WO2012027919A1 - 外加电场效应薄膜光伏电池及与电场源集成的光伏电池板 - Google Patents

外加电场效应薄膜光伏电池及与电场源集成的光伏电池板 Download PDF

Info

Publication number
WO2012027919A1
WO2012027919A1 PCT/CN2010/077573 CN2010077573W WO2012027919A1 WO 2012027919 A1 WO2012027919 A1 WO 2012027919A1 CN 2010077573 W CN2010077573 W CN 2010077573W WO 2012027919 A1 WO2012027919 A1 WO 2012027919A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric field
thin film
photovoltaic cell
film photovoltaic
field effect
Prior art date
Application number
PCT/CN2010/077573
Other languages
English (en)
French (fr)
Inventor
郭建国
毛星原
Original Assignee
Guo Jianguo
Mao Xingyuan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN 201010274328 external-priority patent/CN102064213A/zh
Application filed by Guo Jianguo, Mao Xingyuan filed Critical Guo Jianguo
Publication of WO2012027919A1 publication Critical patent/WO2012027919A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03923Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including AIBIIICVI compound materials, e.g. CIS, CIGS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02016Circuit arrangements of general character for the devices
    • H01L31/02019Circuit arrangements of general character for the devices for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02021Circuit arrangements of general character for the devices for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03925Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including AIIBVI compound materials, e.g. CdTe, CdS
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells

