WO2012026382A1 - Magnetic resonance imaging device and vibrational error magnetic field-reducing method - Google Patents

Magnetic resonance imaging device and vibrational error magnetic field-reducing method Download PDF

Info

Publication number
WO2012026382A1
WO2012026382A1 PCT/JP2011/068650 JP2011068650W WO2012026382A1 WO 2012026382 A1 WO2012026382 A1 WO 2012026382A1 JP 2011068650 W JP2011068650 W JP 2011068650W WO 2012026382 A1 WO2012026382 A1 WO 2012026382A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
error
correction
error magnetic
resonance imaging
Prior art date
Application number
PCT/JP2011/068650
Other languages
French (fr)
Japanese (ja)
Inventor
昇一 宮脇
竹内 博幸
Original Assignee
株式会社 日立メディコ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立メディコ filed Critical 株式会社 日立メディコ
Priority to JP2012530639A priority Critical patent/JP6038654B2/en
Priority to US13/817,680 priority patent/US9453897B2/en
Publication of WO2012026382A1 publication Critical patent/WO2012026382A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/58Calibration of imaging systems, e.g. using test probes, Phantoms; Calibration objects or fiducial markers such as active or passive RF coils surrounding an MR active material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/565Correction of image distortions, e.g. due to magnetic field inhomogeneities
    • G01R33/56518Correction of image distortions, e.g. due to magnetic field inhomogeneities due to eddy currents, e.g. caused by switching of the gradient magnetic field
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/389Field stabilisation, e.g. by field measurements and control means or indirectly by current stabilisation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/565Correction of image distortions, e.g. due to magnetic field inhomogeneities
    • G01R33/56509Correction of image distortions, e.g. due to magnetic field inhomogeneities due to motion, displacement or flow, e.g. gradient moment nulling

