WO2012026377A1 - Method and apparatus for manufacturing stretched film - Google Patents

Method and apparatus for manufacturing stretched film Download PDF

Info

Publication number
WO2012026377A1
WO2012026377A1 PCT/JP2011/068632 JP2011068632W WO2012026377A1 WO 2012026377 A1 WO2012026377 A1 WO 2012026377A1 JP 2011068632 W JP2011068632 W JP 2011068632W WO 2012026377 A1 WO2012026377 A1 WO 2012026377A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
necking
temperature
stretched
stretching
Prior art date
Application number
PCT/JP2011/068632
Other languages
French (fr)
Japanese (ja)
Inventor
後藤 靖友
伸輔 高橋
清一 渡辺
小倉 徹
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2012026377A1 publication Critical patent/WO2012026377A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/04Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique
    • B29C55/06Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique parallel with the direction of feed
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid

Definitions

  • the position of the necking cannot be controlled, and the position of the necking is moved to a site where the film is in contact with the roll. Cannot be manufactured. Therefore, it is desired that the position of the necking can be controlled. Further, if the stability of the necking cannot be controlled, a plurality of stretching start points appear from weak or non-uniform portions, and a stretched film with little stretching unevenness cannot be produced. Therefore, it is desired that the stability of the necking can be controlled.
  • Non-Patent Document 1 a change in the width due to the necking (neck-in) occurs (for example, Non-Patent Document 1), which affects the productivity of the stretched film obtained when the neck-in is large. It is desired that the necking-in ratio (NR) of the necking can be reduced.
  • the manufacturing method of a stretched film when manufacturing a stretched film by biaxial stretching, the manufacturing method of the stretched film which performs necking extending
  • the first-stage stretching is performed at a temperature lower than the glass transition temperature of the film.
  • the position of the necking cannot be controlled, and as a result of the movement of the position of the necking, the film is cut.
  • the stability of the necking cannot be sufficiently controlled, and there is a problem that it is difficult to obtain a stretched film with little stretch unevenness.
  • a method for producing a stretched film that can perform necking stretching by controlling the position of necking, can obtain a stretched film with little stretching unevenness by controlling the stability of necking, and can further reduce the neck-in ratio.
  • the present situation is that provision of an apparatus for producing a stretched film is required.
  • the present invention makes it a subject to solve the said various problems in the past and to achieve the following objectives. That is, the present invention can perform necking stretching by controlling the position of necking, and can achieve a stretched film with less stretching unevenness by controlling the stability of necking, and further can reduce the neck-in ratio. It aims at providing the manufacturing method of a film, and the manufacturing apparatus of a stretched film.
  • Means for solving the problems are as follows. That is, ⁇ 1> Necking and stretching the film by applying a tension to the film and raising a part of the film to which the tension is applied from a temperature at which the width of the film does not change to a temperature at which necking occurs. It is the manufacturing method of the stretched film characterized. ⁇ 2> By applying tension to the film, and heating a part of the film to which the tension is applied to a temperature at which the width of the film does not change by the cooling means, and then raising the temperature to a temperature at which necking occurs by the heating means. The method for producing a stretched film according to ⁇ 1>, wherein the film is necked and stretched.
  • the cooling means is a coolable member
  • the heating means is a heatable member
  • tensile_strength is provided in the state which the film contacted the said cooling means and the said heating means.
  • ⁇ 4> The method for producing a stretched film according to any one of ⁇ 2> to ⁇ 3>, wherein the cooling temperature by the cooling means is a temperature lower by 5 ° C. or more than the glass transition point of the film.
  • ⁇ 5> The method for producing a stretched film according to any one of ⁇ 1> to ⁇ 4>, wherein the film has a half width of a crystalline peak in X-ray diffraction of less than 9 ° as 2 ⁇ .
  • ⁇ 6> The method for producing a stretched film according to any one of ⁇ 1> to ⁇ 5>, wherein the average thickness of the film is 1.5 ⁇ m to 200 ⁇ m.
  • ⁇ 10> Necking is caused in a film heated to a temperature at which necking occurs, the film is necked and stretched, and the position of the necking is moved to the vicinity of the film maintained at a temperature at which the width of the film does not change, It is a manufacturing method of the stretched film in any one of said ⁇ 1> to ⁇ 9> to fix.
