WO2012028364A1 - Vorrichtung zur drosselung einer fluidströmung und korrespondierende kolbenpumpe zur förderung von fluiden - Google Patents

Vorrichtung zur drosselung einer fluidströmung und korrespondierende kolbenpumpe zur förderung von fluiden Download PDF

Info

Publication number
WO2012028364A1
WO2012028364A1 PCT/EP2011/061417 EP2011061417W WO2012028364A1 WO 2012028364 A1 WO2012028364 A1 WO 2012028364A1 EP 2011061417 W EP2011061417 W EP 2011061417W WO 2012028364 A1 WO2012028364 A1 WO 2012028364A1
Authority
WO
WIPO (PCT)
Prior art keywords
section
throttle point
throttle
opening cross
pressure difference
Prior art date
Application number
PCT/EP2011/061417
Other languages
English (en)
French (fr)
Inventor
Reiner Fellmeth
Juergen Haecker
Oliver Gaertner
Heiko Jahn
Wolfgang Schuller
Rolf Stotz
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to CN201180042498.2A priority Critical patent/CN103080545B/zh
Priority to EP11730294.3A priority patent/EP2612031A1/de
Priority to KR1020137005313A priority patent/KR20130103496A/ko
Priority to US13/819,990 priority patent/US9273673B2/en
Publication of WO2012028364A1 publication Critical patent/WO2012028364A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B7/00Piston machines or pumps characterised by having positively-driven valving
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/40Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition comprising an additional fluid circuit including fluid pressurising means for modifying the pressure of the braking fluid, e.g. including wheel driven pumps for detecting a speed condition, or pumps which are controlled by means independent of the braking system
    • B60T8/4031Pump units characterised by their construction or mounting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/40Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition comprising an additional fluid circuit including fluid pressurising means for modifying the pressure of the braking fluid, e.g. including wheel driven pumps for detecting a speed condition, or pumps which are controlled by means independent of the braking system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/40Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition comprising an additional fluid circuit including fluid pressurising means for modifying the pressure of the braking fluid, e.g. including wheel driven pumps for detecting a speed condition, or pumps which are controlled by means independent of the braking system
    • B60T8/4068Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition comprising an additional fluid circuit including fluid pressurising means for modifying the pressure of the braking fluid, e.g. including wheel driven pumps for detecting a speed condition, or pumps which are controlled by means independent of the braking system the additional fluid circuit comprising means for attenuating pressure pulsations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/04Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement
    • F04B1/0404Details or component parts
    • F04B1/0452Distribution members, e.g. valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/10Adaptations or arrangements of distribution members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/10Valves; Arrangement of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/10Valves; Arrangement of valves
    • F04B53/1077Flow resistance valves, e.g. without moving parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K15/00Check valves
    • F16K15/14Check valves with flexible valve members
    • F16K15/141Check valves with flexible valve members the closure elements not being fixed to the valve body
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K47/00Means in valves for absorbing fluid energy
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/01Control of flow without auxiliary power
    • G05D7/0106Control of flow without auxiliary power the sensing element being a flexible member, e.g. bellows, diaphragm, capsule
    • G05D7/012Control of flow without auxiliary power the sensing element being a flexible member, e.g. bellows, diaphragm, capsule the sensing element being deformable and acting as a valve

