C2-C4)- Alkenyl, (Ci-C )-Alkoxy-(Ci-C )-alkyl oder Di-(Ci-C )-alkoxy-(Ci-C )-alkyl, oder durch jeweils n Reste aus der Gruppe bestehend aus Halogen, (Ci-C4)-Alkyl und (Ci-C4)- Alkoxy substituiertes (C3-C6)-Cycloalkyl, Phenyl oder Benzyl,
R9, R10, R11 bedeuten unabhängig voneinander jeweils durch n Halogenatome substituiertes (Ci-C )-Alkyl, (Ci-C )-Alkoxy, N-(Ci-C )-Alkylamino, N,N-Di-(Ci-C )- Alkylamino, (Ci-C )-Alkylthio, (C2-C )-Alkenyl oder (C3-C6)-Cycloalkylthio,
oder jeweils durch n Reste aus der Gruppe bestehend aus Halogen, (Ci-C4)-Alkyl und (Ci-C4)-Alkoxy substituiertes Phenyl, Benzyl, Phenoxy oder Phenylthio,
R12, R13 bedeuten unabhängig voneinander jeweils Wasserstoff, jeweils durch n Halogenatome substituiertes (Ci-C4)-Alkyl, (C3-C6)-Cycloalkyl, (C2-Ce)-Alkenyl, (d- C )-Alkoxy oder (Ci-C )-Alkoxy-(Ci-C )-alkyl,
durch jeweils n Reste aus der Gruppe bestehend aus Halogen, (Ci-C4)-Alkyl und (Ci-C4)-Alkoxy substituiertes Phenyl oder Benzyl, oder R12 und R13 bilden gemeinsam mit dem N-Atom, an das sie gebunden sind, einen 3- bis 6-gliedrigen Ring bestehend 2 bis 5 Kohlenstoffatomen und 0 oder 1 Sauerstoff- oder Schwefelatome, R14 bedeutet jeweils durch n Halogenatome substituiertes (Ci-C4)-Alkyl, (C2-C-6)- Alkenyl, (C2-C6)-Alkinyl, (Ci-C4)-Alkoxy-(Ci-C )-alkyl, (Ci-C )-Alkylthio-(Ci-C )-alkyl oder Di-(Ci-C )-alkoxy-(Ci-C )-alkyl,
jeweils durch n Reste aus der Gruppe bestehend aus Halogen, (Ci-C4)-Alkyl und (Ci-C4)-Alkoxy substituiertes (C3-C6)-Cycloalkyl,
einen durch n Reste aus der Gruppe bestehend aus Halogen, (Ci-C4)-Alkyl und (d- C4)-Alkoxy substituierten, vollständig gesättigten, 3- bis 6-gliedrigen Ring bestehend aus 3 bis 5 Kohlenstoffatomen und 1 bis 3 Heteroatomen aus der Gruppe Sauerstoff, Schwefel und Stickstoff,
durch n Reste aus der Gruppe bestehend aus Halogen, (Ci-C4)-Alkyl und (Ci-C4)- Alkoxy substituiertes Phenyl, Phenyl-(Ci-C4)-alkyl, Phenoxy-(Ci-C4)-alkyl oder Heteroaryloxy-(Ci-C4)-alkyl,
L, und M bedeuten unabhängig voneinander jeweils Sauerstoff oder Schwefel, E bedeutet ein Metallionäquivalent oder ein Ammoniumion, n bedeutet 0, 1 , 2 oder 3, s bedeutet 0, 1 , 2, 3, 4 oder 5, t bedeutet 1 , 2, 3, 4 oder 5.
2. Pyridyl-Ketosultame nach Anspruch 1 , worin
X1 , X2 und X3 bedeuten jeweils C-R1 , X4 bedeutet N, R1 bedeutet Wasserstoff, R2 bedeutet 2,2-Difluorethyl, 2,2,2-Trifluoretyl, Allyl oder Propinyl, R3 bedeutet durch 1 , 2 oder 3 Reste R6 substituiertes Phenyl, R4 bedeutet Wasserstoff, C(=L)MR8 oder C (=L)NR12R13,
R6 bedeutet Fluor, Chlor, Brom, lod, Methyl, Trifluomethyl, Methoxy, Nitro oder Cyano,
R8 bedeutet (Ci-C4)-Alkyl,
R12, R13 bedeuten jeweils (Ci-C )-Alkyl, L bedeutet Sauerstoff, M bedeutet Schwefel.
3. Pyridyl-Ketosultame nach Anspruch 1 , worin X1 , X2 und X4 bedeuten jeweils C-R1 , X3 bedeutet N, R1 bedeutet Wasserstoff,
R2 bedeutet 2,2-Difluorethyl, 2,2,2-Trifluoretyl, Allyl oder Propinyl, R3 bedeutet durch 1 , 2 oder 3 Reste R6 substituiertes Phenyl,
R4 bedeutet Wasserstoff, C(=L)MR8 oder C (=L)NR12R13, R6 bedeutet Fluor, Chlor, Brom, lod, Methyl, Trifluomethyl, Methoxy, Nitro oder Cyano,
R8 bedeutet (Ci-C4)-Alkyl, R12, R13 bedeuten jeweils (Ci-C )-Alkyl, L bedeutet Sauerstoff, M bedeutet Schwefel.
4. Pyridyl-Ketosultame nach Anspruch 1 , worin X1 , X3 und X4 bedeuten jeweils C-R1 ,