  • ⁇ 11> Necking is caused in the film heated to a temperature at which necking occurs by the heating means, the film is necked and stretched, and the position of the necking is maintained at a temperature at which the width of the film does not change by the cooling means. It is the manufacturing method of the stretched film in any one of said ⁇ 1> to ⁇ 10> which moves to the film vicinity and fixes.
  • An apparatus for producing a stretched film comprising: a necking generating unit that raises a part of the film to which tension is applied by the tension applying unit to a temperature at which necking occurs from a temperature at which the width of the film does not change. .
  • the necking generating means includes a cooling means for cooling a part of the film to which tension is applied to a temperature at which the width of the film does not change, and a heating means for raising the temperature to a temperature at which necking occurs.
  • the cooling unit is a coolable member
  • the heating unit is a heatable member.
  • necking can be controlled by controlling the position of necking, and the stability of necking can be controlled to obtain a stretched film with less stretching unevenness. It is possible to provide a stretched film manufacturing method and a stretched film manufacturing apparatus capable of reducing the neck-in ratio.
  • FIG. 1 is a diagram showing an outline of necking.
  • FIG. 2A is a diagram for specifically explaining the aspect ratio, and is a perspective view of a stretched film having a cavity.
  • FIG. 2B is a diagram for specifically explaining the aspect ratio, and is a cross-sectional view taken along line A-A ′ of the stretched film having a cavity in FIG. 2A.
  • FIG. 2C is a diagram for specifically explaining the aspect ratio, and is a B-B ′ sectional view of a stretched film having a cavity in FIG. 2A.
  • FIG. 3 is a schematic view of one embodiment of the stretched film production apparatus of the present invention.
  • FIG. 4 is a schematic view of one embodiment of the stretched film production apparatus of the present invention.
  • FIG. 3 is a schematic view of one embodiment of the stretched film production apparatus of the present invention.
  • FIG. 5 is a schematic view of one embodiment of the stretched film production apparatus of the present invention.
  • FIG. 6 is a schematic view of one embodiment of the stretched film production apparatus of the present invention.
  • FIG. 7 is a schematic view of one embodiment of the stretched film production apparatus of the present invention.
  • FIG. 8 is a schematic view of a stretched film manufacturing apparatus used in the reference example.
  • FIG. 9 is a schematic view of a stretched film manufacturing apparatus used in the reference example.
  • the method for producing a stretched film of the present invention includes at least a stretching step, and further includes other steps as necessary.
  • the stretching step is a step of stretching the film, and includes at least a tension applying process and a necking generating process, and further includes other processes as necessary.
  • the stretched film production apparatus of the present invention has at least a stretching machine, and further includes other equipment as necessary.
  • the stretching machine has at least a tension applying unit and a necking generating unit, and further includes other units as necessary.
  • the stretching step can be performed by the stretching machine.
  • the tension applying process can be performed by the tension applying means.
  • the necking generation process can be performed by the necking generating means.
  • necking stretching since stretching occurs at once in a very narrow range, it is important to heat uniformly in the width direction of the film at the necking position. This is because uniform heating in the width direction of the film can suppress wrinkling of the film during necking stretching, and it is also difficult for uneven thickness of the film to occur. Therefore, it is preferable to heat uniformly in the width direction of the film. If the heating in the width direction of the film is not uniform, the necking position may not be constant, and the film may wave. Moreover, the film may be distorted by the undulation of the film, and the film may be broken. In normal heating and stretching, since the entire stretching zone is heated and the film is sufficiently soft, the occurrence of unevenness of the film is less than that of necking stretching, and the film is less broken.
  • thermoplastic resin etc.
  • the film may contain a heat stabilizer, an antioxidant, an organic lubricant, a nucleating agent, a dye, a pigment, a dispersant, a coupling agent, and the like.
  • cavity formation agents such as an inorganic fine particle and resin which is not compatible, for producing a cavity in a stretched film.
  • thermoplastic resin a crystalline polymer and an amorphous polymer are mentioned.
  • the crystalline polymer is preferable in that a stretched film having a cavity can be obtained without using a cavity forming agent such as inorganic fine particles or incompatible resin.