Definitions

  • the invention relates to a device for throttling a fluid flow according to the preamble of independent claim 1.
  • the present invention relates to a piston pump for conveying fluids with such a throttle device.
  • Piston pumps are known from the prior art in different embodiments.
  • radial piston pumps with a plurality of pump elements are frequently used to convey pressure means, in which at least one piston can be moved back and forth by means of an eccentric.
  • these so-called pump elements consist of a piston, a piston running surface often formed as a cylinder, inlet and outlet valves and sealing elements.
  • the valves serve to control the fluid during the pumping movement of the piston.
  • the inlet valve serves to prevent the fluid from flowing back into the suction space during the compression phase
  • the outlet valve prevents the fluid from flowing back from the pressure side into the pump interior.
  • these valves are designed as spring-loaded ball valves, wherein the discharge passage for the exhaust valve is formed by a so-called Auslrawventildeckel and the pump cylinder and the exhaust valve is housed in the Auslrawventildeckel.
  • a piston pump for braking pressure control in a hydraulic vehicle brake system comprises a pump housing, one in Pump housing arranged receiving bore for the piston pump and the receiving pump to the outside closing valve cover, in which an outlet valve and first and second channel sections of a discharge channel are housed.
  • the Abströmgeometrie influences the noise behavior of the piston pump and is therefore usually carried out with a suitable taper of the outflow, which then represents a throttle effect.
  • the described piston pump for conveying fluids comprises a piston, a cylinder element and a pressure chamber arranged between an inlet valve and an outlet valve, which is closed off by a cover, wherein the outlet valve has a closing body embodied as a ball, a pretensioning device acting as a spiral spring acting on the closing body, a base member for supporting the biasing means and a disc member, and wherein a sealing seat of the exhaust valve is disposed on the disc member.
  • the use of the disk element is intended to ensure that component tolerances of various components of the piston pump can not adversely affect the exhaust valve.
  • the inventive device for throttling a fluid flow with the features of independent claim 1 has the advantage over that a main body of the throttle device behaves dynamically with increasing pressure difference.
  • the essence of the present invention is to make the main body of the throttle device resilient, so that the throttle device behaves dynamically with increasing pressure difference.
  • the throttle device according to the invention is designed so that it can adjust or open in case of deviations such as pressure increases at low temperatures or a higher volume flow in an advantageous manner. As a result, an increased internal pressure, for example in a piston pump, can be avoided and thus a damage caused. damage to components.
  • the dynamic throttle device allows by the resilient body, which has a discharge channel at the throttle point, that the outflow channel widens in a highly viscous state of the fluid, so that The dynamic throttle plate according to the invention reduces the drive power as well as the load on the force-transmitting individual parts, such as, for example, an almost constant pressure difference
  • Throttling device clogging of the throttle point can be prevented in an advantageous manner. This can be exploited in future designs with a suitable design for cost savings.
  • the throttle device according to the invention can be used not only in conjunction with a piston pump but also for other components of the fluid system.
  • the device according to the invention for throttling a fluid flow comprises a main body with at least one throttle point with a predeterminable opening cross-section.
  • the base body is resilient at least in the region of the at least one throttle point, so that the opening cross section of the at least one throttle point is variably adjustable as a function of the pressure difference.
  • the piston pump according to the invention for conveying fluids comprises a piston, a cylinder element and one between an inlet valve and a
  • Outlet valve disposed pressure chamber, which is closed by a lid sen, wherein in the fluid flow to the outlet valve, a throttle device according to the invention is arranged.
  • the piston pump according to the invention can be used for example in a vehicle brake system for the promotion of pressure medium.
  • the base body in the region of the at least one throttle point has at least one spring leg defining the opening cross section, which adjusts the opening cross section of the at least one throttle point as a function of the pressure difference.
  • the at least one throttle point has, for example, a minimum opening cross section independent of the pressure difference and / or maximum opening cross section. This means that the throttle point in the unloaded state has a discharge channel with a predetermined minimum opening cross-section. Additionally or alternatively, the maximum cross section of the outflow channel of the throttle point in the loaded state can be limited, for example, by a stop.
  • the minimum opening cross section of the at least one throttle point can be optimized in an advantageous manner to a volume flow in a predetermined temperature range of preferably 0 ° C to 120 ° C.
  • the throttle point Due to temperature change also changes the viscosity of the fluid and thus the flow resistance at the throttle point. As a result, the throttle point is now additionally widened, so that increased by the resilient behavior of the free cross section of the throttle point or adjusts a new free cross section. As a result, the pressure difference at the throttle point advantageously does not rise, in particular at low temperatures, and other components of the fluid system are not damaged.
  • selected spring properties and / or a selected design of the base body and / or a selected design of the at least one throttle point determine the dynamic behavior of the opening cross section of the at least one throttle point in the case of pressure difference changes.
  • the basic body can, for example, Rere spring legs comprise, which determine the shape and dimensions of the at least one throttle point.
  • the throttle point may be designed such that a first opening with a preferred outflow channel is predetermined by two first spring legs, and a second opening arranged in the fluid flow direction after the first opening is predetermined with a further outflow channel by two second spring legs.
  • the base body is designed as an open ring with two spring legs whose ends determine the shape of the throttle point.
  • the end faces of the two spring legs for example, parallel to each other and form a discharge channel, the cross section remains the same in the unloaded state over its length.
  • the end faces of the spring legs can be designed with a bevel so that the cross-section of the formed outflow channel tapers in the unloaded state in the fluid flow direction.
  • the end faces of the spring legs can be made conical, so that the cross section of the formed outflow channel in the unloaded state first tapers in the flow direction and then expands again.
  • the base body may have a centering nose for a correct installation. Furthermore, to optimize the spring behavior of the spring legs at the base of the two spring legs, i. at the opposite side of the throttle ring of the open ring, have a thickening.
  • the base body of round wire and / or flat wire and / or executed as a stamped part which allows a cost-effective production of the throttle device.
  • the throttle device between two planar surfaces of the cylinder element and the lid of the exhaust valve of the piston pump is inserted, whereby a simple installation of the throttle device is made possible.
  • Fig. 1 shows a schematic perspective view of an embodiment of a piston pump according to the invention for conveying fluids.
  • FIG. 2 shows a perspective cross-section through a rear region of the piston pump shown in FIG. 1 for conveying fluids to illustrate the installation space of a device according to the invention for throttling a fluid flow.
  • FIG. 3 shows a perspective cross section through a cover of the outlet valve of the piston pump shown in FIGS. 1 and 2 for conveying fluids with an inserted device according to the invention for throttling a fluid flow.
  • FIG. 14 shows a characteristic curve diagram with a plurality of characteristic curves for illustrating the dynamic flow behavior of embodiments of the device according to the invention for throttling a fluid flow in comparison with a throttle device with a constant cross section.
  • a pressure chamber 5.2 is arranged in the interior of the cylinder element 5, which is separated from a nem lid 16 is completed, in which the outlet valve 20 is arranged.
  • the cover 16 is pressed onto a rear part of the cylinder element 5 designed as a section 5.1, so that at least one fluid channel 16.2 and at least one outflow opening 16.4 are formed between the cover 16 and the shoulder 5.1.
  • the illustrated piston pump 1 can be arranged, for example, in a receiving bore, not shown, of a pump housing or a fluid block.
  • Transverse pressure medium channels can open into the receiving bore, through which fluid is passed via the fluid filter 9 to the inlet opening of the piston pump 1 or away from the at least one outlet opening 16.4 of the piston pump 1.
  • the outlet valve 20 comprises a sealing seat 22 arranged at an outlet opening 5.4 of the pressure chamber 5.2, a closing body 24 preferably designed as a ball and a return spring 26 acting on the closing body 24
  • a device 10 for throttling the fluid flow 18 with a base body 12 and a throttle point 14 is provided to reduce the noise.
  • an installation space 16.6 for the throttle device 10 is provided between the cylinder element 5 and the cover 16, which is bounded by a flat surface on the end face of the cylinder member 5 and a plane inwardly stepped surface of the lid 16.
  • the throttle device 10 is inserted before the pressing of the lid 16 on the paragraph 5.1 of the cylinder element in the lid 16, as shown in FIG. 3 can be seen.
  • the cover 16 can be made in a known manner either machining or forming, which offers the forming process from an economic point of view for large numbers.
  • the outflow geometry influences the noise behavior of the piston pump 1 and is therefore designed to be suitable. In the case of piston pumps known from the prior art, this design is usually a suitable narrowing of the outflow channel, which then becomes a
  • Throttling represents. By this throttling effect, a hydraulic low pass is generated, which has a positive effect on the unwanted noise.
  • the behavior of the dynamic viscosity of the brake fluid in the range between 0 ° and 120 ° C can be considered almost constant and the optimal throttle effect is defined for this temperature range.
  • the restrictor loads the pressure-loaded components of the piston pump and the entire pump drive, especially at low temperatures.
  • the reduced cross-section indicates a significant increase in fluid friction at low temperatures, which leads to a significant increase in the pump internal pressure, resulting in the above-mentioned loads.
  • the main body 12 of the throttle device 10 is resilient at least in the area of the at least one throttle point 14, so that the opening cross section of the at least one throttle point 14 can be variably adjusted as a function of the pressure difference.
  • embodiments of the present invention are advantageously capable of dynamically adapting their throttle behavior or their opening cross-section to the prevailing pressure difference.
  • the base body 12 in the region of the at least one throttle point 14 at least one of the opening cross-section defining spring leg, which adjusts the opening cross-section of the at least one throttle point 14 in dependence on the pressure difference.
  • the at least one throttle point 14 on a independent of the pressure difference minimum opening cross-section which is optimized in response to the desired throttle behavior to a flow in a predetermined temperature range of preferably 0 ° C to 120 ° C. Due to temperature change, the viscosity of the fluid and thus the flow resistance at the predetermined minimum throttle cross section of the throttle point changes 14. Due to the resilient design of the
  • the throttle point 14 is widened, so that increases free cross section or sets a new free cross section.
  • the internal pressure of the piston pump 1 advantageously does not increase, in particular at low temperatures, so that other components of the piston pump 1 are not damaged.
  • the dynamic behavior of the opening cross section of the at least one throttle point 14 in the case of pressure difference changes can be advantageously achieved by selecting or specifying the spring properties and / or the Design of the body 12 and / or the design of the at least one throttle point 14 can be determined.
  • 322.2, 332.1, 332.2 executed whose ends determine the shape of the respective throttle point 14, 34.1, 34.2, 1 14, 124, 214, 224, 234, 314, 324, 334.
  • the base body 12, 32, 112, 122, 212, 222, 232, 312, 322, 332 of the respective throttle device 10, 30, 110, 120, 210, 220, 230 can be shown , 310, 320, 330 are made from round wire and / or flat wire and / or as a stamped part
  • the main body 12 of the throttle device 10 is designed as a stamped part with a throttle point 14 and a centering 12.3, which is arranged opposite to the main body 12 of the throttle point 14.
  • the predetermined minimum opening cross-section of the throttle point 14, the shape of which is determined by two spring legs 12. 1, 12. 2 can be determined by a spring behavior Limit pressure difference value an increasing fluid flow 18 through the outflow channel of the throttle point 14th
  • the two spring legs 12.1, 12.2 are spread in the directions indicated by arrows 18.1, 18.2, so that the opening cross section of the throttle point 14 and a flow rate Q of the fluid are increased and the effective pressure difference is reduced.
  • FIG. 5 shows alternatively a throttle device 30 produced as a stamped part with four spring legs 32.1, 32.2, 32.3, 32.4 and two throttle points 34.1, 34.2, which are arranged one behind the other in the flow direction.
  • the predetermined minimum opening cross-section of the first throttle point 34.1 whose shape allows two first spring legs 32.1, 32.2 is determined, up to a determined by the spring behavior limiting pressure difference value, an increasing fluid flow 18 through the outflow of the throttle bodies 34.1, 34.2.
  • the two first spring legs 32.1, 32.2 are spread in the directions indicated by arrows 38.1, 36.2, so that the opening cross section of the first orifice 34.2 and a flow rate Q of the fluid are increased and the effective pressure difference is reduced .
  • the second throttle point 34.2 whose shape is determined by two second spring legs 32.3, 32.4, allows the specification of a second limiting pressure difference value.
  • the main body 1 12 of the throttle device 1 10 as an open ring made of flat wire with two spring legs 1 12.1, 1 12.2 and a throttle point 1 14 executed.
  • To optimize the spring properties of the spring legs 1 12.1, 1 12.2 is on the base body 1 12 of the throttle point 1 14 opposite a thickening 1 12.4 arranged.
  • the shape of the predetermined minimum opening cross section of the throttle point 1 14 determine the two spring legs 1 12.1, 1 12.2 by the shape of their faces.
  • the end faces of the two spring limbs 1 12.1, 1 12.2 run parallel to one another and form an outflow channel whose cross-section is constant over its length in the illustrated unloaded state.
  • the mode of operation of the embodiment shown in FIG. 6 corresponds to the mode of operation described in connection with FIG. 4, so that a repetition of the description is dispensed with here.
  • the main body 122 of the throttle device 120 is designed as an open ring made of round wire with two spring legs 122.1, 122.2 and a throttle point 124.
  • a thickening 122.4 is likewise arranged on the main body 122 of the throttle point 124 opposite.
  • the end faces of the two spring legs 122.1, 122.2 extend parallel to each other and form a discharge channel, the cross section of which is constant over its length in the unloaded state shown in the embodiment shown in FIG.
  • the mode of operation of the embodiment illustrated in FIG. Form corresponds to the operation described in connection with FIG. 4, so that a repetition of the description is dispensed with here.
  • the base bodies 212, 222, 232 of the throttle devices 210, 220, 230 are each open
  • FIGS. 8 to 10 differ in the shapes of the predetermined minimum opening cross-sections of the throttling points 214, 224, 234.
  • the end faces of the two spring legs 212.1, 212.2 run parallel to one another and form one Outflow channel whose cross-section is constant in the illustrated unloaded state over its length.
  • the end faces of the two spring limbs 222.1, 222.2 are conical and form an outflow channel whose cross-section is shown unloaded
  • the main bodies 312, 322, 332 of the throttle devices 310, 320, 330 are each an open ring of flat wire and / or a stamped part with two spring legs 312.1, 312.2, 322.1, 322.2, 332.1 , 332.1 and in each case a throttle point 314, 324, 334 executed.
  • 1 to 13 are distinguished by the shapes of the predetermined minimum opening cross-sections of the throttling points 314, 324, 334.
  • the end faces of the two spring legs 312.1, 312.2 run parallel here to each other and form a discharge channel, whose cross-section is constant over its length in the illustrated unloaded state.
  • FIG. 14 shows a characteristic curve diagram with multiple characteristic curves for illustrating the dynamic flow behavior of embodiments of the throttle device 10, 30, 110, 210, 220, 230, 310, 320, 330 according to the invention in comparison with a throttle device represented by a characteristic K3 a throttle point, which has a differential pressure independent constant cross section.
  • a throttle device represented by a characteristic K3 a throttle point, which has a differential pressure independent constant cross section.
  • a characteristic K2 represents the dynamic behavior of the embodiments of Figs. 6 and 7.
  • the flow rate Q of the fluid according to the characteristic K1 shows a degressive course, i. the flow rate Q initially increases slowly as the pressure difference ⁇ increases and, starting at a certain pressure difference limit value, exhibits a strong rise in order to prevent a further pressure difference increase.
  • a characteristic curve K3 represents the dynamic behavior of the embodiments of FIGS. 8 to 13.
  • the flow rate Q of the fluid according to the characteristic curve K2 shows a linear progression, the slope of which is due to the formation of the Base body and the throttle body can be determined.
  • Embodiments of the present invention advantageously allow very good NVH (NVH), Noise, Vibration, Harshness (NVH) behavior.
  • NVH NVH
  • Noise Vibration
  • Harshness NVH
  • the resilient throttle device can at highly viscous state of the fluid
  • Pressure difference before and after the throttle device advantageously kon- be kept constant. This reduces the drive power, as well as the load of the force-transmitting items such as bearings, pistons, high-pressure sealing rings, etc. This can be exploited in future designs with a suitable design for cost savings. Furthermore, can be tuned by the shape of the throttle point, the throttle behavior in an advantageous manner to the function.