Definitions

  • the present invention relates to a magnetic resonance imaging (hereinafter referred to as MRI) apparatus that obtains a tomographic image of an arbitrary part of a subject by utilizing a nuclear magnetic resonance (hereinafter referred to as NMR) phenomenon, and in particular, an MRI apparatus structure generated by applying a gradient magnetic field
  • MRI magnetic resonance imaging
  • NMR nuclear magnetic resonance
  • the present invention relates to a technique for correcting a vibration error magnetic field caused by vibration of an object.
  • the MRI device measures NMR signals generated by the spins of the subject, especially the tissues of the human body, and visualizes the form and function of the head, abdomen, limbs, etc. in two or three dimensions Device.
  • the NMR signal is given different phase encoding depending on the gradient magnetic field and is frequency-encoded and measured as time-series data.
  • the measured NMR signal is reconstructed into an image by two-dimensional or three-dimensional Fourier transform.
  • Patent Document 1 One example of a technique for avoiding a vibration error magnetic field due to vibration of this mechanical structure is Patent Document 1.
  • natural vibration information of a target MRI apparatus is measured and analyzed in advance using a reference gradient magnetic field waveform and stored.
  • the vibration of the mechanical structure generated by the execution of the pulse sequence is estimated based on the measurement conditions set by the operator and the natural vibration information prepared in advance. Then, it is determined whether or not the estimated value of the vibration exceeds the allowable amount, and if it exceeds, the change of the measurement condition is prompted.
  • JP 2005-270326 A Japanese Patent No. 4106053 U.S. Pat. International Publication WO2004 / 004563 International Publication WO2010 / 143586
  • An object of the present invention is to provide a possible MRI apparatus and vibration error magnetic field reduction method.
  • the present invention acquires error magnetic field image data representing an error magnetic field distribution based on an echo signal measured using a pulse sequence having a test gradient magnetic field.
  • the parameter value of the damped vibration function representing the vibration error magnetic field is calculated using the data, and the correction magnetic field is calculated based on the parameter value of the damped vibration function representing the calculated vibration error magnetic field.
  • This parameter value is a characteristic value representing the vibration characteristic of each MRI apparatus.
  • the MRI apparatus of the present invention is caused by the application of a gradient magnetic field, a static magnetic field generation unit that generates a static magnetic field in an imaging space, a gradient magnetic field generation unit that generates a gradient magnetic field superimposed on the static magnetic field, and a gradient magnetic field.
  • a correction magnetic field generation unit that generates a correction magnetic field that corrects an error magnetic field generated in the imaging space, a static magnetic field generation unit, a gradient magnetic field generation unit, and a correction magnetic field generation unit that are installed to support these, and a predetermined structure Measurement control unit that measures echo signals from the subject placed in the imaging space based on the pulse sequence of the above, and correction magnetic field calculation to obtain a correction magnetic field for correcting the error magnetic field generated in the imaging space due to the application of the gradient magnetic field
  • the correction magnetic field calculation unit calculates an error magnetic field including an oscillation error magnetic field based on the vibration of the structural unit caused by application of the gradient magnetic field, and corrects the calculated error magnetic field. Seeking The features.
  • the vibration error magnetic field reduction method of the present invention includes a measurement step for measuring an echo signal using a pulse sequence having a test gradient magnetic field, and an error magnetic field image representing an error magnetic field distribution for each sampling time using the echo signal.
  • a correction magnetic field calculation step for calculating a correction magnetic field based on the parameter value.
  • the vibration error magnetic field reduction method of the present invention it is possible to reduce image quality degradation caused by the vibration error magnetic field generated by the vibration of the mechanical structure of the MRI apparatus regardless of the measurement conditions.
  • this effect can improve the degree of freedom in the mechanical structure design of the MRI apparatus, and can allow a certain amount of vibration, so that the material cost of the MRI apparatus can be reduced. There is also a secondary effect.
  • FIG. 5 is a diagram illustrating an example of an order in which Scan (+) and Scan ( ⁇ ) are performed for each phase encode value for measuring an echo signal in the pulse sequence of FIG. 4.
  • the flowchart which shows the processing flow which acquires time series phase image data.
  • the flowchart which shows the processing flow of a vibration error magnetic field analysis.
  • FIG. 4A shows an example of an absolute spectrum
  • FIG. 4B shows an example of a phase spectrum.
  • the image which shows the effect of this invention. (a) is an image obtained when the vibration error magnetic field reduction processing of the present invention is not performed, and (b) is an image obtained when the vibration error magnetic field reduction processing of the present invention is performed.
  • FIG. 1 is a block diagram showing the overall configuration of an embodiment of an MRI apparatus according to the present invention.
  • This MRI apparatus uses a NMR phenomenon to obtain a tomographic image of a subject, and as shown in FIG. 1, a static magnetic field generation system 2, a gradient magnetic field generation system 1, a transmission system 3, and a reception system 5
  • a signal processing system 7, a measurement control unit 6, a calculation processing unit 8, and a correction magnetic field calculation unit 200 is shown in FIG. 1, a static magnetic field generation system 2, a gradient magnetic field generation system 1, a transmission system 3, and a reception system 5
  • a signal processing system 7, a measurement control unit 6, a calculation processing unit 8, and a correction magnetic field calculation unit 200 is shown in FIG. 1, a static magnetic field generation system 2, a gradient magnetic field generation system 1, a transmission system 3, and a reception system 5
  • a signal processing system 7, a measurement control unit 6, a calculation processing unit 8, and a correction magnetic field calculation unit 200 is shown in FIG. 1, a static magnetic field generation system 2, a gradient magnetic field
  • the static magnetic field generation system 2 generates a uniform static magnetic field around the subject 9 in the direction of the body axis or in a direction perpendicular to the body axis.
  • a magnetic field generating means (not shown) of a magnet system, a normal conducting system, or a superconducting system is arranged.
  • the gradient magnetic field generating system 1 is composed of a gradient magnetic field coil 10 wound in three axial directions of X, Y, and Z, and a gradient magnetic field power source 11 for driving each coil.
  • a gradient magnetic field power source 11 for driving each coil.
  • a slice gradient magnetic field pulse (Gs) is applied in a direction orthogonal to the slice plane (imaging cross section) to set a slice plane for the subject 9, and is orthogonal to the slice plane and orthogonal to each other Phase encoding gradient magnetic field pulse (Gp) and frequency encoding (leadout) gradient magnetic field pulse (Gf) are applied in the remaining two directions, and position information in each direction is encoded in the NMR signal (echo signal). .
  • a shim coil that forms part of the static magnetic field generation system 2 from the spatial and temporal information of the error magnetic field due to the eddy current and residual magnetic field due to the application of the gradient magnetic field, or the residual magnetic field, Each error magnetic field is reduced by applying a correction current to the local coil or the gradient magnetic field generation system 1.
  • the transmission system 3 irradiates a high-frequency magnetic field (hereinafter referred to as RF) pulse in order to cause an NMR phenomenon to atomic nuclei constituting the biological tissue of the subject 9, a high-frequency oscillator 12, a modulator 13, It comprises a high frequency amplifier 14 and an RF transmission coil 15 on the transmission side.
  • RF high-frequency magnetic field
  • the high-frequency oscillator 12 is driven in accordance with a command from the measurement control unit 6 described later to generate a high-frequency pulse, the high-frequency pulse is amplitude-modulated by the modulator 13, and amplified by the high-frequency amplifier 14, and then the subject 9
  • the RF pulse is supplied to the RF transmission coil 15 arranged in the vicinity of the object 9 so that the subject 9 is irradiated with the RF pulse.
  • the receiving system 5 detects an echo signal (NMR signal) emitted by the NMR phenomenon of the nuclei constituting the biological tissue of the subject 9, and includes a receiving-side RF receiving coil 16, an amplifier 17, and quadrature detection. And an A / D converter 19.
  • the response electromagnetic wave (NMR signal) of the subject 9 due to the electromagnetic wave irradiated from the RF transmission coil 15 is detected by the RF reception coil 16 arranged close to the subject 9 and passes through the amplifier 17 and the quadrature detector 18. Is input to the A / D converter 19 and converted into a digital quantity, and further, two series of collected data sampled by the quadrature phase detector 18 at the timing according to the command from the measurement control unit 6, and the signal is subjected to signal processing. It is to be sent to system 7.
  • the signal processing system 7 performs image reconstruction calculation and image display using the echo signal detected by the receiving system 5, and processes and measurement control such as Fourier transform, correction coefficient calculation, image reconstruction, etc. for the echo signal
  • a processing unit 8 for controlling the unit 6, a ROM (read-only memory) 20 for storing a program for performing image analysis processing and measurement over time, an invariant parameter used in the execution, and the measurement obtained in the previous measurement
  • a RAM (temporary writing / reading memory) 21 for temporarily storing parameters and echo signals detected by the receiving system 5 and an image used for setting the region of interest and storing parameters for setting the region of interest, and an arithmetic processing unit 8
  • the measurement control unit 6 is a control unit that repeatedly applies an RF pulse and a gradient magnetic field pulse based on a predetermined pulse sequence, and controls the measurement of an echo signal from the subject 9.
  • Various commands necessary for data acquisition of tomographic images of the subject 9 are transmitted in the control system 3, shim coils and localized coils forming part of the static magnetic field generation system 2, the gradient magnetic field generation system 1, And to the receiving system 5.
  • the operation unit 4 is used to input control information for processing performed by the signal processing system 7, and includes a trackball, a mouse 25, and a keyboard 26.
  • the operation unit 4 is disposed in the vicinity of the display 23, and an operator interactively controls various processes of the MRI apparatus via the operation unit 4 while looking at the display 23.
  • the radionuclide to be imaged by the MRI apparatus is a hydrogen nucleus (proton) which is the main constituent material of the subject, as is widely used in clinical practice.
  • proton the main constituent material of the subject
  • the form or function of the human head, abdomen, limbs, etc. is imaged two-dimensionally or three-dimensionally.
  • the inventor found that the measurement result of the error magnetic field caused by eddy current (hereinafter referred to as eddy current error magnetic field) includes an error caused by vibration of the mechanical structure of the MRI apparatus. This is due to the fact that the magnetic field component (hereinafter referred to as vibration error magnetic field) is also superimposed.
  • the conventional (known) eddy current error magnetic field measurement method measures the response of the MRI device to the pre-applied test gradient magnetic field, so the measurement result includes not only the eddy current error magnetic field but also the vibration caused by the test gradient magnetic field. It should include the error magnetic field.
  • the inventor recalled the MRI apparatus and vibration error magnetic field reduction method of the present invention that correct both the eddy current error magnetic field generated by applying the gradient magnetic field and the vibration error magnetic field caused by the vibration of the MRI apparatus structure.
  • the inventor recalled the MRI apparatus and vibration error magnetic field reduction method of the present invention that correct both the eddy current error magnetic field generated by applying the gradient magnetic field and the vibration error magnetic field caused by the vibration of the MRI apparatus structure.
  • the correction magnetic field calculation unit 200 includes an error magnetic field measurement unit 201, an error magnetic field image acquisition unit 202, an error magnetic field calculation unit 203, an error magnetic field correction unit 204, a correction magnetic field calculation unit 205, and a phase calibration. Part 206.
  • Each of these units is mounted in the measurement control unit 6 or the arithmetic processing unit 8. Then, these units cooperate to perform processing for correcting the vibration error magnetic field shown in the flowchart of FIG.
  • the outline of the vibration error magnetic field correction processing of the present embodiment will be described based on the flowchart of FIG.
  • step 301 the vibration error magnetic field is measured.
  • the error magnetic field measurement unit 201 generates a predetermined measurement sequence, causes the measurement control unit 6 to execute the measurement of the echo signal on which the vibration error magnetic field is superimposed, and outputs the echo signal on which the vibration error magnetic field is superimposed. get. Details will be described later.
  • time-series error magnetic field image data is acquired using the echo signal acquired in step 301.
  • the error magnetic field image acquisition unit 202 Fourier transforms the echo signal acquired in step 301 in the spatial axis direction, acquires a complex image for each sampling time of the echo signal, obtains a phase image from each complex image, Obtain time-series phase image data. Further, time-series error magnetic field image data is acquired from the time-series phase image data. Details will be described later.
  • step 303 an oscillating magnetic field analysis is performed using the time-series phase image data acquired in step 302. Details of the oscillating magnetic field analysis will be described later.
  • step 304 using the result of the vibration error magnetic field analysis in step 303, a correction magnetic field for correcting the vibration error magnetic field according to the input gradient magnetic field waveform is calculated. Details of the calculation of the correction magnetic field will be described later.
  • step 305 phase correction of the correction magnetic field calculated in step 304 is performed. Details of the phase calibration will be described later. The above is the description of the processing flow of the present embodiment. Details of each step will be described below.
  • the vibration error magnetic field caused by the vibration of the MRI apparatus structure induced by applying the gradient magnetic field has a frequency distribution. Therefore, in order to correctly measure the target frequency component, it is necessary to measure an echo signal on which a vibration error magnetic field is superimposed using a pulse sequence having an optimal time resolution and a measurement window (sampling time). Therefore, a known measurement method that satisfies this requirement, a method using a measurement sequence suitable for measuring a low frequency component of a vibration error magnetic field and a method using a measurement sequence suitable for measuring a high frequency component will be described below.
  • an echo signal on which only the information on the vibration error magnetic field is superimposed in a state where the eddy current error magnetic field is corrected in advance is measured to obtain information on only the vibration error magnetic field.
  • the eddy current error magnetic field may not be corrected, and an echo signal in which information on the eddy current error magnetic field and the vibration error magnetic field are superimposed may be measured, and the information may be acquired simultaneously. If you get both pieces of information at the same time, The eddy current error magnetic field and the vibration error magnetic field are corrected without distinction.
  • Patent Document 2 has an upper limit on the frequency that can be measured because the time resolution is determined by the repetition time TR. Therefore, it is desirable to use the method described later for high frequency components.
  • the error magnetic field measurement unit 201 obtains data that specifically defines the application timing and application intensity of the gradient magnetic field pulse including the RF pulse and the test gradient magnetic field that constitute the pulse sequence described in Patent Document 2, or the sampling timing. To generate the pulse sequence. Then, the obtained data is notified to the measurement control unit 6, and the measurement control unit 6 is caused to execute a pulse sequence to measure an echo signal in which the vibration error magnetic field is reflected. In addition, when performing two measurements with the polarity of the test gradient magnetic field reversed or two measurements with and without the test gradient magnetic field, the error magnetic field measurement unit 201 generates each pulse sequence to generate a measurement control unit. 6 is executed respectively to measure echo signals having different test gradient magnetic fields, and acquire the difference between the echo signals or the images after Fourier transform thereof.
  • One method for measuring high-frequency components is a technique for measuring echo signals by applying a test gradient magnetic field in advance and performing high-frequency excitation immediately after or after a predetermined time, as shown in Patent Document 3. It is done.
  • a measurement sequence as shown in FIG. 4 may be used.
  • This measurement sequence is based on the Spin Echo sequence.
  • RF, Gs, Gp, Gf, Echo, and A / D mean axes of RF pulse, slice gradient magnetic field, phase encode gradient magnetic field, frequency encode gradient magnetic field, echo signal, and sampling period, respectively.
  • FIG. 4 shows a sequence chart for two repetitions, in which the first half is suffixed with “-1” and the second half is suffixed with “-2”. Then, within one repetition time (TR), the 90 ° excitation RF pulse 401 and the slice selection gradient magnetic field pulse 403 are applied almost simultaneously to excite the spin in the desired imaging region, and the encode gradient magnetic field pulse in the phase encoding direction.
  • TR repetition time
  • an encoded gradient magnetic field pulse 406 in the frequency encoding direction are applied to encode position information into the phase of the excited spin, and a 180 ° refocus RF pulse 402 and a slice selective gradient magnetic field pulse 404 are applied substantially simultaneously. Then, the phase of the spin is refocused to form an echo signal, and the echo signal is measured in the sampling period 410.
  • test gradient magnetic fields 407 and 408 having the same applied amount are applied before and after the refocus RF pulse 402 in the physical axis direction (frequency encoding direction in the example of FIG. 4) for measuring the error magnetic field.
  • the polarities of the test gradient magnetic fields 407 and 408 are made different in order to exclude the influence of the error magnetic field caused by the gradient magnetic fields 403, 404, 405, 406, and 407 for two-dimensional imaging and the influence of static magnetic field inhomogeneity. (I.e. reversed) or with or without a test gradient magnetic field. For this reason, in another repetition time (TR), the polarities of the test gradient magnetic fields 407 and 408 are reversed, and the same except for the test gradient magnetic fields 407 and 408.
  • measurement of positive polarity is Scan (+)
  • measurement of negative polarity is Scan (-).
  • measurement with a test gradient magnetic field may be Scan (+)
  • measurement without a test gradient magnetic field may be Scan (-), and vice versa.
  • Scan (+) and Scan (-) are sequentially performed for each phase encode value, and this is repeated Np * Nf times as necessary for biaxial phase encoding of the excitation cross section. It is. Note that the polarity inversion of the test gradient magnetic field does not have to be alternate. After the measurement of one of the test gradient magnetic fields is completed, the polarity of the test gradient magnetic field is inverted and the measurement may be repeated.
  • the error magnetic field measurement sequence in FIG. 4 does not need to be excited by an RF pulse after applying the test gradient magnetic field as in the error magnetic field measurement sequence of Patent Document 3, so during the gradient magnetic field application or immediately after the gradient magnetic field is made zero. From this, there is an advantage that the error magnetic field can be measured.
  • the frequency resolution for the vibration error magnetic field in the above two methods is determined by the echo signal sampling bandwidth (BW), and the measurement capability on the low frequency side is determined by the echo signal acquisition time (window time).
  • the error magnetic field measurement unit 201 generates the error magnetic field measurement sequence of Patent Document 3 or FIG. 4 described above, and causes the measurement control unit 6 to execute the measurement of the echo signal on which the error magnetic field is superimposed.
  • time-series phase image data acquisition process is performed in both of the two methods (low frequency component measurement and high frequency component measurement) described in the above-described vibration error magnetic field measurement.
  • the error magnetic field image acquisition unit 202 uses the echo signal measured in step 301 as a three-dimensional data set S + (kx, for each of Scan (+) and Scan (-) as indicated by 601 and 602 in FIG. ky, ti) and S- (kx, ky, ti).
  • kx and ky are spatial frequencies in the frequency encoding direction and the phase encoding direction, respectively
  • the time interval in the ti direction time resolution
  • the number of data is uniquely determined by the frequency direction resolution Freq. #.
  • step 652 the error magnetic field image acquisition unit 202 performs two-dimensional Fourier transform separately at each time ti using the two data sets S +, S- as variables kx, ky, and the two-dimensional complex image I + at each time. Obtain (x, y, ti) and I- (x, y, ti). Using this two-dimensional complex image, phase images ⁇ + (x, y, ti) and ⁇ (x, y, ti) at each time ti are created (603, 604).
  • step 653 the error magnetic field image acquisition unit 202 outputs the phase image data set ⁇ (x, y, excluding the influence of the error magnetic field caused by the gradient magnetic fields 403, 404, 405, 406, and 407 for imaging and the influence of the static magnetic field inhomogeneity.
  • (ti) (605) the difference between the two phase image data ⁇ + (x, y, ti), ⁇ (x, y, ti) is taken.
  • ⁇ (x, y, ti) ⁇ + (x, y, ti) - ⁇ - (x, y, ti)
  • FIG. 6 shows the case of bipolar measurement.
  • the phase image data thus obtained reflects the phase based on the vibration error magnetic field accompanied by attenuation due to the vibration of the MRI apparatus structure induced by the application of the gradient magnetic field.
  • the vibration error magnetic field image data Be (x, y, ti) can be obtained as follows.
  • vibration error magnetic field image data representing an error magnetic field distribution for each sampling time can be acquired.
  • the error magnetic field calculation unit 303 performs an analysis to obtain a frequency distribution for each spatial component of the vibration error magnetic field data acquired by the vibration error magnetic field measurement described above based on the flowchart shown in FIG. Hereinafter, the processing of each step will be described in detail.
  • the error magnetic field calculation unit 303 calculates the vibration error magnetic field Be (x, y, ti) at each time ti acquired in step 653 for each direction (X, Y, Z) in which the test gradient magnetic field is applied.
  • Each term of the spherical harmonic function hereinafter referred to as the spherical harmonic term). That is, the vibration error magnetic field Be (x, y, ti) at all times ti is decomposed into spherical harmonic terms as follows.
  • the reason for the decomposition is that the correction magnetic field generator for correcting the vibration error magnetic field and the gradient magnetic field coil (first order term) generate a spatially changing magnetic field corresponding to the spherical harmonic term. Therefore, it is desirable that the order of the spherical harmonic term is matched with the specifications of the correction magnetic field generator and the gradient magnetic field coil (first order term) included in the MRI apparatus to be corrected.
  • An effective and desirable decomposition example is to decompose the vibration error magnetic field into a zero-order term and all the first-order terms and correct the vibration error magnetic field for each spherical harmonic term. For example, when a test gradient magnetic field is applied to the X, Y, and Z axes, this corresponds to calculating the spherical harmonic term shown in the following table.
  • step 702 the error magnetic field calculation unit 303 arranges the spherical harmonic term data of the vibration error magnetic field calculated in step 701 in the time axis direction and multiplies the window function w (k) in the time axis direction. That is, ⁇ l, m (t k ) ⁇ W (tk) ⁇ l, m (t k ) Each spherical harmonic term data thus multiplied by the window function is used for the subsequent analysis.
  • FIG. 8 (a) shows an example of Tukey Window
  • FIG. 8 (b) shows an example of multiplying the (X to X) term of the vibration error magnetic field by Tukey Window.
  • the overlapping part along the time axis acquires the addition average etc. and combines it into one data Shall.
  • the error magnetic field calculation unit 303 performs frequency analysis by the following processes of Steps 703 to 705.
  • the error magnetic field calculation unit 303 performs discrete Fourier transform for each spherical harmonic term data of the vibration error magnetic field multiplied by the window function in step 702, together with an appropriate zero padding process.
  • step 704 the error magnetic field calculation unit 303 creates an absolute value spectrum and a phase spectrum from the complex spectrum obtained by the discrete Fourier transform.
  • a known technique may be used.
  • An unwrapping process may be applied to the phase spectrum.
  • FIG. 9 (a) shows an example of an absolute value spectrum regarding the Y to X component
  • FIG. 9 (b) shows an example of a phase spectrum.
  • step 705 the error magnetic field calculation unit 303 performs frequency peak analysis on the frequency spectrum acquired in step 704. Therefore, the fact that the Lorentzian function in the frequency domain (Freq. Domain) and the damped oscillation function in the time domain (Time Domain) are mathematically associated through Fourier transformation is used. Therefore, a damped oscillation function in the time domain corresponding to the parameter value of the Lorentzian function obtained by approximating (that is, fitting) the spectrum shape near the frequency peak in the frequency domain is obtained.
  • a Lorentzian function with a frequency ⁇ f as a variable is defined by the following equation.
  • This function has the following correspondence relationship with the time domain by using Fourier transform.
  • the error magnetic field calculation unit 303 performs frequency peak analysis by fitting a Lorentzian function to the absolute value spectrum (fitting).
  • nonlinear approximation may be performed using the mathematically known Levenberg-Marquardt method or Nelder-Mead method.
  • the frequency peak analysis may use a Gaussian function as shown below instead of the Lorentzian function. It is desirable that these are properly used according to the vibration characteristics.
  • the phase value at the peak frequency is read from the phase spectrum obtained in Step 703-2. Since the phase spectrum is a discrete value, the accuracy may be improved by appropriately using complementary processing together.
  • the parameter values obtained by the above frequency analysis such as the damping constant ⁇ , the peak frequency f 0 , and the phase, are stored in the storage unit such as the magnetic disk 23 as characteristic values representing the error magnetic field, and the vibration in step 704 is performed.
  • the output value of the correction magnetic field for correcting the error magnetic field is obtained, it is read out and used for the calculation.
  • the error magnetic field correction unit 204 uses the parameter values representing the time domain damped oscillation function obtained in step 705 to calculate the output value of the correction magnetic field for correcting the vibration error magnetic field according to the input gradient magnetic field waveform. Ask. Since the magnetic field component that corrects the vibration error magnetic field is superimposed on the gradient magnetic field waveform, this error magnetic field correction unit 204 is added to the eddy current correction function (control board) already installed in the measurement control unit 6 of the MRI apparatus. It may be implemented or a new function may be added. From the viewpoint of operation speed, it is desirable to perform calculation by hardware. However, if the processing speed is in time, the calculation processing unit 7 may include the error magnetic field correction unit 204 and perform calculation by software. Details of the correction magnetic field calculation will be described below.
  • the successive response correction for the input waveform (differential value of the gradient magnetic field waveform) is performed in the same manner as the error magnetic field correction caused by the eddy current.
  • Specific processing is shown in the following equation.
  • the oscillating magnetic field at time t is given by the following equation. : : (*) Note that this is a vector sum.
  • the vibration error magnetic field is calculated at any time, and its real part is output as a correction value.
  • Re Section Real part When the exponential function cannot be processed directly on the hardware side, the following relational expression is used.
  • the phase calibration unit 206 obtains a phase calibration value for performing phase calibration of the output of the correction magnetic field obtained in step 704.
  • the phase calibration value obtained by the phase calibration unit 206 is used to perform phase calibration of the correction magnetic field, and the correction magnetic field after the phase calibration is corrected to the correction magnetic field generator and Output to the gradient magnetic field power supply.
  • the phase calibration unit 206 is mounted in the arithmetic processing unit 7, the measured phase calibration value is notified to the measurement control unit 6.
  • the measurement control unit 6 performs phase calibration on the correction magnetic field calculated in Step 704 using this phase calibration value, and outputs the correction magnetic field after the phase calibration to the correction magnetic field generator and the gradient magnetic field power source.
  • phase calibration is to cancel the phase error since an error occurs between the output phase of the correction magnetic field obtained in step 704 and the phase at the frequency peak obtained in steps 703 to 705. Therefore, the phase value for each frequency is measured.
  • the relationship between the phase calibration values of these frequencies is stored in advance on a magnetic disk or the like, and the phase calibration unit 206 reads out the phase calibration value according to the frequency peak value obtained in Step 703-3 to obtain the phase of the correction magnetic field.
  • FIG. 10 shows a graph of an example of phase calibration data. In this graph, the horizontal axis is the set frequency, and the vertical axis is the measurement phase. A Y-intercept with a frequency of zero corresponds to a phase error (offset).
  • the MRI apparatus and the vibration error magnetic field reduction method of this embodiment identify the frequency peak in the frequency spectrum of the vibration error magnetic field and the waveform shape in the vicinity of the peak using a predetermined function, and are obtained by the identification.
  • a correction magnetic field having a decay time constant corresponding to the parameter value is obtained according to the input gradient magnetic field waveform, and the obtained correction magnetic field is superimposed on the gradient magnetic field and output.
  • FIG. 11 shows an example of the effect when the vibration error magnetic field reduction of the present invention is actually applied.
  • the present invention has the following features. That is, the MRI apparatus of the present invention is A static magnetic field generator for generating a static magnetic field in the imaging space, a gradient magnetic field generator for generating a gradient magnetic field superimposed on the static magnetic field, and a correction for correcting an error magnetic field generated in the imaging space due to the application of the gradient magnetic field A correction magnetic field generation unit for generating a magnetic field, a static magnetic field generation unit, a gradient magnetic field generation unit, a structure for supporting the correction magnetic field generation unit and supporting them, and a target disposed in the imaging space based on a predetermined pulse sequence.
  • a measurement control unit that measures an echo signal from a specimen, and a correction magnetic field calculation unit that obtains a correction magnetic field for correcting an error magnetic field generated in an imaging space with application of a gradient magnetic field
  • the correction magnetic field calculation unit obtains an error magnetic field including a vibration error magnetic field based on the vibration of the structure part caused by application of the gradient magnetic field, and obtains a correction magnetic field for correcting the obtained error magnetic field.
  • a storage unit is provided for storing a characteristic value representing the error magnetic field obtained by the correction magnetic field calculation unit, and the correction magnetic field calculation unit obtains the correction magnetic field based on the stored characteristic value of the error magnetic field.
  • the correction magnetic field calculation unit includes an error magnetic field measurement unit that causes the measurement control unit to measure an echo signal using a pulse sequence having a test gradient magnetic field, and an error for each sampling time using the echo signal.
  • An error magnetic field image acquisition unit that acquires error magnetic field image data representing a magnetic field distribution, an error magnetic field calculation unit that calculates a parameter value of a damped oscillation function that represents an error magnetic field using the error magnetic field image data, and a calculated parameter value
  • a correction magnetic field calculation unit for calculating a correction magnetic field.
  • the error magnetic field measurement unit causes the measurement control unit to measure an echo signal on which information on the eddy current error magnetic field and the vibration error magnetic field is superimposed, thereby obtaining the information on the eddy current error magnetic field and the vibration error magnetic field. Acquire together.
  • the pulse sequence applies an encoded gradient magnetic field pulse in at least two axial directions
  • the error magnetic field image acquisition unit obtains an echo signal by Fourier transform in at least two axial directions at every sampling time. Error magnetic field image data for each sampling time is obtained using the phase image data.
  • the error magnetic field measuring unit causes the measurement control unit to measure the echo signal by changing the test gradient magnetic field
  • the error magnetic field image acquiring unit is configured to output the phase image data having a different test gradient magnetic field for each sampling time. Error magnetic field image data for each sampling time is obtained using the difference.
  • the error magnetic field calculation unit decomposes each error magnetic field image data into a plurality of spherical harmonic terms, calculates a parameter value of a damped oscillation function representing the error magnetic field for each spherical harmonic term,
  • the correction magnetic field calculation unit calculates the correction magnetic field for each spherical harmonic term based on the parameter value of the damped oscillation function representing the error magnetic field for each spherical harmonic term.
  • the error magnetic field calculation unit applies a Lorentzian function or a Gaussian function to a spectral distribution obtained by performing Fourier transform of the error magnetic field image data in the time axis direction for each spherical harmonic term, and thereby attenuated vibration representing the error magnetic field. Calculate function parameter values.
  • the error magnetic field calculation unit applies a Lorentzian function or a Gaussian function to a waveform near a frequency peak in a spectrum distribution in the frequency domain, and a time domain damped oscillation function corresponding to a Fourier transform of the Lorentzian function or Gaussian function.
  • the parameter value including the decay time constant is calculated.
  • the correction magnetic field calculation unit creates a model of an impulse response function for the gradient magnetic field waveform using the parameter value of the damped oscillation function, and corrects the magnetic field as a sequential response of the model for any input gradient magnetic field waveform. Is calculated.
  • phase calibration unit for calibrating the phase error between the phase of the correction magnetic field and the phase at the frequency peak of the spectrum distribution is provided.
  • the pulse sequence includes a test gradient magnetic field before and after the refocus RF pulse, and measures an echo signal after the test gradient magnetic field after the refocus RF pulse becomes zero.
  • the vibration error magnetic field reduction method of the present invention is a vibration error magnetic field reduction method for correcting a vibration error magnetic field based on vibration of a structure of a magnetic resonance imaging apparatus caused by application of a gradient magnetic field using a correction magnetic field.
  • a measurement step for measuring an echo signal using a pulse sequence having a gradient magnetic field a step for acquiring error magnetic field image data representing an error magnetic field distribution for each sampling time using the echo signal, and an error magnetic field for each sampling time
  • a parameter value calculating step for calculating a parameter value of a damped oscillation function representing a vibration error magnetic field using image data, and a correction magnetic field for calculating a correction magnetic field based on the parameter value of the damped oscillation function representing the calculated vibration error magnetic field
  • a calculating step for measuring an echo signal using a pulse sequence having a gradient magnetic field, a step for acquiring error magnetic field image data representing an error magnetic field distribution for each sampling time using the echo signal, and an error magnetic field for each sampling time
  • a parameter value calculating step for calculating
  • the parameter value calculating step uses a Lorentzian function or a Gaussian function for a spectral distribution obtained by Fourier transforming the error magnetic field image data for each sampling time in the time axis direction, and a damped oscillation function representing the error magnetic field.
  • the parameter value of is calculated.
  • the parameter value calculating step obtains a time domain damped oscillation function corresponding to the Lorentzian function or Gaussian function applied to the spectrum distribution in the frequency domain, and sets the parameter value including the damping time constant of the damped oscillation function. calculate.
  • the correction magnetic field calculation step creates a model of an impulse response function for the gradient magnetic field waveform using the parameter value of the damped oscillation function, and uses the correction magnetic field as a sequential response of the model for any input gradient magnetic field waveform. Is calculated.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Radiology & Medical Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

In order to reduce, irrespective of measurement conditions, the deterioration of image quality arising from vibrational error magnetic fields generated by vibration of the mechanical structures of MRI devices, error magnetic field image data representing the error magnetic field distribution is acquired on the basis of echo signals measured using pulse sequences having a test gradient magnetic field. Using the error magnetic field image data, parameter values for a damped vibration function representing the vibrational error magnetic field are calculated and a correcting magnetic field is calculated on the basis of the parameter values for the damped vibration function representing the calculated vibrational error magnetic field.