  • -Crystalline polymer- In general, polymers are classified into crystalline polymers and amorphous (amorphous) polymers, but even crystalline polymers are not 100% crystalline, and long chain molecules are regularly formed in the molecular structure. It includes aligned crystalline regions and non-regularly arranged amorphous (amorphous) regions. Therefore, the crystalline polymer only needs to include at least the crystalline region in the molecular structure, and the crystalline region and the amorphous region may be mixed.
  • polyolefins polyolefins, polyesters, syndiotactic polystyrene (SPS), and liquid crystal polymers (LCP) are preferable, and polyolefins and polyesters are more preferable from the viewpoints of durability, mechanical strength, production, and cost. Two or more kinds of these polymers may be blended or copolymerized.
  • SPS syndiotactic polystyrene
  • LCP liquid crystal polymers
  • the melt viscosity of the crystalline polymer is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 50 Pa ⁇ s to 700 Pa ⁇ s, more preferably 70 Pa ⁇ s to 500 Pa ⁇ s, and more preferably 80 Pa ⁇ s. Particularly preferred is s to 300 Pa ⁇ s.
  • the melt viscosity is within the preferred range, the shape of the melt film discharged from the die head during melt film formation is stable, and it is easy to form a uniform film, and the viscosity during melt film formation is appropriate.
  • melt viscosity can be measured by a plate type rheometer or a capillary rheometer.
  • the intrinsic viscosity (IV) of the crystalline polymer is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.4 to 1.2, more preferably 0.6 to 1.0. 0.7 to 0.9 is particularly preferable.
  • the IV is in the preferred range, it is advantageous in that the strength of the film formed becomes high and the film can be efficiently stretched, and when the particularly preferred range, the effect becomes remarkable. Is advantageous.
  • the IV can be measured by an Ubbelohde viscometer.
  • the melting point (Tm) of the crystalline polymer is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 40 ° C to 350 ° C, more preferably 100 ° C to 300 ° C, and more preferably 100 ° C to 260 ° C. ° C is particularly preferred.
  • Tm melting point
  • the melting point is in the preferred range, it is easy to keep the shape in the temperature range expected for normal use, and even without special techniques required for processing at high temperatures, it is uniform. It is advantageous in that a stable film can be formed, and if it is in the particularly preferable range, it is advantageous in that the above-described effect becomes remarkable.
  • the melting point can be measured by a differential thermal analyzer (DSC).
  • polyester resins mean a general term for polymer compounds having an ester bond as a main bond chain. Therefore, as the polyester resin suitable as the crystalline polymer, the exemplified PET (polyethylene terephthalate), PEN (polyethylene naphthalate), PTT (polytrimethylene terephthalate), PBT (polybutylene terephthalate), PPT (polypenta).
  • the dicarboxylic acid component is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include aromatic dicarboxylic acids, aliphatic dicarboxylic acids, alicyclic dicarboxylic acids, oxycarboxylic acids, and polyfunctional acids. Can be mentioned.
  • aromatic dicarboxylic acid examples include terephthalic acid, isophthalic acid, diphenyldicarboxylic acid, diphenylsulfone dicarboxylic acid, naphthalenedicarboxylic acid, diphenoxyethanedicarboxylic acid, and 5-sodium sulfoisophthalic acid.
  • terephthalic acid, isophthalic acid, diphenyldicarboxylic acid, and naphthalenedicarboxylic acid are preferable, and terephthalic acid, diphenyldicarboxylic acid, and naphthalenedicarboxylic acid are more preferable.
  • Examples of the aliphatic dicarboxylic acid include oxalic acid, succinic acid, eicoic acid, adipic acid, sebacic acid, dimer acid, dodecanedioic acid, maleic acid, and fumaric acid.
  • Examples of the alicyclic dicarboxylic acid include cyclohexane dicarboxylic acid.
  • Examples of the oxycarboxylic acid include p-oxybenzoic acid.
  • Examples of the polyfunctional acid include trimellitic acid and pyromellitic acid.
  • succinic acid, adipic acid, and cyclohexanedicarboxylic acid are preferable, and succinic acid and adipic acid are more preferable.
  • Examples of the aliphatic diol include ethylene glycol, propane diol, butane diol, pentane diol, hexane diol, neopentyl glycol, and triethylene glycol. Among these, propanediol, butanediol, pentanediol, and hexanediol are particularly preferable.
  • Examples of the alicyclic diol include cyclohexanedimethanol.
  • Examples of the aromatic diol include bisphenol A and bisphenol S.