Abstract

Die Erfindung betrifft eine Vorrichtung zur Drosselung einer Fluidströmung mit einem Grundkörper (12), welcher mindestens eine Drosselstelle (14) mit einem vorgebbaren Öffnungsquerschnitt umfasst, sowie eine Kolbenpumpe zur Förderung von Fluiden mit einer solchen Drosselvorrichtung. Erfindungsgemäß ist der Grundkörper (12) zumindest im Bereich der mindestens einen Drosselstelle (14) federnd ausgebildet ist, so dass der Öffnungsquerschnitt der mindestens einen Drosselstelle (14) in Abhängigkeit von einer Druckdifferenz variabel einstellbar ist.

Description

Beschreibung
Titel
Vorrichtung zur Drosselung einer Fluidströmung und korrespondierende Kolbenpumpe zur Förderung von Fluiden
Stand der Technik
Die Erfindung geht aus von einer Vorrichtung zur Drosselung einer Fluidströmung nach der Gattung des unabhängigen Patentanspruchs 1 . Zudem betrifft die vorliegende Erfindung eine Kolbenpumpe zur Förderung von Fluiden mit einer solchen Drosselvorrichtung.
Kolbenpumpen sind aus dem Stand der Technik in unterschiedlichen Ausführungsformen bekannt. Beispielsweise werden in Fahrzeugbremsanlagen häufig Radialkolbenpumpen mit mehreren Pumpelementen zur Förderung von Druckmitteln verwendet, bei welchen wenigstens ein Kolben mittels eines Exzenters hin und her bewegt werden kann. Typischerweise bestehen diese sogenannten Pumpenelemente aus einem Kolben, einer häufig als Zylinder ausgebildeten Kolbenlauffläche, Einlass- und Auslassventilen sowie Dichtelementen. Die Ventile dienen der Fluidsteuerung bei der Pumpbewegung des Kolbens. Hierbei dient das Einlassventil dazu, das Fluid während der Verdichtungsphase nicht in den Ansaugraum zurückströmen zu lassen, das Auslassventil verhindert die Rück- strömung des Fluids von der Druckseite in den Pumpeninnenraum. Typischerweise sind diese Ventile als federbelastete Kugelventile ausgebildet, wobei der Abströmkanal für das Auslassventil durch einen so genannten Auslassventildeckel und den Pumpenzylinder gebildet wird und das Auslassventil im Auslassventildeckel untergebracht ist.
In der Offenlegungsschrift DE 10 2008 002 740 A1 wird beispielsweise eine Kolbenpumpe zur Bremsdruckregelung in einer hydraulischen Fahrzeugbremsanlage beschrieben. Die beschriebene Kolbenpumpe umfasst ein Pumpengehäuse, eine im Pumpengehäuse angeordnete Aufnahmebohrung für die Kolbenpumpe und einen die Aufnahmepumpe nach außen verschließenden Ventildeckel, in welchem ein Auslassventil und erste und zweite Kanalabschnitte eines Abströmkanals untergebracht sind. Die Abströmgeometrie beeinflusst das Geräuschverhalten der Kolbenpumpe und wird deswegen meist mit einer geeigneten Verjüngung des Abströmkanals ausgeführt, welche dann eine Drosselwirkung darstellt.
In der Offenlegungsschrift DE 10 2006 027 555 A1 wird beispielsweise eine Kolbenpumpe mit reduzierter Geräuschentwicklung beschrieben. Die beschriebene Kolbenpumpe zur Förderung von Fluiden umfasst einen Kolben, ein Zylinderelement und einen zwischen einem Einlassventil und einem Auslassventil angeordneten Druckraum, welcher von einem Deckel abgeschlossen ist, wobei das Auslassventil einen als Kugel ausgeführten Schließkörper, eine auf den Schließkörper wirkende als Spiralfeder ausgeführte Vorspanneinrichtung, ein Basiselement zum Abstützen der Vorspanneinrichtung und ein Scheibenelement umfasst, und wobei ein Dichtsitz des Auslassventils am Scheibenelement angeordnet ist.
Durch die Verwendung des Scheibenelements soll sichergestellt werden, dass Bauteiltoleranzen verschiedener Bauteile der Kolbenpumpe sich nicht negativ auf das Auslassventil auswirken können.
Offenbarung der Erfindung
Die erfindungsgemäße Vorrichtung zur Drosselung einer Fluidströmung mit den Merkmalen des unabhängigen Patentanspruchs 1 hat demgegenüber den Vor- teil, dass sich ein Grundkörper der Drosselvorrichtung bei ansteigender Druckdifferenz dynamisch verhält. Das bedeutet, dass ein Öffnungsquerschnitt von mindestens einer Drosselstelle in Abhängigkeit von der Druckdifferenz variabel eingestellt wird. Der Kern der vorliegenden Erfindung besteht darin, den Grundkörper der Drosselvorrichtung federnd auszubilden, so dass sich die Drosselvorrichtung bei ansteigender Druckdifferenz dynamisch verhält. Die erfindungsgemäße Drosselvorrichtung ist so konzipiert, dass sie bei Abweichungen wie Drucküberhöhungen bei Tieftemperaturen oder einem höheren Volumenstrom in vorteilhafter Weise federnd nachstellen bzw. öffnen kann. Dadurch kann ein erhöhter Innendruck beispielsweise in einer Kolbenpumpe vermieden werden und damit eine Beschä- digung von Bauteilen. Damit kann eine kostenoptimierte Auslegung der Bauteile auf gleichem Druckniveau erfolgen. Im„Normalbetrieb" innerhalb des linearen Verhaltens des Fluids wird die Drosselstelle durchströmt. Wächst aufgrund der Temperaturänderung die Viskosität und somit der Strömungswiderstand an, wird der Querschnitt der Drosselstelle leicht federnd vergrößert. Durch eine definierte, einseitige Abström richtung der Drosselvorrichtung kann der Schließkörper des Auslassventils der Kolbenpumpe in eine Vorzugslage indiziert werden, welche sich positiv auf das Geräuschverhalten der Kolbenpumpe auswirkt. Die erfindungsgemäße dynamische Drosselvorrichtung ermöglicht durch den federnden Grundkörper, welcher an der Drosselstelle einen Abströmkanal aufweist, dass sich der Abströmkanal bei einem hochviskosem Zustand des Fluids weitet, so dass sich an der Drosselvorrichtung eine nahezu konstante Druckdifferenz einstellt. Durch die erfindungsgemäße dynamische Drosselscheibe reduzieren sich Antriebsleistung, sowie die Belastung der kraftübertragenden Einzelteile wie
Lager, Kolben, Hochdruckdichtringe usw. Durch die Formgebung des Grundkörpers sowie der Drosselstelle kann das Drosselverhalten auf die Funktion abgestimmt werden. Somit ermöglichen Ausführungsformen der vorliegenden Drosselvorrichtung eine Qualitätsverbesserung des Fluidsystems in welchem sie ein- gesetzt werden. Als weiterer Vorteil kann durch das dynamische Verhalten der
Drosselvorrichtung ein Zusetzen der Drosselstelle in vorteilhafter Weise verhindert werden. Dies kann bei zukünftigen Konstruktionen bei geeignetem Design zur Kostenersparnis ausgenutzt werden. Die erfindungsgemäße Drosselvorrichtung kann nicht nur in Verbindung mit einer Kolbenpumpe sondern auch für an- dere Baugruppen des Fluidsystems verwendet werden.
Die erfindungsgemäße Vorrichtung zur Drosselung einer Fluidströmung umfasst einen Grundkörper mit mindestens einer Drosselstelle mit einem vorgebbaren Öffnungsquerschnitt. Erfindungsgemäß ist der Grundkörper zumindest im Be- reich der mindestens einen Drosselstelle federnd ausgebildet, so dass der Öffnungsquerschnitt der mindestens einen Drosselstelle in Abhängigkeit von der Druckdifferenz variabel einstellbar ist.
Die erfindungsgemäße Kolbenpumpe zur Förderung von Fluiden umfasst einen Kolben, ein Zylinderelement und einen zwischen einem Einlassventil und einem
Auslassventil angeordneten Druckraum, welcher von einem Deckel abgeschlos- sen ist, wobei in der Fluidströmung nach dem Auslassventil eine erfindungsgemäße Drosselvorrichtung angeordnet ist. Die erfindungsgemäße Kolbenpumpe kann beispielsweise in einer Fahrzeugbremsanlage zur Förderung von Druckmitteln verwendet werden.