Description

磁気共鳴イメージング装置及び振動誤差磁場低減方法Magnetic resonance imaging apparatus and vibration error magnetic field reduction method
 本発明は、核磁気共鳴(以下、NMRという)現象を利用して被検体の任意部位の断層像を得る磁気共鳴イメージング(以下、MRIという)装置に関し、特に傾斜磁場印加によって発生するMRI装置構造物の振動に起因した振動誤差磁場の補正技術に関する。 The present invention relates to a magnetic resonance imaging (hereinafter referred to as MRI) apparatus that obtains a tomographic image of an arbitrary part of a subject by utilizing a nuclear magnetic resonance (hereinafter referred to as NMR) phenomenon, and in particular, an MRI apparatus structure generated by applying a gradient magnetic field The present invention relates to a technique for correcting a vibration error magnetic field caused by vibration of an object.
 MRI装置は、被検体、特に人体の組織を構成する原子核スピンが発生するNMR信号を計測し、その頭部、腹部、四肢等の形態や機能を2次元的に或いは3次元的に画像化する装置である。撮像においては、NMR信号には、傾斜磁場によって異なる位相エンコードが付与されるとともに周波数エンコードされて、時系列データとして計測される。計測されたNMR信号は、2次元又は3次元フーリエ変換されることにより画像に再構成される。 The MRI device measures NMR signals generated by the spins of the subject, especially the tissues of the human body, and visualizes the form and function of the head, abdomen, limbs, etc. in two or three dimensions Device. In imaging, the NMR signal is given different phase encoding depending on the gradient magnetic field and is frequency-encoded and measured as time-series data. The measured NMR signal is reconstructed into an image by two-dimensional or three-dimensional Fourier transform.
 上記MRI装置において、所定のパルスシーケンスに基づいて撮像を行う際には、特定の領域を選択的に励起すると共に、傾斜磁場の印加時間および強度を正確かつ任意に制御する必要がある。しかし、傾斜磁場が発生する際には、傾斜磁場コイル周辺の導電性構造物に減衰性電流が誘起される。これは渦電流(Eddy Current)と呼ばれ、空間かつ時間的に変化する磁場を発生する。その結果、被検体が感受する傾斜磁場は理想状態から逸脱し、画像の歪み、信号強度の低下、ゴーストといった様々な画質劣化となって現れる。この渦電流に起因した誤差磁場を補正する手法については、これまで様々な手法が検討され、特許としても多々提案されている。 In the MRI apparatus, when imaging is performed based on a predetermined pulse sequence, it is necessary to selectively excite a specific region and to accurately and arbitrarily control the application time and intensity of the gradient magnetic field. However, when a gradient magnetic field is generated, a damping current is induced in the conductive structure around the gradient coil. This is called eddy current (Eddy Current) and generates a magnetic field that changes in space and time. As a result, the gradient magnetic field perceived by the subject deviates from the ideal state and appears as various image quality degradations such as image distortion, signal strength reduction, and ghost. Various methods for correcting the error magnetic field caused by the eddy current have been studied and many patents have been proposed.
 一方、MRI装置において傾斜磁場が発生する際には、傾斜磁場コイル電流に起因したローレンツ力が周辺構造物に波及する。MRI撮像における傾斜磁場の発生と消滅は、特定の方向を有し、頻繁に、且つ周期的に行われるので、周辺構造物に波及する力も方向性と周期性を有するようになる。すなわち、MRI撮像を行っている間、MRI装置は常に何らかの方向および周期で「加振」されていると言える。特に問題になるのは、加振の方向と周期がMRI装置の機械構造によって定まる固有振動特性と一致した場合である。機械構造物の共振現象によって発生する振動性の誤差磁場は画質に無視できない影響を及ぼす強度となる事が分かっている。従来のMRI装置は、この共振現象が発生しないように、或いは発生しても画質に影響を及ぼさないような機械構造となるよう強固に設計されていたが、昨今は製品原価の見地から、この共振発生を許容した設計の必要性が生じている。 On the other hand, when a gradient magnetic field is generated in the MRI apparatus, Lorentz force due to the gradient magnetic field coil current spreads to surrounding structures. Generation and extinction of a gradient magnetic field in MRI imaging has a specific direction, and is frequently and periodically performed. Therefore, a force that spreads to surrounding structures also has directionality and periodicity. In other words, while performing MRI imaging, it can be said that the MRI apparatus is always “vibrated” in some direction and cycle. A particular problem arises when the direction and period of excitation match the natural vibration characteristics determined by the mechanical structure of the MRI apparatus. It has been found that an oscillating error magnetic field generated by a resonance phenomenon of a mechanical structure has a non-negligible influence on image quality. Conventional MRI devices have been designed to prevent this resonance phenomenon from occurring or to have a mechanical structure that does not affect the image quality even if it occurs. There is a need for a design that allows the generation of resonance.
 この機械構造物の振動による振動誤差磁場を回避する技術の1つとして、特許文献1が挙げられる。この特許文献1に提示される技術は、対象となるMRI装置の固有振動情報を、基準となる傾斜磁場波形を用いて、予め計測および解析を行い記憶しておく。実際のMRI撮像においては、操作者が設定した計測条件と予め準備した固有振動情報を元に、パルスシーケンスの実行により発生する機械構造物の振動を推測する。そして、振動の推測値が許容量を超えているか否かを判断し、超えていれば計測条件の変更を促すというものである。 One example of a technique for avoiding a vibration error magnetic field due to vibration of this mechanical structure is Patent Document 1. In the technique presented in Patent Document 1, natural vibration information of a target MRI apparatus is measured and analyzed in advance using a reference gradient magnetic field waveform and stored. In actual MRI imaging, the vibration of the mechanical structure generated by the execution of the pulse sequence is estimated based on the measurement conditions set by the operator and the natural vibration information prepared in advance. Then, it is determined whether or not the estimated value of the vibration exceeds the allowable amount, and if it exceeds, the change of the measurement condition is prompted.
特開2005-270326号公報JP 2005-270326 A 特許第4106053号公報Japanese Patent No. 4106053 米国特許第4698591号公報U.S. Pat. 国際公開WO2004/004563号International Publication WO2004 / 004563 国際公開WO2010/143586号International Publication WO2010 / 143586
 しかしながら、計測条件によって定まる傾斜磁場波形の組み合わせが無限である事を鑑みると、予め準備した固有振動情報に基づいて実際に発生する機械構造物の振動の全てを精度良く推測するのは困難と考えられる。また、操作者が計測を開始する前に、発生する振動を予測する内部処理(計算)に要する待ち時間が発生し、且つ不適切な計測条件であれば撮像条件変更を求められるのは臨床使用上好ましくない。更に、振動誤差磁場の影響を顕著に受けるのが臨床計測の大半を占めるFSE (Fast Spin Echo)シーケンスである事を踏まえると、この技術を実用に供するには解決すべき課題が多く残されていると考えられる。 However, considering that the combinations of gradient magnetic field waveforms determined by the measurement conditions are infinite, it is difficult to accurately estimate all the vibrations of mechanical structures that actually occur based on the natural vibration information prepared in advance. It is done. In addition, there is a waiting time required for internal processing (calculation) to predict the vibration to occur before the operator starts measurement, and it is necessary to change the imaging conditions if it is inappropriate measurement conditions. Not preferable. Furthermore, given that the FSE 振動 (Fast Spin Echo) sequence, which accounts for the majority of clinical measurements, is significantly affected by the vibration error magnetic field, many problems remain to be solved before this technology can be put to practical use. It is thought that there is.
 そこで、本発明は、このような課題を鑑みてなされたものであり、計測条件に依らずに、MRI装置の機械構造物の振動によって発生する振動誤差磁場に起因する画質劣化を低減する事が可能なMRI装置及び振動誤差磁場低減方法を提供する事を目的とする。 Therefore, the present invention has been made in view of such a problem, and it is possible to reduce image quality degradation caused by a vibration error magnetic field generated by vibration of a mechanical structure of an MRI apparatus regardless of measurement conditions. An object of the present invention is to provide a possible MRI apparatus and vibration error magnetic field reduction method.
 本発明は上記目的を達成するために、本発明は、テスト傾斜磁場を有するパルスシーケンスを用いて計測したエコー信号に基づいて、誤差磁場分布を表す誤差磁場画像データを取得し、この誤差磁場画像データを用いて振動誤差磁場を表す減衰振動関数のパラメータ値を算出し、算出した振動誤差磁場を表す減衰振動関数のパラメータ値に基づいて、補正磁場を算出する。このパラメータ値は、MRI装置毎に、その振動特性を表す特性値となる。 In order to achieve the above object, the present invention acquires error magnetic field image data representing an error magnetic field distribution based on an echo signal measured using a pulse sequence having a test gradient magnetic field. The parameter value of the damped vibration function representing the vibration error magnetic field is calculated using the data, and the correction magnetic field is calculated based on the parameter value of the damped vibration function representing the calculated vibration error magnetic field. This parameter value is a characteristic value representing the vibration characteristic of each MRI apparatus.
 具体的には、本発明のMRI装置は、撮像空間に静磁場を発生する静磁場発生部と、静磁場に重畳させて傾斜磁場を発生する傾斜磁場発生部と、傾斜磁場の印加に起因して前記撮像空間に発生する誤差磁場を補正する補正磁場を発生する補正磁場発生部と、静磁場発生部と傾斜磁場発生部と補正磁場発生部が据え付けられてこれらを支持する構造物と、所定のパルスシーケンスに基づいて撮像空間に配置された被検体からエコー信号を計測する計測制御部と、傾斜磁場の印加に伴い撮像空間に発生する誤差磁場を補正するための補正磁場を求める補正磁場演算部と、を備え、補正磁場演算部は、傾斜磁場の印加に起因する前記構造部の振動に基づく振動誤差磁場と、を含む誤差磁場を求め、該求めた誤差磁場を補正する前記補正磁場を求めることを特徴とする。 Specifically, the MRI apparatus of the present invention is caused by the application of a gradient magnetic field, a static magnetic field generation unit that generates a static magnetic field in an imaging space, a gradient magnetic field generation unit that generates a gradient magnetic field superimposed on the static magnetic field, and a gradient magnetic field. A correction magnetic field generation unit that generates a correction magnetic field that corrects an error magnetic field generated in the imaging space, a static magnetic field generation unit, a gradient magnetic field generation unit, and a correction magnetic field generation unit that are installed to support these, and a predetermined structure Measurement control unit that measures echo signals from the subject placed in the imaging space based on the pulse sequence of the above, and correction magnetic field calculation to obtain a correction magnetic field for correcting the error magnetic field generated in the imaging space due to the application of the gradient magnetic field The correction magnetic field calculation unit calculates an error magnetic field including an oscillation error magnetic field based on the vibration of the structural unit caused by application of the gradient magnetic field, and corrects the calculated error magnetic field. Seeking The features.
 また、本発明の振動誤差磁場低減方法は、テスト傾斜磁場を有するパルスシーケンスを用いてエコー信号を計測する計測ステップと、エコー信号を用いて、そのサンプリング時間毎の誤差磁場分布を表す誤差磁場画像データを取得するステップと、サンプリング時間毎の誤差磁場画像データを用いて振動誤差磁場を表す減衰振動関数のパラメータ値を算出するパラメータ値算出ステップと、算出された振動誤差磁場を表す減衰振動関数のパラメータ値に基づいて、補正磁場を算出する補正磁場算出ステップと、を備えていることを特徴とする。 Further, the vibration error magnetic field reduction method of the present invention includes a measurement step for measuring an echo signal using a pulse sequence having a test gradient magnetic field, and an error magnetic field image representing an error magnetic field distribution for each sampling time using the echo signal. A step of acquiring data, a parameter value calculating step of calculating a parameter value of a damped vibration function representing a vibration error magnetic field using error magnetic field image data for each sampling time, and a damping vibration function representing the calculated vibration error magnetic field A correction magnetic field calculation step for calculating a correction magnetic field based on the parameter value.
 本発明のMRI装置及び振動誤差磁場低減方法によれば、計測条件に依らずに、MRI装置の機械構造物の振動によって発生する振動誤差磁場に起因する画質劣化を低減する事が可能となる。 According to the MRI apparatus and the vibration error magnetic field reduction method of the present invention, it is possible to reduce image quality degradation caused by the vibration error magnetic field generated by the vibration of the mechanical structure of the MRI apparatus regardless of the measurement conditions.
 更に、この効果によって、MRI装置の機械構造設計における自由度が向上させることができ、また、ある程度の振動を許す事が可能となるので、MRI装置の材料費を低減する事ができるようになるという副次的効果も有する。 Furthermore, this effect can improve the degree of freedom in the mechanical structure design of the MRI apparatus, and can allow a certain amount of vibration, so that the material cost of the MRI apparatus can be reduced. There is also a secondary effect.
本発明におけるMRI装置の一例の全体構成を示すブロック図The block diagram which shows the whole structure of an example of the MRI apparatus in this invention 補正磁場演算部200の機能ブロック図Functional block diagram of the corrected magnetic field calculation unit 200 補正磁場演算部200の各機能部が連携して振動誤差磁場の補正を行う処理フローを示すフローチャート。6 is a flowchart showing a processing flow in which functional units of the correction magnetic field calculation unit 200 cooperate to correct the vibration error magnetic field. 振動誤差磁場の高周波成分の計測に好適なパルスシーケンスを示す図。The figure which shows a suitable pulse sequence for the measurement of the high frequency component of a vibration error magnetic field. 図4のパルスシーケンスで、エコー信号を計測するための、1つの位相エンコード値ごとにScan(+),Scan(-)を行なう順序例を示す図。FIG. 5 is a diagram illustrating an example of an order in which Scan (+) and Scan (−) are performed for each phase encode value for measuring an echo signal in the pulse sequence of FIG. 4. 時系列位相画像データを取得する処理フローを示すフローチャート。The flowchart which shows the processing flow which acquires time series phase image data. 振動誤差磁場解析の処理フローを示すフローチャート。The flowchart which shows the processing flow of a vibration error magnetic field analysis. (a)にTukey Windowを、(b)に振動誤差磁場の(X to X)項にTukey Windowを乗じた例を図。(a) Tukey Window, (b) Example of vibration error magnetic field (X to X) multiplied by Tukey Window. (a)に絶対値スペクトルの例を、(b)に位相スペクトルの例を示す図。FIG. 4A shows an example of an absolute spectrum, and FIG. 4B shows an example of a phase spectrum. 位相校正データの一例のグラフ。An example graph of phase calibration data. 本発明の効果を示す画像。(a)は本発明の振動誤差磁場低減処理を行わずに得られた場合の画像であり、(b)は本発明の振動誤差磁場低減処理を行って得られた場合の画像。The image which shows the effect of this invention. (a) is an image obtained when the vibration error magnetic field reduction processing of the present invention is not performed, and (b) is an image obtained when the vibration error magnetic field reduction processing of the present invention is performed.
 以下、添付図面に従って本発明のMRI装置の好ましい実施形態について詳説する。なお、発明の実施形態を説明するための全図において、同一機能を有するものは同一符号を付け、その繰り返しの説明は省略する。 Hereinafter, preferred embodiments of the MRI apparatus of the present invention will be described in detail with reference to the accompanying drawings. Note that components having the same function are denoted by the same reference symbols throughout the drawings for describing the embodiments of the invention, and the repetitive description thereof is omitted.
 最初に、本発明に係るMRI装置の一例の全体概要を図1に基づいて説明する。図1は、本発明に係るMRI装置の一実施例の全体構成を示すブロック図である。このMRI装置は、NMR現象を利用して被検体の断層画像を得るもので、図1に示すように、静磁場発生系2と、傾斜磁場発生系1と、送信系3と、受信系5と、信号処理系7と、計測制御部6と、演算処理部8と、補正磁場演算部200と、を備えて構成される。 First, an overall outline of an example of an MRI apparatus according to the present invention will be described with reference to FIG. FIG. 1 is a block diagram showing the overall configuration of an embodiment of an MRI apparatus according to the present invention. This MRI apparatus uses a NMR phenomenon to obtain a tomographic image of a subject, and as shown in FIG. 1, a static magnetic field generation system 2, a gradient magnetic field generation system 1, a transmission system 3, and a reception system 5 A signal processing system 7, a measurement control unit 6, a calculation processing unit 8, and a correction magnetic field calculation unit 200.
 静磁場発生系2は、被検体9の周りにその体軸方向または体軸と直交する方向に均一な静磁場を発生させるもので、上記被検体9の周りのある広がりをもった空間に永久磁石方式、または常電導方式、あるいは超電導方式の図示していない磁場発生手段が配置されている。 The static magnetic field generation system 2 generates a uniform static magnetic field around the subject 9 in the direction of the body axis or in a direction perpendicular to the body axis. A magnetic field generating means (not shown) of a magnet system, a normal conducting system, or a superconducting system is arranged.
 傾斜磁場発生系1は、X、Y、Zの三軸方向に巻かれた傾斜磁場コイル10と、それぞれのコイルを駆動する傾斜磁場電源11とから成り、後述する計測制御部6から命令にしたがってそれぞれのコイルの傾斜磁場電源11を駆動することにより、X、Y、Zの三軸方向の傾斜磁場Gs、Gp、Gfを被検体9に印加するようになっている。 The gradient magnetic field generating system 1 is composed of a gradient magnetic field coil 10 wound in three axial directions of X, Y, and Z, and a gradient magnetic field power source 11 for driving each coil. By driving the gradient magnetic field power supply 11 of each coil, gradient magnetic fields Gs, Gp, and Gf in the three axial directions of X, Y, and Z are applied to the subject 9.