Definitions

  • the invention relates to a photovoltaic cell, in particular to an external power supply to a thin film photovoltaic cell having an electric field electrode.
  • the applied power source is provided to a thin film photovoltaic cell having an electric field electrode, which is a combination of a thin film photovoltaic cell with an external power source and an electric field electrode, and forms a long strip-shaped field effect thin film photovoltaic cell, referred to as a long strip. battery.
  • the strip-shaped narrow-band electric field effect thin film photovoltaic cell is divided into two parts, one part is an external power supply, and the other part is a thin film photovoltaic cell with an electric field electrode; wherein the external power supply is independently produced at a small area on both ends of the long strip battery.
  • a micro-thin film photovoltaic cell is electrically connected in series, and two electric field power sources are respectively formed at two ends of the long strip battery, and the two electric field power sources are external power sources of the thin film photovoltaic cell of the middle long electric field electrode. That is to say, the strip-shaped narrow-band electric field effect thin film photovoltaic cell itself has a combination of an electric field power source and a thin film photovoltaic cell of an electric field electrode, and a single strip narrow strip-shaped electric field effect thin film photovoltaic cell is called an electric field effect thin film photovoltaic cell unit.
  • the electric field effect thin film photovoltaic panel is formed by densely arranging a plurality of long strip-shaped field-effect thin film photovoltaic cells.
  • the single junction photovoltaic cell output voltage is less than 2V.
  • the large-area electric field effect thin film photovoltaic panel internal structure is composed of a plurality of independent electric field effect thin film photovoltaic cells arranged in a grid-like manner, and each electric field effect thin film photovoltaic cell is electrically connected in series to produce an output high voltage. High-efficiency electric field effect thin film photovoltaic panel structure device.
  • CMOS complementary metal-oxide-semiconductor
  • CMOS complementary metal-oxide-semiconductor
  • DSSC dye sensitized photovoltaic cells
  • the basic structure of these photovoltaic cells is a thin film photovoltaic cell comprising a p-type semiconductor layer, an n -type semiconductor layer, a pn stack feature, and an amorphous stack feature.
  • the currently known amorphous/?-laminated thin film photovoltaic panel structure is formed by plasma enhanced chemical vapor deposition (PECVD), which deposits a thin film layer on a large-area substrate glass in sequence, and realizes internal connection of the battery cells by laser etching. .
  • PECVD plasma enhanced chemical vapor deposition
  • FIG. 5 a schematic view of a BB cross-sectional view showing a structure and an electrical series connection diagram of a plurality of silicon-based thin film photovoltaic cell units, and a cross-sectional view of the AA is a structural diagram of a silicon-based thin film photovoltaic cell unit.
  • Figure 6 and Figure a, Figure a2, and Figure a3 are enlarged views of the B_B cross-sectional view and the structure of the single junction, double junction, triple junction thin film battery.
  • FIG. 7 is a structural view of a CdTe thin film photovoltaic panel.
  • the BB cross-sectional view is a structural and electrical series connection diagram of a plurality of CIGS or CdTe thin film photovoltaic cells.
  • the AA cross-sectional view is a structural diagram of a CIGS or CdTe thin film photovoltaic cell unit.
  • Figure 8 and Figure b are enlarged views of the BB cross-sectional view and a single junction CIGS or CdTe thin film battery structure.
  • amorphous silicon thin film photovoltaic panel structure is composed of a plurality of amorphous silicon thin film photovoltaic cells A1.1, carrier A1.2, battery bus (series Battery positive) A1.3, battery bus (series battery negative) A1.4, laser groove A1.5, adjacent battery unit positive and negative electrode series contact surface A1.6.
  • the shape of the amorphous silicon thin film photovoltaic cell unit Al.1 in the internal structure of the large-area amorphous silicon thin film photovoltaic panel is a narrow strip-shaped, single-function independent photovoltaic cell strip.
  • AA cross-sectional view of Fig. 5 can be seen.
  • the internal structure of the large-area amorphous silicon thin film photovoltaic panel is composed of a plurality of independent, single-function, narrow-band photovoltaic cells electrically connected in series to form an output high-voltage thin-film photovoltaic panel structure device.
  • the drawing in Figure 6 is a, the drawing a2, and the drawing a3 are amorphous silicon thin film photovoltaic cell structures, which can be selected from a single junction cell structure, a double junction cell structure or a triple junction cell structure.
  • a The single junction cell structure is composed of a transparent conductive film (TC0) 1.1, a single junction (a-Si:H) 1.2, and a back electrode layer 1.3
  • Figure a2 The double junction cell structure is composed of Transparent conductive film (TC0) 2.1, pin ⁇ (a-Si:H) 2.2, pin ⁇ (a-SiGe:H) 2.3, back electrode layer 2 ⁇ 4
  • Figure a3 Three-junction cell structure is transparent Conductive film (TC0) 3.1, — — «Jun (&-51:11) 3.2, ⁇ - ⁇ - ⁇ junction (a-SiGe:H) 3.3, pin ⁇ (c-SiGe:H) 3.4, back electrode layer 3 ⁇ 5 components.
  • FIG. 7 and Figure 8 Three views of the structure of a copper indium gallium selenide (CIGS) or cadmium telluride (CdTe) thin film photovoltaic panel.
  • the CIGS (CdTe) thin film photovoltaic panel structure is composed of multiple CIGS (CdTe) thin film photovoltaic cells.
  • the appearance of the photovoltaic cell B1.1 in the internal structure of the existing large-area copper indium gallium selenide (CIGS) or cadmium telluride (CdTe) thin film photovoltaic panel is a narrow strip-like, single function.
  • the individual photovoltaic cell strips are known in the AA cross-sectional view of Figure 7.
  • the large area of copper indium gallium selenide (CIGS) or cadmium telluride (CdTe) thin film photovoltaic panels is composed of multiple independent, single-function, narrow-band photovoltaic cells electrically connected in series to form a high output. Voltage thin film photovoltaic panel structure device.
  • CIGS (CdTe) thin film photovoltaic cell structure is composed of back electrode layer (MO) B2.1, buffer layer and absorber layer (np junction) B2.2, transparent conductive film (ZnO) B2.3 Composition; wherein the buffer layer of CIGS thin film photovoltaic cell is CdS, the absorption layer is CIGS; the buffer layer of CdTe thin film photovoltaic cell is CdS, and the absorption layer is CdTe.
  • MO back electrode layer
  • np junction buffer layer and absorber layer
  • ZnO transparent conductive film
  • the first object of the present invention is to provide an electric field effect thin film photovoltaic cell, which is a thin film photovoltaic cell provided with an electric field electrode by an external power source, and a thin film photovoltaic cell forming an electric field effect.
  • the structure promotes an enhanced and stable self-built electric field in the battery, improves the open circuit voltage and maximum output work of the thin film photovoltaic cell, and forms an electric field effect thin film photovoltaic cell structure with high conversion efficiency.
  • the invention is based on the invention patent application 200910182141.
  • No. 9 of the invention "additional electric field effect photovoltaic cell", the amorphous silicon base, compound semiconductor copper indium gallium selenide (CIGS) in the thin film photovoltaic cell system through the external power source as the electric field electrode.
  • the cadmium telluride (CdTe) and the doped polymer material photovoltaic cell provide a regulation of the electric field in the battery, and the electric field effect can enhance the self-built electric field of the carrier diffusion in the pn junction region of the thin film photovoltaic cell, and improve the maximum output power of the photovoltaic cell.
  • ⁇ ⁇ a thin film photovoltaic cell with additional electric field effect function.
  • a second object of the present invention is to provide a micro-film photovoltaic electric field power supply unit comprising a plurality of micro-thin film photovoltaic cells connected in series.
  • the micro-thin film photovoltaic electric field power supply unit is an external power supply for the electric field electrode thin film photovoltaic cell unit, and the micro-thin film photovoltaic electric field power supply unit and the electric field electrode thin film photovoltaic cell unit are integrated and integrated to form an independent, high-efficiency, multi-cell electric field effect.
  • Thin film photovoltaic cells That is to say, the electric field effect thin film photovoltaic cell itself has its own micro-film photovoltaic electric field power supply unit. China 200910035923.
  • the second object of the present application is to further propose A method for realizing a large area electric field effect thin film photovoltaic panel.
  • FIG. 1 there is shown a structural diagram of a thin film photovoltaic cell
  • Fig. 1A shows a CIGS thin film photovoltaic cell structure
  • Fig. 1B shows a CdTe thin film photovoltaic cell structure
  • Fig. 1C shows an amorphous silicon laminated thin film photovoltaic cell structure.
  • 1. 1, 2. 2, 1. 3 is a transparent conductive film T0C
  • 1. 2, 2. 2 is an n-type semiconductor
  • 1. 3, 2. 3 is a p-type semiconductor
  • 3. 2 is a laminated amorphous Silicon junction
  • 1. 4, 2. 4 is the back electrode
  • 3. 3 is the back electrode.
  • FIG. 2-A is a structure of a field effect CIGS thin film photovoltaic cell
  • FIG. 1-B is a structure of a field effect CdTe thin film photovoltaic cell
  • FIG. 1-C is an electric field effect amorphous silicon.
  • Laminated thin film photovoltaic cell structure 1. 1-1, 2. 1-1, 3. 1-1 is a transparent conductive film T0C; 1. 2_2, 2. 2-2 is an n-type semiconductor; 1. 3_3,
  • 2. 3-33 is a p-type semiconductor; 3. 2-2 is a laminated amorphous silicon junction; 1. 4-4, 2. 4-4 is a back electrode; 3. 3_3 is a back electrode; 1. 6-6 2. 6-6, 3. 5-5 is the insulating film; 1. 7-7, 2. 7-7, 3. 6. -6 is the electric field electrode; 1. 8-8, 2. 8-8 ,
  • the shape structure of an electric field effect thin film photovoltaic cell is an electric field effect thin film photovoltaic unit composed of a long narrow strip-shaped electric field power source and a field electrode thin film photovoltaic cell including a plurality of micro thin film photovoltaic cells connected in series, and an electric field effect thin film photovoltaic cell Unit, single junction photovoltaic output voltage is less than 2V.
  • the large-area electric field effect thin film photovoltaic panel internal structure is composed of a plurality of independent electric field effect thin film photovoltaic cells arranged in a grid-like arrangement, and electrically integrated in series to form an electric field effect thin film photovoltaic which is composed of output high voltage and high efficiency. Panel structure device.
  • an applied electric field effect thin film photovoltaic cell wherein the thin film photovoltaic cell of the electric field electrode comprises: a silicon-based thin film photovoltaic cell, a copper indium gallium selenide thin film photovoltaic cell (CuInl-XG a XSe2, abbreviated as CIGS), a cadmium telluride thin film photovoltaic cell (CdTe), and a thin film photovoltaic cell doped with a polymer material, the thin film photovoltaic cell of the electric field electrode is provided with a transparent conductive film and a back electrode layer, the transparent conductive film And the back electrode layer is an output electrode (power output loop electrode) of the thin film photovoltaic cell; wherein an electric field underlying electrode is disposed under the back electrode layer, and the electric field bottom electrode and the back electrode layer in the thin film photovoltaic cell body An insulating layer is disposed between the back surface electrode and the electric field bottom electrode
  • the voltage of the applied voltage source VI is 1.5 times of the output voltage of the thin film photovoltaic cell; generally about 2 times.
  • the external electric field power supply is constructed.
  • the transparent conductive film on the thin film photovoltaic cell body serves as both the output electrode of the thin film photovoltaic cell and the surface electrode of the applied electric field.
  • the applied voltage source VI corresponds to a thin film photovoltaic cell connected to an electric field electrode, it is called an electric field effect thin film photovoltaic cell.
  • the positive electrode of the applied voltage source VI is connected to the n-type semiconductor of the electric field effect thin film photovoltaic cell, and the negative electrode is connected to the electric field effect electrode of the P-type semiconductor of the electric field effect thin film photovoltaic cell. That is, the positive electrode of the applied voltage source VI is connected to the electric field effect copper indium gallium selenide thin film photovoltaic cell (CIGS), the cadmium telluride thin film photovoltaic cell (CdTe) electric field surface layer electrode (transparent conductive film), and the applied voltage source a negative electrode, the copper indium gallium selenide thin film photovoltaic cell (CIGS), a cadmium telluride thin film photovoltaic cell (CdTe) electric field bottom electrode; the positive electrode of the applied voltage source VI, the amorphous silicon thin film photovoltaic cell connected to the electric field effect The electric field bottom electrode, the negative electrode of the applied voltage source, and the electric field surface electrode formed by the transparent conductive film of the electric field effect a
  • the invention integrates the thin film photovoltaic cell of the electric field electrode through the external power source VI.
  • the single junction photovoltaic cell output open circuit voltage is V0C
  • the applied power supply VI has a voltage range of Vl ⁇ VOC
  • the existing single junction (non-electric field effect) thin film photovoltaic cell The standard output open circuit voltage V0C, the compound semiconductor thin film photovoltaic cell at 0. 6V V0C 1. 0V, amorphous silicon laminated thin film photovoltaic cell at 0. 8V V0C 1. 4V; wherein the size of the power supply voltage VI and the electric field bottom and back electrodes
  • the thickness of the insulating layer between the layers is related.
  • the higher the thickness, the higher the voltage, and the total thickness of the insulating layer is generally required to be 10 microns or less.
  • the electric field effect thin film photovoltaic cell is characterized in that the transparent conductive film and the electric field bottom electrode of the compound semiconductor thin film photovoltaic cell in the electric field effect thin film photovoltaic cell are respectively connected to the positive electrode and the negative electrode of the direct current power source VI, and form an electric field 1, the electric field 1 direction and self-built The electric field is the same.
  • the transparent conductive film and the electric field bottom electrode of the amorphous silicon thin film photovoltaic cell in the electric field effect thin film photovoltaic cell are respectively connected between the negative electrode and the positive electrode of the direct current power source VI, and between the electric field underlying electrode and the transparent conductive film - "the laminated structure forms the electric field 1, the electric field The 1 direction is the same as the self-built electric field.
  • the electric field 1 direction is consistent with the electric field direction of the pn junction region of the photovoltaic cell, meticulous ⁇ strengthens and stabilizes, enhances the separation degree of positive load carriers, and reduces the composite action of positive load carriers.
  • the reverse saturation current of the pn junction is reduced, and the open circuit voltage of the battery can be increased.
  • the electric field 1 blocks and reflects the minority electrons in the p region, which reduces the composite effect of the back surface, and the electric field 1 can adjust the polycrystalline grains.
  • the boundary between the barriers increases the carrier migration, reduces the grain boundary complex positive load carriers, and increases the probability of the pn junction collecting the photogenerated minority. Therefore, it can also improve the short-circuit current and open circuit voltage of the photovoltaic cell, and improve the photovoltaic.
  • Maximum output power of the battery ⁇ ⁇ P max FFxV n O r CL S r C
  • is the fill factor for photovoltaic cells.
  • FIG. 3 there is shown a graph of voltage and current output under standard illumination for a known thin film photovoltaic cell and an electric field effect thin film battery of the present invention.
  • the optimization scheme of the invention is:
  • FIG. 4 of FIG. 4 The circuit principle of the electric field effect amorphous silicon thin film photovoltaic cell unit is shown in FIG. 4 of FIG. 4, wherein LI.1 is an amorphous silicon laminated thin film photovoltaic cell unit, and L1. 2 is three micro amorphous silicon thin film photovoltaic cell segments.
  • the electric field power source positive electrode is connected to the electric field electrode layer L1.
  • the electric field power source negative electrode V f is connected to the amorphous silicon thin film photovoltaic cell unit V a through a transparent conductive film (TC0) to form an electric field E inside the amorphous silicon thin film photovoltaic cell unit.
  • L2.1 is a CIGS or CdTe thin film photovoltaic cell
  • L2. 2 is a combination of two micro CIGS or CdTe thin film photovoltaic cell segments.
  • the electric field power source, L2. 3 is the electric field electrode layer
  • L2. 4 is the insulating layer; the electric field power source is connected by two micro CIGS or CdTe thin film photovoltaic cell sections.
  • V 3 is connected to the electric field the negative power supply V g is connected to the CIGS or CdTe thin-film photovoltaic cell V d via a transparent conductive film (ZnO), formed in the CIGS inside or CdTe thin-film photovoltaic cell Electric field El.
  • ZnO transparent conductive film
  • FIG. 11 The circuit principle of the electric field effect organic compound thin film photovoltaic cell unit is shown in FIG. 11 in FIG. 11 , wherein L3.1 is an organic compound thin film photovoltaic cell unit, and L3.2 is an electric field composed of two micro organic compound thin film photovoltaic cell sections connected in series.
  • IT0 transparent conductive film
  • the solution for completing the second invention task of the present application is as follows: a plurality of thin film photovoltaic electric field sources and a plurality of electric field electrode thin film photovoltaic cells, which form a plurality of electric field effect thin film photovoltaic cells, and are integrated into a large area electric field effect thin film photovoltaic system. solar panels.
  • the thin film photovoltaic cell comprises: a silicon-based thin film photovoltaic cell, a copper indium gallium selenide thin film photovoltaic cell (CuInl-XGaXSe2, abbreviated as CIGS), a cadmium telluride thin film photovoltaic cell (CdTe), and a compound compound, dye sensitization (DSSC) PV.
  • the thin film photovoltaic cell is provided with a transparent conductive film and a back electrode layer.
  • the transparent conductive film and the back electrode layer are output electrodes of the thin film photovoltaic cell (power output loop electrode);
  • An electric field bottom electrode is disposed under the back electrode layer, and an insulating layer is disposed between the electric field bottom electrode and the back electrode layer of the thin film photovoltaic cell body, and the insulating layer forms a thin film photovoltaic cell body, and the back electrode is electrically isolated from the electric field bottom electrode;