X2 bedeutet N, R1 bedeutet Wasserstoff, R2 bedeutet 2,2-Difluorethyl, 2,2,2-Trifluoretyl, Allyl oder Propinyl, R3 bedeutet durch 1 , 2 oder 3 Reste R6 substituiertes Phenyl, R4 bedeutet Wasserstoff, C(=L)MR8 oder C (=L)NR12R13,
R6 bedeutet Fluor, Chlor, Brom, lod, Methyl, Trifluomethyl, Methoxy, Nitro oder Cyano, R8 bedeutet (Ci-C4)-Alkyl,
R12, R13 bedeuten jeweils (Ci-C )-Alkyl,
L bedeutet Sauerstoff, M bedeutet Schwefel.
5. Pyridyl-Ketosultame nach Anspruch 1 , worin X2, X3 und X4 bedeuten jeweils C-R1 , X1 bedeutet N,
R1 bedeutet Wasserstoff,
R2 bedeutet 2,2-Difluorethyl, 2,2,2-Trifluoretyl, Allyl oder Propinyl,
R3 bedeutet durch 1 , 2 oder 3 Reste R6 substituiertes Phenyl,
R4 bedeutet Wasserstoff, C(=L)MR8 oder C (=L)NR12R13, R6 bedeutet Fluor, Chlor, Brom, lod, Methyl, Trifluomethyl, Methoxy, Nitro oder Cyano,
R8 bedeutet (Ci-C )-Alkyl, R12, R13 bedeuten jeweils (Ci-C )-Alkyl, L bedeutet Sauerstoff, bedeutet Schwefel.
6. Pyridyl-Ketosultame nach Anspruch 1 oder 2, worin
X1 , X2 und X3 bedeuten jeweils C-R1 ,
X4 bedeutet N,
R1 bedeutet Wasserstoff,
R2 bedeutet 2,2-Difluorethyl, R3 bedeutet durch 1 , 2 oder 3 Reste R6 substituiertes Phenyl,
R4 bedeutet Wasserstoff, C(=L)MR8 oder C (=L)NR12R13,
R6 bedeutet Fluor, Chlor, Brom, lod, Methyl, Trifluomethyl, Methoxy, Nitro oder Cyano,
R8 bedeutet Methyl, Ethyl oder iso-Propyl,
R12, R13 bedeuten jeweils Methyl,
L bedeutet Sauerstoff, M bedeutet Schwefel.
7. Herbizide Mittel, gekennzeichnet durch einen herbizid wirksamen Gehalt an mindestens einer Verbindung der Formel (I) gemäß einem der Ansprüche 1 bis 6.
8. Herbizide Mittel nach Anspruch 7 in Mischung mit Formulierungshilfsmitteln.
9. Herbizide Mittel nach Anspruch 7 oder 8 enthaltend mindestens einen weiteren pestizid wirksame Stoffen aus der Gruppe Insektizide, Akarizide, Herbizide, Fungizide, Safenern und Wachstumsregulatoren.
10. Herbizide Mittel nach Anspruch 9 enthaltend einen Safener.
1 1 . Herbizide Mittel nach Anspruch 10 enthaltend ein weiteres Herbizid.
12. Verfahren zur Bekämpfung unerwünschter Pflanzen, dadurch
gekennzeichnet, daß man eine wirksame Menge mindestens einer Verbindung der Formel (I) gemäß einem der Ansprüche 1 bis 6 oder eines herbiziden Mittels nach einem der Ansprüche 7 bis 1 1 auf die Pflanzen oder auf den Ort des unerwünschten Pflanzenwachstums appliziert.
13. Verwendung von Verbindungen der Formel (I) gemäß einem der Ansprüche 1 bis 6 oder eines herbiziden Mittels nach einem der Ansprüche 7 bis 1 1 zur
Bekämpfung unerwünschter Pflanzen.
14. Verwendung nach Anspruch 13, dadurch gekennzeichnet, daß die
Verbindungen der Formel (I) zur Bekämpfung unerwünschter Pflanzen in Kulturen von Nutzpflanzen eingesetzt werden.
15. Verwendung nach Anspruch 14, dadurch gekennzeichnet, daß die
Nutzpflanzen transgene Nutzpflanzen sind.
PCT/EP2011/064821 2010-09-01 2011-08-29 Herbizid wirksame pyridyl-ketosultame WO2012028580A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP11748430.3A EP2611815A1 (de) 2010-09-01 2011-08-29 Herbizid wirksame pyridyl-ketosultame
CN2011800528286A CN103189382A (zh) 2010-09-01 2011-08-29 有除草效果的吡啶基酮基磺内酰胺
CA2809491A CA2809491A1 (en) 2010-09-01 2011-08-29 Herbicide-effective pyridyl ketosultams
JP2013526431A JP2013540710A (ja) 2010-09-01 2011-08-29 除草剤として有効なピリジルケトスルタム類
BR112013005068A BR112013005068A2 (pt) 2010-09-01 2011-08-29 piridilcetosultamas eficazes como herbicidas