Durch die in den abhängigen Ansprüchen aufgeführten Maßnahmen und Weiterbildungen sind vorteilhafte Verbesserungen der im unabhängigen Patentanspruch 1 angegebenen Vorrichtung zur Drosselung einer Fluidströmung und der im unabhängigen Patentanspruch 9 angegebenen Kolbenpumpe zur Förderung von Fluiden möglich.
Besonders vorteilhaft ist, dass der Grundkörper im Bereich der mindestens einen Drosselstelle mindestens einen den Öffnungsquerschnitt bestimmenden Federschenkel aufweist, welcher den Öffnungsquerschnitt der mindestens einen Drosselstelle in Abhängigkeit von der Druckdifferenz einstellt. Die mindestens eine Drosselstelle weist beispielsweise einen von der Druckdifferenz unabhängigen minimalen Öffnungsquerschnitt und/oder maximalen Öffnungsquerschnitt auf. Das bedeutet, dass die Drosselstelle im unbelasteten Zustand einen Abströmkanal mit einem vorgegebenen minimalen Öffnungsquerschnitt aufweist. Zusätzlich oder alternativ, kann der maximale Quer- schnitt des Abströmkanals der Drosselstelle im belasteten Zustand beispielsweise durch einen Anschlag begrenzt werden. Der minimale Öffnungsquerschnitt der mindestens einen Drosselstelle kann in vorteilhafter Weise auf einen Volumenstrom in einem vorgegebenen Temperaturbereich von vorzugsweise 0°C bis 120°C optimiert werden. Auf Grund von Temperaturänderung ändert sich auch die Viskosität des Fluids und somit der Strömungswiderstand an der Drosselstelle. Dadurch wird die Drosselstelle nun zusätzlich aufgeweitet, so dass sich durch das federnde Verhalten der freie Querschnitt der Drosselstelle vergrößert bzw. ein neuer freier Querschnitt einstellt. Dadurch steigt die Druckdifferenz an der Drosselstelle in vorteilhafter Weise, insbesondere bei niedrigen Temperaturen nicht an und andere Bauteile des Fluidsystems werden nicht beschädigt.
In vorteilhafter Ausgestaltung der erfindungsgemäßen Vorrichtung bestimmen gewählte Federeigenschaften und/oder eine gewählte Bauform des Grundkörpers und/oder eine gewählte Bauform der mindestens einen Drosselstelle das dynamische Verhalten des Öffnungsquerschnitts der mindestens einen Drosselstelle bei Druckdifferenzänderungen. Der Grundkörper kann beispielsweise meh- rere Federschenkel umfassen, welche die Form und Abmessungen der mindestens einen Drosselstelle bestimmen. Die Drosselstelle kann so gestaltet sein, dass eine erste Öffnung mit einem bevorzugten Abströmkanal durch zwei erste Federschenkel vorgegeben wird, und eine in Fluidströmungsrichtung nach der ersten Öffnung angeordnete zweite Öffnung mit einem weiteren Abströmkanal durch zwei zweite Federschenkel vorgegeben wird.
In weiter vorteilhafter Ausgestaltung der erfindungsgemäßen Vorrichtung ist der Grundkörper als offener Ring mit zwei Federschenkeln ausgeführt, deren Enden die Form der Drosselstelle bestimmen. So können die Stirnflächen der beiden Federschenkel beispielsweise parallel zueinander verlaufen und einen Abströmkanal bilden, dessen Querschnitt im unbelasteten Zustand über seine Länge gleich bleibt. Alternativ können die Stirnflächen der Federschenkel mit einer Schräge so ausgeführt werden, dass sich der Querschnitt des ausgebildeten Abströmkanals im unbelasteten Zustand in Fluidströmungsrichtung verjüngt. Als weitere Alternative können die Stirnflächen der Federschenkel konisch ausgeführt werden, so dass sich der Querschnitt des ausgebildeten Abströmkanals im unbelasteten Zustand in Strömungsrichtung erst verjüngt und dann wieder aufweitet.
In weiter vorteilhafter Ausgestaltung der erfindungsgemäßen Vorrichtung kann der Grundkörper eine Zentriernase für einen lagerichtigen Einbau aufweisen. Des Weiteren kann der Grundkörper zur Optimierung des Federverhaltens der Federschenkel an der Basis der beiden Federschenkel, d.h. an der der Drosselstelle gegenüberliegenden Seite des offenen Rings, eine Verdickung aufweisen.
In weiter vorteilhafter Ausgestaltung der erfindungsgemäßen Vorrichtung ist der Grundkörper aus Runddraht und/oder Flachdraht und/oder als Stanzteil ausgeführt, was eine kostengünstige Herstellung der Drosselvorrichtung ermöglicht.
In vorteilhafter Ausgestaltung der erfindungsgemäßen Kolbenpumpe ist die Drosselvorrichtung zwischen zwei planen Flächen des Zylinderelements und dem Deckel des Auslassventils der Kolbenpumpe eingelegt, wodurch eine einfache Montage der Drosselvorrichtung ermöglicht wird. Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und werden in der nachfolgenden Beschreibung näher erläutert. In den Zeichnungen bezeichnen gleiche Bezugszeichen Komponenten bzw. Elemente, die gleiche bzw. analoge Funktionen ausführen.
Kurze Beschreibung der Zeichnungen
Fig. 1 zeigt eine schematische perspektivische Darstellung eines Ausführungsbeispiels einer erfindungsgemäßen Kolbenpumpe zur Förderung von Fluiden.
Fig. 2 zeigt einen perspektivischen Querschnitt durch einen hinteren Bereich der in Fig. 1 dargestellten Kolbenpumpe zur Förderung von Fluiden zur Darstellung des Einbauraums einer erfindungsgemäßen Vorrichtung zur Drosselung einer Fluidströmung.
Fig. 3 zeigt einen perspektivischen Querschnitt durch einen Deckel des Auslassventils der in Fig. 1 und 2 dargestellten Kolbenpumpe zur Förderung von Fluiden mit einer eingelegten erfindungsgemäßen Vorrichtung zur Drosselung einer Fluidströmung.
Fig. 4 bis 13 zeigen jeweils ein Ausführungsbeispiel der erfindungsgemäßen Vorrichtung zur Drosselung einer Fluidströmung.
Fig. 14 zeigt ein Kennliniendiagramm mit mehreren Kennlinien zur Darstellung des dynamischen Strömungsverhaltens von Ausführungsformen der erfindungsgemäßen Vorrichtung zur Drosselung einer Fluidströmung im Vergleich zu einer Drosselvorrichtung mit konstantem Querschnitt.
Ausführungsformen der Erfindung
Wie aus Fig. 1 bis 3 ersichtlich ist, umfasst eine erfindungsgemäße Kolbenpumpe 1 zur Förderung von Fluiden einen Kolben 3, ein Zylinderelement 5, ein Dichtelement 7 und einen Fluidfilter 9, welcher vor einer nicht sichtbaren Einlassöffnung angeordnet ist, hinter der ein nicht sichtbares Einlassventil angeordnet ist. Zwischen dem nicht dargestellten Einlassventil und einem Auslassventil 20 ist im Inneren des Zylinderelements 5 ein Druckraum 5.2 angeordnet, welcher von ei- nem Deckel 16 abgeschlossen ist, in welchem das Auslassventil 20 angeordnet ist. Der Deckel 16 wird auf einem hinteren als Absatz 5.1 ausgeführten Teil des Zylinderelements 5 aufgepresst, so dass zwischen dem Deckel 16 und dem Absatz 5.1 mindestens ein Fluidkanal 16.2 und mindestens eine Abströmöffnung 16.4 ausgebildet sind. Die dargestellte erfindungsgemäße Kolbenpumpe 1 kann beispielsweise in einer nicht dargestellten Aufnahmebohrung eines Pumpengehäuses bzw. eines Fluidblocks angeordnet werden. In die Aufnahmebohrung können quer verlaufende Druckmittelkanäle münden, durch welche Fluid über den Fluidfilter 9 zur Einlassöffnung der Kolbenpumpe 1 hin geführt wird bzw. von der mindestens einen Abströmöffnung 16.4 der Kolbenpumpe 1 weggeführt wird.