  • An external voltage source is disposed between the bottom electrode and the electric field surface electrode formed by the transparent conductive film, and the external voltage source may be a micro thin film photovoltaic electric field power source, and the transparent conductive film acts as an electric field surface electrode and an electric field bottom electrode constitutes an insulating electric field effect.
  • the utility model is characterized in that: the integrated electric field effect thin film photovoltaic panel is provided with a plurality of electric field effect thin film photovoltaic cell units, and each electric field effect thin film photovoltaic cell unit is electrically connected in series, and system integration is performed to form a large area electric field effect thin film photovoltaic panel structure device. ;
  • the electric field effect thin film photovoltaic cell and the electric field effect thin film photovoltaic cell unit described above are electrically connected in series, and the thin film layer is sequentially deposited on a large-area substrate material and is realized by laser etching.
  • the micro-thin film photovoltaic electric field power supply unit is a power supply source for the electric field effect thin film photovoltaic cell unit, and is directly formed at the two ends or single ends of the strip-shaped strip shape of the electric field effect thin film photovoltaic cell unit.
  • a plurality of micro-thin film photovoltaic cells are electrically connected in series to form a thin film photovoltaic cell electric field power source, and the thin film photovoltaic electric field power supply is correspondingly provided to the photovoltaic cell having the electric field electrode thin film to form an electric field effect thin film photovoltaic cell unit.
  • the plurality of micro-thin film photovoltaic electric field power sources in the plurality of electrically connected series field effect thin film photovoltaic cells are one-to-one correspondence Lie, that is to say, each electric field effect thin film photovoltaic cell itself corresponds to a micro thin film photovoltaic electric field power supply.
  • FIG. 1 is a schematic structural view of a conventional three-composite semiconductor and three amorphous silicon stacked thin film photovoltaic cells;
  • FIG. 2 is a schematic structural view of a field effect compound semiconductor and an amorphous silicon stacked thin film photovoltaic cell according to the present invention
  • FIG. 3A is a voltage-current comparison curve of a field effect thin film photovoltaic cell and an existing compound semiconductor thin film photovoltaic cell
  • FIG. 3B is a voltage-current comparison curve of a field effect amorphous silicon stacked thin film photovoltaic cell and an existing thin film photovoltaic cell
  • Figure 4 is a schematic structural view of a field effect thin film photovoltaic cell of the present invention
  • Figure 5 is a three-view view of the existing amorphous silicon thin film photovoltaic panel structure electrically connected in series with the internal battery cells;
  • Figure 6 is a cross-sectional view of the conventional amorphous silicon thin film photovoltaic panel structure taken along line B-B;
  • FIG. 7 is a three-view view of a conventional copper indium gallium selenide or cadmium telluride thin film photovoltaic panel structure electrically connected in series with an internal battery cell;
  • FIG. 8 is a cross-sectional view showing a conventional copper indium gallium selenide or cadmium telluride thin film photovoltaic panel structure and a BB cross section;
  • Figure 9 is a three view of the structure of the field effect amorphous silicon thin film photovoltaic panel of the present invention.
  • Figure 10 is a cross-sectional view of the B-B of the field effect amorphous silicon thin film photovoltaic panel structure of the present invention.
  • Figure 11 is a cross-sectional view showing the structure of the field effect amorphous silicon thin film photovoltaic panel of the present invention.
  • FIG. 12 is a series view of the internal battery of the field effect amorphous silicon thin film photovoltaic panel of the present invention
  • FIG. 13 is a view showing the electric field effect of the CIGS (CdTe) thin film photovoltaic panel structure
  • Figure 14 is a cross-sectional view of the B_B of the structure of the CIGS (CdTe) thin film photovoltaic panel;
  • Figure 15 is a cross-sectional view showing the electric field effect of a CIGS (CdTe) thin film photovoltaic panel structure
  • Figure 16 is a cross-sectional view of the internal battery of the field effect CIGS (CdTe) thin film photovoltaic panel of the present invention
  • Figure 17 is a three view of the structure of the electric field effect organic compound thin film photovoltaic panel of the present invention.
  • Figure 18 is a B-B cross-sectional view showing the structure of the field effect organic compound thin film photovoltaic panel of the present invention.
  • Figure 19 is a cross-sectional view along line A-A of the structure of the field effect organic compound thin film photovoltaic panel of the present invention.
  • the compound semiconductor CIGS field effect thin film photovoltaic cell structure is: transparent conductive film 1. 1-1, CdS layer 1. 2-2, CIGS layer 1. 3 -3, the back electrode 1. 4-4, the substrate 1. 5-5, the insulating film 1. 6-6, the electric field underlying electrode 1. 7-7, the electric field power supply VI 1. 8-8, the load resistor R.
  • the 1-4 and the back electrode 1. 4-4 is the negative electrode and the positive electrode of the photovoltaic cell output, and the transparent conductive film 1. 1-1 and the electric field underlying electrode 1. 7-7 is connected to the positive and negative electrodes of the electric field power supply VI, so that the transparent conductive film 1. 1-1 and the electric field bottom electrode
  • the compound semiconductor CdTe field effect thin film photovoltaic cell structure is composed of: transparent conductive film 2. 1-1, CdS layer 2. 2, CdTe layer 2 3-3, back electrode 2. 4-4, substrate 2. 5-5, insulating film 2. 6-6, electric field underlying electrode 2. 7-7, electric field power supply VI 2. 8-8, load resistance R composition.
  • 4-4 are the negative electrode and the positive electrode of the photovoltaic cell output, and the transparent conductive film 2. 1-1 and the electric field underlying electrode 2. 7-7 is connected to the positive and negative electrodes of the electric field power supply VI, so that the transparent conductive film 2. 1-1 and the electric field underlying electrode
  • the electric field underlying electrode 2. 7-7 is electrically isolated from the back electrode 2. 4_4 through the insulating film 2. 6_6.
  • the electric field power supply VI and the electric field effect thin film photovoltaic cell are also independent power sources.
  • Embodiment 3 Referring to Figure 2-C of Figure 2, the electric field effect amorphous silicon thin film photovoltaic cell structure is composed of: a transparent conductive film
  • the positive and negative electrodes of the electric field power supply VI are connected to the electric field underlying electrode 3. 6-6 and the transparent conductive film 3. 1-1, and an electric field 51 is formed inside the /-laminated structure 3. 2-2, the electric field E1 and the self-built electric field. The same direction.
  • the electric field underlying electrode 3. 6-6 is electrically isolated from the back electrode of the amorphous photovoltaic cell 3. 3-3.
  • Embodiment 4 Referring to FIG. 4, the circuit principle of the electric field effect amorphous silicon laminated thin film photovoltaic cell unit is shown in FIG. 4A, wherein LI.1 is an amorphous silicon laminated thin film photovoltaic cell unit, L1. 2 is 3.
  • the electric field power supply negative electrode V f is connected to the amorphous silicon thin film photovoltaic cell unit V a through the transparent conductive film (TC0), in the amorphous silicon thin film photovoltaic An electric field 6 is formed inside the battery unit.
  • L2.1 is a CIGS or CdTe thin film photovoltaic cell unit
  • L2. 2 is a series of two micro CIGS or CdTe thin film photovoltaic cell segments.
  • V 3 is connected to the electric field the negative power supply V g is connected to the CIGS or CdTe thin-film photovoltaic cell V d via a transparent conductive film (ZnO), formed in the CIGS inside or CdTe thin-film photovoltaic cell Electric field El.
  • ZnO transparent conductive film
  • the circuit principle of the electric field effect organic compound thin film photovoltaic cell unit is shown in Fig. 4C of Fig. 4, wherein L3.1 is an organic compound thin film photovoltaic cell unit, and L3.2 is an electric field composed of two micro organic compound thin film photovoltaic cell sections connected in series.
  • IT0 transparent conductive film
  • the schematic diagram of the electric field effect thin film photovoltaic cell unit circuit diagram includes the circuit principle of the electric field effect amorphous silicon thin film photovoltaic cell unit, the circuit principle of the electric field effect CIGS or CdTe thin film photovoltaic cell unit, and the circuit principle of the electric field effect organic compound thin film photovoltaic cell unit. Three-part form.
  • Embodiment 5 Referring to FIG. 9, FIG. 10, and FIG. 11, the structure of the field effect amorphous silicon thin film photovoltaic panel of the present invention is composed of: a plurality of series electric field effect amorphous silicon thin film photovoltaic cell units Cl.
  • Figure c-1 Electric field effect single junction cell structure consists of transparent conductive film (TC0) 1-1, pin ⁇ (a-Si:H) 1-2, back electrode 1-3, insulating film layer 1-4, electric field
  • the electrode layer 1-5 is composed of.
  • Figure c-2 The electric field effect double junction cell structure consists of a transparent conductive film (TC0) 2-1, pin ⁇ (a-Si:H) 2-2, p-i- n junction (a-SiGe:H) 2 -3.
  • the back electrode 2-4, the insulating film layer 2-5, and the electric field electrode layer 2-6 are composed.
  • Figure c-3 Electric field effect double-layer single-cell battery structure is made of transparent conductive film (TC0) 3-1, - - -
  • Figure 11 is a cross-sectional view of an electric field effect amorphous silicon thin film photovoltaic cell in an electric field effect amorphous silicon thin film photovoltaic panel.
  • the electric field power source C1.7 and the electric field power source C1.8 are respectively composed of three amorphous silicon thin film photovoltaic cell sections Ba, Bb, Be connected in series with Bd, Be, Bf.
  • the electric field power supply C1.7 is ⁇ 3 ⁇ 4 (+) connection
  • the electric field electrode layer 3-5, ⁇ is connected to the transparent conductive film!!!)
  • the electric field power source C1.8 V Bf (+) is connected to the electric field electrode layer 3-5, and V BdH is connected to the transparent conductive film (TC0).
  • the electric field power source C1.7 and the electric field power source C1.8 are connected in parallel to the corresponding electric field effect amorphous silicon thin film photovoltaic cell unit.
  • FIG. 12b are schematic diagrams showing the serial connection of the internal cells of the field effect amorphous silicon thin film photovoltaic panel of the present invention.
  • FIG. 12b the main features of the electric field effect amorphous silicon thin film photovoltaic cell unit are: An electric field power source in which a plurality of micro-thin film photovoltaic cells are connected in series and a single photovoltaic cell having an electric field electrode thin film, and an electric field power source connected in series with a plurality of micro-thin film photovoltaic cells can be fabricated at both ends of a narrow-band long strip-shaped electric field electrode thin film photovoltaic cell or Single-ended, this embodiment is at both ends of an electric field electrode thin film photovoltaic cell.
  • the electric field effect amorphous silicon thin film photovoltaic cell unit and the conventional conventional amorphous silicon thin film photovoltaic cell unit have obvious differences in battery structure and circuit principle, and the existing amorphous silicon thin film photovoltaic cell unit is only A simple thin film photovoltaic cell.
  • the main features of the electric field effect amorphous silicon thin film photovoltaic panel are: electrical series integration by a plurality of electric field effect amorphous silicon thin film photovoltaic cells.
  • Embodiment 6 Referring to Figure 13, Figure 14, and Figure 15, the electric field effect CIGS (CdTe) thin film photovoltaic panel structure of the present invention is composed of: a plurality of series electric field effect CIGS (CdTe) thin film photovoltaic cells Dl 1. Carrier D1. 2. Battery busbar (positive battery positive pole) D1. 3. Battery busbar (series battery negative pole) D1. 4. Laser notch D1. 5. Adjacent battery unit positive and negative contact surface D1. The electric field effect CIGS (CdTe) thin film photovoltaic cell Dl. 1, is the electric field effect CIGS or CdTe. The electric field effect CIGS (CdTe) thin film photovoltaic cell Dl. 1, is the electric field effect CIGS (CdTe) thin film photovoltaic cell D1. The battery structure is shown by Figure D in Figure 14.
  • Figure 14 is a cross-sectional view of an electric field effect CIGS (CdTe) thin film photovoltaic cell in an electric field effect CIGS (CdTe) thin film photovoltaic panel.
  • the electric field effect CIGS battery structure is composed of a back electrode (M0) D2. 1, a junction (n-ZnS: P- CIGS) D2. 2. a transparent conductive film (ZnO) D2. 3, insulation The film layer D2. 4, the electric field electrode layer D2.5.
  • the buffer layer uses zinc sulfide (n-ZnS) and the absorption layer is (p_CIGS), avoiding the use of traditional toxic cadmium sulfide (CdS). The impact of battery production and use on people and the environment.
  • Figure 15 The electric field effect of the electric field effect CIGS or CdTe thin film photovoltaic cell in the electric field power supply D1. 7, the electric field power supply D1. 8, respectively, by two CIGS or CdTe thin film photovoltaic cell sections Da, Db in series (Dc battery segment is idle, only It functions as an electrical bridge.) (Dd battery segment is an idle segment, which only serves as an electrical bridge.) The battery segments De and Df are connected in series.
  • V DaH is connected to the electric field electrode layer D2 5, (+) is connected to the transparent conductive film (ZnO); the electric field power supply C1. 8 V DfH is connected to the electric field electrode layer D2. 5, V Dd (+) is connected to the transparent conductive film (Zn0).
  • the electric field power source Dl. 7 is connected in parallel with the electric field power source D1.8. The corresponding electric field effect CIGS or CdTe thin film photovoltaic cell unit.
  • 16a, 16b is a schematic diagram showing the serial connection of the internal cells of the electric field effect CIGS or CdTe thin film photovoltaic panel of the present invention
  • Fig. 16b shows that the main features of the electric field effect CIGS or CdTe thin film photovoltaic cell are:
  • the electric field power supply connected in series with the micro-thin film photovoltaic cell is combined with a single photovoltaic cell having an electric field electrode thin film, and the electric field power source connected in series with the plurality of micro-thin film photovoltaic cells can be fabricated at the two ends or single ends of the narrow-band long strip-shaped electric field electrode thin film photovoltaic cell.
  • an electric field power source in which two micro-thin film photovoltaic cells are connected in series is used at both ends of the electric field electrode thin film photovoltaic cell.
  • the electric field effect CIGS or CdTe thin film photovoltaic cell unit is different from the existing conventional CIGS or CdTe thin film photovoltaic cell unit in terms of battery structure and circuit principle.
  • the existing CIGS or CdTe thin film photovoltaic cell unit is only a simple thin film photovoltaic cell.
  • the main features of the electric field effect CIGS or CdTe thin film photovoltaic panels are: multiple electric field effects CIGS or CdTe thin film photovoltaic cells are electrically connected in series.
  • the field effect organic compound thin film photovoltaic panel structure of the present invention is composed of: a plurality of series electric field effect organic compound thin film photovoltaic cells EL. l, a carrier El. 2, battery bus (positive battery positive) E1. 3, battery bus (series battery negative) E1. 4, intermediate connector El. 5, adjacent battery unit positive and negative contact surface E1. 6, series electric field power supply E1 7.
  • the electric field effect power supply E1. 8, the adjacent electric field battery segment positive and negative contact surface E1. 9 composition; wherein the electric field effect organic compound thin film photovoltaic cell unit E1. 1 , electric field effect organic / inorganic mixed battery or dye can be used
  • the sensitized (DSSC) battery structure is shown by e_l, e_2 in Figure 18.
  • Fig. 18 is a diagram e-1:
  • the electric field effect organic/inorganic hybrid battery structure is composed of a back electrode el. 1, a heterogeneous "junction (Ti02) el. 2, a composite heterojunction ⁇ junction (CuPc, P3HT) el.
  • the transparent conductive film (ITO) el. 4 the insulating film layer el. 5, the electric field electrode layer el.
  • the electric field effect of the organic/inorganic hybrid battery structure is heterogeneous.
  • the junction 61.2 is made of inorganic titanium dioxide ⁇ 02; composite heterogeneous; The junction (CuPc, P3HT) el.
  • the solar radiation surface is a PET (polyethylene terephthalate) substrate or a glass substrate.
  • the carrier may also be a PET (polyethylene terephthalate) substrate or other organic polymeric material.
  • Figure 18, Figure e-2 Electric field effect dye sensitization (DSSC)
  • the battery structure is composed of the back electrode e2. 1, the composite sensitizing layer (Ti02+Dye) e2. 2.
  • the transparent conductive film (ITO) The composition of the insulating film layer e2. 5, the electric field electrode layer e2.
  • the composite sensitizing layer (Ti02+Dye) e2. 2 is composited with inorganic titanium dioxide TiO 2 and thiocyanate red dye (N3) agent; electrolyte layer e2.
  • the solar radiation surface is made of PET (polyethylene terephthalate) substrate or glass substrate, and the carrier can also be PET (polyethylene terephthalate) substrate or other.
  • Organic polymer material can be organic solid Electrolyte P3HT or sol-gel electrolyte; and the solar radiation surface is made of PET (polyethylene terephthalate) substrate or glass substrate, and the carrier can also be PET (polyethylene terephthalate) substrate or other.
  • FIG 19 The electric field effect of the electric field effect organic compound thin film photovoltaic cell E1. 7, electric field power supply E1. 8, three organic compound thin film photovoltaic cell sections Ea, Eb, Ec in series with the battery segments Ed, Ee, Ef in series composition.
  • the voltage of the electric field power supply E1.7 is V E . (+) -V EaH ;
  • the voltage of the electric field power supply El. 8 is V Ed(+) - V Ef H ;
  • the electric field power supply El. 7 V EaH is connected to the electric field electrode layer E2. 5, V E . (+) Connect the transparent conductive film (IT0); V Ef H of the electric field power supply E1. 8 is connected to the electric field electrode layer D2. 5, V Ed (+) is connected to the transparent conductive film ( ⁇ 0).
  • the electric field power source El. 7 is connected in parallel with the electric field power source El. 8 to correspond to the electric field effect organic compound thin film photovoltaic cell unit.
  • the internal electrical connection of the electric field effect organic compound thin film photovoltaic panel of this embodiment is the same as that of the embodiments 5 and 6.