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP10174900.0 2010-09-01
EP10174900 2010-09-01

Publications (1)

Publication Number Publication Date
WO2012028580A1 true WO2012028580A1 (de) 2012-03-08

Family

ID=43100272

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/064821 WO2012028580A1 (de) 2010-09-01 2011-08-29 Herbizid wirksame pyridyl-ketosultame

Country Status (7)

Country Link
US (1) US20120065065A1 (de)
EP (1) EP2611815A1 (de)
JP (1) JP2013540710A (de)
CN (1) CN103189382A (de)
BR (1) BR112013005068A2 (de)
CA (1) CA2809491A1 (de)
WO (1) WO2012028580A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015062984A1 (en) * 2013-11-01 2015-05-07 Syngenta Limited Herbicidal 3-(2-benzyloxyphenyl)-2,4-dihydroxy-1,8-naphthyridine derivatives
US10292394B2 (en) 2015-04-30 2019-05-21 Syngenta Participations Ag Herbicidal compounds

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5990170B2 (ja) * 2010-09-01 2016-09-07 バイエル・インテレクチュアル・プロパティ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツングBayer Intellectual Property GmbH 除草活性を有するケトスルタム類及びジケトピリジン類

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0131624A1 (de) 1983-01-17 1985-01-23 Monsanto Co Plasmide zur transformation von pflanzenzellen.
EP0142924A2 (de) 1983-09-26 1985-05-29 Mycogen Plant Science, Inc. Insektresistente Pflanzen
EP0193259A1 (de) 1985-01-18 1986-09-03 Plant Genetic Systems N.V. Modifikation von Pflanzen auf pentechnologischem Wege zur Bekämpfung oder zur Kontrolle von Insekten
EP0221044A1 (de) 1985-10-25 1987-05-06 Monsanto Company Pflanzenvektoren
EP0242236A1 (de) 1986-03-11 1987-10-21 Plant Genetic Systems N.V. Durch Gentechnologie erhaltene und gegen Glutaminsynthetase-Inhibitoren resistente Pflanzenzellen
EP0257993A2 (de) 1986-08-26 1988-03-02 E.I. Du Pont De Nemours And Company Herbizid-resistante Pflanzen-Acetolactatsynthase kodierendes Nucleinsäurefragment
EP0305398A1 (de) 1986-05-01 1989-03-08 Honeywell Inc Verbindungsanordnung für mehrere integrierte schaltungen.
EP0309862A1 (de) 1987-09-30 1989-04-05 Bayer Ag Stilbensynthase-Gen
US5013659A (en) 1987-07-27 1991-05-07 E. I. Du Pont De Nemours And Company Nucleic acid fragment encoding herbicide resistant plant acetolactate synthase
WO1991013972A1 (en) 1990-03-16 1991-09-19 Calgene, Inc. Plant desaturases - compositions and uses
WO1991019806A1 (en) 1990-06-18 1991-12-26 Monsanto Company Increased starch content in plants
EP0464461A2 (de) 1990-06-29 1992-01-08 Bayer Ag Stilbensynthase-Gene aus Weinrebe
WO1992000377A1 (en) 1990-06-25 1992-01-09 Monsanto Company Glyphosate tolerant plants
WO1992011376A1 (en) 1990-12-21 1992-07-09 Amylogene Hb Genetically engineered modification of potato to form amylopectin-type starch
WO1992014827A1 (en) 1991-02-13 1992-09-03 Institut Für Genbiologische Forschung Berlin Gmbh Plasmids containing dna-sequences that cause changes in the carbohydrate concentration and the carbohydrate composition in plants, as well as plant cells and plants containing these plasmids