 2次元スライス面の撮像時には、スライス面(撮像断面)に直交する方向にスライス傾斜磁場パルス(Gs)が印加されて被検体9に対するスライス面が設定され、そのスライス面に直交して且つ互いに直交する残りの2つの方向に位相エンコード傾斜磁場パルス(Gp)と周波数エンコード(リードアウト)傾斜磁場パルス(Gf)が印加されて、NMR信号(エコー信号)にそれぞれの方向の位置情報がエンコードされる。 When imaging a two-dimensional slice plane, a slice gradient magnetic field pulse (Gs) is applied in a direction orthogonal to the slice plane (imaging cross section) to set a slice plane for the subject 9, and is orthogonal to the slice plane and orthogonal to each other Phase encoding gradient magnetic field pulse (Gp) and frequency encoding (leadout) gradient magnetic field pulse (Gf) are applied in the remaining two directions, and position information in each direction is encoded in the NMR signal (echo signal). .
 また傾斜磁場の印加に起因する渦電流や残留磁場に起因する誤差磁場、或いは振動に起因する誤差磁場の空間且つ時間的な情報から、静磁場発生系2の一部を形成しているシムコイルや局在コイル、或いは傾斜磁場発生系1に対して、補正電流を印加することで上記各誤差磁場を低減する。 In addition, a shim coil that forms part of the static magnetic field generation system 2 from the spatial and temporal information of the error magnetic field due to the eddy current and residual magnetic field due to the application of the gradient magnetic field, or the residual magnetic field, Each error magnetic field is reduced by applying a correction current to the local coil or the gradient magnetic field generation system 1.
 送信系3は、被検体9の生体組織を構成する原子の原子核にNMR現象を起こさせるために高周波磁場(以下、RFという)パルスを照射するもので、高周波発振器12と、変調器13と、高周波増幅器14と、送信側のRF送信コイル15とから成る。具体的には、後述の計測制御部6からの命令に従って高周波発振器12が駆動されて高周波パルスを発生し、変調器13により高周波パルスが振幅変調され、高周波増幅器14により増幅された後に被検体9に近接して配置されたRF送信コイル15に供給されることにより、RFパルスが被検体9に照射される。 The transmission system 3 irradiates a high-frequency magnetic field (hereinafter referred to as RF) pulse in order to cause an NMR phenomenon to atomic nuclei constituting the biological tissue of the subject 9, a high-frequency oscillator 12, a modulator 13, It comprises a high frequency amplifier 14 and an RF transmission coil 15 on the transmission side. Specifically, the high-frequency oscillator 12 is driven in accordance with a command from the measurement control unit 6 described later to generate a high-frequency pulse, the high-frequency pulse is amplitude-modulated by the modulator 13, and amplified by the high-frequency amplifier 14, and then the subject 9 The RF pulse is supplied to the RF transmission coil 15 arranged in the vicinity of the object 9 so that the subject 9 is irradiated with the RF pulse.
 受信系5は、被検体9の生体組織を構成する原子核のNMR現象により放出されるエコー信号(NMR信号)を検出するもので、受信側のRF受信コイル16と、増幅器17と、直交位相検波器18と、A/D変換器19とから成る。RF送信コイル15から照射された電磁波による被検体9の応答の電磁波(NMR信号)は被検体9に近接して配置されたRF受信コイル16で検出され、増幅器17及び直交位相検波器18を介してA/D変換器19に入力されてデジタル量に変換され、さらに計測制御部6からの命令によるタイミングで直交位相検波器18によりサンプリングされた二系列の収集データとされ、その信号が信号処理系7に送られるようになっている。 The receiving system 5 detects an echo signal (NMR signal) emitted by the NMR phenomenon of the nuclei constituting the biological tissue of the subject 9, and includes a receiving-side RF receiving coil 16, an amplifier 17, and quadrature detection. And an A / D converter 19. The response electromagnetic wave (NMR signal) of the subject 9 due to the electromagnetic wave irradiated from the RF transmission coil 15 is detected by the RF reception coil 16 arranged close to the subject 9 and passes through the amplifier 17 and the quadrature detector 18. Is input to the A / D converter 19 and converted into a digital quantity, and further, two series of collected data sampled by the quadrature phase detector 18 at the timing according to the command from the measurement control unit 6, and the signal is subjected to signal processing. It is to be sent to system 7.
 信号処理系7は、受信系5で検出したエコー信号を用いて画像再構成演算を行うと共に画像表示をするもので、エコー信号についてフーリエ変換、補正係数計算、画像再構成等の処理及び計測制御部6の制御を行う演算処理部8と、経時的な画像解析処理及び計測を行うプログラムやその実行において用いる不変のパラメータなどを記憶するROM(読み出し専用メモリ)20と、前計測で得た計測パラメータや受信系5で検出したエコー信号、及び関心領域設定に用いる画像を一時保管すると共にその関心領域を設定するためのパラメータなどを記憶するRAM(随時書き込み読み出しメモリ)21と、演算処理部8で再構成された画像データを記録するデータ格納部となる光磁気ディスク22及び磁気ディスク23と、これらの光磁気ディスク22又は磁気ディスク24から読み出した画像データを映像化して断層像として表示する表示部となるディスプレイ23とから成る。 The signal processing system 7 performs image reconstruction calculation and image display using the echo signal detected by the receiving system 5, and processes and measurement control such as Fourier transform, correction coefficient calculation, image reconstruction, etc. for the echo signal A processing unit 8 for controlling the unit 6, a ROM (read-only memory) 20 for storing a program for performing image analysis processing and measurement over time, an invariant parameter used in the execution, and the measurement obtained in the previous measurement A RAM (temporary writing / reading memory) 21 for temporarily storing parameters and echo signals detected by the receiving system 5 and an image used for setting the region of interest and storing parameters for setting the region of interest, and an arithmetic processing unit 8 Are read from the magneto-optical disk 22 and the magnetic disk 24 as data storage units for recording the image data reconstructed in It comprises a display 23 which is a display unit for converting the projected image data into an image and displaying it as a tomographic image.
 計測制御部6は、ある所定のパルスシーケンスに基づいてRFパルスと傾斜磁場パルスを繰り返し印加して、被検体9からのエコー信号の計測を制御する制御手段となるもので、演算処理部7の制御で動作し、被検体9の断層像のデータ収集に必要な種々の命令を送信系3、静磁場発生系2の一部を形成しているシムコイルや局在コイル、傾斜磁場発生系1、および受信系5に送る。 The measurement control unit 6 is a control unit that repeatedly applies an RF pulse and a gradient magnetic field pulse based on a predetermined pulse sequence, and controls the measurement of an echo signal from the subject 9. Various commands necessary for data acquisition of tomographic images of the subject 9 are transmitted in the control system 3, shim coils and localized coils forming part of the static magnetic field generation system 2, the gradient magnetic field generation system 1, And to the receiving system 5.
 また、操作部4は、信号処理系7で行う処理の制御情報を入力するもので、トラックボールやマウス25及び、キーボード26から成る。この操作部4はディスプレイ23に近接して配置され、操作者がディスプレイ23を見ながら操作部4を介してインタラクティブにMRI装置の各種処理を制御する。 The operation unit 4 is used to input control information for processing performed by the signal processing system 7, and includes a trackball, a mouse 25, and a keyboard 26. The operation unit 4 is disposed in the vicinity of the display 23, and an operator interactively controls various processes of the MRI apparatus via the operation unit 4 while looking at the display 23.
 現在MRI装置の撮像対象核種は、臨床で普及しているものとしては、被検体の主たる構成物質である水素原子核(プロトン)である。プロトン密度の空間分布や、励起状態の緩和時間の空間分布に関する情報を画像化することで、人体頭部、腹部、四肢等の形態または、機能を2次元もしくは3次元的に撮像する。 Currently, the radionuclide to be imaged by the MRI apparatus is a hydrogen nucleus (proton) which is the main constituent material of the subject, as is widely used in clinical practice. By imaging information on the spatial distribution of proton density and the spatial distribution of relaxation time in the excited state, the form or function of the human head, abdomen, limbs, etc. is imaged two-dimensionally or three-dimensionally.
 本発明を創出するに至った経緯としては、発明者は、渦電流に起因する誤差磁場(以下、渦電流誤差磁場という)の計測結果には、MRI装置の機械構造物の振動に起因する誤差磁場(以下、振動誤差磁場という)の成分も重畳していることを発見したことによる。従来(公知)の渦電流誤差磁場の計測方法は、予め印加したテスト傾斜磁場に対するMRI装置の応答を計測しているので、計測結果には渦電流誤差磁場のみならずテスト傾斜磁場に起因する振動誤差磁場も含んでいて然るべきである。 As the background to the creation of the present invention, the inventor found that the measurement result of the error magnetic field caused by eddy current (hereinafter referred to as eddy current error magnetic field) includes an error caused by vibration of the mechanical structure of the MRI apparatus. This is due to the fact that the magnetic field component (hereinafter referred to as vibration error magnetic field) is also superimposed. The conventional (known) eddy current error magnetic field measurement method measures the response of the MRI device to the pre-applied test gradient magnetic field, so the measurement result includes not only the eddy current error magnetic field but also the vibration caused by the test gradient magnetic field. It should include the error magnetic field.
 そこで、発明者は、傾斜磁場印加によって発生する渦電流誤差磁場とMRI装置構造物の振動に起因した振動誤差磁場を共に補正する本発明のMRI装置及び振動誤差磁場低減方法を想起したので、以下に、その一実施例を詳細に説明する。 Therefore, the inventor recalled the MRI apparatus and vibration error magnetic field reduction method of the present invention that correct both the eddy current error magnetic field generated by applying the gradient magnetic field and the vibration error magnetic field caused by the vibration of the MRI apparatus structure. Next, one embodiment will be described in detail.
 最初に、本実施例に係る振動誤差磁場を補正する補正磁場を算出し、出力する補正磁場演算部200の各機能を、図2に示す補正磁場演算部200の機能ブロック図に基づいて説明する。本実施例に係る補正磁場演算部200は、誤差磁場計測部201と、誤差磁場画像取得部202と、誤差磁場算出部203と、誤差磁場補正部204と、補正磁場算出部205と、位相較正部206と、を有してなる。これらの各部は、計測制御部6又は演算処理部8内に実装される。そして、これらの各部が連携して、図3のフローチャートに示す振動誤差磁場の補正を行う処理を行う。以下、図3のフローチャートに基づいて、本実施例の振動誤差磁場補正処理の概要を説明する。 First, each function of the correction magnetic field calculation unit 200 that calculates and outputs a correction magnetic field for correcting the vibration error magnetic field according to the present embodiment will be described based on the functional block diagram of the correction magnetic field calculation unit 200 illustrated in FIG. . The correction magnetic field calculation unit 200 according to the present embodiment includes an error magnetic field measurement unit 201, an error magnetic field image acquisition unit 202, an error magnetic field calculation unit 203, an error magnetic field correction unit 204, a correction magnetic field calculation unit 205, and a phase calibration. Part 206. Each of these units is mounted in the measurement control unit 6 or the arithmetic processing unit 8. Then, these units cooperate to perform processing for correcting the vibration error magnetic field shown in the flowchart of FIG. Hereinafter, the outline of the vibration error magnetic field correction processing of the present embodiment will be described based on the flowchart of FIG.
 ステップ301で、振動誤差磁場の計測が行なわれる。誤差磁場計測部201は、所定の計測シーケンスを生成して、計測制御部6に実行させて、振動誤差磁場が重畳されたエコー信号の計測を行わせ、振動誤差磁場が重畳されたエコー信号を取得する。詳細は後述する。 In step 301, the vibration error magnetic field is measured. The error magnetic field measurement unit 201 generates a predetermined measurement sequence, causes the measurement control unit 6 to execute the measurement of the echo signal on which the vibration error magnetic field is superimposed, and outputs the echo signal on which the vibration error magnetic field is superimposed. get. Details will be described later.
 ステップ302で、ステップ301で取得されたエコー信号を用いて時系列の誤差磁場画像データが取得される。誤差磁場画像取得部202は、ステップ301で取得されたエコー信号を、空間軸方向にフーリエ変換して、エコー信号のサンプリング時刻毎の複素画像を取得し、各複素画像から位相画像を求めて、時系列位相画像データを取得する。さらに時系列位相画像データから時系列誤差磁場画像データを取得する。詳細は後述する。 In step 302, time-series error magnetic field image data is acquired using the echo signal acquired in step 301. The error magnetic field image acquisition unit 202 Fourier transforms the echo signal acquired in step 301 in the spatial axis direction, acquires a complex image for each sampling time of the echo signal, obtains a phase image from each complex image, Obtain time-series phase image data. Further, time-series error magnetic field image data is acquired from the time-series phase image data. Details will be described later.
 ステップ303で、ステップ302で取得された時系列位相画像データを用いて振動磁場解析が行なわれる。振動磁場解析の詳細は後述する。 In step 303, an oscillating magnetic field analysis is performed using the time-series phase image data acquired in step 302. Details of the oscillating magnetic field analysis will be described later.
 ステップ304で、ステップ303の振動誤差磁場解析の結果を用いて、入力傾斜磁場波形に応じて振動誤差磁場を補正するための補正磁場が算出される。補正磁場の算出の詳細は後述する。 In step 304, using the result of the vibration error magnetic field analysis in step 303, a correction magnetic field for correcting the vibration error magnetic field according to the input gradient magnetic field waveform is calculated. Details of the calculation of the correction magnetic field will be described later.
 ステップ305で、ステップ304で算出された補正磁場の位相校正が行われる。位相校正の詳細は後述する。
 以上までが、本実施例の処理フローの説明である。以下、各ステップの詳細を説明する。
In step 305, phase correction of the correction magnetic field calculated in step 304 is performed. Details of the phase calibration will be described later.
The above is the description of the processing flow of the present embodiment. Details of each step will be described below.
 (1.振動誤差磁場計測)
 次に、ステップ301の振動誤差磁場計測の詳細を説明する。
(1. Vibration error magnetic field measurement)
Next, details of the vibration error magnetic field measurement in step 301 will be described.
 傾斜磁場印加によって誘起されるMRI装置構造物の振動に起因した振動誤差磁場は、周波数分布を有する。従って、対象となる周波数成分を正しく計測するために、最適な時間分解能および計測窓(サンプリング時間)を有するパルスシーケンスを用いて、振動誤差磁場が重畳されたエコー信号を計測する必要がある。そこで、この要求を満たす公知の計測手法であって、振動誤差磁場の低周波成分の計測に好適な計測シーケンスを用いる手法と高周波成分の計測に好適な計測シーケンスを用いる手法を以下に説明する。 The vibration error magnetic field caused by the vibration of the MRI apparatus structure induced by applying the gradient magnetic field has a frequency distribution. Therefore, in order to correctly measure the target frequency component, it is necessary to measure an echo signal on which a vibration error magnetic field is superimposed using a pulse sequence having an optimal time resolution and a measurement window (sampling time). Therefore, a known measurement method that satisfies this requirement, a method using a measurement sequence suitable for measuring a low frequency component of a vibration error magnetic field and a method using a measurement sequence suitable for measuring a high frequency component will be described below.
 なお、下記いずれの手法においても、振動誤差磁場の計測においては、予め渦電流誤差磁場を補正した状態で振動誤差磁場のみの情報が重畳されたエコー信号を計測して振動誤差磁場のみの情報を取得しても良いし、渦電流誤差磁場を補正せず渦電流誤差磁場と振動誤差磁場の情報が共に重畳されたエコー信号を計測して、これらの情報を同時に取得しても良い。両方の情報を同時に取得した場合は、
 渦電流誤差磁場と振動誤差磁場とを区別無く補正することになる。
In any of the following methods, in the measurement of the vibration error magnetic field, an echo signal on which only the information on the vibration error magnetic field is superimposed in a state where the eddy current error magnetic field is corrected in advance is measured to obtain information on only the vibration error magnetic field. Alternatively, the eddy current error magnetic field may not be corrected, and an echo signal in which information on the eddy current error magnetic field and the vibration error magnetic field are superimposed may be measured, and the information may be acquired simultaneously. If you get both pieces of information at the same time,
The eddy current error magnetic field and the vibration error magnetic field are corrected without distinction.
 (1.1 低周波数成分の計測)
 約10~20[Hz]以下の低い周波数を有する成分の計測には、十分長い時間に渡って誤差磁場変動を計測する必要がある。これには、特許文献2に示される計測方法が適している。この手法は計測窓(計測時間)における制限が無いので、誤差磁場変動の周波数が限りなくゼロに近くても、或いは減衰時間が非常に長くても、有意に誤差磁場変動を計測する事が可能である。
(1.1 Measurement of low frequency components)
In order to measure a component having a low frequency of about 10 to 20 [Hz] or less, it is necessary to measure the error magnetic field fluctuation over a sufficiently long time. For this, the measurement method disclosed in Patent Document 2 is suitable. This method has no limitation on the measurement window (measurement time), so even if the error magnetic field fluctuation frequency is almost zero or the decay time is very long, the error magnetic field fluctuation can be measured significantly. It is.
 エコー信号を計測するための傾斜磁場に起因する誤差磁場の影響と、静磁場不均一による影響を除外するため、テスト傾斜磁場の極性を反転した2回の計測間で、或いは、テスト傾斜磁場有りと無しの2回の計測間で、エコー信号又はそのフーリエ変換後の画像の差分を取得しても良い。 In order to exclude the influence of error magnetic field due to gradient magnetic field for measuring echo signal and the influence of static magnetic field inhomogeneity, between two measurements with reversed polarity of test gradient magnetic field or with test gradient magnetic field The difference between the echo signal or the image after the Fourier transform may be acquired between the two measurements without and.