Wie aus Fig. 2 weiter ersichtlich ist, umfasst das Auslassventil 20 einen an einer Auslassöffnung 5.4 des Druckraums 5.2 angeordneten Dichtsitz 22, einen vorzugsweise als Kugel ausgeführten Schließkörper 24 und eine auf den Schließ- körper 24 wirkende Rückstellfeder 26. Im Fluidstrom 18 ist nach dem Auslassventil eine Vorrichtung 10 zum Drosseln des Fluidstroms 18 mit einem Grundkörper 12 und einer Drosselstelle 14 vorgesehen, um die Geräuschbildung zu reduzieren. Zu diesem Zweck ist zwischen dem Zylinderelement 5 und dem Deckel 16 ein Einbauraum 16.6 für die Drosselvorrichtung 10 vorgesehen, der von einer planen Fläche an der Stirnseite des Zylinderelements 5 und von einer planen nach innen abgestuften Fläche des Deckels 16 begrenzt ist. Die Drosselvorrichtung 10 wird vor dem Aufpressen des Deckels 16 auf den Absatz 5.1 des Zylinderelements in den Deckel 16 eingelegt, wie aus Fig. 3 ersichtlich ist. Der Deckel 16 kann auf bekannte Weise entweder spanend oder umformend hergestellt werden, wobei sich unter wirtschaftlicher Betrachtung für große Stückzahlen das Umformverfahren anbietet. Die Abströmgeometrie beeinflusst das Geräuschverhalten der Kolbenpumpe 1 und wird deswegen geeignet ausgebildet. Diese Ausbildung ist bei aus dem Stand der Technik bekannten Kolben- pumpen meist eine geeignete Verjüngung des Abströmkanals, welche dann eine
Drosselwirkung darstellt. Durch diese Drosselwirkung wird ein hydraulischer Tiefpass erzeugt, welcher sich positiv auf die unerwünschte Geräuschentwicklung auswirkt. Das Verhalten der dynamischen Viskosität der Bremsflüssigkeit im Bereich zwischen 0° und 120° C kann als nahezu konstant angesehen werden und die optimale Drosselwirkung wird für diesen Temperaturbereich definiert. Als
Resultat der großen Veränderung der kinematischen Viskosität der Bremsflüs- sigkeit über den geforderten Temperaturbereich von -40°C bis 120°C belastet die Drossel vor allem bei niederen Temperaturen die druckbelasteten Bauteile der Kolbenpumpe sowie des gesamten Pumpenantriebes. Durch den verengten Querschnitt wird bei niederen Temperaturen eine deutliche erhöhte Flüssigkeits- reibung indiziert, dies führt zu einer deutlichen Überhöhung des Pumpenin- nendruckes und daraus resultieren die oben genannten Belastungen.
Erfindungsgemäß ist der Grundkörper 12 der Drosselvorrichtung 10 zumindest im Bereich der mindestens einen Drosselstelle 14 federnd ausgebildet, so dass der Öffnungsquerschnitt der mindestens einen Drosselstelle 14 in Abhängigkeit von der Druckdifferenz variabel einstellbar ist. Dadurch sind Ausführungsformen der vorliegenden Erfindung in vorteilhafter Weise in der Lage, ihr Drosselverhalten bzw. ihren Öffnungsquerschnitt dynamisch an die herrschende Druckdifferenz anzupassen. Zu diesem Zweck weist der Grundkörper 12 im Bereich der mindestens einen Drosselstelle 14 mindestens einen den Öffnungsquerschnitt bestimmenden Federschenkel auf, welcher den Öffnungsquerschnitt der mindestens einen Drosselstelle 14 in Abhängigkeit von der Druckdifferenz einstellt.
Im dargestellten Ausführungsbeispiel weist die mindestens eine Drosselstelle 14 einen von der Druckdifferenz unabhängigen minimalen Öffnungsquerschnitt auf, der in Abhängigkeit vom gewünschten Drosselverhalten auf einen Volumenstrom in einem vorgegebenen Temperaturbereich von vorzugsweise 0°C bis 120°C optimiert ist. Auf Grund von Temperaturänderung ändert sich auch die Viskosität des Fluids und somit der Strömungswiderstand am vorgegebenen minimalen Drosselquerschnitt der Drosselstelle 14. Durch die federnde Ausführung des
Grundkörpers 12 im Bereich der Drosselstelle 14 wird die Drosselstelle 14 aufgeweitet, so dass sich freie Querschnitt vergrößert bzw. ein neuer freier Querschnitt einstellt. Dadurch steigt der Innendruck der Kolbenpumpe 1 in vorteilhafter Weise, insbesondere bei niedrigen Temperaturen nicht an, so dass andere Bauteile der Kolbenpumpe 1 nicht beschädigt werden. Ein von der Druckdifferenz unabhängiger maximaler Öffnungsquerschnitt der Drosselstelle 14 kann beispielsweise vom vorhandenen Einbauraum 16.6 oder von einem Anschlag vorgegeben werden. Das dynamische Verhalten des Öffnungsquerschnitts der mindestens einen Drosselstelle 14 bei Druckdifferenzänderungen kann in vorteilhaf- ter Weise durch Auswahl bzw. Vorgabe der Federeigenschaften und/oder der Bauform des Grundkörpers 12 und/oder der Bauform der mindestens einen Drosselstelle 14 bestimmt werden.
Wie aus Fig. 4 bis 13 ersichtlich ist, ist der Grundkörper 12, 32, 1 12, 122, 212, 222, 232 312, 322, 332 der Drosselvorrichtung 10, 30, 1 10, 120, 210, 220, 230,
310, 320, 330 bei den dargestellten Ausführungsformen als offener Ring mit mindestens zwei Federschenkeln 12.1 ,12.2, 32.1 , 32.2, 32.3, 32.4, 1 12.1 ,1 12.2,
122.1 , 122.2, 212.1 , 212.2, 222.1 , 222.2, 232.1 , 232.2, 312.1 , 312.2, 322.1 ,
322.2, 332.1 , 332.2 ausgeführt, deren Enden die Form der jeweiligen Drossel- stelle 14, 34.1 , 34.2, 1 14, 124, 214, 224, 234, 314, 324, 334 bestimmen.
Wie aus Fig. 4 bis 13 weiter ersichtlich ist, kann der Grundkörper 12, 32, 1 12, 122, 212, 222, 232 312, 322, 332 der jeweiligen Drosselvorrichtung 10, 30, 1 10, 120, 210, 220, 230, 310, 320, 330 aus Runddraht und/oder Flachdraht und/oder als Stanzteil hergestellt werden
Bei dem in Fig. 4 dargestellten Ausführungsbeispiel ist der Grundkörper 12 der Drosselvorrichtung 10 als Stanzteil mit einer Drosselstelle 14 und einer Zentriernase 12.3 ausgeführt, welche am Grundkörper 12 der Drosselstelle 14 gegenü- berliegend angeordnet ist. Die Zentriernase 12.3 ermöglicht in vorteilhafter Weise einen lagerichtigen Einbau des Grundkörpers 12. Wie aus Fig. 4 weiter ersichtlich ist, ermöglicht der vorgegebene minimale Öffnungsquerschnitt der Drosselstelle 14, deren Form von zwei Federschenkeln 12.1 , 12.2 bestimmt wird, bis zu einem durch das Federverhalten bestimmten Grenzdruckdifferenzwert eine zu- nehmende Fluidströmung 18 durch den Abströmkanal der Drosselstelle 14.
Steigt die Druckdifferenz über den Grenzdruckdifferenzwert an, dann werden die beiden Federschenkel 12.1 , 12.2 in die durch Pfeile 18.1 , 18.2 angezeigte Richtungen gespreizt, so dass sich der Öffnungsquerschnitt der Drosselstelle 14 und eine Strömungsmenge Q des Fluids vergrößert und die wirksame Druckdifferenz reduziert werden.
Fig. 5 zeigt alternativ eine als Stanzteil hergestellte Drosselvorrichtung 30 mit vier Federschenkeln 32.1 , 32.2, 32.3, 32.4 und zwei Drosselstellen 34.1 , 34.2, welche in Strömungsrichtung hintereinander angeordnet sind. Wie aus Fig. 5 weiter er- sichtlich ist, ermöglicht der vorgegebene minimale Öffnungsquerschnitt der ersten Drosselstelle 34.1 , deren Form von zwei ersten Federschenkeln 32.1 , 32.2 bestimmt wird, bis zu einem durch das Federverhalten bestimmten Grenzdruckdifferenzwert eine zunehmende Fluidströmung 18 durch den Abströmkanal der Drosselstellen 34.1 , 34.2. Steigt die Druckdifferenz über den Grenzdruckdifferenzwert an, dann werden die beiden ersten Federschenkel 32.1 , 32.2 in die durch Pfeile 38.1 , 36.2 angezeigten Richtungen gespreizt, so dass sich der Öffnungsquerschnitt der ersten Drosselstelle 34.2 und eine Strömungsmenge Q des Fluids vergrößert und die wirksame Druckdifferenz reduziert werden. Analog ermöglicht die zweite Drosselstelle 34.2, deren Form von zwei zweiten Federschenkeln 32.3, 32.4 bestimmt wird, die Vorgabe eines zweiten Grenzdruckdiffe- renzwertes.