WO2009063180A1 (en) 2007-11-15 2009-05-22 Syngenta Limited Herbicidal compounds
WO2009090401A2 (en) 2008-01-17 2009-07-23 Syngenta Limited Herbicidal compounds
WO2010029311A2 (en) 2008-09-15 2010-03-18 Syngenta Limited Herbicide tolerant plants
WO2010049269A1 (de) 2008-10-29 2010-05-06 Basf Se Substituierte pyridine mit herbizider wirkung

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102822178B (zh) * 2010-03-23 2015-10-21 巴斯夫欧洲公司 具有除草作用的吡啶并噻嗪

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0131624A1 (de) 1983-01-17 1985-01-23 Monsanto Co Plasmide zur transformation von pflanzenzellen.
EP0142924A2 (de) 1983-09-26 1985-05-29 Mycogen Plant Science, Inc. Insektresistente Pflanzen
EP0193259A1 (de) 1985-01-18 1986-09-03 Plant Genetic Systems N.V. Modifikation von Pflanzen auf pentechnologischem Wege zur Bekämpfung oder zur Kontrolle von Insekten
EP0221044A1 (de) 1985-10-25 1987-05-06 Monsanto Company Pflanzenvektoren
EP0242236A1 (de) 1986-03-11 1987-10-21 Plant Genetic Systems N.V. Durch Gentechnologie erhaltene und gegen Glutaminsynthetase-Inhibitoren resistente Pflanzenzellen
EP0242246A1 (de) 1986-03-11 1987-10-21 Plant Genetic Systems N.V. Durch Gentechnologie erhaltene und gegen Glutaminsynthetase-Inhibitoren resistente Pflanzenzellen
EP0305398A1 (de) 1986-05-01 1989-03-08 Honeywell Inc Verbindungsanordnung für mehrere integrierte schaltungen.
EP0257993A2 (de) 1986-08-26 1988-03-02 E.I. Du Pont De Nemours And Company Herbizid-resistante Pflanzen-Acetolactatsynthase kodierendes Nucleinsäurefragment
US5013659A (en) 1987-07-27 1991-05-07 E. I. Du Pont De Nemours And Company Nucleic acid fragment encoding herbicide resistant plant acetolactate synthase
EP0309862A1 (de) 1987-09-30 1989-04-05 Bayer Ag Stilbensynthase-Gen
WO1991013972A1 (en) 1990-03-16 1991-09-19 Calgene, Inc. Plant desaturases - compositions and uses
WO1991019806A1 (en) 1990-06-18 1991-12-26 Monsanto Company Increased starch content in plants
WO1992000377A1 (en) 1990-06-25 1992-01-09 Monsanto Company Glyphosate tolerant plants
EP0464461A2 (de) 1990-06-29 1992-01-08 Bayer Ag Stilbensynthase-Gene aus Weinrebe
WO1992011376A1 (en) 1990-12-21 1992-07-09 Amylogene Hb Genetically engineered modification of potato to form amylopectin-type starch
WO1992014827A1 (en) 1991-02-13 1992-09-03 Institut Für Genbiologische Forschung Berlin Gmbh Plasmids containing dna-sequences that cause changes in the carbohydrate concentration and the carbohydrate composition in plants, as well as plant cells and plants containing these plasmids
WO2009063180A1 (en) 2007-11-15 2009-05-22 Syngenta Limited Herbicidal compounds
WO2009090401A2 (en) 2008-01-17 2009-07-23 Syngenta Limited Herbicidal compounds
WO2010029311A2 (en) 2008-09-15 2010-03-18 Syngenta Limited Herbicide tolerant plants
WO2010049269A1 (de) 2008-10-29 2010-05-06 Basf Se Substituierte pyridine mit herbizider wirkung