 ただし、特許文献2の手法は繰り返し時間TRで時間分解能が決まるため、計測できる周波数に上限が存在する。従って、高周波数成分は後述する手法を用いるのが望ましい。 However, the method of Patent Document 2 has an upper limit on the frequency that can be measured because the time resolution is determined by the repetition time TR. Therefore, it is desirable to use the method described later for high frequency components.
 誤差磁場計測部201は、特許文献2に記載のパルスシーケンスを構成するRFパルスとテスト傾斜磁場を含む傾斜磁場パルスの印加タイミング及び印加強度、或いは、サンプリングタイミング等を具体的に規定するデータを求めて該パルスシーケンスを生成する。そして、計測制御部6に求めたデータを通知し、計測制御部6にパルスシーケンスを実行させて、振動誤差磁場が反映されたエコー信号を計測する。なお、テスト傾斜磁場の極性を反転した2回の計測、又は、テスト傾斜磁場有りと無しの2回の計測を行なう場合は、誤差磁場計測部201は、各パルスシーケンスを生成して計測制御部6にそれぞれ実行されて、テスト傾斜磁場の異なるエコー信号をそれぞれ計測し、エコー信号又はそのフーリエ変換後の画像の差分を取得する。 The error magnetic field measurement unit 201 obtains data that specifically defines the application timing and application intensity of the gradient magnetic field pulse including the RF pulse and the test gradient magnetic field that constitute the pulse sequence described in Patent Document 2, or the sampling timing. To generate the pulse sequence. Then, the obtained data is notified to the measurement control unit 6, and the measurement control unit 6 is caused to execute a pulse sequence to measure an echo signal in which the vibration error magnetic field is reflected. In addition, when performing two measurements with the polarity of the test gradient magnetic field reversed or two measurements with and without the test gradient magnetic field, the error magnetic field measurement unit 201 generates each pulse sequence to generate a measurement control unit. 6 is executed respectively to measure echo signals having different test gradient magnetic fields, and acquire the difference between the echo signals or the images after Fourier transform thereof.
 (1.2 高周波成分の計測)
 高周波数成分の計測方法の1つとしては、特許文献3で示されるような、予めテスト傾斜磁場を印加し、その直後、或いは所定の時間後に高周波励起を行ってエコー信号を計測する技術が挙げられる。
(1.2 Measurement of high frequency components)
One method for measuring high-frequency components is a technique for measuring echo signals by applying a test gradient magnetic field in advance and performing high-frequency excitation immediately after or after a predetermined time, as shown in Patent Document 3. It is done.
 別の手法として、図4に示すような計測シーケンスを用いてもよい。この計測シーケンスはSpin Echoシーケンスを基にしている。RF,Gs,Gp,Gf,Echo,A/Dはそれぞれ、RFパルス、スライス傾斜磁場、位相エンコード傾斜磁場、周波数エンコード傾斜磁場、エコー信号、サンプリング期間の軸を意味する。図4は、2繰り返し分のシーケンス・チャートを示し、前半には「-1」の添え字を付け、後半には「-2」の添え字を付けて表している。そして、一繰り返し時間(TR)内で、90°励起用RFパルス401とスライス選択傾斜磁場パルス403とを略同時に印加して所望の撮像領域のスピンを励起し、位相エンコード方向のエンコード傾斜磁場パルス405と周波数エンコード方向のエンコード傾斜磁場パルス406とを印加して励起されたスピンの位相に位置情報をエンコードし、180°再収束RFパルス402とスライス選択傾斜磁場パルス404とを略同時に印加して、スピンの位相を再収束させてエコー信号を形成させ、サンプリング期間410でエコー信号を計測する。 As another method, a measurement sequence as shown in FIG. 4 may be used. This measurement sequence is based on the Spin Echo sequence. RF, Gs, Gp, Gf, Echo, and A / D mean axes of RF pulse, slice gradient magnetic field, phase encode gradient magnetic field, frequency encode gradient magnetic field, echo signal, and sampling period, respectively. FIG. 4 shows a sequence chart for two repetitions, in which the first half is suffixed with “-1” and the second half is suffixed with “-2”. Then, within one repetition time (TR), the 90 ° excitation RF pulse 401 and the slice selection gradient magnetic field pulse 403 are applied almost simultaneously to excite the spin in the desired imaging region, and the encode gradient magnetic field pulse in the phase encoding direction. 405 and an encoded gradient magnetic field pulse 406 in the frequency encoding direction are applied to encode position information into the phase of the excited spin, and a 180 ° refocus RF pulse 402 and a slice selective gradient magnetic field pulse 404 are applied substantially simultaneously. Then, the phase of the spin is refocused to form an echo signal, and the echo signal is measured in the sampling period 410.
 このようなSpin Echoシーケンスに、印加量の等しいテスト傾斜磁場407,408が誤差磁場を計測する物理軸方向(図4の例では、周波数エンコード方向)に再収束RFパルス402の前後に印加される。時刻TEの直前にテスト傾斜磁場408がゼロになるようにして、このテスト傾斜磁場により誘起された(渦電流、あるいは機械振動に起因する)誤差磁場が重畳したエコー信号を、その直後、或いは所定の時間後にサンプリングする。 In such Spin Echo sequence, test gradient magnetic fields 407 and 408 having the same applied amount are applied before and after the refocus RF pulse 402 in the physical axis direction (frequency encoding direction in the example of FIG. 4) for measuring the error magnetic field. An echo signal superimposed with an error magnetic field (due to eddy current or mechanical vibration) induced by the test gradient magnetic field so that the test gradient magnetic field 408 becomes zero immediately before the time TE, or immediately after or Sampling after
 以上のような誤差磁場計測シーケンスにおいて、2次元画像化するための傾斜磁場403,404,405,406,407に起因する誤差磁場の影響と、静磁場不均一性による影響を除外するため、テスト傾斜磁場407,408の極性を異ならせて(つまり反転させて)、或いはテスト傾斜磁場の有り無しで、それぞれエコー信号の計測を行なう。そのため、別の繰り返し時間(TR)では、テスト傾斜磁場407,408の極性を反転し、テスト傾斜磁場407,408以外は同じとする。テスト傾斜磁場407,408が正極性の計測をScan(+),負極性の計測をScan(-)とする。或いは、テスト傾斜磁場有りの計測をScan(+)、テスト傾斜磁場無しの計測をScan(-)としても良いし、その逆でも良い。 In the error magnetic field measurement sequence as described above, the polarities of the test gradient magnetic fields 407 and 408 are made different in order to exclude the influence of the error magnetic field caused by the gradient magnetic fields 403, 404, 405, 406, and 407 for two-dimensional imaging and the influence of static magnetic field inhomogeneity. (I.e. reversed) or with or without a test gradient magnetic field. For this reason, in another repetition time (TR), the polarities of the test gradient magnetic fields 407 and 408 are reversed, and the same except for the test gradient magnetic fields 407 and 408. In the test gradient magnetic fields 407 and 408, measurement of positive polarity is Scan (+), and measurement of negative polarity is Scan (-). Alternatively, measurement with a test gradient magnetic field may be Scan (+), measurement without a test gradient magnetic field may be Scan (-), and vice versa.
 エコー信号計測については、図5に示すように、1つの位相エンコード値ごとにScan(+),Scan(-)を順次行い、これが励起断面の2軸位相エンコードに必要な回数Np * Nf回繰り返される。なお、テスト傾斜磁場の極性反転は、交互でなくてもよく、いずれか一方のテスト傾斜磁場の計測を終了後に、テスト傾斜磁場の極性を反転して計測を繰り返しても良い。 For echo signal measurement, as shown in Fig. 5, Scan (+) and Scan (-) are sequentially performed for each phase encode value, and this is repeated Np * Nf times as necessary for biaxial phase encoding of the excitation cross section. It is. Note that the polarity inversion of the test gradient magnetic field does not have to be alternate. After the measurement of one of the test gradient magnetic fields is completed, the polarity of the test gradient magnetic field is inverted and the measurement may be repeated.
 この図4の誤差磁場計測シーケンスは、特許文献3の誤差磁場計測シーケンスのようにテスト傾斜磁場印加後にRFパルスによる励起を行う必要が無いので、傾斜磁場印加中、或いは傾斜磁場をゼロにした直後から誤差磁場を計測できる利点がある。 The error magnetic field measurement sequence in FIG. 4 does not need to be excited by an RF pulse after applying the test gradient magnetic field as in the error magnetic field measurement sequence of Patent Document 3, so during the gradient magnetic field application or immediately after the gradient magnetic field is made zero. From this, there is an advantage that the error magnetic field can be measured.
 以上の2つの手法のおける振動誤差磁場に対する周波数分解能は、エコー信号のサンプリングの帯域幅(BW)で決まり、且つ、低周波数側の計測能力はエコー信号取得時間(窓時間)で決まる。 The frequency resolution for the vibration error magnetic field in the above two methods is determined by the echo signal sampling bandwidth (BW), and the measurement capability on the low frequency side is determined by the echo signal acquisition time (window time).
 誤差磁場計測部201は、上記特許文献3又は図4の誤差磁場計測シーケンスを生成し、計測制御部6に実行させて誤差磁場が重畳されたエコー信号の計測を行なう。 The error magnetic field measurement unit 201 generates the error magnetic field measurement sequence of Patent Document 3 or FIG. 4 described above, and causes the measurement control unit 6 to execute the measurement of the echo signal on which the error magnetic field is superimposed.
 (時系列位相画像の取得)
 次に、ステップ302の時系列の位相画像データの取得の詳細を、図6に示すフローチャートに基づいて説明する。なお、前述の振動誤差磁場計測で説明した2つの手法(低周波成分計測及び高周波成分計測)のいずれにも、本時系列位相画像データの取得処理が行われる。
(Acquisition of time-series phase image)
Next, details of acquisition of time-series phase image data in step 302 will be described based on the flowchart shown in FIG. The time-series phase image data acquisition process is performed in both of the two methods (low frequency component measurement and high frequency component measurement) described in the above-described vibration error magnetic field measurement.
 ステップ651で、誤差磁場画像取得部202は、ステップ301で計測されたエコー信号を、図6の601,602に示されるようなScan(+),Scan(-)毎の3次元データセットS+(kx,ky,ti),S-(kx,ky,ti)に分ける。ここでkx,kyはそれぞれ周波数エンコード方向および位相エンコード方向の空間周波数であり、tiはサンプリングしたエコー信号の離散的な時間点(i=1,2,・・・,n)を示している。ti方向の時間間隔(時間分解能)はサンプリング周波数、またデータ数は周波数方向の分解能Freq.#で一義的に決まる。 In step 651, the error magnetic field image acquisition unit 202 uses the echo signal measured in step 301 as a three-dimensional data set S + (kx, for each of Scan (+) and Scan (-) as indicated by 601 and 602 in FIG. ky, ti) and S- (kx, ky, ti). Here, kx and ky are spatial frequencies in the frequency encoding direction and the phase encoding direction, respectively, and ti indicates discrete time points (i = 1, 2,..., N) of the sampled echo signal. The time interval in the ti direction (time resolution) is uniquely determined by the sampling frequency, and the number of data is uniquely determined by the frequency direction resolution Freq. #.
 ステップ652で、誤差磁場画像取得部202は、2つのデータセットS+,S-をkx,kyを変数として、各々の時刻tiにおいて別個に2次元フーリエ変換を行い、各時刻の2次元複素画像I+(x,y,ti)およびI-(x,y,ti)を得る。この2次元複素画像を用いて、各時刻tiにおける位相画像φ+(x,y,ti),φ-(x,y,ti)を作成する(603,604)。 In step 652, the error magnetic field image acquisition unit 202 performs two-dimensional Fourier transform separately at each time ti using the two data sets S +, S- as variables kx, ky, and the two-dimensional complex image I + at each time. Obtain (x, y, ti) and I- (x, y, ti). Using this two-dimensional complex image, phase images φ + (x, y, ti) and φ− (x, y, ti) at each time ti are created (603, 604).
 ステップ653で、誤差磁場画像取得部202は、画像化するための傾斜磁場403,404,405,406,407に起因する誤差磁場の影響と、静磁場不均一性による影響を除外した位相画像のデータセットφ(x,y,ti)(605)を作成するため、2つの位相画像データφ+(x,y,ti),φ-(x,y,ti)間の差分をとる。 In step 653, the error magnetic field image acquisition unit 202 outputs the phase image data set φ (x, y, excluding the influence of the error magnetic field caused by the gradient magnetic fields 403, 404, 405, 406, and 407 for imaging and the influence of the static magnetic field inhomogeneity. In order to create (ti) (605), the difference between the two phase image data φ + (x, y, ti), φ− (x, y, ti) is taken.
 テスト傾斜磁場を反転して2回計測(両極性計測)した場合の位相画像データは、
 φ(x,y,ti)=[φ+(x,y,ti)-φ-(x,y,ti)]/2
 となり、片極性計測の場合は、
 φ(x,y,ti)=φ+(x,y,ti)-φ-(x,y,ti)
 とする。図6は、両極性計測の場合を示す。このようにして求めた位相画像データには、傾斜磁場印加によって誘起されたMRI装置構造物の振動に起因した減衰を伴う振動誤差磁場に基づく位相が反映されたものとなる。
Phase image data when the test gradient magnetic field is reversed and measured twice (bipolar measurement)
φ (x, y, ti) = [φ + (x, y, ti) -φ- (x, y, ti)] / 2
In the case of unipolar measurement,
φ (x, y, ti) = φ + (x, y, ti) -φ- (x, y, ti)
And FIG. 6 shows the case of bipolar measurement. The phase image data thus obtained reflects the phase based on the vibration error magnetic field accompanied by attenuation due to the vibration of the MRI apparatus structure induced by the application of the gradient magnetic field.
 最後に、位相画像の位相と磁場強度とが比例関係にあることに基づいて、以下のように振動誤差磁場画像データBe(x,y,ti)を求めることができる。 Finally, based on the fact that the phase of the phase image and the magnetic field intensity are in a proportional relationship, the vibration error magnetic field image data Be (x, y, ti) can be obtained as follows.
   Be(x,y,ti)=φ(x,y,ti)/(γti)
 ここで、γは磁気回転比である。この演算を時刻ti毎に行えば、サンプリング時間毎の誤差磁場分布を表す振動誤差磁場画像データを取得できる。
Be (x, y, ti) = φ (x, y, ti) / (γti)
Here, γ is a magnetic rotation ratio. If this calculation is performed for each time ti, vibration error magnetic field image data representing an error magnetic field distribution for each sampling time can be acquired.
 以上までが、サンプリング時間毎の振動誤差磁場データの取得処理であるが、上記に示した2つの手法(低周波成分計測及び高周波成分計測)は、誤差磁場を2次元或いは3次元の空間情報として取得する事が可能である。しかし、これらの詳細な空間情報が必要でない場合は、特許文献3、或いは特許文献4に示されるような特定の空間座標における誤差磁場を計測するだけでも良い。 Up to the above is the process of acquiring the vibration error magnetic field data for each sampling time, but the above two methods (low frequency component measurement and high frequency component measurement), the error magnetic field is converted into two-dimensional or three-dimensional spatial information. It is possible to obtain. However, when such detailed spatial information is not required, it is only necessary to measure the error magnetic field in specific spatial coordinates as shown in Patent Document 3 or Patent Document 4.
 (振動誤差磁場の解析)
 次に、ステップ303の振動誤差磁場解析の詳細を説明する。
(Analysis of vibration error magnetic field)
Next, details of the vibration error magnetic field analysis in step 303 will be described.
 誤差磁場算出部303は、図7に示すフローチャートに基づいて、前述した振動誤差磁場計測によって取得された振動誤差磁場データの空間成分毎の周波数分布を求める解析を行なう。以下、各ステップの処理を詳細に説明する。 The error magnetic field calculation unit 303 performs an analysis to obtain a frequency distribution for each spatial component of the vibration error magnetic field data acquired by the vibration error magnetic field measurement described above based on the flowchart shown in FIG. Hereinafter, the processing of each step will be described in detail.
 ステップ701で、誤差磁場算出部303は、テスト傾斜磁場を印加した方向(X,Y,Z)毎に、ステップ653で取得された各時刻tiの振動誤差磁場Be(x,y,ti)を、球面調和関数の各項(以下、球面調和項という)にそれぞれ分解する。即ち、全ての時刻tiの振動誤差磁場Be(x,y,ti)を、それぞれ以下の様に球面調和項に分解する。 In step 701, the error magnetic field calculation unit 303 calculates the vibration error magnetic field Be (x, y, ti) at each time ti acquired in step 653 for each direction (X, Y, Z) in which the test gradient magnetic field is applied. , Each term of the spherical harmonic function (hereinafter referred to as the spherical harmonic term). That is, the vibration error magnetic field Be (x, y, ti) at all times ti is decomposed into spherical harmonic terms as follows.
 Be(x,y,ti)=
 ζ0,0(ti)+ζ1,-1(ti)y+ζ1,0(ti)z+ζ1,1(ti)x+ζ2,-2(ti)xy+ζ2,-1(ti)yz
 +ζ2,0(ti)(3z2-1)+ζ2,1(ti)xz+ζ2,2(ti)(x2-y2)+・・
 ここでζl,m(ti) (I,m=0, ±1、±2、‥)は各項の時刻tiにおける係数の値である。このように分解する理由は、振動誤差磁場を補正する補正磁場発生装置及び傾斜磁場コイル(1次項)が球面調和項に対応する空間変化の磁場を発生するためである。そこで、球面調和項の次数は、補正対象となるMRI装置が備える補正磁場発生装置及び傾斜磁場コイル(1次項)の仕様に一致させるのが望ましい。
Be (x, y, ti) =
ζ 0,0 (ti) + ζ 1, -1 (ti) y + ζ 1,0 (ti) z + ζ 1,1 (ti) x + ζ 2, -2 (ti) xy + ζ 2,- 1 (ti) yz
+ ζ 2,0 (ti) (3z 2 -1) + ζ 2,1 (ti) xz + ζ 2,2 (ti) (x 2 -y 2 ) + ・ ・
Here, ζ l, m (ti) (I, m = 0, ± 1, ± 2,...) Is a coefficient value at time ti of each term. The reason for the decomposition is that the correction magnetic field generator for correcting the vibration error magnetic field and the gradient magnetic field coil (first order term) generate a spatially changing magnetic field corresponding to the spherical harmonic term. Therefore, it is desirable that the order of the spherical harmonic term is matched with the specifications of the correction magnetic field generator and the gradient magnetic field coil (first order term) included in the MRI apparatus to be corrected.
 一方、特許文献3、或いは特許文献4に示されるような特定の空間座標における振動誤差磁場を計測した場合は、それぞれの手法で導出可能な項に分解する。 On the other hand, when a vibration error magnetic field in specific spatial coordinates as shown in Patent Document 3 or Patent Document 4 is measured, it is decomposed into terms that can be derived by the respective methods.
 効果が大きく、且つ望ましい分解例としては、振動誤差磁場を0次項と全ての1次項に分解して、それらの球面調和項毎に振動誤差磁場を補正することである。例えば、テスト傾斜磁場をX、Y,Z軸に印加した場合には、下表に示す球面調和項を算出することに相当する。
Figure JPOXMLDOC01-appb-I000001
An effective and desirable decomposition example is to decompose the vibration error magnetic field into a zero-order term and all the first-order terms and correct the vibration error magnetic field for each spherical harmonic term. For example, when a test gradient magnetic field is applied to the X, Y, and Z axes, this corresponds to calculating the spherical harmonic term shown in the following table.
Figure JPOXMLDOC01-appb-I000001