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Description

外加电场效应薄膜光伏电池及与电场源集成的光伏电池板 技术领域
本发明涉及一种光伏电池, 具体涉及一种外加电源提供给具有电场电极的薄膜光伏电池。 所说的外加电源提供给具有电场电极的薄膜光伏电池, 是将外加电源与电场电极的薄膜光伏 电池组合集成, 并形成一长条窄带状的电场效应薄膜光伏电池, 简称——长条带状电池。 长 条窄带状电场效应薄膜光伏电池中分两部分, 一部分为外加电源, 一部分是带电场电极的薄 膜光伏电池; 其中外加电源是在该长条带状电池两端分别有一很小区域独立制作多个微型薄 膜光伏电池并电气串联, 并在该长条带电池两端分别形成两个电场电源, 该两个电场电源是 该中间长段电场电极的薄膜光伏电池的外加电源。 也就是说, 长条窄带状电场效应薄膜光伏 电池本身有电场电源与电场电极的薄膜光伏电池的组合, 并且单一长条窄带状电场效应薄膜 光伏电池称之为——电场效应薄膜光伏电池单元。
电场效应薄膜光伏电池板, 是由许多长条窄带状的电场效应薄膜光伏电池单元相互栅状 密集排列而成。
而本发明涉及的电场效应薄膜光伏电池单元, 单结光伏电池输出电压小于 2V。 大面积的 电场效应薄膜光伏电池板内部结构中是由多个独立的电场效应薄膜光伏电池单元相互栅状密 集排列, 并且每个电场效应薄膜光伏电池单元电气串联连接, 制作实现一种输出高电压、 高 效率的电场效应薄膜光伏电池板结构装置。
背景技术
当前已公知的薄膜光伏电池的体系包括: 硅基、 铜铟镓硒 (CIGS)、 碲化镉 (CdTe) 以及 有机化合物、染料敏化(DSSC)光伏电池。这些光伏电池的基本结构, 都是采用 p型半导体层、 n型半导体层所组成具有 pn叠层特征, 以及非晶 叠层特征的薄膜光伏电池。 当前公知的非晶/? - 叠层特征的薄膜光伏电池板结构是采用等离子增强化学气相沉 积(PECVD), 将薄膜层依次沉积在大面积衬底玻璃上, 并用激光刻蚀实现电池单元内部串联。 公知的硅基薄膜光伏电池板结构三视图参看附图 5, 其中 B-B剖面图是多个硅基薄膜光伏电池 单元结构与电气串联连接图, A-A剖面图是一个硅基薄膜光伏电池单元结构图, 附图 6及附图 al、 附图 a2、 附图 a3 是 B_B剖面图的放大图与单结、 双结、 三结薄膜电池结构图。
铜铟镓硒 (CIGS) 或碲化镉 (CdTe) 薄膜光伏电池板是采用真空蒸发、 磁控溅射等, 将 薄膜层依次沉积在大面积衬底载体上, 并用激光刻蚀实现电池单元内部串联。 公知的 CIGS或 CdTe薄膜光伏电池板结构三视图参看附图 7, 其中 B-B剖面图是多个 CIGS或 CdTe薄膜光伏电池 单元结构与电气串联连接图, A-A剖面图是一个 CIGS或 CdTe薄膜光伏电池单元结构图, 附图 8 及附图 b是 B-B剖面图的放大图与单结 CIGS或 CdTe薄膜电池结构图。
图 5、 图 6: 非晶硅薄膜光伏电池板结构的三视图; 非晶硅薄膜光伏电池板结构是由多个 非晶硅薄膜光伏电池单元 A1.1、 载体 A1.2、 电池母线 (串联电池正极) A1.3、 电池母线 (串 联电池负极) A1.4、 激光刻槽 A1.5、 相邻电池单元正负电极串联接触面 A1.6组成。 特别指出 的是:现有的大面积非晶硅薄膜光伏电池板内部结构中非晶硅薄膜光伏电池单元 Al.1的外形, 是一种窄带条状的、 单一功能的独立光伏电池条, 在附图 5中 A-A剖面图可以得知。 大面积非 晶硅薄膜光伏电池板内部结构中是由多个独立的、 单一功能的、 窄带条状的光伏电池单元电 气串联集成, 组成一种输出高电压薄膜光伏电池板结构装置。
图 6中附图 al、 附图 a2、 附图 a3是非晶硅薄膜光伏电池单元结构, 可以选择单结电池结构、 双结电池结构或三结电池结构。 其中附图 al: 单结电池结构是由透明导电膜 (TC0) 1.1、 — — «单结 (a-Si:H) 1.2、 背面电极层 1.3所组成; 附图 a2: 双结电池结构是由透明导电 膜 (TC0) 2.1、 p-i-n^ (a- Si:H) 2.2、 p-i-n^ (a- SiGe:H) 2.3、 背面电极层 2· 4所 组成; 附图 a3:三结电池结构是由透明导电膜(TC0) 3.1、 — — «结(&-51:11)3.2、 ρ-ί-η 结 (a- SiGe:H) 3.3 、 p-i-n^ ( c-SiGe:H) 3.4、 背面电极层 3· 5所组成。 图 7、图 8:铜铟镓硒(CIGS)或碲化镉(CdTe)薄膜光伏电池板结构的三视图, CIGS (CdTe) 薄膜光伏电池板结构是由多个 CIGS (CdTe)薄膜光伏电池单元 Bl.1、载体 Bl.2、 电池母线(串 联电池正极) B1.3、 电池母线 (串联电池负极) B1.4、 激光刻槽 B1.5、 相邻电池单元正负电 极串联接触面 B1.6组成。 特别指出的是: 现有的大面积铜铟镓硒 (CIGS) 或碲化镉 (CdTe) 薄膜光伏电池板内部结构中光伏电池单元 B1.1的外形, 是一种窄带条状的、 单一功能的独立 光伏电池条, 在附图 7中 A-A剖面图可以得知。 大面积铜铟镓硒 (CIGS) 或碲化镉 (CdTe) 薄 膜光伏电池板内部结构中是由多个独立的、 单一功能的、 窄带条状的光伏电池单元电气串联 集成, 组成一种输出高电压薄膜光伏电池板结构装置。
图 8中附图 b: CIGS (CdTe) 薄膜光伏电池结构是由背面电极层 (MO) B2.1、 缓冲层与吸 收层 (np结) B2.2、 透明导电膜 (ZnO) B2.3所组成; 其中 CIGS薄膜光伏电池缓冲层为 CdS, 吸收层为 CIGS; CdTe薄膜光伏电池缓冲层为 CdS, 吸收层为 CdTe。
发明内容 为了提高薄膜光伏电池转换效率, 本第一个发明目的, 是提供一种电场效应的薄膜光伏 电池, 这是一种由外加电源提供给具有电场电极的薄膜光伏电池, 形成电场效应的薄膜光伏 电池结构, 促成一个增强与稳定电池内自建电场 ^, 提高薄膜光伏电池的开路电压与最大 输出功 , 形成转换效率较高的电场效应薄膜光伏电池结构。
本发明是在中国 200910182141. 9号发明专利申请: "外加电场效应光伏电池" 的基础上, 通过外部电源为电场电极的薄膜光伏电池体系中非晶硅基、 化合物半导体铜铟镓硒 (CIGS)、 碲化镉 (CdTe ) 以及掺杂聚合物材料的光伏电池, 提供一个调控电池内电场, 该电场效应可 以增强薄膜光伏电池 pn结区载流子扩散自建电场,提高光伏电池的最大输出功率 ^χ,形成 附加电场效应功能的薄膜光伏电池。
本申请的第 2个发明目的是提供一种由多个串联的微型薄膜光伏电池, 组成微型薄膜光 伏电场电源单元。微型薄膜光伏电场电源单元是电场电极薄膜光伏电池单元的外部供电电源, 而微型薄膜光伏电场电源单元与电场电极薄膜光伏电池单元进行集成复合, 形成独立的、 高 效率的、 多电池形式的电场效应薄膜光伏电池单元。 也就是说, 电场效应薄膜光伏电池单元 本身自带有微型薄膜光伏电场电源单元。 中国 200910035923. X 号发明专利申请提供了一种 "外加电源提供电场效应的薄膜光伏电池 " ( 即上文所述技术方案),在此技术方案基础上, 本申请第 2个发明目的是进一步提出一种大面积电场效应薄膜光伏电池板的实现方法。
参看附图 1, 为公知的薄膜光伏电池结构图, 图 1A为 CIGS薄膜光伏电池结构、 图 1B为 CdTe薄膜光伏电池结构、 图 1-C非晶硅叠层薄膜光伏电池结构。 其中 1. 1、 1. 2、 1. 3为透明 导电膜 T0C; 1. 2、 2. 2为 n型半导体; 1. 3、 2. 3为 p型半导体; 3. 2为叠层非晶硅结; 1. 4、 2. 4为背面电极; 3. 3为背面电极。
参看附图 2为外加电源提供电场电极的薄膜光伏电池, 图 2-A为电场效应 CIGS薄膜光伏 电池结构、 图 1-B为电场效应 CdTe薄膜光伏电池结构、 图 1-C电场效应非晶硅叠层薄膜光伏 电池结构。其中 1. 1-1、 2. 1-1、 3. 1-1为透明导电膜 T0C; 1. 2_2、 2. 2-2为 n型半导体; 1. 3_3、
2. 3-33为 p型半导体; 3. 2-2为叠层非晶硅结; 1. 4-4、 2. 4-4为背面电极; 3. 3_3为背面电 极; 1. 6-6、 2. 6-6、 3. 5-5为绝缘层膜; 1. 7-7、 2. 7-7、 3. 6. -6为电场电极; 1. 8-8、 2. 8-8、
3. 7-7为外加电源 VI。
一个电场效应薄膜光伏电池单元外形结构形状是长条窄带状的、 内含多个微型薄膜光伏 电池串联的电场电源与电场电极薄膜光伏电池复合组成的电场效应薄膜光伏电单元, 电场效 应薄膜光伏电池单元, 单结光伏输出电压小于 2V。 大面积的电场效应薄膜光伏电池板内部结构中是由多个独立的电场效应薄膜光伏电池单 元相互栅状密集排列, 并电气串联集成, 制作组成一种输出高电压、 高效率的电场效应薄膜 光伏电池板结构装置。
实现本申请第一个发明目的技术方案是: 一种外加电场效应薄膜光伏电池, 所述的电场 电极的薄膜光伏电池包括: 硅基薄膜光伏电池、 铜铟镓硒薄膜光伏电池(CuInl-XGaXSe2, 简 写为 CIGS)、 碲化镉薄膜光伏电池 (CdTe ) 以及掺杂聚合物材料的薄膜光伏电池, 该电场电 极的薄膜光伏电池设有透明导电膜及背面电极层, 所述的透明导电膜与背面电极层为薄膜光 伏电池的输出电极(电源输出回路电极); 其特征在于, 在所述的背面电极层下面设有电场底 层电极, 该电场底层电极与薄膜光伏电池本体中背面电极层之间设有绝缘层, 该绝缘层形成 薄膜光伏电池本体中背面电极与电场底层电极电隔离; 在电场底层电极与所述透明导电膜之 间设有外加电压源 VI, 而透明导电膜作为电场表层电极与电场底层电极是构成绝缘电场效应 的输入电极。
所述的 "电场底层电极与所述透明导电膜构成的电场表层电极之间设有外加电压源
VI " , 该外加电压源 VI的电压为该薄膜光伏电池输出电压的 1. 5 倍; 一般在 2倍左右。 构 成外加电场电源。
该薄膜光伏电池本体上面的透明导电膜同时作为薄膜光伏电池的输出电极, 也作为外加 电场的表层电极。 当外加电压源 VI对应连接到电场电极的薄膜光伏电池时, 称之为电场效应 薄膜光伏电池。
该外加电压源 VI的正极相对应电场效应薄膜光伏电池的 n型半导体, 负极相对应电场效 应薄膜光伏电池的 P型半导体的电场效应电极连接。 即, 该外加电压源 VI的正极, 接所述电 场效应的铜铟镓硒薄膜光伏电池(CIGS)、 碲化镉薄膜光伏电池(CdTe ) 电场表层电极(透明 导电膜), 该外加电压源的负极, 接所述的铜铟镓硒薄膜光伏电池 (CIGS)、 碲化镉薄膜光伏 电池(CdTe ) 电场底层电极; 该外加电压源 VI的正极, 接所述电场效应的非晶硅薄膜光伏电 池的电场底层电极, 该外加电压源的负极, 接所述电场效应的非晶硅薄膜光伏电池的透明导 电膜构成的电场表层电极。