Non-Patent Citations (34)

* Cited by examiner, † Cited by third party
Title
"Combinatorial Chemistry - Synthesis, Analysis, Screening", 1999, VERLAG WILEY
"Microwaves in Organic and Medicinal Chemistry", 2005, VERLAG WILEY
"Perry's Chemical Engineer's Handbook", 1973, MCGRAW-HILL, pages: 8 - 57
"Spray-Drying Handbook", 1979, G. GOODWIN LTD.
"Springer Lab Manual", 1995, SPRINGER VERLAG, article "Gene Transfer to Plants"
"The Pesticide Manual", 2009, THE BRITISH CROP PROTECTION COUNCIL AND THE ROYAL SOC. OF CHEMISTRY
AUST. J. CHEM., vol. 32, pages 1561
BARRY A. BUNIN: "The Combinatorial Index", 1998, VERLAG ACADEMIC PRESS
BRAUN ET AL., EMBO J., vol. 11, 1992, pages 3219 - 3227
C. MARSDEN: "Solvents Guide", 1963, INTERSCIENCE
CHEM. SOC. PERKIN TRANS. 1, vol. 3, 1990, pages 715
CHEMFILES, vol. 4, no. 1
CHRISTOU, TRENDS IN PLANT SCIENCE, vol. 1, 1996, pages 423 - 431
D. TIEBES: "Combinatorial Chemistry - Synthesis, Analysis, Screening", 1999, VERLAG WILEY, pages: 1 - 34
G.C. KLINGMAN: "Weed Control as a Science", 1961, JOHN WILEY AND SONS, INC., pages: 81 - 96
H.V. OLPHEN: "Introduction to Clay Colloid Chemistry", J. WILEY & SONS
J.D. FREYER, S.A. EVANS: "Weed Control Handbook", 1968, BLACKWELL SCIENTIFIC PUBLICATIONS, pages: 101 - 103
J.E. BROWNING: "Agglomeration", 1967, CHEMICAL AND ENGINEERING, pages: 147 FF
K. MARTENS: "Spray Drying'' Handbook", 1979, G. GOODWIN LTD.
KOWALCZYK-BRONISZ ET AL: "Pharmacological activity in the group of new pyrido[2,3-c]-1,2-thiazine 1,1-dioxide derivatives", ARCHIVUM IMMUNOLOGIAE ET THERAPIAE EXPERIMENTALIS, BIRKHAEUSER VERLAG AG, CH, vol. 28, no. 5, 1 January 1980 (1980-01-01), pages 783 - 790, XP008129787, ISSN: 0004-069X *
MCCUTCHEON'S: "Detergents and Emulsifiers Annual", MC PUBL. CORP.
SAMBROOK ET AL.: "Molecular Cloning, A Laboratory Manual", 1989, COLD SPRING HARBOR LABORATORY PRESS
SCHÖNFELDT: "Grenzflächenaktive Äthylenoxidaddukte", 1976, WISS. VERLAGSGESELL.
SISLEY, WOOD: "Encyclopedia of Surface Active Agents", 1964, CHEM. PUBL. CO. INC.
SONNEWALD ET AL., PLANT J., vol. 1, 1991, pages 95 - 106
WADE VAN VALKENBURG: "Pesticide Formulations", 1973, MARCEL DEKKER
WATKINS: "Handbook of Insecticide Dust Diluents and Carriers", DARLAND BOOKS
WEED RESEARCH, vol. 26, 1986, pages 441 - 445
WINNACKER: "Gene und Klone", 1996, VCH
WINNACKER-KÜCHLER: "Chemische Technologie", vol. 7, 1986, C. HANSER VERLAG
WOLTER ET AL., PROC. NATL. ACAD. SCI. USA, vol. 85, 1988, pages 846 - 850
ZAWISZA T ET AL: "Pyridothiazines. IV.Synthesis and properties of 2H-4,6-dimethyl-8-phenyl-7,8-dihydropyrido [2,3-c]1,2-thiazin-7-one derivatives", ACTA POLONIAE PHARMACEUTICA - DRUG RESEARCH, POLISH PHARMACEUTICAL SOCIETY, WARZSAW, PL, vol. 37, no. 1, 1 January 1980 (1980-01-01), pages 25 - 31, XP008129759, ISSN: 0001-6837 *
ZAWISZA TADEUSZ ET AL: "Pyridothiazines. Part V. Syntheses and properties of 7-alkoxy derivatives of pyrido[2,3-c]-1,2-thiazine 1,1-dioxide", POLISH JOURNAL OF CHEMISTRY, POLSKIE TOWARZYSTWO CHEMICZNE, PL, vol. 54, no. 6, 1 January 1980 (1980-01-01), pages 1267 - 1273, XP008129785, ISSN: 0137-5083 *
ZAWISZA TADEUSZ ET AL: "Pyridothiazines. Part VI. Syntheses and properties of pyrido[2,3-c]-1,2-thiazine 1,1-dioxide derivatives", POLISH JOURNAL OF CHEMISTRY, POLSKIE TOWARZYSTWO CHEMICZNE, PL, vol. 54, no. 7-8, 1 January 1980 (1980-01-01), pages 1413 - 1424, XP008129786, ISSN: 0137-5083 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015062984A1 (en) * 2013-11-01 2015-05-07 Syngenta Limited Herbicidal 3-(2-benzyloxyphenyl)-2,4-dihydroxy-1,8-naphthyridine derivatives
US9604983B2 (en) 2013-11-01 2017-03-28 Syngenta Limited Herbicidal 3-(2-benzyloxyphenyl)-2,4-dihydroxy-1,8-naphthyridine derivatives
US10292394B2 (en) 2015-04-30 2019-05-21 Syngenta Participations Ag Herbicidal compounds