 ステップ702で、誤差磁場算出部303は、ステップ701において算出された振動誤差磁場の各球面調和項データを時間軸方向に並べて、時間軸方向に窓関数w(k)を乗じる。即ち、ζl,m(tk)←W(tk)ζl,m(tk)
 このように窓関数を掛けた各球面調和項データを以降の解析に用いる。

In step 702, the error magnetic field calculation unit 303 arranges the spherical harmonic term data of the vibration error magnetic field calculated in step 701 in the time axis direction and multiplies the window function w (k) in the time axis direction. That is, ζ l, m (t k ) ← W (tk) ζ l, m (t k )
Each spherical harmonic term data thus multiplied by the window function is used for the subsequent analysis.
 本実施例において望ましい窓関数”Tukey Window”の定義式を以下に示す。

Figure JPOXMLDOC01-appb-I000002
 k: 整数
 L=N+1
A definition formula of a desirable window function “Tukey Window” in the present embodiment is shown below.

Figure JPOXMLDOC01-appb-I000002
k: integer L = N + 1
 ここでL(Window Length)は、対象となる解析データと同じサイズ(長さ)であり、α(0≦α≦1)は、対象となるデータによって最適化される。図8(a)にTukey Windowを、図8(b)に振動誤差磁場の(X to X)項にTukey Windowを乗じた例を示す。 Here, L (Window Length) is the same size (length) as the target analysis data, and α (0 ≦ α ≦ 1) is optimized by the target data. FIG. 8 (a) shows an example of Tukey Window, and FIG. 8 (b) shows an example of multiplying the (X to X) term of the vibration error magnetic field by Tukey Window.
 なお、信号取得開始時間をシフトするなどして、振動誤差磁場データが時間方向に複数存在する場合は、時間軸に沿って重なっている部分は加算平均などを取得し、1つのデータに結合するものとする。 In addition, when there are multiple vibration error magnetic field data in the time direction by shifting the signal acquisition start time etc., the overlapping part along the time axis acquires the addition average etc. and combines it into one data Shall.
 次に、誤差磁場算出部303は、以下のステップ703~705の処理で周波数解析を行なう。
 ステップ703で、誤差磁場算出部303は、ステップ702で窓関数を乗じた振動誤差磁場の球面調和項データ毎に、適切なゼロ詰め処理を併用した上で、離散フーリエ変換を行う。
Next, the error magnetic field calculation unit 303 performs frequency analysis by the following processes of Steps 703 to 705.
In step 703, the error magnetic field calculation unit 303 performs discrete Fourier transform for each spherical harmonic term data of the vibration error magnetic field multiplied by the window function in step 702, together with an appropriate zero padding process.
 ステップ704で、誤差磁場算出部303は、離散フーリエ変換により得た複素スペクトルから、絶対値スペクトルと位相スペクトルを作成する。複素数データから位相値を算出するには、公知の技術を用いればよい。位相スペクトルに対しては、アンラップ処理を施しても良い。Y to X成分に関する絶対値スペクトルの例を図9(a)に、位相スペクトルの一例を図9(b)にそれぞれ示す。 In step 704, the error magnetic field calculation unit 303 creates an absolute value spectrum and a phase spectrum from the complex spectrum obtained by the discrete Fourier transform. In order to calculate the phase value from the complex number data, a known technique may be used. An unwrapping process may be applied to the phase spectrum. FIG. 9 (a) shows an example of an absolute value spectrum regarding the Y to X component, and FIG. 9 (b) shows an example of a phase spectrum.
 ステップ705で、誤差磁場算出部303は、ステップ704で取得した周波数スペクトルについて周波数ピーク解析を行なう。そこで、周波数ドメイン(Freq. Domain)のLorentzian関数と時間ドメイン(Time Domain)の減衰振動関数とがフーリエ変換を介して数学的に対応付けられることを利用する。そこで、周波数ドメインにおける周波数ピーク近傍のスペクトル形状をLorentzian関数で近似(つまりフィッティング)して表して得たLorentzian関数のパラメータ値に対応する、時間ドメインの減衰振動関数を求める。 In step 705, the error magnetic field calculation unit 303 performs frequency peak analysis on the frequency spectrum acquired in step 704. Therefore, the fact that the Lorentzian function in the frequency domain (Freq. Domain) and the damped oscillation function in the time domain (Time Domain) are mathematically associated through Fourier transformation is used. Therefore, a damped oscillation function in the time domain corresponding to the parameter value of the Lorentzian function obtained by approximating (that is, fitting) the spectrum shape near the frequency peak in the frequency domain is obtained.
 周波数≦fを変数とするLorentzian関数は、次式で定義される。
Figure JPOXMLDOC01-appb-I000003
A Lorentzian function with a frequency ≦ f as a variable is defined by the following equation.
Figure JPOXMLDOC01-appb-I000003
 この関数はフーリエ変換を用いる事により、時間ドメインと以下に示す対応関係を持つ。
Figure JPOXMLDOC01-appb-I000004
This function has the following correspondence relationship with the time domain by using Fourier transform.
Figure JPOXMLDOC01-appb-I000004
 この関係を踏まえ、誤差磁場算出部303は、絶対値スペクトルに対してLorentzian関数を当てはめる(フィッティング)事により周波数ピーク解析を行う。有意な周波数ピークが多数存在する場合は、数学的に既知であるLevenberg-Marquardt法や、Nelder-Mead法を用いて非線形近似を行っても良い。 Based on this relationship, the error magnetic field calculation unit 303 performs frequency peak analysis by fitting a Lorentzian function to the absolute value spectrum (fitting). When there are a number of significant frequency peaks, nonlinear approximation may be performed using the mathematically known Levenberg-Marquardt method or Nelder-Mead method.
 なお、周波数ピーク解析はLorentzian関数でなく、以下に示すようにGaussian関数を用いても良い。これらは振動特性に応じて使い分けられるようになっているのが望ましい。
Figure JPOXMLDOC01-appb-I000005

Figure JPOXMLDOC01-appb-I000006
The frequency peak analysis may use a Gaussian function as shown below instead of the Lorentzian function. It is desirable that these are properly used according to the vibration characteristics.
Figure JPOXMLDOC01-appb-I000005

Figure JPOXMLDOC01-appb-I000006

 周波数ピークの同定が完了したら、ピーク周波数における位相値を、ステップ703-2で求めた位相スペクトルから読み取る。位相スペクトルは離散値ゆえ、適宜補完処理を併用して精度を向上しても良い。

When the identification of the frequency peak is completed, the phase value at the peak frequency is read from the phase spectrum obtained in Step 703-2. Since the phase spectrum is a discrete value, the accuracy may be improved by appropriately using complementary processing together.
 以上の周波数解析により得られたパラメータ値である、減衰定数τ、ピーク周波数f0、位相等を、誤差磁場を表す特性値として磁気ディスク23等の記憶部に記憶しておき、ステップ704における振動誤差磁場の補正を行うための補正磁場の出力値を求める際に、読み出されてその計算に使用される。 The parameter values obtained by the above frequency analysis, such as the damping constant τ, the peak frequency f 0 , and the phase, are stored in the storage unit such as the magnetic disk 23 as characteristic values representing the error magnetic field, and the vibration in step 704 is performed. When the output value of the correction magnetic field for correcting the error magnetic field is obtained, it is read out and used for the calculation.
 (補正磁場の算出)
 次に、ステップ304の振動誤差磁場の補正を行うための補正磁場算出の詳細を説明する。
(Calculation of correction magnetic field)
Next, details of the correction magnetic field calculation for correcting the vibration error magnetic field in step 304 will be described.
 誤差磁場補正部204は、ステップ705で求められた時間ドメインの減衰振動関数を表す各パラメータ値を用いて、入力傾斜磁場波形に応じて振動誤差磁場の補正を行うための補正磁場の出力値を求める。振動誤差磁場を補正する磁場成分は、傾斜磁場波形に重畳されるので、既にMRI装置の計測制御部6内に実装されている渦電流補正機能(制御基板)に本誤差磁場補正部204を追加実装しても良いし、新しく機能追加としても良い。動作速度の観点から、ハードウェアで演算するのが望ましが、処理速度が間に合えば演算処理部7が本誤差磁場補正部204を備えてソフトウェアで演算してもよい。以下、補正磁場算出の詳細を説明する。 The error magnetic field correction unit 204 uses the parameter values representing the time domain damped oscillation function obtained in step 705 to calculate the output value of the correction magnetic field for correcting the vibration error magnetic field according to the input gradient magnetic field waveform. Ask. Since the magnetic field component that corrects the vibration error magnetic field is superimposed on the gradient magnetic field waveform, this error magnetic field correction unit 204 is added to the eddy current correction function (control board) already installed in the measurement control unit 6 of the MRI apparatus. It may be implemented or a new function may be added. From the viewpoint of operation speed, it is desirable to perform calculation by hardware. However, if the processing speed is in time, the calculation processing unit 7 may include the error magnetic field correction unit 204 and perform calculation by software. Details of the correction magnetic field calculation will be described below.
 最初に、補正磁場成分の出力波形の表現(定式化)について説明する。どの補正成分でも考え方は同じなので、振動誤差磁場の1次傾斜成分を代表として説明する。
入力傾斜磁場波形(j軸における傾斜磁場波形の微分値)dlj(S)に対するインパルス応答関数VGCj(dlj(s),t)を、次式のようにモデル化する。

Figure JPOXMLDOC01-appb-I000007

t=0のとき、
Figure JPOXMLDOC01-appb-I000008
となる。ここで、
Figure JPOXMLDOC01-appb-I000009
 である。
First, the expression (formulation) of the output waveform of the correction magnetic field component will be described. Since the concept is the same for any correction component, the primary gradient component of the vibration error magnetic field will be described as a representative.
The impulse response function VGC j (dl j (s), t) for the input gradient magnetic field waveform (differential value of the gradient magnetic field waveform on the j-axis) dl j (S) is modeled as follows.

Figure JPOXMLDOC01-appb-I000007

When t = 0
Figure JPOXMLDOC01-appb-I000008
It becomes. here,
Figure JPOXMLDOC01-appb-I000009
It is.
 このモデルに基づいて、任意の傾斜磁場の入力波形に対する補正成分の出力を求めるには、渦電流起因の誤差磁場補正と同様、入力波形(傾斜磁場波形の微分値)に対する逐次応答補正とする。具体的な処理は、以下の式に示す。不連続な時間軸tk(k=0,1,2,・・・n)において入力波形dlj(tk)が与えられる場合、時刻tにおける振動磁場は次式で与えられる。

Figure JPOXMLDOC01-appb-I000010

Figure JPOXMLDOC01-appb-I000011

Figure JPOXMLDOC01-appb-I000012

Figure JPOXMLDOC01-appb-I000013

Figure JPOXMLDOC01-appb-I000014

Figure JPOXMLDOC01-appb-I000015




Figure JPOXMLDOC01-appb-I000016

Figure JPOXMLDOC01-appb-I000017

 (*)ベクトル和であることに注意する。

上記のように振動誤差磁場を随時計算し、その実部を補正値として出力する。
Figure JPOXMLDOC01-appb-I000018
Re[・・・]:実部
 なお、ハードウェア側で指数関数を直接処理出来ない場合は、以下の関係式を用いる。
Figure JPOXMLDOC01-appb-I000019
Based on this model, in order to obtain the output of the correction component for an input waveform of an arbitrary gradient magnetic field, the successive response correction for the input waveform (differential value of the gradient magnetic field waveform) is performed in the same manner as the error magnetic field correction caused by the eddy current. Specific processing is shown in the following equation. When the input waveform dl j (t k ) is given on the discontinuous time axis t k (k = 0, 1, 2,... N), the oscillating magnetic field at time t is given by the following equation.

Figure JPOXMLDOC01-appb-I000010

Figure JPOXMLDOC01-appb-I000011

Figure JPOXMLDOC01-appb-I000012

Figure JPOXMLDOC01-appb-I000013

Figure JPOXMLDOC01-appb-I000014

Figure JPOXMLDOC01-appb-I000015

:
:

Figure JPOXMLDOC01-appb-I000016

Figure JPOXMLDOC01-appb-I000017

(*) Note that this is a vector sum.