Bei dem in Fig. 6 dargestellten Ausführungsbeispiel ist der Grundkörper 1 12 der Drosselvorrichtung 1 10 als offener Ring aus Flachdraht mit zwei Federschenkeln 1 12.1 , 1 12.2 und einer Drosselstelle 1 14 ausgeführt. Zur Optimierung der Federeigenschaften der Federschenkel 1 12.1 , 1 12.2 ist am Grundkörper 1 12 der Drosselstelle 1 14 gegenüberliegend eine Verdickung 1 12.4 angeordnet. Die Form des vorgegebenen minimalen Öffnungsquerschnitts der Drosselstelle 1 14 bestimmen die beiden Federschenkel 1 12.1 , 1 12.2 durch die Form ihrer Stirnflächen. Wie aus Fig. 6 weiter ersichtlich ist, verlaufen die Stirnflächen der beiden Federschenkel 1 12.1 , 1 12.2 parallel zueinander und bilden einen Abströmkanal aus, dessen Querschnitt im dargestellten unbelasteten Zustand über seine Länge konstant ist. Die Funktionsweise der in Fig. 6 dargestellten Ausführungsform entspricht der im Zusammenhang mit Fig. 4 beschriebenen Funktionsweise, so dass hier auf eine Wiederholung der Beschreibung verzichtet wird.
Bei dem in Fig. 7 dargestellten Ausführungsbeispiel ist der Grundkörper 122 der Drosselvorrichtung 120 als offener Ring aus Runddraht mit zwei Federschenkeln 122.1 , 122.2 und einer Drosselstelle 124 ausgeführt. Zur Optimierung der Federeigenschaften der Federschenkel 122.1 , 122.2 ist am Grundkörper 122 der Drosselstelle 124 gegenüberliegend ebenfalls eine Verdickung 122.4 angeordnet. Analog zu dem in Fig. 6 dargestellten Ausführungsbeispiel verlaufen auch bei dem in Fig. 7 dargestellten Ausführungsbeispiel die Stirnflächen der beiden Federschenkel 122.1 , 122.2 parallel zueinander und bilden einen Abströmkanal aus, dessen Querschnitt im dargestellten unbelasteten Zustand über seine Länge konstant ist. Auch die Funktionsweise der in Fig. 7 dargestellten Ausführungs- form entspricht der im Zusammenhang mit Fig. 4 beschriebenen Funktionsweise, so dass hier auf eine Wiederholung der Beschreibung verzichtet wird.
Bei den in Fig. 8 bis 10 dargestellten Ausführungsbeispielen sind die Grundkör- per 212, 222, 232 der Drosselvorrichtungen 210, 220, 230 jeweils als offener
Ring aus Runddraht mit jeweils zwei Federschenkeln 212.1 , 212.2,222.1 , 222.2, 232.1 , 232.1 und jeweils einer Drosselstelle 214, 224, 234 ausgeführt. Die in Fig. 8 bis 10 dargestellten Ausführungsbeispiele unterscheiden sich durch die Formen der vorgegebenen minimalen Öffnungsquerschnitte der Drosselstellen 214, 224, 234. Wie aus Fig. 8 weiter ersichtlich ist, verlaufen hier die Stirnflächen der beiden Federschenkel 212.1 , 212.2 parallel zueinander und bilden einen Abströmkanal aus, dessen Querschnitt im dargestellten unbelasteten Zustand über seine Länge konstant ist. Wie aus Fig. 9 weiter ersichtlich ist, sind hier die Stirnflächen der beiden Federschenkel 222.1 , 222.2 konisch ausgeführt und bilden einen Abströmkanal aus, dessen Querschnitt sich im dargestellten unbelasteten
Zustand in Strömungsrichtung erst verjüngt und dann wieder aufweitet. Wie aus Fig. 10 weiter ersichtlich ist, sind die Stirnflächen der beiden Federschenkel 232.1 , 232.2 hier jeweils mit einer Schräge ausgeführt und bilden einen Abströmkanal aus, dessen Querschnitt sich im dargestellten unbelasteten Zustand in Strömungsrichtung verjüngt. Die Funktionsweise der in Fig. 8 bis 10 dargestellten Ausführungsformen entsprechen der im Zusammenhang mit Fig. 4 beschriebenen Funktionsweise, so dass hier auf eine Wiederholung der Beschreibung verzichtet wird. Bei den in Fig. 1 1 bis 13 dargestellten Ausführungsbeispielen sind die Grundkörper 312, 322, 332 der Drosselvorrichtungen 310, 320, 330 jeweils als offener Ring aus Flachdraht und/oder als Stanzteil mit jeweils zwei Federschenkeln 312.1 , 312.2,322.1 , 322.2, 332.1 , 332.1 und jeweils einer Drosselstelle 314, 324, 334 ausgeführt. Die in Fig. 1 1 bis 13 dargestellten Ausführungsbeispiele unter- scheiden sich durch die Formen der vorgegebenen minimalen Öffnungsquerschnitte der Drosselstellen 314, 324, 334. Wie aus Fig. 1 1 weiter ersichtlich ist, verlaufen hier die Stirnflächen der beiden Federschenkel 312.1 , 312.2 parallel zueinander und bilden einen Abströmkanal aus, dessen Querschnitt im dargestellten unbelasteten Zustand über seine Länge konstant ist. Wie aus Fig. 12 wei- ter ersichtlich ist, sind hier die Stirnflächen der beiden Federschenkel 322.1 ,
322.2 konisch ausgeführt und bilden einen Abströmkanal aus, dessen Quer- schnitt sich im dargestellten unbelasteten Zustand in Strömungsrichtung erst verjüngt und dann wieder aufweitet. Wie aus Fig. 13 weiter ersichtlich ist, sind die Stirnflächen der beiden Federschenkel 332.1 , 332.2 hier jeweils mit einer Schräge ausgeführt und bilden einen Abströmkanal aus, dessen Querschnitt sich im dargestellten unbelasteten Zustand in Strömungsrichtung verjüngt. Die Funktionsweise der in Fig. 1 1 bis 13 dargestellten Ausführungsformen entsprechen der im Zusammenhang mit Fig. 4 beschriebenen Funktionsweise, so dass hier auf eine Wiederholung der Beschreibung verzichtet wird. Fig. 14 zeigt ein Kennliniendiagramm mit mehreren Kennlinien zur Darstellung des dynamischen Strömungsverhaltens von Ausführungsformen der erfindungsgemäßen Drosselvorrichtung 10, 30, 1 10, 120, 210, 220, 230, 310, 320, 330 im Vergleich zu einer durch eine Kennlinie K3 repräsentierte Drosselvorrichtung mit einer Drosselstelle, die einen differenzdruckunabhängigen konstantem Quer- schnitt aufweist. Wie aus Fig. 14 weiter ersichtlich ist, steigt die Durchflussmenge
Q des Fluids gemäß Kennlinie K3 bei zunehmender Druckdifferenz Δρ zunächst stark an und weist dann unabhängig von der zunehmenden Druckdifferenz Δρ einen nahezu konstanten Verlauf auf. In Fig. 14 repräsentiert eine Kennlinie K2 das dynamische Verhalten der Ausführungsformen aus Fig. 6 und 7. Wie aus Fig. 14 weiter ersichtlich ist, zeigt die Durchflussmenge Q des Fluids gemäß Kennlinie K1 einen degressiven Verlauf, d.h. die Durchflussmenge Q steigt bei zunehmender Druckdifferenz Δρ zunächst langsam an und weist ab einem bestimmten Druckdifferenzgrenzwert einen star- ken Anstieg auf, um einen weiteren Druckdifferenzanstieg zu verhindern.
In Fig. 14 repräsentiert eine Kennlinie K3 das dynamische Verhalten der Ausführungsformen aus Fig. 8 bis 13. Wie aus Fig. 14 weiter ersichtlich ist, zeigt die Durchflussmenge Q des Fluids gemäß Kennlinie K2 einen linearen Verlauf, de- ren Steigung durch die Ausbildung des Grundkörpers und der Drosselstelle bestimmt werden kann.
Ausführungsformen der vorliegenden Erfindung ermöglichen in vorteilhafter Weise ein sehr gutes NVH-Verhalten (NVH: Noise, Vibration, Harshness). Mittels der federnden Drosselvorrichtung kann bei hochviskosem Zustand des Fluids die
Druckdifferenz vor und nach der Drosseleinrichtung in vorteilhafter Weise kon- stant gehalten werden. Dadurch reduzieren sich die Antriebsleistung, sowie die Belastung der kraftübertragenden Einzelteile wie Lager, Kolben, Hochdruckdichtringe usw. Dies kann bei zukünftigen Konstruktionen bei geeignetem Design zur Kostenersparnis ausgenutzt werden. Des Weiteren kann durch die Formgebung der Drosselstelle das Drosselverhalten in vorteilhafter Weise auf die Funktion abgestimmt werden.