本发明通过外部电源 VI接入电场电极的薄膜光伏电池, 当单结光伏电池输出开路电压为 V0C, 外加电源 VI的电压范围为 Vl ^VOC; 现有的单结 (非电场效应) 薄膜光伏电池标准输 出开路电压 V0C, 化合物半导体薄膜光伏电池在 0. 6V V0C 1. 0V, 非晶硅叠层薄膜光伏电池 在 0. 8V V0C 1. 4V; 其中电源电压 VI的大小与电场底层电极与背面电极层之间的绝缘层厚 度有关, 厚度越大, 电压越高, 一般绝缘层总厚度要求在 10微米以下。 其电场效应薄膜光伏电池特征是, 电场效应薄膜光伏电池中化合物半导体薄膜光伏电池 的透明导电膜与电场底层电极,分别连接直流电源 VI的正极与负极,并形成电场 1,电场 1 方向与自建电场 相同。 电场效应薄膜光伏电池中非晶硅薄膜光伏电池的透明导电膜与电 场底层电极, 分别连接直流电源 VI的负极与正极, 电场底层电极与透明导电膜之间 -《 叠层结构形成电场 1, 电场 1方向与自建电场 相同。 在电场效应薄膜光伏电池结构中, 由于电场 1方向与光伏电池的 pn结区电场 方向一 致, „ρ加强与稳定,增强正负载流子的分离度,减少了正负载流子的复合作用。电场 同时降低了 pn结反向饱和电流, 能够提高电池的开路电压 另外, 电场 1对 p区少子 -电子有阻挡和反射作用, 既减少了背表面之复合作用, 同时电 场 1能调整多晶体晶粒间界势垒方向, 提高载流子迁移, 降低晶粒间界复合正负载流子, 又 提高了 pn结对光生少子的收集几率。所以也就能提高光伏电池的短路电流与开路电压, 提高 光伏电池最大输出功率 ^χ。 P max = FFxVn OrCL SrC
^为光伏电池的填充因子。
参看附图 3为公知的薄膜光伏电池与本发明的电场效应的薄膜电池, 在标准光照下电压 与电流输出曲线图。
本发明的优化方案有:
具体实现产品形式的电场效应薄膜光伏电池板结构的专利是本发明专利的重点。
电场效应非晶硅薄膜光伏电池单元电路原理由附图 4的图 A所示, 其中 LI. 1为非晶硅叠层 薄膜光伏电池单元、 L1. 2为 3个微型非晶硅薄膜光伏电池段串联组成的电场电源、 L1. 3为电场 电极层、 L1. 4为绝缘层; 电场电源是由 3个微型非晶硅薄膜光伏电池段串联, 电压为 Ve-Vf=Vef«3Vab,电场电源正极 与电场电极层 L1. 3连接,电场电源负极 Vf通过透明导电膜(TC0) 与非晶硅薄膜光伏电池单元 Va连接, 在非晶硅薄膜光伏电池单元内部形成电场 E。
电场效应 CIGS或 CdTe薄膜光伏电池单元电路原理由附图 4中的图 B所示, L2. 1为 CIGS或 CdTe薄膜光伏电池单元、 L2. 2为 2个微型 CIGS或 CdTe薄膜光伏电池段串联组成的电场电源、 L2. 3为电场电极层、 L2. 4为绝缘层; 电场电源是由 2个微型 CIGS或 CdTe薄膜光伏电池段串联, 电压为 Vg-Vh=Vgh«2V。d, 电场电源正极 Vh与电场电极层 L2. 3连接, 电场电源负极 Vg通过透明导电 膜 (ZnO) 与 CIGS或 CdTe薄膜光伏电池单元 Vd连接, 在 CIGS或 CdTe薄膜光伏电池单元内部形成 电场 El。
电场效应有机化合物薄膜光伏电池单元电路原理由附图 11中的图 C所示, 其中 L3. 1为有机 化合物薄膜光伏电池单元、 L3. 2为 2个微型有机化合物薄膜光伏电池段串联组成的电场电源、 L3. 3为电场电极层、 L3. 4为绝缘层; 电场电源是由 2个微型有机化合物薄膜光伏电池段串联, 电压为 ^-^=^«2 , 电场电源正极 与电场电极层 L3. 3连接, 电场电源负极 通过透明导电 膜 (IT0) 与有机化合物薄膜光伏电池单元 Vn连接, 在有机化合物薄膜光伏电池单元内部形成 电场 E2。
完成本申请第 2个发明任务的方案是: 多个薄膜光伏电场源与多个电场电极薄膜光伏电池 单元, 组成多个电场效应薄膜光伏电池单元, 并系统集成制作成大面积的电场效应薄膜光伏 电池板。 所述的薄膜光伏电池包括: 硅基薄膜光伏电池、 铜铟镓硒薄膜光伏电池 (CuInl-XGaXSe2,简写为 CIGS)、碲化镉薄膜光伏电池(CdTe)以及机化合物、染料敏化(DSSC) 光伏电池。 该薄膜光伏电池设有透明导电膜及背面电极层, 所述的电场电极薄膜光伏电池单 元中, 透明导电膜与背面电极层为薄膜光伏电池的输出电极 (电源输出回路电极) ; 在所述 的背面电极层下面设有电场底层电极, 该电场底层电极与薄膜光伏电池本体中背面电极层之 间设有绝缘层, 该绝缘层形成薄膜光伏电池本体中背面电极与电场底层电极电隔离; 在电场 底层电极与所述透明导电膜构成的电场表层电极之间设有外加电压源, 外加电压源可以是微 型薄膜光伏电场电源, 而透明导电膜作为电场表层电极与电场底层电极是构成绝缘电场效应 的输入电极;
其特征在于, 该集成电场效应薄膜光伏电池板中设有多个电场效应薄膜光伏电池单元, 各个电场效应薄膜光伏电池单元之间电气串联, 进行系统集成形成大面积电场效应薄膜光伏 电池板结构装置;
以上所述的电场效应薄膜光伏电池及各个电场效应薄膜光伏电池单元之间电气串联, 均 是采用: 将薄膜层依次沉积在大面积衬底材料上, 并用激光刻蚀实现的。
所述的微型薄膜光伏电场电源单元是电场效应薄膜光伏电池单元的供电电源, 而且是直 接制作在电场效应薄膜光伏电池单元外形结构长条窄带状的两端或单端。
采用多个微型薄膜光伏电池电气串联组成薄膜光伏电池电场电源, 并且该薄膜光伏电场 电源对应提供给具有电场电极薄膜光伏电池单元, 形成电场效应薄膜光伏电池单元。 所述的 多个电气串联的电场效应薄膜光伏电池单元中多个微型薄膜光伏电场电源是一一对应相互独 立的, 也就是说每个电场效应薄膜光伏电池单元自身对应有微型薄膜光伏电场电源。
附图说明
图 1为现有三种化合物半导体与三种非晶硅叠层薄膜光伏电池结构原理图;
图 2为本发明电场效应化合物半导体与非晶硅叠层薄膜光伏电池结构原理图;
图 3A 为电场效应薄膜光伏电池与现有的化合物半导体薄膜光伏电池电压-电流对比曲线 图;图 3B为电场效应非晶硅叠层薄膜光伏电池与现有的薄膜光伏电池电压 -电流对比曲线图; 图 4为本发明电场效应薄膜光伏电池结构原理图;
图 5现有的非晶硅薄膜光伏电池板结构与内部电池单元电气串联的三视图;
图 6现有的非晶硅薄膜光伏电池板结构的 B-B剖视图;
图 7现有的铜铟镓硒或碲化镉薄膜光伏电池板结构与内部电池单元电气串联的三视图; 图 8现有的铜铟镓硒或碲化镉薄膜光伏电池板结构及 B-B剖视图;
图 9本发明电场效应非晶硅薄膜光伏电池板结构的三视图;
图 10本发明电场效应非晶硅薄膜光伏电池板结构的 B-B剖视图;
图 11本发明电场效应非晶硅薄膜光伏电池板结构的 A-A剖视图;
图 12中图 12a、 12b本发明电场效应非晶硅薄膜光伏电池板内部电池串联形式图; 图 13明电场效应 CIGS (CdTe) 薄膜光伏电池板结构的三视图;
图 14发明电场效应 CIGS (CdTe) 薄膜光伏电池板结构的 B_B剖视图;
图 15发明电场效应 CIGS (CdTe) 薄膜光伏电池板结构的 A_A剖视图;
图 16中图 16a、 16b本发明电场效应 CIGS (CdTe)薄膜光伏电池板内部电池串联形式图; 图 17本发明电场效应有机化合物薄膜光伏电池板结构的三视图;
图 18本发明电场效应有机化合物薄膜光伏电池板结构的 B-B剖视图;
图 19本发明电场效应有机化合物薄膜光伏电池板结构的 A-A剖视图。
具体实施方式
实施例 1, 参照附图 2中图 2-A所示, 化合物半导体 CIGS电场效应薄膜光伏电池结构是由: 透明导电膜 1. 1-1、 CdS层 1. 2-2、 CIGS层 1. 3-3、 背面电极 1. 4-4、 基板 1. 5-5、 绝缘膜 1. 6-6、 电场底层电极 1. 7-7、 电场电源 VI 1. 8-8、 负载电阻 R所组成。 电场效应薄膜光伏电池结构中, 透明导电膜 1. 1-1与背面电极 1. 4-4是光伏电池输出的负电极与正电极, 而透明导电膜 1. 1-1 与电场底层电极 1. 7-7连接电场电源 VI的正极与负极, 使透明导电膜 1. 1-1与电场底层电极
1. 7-7之间形成电场 £1。其中电场底层电极 1. 7-7是通过绝缘膜 1. 6-6与背面电极 1. 4_4进行电 隔离。 而电场电源 VI与电场效应薄膜光伏电池也是相互独立的电源。 实施例 2, 参照附图 2中图 2-B所示所示, 化合物半导体 CdTe电场效应薄膜光伏电池结构是 由:透明导电膜 2. 1-1、 CdS层 2. 2-2、 CdTe层 2. 3-3、背面电极 2. 4-4、基板 2. 5-5、绝缘膜 2. 6-6、 电场底层电极 2. 7-7、 电场电源 VI 2. 8-8、 负载电阻 R所组成。 电场效应薄膜光伏电池结构中, 透明导电膜 2. 1-1与背面电极 2. 4-4是光伏电池输出的负电极与正电极, 而透明导电膜 2. 1-1 与电场底层电极 2. 7-7连接电场电源 VI的正极与负极, 使透明导电膜 2. 1-1与电场底层电极
2. 7-7之间形成电场 1。其中电场底层电极 2. 7-7是通过绝缘膜 2. 6_6与背面电极 2. 4_4进行电 隔离。 而电场电源 VI与电场效应薄膜光伏电池也是相互独立的电源。
实施例 3, 参照附图 2中图 2-C所示, 电场效应非晶硅薄膜光伏电池结构是由: 透明导电膜
3. 1-1、 /?— — «叠层结构3. 2-2、 背面电极 3. 3-3、 基板 3. 4_4、 绝缘层 3. 5_5、 电场底层电极
3. 6-6、 电场电源 VI 3. 7-7、 负载电阻 R所组成。 其中电场电源 VI的正、 负极连接电场底层电 极 3. 6-6与透明导电膜 3. 1-1, 并在/ «叠层结构 3. 2-2内部形成电场51, 电场 E1与自建电 场 方向相同。 而且电场底层电极 3. 6-6与非晶光伏电池背面电极 3. 3-3电隔离。
实施例 4, 参照附图 4所示, 电场效应非晶硅叠层薄膜光伏电池单元电路原理由图 4A所示, 其中 LI. 1为非晶硅叠层薄膜光伏电池单元、 L1. 2为 3个微型非晶硅薄膜光伏电池段串联组成的 电场电源、 L1. 3为电场电极层、 L1. 4为绝缘层; 电场电源是由 3个微型非晶硅薄膜光伏电池段 串联, 电压为 -Vf=Vrf«3Vab, 电场电源正极 与电场电极层 L1. 3连接, 电场电源负极 Vf通过透 明导电膜 (TC0) 与非晶硅薄膜光伏电池单元 Va连接, 在非晶硅薄膜光伏电池单元内部形成电 场6。