  • the melt viscosity of the polyester resin is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 50 Pa ⁇ s to 700 Pa ⁇ s, more preferably 70 Pa ⁇ s to 500 Pa ⁇ s, and more preferably 80 Pa ⁇ s. ⁇ 300 Pa ⁇ s is particularly preferred.
  • the higher the melt viscosity the easier to express cavities during stretching, but if the melt viscosity is within the above preferred range, it will be easier to extrude during film formation or the resin flow will be more stable and less likely to stay.
  • the stretching tension is properly maintained at the time of stretching, it is easy to stretch uniformly, it is difficult to break, and the form of the molten film discharged from the die head at the time of film formation is It is advantageous in terms of improving physical properties such as being easy to maintain, being able to be stably molded, and being less likely to break the product, and is advantageous in that the above-described effects become significant if it is in the particularly preferred range. is there.
  • the intrinsic viscosity (IV) of the polyester resin is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.4 to 1.2, more preferably 0.6 to 1.0, 0.7 to 0.9 is particularly preferable.
  • IV is larger, cavities are more likely to be generated during stretching.
  • the IV is within the preferred range, extrusion is easy during film formation, and the resin flow is stable and stagnation is difficult to occur. Is advantageous in that it is stable, and if it is in the particularly preferred range, it is advantageous in that the above-described effect becomes remarkable.
  • the stretching tension is appropriately maintained at the time of stretching, so that it is easy to stretch uniformly, and it is advantageous in that the load is not easily applied to the apparatus.
  • the melting point of the polyester resin is not particularly limited and may be appropriately selected depending on the intended purpose. However, from the viewpoint of heat resistance and film forming property, 70 ° C. to 300 ° C. is preferable, and 90 ° C. to 270 ° C. More preferred.
  • the said dicarboxylic acid component and the said diol component may respectively superpose
  • a polymer may be formed by copolymerization.
  • two or more kinds of polymers may be blended and used.
  • the polymer added to the main polymer has a melt viscosity and an intrinsic viscosity that are close to those of the main polymer, and the addition amount is smaller when the film is formed or melted. It is preferable in that the physical properties are enhanced during extrusion and the extrusion becomes easy.
  • a resin other than polyester may be added to the polyester resin.
  • the film can confirm the half width of the crystalline peak in X-ray diffraction.
  • a half value width 2 ⁇ is preferably less than 9 °, more preferably 7 ° or less, and particularly preferably 5 ° or less. If the half width is 9 ° or more, it is difficult to obtain a stretched film having a cavity.
  • the half width is in a particularly preferable range, it is advantageous in that a stretched film having a cavity having an appearance with excellent glitter can be produced with stable quality.
  • the half width can be measured by, for example, an X-ray diffractometer (for example, RINT TTR III, manufactured by Rigaku Corporation).
  • an X-ray diffractometer for example, RINT TTR III, manufactured by Rigaku Corporation.
  • the tension applying process can be performed by the tension applying means.
  • the tension applying means is not particularly limited as long as it is a means for applying tension to the film, and can be appropriately selected according to the purpose.
  • a tension applying means having a low speed roll and a high speed roll examples include tension applying means using gripping members that grip both ends of the film.
  • a tension applying means having a low speed roll and a high speed roll is preferable in that a tension can be continuously applied to the film.
  • the low-speed roll is arranged on the upstream side in the conveyance direction of the film.
  • the high-speed roll is arranged on the downstream side, the film is conveyed so as to be in contact with these rolls, and the difference between the peripheral speeds of these rolls is used.
  • the transport speed of the film at the position in contact with the low-speed roll is not particularly limited as long as it is lower than the transport speed of the film at the position in contact with the high-speed roll, and can be appropriately selected according to the purpose.
  • 1 mm / min to 500,000 mm / min is preferable, 10 mm / min to 100,000 mm / min is more preferable, and 40 mm / min to 50,000 mm / min is particularly preferable. If the conveying speed is less than 1 mm / min, mechanical control may be difficult, and if it exceeds 500,000 mm / min, the production load may be increased.