Claims

Ansprüche
1 . Vorrichtung zur Drosselung einer Fluidströmung mit einem Grundkörper (12, 32, 1 12, 122, 212, 222, 232 312, 322, 332), welcher mindestens eine Drosselstelle (14, 34.1 , 34.2, 1 14, 124, 214, 224, 234, 314, 324, 334) mit einem vorgebbaren Öffnungsquerschnitt umfasst, dadurch gekennzeichnet, dass der Grundkörper (12, 32, 1 12, 122, 212, 222, 232 312, 322, 332) zumindest im Bereich der mindestens einen Drosselstelle (14, 34.1 , 34.2, 1 14, 124, 214, 224, 234, 314, 324, 334) federnd ausgebildet ist, so dass der Öffnungsquerschnitt der mindestens einen Drosselstelle (14, 34.1 , 34.2, 1 14, 124, 214, 224, 234, 314, 324, 334) in Abhängigkeit von einer Druckdifferenz variabel einstellbar ist.
2. Vorrichtung nach Anspruch 1 , dadurch gekennzeichnet, dass der Grundkörper (12, 32, 1 12, 122, 212, 222, 232 312, 322, 332) im Bereich der mindestens eine Drosselstelle (14, 34.1 , 34.2, 1 14, 124, 214, 224, 234, 314, 324, 334) mindestens einen den Öffnungsquerschnitt bestimmenden Federschenkel (12.1 ,12.2, 32.1 , 32.2, 32.3, 32.4, 1 12.1 ,1 12.2, 122.1 , 122.2, 212.1 , 212.2, 222.1 , 222.2, 232.1 , 232.2, 312.1 , 312.2, 322.1 , 322.2, 332.1 , 332.2) aufweist, welcher den Öffnungsquerschnitt der mindestens einen Drosselstelle (14, 34.1 , 34.2, 1 14, 124, 214, 224, 234, 314, 324, 334) in Abhängigkeit von der Druckdifferenz einstellt.
3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die mindestens eine Drosselstelle (14, 34.1 , 34.2, 1 14, 124, 214, 224, 234, 314, 324, 334) einen von der Druckdifferenz unabhängigen minimalen Öffnungsquerschnitt und/oder maximalen Öffnungsquerschnitt aufweist.
4. Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, dass der minimale Öffnungsquerschnitt der mindestens einen Drosselstelle (14, 34.1 , 34.2, 1 14, 124, 214, 224, 234, 314, 324, 334) auf einen Volumenstrom in einem vorgegebenen Temperaturbereich von vorzugsweise 0°C bis 120°C optimiert ist.
5. Vorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass gewählte Federeigenschaften und/oder eine gewählte Bauform des Grundkörpers (12, 32, 1 12, 122, 212, 222, 232 312, 322, 332) und/oder eine gewählte Bauform der mindestens einen Drosselstelle (14, 34.1 , 34.2, 1 14, 124, 214, 224, 234, 314, 324, 334) das dynamische Verhalten des Öffnungsquerschnitts der mindestens ei- nen Drosselstelle (14, 34.1 , 34.2, 1 14, 124, 214, 224, 234, 314, 324, 334) bei Druckdifferenzänderungen bestimmen.
Vorrichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der Grundkörper (12, 32, 1 12, 122, 212, 222, 232 312, 322, 332) als offener Ring mit zwei Federschenkeln (12.1 ,12.2, 32.1 , 32.2, 32.3, 32.4, 1 12.1 ,1 12.2, 122.1 , 122.2, 212.1 , 212.2, 222.1 , 222.2, 232.1 , 232.2, 312.1 , 312.2, 322.1 , 322.2, 332.1 , 332.2) ausgeführt ist, deren Enden die Form der Drosselstelle (14, 34.1 , 34.2, 1 14, 124, 214, 224, 234, 314, 324, 334) bestimmen.
Vorrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der Grundkörper (12) eine Zentriernase (12.3) für einen lagerichtigen Einbau aufweist.
Vorrichtung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass der Grundkörper (12, 32, 1 12, 122, 212, 222, 232 312, 322, 332) aus Runddraht und/oder Flachdraht und/oder als Stanzteil ausgeführt ist.
9. Kolbenpumpe zur Förderung von Fluiden, welche einen Kolben (3), ein Zylinderelement (5) und einen zwischen einem Einlassventil und einem Auslassventil (20) angeordneten Druckraum (5.2) umfasst, welcher von einem Deckel (16) abgeschlossen ist, wobei in der Fluidströmung (18) nach dem Auslassventil Mittel (10, 30, 1 10, 120, 210, 220, 230, 310, 320, 330) zum Drosseln der Fluidströmung (18) vorgesehen sind, dadurch gekennzeichnet, dass die Drosselmittel als Vorrichtung (10, 30, 1 10, 120, 210, 220, 230, 310, 320, 330) zur Drosselung einer Fluidströ- mung (18) nach einem der Ansprüche 1 bis 8 ausgeführt sind.
10. Kolbenpumpe nach Anspruch 9, dadurch gekennzeichnet, dass die Drosselvorrichtung (10, 30, 1 10, 120, 210, 220, 230, 310, 320, 330) zwischen zwei planen Flächen des Zylinderelements (5) und dem Deckel (16) eingelegt ist.
PCT/EP2011/061417 2010-09-02 2011-07-06 Vorrichtung zur drosselung einer fluidströmung und korrespondierende kolbenpumpe zur förderung von fluiden WO2012028364A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201180042498.2A CN103080545B (zh) 2010-09-02 2011-07-06 对流体流进行节流的装置及相应的用于输送流体的活塞泵
EP11730294.3A EP2612031A1 (de) 2010-09-02 2011-07-06 Vorrichtung zur drosselung einer fluidströmung und korrespondierende kolbenpumpe zur förderung von fluiden
KR1020137005313A KR20130103496A (ko) 2010-09-02 2011-07-06 유체 흐름을 스로틀하기 위한 장치 및 유체 송출용 피스톤 펌프
US13/819,990 US9273673B2 (en) 2010-09-02 2011-07-06 Device for throttling a fluid flow, and corresponding piston pump for delivering fluids