As described above, the vibration error magnetic field is calculated at any time, and its real part is output as a correction value.
Figure JPOXMLDOC01-appb-I000018
Re [...]: Real part When the exponential function cannot be processed directly on the hardware side, the following relational expression is used.
Figure JPOXMLDOC01-appb-I000019
 (補正磁場の算出)
 次に、ステップ305の補正磁場の位相校正の詳細を説明する。
 位相校正部206は、ステップ704で求めた補正磁場の出力の位相校正を行うための位相校正値を求める。位相校正部206が計測制御部6内に実装される場合は、位相校正部206が求めた位相校正値を用いて補正磁場の位相校正を行い、位相校正後の補正磁場を補正磁場発生装置及び傾斜磁場電源に出力する。位相校正部206が演算処理部7内に実装される場合は、求めた位相校正値を計測制御部6に通知する。計測制御部6は、ステップ704で算出した補正磁場を、この位相校正値を用いて位相校正を行い、位相校正後の補正磁場を補正磁場発生装置及び傾斜磁場電源に出力する。
(Calculation of correction magnetic field)
Next, details of phase correction of the correction magnetic field in step 305 will be described.
The phase calibration unit 206 obtains a phase calibration value for performing phase calibration of the output of the correction magnetic field obtained in step 704. When the phase calibration unit 206 is mounted in the measurement control unit 6, the phase calibration value obtained by the phase calibration unit 206 is used to perform phase calibration of the correction magnetic field, and the correction magnetic field after the phase calibration is corrected to the correction magnetic field generator and Output to the gradient magnetic field power supply. When the phase calibration unit 206 is mounted in the arithmetic processing unit 7, the measured phase calibration value is notified to the measurement control unit 6. The measurement control unit 6 performs phase calibration on the correction magnetic field calculated in Step 704 using this phase calibration value, and outputs the correction magnetic field after the phase calibration to the correction magnetic field generator and the gradient magnetic field power source.
 位相校正の目的は、ステップ704で求めた補正磁場の出力位相と、ステップ703 - 705で求めた周波数ピークでの位相の間に誤差が生じるので、この位相誤差をキャンセルするためである。そのために、周波数毎の位相値を計測する。これらの周波数の位相校正値との関係を予め磁気ディスク等に保存しておき、位相校正部206がステップ703-3で求められた周波数ピーク値に応じて位相校正値を読み出して補正磁場の位相校正を行う。図10に位相校正データの一例のグラフを示す。このグラフにおいて横軸は設定周波数であり、縦軸は計測位相である。周波数ゼロのY切片が位相誤差(オフセット)に相当する。 The purpose of the phase calibration is to cancel the phase error since an error occurs between the output phase of the correction magnetic field obtained in step 704 and the phase at the frequency peak obtained in steps 703 to 705. Therefore, the phase value for each frequency is measured. The relationship between the phase calibration values of these frequencies is stored in advance on a magnetic disk or the like, and the phase calibration unit 206 reads out the phase calibration value according to the frequency peak value obtained in Step 703-3 to obtain the phase of the correction magnetic field. Perform calibration. FIG. 10 shows a graph of an example of phase calibration data. In this graph, the horizontal axis is the set frequency, and the vertical axis is the measurement phase. A Y-intercept with a frequency of zero corresponds to a phase error (offset).
 以上説明したように、本実施例のMRI装置及び振動誤差磁場低減方法は、振動誤差磁場の周波数スペクトルにおける周波数ピーク及び該ピーク近傍の波形形状を所定関数を用いて同定し、該同定により得られるパラメータ値に対応する減衰時定数を有する補正磁場を入力傾斜磁場波形に応じて求めて、求めた補正磁場を傾斜磁場に重畳して出力する。これにより、渦電流磁場のみならず、傾斜磁場の印加に伴うMRI装置の機械構造物の振動に伴う振動誤差磁場を補正することが可能になり、その結果、画質を向上させることができる。 As described above, the MRI apparatus and the vibration error magnetic field reduction method of this embodiment identify the frequency peak in the frequency spectrum of the vibration error magnetic field and the waveform shape in the vicinity of the peak using a predetermined function, and are obtained by the identification. A correction magnetic field having a decay time constant corresponding to the parameter value is obtained according to the input gradient magnetic field waveform, and the obtained correction magnetic field is superimposed on the gradient magnetic field and output. This makes it possible to correct not only the eddy current magnetic field but also the vibration error magnetic field accompanying the vibration of the mechanical structure of the MRI apparatus accompanying the application of the gradient magnetic field, and as a result, the image quality can be improved.
 最後に、本発明の振動誤差磁場低減を実際に適用した場合の効果の一例を図11に示す。図11は、FSEシーケンス(TR=733msec、IET=8msec、位相エンコード方向=上下方向)を用いて、ファントムのアキシャル断面をマルチスライス撮像して得られた画像であり、(a)は本発明の振動誤差磁場低減処理を行わずに得られた場合の画像であり、(b)は本発明の振動誤差磁場低減処理を行って得られた場合の画像である。本実施例の振動誤差磁場低減処理を適用することにより、左右方向両端部に発生する画像シェーディングが解消されていることが理解される。 Finally, FIG. 11 shows an example of the effect when the vibration error magnetic field reduction of the present invention is actually applied. FIG. 11 is an image obtained by performing multi-slice imaging of an axial cross section of a phantom using an FSE sequence (TR = 733 msec, IET = 8 msec, phase encoding direction = vertical direction). It is an image obtained when the vibration error magnetic field reduction processing is not performed, and (b) is an image obtained when the vibration error magnetic field reduction processing of the present invention is performed. By applying the vibration error magnetic field reduction processing of this embodiment, it is understood that image shading that occurs at both ends in the left-right direction is eliminated.
 以上の本発明の実施例の説明によって理解されるとおり、本発明は以下の特徴を有するものである。即ち、本発明のMRI装置は、
 撮像空間に静磁場を発生する静磁場発生部と、静磁場に重畳させて傾斜磁場を発生する傾斜磁場発生部と、傾斜磁場の印加に起因して撮像空間に発生する誤差磁場を補正する補正磁場を発生する補正磁場発生部と、静磁場発生部と傾斜磁場発生部と補正磁場発生部が据え付けられてこれらを支持する構造物と、所定のパルスシーケンスに基づいて撮像空間に配置された被検体からエコー信号を計測する計測制御部と、傾斜磁場の印加に伴い撮像空間に発生する誤差磁場を補正するための補正磁場を求める補正磁場演算部と、を備え、
 補正磁場演算部は、傾斜磁場の印加に起因する構造部の振動に基づく振動誤差磁場を含む誤差磁場を求め、該求めた誤差磁場を補正する補正磁場を求めることを特徴とする。
As understood from the above description of the embodiments of the present invention, the present invention has the following features. That is, the MRI apparatus of the present invention is
A static magnetic field generator for generating a static magnetic field in the imaging space, a gradient magnetic field generator for generating a gradient magnetic field superimposed on the static magnetic field, and a correction for correcting an error magnetic field generated in the imaging space due to the application of the gradient magnetic field A correction magnetic field generation unit for generating a magnetic field, a static magnetic field generation unit, a gradient magnetic field generation unit, a structure for supporting the correction magnetic field generation unit and supporting them, and a target disposed in the imaging space based on a predetermined pulse sequence. A measurement control unit that measures an echo signal from a specimen, and a correction magnetic field calculation unit that obtains a correction magnetic field for correcting an error magnetic field generated in an imaging space with application of a gradient magnetic field,
The correction magnetic field calculation unit obtains an error magnetic field including a vibration error magnetic field based on the vibration of the structure part caused by application of the gradient magnetic field, and obtains a correction magnetic field for correcting the obtained error magnetic field.
 好ましくは、補正磁場演算部が求めた誤差磁場を表す特性値を記憶しておく記憶部を備え、補正磁場演算部は、記憶された誤差磁場の特性値に基づいて、補正磁場を求める。 Preferably, a storage unit is provided for storing a characteristic value representing the error magnetic field obtained by the correction magnetic field calculation unit, and the correction magnetic field calculation unit obtains the correction magnetic field based on the stored characteristic value of the error magnetic field.
 また、好ましくは、補正磁場演算部は、テスト傾斜磁場を有するパルスシーケンスを用いたエコー信号の計測を計測制御部に行なわせる誤差磁場計測部と、エコー信号を用いて、そのサンプリング時間毎の誤差磁場分布を表す誤差磁場画像データを取得する誤差磁場画像取得部と、誤差磁場画像データを用いて誤差磁場を表す減衰振動関数のパラメータ値を算出する誤差磁場算出部と、算出されたパラメータ値に基づいて、補正磁場を算出する補正磁場算出部と、を有して成る。 Preferably, the correction magnetic field calculation unit includes an error magnetic field measurement unit that causes the measurement control unit to measure an echo signal using a pulse sequence having a test gradient magnetic field, and an error for each sampling time using the echo signal. An error magnetic field image acquisition unit that acquires error magnetic field image data representing a magnetic field distribution, an error magnetic field calculation unit that calculates a parameter value of a damped oscillation function that represents an error magnetic field using the error magnetic field image data, and a calculated parameter value And a correction magnetic field calculation unit for calculating a correction magnetic field.
 また、好ましくは、誤差磁場計測部は、渦電流誤差磁場と振動誤差磁場の情報が重畳されたエコー信号を計測制御部に計測させることで、該渦電流誤差磁場と該振動誤差磁場の情報を共に取得する。 Preferably, the error magnetic field measurement unit causes the measurement control unit to measure an echo signal on which information on the eddy current error magnetic field and the vibration error magnetic field is superimposed, thereby obtaining the information on the eddy current error magnetic field and the vibration error magnetic field. Acquire together.
 また、好ましくは、パルスシーケンスは、少なくとも2軸方向にエンコード傾斜磁場パルスを印加するものであり、誤差磁場画像取得部は、サンプリング時間毎にエコー信号を少なくとも2軸方向にフーリエ変換して得た位相画像データを用いて、サンプリング時間毎の誤差磁場画像データを求める。 Preferably, the pulse sequence applies an encoded gradient magnetic field pulse in at least two axial directions, and the error magnetic field image acquisition unit obtains an echo signal by Fourier transform in at least two axial directions at every sampling time. Error magnetic field image data for each sampling time is obtained using the phase image data.
 また、好ましくは、誤差磁場計測部は、テスト傾斜磁場を異ならせてエコー信号の計測を計測制御部に行なわせ、誤差磁場画像取得部は、サンプリング時間毎にテスト傾斜磁場の異なる位相画像データの差分を用いて、サンプリング時間毎の誤差磁場画像データを求める。 Preferably, the error magnetic field measuring unit causes the measurement control unit to measure the echo signal by changing the test gradient magnetic field, and the error magnetic field image acquiring unit is configured to output the phase image data having a different test gradient magnetic field for each sampling time. Error magnetic field image data for each sampling time is obtained using the difference.
 また、好ましくは、誤差磁場算出部は、各誤差磁場画像データを複数の球面調和項に分解し、球面調和項毎に誤差磁場を表す減衰振動関数のパラメータ値を算出し、
 補正磁場算出部は、球面調和項毎の誤差磁場を表す減衰振動関数のパラメータ値に基づいて、球面調和項毎に補正磁場を算出する。
Preferably, the error magnetic field calculation unit decomposes each error magnetic field image data into a plurality of spherical harmonic terms, calculates a parameter value of a damped oscillation function representing the error magnetic field for each spherical harmonic term,
The correction magnetic field calculation unit calculates the correction magnetic field for each spherical harmonic term based on the parameter value of the damped oscillation function representing the error magnetic field for each spherical harmonic term.
 また、好ましくは、誤差磁場算出部は、球面調和項毎に、誤差磁場画像データを時間軸方向にフーリエ変換して得たスペクトル分布に Lorentzian関数又はGaussian関数を当てはめて、誤差磁場を表す減衰振動関数のパラメータ値を算出する。 Preferably, the error magnetic field calculation unit applies a Lorentzian function or a Gaussian function to a spectral distribution obtained by performing Fourier transform of the error magnetic field image data in the time axis direction for each spherical harmonic term, and thereby attenuated vibration representing the error magnetic field. Calculate function parameter values.
 また、好ましくは、誤差磁場算出部は、周波数ドメインでスペクトル分布における周波数ピーク近傍の波形に Lorentzian関数又はGaussian関数を当てはめて、該 Lorentzian関数又はGaussian関数のフーリエ変換に対応する時間ドメインの減衰振動関数の減衰時定数を含むパラメータ値を算出する。 Preferably, the error magnetic field calculation unit applies a Lorentzian function or a Gaussian function to a waveform near a frequency peak in a spectrum distribution in the frequency domain, and a time domain damped oscillation function corresponding to a Fourier transform of the Lorentzian function or Gaussian function. The parameter value including the decay time constant is calculated.
 また、好ましくは、補正磁場算出部は、減衰振動関数のパラメータ値を用いて傾斜磁場波形に対するインパルス応答関数のモデルを作成し、任意の入力傾斜磁場波形に対してモデルの逐次応答として、補正磁場を算出する。 Preferably, the correction magnetic field calculation unit creates a model of an impulse response function for the gradient magnetic field waveform using the parameter value of the damped oscillation function, and corrects the magnetic field as a sequential response of the model for any input gradient magnetic field waveform. Is calculated.
 また、好ましくは、補正磁場の位相と、スペクトル分布の周波数ピークにおける位相と、の間の位相誤差を校正するための位相校正部を備えている。 Preferably, a phase calibration unit for calibrating the phase error between the phase of the correction magnetic field and the phase at the frequency peak of the spectrum distribution is provided.
 また、好ましくは、パルスシーケンスは、再収束RFパルスの前後にテスト傾斜磁場をそれぞれ備え、該再収束RFパルス後のテスト傾斜磁場がゼロになった後にエコー信号を計測するものである。 Also preferably, the pulse sequence includes a test gradient magnetic field before and after the refocus RF pulse, and measures an echo signal after the test gradient magnetic field after the refocus RF pulse becomes zero.
 本発明の振動誤差磁場低減方は、傾斜磁場の印加に起因する磁気共鳴イメージング装置の構造物の振動に基づく振動誤差磁場を、補正磁場を用いて補正する振動誤差磁場低減方法であって、テスト傾斜磁場を有するパルスシーケンスを用いてエコー信号を計測する計測ステップと、エコー信号を用いて、そのサンプリング時間毎の誤差磁場分布を表す誤差磁場画像データを取得するステップと、サンプリング時間毎の誤差磁場画像データを用いて振動誤差磁場を表す減衰振動関数のパラメータ値を算出するパラメータ値算出ステップと、算出された振動誤差磁場を表す減衰振動関数のパラメータ値に基づいて、補正磁場を算出する補正磁場算出ステップと、を備えていることを特徴とする。 The vibration error magnetic field reduction method of the present invention is a vibration error magnetic field reduction method for correcting a vibration error magnetic field based on vibration of a structure of a magnetic resonance imaging apparatus caused by application of a gradient magnetic field using a correction magnetic field. A measurement step for measuring an echo signal using a pulse sequence having a gradient magnetic field, a step for acquiring error magnetic field image data representing an error magnetic field distribution for each sampling time using the echo signal, and an error magnetic field for each sampling time A parameter value calculating step for calculating a parameter value of a damped oscillation function representing a vibration error magnetic field using image data, and a correction magnetic field for calculating a correction magnetic field based on the parameter value of the damped oscillation function representing the calculated vibration error magnetic field And a calculating step.
 好ましくは、パラメータ値算出ステップは、サンプリング時間毎の誤差磁場画像データを時間軸方向にフーリエ変換して得たスペクトル分布に対して、Lorentzian関数あるいはGaussian関数を用いて、誤差磁場を表す減衰振動関数のパラメータ値を算出する。 Preferably, the parameter value calculating step uses a Lorentzian function or a Gaussian function for a spectral distribution obtained by Fourier transforming the error magnetic field image data for each sampling time in the time axis direction, and a damped oscillation function representing the error magnetic field. The parameter value of is calculated.
 また、好ましくは、パラメータ値算出ステップは、周波数ドメインでスペクトル分布に当てはめたLorentzian関数又はGaussian関数に対応する時間ドメインの減衰振動関数を求めて、該減衰振動関数の減衰時定数を含むパラメータ値を算出する。 Preferably, the parameter value calculating step obtains a time domain damped oscillation function corresponding to the Lorentzian function or Gaussian function applied to the spectrum distribution in the frequency domain, and sets the parameter value including the damping time constant of the damped oscillation function. calculate.
 また、好ましくは、補正磁場算出ステップは、減衰振動関数のパラメータ値を用いて傾斜磁場波形に対するインパルス応答関数のモデルを作成し、任意の入力傾斜磁場波形に対してモデルの逐次応答として、補正磁場を算出する。 Preferably, the correction magnetic field calculation step creates a model of an impulse response function for the gradient magnetic field waveform using the parameter value of the damped oscillation function, and uses the correction magnetic field as a sequential response of the model for any input gradient magnetic field waveform. Is calculated.
 1 傾斜磁場発生系、2 静磁場発生系、3 送信系、4 操作部、5 受信系、6 計測制御部、7 信号処理系、8 演算処理部、9 被検体、10 傾斜磁場コイル、11 傾斜磁場電源、12 高周波発振器、13 変調器、14 高周波増幅器、15 RF送信コイル、16 RF受信コイル、17 信号増幅器、18 直交位相検波器、19 A/D変換器、20 ROM、21 RAM、22 光磁気ディスク、23 ディスプレイ、24 磁気ディスク、25 トラックボール又はマウス、26 キーボード 1 Gradient magnetic field generation system, 2 Static magnetic field generation system, 3 Transmission system, 4 Operation unit, 5 Reception system, 6 Measurement control unit, 7 Signal processing system, 8 Arithmetic processing unit, 9 Subject, 10 Gradient magnetic field coil, 11 Gradient Magnetic field power supply, 12 RF oscillator, 13 modulator, 14 RF amplifier, 15 RF transmitter coil, 16 RF receiver coil, 17 signal amplifier, 18 quadrature phase detector, 19 A / D converter, 20 ROM, 21 RAM, 22 light Magnetic disk, 23 display, 24 magnetic disk, 25 trackball or mouse, 26 keyboard

Claims (16)