  • the transport speed of the film at the position in contact with the high-speed roll is not particularly limited as long as it is higher than the transport speed of the film at the position in contact with the low-speed roll, and can be appropriately selected according to the purpose. 10 mm / min to 1,000,000 mm / min is preferable, 100 mm / min to 500,000 mm / min is more preferable, and 400 mm / min to 200,000 mm / min is particularly preferable. If the conveying speed is less than 10 mm / min, mechanical control may be difficult, and if it exceeds 1,000,000 mm / min, the production load may be increased. When the conveyance speed is in the particularly preferred range, it is advantageous in that necking stretching can be performed stably.
  • the conveyance speed of the film at the position in contact with the low-speed roll can be obtained from the peripheral speed of the low-speed roll because it is the same speed as the peripheral speed of the low-speed roll. Moreover, since the conveyance speed of the film in the position in contact with the high-speed roll is the same as the peripheral speed of the high-speed roll, it can be obtained from the peripheral speed of the high-speed roll.
  • the ratio (h / l) of the film conveyance speed (l) at the position in contact with the low-speed roll and the film conveyance speed (h) at the position in contact with the high-speed roll is particularly limited as long as it exceeds 1.
  • (h / l) 1.1 to 10 is preferable, 2 to 8 is more preferable, and 3 to 6 is particularly preferable. If the ratio is less than 1.1, stretching may not be possible, and if it exceeds 10, the film may be broken during stretching. If the ratio is within the particularly preferable range, it is advantageous in that necking stretching can be performed stably.
  • the tension applying means having the low speed roll and the high speed roll preferably further has a nip roll. By niping the film with the nip roll and any of the low-speed roll and the high-speed roll, tension can be stably applied to the film.
  • the tension applying means having the low speed roll and the high speed roll preferably further has an auxiliary roll.
  • tension can be uniformly applied to the film.
  • the tension applied to the film by the tension application treatment is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 5 MPa to 40 MPa, more preferably 10 MPa to 30 MPa, and particularly preferably 10 MPa to 20 MPa. preferable.
  • the tension is less than 5 MPa, stretching unevenness is likely to occur, and when it exceeds 40 MPa, the film may be easily cut.
  • the tension is within the particularly preferable range, it is advantageous in that stretching can be performed stably even at a high speed.
  • tensile_strength shows the tension
  • the necking generation process can be performed by the necking generation means.
  • necking is a constriction that occurs in a narrow area of a film during stretching.
  • An outline of necking is shown in FIG.
  • W 0 indicates the width of the film (film before stretching)
  • W indicates the width of the stretched film
  • L 0 is the length of the range of the film in which necking occurs.
  • the length of L 0 is 0.05 mm to 5 mm.
  • the necking generating means is not particularly limited as long as it is a means for raising a part of the film to which tension is applied from a temperature at which the width of the film does not change to a temperature at which necking occurs. You can choose.
  • the temperature at which the width of the film does not change is a temperature at which the width of the film does not change in the state where the tension is applied, for example, a temperature that is 5 ° C. or more lower than the glass transition point (Tg) of the film.
  • the width of the film refers to the length in the direction perpendicular to the direction in which the tension is applied in the film.
  • the change usually means shortening.
  • the glass transition point (Tg) can be measured by a differential thermal analyzer (DSC).
  • the cooling means is not particularly limited as long as it can cool the tensioned film to a temperature at which the width of the film does not change, and can be appropriately selected according to the purpose. Examples thereof include setting a member, a cold air generator, and a room in which the stretched film manufacturing apparatus is installed to a cooling temperature. Among these, a coolable member is preferable.
  • the member that can be cooled is not particularly limited as long as the member itself can be cooled to cool the film, and can be appropriately selected according to the purpose.
  • Examples include a metal member that circulates and a metal member that is attached with a cooling element using electronic cooling.
  • coolant there is no restriction
  • coolant According to the objective, it can select suitably,
  • the cooled gas, liquid, etc. are mentioned.
  • An example of the cooled gas is cooled air.
  • the cooled liquid include cooled water and antifreeze.
  • the shape of the coolable member is not particularly limited and may be appropriately selected depending on the purpose.
  • the coolable member having a substantially arcuate convex surface is easy to contact the film. It is preferable in that it can easily control the temperature.
  • the coolable member having the substantially arcuate convex surface is not particularly limited and may be appropriately selected depending on the purpose. However, as shown in FIGS. 4 and 6, the end of the substantially arcuate convex surface However, a coolable member having a structure that does not contact the film is preferable in that it can prevent the film from coming into contact with the end portion.