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010040169.2 2010-09-02
DE102010040169A DE102010040169A1 (de) 2010-09-02 2010-09-02 Vorrichtung zur Drosselung einer Fluidströmung und korrespondierende Kolbenpumpe zur Förderung von Fluiden

Publications (1)

Publication Number Publication Date
WO2012028364A1 true WO2012028364A1 (de) 2012-03-08

Family

ID=44544100

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/061417 WO2012028364A1 (de) 2010-09-02 2011-07-06 Vorrichtung zur drosselung einer fluidströmung und korrespondierende kolbenpumpe zur förderung von fluiden

Country Status (6)

Country Link
US (1) US9273673B2 (de)
EP (1) EP2612031A1 (de)
KR (1) KR20130103496A (de)
CN (1) CN103080545B (de)
DE (1) DE102010040169A1 (de)
WO (1) WO2012028364A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013013865A1 (de) * 2011-07-27 2013-01-31 Robert Bosch Gmbh Kolbenpumpe zur förderung von fluiden und korrespondierendes montageverfahren für eine kolbenpumpe
DE102013222368A1 (de) 2013-11-04 2015-05-07 Robert Bosch Gmbh Ventileinrichtung, Bremssystem

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010040157A1 (de) * 2010-09-02 2012-03-08 Robert Bosch Gmbh Kolbenpumpe zur Förderung von Fluiden und zugehörige Fahrzeugbremsanlage
DE102010064114B4 (de) 2010-12-23 2021-07-29 Robert Bosch Gmbh Pumpe mit einer Drossel
DE102011002982B4 (de) 2011-01-21 2022-05-25 Robert Bosch Gmbh Federelement und korrespondierende Kolbenpumpe zur Förderung von Fluiden
DE102012213022A1 (de) * 2012-07-25 2014-01-30 Robert Bosch Gmbh Vorrichtung zur Drosselung einer Fluidströmung und korrespondierende Kolbenpumpe zur Förderung von Fluiden
DE102013218797A1 (de) * 2013-09-19 2015-03-19 Robert Bosch Gmbh Drosselscheibe eines Hydraulikaggregats einer Fahrzeugbremsanlage

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3552444A (en) * 1969-04-21 1971-01-05 Brown & Sharpe Mfg Variable throttle valve for logic applications
US3664774A (en) * 1970-05-05 1972-05-23 Dexter Automatic Products Co I Primer pump
US4098296A (en) * 1976-12-27 1978-07-04 United Technologies Corporation Variable area reed flow restrictor
US5759014A (en) * 1994-01-14 1998-06-02 Westonbridge International Limited Micropump
US6450787B1 (en) * 1998-02-17 2002-09-17 Continental Teves Ag & Co., Ohg Piston pump
US20050191197A1 (en) * 2004-02-26 2005-09-01 Samsung Gwang Ju Electronics Co., Ltd Hermetic compressor
WO2007100579A2 (en) * 2006-02-23 2007-09-07 Rutherford Robert B Pressure sensor over-pressure protection
DE102006027555A1 (de) 2006-06-14 2007-12-20 Robert Bosch Gmbh Kolbenpumpe mit reduziertem Geräusch
DE102008002740A1 (de) 2008-06-27 2009-12-31 Robert Bosch Gmbh Kolbenpumpe

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW313618B (de) 1995-06-14 1997-08-21 Burckhardt Ag Maschf
DE19535047A1 (de) * 1995-09-21 1997-03-27 Bosch Gmbh Robert Brennstoffeinspritzventil
JPH10266944A (ja) 1997-03-21 1998-10-06 Robert Bosch Gmbh ピストンポンプ
US6465787B1 (en) 2000-08-07 2002-10-15 The Aerospace Corporation Covert surveillance system for tracking light sensitive tagged moving vehicles
US6823673B2 (en) * 2003-03-27 2004-11-30 Shinn Fu Corporation Lower control system regulating the flow rate of lifting jack oil
US7819132B2 (en) 2004-11-24 2010-10-26 Continental Automotive Systems Us, Inc. Pressure regulator with ceramic valve element

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3552444A (en) * 1969-04-21 1971-01-05 Brown & Sharpe Mfg Variable throttle valve for logic applications
US3664774A (en) * 1970-05-05 1972-05-23 Dexter Automatic Products Co I Primer pump
US4098296A (en) * 1976-12-27 1978-07-04 United Technologies Corporation Variable area reed flow restrictor
US5759014A (en) * 1994-01-14 1998-06-02 Westonbridge International Limited Micropump
US6450787B1 (en) * 1998-02-17 2002-09-17 Continental Teves Ag & Co., Ohg Piston pump
US20050191197A1 (en) * 2004-02-26 2005-09-01 Samsung Gwang Ju Electronics Co., Ltd Hermetic compressor
WO2007100579A2 (en) * 2006-02-23 2007-09-07 Rutherford Robert B Pressure sensor over-pressure protection
DE102006027555A1 (de) 2006-06-14 2007-12-20 Robert Bosch Gmbh Kolbenpumpe mit reduziertem Geräusch
DE102008002740A1 (de) 2008-06-27 2009-12-31 Robert Bosch Gmbh Kolbenpumpe

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013013865A1 (de) * 2011-07-27 2013-01-31 Robert Bosch Gmbh Kolbenpumpe zur förderung von fluiden und korrespondierendes montageverfahren für eine kolbenpumpe
US9556859B2 (en) 2011-07-27 2017-01-31 Robert Bosch Gmbh Piston pump for delivering fluids, and corresponding assembly process for a piston pump
DE102013222368A1 (de) 2013-11-04 2015-05-07 Robert Bosch Gmbh Ventileinrichtung, Bremssystem

Also Published As

Publication number Publication date
US20130224046A1 (en) 2013-08-29
CN103080545A (zh) 2013-05-01
DE102010040169A1 (de) 2012-03-08
CN103080545B (zh) 2016-06-01
EP2612031A1 (de) 2013-07-10
KR20130103496A (ko) 2013-09-23
US9273673B2 (en) 2016-03-01

Similar Documents

Publication Publication Date Title
EP2850314B1 (de) Druckbegrenzungsventil
EP2612031A1 (de) Vorrichtung zur drosselung einer fluidströmung und korrespondierende kolbenpumpe zur förderung von fluiden
EP3027885B1 (de) Kraftstoffhochdruckpumpe, mit einem auslassventil
WO2014139698A1 (de) Kraftstoff-hochdruckpumpe mit einem zwischen einem förderraum und einem auslass angeordneten auslassventil
EP2612030B1 (de) Kolbenpumpe zur förderung von fluiden und zugehörige fahrzeugbremsanlage
WO2004083695A1 (de) Druckbegrenzungsventil
WO2006008263A1 (de) Kolbenpumpe mit verbesserter druckaufbaudynamik
EP2737208A1 (de) Kolbenpumpe zur förderung von fluiden und korrespondierendes montageverfahren für eine kolbenpumpe
DE102011002982B4 (de) Federelement und korrespondierende Kolbenpumpe zur Förderung von Fluiden
WO2014131495A2 (de) Überströmventil
DE102016218215A1 (de) Kraftstoff-Hochdruckpumpe
DE102010064114A1 (de) Pumpe mit einer Drossel
WO2014079624A1 (de) Ventileinrichtung
WO2017076647A1 (de) Kühlmittelpumpe für eine verbrennungskraftmaschine
EP1001196B1 (de) Druckbegrenzungsventil, insbesondere für Fahrzeuge
DE102013205909A1 (de) Kraftstoff-Kolbensteckpumpe mit einem Gehäuse, mindestens einem in dem Gehäuse angeordneten axial bewegbaren Kolben, und einem Koppelabschnitt
DE102017206607A1 (de) Überströmventil
DE102012213022A1 (de) Vorrichtung zur Drosselung einer Fluidströmung und korrespondierende Kolbenpumpe zur Förderung von Fluiden
EP3171051B1 (de) Verstelleinrichtung
DE102014202957A1 (de) Druckbegrenzungsventilvorrichtung für ein Hochdrucksystem
DE102008043149A1 (de) Druckregelventil
DE102010031595A1 (de) Kraftstoffpumpe und Überdruckventil für eine Kraftstoffpumpe
DE102015218220A1 (de) Ventil
DE102013224516A1 (de) Anordnung zur Drosselung einer Fluidströmung
DE102013224688A1 (de) Anordnung zur Drosselung einer Fluidströmung

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180042498.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11730294

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2011730294

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011730294

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137005313

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13819990

Country of ref document: US