电场效应 CIGS或 CdTe薄膜光伏电池单元电路原理由附图 4中的图 4B所示, L2. 1为 CIGS或 CdTe薄膜光伏电池单元、 L2. 2为 2个微型 CIGS或 CdTe薄膜光伏电池段串联组成的电场电源、 L2. 3为电场电极层、 L2. 4为绝缘层; 电场电源是由 2个微型 CIGS或 CdTe薄膜光伏电池段串联, 电压为 Vg-Vh=Vgh 2V。d, 电场电源正极 Vh与电场电极层 L2. 3连接, 电场电源负极 Vg通过透明导电 膜 (ZnO) 与 CIGS或 CdTe薄膜光伏电池单元 Vd连接, 在 CIGS或 CdTe薄膜光伏电池单元内部形成 电场 El。
电场效应有机化合物薄膜光伏电池单元电路原理由附图 4中的图 4C所示, 其中 L3. 1为有机 化合物薄膜光伏电池单元、 L3. 2为 2个微型有机化合物薄膜光伏电池段串联组成的电场电源、 L3. 3为电场电极层、 L3. 4为绝缘层; 电场电源是由 2个微型有机化合物薄膜光伏电池段串联, 电压为 ^-^=^«2 , 电场电源正极 与电场电极层 L3. 3连接, 电场电源负极 通过透明导电 膜 (IT0) 与有机化合物薄膜光伏电池单元 Vn连接, 在有机化合物薄膜光伏电池单元内部形成 电场 E2。
本发明实施例电场效应薄膜光伏电池单元电路原理图是包括由电场效应非晶硅薄膜光伏 电池单元电路原理、 电场效应 CIGS或 CdTe薄膜光伏电池单元电路原理、 电场效应有机化合物 薄膜光伏电池单元电路原理三部分形式组成。
实施例 5, 参照附图 9、 附图 10、 附图 11所示, 本发明电场效应非晶硅薄膜光伏电池板结 构是由: 多个串联电场效应非晶硅薄膜光伏电池单元 Cl. l、 载体 C1.2、 电池母线 (串联电池 正极) C1.3、 电池母线 (串联电池负极) C1.4、 激光刻槽 C1.5、 相邻电池单元正负极接触面 C1.6、 串联电场电源 C1.7、 串联电场电源 C1.8、 相邻电场电池段正负极接触面 C1.9组成; 其 中电场效应非晶硅薄膜光伏电池单元 C1.1, 可以采用电场效应单结电池结构、 电场效应双结 或三结结构、 电场效应双本怔层单结电池结构, 分别由附图 10中的图 c-l、图 c-2、 图 c-3所示; 本实施例采用电场效应双本怔层单结电池结构。
图 c-1: 电场效应单结电池结构是由透明导电膜 (TC0) 1-1、 p-i-n^ (a-Si:H) 1-2、 背面电极 1-3、 绝缘膜层 1-4、 电场电极层 1-5所组成。
图 c-2: 电场效应双结电池结构是由透明导电膜 (TC0) 2-1、 p-i-n^ (a-Si:H) 2-2、 p—i— n结 (a-SiGe:H) 2-3、 背面电极 2-4、 绝缘膜层 2-5、 电场电极层 2-6所组成。 图 c-3: 电场效应双本怔层单结电池结构是由透明导电膜 (TC0) 3-1、 - -《结
(a-Si/-SiGe:H) 3_2、 背面电极 3_3、 绝缘膜层 3_4、 电场电极层 3_5所组成。
图 11: 是电场效应非晶硅薄膜光伏电池板中一个电场效应非晶硅薄膜光伏电池单元的剖 面图。 其中电场电源 C1.7、 电场电源 C1.8分别由 3个非晶硅薄膜光伏电池段 Ba、 Bb、 Be串联与 Bd、 Be、 Bf串联组成。 电场电源 (:^的电压为 ^^^^;^^ 电场电源 C1.8的电压为 VBf(+)-VBd (-) =Vfd; 电场电源 C1.7的 ¥¾(+)连接电场电极层 3-5, ^连接透明导电膜 !!!)); 电场电 源 C1.8的 VBf(+)连接电场电极层 3-5, VBdH连接透明导电膜(TC0)。电场电源 C1.7与电场电源 C1.8 并联连接相对应的电场效应非晶硅薄膜光伏电池单元。
附图 12、 12£1和1213本发明电场效应非晶硅薄膜光伏电池板内部电池串联连接示意图, 在 附图 12b中可以得知, 电场效应非晶硅薄膜光伏电池单元的主要特征: 是由多个微型薄膜光伏 电池串联的电场电源与单个具有电场电极薄膜光伏电池复合而成, 并且多个微型薄膜光伏电 池串联的电场电源, 可以制作在窄带长条形电场电极薄膜光伏电池的两端或单端, 本实施例 在电场电极薄膜光伏电池的两端。 电场效应非晶硅薄膜光伏电池单元与现有传统的非晶硅薄 膜光伏电池单元在电池结构与电路原理上有明显的不同, 现有非晶硅薄膜光伏电池单元只是 一个简单的薄膜光伏电池。在附图 12a中可以得知, 电场效应非晶硅薄膜光伏电池板的主要特 征: 是由多个电场效应非晶硅薄膜光伏电池单元进行电气串联集成。
实施例 6, 参照附图 13、 附图 14、 附图 15所示, 本发明的电场效应 CIGS (CdTe) 薄膜光伏 电池板结构是由: 多个串联电场效应 CIGS (CdTe) 薄膜光伏电池单元 Dl. 1、 载体 D1. 2、 电池 母线 (串联电池正极) D1. 3、 电池母线 (串联电池负极) D1. 4、 激光刻槽 D1. 5、 相邻电池单 元正负极接触面 D1. 6、 串联电场电源 D1. 7、 串联电场电源 D1. 8、 相邻电场电池段正负极接触 面 D1. 9组成; 其中电场效应 CIGS (CdTe) 薄膜光伏电池单元 Dl. 1, 是电场效应 CIGS或 CdTe电 池结构、 由附图 14中图 D所示。
附图 14是电场效应 CIGS (CdTe ) 薄膜光伏电池板中一个电场效应 CIGS (CdTe) 薄膜光伏 电池单元的剖面图。
图 D:本实施例 6中,电场效应 CIGS电池结构是由背面电极(M0)D2. 1、 结(n-ZnS : P-CIGS) D2. 2、 透明导电膜 (ZnO) D2. 3、 绝缘膜层 D2. 4、 电场电极层 D2. 5所组成。 电场效应 CIGS电池 结构中 结 (n-ZnS : p-CIGS) D2. 2中, 缓冲层使用硫化锌 (n-ZnS) , 吸收层为 (p_CIGS) , 避免使用传统有毒的硫化镉 (CdS) 在电池生产和使用对人与环境的影响。
图 15: 其中电场效应 CIGS或 CdTe薄膜光伏电池单元中电场电源 D1. 7、 电场电源 D1. 8, 分 别由 2个 CIGS或 CdTe薄膜光伏电池段 Da、 Db串联 (Dc电池段为空闲段, 只起到电气桥接作用) 与 (Dd电池段为空闲段, 只起到电气桥接作用) 电池段 De、 Df串联组成。 电场电源 D1. 7的电 压为^^^^-尸^; 电场电源 D1. 8的电压为 V¾(+)-VDf H=Vrf; 电场电源 D1. 7的 VDaH连接电场电极 层 D2. 5, (+)连接透明导电膜 (ZnO); 电场电源 C1. 8的 VDfH连接电场电极层 D2. 5, VDd(+)连接透 明导电膜 (Zn0)。 电场电源 Dl. 7与电场电源 Dl. 8并联连接相对应的电场效应 CIGS或 CdTe薄膜 光伏电池单元。
附图 16中 16a、 16b本发明电场效应 CIGS或 CdTe薄膜光伏电池板内部电池串联连接示意图, 在附图 16b中可以得知, 电场效应 CIGS或 CdTe薄膜光伏电池单元的主要特征: 是由多个微型薄 膜光伏电池串联的电场电源与单个具有电场电极薄膜光伏电池复合而成, 并且多个微型薄膜 光伏电池串联的电场电源, 可以制作在窄带长条形电场电极薄膜光伏电池的两端或单端, 本 实施例采用 2个微型薄膜光伏电池串联的电场电源在电场电极薄膜光伏电池的两端。电场效应 CIGS或 CdTe薄膜光伏电池单元与现有传统的 CIGS或 CdTe薄膜光伏电池单元在电池结构与电路 原理上有明显的不同, 现有 CIGS或 CdTe薄膜光伏电池单元只是一个简单的薄膜光伏电池。 在 附图 16a中可以得知, 电场效应 CIGS或 CdTe薄膜光伏电池板的主要特征: 是由多个电场效应 CIGS或 CdTe薄膜光伏电池单元进行电气串联集成。
实施例 7, 参照附图 17、 附图 18、 附图 19所示, 本发明的电场效应有机化合物薄膜光伏电 池板结构是由: 多个串联电场效应有机化合物薄膜光伏电池单元 El. l、 载体 El. 2、 电池母线 (串联电池正极) E1. 3、 电池母线 (串联电池负极) E1. 4、 中间连接体 El. 5、 相邻电池单元 正负极接触面 E1. 6、 串联电场电源 E1. 7、 串联电场电源 E1. 8、 相邻电场电池段正负极接触面 E1. 9组成; 其中电场效应有机化合物薄膜光伏电池单元 E1. 1 , 可以采用电场效应有机 /无机混 合型电池或染料敏化 (DSSC) 电池结构、 由附图 18中图 e_l、 e_2所示。
图 18的图 e-1 : 电场效应有机 /无机混合型电池结构是由背面电极 el. 1、异质《结(Ti02 ) el. 2、 复合异质 ρ结 (CuPc、 P3HT) el. 3、 透明导电膜 (ITO) el. 4、 绝缘膜层 el. 5、 电场电 极层 el. 6所组成。 电场效应有机 /无机混合型电池结构中异质《结61. 2是采用无机二氧化钛 ΤΪ02; 复合异质;?结 (CuPc、 P3HT) el. 3是采用有机光电半导体材料酞菁铜 CuPc与 3_己基噻 吩的聚合物 P3HT; 而阳光辐射面采用 PET (聚对苯二甲酸乙二醇酯)基板或玻璃基板, 载体也 可采用 PET (聚对苯二甲酸乙二醇酯)基板或其它有机聚合物材料。
图 18的图 e-2: 电场效应染料敏化 (DSSC) 电池结构是由背面电极 e2. 1、 复合敏化层 (Ti02+Dye ) e2. 2、 电解质层 e2. 3、透明导电膜(ITO) e2. 4、绝缘膜层 e2. 5、 电场电极层 e2. 6 所组成。 电场效应染料敏化 (DSSC) 电池结构中复合敏化层 (Ti02+Dye ) e2. 2是采用无机二 氧化钛 Ti02与硫氰酸根的红染料 (N3)剂复合; 电解质层 e2. 3可以采用有机固体电解质 P3HT或 溶胶-凝胶电解质; 而阳光辐射面采用 PET (聚对苯二甲酸乙二醇酯)基板或玻璃基板, 载体也 可采用 PET (聚对苯二甲酸乙二醇酯)基板或其它有机聚合物材料。
图 19: 其中电场效应有机化合物薄膜光伏电池单元中电场电源 E1. 7、 电场电源 E1. 8, 分 别由 3个有机化合物薄膜光伏电池段 Ea、 Eb、 Ec串联与电池段 Ed、 Ee、 Ef串联组成。 电场电源 E1. 7的电压为 VE(+)-VEaH ; 电场电源 El. 8的电压为 VEd(+)-VEf H ; 电场电源 El. 7的 VEaH连接电场电 极层 E2. 5, VE(+)连接透明导电膜 (IT0); 电场电源 E1. 8的 VEf H连接电场电极层 D2. 5, VEd(+)连接 透明导电膜 (ΙΤ0)。 电场电源 El. 7与电场电源 El. 8并联连接相对应的电场效应有机化合物薄 膜光伏电池单元。
本实施例的电场效应有机化合物薄膜光伏电池板内部电气连接与实施例 5、 6原理相同。