  • the film is in contact with the member that can be cooled in terms of easy control of the temperature of the film.
  • the cold air generator is not particularly limited as long as it can apply cold air to the film, and can be appropriately selected according to the purpose.
  • the cold air generator preferably has a dustproof filter. By providing the dustproof filter, dust, dust and the like contained in the cold air can be removed, and a clean stretched film free from adhesion of dust and dust can be produced.
  • the cooling temperature of the film cooled by the cooling means is not particularly limited as long as the width of the film does not change, and can be appropriately selected according to the purpose, but is 5 from the glass transition point of the film.
  • Preferred is a temperature lower by 50 ° C. or more, more preferred is a temperature lower by 50 ° C. than the glass transition point of the film, and particularly preferred is a temperature in the range of 60 ° C. lower than the glass transition point of the film to 100 ° C. lower than the glass transition point of the film. .
  • the cooling temperature is higher than a temperature that is 5 ° C. or more lower than the glass transition point of the film, the stretching position may deviate from the heatable member, or stretching unevenness may occur.
  • the cooling temperature is in the particularly preferable range, it is advantageous in that necking stretching can be stably performed on a heatable member.
  • the temperature at which necking occurs is a temperature at which necking occurs in the film in a state where the tension is applied, and is, for example, a temperature of 5 ° C. lower than the glass transition point (Tg) of the film.
  • Tg glass transition point
  • Heating means is not particularly limited as long as it can heat the film to which tension is applied to a temperature at which necking occurs, and can be appropriately selected according to the purpose. And laser. Among these, the heatable member is preferable.
  • the heatable member is not particularly limited as long as the member can be heated by heating the member itself, and can be appropriately selected according to the purpose.
  • the metal member with which a heat medium circulates is mentioned. There is no restriction
  • the shape of the heatable member is not particularly limited and may be appropriately selected according to the purpose.
  • the heatable member having a substantially arc-shaped convex surface is easily contacted with the film. It is preferable in that it can easily control the temperature.
  • the heatable member having the substantially arc-shaped convex surface is not particularly limited and can be appropriately selected according to the purpose. However, as shown in FIGS. 3 and 4, the end of the substantially arc-shaped convex surface. However, a heatable member having a structure that does not come into contact with the film is preferable in that it can prevent the film from coming out of contact with the end portion.
  • the film is in contact with the heatable member in terms of easy control of the temperature of the film.
  • the heating unit is not particularly limited as long as it has a space capable of heating the film, and can be appropriately selected according to the purpose. Examples thereof include a hot air furnace and a far infrared furnace.
  • the heating temperature of the film heated by the heating means is not particularly limited as long as it is a temperature at which necking occurs, and can be appropriately selected according to the purpose, but it is 5 from the glass transition point (Tg) of the film.
  • a temperature equal to or higher than the lower temperature is preferable, a temperature equal to or higher than the glass transition point of the film is more preferable, and a temperature in the range of 10 ° C. higher than the glass transition point (Tg) of the film is particularly preferable.
  • the heating temperature exceeds a temperature 10 ° C. higher than the glass transition point (Tg) of the film, the neck-in ratio increases and the productivity may be inferior.
  • the heating temperature is within the particularly preferred range, it is advantageous in that necking stretching is stabilized and productivity is improved.
  • the temperature difference (BA) between the temperature (A) at which the width of the film does not change and the temperature (B) at which the necking occurs is not particularly limited and is appropriately selected depending on the purpose. However, it is preferably 1 ° C to 100 ° C, more preferably 5 ° C to 80 ° C, and particularly preferably 10 ° C to 50 ° C. If the temperature difference is less than 1 ° C, necking may be difficult to occur, and if it exceeds 100 ° C, the film may be easily cut. If the temperature difference is within the particularly preferred range, it is advantageous in that the film can be stably produced without being cut. When the film material is a polyester resin, the temperature difference is preferably 5 ° C.
  • the film can be stably produced without being cut.
  • the film that has been heated to a temperature at which necking occurs is necked, the film is necked and stretched, and the position of the necking is maintained at a temperature at which the width of the film does not change It is preferable to move it to the vicinity and fix it from the viewpoint of easily controlling the position of necking.
  • the position of necking is set.
  • the heatable member 6a is a metal member having a substantially arc-shaped convex surface, in which a heat medium circulates.