Also Published As

Publication number Publication date
EP2611815A1 (de) 2013-07-10
US20120065065A1 (en) 2012-03-15
BR112013005068A2 (pt) 2016-04-26
JP2013540710A (ja) 2013-11-07
CN103189382A (zh) 2013-07-03
CA2809491A1 (en) 2012-03-08

Similar Documents

Publication Publication Date Title
AU2017204231B2 (en) Substituted picolinic acids and pyrimidine-4-carboxylic acids, method for the production thereof, and use thereof as herbicides and plant growth regulators
EP2691379B1 (de) Herbizid und fungizid wirksame 3-phenylisoxazolin-5-carboxamide und 3- phenylisoxazolin-5-thioamide
EP2379509B1 (de) Herbizid und insektizid wirksame phenyl-substituierte pyridazinone
EP2739611A1 (de) N-(tetrazol-5-yl)- und n-(triazol-5-yl)arylcarbonsäureamide und ihre verwendung als herbizide
WO2011045271A1 (de) Herbizid wirksame heterocyclylsubstituierte pyridazinone
WO2013124245A1 (de) Herbizid wirksame 4-nitro substituierte n-(tetrazol-5-yl)-, n-(triazol-5-yl)- und n-(1,3,4-oxadiazol-2-yl)arylcarbonsäureamide
EP2686316A1 (de) N-(1,2,5-oxadiazol-3-yl)pyridincarboxamide und ihre verwendung als herbizide
WO2012123409A1 (de) N-(1,2,5-oxadiazol-3-yl)-, n-(tetrazol-5-yl)- und n-(triazol-5-yl)bicycloaryl-carbonsäureamide und ihre verwendung als herbizide
WO2011035878A1 (de) Herbizid wirksame phenylsubstituierte pyridazinone
WO2012028582A1 (de) Herbizid wirksame ketosultame und diketopyridine
EP2611815A1 (de) Herbizid wirksame pyridyl-ketosultame
WO2013124246A1 (de) Herbizid wirksame 4-dialkoxymethyl-2-phenylpyrimidine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11748430

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011748430

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2809491

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2013526431

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013005068

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013005068

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130301