Claims

权 利 要 求
1. 一种外加电源提供电场效应的薄膜光伏电池, 所述的薄膜光伏电池包括: 硅基薄膜光 伏电池、铜铟镓硒薄膜光伏电池、碲化镉薄膜光伏电池以及掺杂聚合物材料的薄膜光伏电池, 该薄膜光伏电池设有透明导电膜及背面电极层, 所述的透明导电膜与背面电极层为薄膜光伏 电池的输出电极; 其特征在于, 在所述的背面电极层下面设有电场底层电极, 该电场底层电 极与薄膜光伏电池本体中背面电极层之间设有绝缘层, 该绝缘层形成电场表层电极、 薄膜光 伏电池本体中背面电极与电场底层电极电隔离; 在该电场底层电极与所述透明导电膜构成的 电场表层电极之间设有外加电压源 VI; 该外加电压源 VI。
2. 根据权利要求 1所述的外加电源提供电场效应的薄膜光伏电池, 其特征在于, 所述外 加电压源 VI的正极与相对应电场效应薄膜光伏电池的 n型半导体电场效应电极连接;外加电压 源 VI的负极与相对应电场效应薄膜光伏电池的 p型半导体的电场效应电极连接;
在单组光伏电池外加电源 VI的电压范围为 Vl ^VOC, 其中 V0C是单组非电场效应薄膜光伏 电池标准输出开路电压;
所述电场底层电极与背面电极层之间的绝缘层的总厚度在 10微米以下。
3. 根据权利要求 1所述的外加电源提供电场效应的薄膜光伏电池, 其特征在于, 所述电 场底层电极的结构是:
所述背面电极底面复合一层绝缘层, 绝缘层另一面复合一层导电膜, 导电膜通过绝缘层 与背面电极电隔离; 或者是, 所述背面电极底面复合一层绝缘层, 在绝缘层中间夹有该电场 底层电极。
4. 根据权利要求广 3之一所述的外加电源提供电场效应的薄膜光伏电池, 其特征在于, 所述化合物半导体 CIGS电场效应薄膜光伏电池的具体结构如下:
由透明导电膜(1. 1-1 )、 CdS层(1. 2-2)、 CIGS层(1. 3-3)、背面电极(1. 4-4)、基板(1. 5-5)、 绝缘膜 (1. 6-6)、 电场底层电极 (1. 7-7)、 电场电源 VI ( 1. 8-8)、 负载电阻 R所组成。 其中 透明导电膜 (1. 1-1 ) 采用氧化鋅及氧化铟锡,背面电极层 (1. 4-4) 采用钼, 基板 (1. 5-5) 采用玻璃、 塑料或金属材料; 电场效应薄膜光伏电池结构中, 透明导电膜 (1. 1-1 )与背面电 极(1. 4-4)是光伏电池输出的负电极与正电极,而透明导电膜(1. 1-1 )与电场底层电极(1. 7-7) 连接电场电源 VI的正极与负极, 使透明导电膜 (1. 1-1 ) 与电场底层电极 (1. 7-7) 之间形成 电场 1 ; 其中电场底层电极 (1. 7-7 ) 是通过绝缘膜 (1. 6-6) 与背面电极 (1. 4-4) 进行电 隔离; 而电场电源 VI与电场效应薄膜光伏电池也是相互独立的电源; 所述化合物半导体 CdTe电场效应薄膜光伏电池的具体结构如下:
由透明导电膜(2. l-l)、CdS层(2.2-2)、 CdTe层(2.3_3)、背面电极(2.4_4)、基板(2.5-5)、 绝缘膜 (2.6-6)、 电场底层电极 (2.7-7)、 电场电源 VI (2.8-8), 负载电阻 R所组成; 其中 透明导电膜(2.1-1)采用氧化铟锡及二氧化锡,背面电极层(2.4-4)采用碲化锌或铜, 基板 (2.5-5)采用玻璃; 电场效应薄膜光伏电池结构中,透明导电膜(2.1-1)与背面电极(2.4-4) 是光伏电池输出的负电极与正电极, 而透明导电膜 (2.1-1) 与电场底层电极 (2.7-7) 连接 电场电源 VI的正极与负极,使透明导电膜(2.1-1)与电场底层电极(2.7-7)之间形成电场 1; 其中电场底层电极(2.7-7) 是通过绝缘膜 (2.6-6) 与背面电极(2.4-4)进行电隔离; 而电 场电源 VI与电场效应薄膜光伏电池也是相互独立的电源;
所述电场效应非晶硅薄膜光伏电池的具体结构如下:
是由透明导电膜(3.1-1)、 /?— — «叠层结构(3.2-2)、背面电极 (3.3-3)、基板(3.4-4)、 绝缘层 (3.5-5)、 电场底层电极(3.6-6)、 电场电源 VI (3.7-7), 负载电阻 R所组成;其中透 明导电膜 (3.1-1) 采用氧化铟锡及二氧化锡, /?_ _«叠层结构 (3.2-2) 采用非晶硅及微 晶硅形成的 a-Si/μ c-Si叠层或是堆栈三层形成的 a-Si/a-SiGe/μ c_Si, 基板 3.4_4采用 玻璃; 电场效应非晶硅薄膜光伏电池结构中, 透明导电膜 (3.1-1) 与背面电极 (3.3-3) 是 光伏电池输出的正电极与负电极, 电场电源 VI的正、 负极, 连接电场底层电极(3.6-6)与透 明导电膜(3.1-1), 并在 /?_ _«叠层结构(3.2-2)内部形成电场 El, 电场 El与自建电场 „ρ 方向相同;而且电场底层电极(3.6-6)与非晶硅光伏电池背面电极(3.3-3)通过绝缘层(3.5-5) 电隔离。
5. 根据权利要求 4所述的外加电源提供电场效应的薄膜光伏电池, 其特征在于, 所述外 加电场的电源装置的结构是:采用小功率的薄膜光伏电池与薄膜光伏电池串联形成电场电源, 电场电源输出电极分别对应连接电场效应薄膜光伏电池的透明导电膜电场表层电极与电场底 层电极;
所述外加电场电源 VI是与电场效应薄膜光伏电池相隔离的外接电压源。
6. 根据权利要求 5所述的外加电源提供电场效应的薄膜光伏电池, 其特征在于, 所述的 光伏辐射面是采用非玻璃的透明聚合物, 形成电场效应薄膜有机半导体光伏电池。
7. 一种光伏电场源与光伏电池系统集成电场效应薄膜光伏电池板, 所述的薄膜光伏电池 包括: 硅基薄膜光伏电池、 铜铟镓硒薄膜光伏电池、 碲化镉薄膜光伏电池以及掺杂聚合物材 料的薄膜光伏电池, 该薄膜光伏电池设有透明导电膜及背面电极层, 所述的透明导电膜与背 面电极层为薄膜光伏电池的输出电极; 在所述的背面电极层下面设有电场底层电极, 该电场 底层电极与薄膜光伏电池本体中背面电极层之间设有绝缘层, 该绝缘层形成电场表层电极、 薄膜光伏电池本体中背面电极与电场底层电极电隔离; 在电场底层电极与所述透明导电膜构 成的电场表层电极之间设有外加电压源, 而透明导电膜作为电场表层电极与电场底层电极是 构成绝缘电场效应的输入电极;
其特征在于, 该集成电场效应薄膜光伏电池板中设有多个电场效应薄膜光伏电池单元, 各个电场效应薄膜光伏电池单元之间电气串联, 进行系统集成形成大面积电场效应薄膜光伏 电池板结构装置;
以上所述的电场效应薄膜光伏电池及各个电场效应薄膜光伏电池单元之间电气串联, 均 是采用: 将薄膜层依次沉积在大面积衬底玻璃或其它衬底材料上, 并用激光刻蚀实现的。
8. 根据权利要求 7所述的光伏电场源与光伏电池系统集成电场效应薄膜光伏电池板, 其 特征在于, 所述的电场效应薄膜光伏电池板结构中, 每个电场效应薄膜光伏电池单元中具有 自身的薄膜光伏电场电源, 而每个电场效应薄膜光伏电池单元自身对应的薄膜光伏电场电源 电气连接。
9. 根据权利要求 7所述的光伏电场源与光伏电池系统集成电场效应薄膜光伏电池板, 其 特征在于, 所述的电场效应非晶硅薄膜光伏电池结构, 是采用电场效应单结电池结构、 电场 效应双结电池结构、 电场效应三结电池结构, 或者是电场效应双本怔层单结电池结构, 其结 构是: 在传统的单结电池结构、 双结电池结构、 三结电池结构及双本怔层单结电池结构的背 面电极在增加绝缘膜层及电场电极层;
所述的电场效应铜铟镓硒与碲化镉薄膜光伏电池结构, 其结构是: 由透明导电膜、 缓冲 层、 吸收层、 背面电极、 绝缘膜层、 电场电极层、 载体组合。
10. 根据权利要求 之一所述的光伏电场源与光伏电池系统集成电场效应薄膜光伏电 池板, 其特征在于, 所述的所述的电场效应有机化合物薄膜光伏电池结构, 是采用电场效应 有机 /无机混合型电池结构或电场效应染料敏化电池结构, 其结构是: 在有机 /无机混合型电 池结构、 染料敏化电池结构的背面电极增加绝缘膜层及电场电极层;
所述的电场效应有机化合物薄膜光伏电池结构, 其结构是: 由太阳辐射面聚对苯二甲酸 乙二醇酯基板、 透明导电膜、 异质复合层、 背面电极、 绝缘膜层、 电场电极层、 载体组合。
11. 根据权利要求 10所述的光伏电场源与光伏电池系统集成电场效应薄膜光伏电池板, 其特征在于, 所述的电场效应薄膜光伏电池单元中薄膜光伏电场电源: 由多个薄膜光伏电池 段电气串联而成, 其薄膜光伏电场电源电压大于薄膜光伏电池单元标称电压; 并且多个薄膜 光伏电池段电气串联而成的一个电场电源, 是分别制作在电场效应薄膜光伏电池单元两端, 或是作为一个电场电源制作在电场效应薄膜光伏电池单元的一端。
12. 根据权利要求 10所述的光伏电场源与光伏电池系统集成电场效应薄膜光伏电池板, 其特征在于, 所述的电场效应非晶硅薄膜光伏电池板结构是由: 多个串联电场效应非晶硅薄 膜光伏电池单元 C1. 1、 载体 C1. 2、 串联电池正极的电池母线 C1. 3、 串联电池负极的电池母线 C1. 4、 激光刻槽 C1. 5、 相邻电池单元正负极接触面 C1. 6、 串联电场电源 C1. 7、 串联电场电源 C1. 8、相邻电场电池段正负极接触面 C1. 9组成; 其中电场效应非晶硅薄膜光伏电池单元 C1. 1, 采用电场效应单结电池结构、 电场效应双结电池结构、 电场效应双本怔层单结电池结构; 电场效应单结电池结构是由透明导电膜 (1-1 )、 p - i - n结 ( 1-2) 、 背面电极 (1-3) 、 绝缘膜层 (1-4)、 电场电极层 (1-5) 所组成;
电场效应双结电池结构是由透明导电膜(2-1 )、 p—i— n结 (2-2) 、 p—i— n结 ( 2-3) 、 背面电极 (2-4) 、 绝缘膜层 (2-5)、 电场电极层 (2-6) 所组成;
电场效应双本怔层单结电池结构是由透明导电膜 (3-1 )、 p—i— n结 ( 3-2) 、 背面电极
( 3-3) 、 绝缘膜层 (3-4)、 电场电极层 (3-5) 所组成;
电场效应非晶硅薄膜光伏电池单元中电场电源 C1. 7、 电场电源 C1. 8分别由 3个非晶硅薄膜 光伏电池段 Ba、 Bb、 Be串联与 Bd、 Be、 Bf串联组成; 电场电源 CI. 7的电压为 VBa(+)-VBH=Va。; 电 场电源 C1. 8的电压为 νΜ(+)ΜΗΜ; 电场电源 C1. 7的 ¥¾(+)连接电场电极层 (3-5), VBH连接透 明导电膜; 电场电源 C1. 8的 VBf(+)连接电场电极层(3-5), VBdH连接透明导电膜; 电场电源 C1. 7 与电场电源 C1. 8并联连接相对应的电场效应非晶硅薄膜光伏电池单元;
所述的电场效应 CIGS薄膜光伏电池板结构是由: 多个串联电场效应 CIGS薄膜光伏电池单 元 D1. 1、 载体 D1. 2、 串联电池正极的电池母线 Dl. 3、 串联电池负极的电池母线 Dl. 4、 激光刻 槽 D1. 5、 相邻电池单元正负极接触面 Dl. 6、 串联电场电源 Dl. 7、 串联电场电源 Dl. 8、 相邻电 场电池段正负极接触面 D1. 9组成;其中电场效应 CIGS薄膜光伏电池单元 D1. 1,是电场效应 CIGS 或 CdTe电池结构;
所述的电场效应 CIGS电池结构是由背面电极 D2. 1、 结 D2. 2、 透明导电膜 D2. 3、 绝缘膜 层 D2. 4、电场电极层 D2. 5所组成; 电场效应 CIGS电池结构中 结 D2. 2中,缓冲层使用硫化锌, 吸收层为 P-CIGS;
其中电场效应 CIGS或 CdTe薄膜光伏电池单元中电场电源 D1. 7、 电场电源 D1. 8, 分别由 2个 CIGS或 CdTe薄膜光伏电池段 Da、 Db串联与电池段 De、 Df串联组成; 电场电源 Dl. 7的电压为 VDb (+)-VDaH=Vba; 电场电源 D1. 8的电压为 V¾(+)-VDf H=Vrf; 电场电源 D1. 7的 ^;连接电场电极层 D2. 5, VD(+)连接透明导电膜; 电场电源 C1. 8的 VDfH连接电场电极层 D2. 5, VDd(+)连接透明导电膜; 电场电源 D1. 7与电场电源 D1. 8并联连接相对应的电场效应 CIGS或 CdTe硅薄膜光伏电池单元。
13. 根据权利要求 10所述的光伏电场源与光伏电池系统集成电场效应薄膜光伏电池板, 其特征在于, 所述的有机化合物薄膜光伏电池板结构是由: 多个串联电场效应有机化合物薄 膜光伏电池单元 E1. 1、 载体 E1. 2、 串联电池正极的电池母线 El. 3、 串联电池负极的电池母线 E1. 4、 中间连接体 El. 5、 相邻电池单元正负极接触面 El. 6、 串联电场电源 El. 7、 串联电场电 源 E1. 8、 相邻电场电池段正负极接触面 El. 9组成; 其中电场效应有机化合物薄膜光伏电池单 元 E1. 1, 是采用电场效应有机 /无机混合型电池或染料敏化电池结构;
所述的电场效应有机 /无机混合型电池结构是由背面电极 el. 1、 异质《结 el. 2、 复合 异质 /?结61. 3、 透明导电膜 el. 4、 绝缘膜层 el. 5、 电场电极层 el. 6所组成。 电场效应有机 / 无机混合型电池结构中异质《结61. 2是采用无机二氧化钛 Ti02; 复合异质;?结, el. 3是采用 有机光电半导体材料酞菁铜 CuPc与 3-己基噻吩的聚合物 P3HT;而阳光辐射面采用聚对苯二甲 酸乙二醇酯基板或玻璃基板, 载体采用聚对苯二甲酸乙二醇酯基板;
所述的电场效应染料敏化电池结构是由背面电极 e2. 1、 复合敏化层 Ti02+Dye, e2. 2、 电解质层 e2. 3、 透明导电膜 e2. 4、 绝缘膜层 e2. 5、 电场电极层 e2. 6所组成; 电场效应染料敏 化电池结构中复合敏化层 Ti02+Dye, e2. 2是采用无机二氧化钛 Ti02与硫氰酸根的红染料剂复 合; 电解质层 e2. 3采用有机固体电解质 P3HT或溶胶-凝胶电解质; 而阳光辐射面采用聚对苯二 甲酸乙二醇酯基板或玻璃基板, 载体采用聚对苯二甲酸乙二醇酯基板;
其中电场效应有机化合物薄膜光伏电池单元中电场电源 E1. 7、 电场电源 E1. 8, 分别由 3个 有机化合物薄膜光伏电池段 Ea、 Eb、 Ec串联与电池段 Ed、 Ee、 Ef串联组成; 电场电源 El. 7的 电压为 VE(+)-VEaH ; 电场电源 El. 8的电压为 VEd(+)-VEf H ; 电场电源 El. 7的 VEaH连接电场电极层 E2. 5, VE(+)连接透明导电膜; 电场电源 E1. 8的 VEfH连接电场电极层 D2. 5, VEd(+)连接透明导电膜; 电场电源 E1. 7与电场电源 E1. 8并联连接相对应的电场效应有机化合物薄膜光伏电池单元。
PCT/CN2010/077573 2010-09-03 2010-10-06 外加电场效应薄膜光伏电池及与电场源集成的光伏电池板 WO2012027919A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010274328.4 2010-09-03
CN 201010274328 CN102064213A (zh) 2009-10-14 2010-09-03 外加电场效应薄膜光伏电池及与电场源集成的光伏电池板