  1.  撮像空間に静磁場を発生する静磁場発生部と、
     前記静磁場に重畳させて傾斜磁場を発生する傾斜磁場発生部と、
     前記傾斜磁場の印加に起因して前記撮像空間に発生する誤差磁場を補正する補正磁場を発生する補正磁場発生部と、
     前記静磁場発生部と前記傾斜磁場発生部と前記補正磁場発生部が据え付けられてこれらを支持する構造部と、
     所定のパルスシーケンスに基づいて前記撮像空間に配置された被検体からエコー信号を計測する計測制御部と、
     前記傾斜磁場の印加に伴い前記撮像空間に発生する誤差磁場を補正するための補正磁場を求める補正磁場演算部と、
    を備えた磁気共鳴イメージング装置であって、
     前記補正磁場演算部は、前記傾斜磁場の印加に起因する前記構造部の振動に基づく振動誤差磁場を含む誤差磁場を求め、該求めた誤差磁場を補正する前記補正磁場を求めることを特徴とする磁気共鳴イメージング装置。
    A static magnetic field generator for generating a static magnetic field in the imaging space;
    A gradient magnetic field generator for generating a gradient magnetic field superimposed on the static magnetic field;
    A correction magnetic field generator for generating a correction magnetic field for correcting an error magnetic field generated in the imaging space due to the application of the gradient magnetic field;
    The static magnetic field generation unit, the gradient magnetic field generation unit, and the correction magnetic field generation unit are installed and support the structure,
    A measurement control unit that measures an echo signal from a subject arranged in the imaging space based on a predetermined pulse sequence;
    A correction magnetic field calculation unit for obtaining a correction magnetic field for correcting an error magnetic field generated in the imaging space with the application of the gradient magnetic field;
    A magnetic resonance imaging apparatus comprising:
    The correction magnetic field calculation unit obtains an error magnetic field including a vibration error magnetic field based on the vibration of the structure part caused by application of the gradient magnetic field, and obtains the correction magnetic field for correcting the obtained error magnetic field. Magnetic resonance imaging device.
  2.  請求項1記載の磁気共鳴イメージング装置において、
     前記補正磁場演算部が求めた誤差磁場を表す特性値を記憶しておく記憶部を備え、
     前記補正磁場演算部は、前記記憶された誤差磁場の特性値に基づいて、前記補正磁場を求めることを特徴とする磁気共鳴イメージング装置。
    In the magnetic resonance imaging apparatus according to claim 1,
    A storage unit for storing a characteristic value representing an error magnetic field obtained by the correction magnetic field calculation unit;
    The magnetic resonance imaging apparatus, wherein the correction magnetic field calculation unit obtains the correction magnetic field based on the stored characteristic value of the error magnetic field.
  3.  請求項1記載の磁気共鳴イメージング装置において、
     前記補正磁場演算部は、
     テスト傾斜磁場を有するパルスシーケンスを用いたエコー信号の計測を前記計測制御部に行なわせる誤差磁場計測部と、
     前記エコー信号を用いて、そのサンプリング時間毎の誤差磁場分布を表す誤差磁場画像データを取得する誤差磁場画像取得部と、
     前記誤差磁場画像データを用いて前記誤差磁場を表す減衰振動関数のパラメータ値を算出する誤差磁場算出部と、
     前記算出されたパラメータ値に基づいて、前記補正磁場を算出する補正磁場算出部と、
     を有して成ることを特徴とする磁気共鳴イメージング装置。
    In the magnetic resonance imaging apparatus according to claim 1,
    The correction magnetic field calculation unit
    An error magnetic field measurement unit that causes the measurement control unit to measure an echo signal using a pulse sequence having a test gradient magnetic field;
    Using the echo signal, an error magnetic field image acquisition unit that acquires error magnetic field image data representing an error magnetic field distribution for each sampling time, and
    An error magnetic field calculation unit for calculating a parameter value of a damped oscillation function representing the error magnetic field using the error magnetic field image data;
    A correction magnetic field calculation unit for calculating the correction magnetic field based on the calculated parameter value;
    A magnetic resonance imaging apparatus comprising:
  4.  請求項3記載の磁気共鳴イメージング装置において、
     前記誤差磁場計測部は、前記渦電流誤差磁場と前記振動誤差磁場の情報が重畳されたエコー信号を前記計測制御部に計測させることで、該渦電流誤差磁場と該振動誤差磁場の情報を共に取得することを特徴とする磁気共鳴イメージング装置。
    In the magnetic resonance imaging apparatus according to claim 3,
    The error magnetic field measurement unit causes the measurement control unit to measure an echo signal in which the information on the eddy current error magnetic field and the vibration error magnetic field is superimposed, thereby obtaining both the information on the eddy current error magnetic field and the vibration error magnetic field. A magnetic resonance imaging apparatus characterized by comprising:
  5.  請求項3記載の磁気共鳴イメージング装置において、
     前記パルスシーケンスは、少なくとも2軸方向にエンコード傾斜磁場パルスを印加するものであり、
     前記誤差磁場画像取得部は、前記サンプリング時間毎に前記エコー信号を前記少なくとも2軸方向にフーリエ変換して得た位相画像データを用いて、前記サンプリング時間毎の誤差磁場画像データを求めることを特徴とする磁気共鳴イメージング装置。
    In the magnetic resonance imaging apparatus according to claim 3,
    The pulse sequence applies an encoded gradient magnetic field pulse in at least two axial directions,
    The error magnetic field image acquisition unit obtains error magnetic field image data for each sampling time using phase image data obtained by performing Fourier transform on the echo signal in the at least two axial directions for each sampling time. Magnetic resonance imaging apparatus.
  6.  請求項3記載の磁気共鳴イメージング装置において、
     前記誤差磁場計測部は、前記テスト傾斜磁場を異ならせて前記エコー信号の計測を前記計測制御部に行なわせ、
     前記誤差磁場画像取得部は、前記サンプリング時間毎に前記テスト傾斜磁場の異なる位相画像データの差分を用いて、前記サンプリング時間毎の誤差磁場画像データを求めることを特徴とする磁気共鳴イメージング装置。
    In the magnetic resonance imaging apparatus according to claim 3,
    The error magnetic field measurement unit makes the measurement control unit measure the echo signal by changing the test gradient magnetic field,
    The magnetic resonance imaging apparatus, wherein the error magnetic field image acquisition unit obtains error magnetic field image data for each sampling time using a difference between phase image data having different test gradient magnetic fields for each sampling time.
  7.  請求項3記載の磁気共鳴イメージング装置において、
     前記誤差磁場算出部は、各誤差磁場画像データを複数の球面調和項に分解し、球面調和項毎に前記誤差磁場を表す減衰振動関数のパラメータ値を算出し、
     前記補正磁場算出部は、前記球面調和項毎の誤差磁場を表す減衰振動関数のパラメータ値に基づいて、球面調和項毎に前記補正磁場を算出することを特徴とする磁気共鳴イメージング装置。
    In the magnetic resonance imaging apparatus according to claim 3,
    The error magnetic field calculation unit decomposes each error magnetic field image data into a plurality of spherical harmonic terms, calculates a parameter value of a damped oscillation function representing the error magnetic field for each spherical harmonic term,
    The magnetic resonance imaging apparatus, wherein the correction magnetic field calculation unit calculates the correction magnetic field for each spherical harmonic term based on a parameter value of a damped oscillation function representing an error magnetic field for each spherical harmonic term.
  8.  請求項7記載の磁気共鳴イメージング装置において、
     前記誤差磁場算出部は、前記球面調和項毎に、前記誤差磁場画像データを時間軸方向にフーリエ変換して得たスペクトル分布にLorentzian関数又はGaussian関数を当てはめて、前記誤差磁場を表す減衰振動関数のパラメータ値を算出することを特徴とする磁気共鳴イメージング装置。
    The magnetic resonance imaging apparatus according to claim 7,
    The error magnetic field calculation unit applies a Lorentzian function or a Gaussian function to a spectral distribution obtained by Fourier transforming the error magnetic field image data in the time axis direction for each spherical harmonic term, and a damped oscillation function representing the error magnetic field. The parameter value of the magnetic resonance imaging apparatus is calculated.
  9.  請求項8記載の磁気共鳴イメージング装置において、
     前記誤差磁場算出部は、周波数ドメインで前記スペクトル分布における周波数ピーク近傍の波形にLorentzian関数又はGaussian関数を当てはめて、該Lorentzian関数又はGaussian関数のフーリエ変換に対応する時間ドメインの減衰振動関数の減衰時定数を含むパラメータ値を算出することを特徴とする磁気共鳴イメージング装置。
    The magnetic resonance imaging apparatus according to claim 8,
    The error magnetic field calculation unit applies a Lorentzian function or a Gaussian function to a waveform near a frequency peak in the spectrum distribution in the frequency domain, and attenuates a time domain damped oscillation function corresponding to a Fourier transform of the Lorentzian function or Gaussian function. A magnetic resonance imaging apparatus characterized by calculating a parameter value including a constant.
  10.  請求項3記載の磁気共鳴イメージング装置において、
     前記補正磁場算出部は、前記減衰振動関数のパラメータ値を用いて傾斜磁場波形に対するインパルス応答関数のモデルを作成し、任意の入力傾斜磁場波形に対して前記モデルの逐次応答として、前記補正磁場を算出することを特徴とする磁気共鳴イメージング装置。
    In the magnetic resonance imaging apparatus according to claim 3,
    The correction magnetic field calculation unit creates a model of an impulse response function with respect to a gradient magnetic field waveform using the parameter value of the damped oscillation function, and uses the correction magnetic field as a sequential response of the model with respect to an arbitrary input gradient magnetic field waveform. A magnetic resonance imaging apparatus characterized by calculating.
  11.  請求項9記載の磁気共鳴イメージング装置において、
     前記補正磁場の位相と、前記スペクトル分布の周波数ピークにおける位相と、の間の位相誤差を校正するための位相校正部を備えていることを特徴とする磁気共鳴イメージング装置。
    The magnetic resonance imaging apparatus according to claim 9,
    A magnetic resonance imaging apparatus comprising: a phase calibration unit for calibrating a phase error between a phase of the correction magnetic field and a phase at a frequency peak of the spectrum distribution.
  12.  請求項3記載の磁気共鳴イメージング装置において、
     前記パルスシーケンスは、再収束RFパルスの前後に前記テスト傾斜磁場をそれぞれ備え、該再収束RFパルス後のテスト傾斜磁場がゼロになった後に前記エコー信号を計測するものであることをとくちょうとする磁気共鳴イメージング装置。
    In the magnetic resonance imaging apparatus according to claim 3,
    The pulse sequence includes the test gradient magnetic field before and after the refocus RF pulse, and measures the echo signal after the test gradient magnetic field after the refocus RF pulse becomes zero. Magnetic resonance imaging device.
  13.  傾斜磁場の印加に起因する磁気共鳴イメージング装置の構造物の振動に基づく振動誤差磁場を、補正磁場を用いて補正する振動誤差磁場低減方法であって、
     テスト傾斜磁場を有するパルスシーケンスを用いてエコー信号を計測する計測ステップと、
     前記エコー信号を用いて、そのサンプリング時間毎の誤差磁場分布を表す誤差磁場画像データを取得するステップと、
     前記サンプリング時間毎の誤差磁場画像データを用いて前記振動誤差磁場を表す減衰振動関数のパラメータ値を算出するパラメータ値算出ステップと、
     前記算出された振動誤差磁場を表す減衰振動関数のパラメータ値に基づいて、前記補正磁場を算出する補正磁場算出ステップと、
     を備えていることを特徴とする振動誤差磁場低減方法。
    A vibration error magnetic field reduction method for correcting a vibration error magnetic field based on vibration of a structure of a magnetic resonance imaging apparatus caused by application of a gradient magnetic field using a correction magnetic field,
    A measurement step of measuring an echo signal using a pulse sequence having a test gradient magnetic field;
    Using the echo signal, obtaining error magnetic field image data representing an error magnetic field distribution for each sampling time; and
    A parameter value calculating step for calculating a parameter value of a damped oscillation function representing the vibration error magnetic field using the error magnetic field image data for each sampling time;
    A correction magnetic field calculation step for calculating the correction magnetic field based on a parameter value of a damped vibration function representing the calculated vibration error magnetic field;
    A vibration error magnetic field reduction method characterized by comprising:
  14.  請求項13記載の振動誤差磁場低減方法において、
     前記パラメータ値算出ステップは、前記サンプリング時間毎の誤差磁場画像データを時間軸方向にフーリエ変換して得たスペクトル分布に対して、Lorentzian関数あるいはGaussian関数を用いて、前記誤差磁場を表す減衰振動関数のパラメータ値を算出することを特徴とする振動誤差磁場低減方法。
    In the vibration error magnetic field reduction method according to claim 13,
    The parameter value calculating step uses a Lorentzian function or a Gaussian function for a spectral distribution obtained by Fourier transforming the error magnetic field image data for each sampling time in the time axis direction, and using the Lorentzian function or the Gaussian function, a damped oscillation function representing the error magnetic field. A parameter value of the vibration error magnetic field reduction method is calculated.
  15.  請求項14記載の誤差磁場補正方法において、
     前記パラメータ値算出ステップは、周波数ドメインで前記スペクトル分布に当てはめたLorentzian関数又はGaussian関数に対応する時間ドメインの減衰振動関数を求めて、該減衰振動関数の減衰時定数を含むパラメータ値を算出することを特徴とする振動誤差磁場低減方法。
    In the error magnetic field correction method according to claim 14,
    The parameter value calculating step obtains a time domain damped oscillation function corresponding to the Lorentzian function or Gaussian function applied to the spectral distribution in the frequency domain, and calculates a parameter value including a damping time constant of the damped oscillation function. A method for reducing a vibration error magnetic field.
  16.  請求項14記載の振動誤差磁場低減方法において、
     前記補正磁場算出ステップは、前記減衰振動関数のパラメータ値を用いて傾斜磁場波形に対するインパルス応答関数のモデルを作成し、任意の入力傾斜磁場波形に対して前記モデルの逐次応答として、前記補正磁場を算出することを特徴とする振動誤差磁場低減方法。
    In the vibration error magnetic field reduction method according to claim 14,
    The correction magnetic field calculation step creates a model of an impulse response function for a gradient magnetic field waveform using the parameter value of the damped oscillation function, and uses the correction magnetic field as a sequential response of the model for an arbitrary input gradient magnetic field waveform. A vibration error magnetic field reduction method characterized by calculating.
PCT/JP2011/068650 2010-08-26 2011-08-18 Magnetic resonance imaging device and vibrational error magnetic field-reducing method WO2012026382A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012530639A JP6038654B2 (en) 2010-08-26 2011-08-18 Magnetic resonance imaging apparatus and vibration error magnetic field reduction method
US13/817,680 US9453897B2 (en) 2010-08-26 2011-08-18 Magnetic resonance imaging apparatus and vibrational error magnetic field reduction method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-189068 2010-08-26
JP2010189068 2010-08-26

Publications (1)

Publication Number Publication Date
WO2012026382A1 true WO2012026382A1 (en) 2012-03-01

Family

ID=45723384

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/068650 WO2012026382A1 (en) 2010-08-26 2011-08-18 Magnetic resonance imaging device and vibrational error magnetic field-reducing method

Country Status (3)

Country Link
US (1) US9453897B2 (en)
JP (1) JP6038654B2 (en)
WO (1) WO2012026382A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020174960A (en) * 2019-04-19 2020-10-29 株式会社日立製作所 Magnetic resonance imaging device and compensation method for erroneous magnetic field

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103957785B (en) * 2011-10-18 2016-12-07 皇家飞利浦有限公司 MR electrical properties tomography
US8838204B2 (en) * 2012-01-13 2014-09-16 Siemens Medical Solutions Usa, Inc. System and method for phase contrast imaging with improved efficiency
DE102013206555B4 (en) * 2013-04-12 2018-03-01 Siemens Healthcare Gmbh Magnetic resonance scanner with antenna system
WO2017007514A1 (en) * 2015-07-08 2017-01-12 Lockheed Martin Corporation Precision position encoder/sensor using nitrogen vacancy diamonds
DE102015223658B4 (en) * 2015-11-30 2017-08-17 Siemens Healthcare Gmbh Method for acquiring magnetic resonance signals of an examination object
DE102018200239B4 (en) 2018-01-09 2022-09-22 Siemens Healthcare Gmbh Method and magnetic resonance system for avoiding artifacts by determining a phase difference caused by eddy currents for a magnetic resonance system
CN114252828A (en) * 2021-12-21 2022-03-29 安徽福晴医疗科技有限公司 Magnetic resonance imaging system and pre-emphasis eddy current correction method and device thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10272120A (en) * 1996-12-30 1998-10-13 General Electric Co <Ge> Compensation method for magnetic field of magnetic resonance system
JP2001187040A (en) * 1999-11-15 2001-07-10 General Electric Co <Ge> Method and apparatus for reducing image artifacts caused by magnetic vibration in magnetic resonance imaging system
JP2004261591A (en) * 2003-02-12 2004-09-24 Hitachi Medical Corp Magnetic resonance imaging apparatus
JP4106053B2 (en) * 2002-07-04 2008-06-25 株式会社日立メディコ Magnetic resonance imaging apparatus and eddy current compensation derivation method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4698591A (en) * 1986-01-03 1987-10-06 General Electric Company Method for magnetic field gradient eddy current compensation
JPH0620959B2 (en) 1990-08-27 1994-03-23 静岡工機株式会社 Sheet reversing device
DE69211806T2 (en) * 1991-10-25 1996-10-31 Univ Queensland Correction of signal distortion in a magnetic resonance apparatus
US6239599B1 (en) * 1999-05-21 2001-05-29 General Electric Company Method and apparatus for identifying errors in magnetic resonance imaging examinations
JP4497973B2 (en) * 2004-03-24 2010-07-07 株式会社東芝 Magnetic resonance imaging system
US9297876B2 (en) * 2009-06-10 2016-03-29 Hitachi Medical Corporation Magnetic resonance imaging apparatus and eddy current compensation method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10272120A (en) * 1996-12-30 1998-10-13 General Electric Co <Ge> Compensation method for magnetic field of magnetic resonance system
JP2001187040A (en) * 1999-11-15 2001-07-10 General Electric Co <Ge> Method and apparatus for reducing image artifacts caused by magnetic vibration in magnetic resonance imaging system
JP4106053B2 (en) * 2002-07-04 2008-06-25 株式会社日立メディコ Magnetic resonance imaging apparatus and eddy current compensation derivation method
JP2004261591A (en) * 2003-02-12 2004-09-24 Hitachi Medical Corp Magnetic resonance imaging apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020174960A (en) * 2019-04-19 2020-10-29 株式会社日立製作所 Magnetic resonance imaging device and compensation method for erroneous magnetic field
JP7253433B2 (en) 2019-04-19 2023-04-06 富士フイルムヘルスケア株式会社 MAGNETIC RESONANCE IMAGING APPARATUS AND ERROR MAGNETIC COMPENSATION METHOD
US11789101B2 (en) 2019-04-19 2023-10-17 Fujifilm Healthcare Corporation Magnetic resonance imaging apparatus and method of compensating for error magnetic field

Also Published As

Publication number Publication date
JPWO2012026382A1 (en) 2013-10-28
JP6038654B2 (en) 2016-12-07
US20130147481A1 (en) 2013-06-13
US9453897B2 (en) 2016-09-27

Similar Documents

Publication Publication Date Title
JP6038654B2 (en) Magnetic resonance imaging apparatus and vibration error magnetic field reduction method
JP5718228B2 (en) Magnetic resonance imaging apparatus and eddy current compensation method
KR101473872B1 (en) Magnetic resonance imaging device and control method thereof
WO2011155461A1 (en) Magnetic resonance imaging device and transmitting sensitivity distribution calculation method
JP4106053B2 (en) Magnetic resonance imaging apparatus and eddy current compensation derivation method
JP6371554B2 (en) Magnetic resonance imaging system
JP5479427B2 (en) Magnetic resonance imaging device
US9594140B2 (en) Magnetic resonance imaging apparatus and method for calculating correction value as application amount of refocusing pulse for UTE sequence
WO2015190508A1 (en) Magnetic resonance imaging device and method for creating water-fat separation image
JP4564015B2 (en) Magnetic resonance imaging apparatus and magnetic resonance imaging method
JP2017530761A (en) Zero echo time MR imaging
JP2014518120A (en) MRI with separation of different species using a spectral model
JP4781120B2 (en) Magnetic resonance imaging apparatus and magnetic resonance spectrum measuring method
JP5337406B2 (en) Magnetic resonance imaging system
JP2004261591A (en) Magnetic resonance imaging apparatus
JPWO2008136274A1 (en) Magnetic resonance imaging apparatus and method
JP5808659B2 (en) Magnetic resonance imaging apparatus and T1ρ imaging method
JPWO2015115187A1 (en) Magnetic resonance imaging apparatus and fat suppression water image calculation method
JP5177379B2 (en) Magnetic resonance imaging system
JP4890945B2 (en) Magnetic resonance imaging system
JP4923243B2 (en) Magnetic resonance imaging apparatus, magnetic resonance imaging method, arithmetic processing program, and information recording medium recording the same
JP5064685B2 (en) Magnetic resonance imaging system
JP5650044B2 (en) Magnetic resonance imaging system
JP5718148B2 (en) Magnetic resonance imaging apparatus and dual slice measurement method
JP6718764B2 (en) Magnetic resonance imaging apparatus and control method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11819845

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012530639

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13817680

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11819845

Country of ref document: EP

Kind code of ref document: A1