Publications (1)

Publication Number Publication Date
WO2012027919A1 true WO2012027919A1 (zh) 2012-03-08

Family

ID=45774350

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/077573 WO2012027919A1 (zh) 2010-09-03 2010-10-06 外加电场效应薄膜光伏电池及与电场源集成的光伏电池板

Country Status (1)

Country Link
WO (1) WO2012027919A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7235736B1 (en) * 2006-03-18 2007-06-26 Solyndra, Inc. Monolithic integration of cylindrical solar cells
CN101313411A (zh) * 2005-10-13 2008-11-26 本田技研工业株式会社 太阳能电池及其制造方法
CN100587997C (zh) * 2008-07-08 2010-02-03 中国科学院长春应用化学研究所 一种叠层结构聚合物薄膜太阳能电池
CN101699632A (zh) * 2009-10-14 2010-04-28 郭建国 外加电源提供电场效应的薄膜光伏电池
CN101794846A (zh) * 2010-02-05 2010-08-04 保定天威集团有限公司 一种薄膜太阳能透光组件的制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101313411A (zh) * 2005-10-13 2008-11-26 本田技研工业株式会社 太阳能电池及其制造方法
US7235736B1 (en) * 2006-03-18 2007-06-26 Solyndra, Inc. Monolithic integration of cylindrical solar cells
CN100587997C (zh) * 2008-07-08 2010-02-03 中国科学院长春应用化学研究所 一种叠层结构聚合物薄膜太阳能电池
CN101699632A (zh) * 2009-10-14 2010-04-28 郭建国 外加电源提供电场效应的薄膜光伏电池
CN101794846A (zh) * 2010-02-05 2010-08-04 保定天威集团有限公司 一种薄膜太阳能透光组件的制造方法

Similar Documents

Publication Publication Date Title
US20080121264A1 (en) Thin film solar module and method of fabricating the same
US8088990B1 (en) Color building-integrated photovoltaic (BIPV) panel
CN102064213A (zh) 外加电场效应薄膜光伏电池及与电场源集成的光伏电池板
CN203481251U (zh) 一种薄膜太阳能电池
CN218831178U (zh) 一种太阳能叠层电池、电池组件和光伏系统
ITVA20090011A1 (it) Pannello solare con due moduli fotovoltaici multicellulari monolitici di diversa tecnologia
JP5420109B2 (ja) Pn接合およびショットキー接合を有する多重太陽電池およびその製造方法
CN102244111A (zh) 一种薄膜太阳能电池
CN104115283B (zh) 太阳能电池模块及其制造方法
CN101924156A (zh) 复合式串联或并联的薄膜太阳能电池及其制作方法
CN219628267U (zh) 一种太阳能叠层电池、电池组件和光伏系统
CN102270691A (zh) 一种薄膜太阳能电池
CN115602692A (zh) 一种太阳能叠层电池、电池组件和光伏系统
CN214176064U (zh) 一种双面入射叠层太阳能电池
CN204441296U (zh) 一种cigs基薄膜太阳能电池
CN113764535A (zh) 双面受光的机械叠层太阳能电池、电池组件和光伏系统
CN112216759A (zh) 一种三端双面叠层太阳电池及其制备工艺
KR20120096339A (ko) 박막형 태양전지 모듈 및 그 제조방법
CN101719520A (zh) 透明导电极薄膜太阳能电池
WO2012027919A1 (zh) 外加电场效应薄膜光伏电池及与电场源集成的光伏电池板
CN218831182U (zh) 一种太阳能叠层电池、电池组件和光伏系统
CN219352270U (zh) 一种太阳能叠层电池、电池组件和光伏系统
CN218456634U (zh) 一种太阳电池
CN202307897U (zh) 一种新型叠层薄膜太阳能电池
CN108039388A (zh) 一种Cu2ZnSn(S,Se)4薄膜太阳能电池及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10856606

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10856606

Country of ref document: EP

Kind code of ref document: A1