  • the substantially arc-shaped convex surface is in contact with the film 2, but the substantially arc-shaped convex surface
  • the end has a structure that does not contact the film 2.
  • the film 2 is nipped by the low-speed roll 3 and the nip roll 7, and the film 2 is nipped by the high-speed roll 4 and the nip roll 7, whereby a tension is stably applied to the film 2.
  • a part of the film 2 being conveyed is brought into contact with the member 5 that can be cooled to cool the film 2 to a temperature at which the width of the film does not change.
  • a part of the film 2 cooled to a temperature at which the width of the film does not change is moved by conveying the film 2 and brought into contact with the heatable member 6a to raise the temperature to a temperature at which necking occurs. .
  • ⁇ Stretched film> There is no restriction
  • the stretched film made of only the crystalline polymer may contain other components other than the crystalline polymer as necessary as long as it does not contribute to the development of the cavity.
  • the other components include a heat resistance stabilizer, an antioxidant, an organic lubricant, a nucleating agent, a dye, a pigment, a dispersant, and a coupling agent. Whether or not the other component contributes to the development of the cavity can be determined by whether or not a component other than the crystalline polymer is detected in the cavity or at the interface portion of the cavity.
  • the stretched film having a cavity is a stretched film having a cavity therein.
  • the term “cavity” means a vacuum domain or a gas phase domain present inside a stretched film having the cavity.
  • the cavity can be confirmed by a photograph taken with an optical microscope or a scanning electron microscope.
  • FIG. 2A to 2C are diagrams for specifically explaining the aspect ratio
  • FIG. 2A is a perspective view of a stretched film having a cavity
  • FIG. 2B is an A view of the stretched film having a cavity in FIG. 2A
  • FIG. 2C is a cross-sectional view taken along the line ⁇ A ′
  • FIG. 2C is a cross-sectional view taken along the line BB ′ of the stretched film having a cavity in FIG. 2A.
  • the cavities are usually oriented along the first stretching direction. Accordingly, the “average length of the cavities (L ( ⁇ m))” is a cross section perpendicular to the surface 1a of the stretched film 1 having independent cavities and parallel to the first stretching direction (B in FIG. 2A). This corresponds to the average length L (see FIG. 2C) of the cavity 100 in ( ⁇ B ′ cross section).
  • the “average diameter of cavities (r ( ⁇ m))” is a cross section perpendicular to the surface 1a of the stretched film 1 having independent cavities and perpendicular to the first stretching direction (AA in FIG. 2A). This corresponds to the average thickness r (see FIG. 2B) of the cavity 100 in the “cross section”.
  • stretching direction shows the extending direction of 1 axis
  • the necking stretching direction corresponds to the first stretching direction.
  • stretching is biaxial or more, at least 1 direction is shown among the extending directions aiming at cavity formation. Usually, even in biaxial or more stretching, the necking stretching direction corresponds to the first stretching direction.
  • the average length (L ( ⁇ m)) of the cavity can be measured by an image of an optical microscope or an electron microscope.
  • the average diameter (r ( ⁇ m)) of the cavities can be measured by an image of an optical microscope or an electron microscope.
  • the average number P of the cavities in the direction orthogonal to the orientation direction of the cavities is not particularly limited and may be appropriately selected depending on the purpose, but may be 5 or more. 10 or more is more preferable, and 15 or more is particularly preferable.
  • the average thickness of the stretched film is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 1.5 ⁇ m to 200 ⁇ m, more preferably 5 ⁇ m to 150 ⁇ m, and more preferably 20 ⁇ m to 100 ⁇ m. It is particularly preferred that If the average thickness is less than 1.5 ⁇ m, uniform stretching may not be possible, and if it exceeds 200 ⁇ m, the manufacturing machine may be burdened and may not be suitable for production (manufacturing may be difficult). When the average thickness is within the particularly preferable range, it is advantageous in that uniform necking stretching is possible and in terms of production suitability.
  • the average thickness of the stretched film is, for example, an average value when the thickness of the stretched film is measured at 10 points using a long range contact displacement meter AF030 (measurement unit) and AF350 (instruction unit) manufactured by Keyence Corporation. is there.
  • the reflectance of the stretched film is the wavelength when the integrating sphere is attached to a spectrophotometer (“V-570”; manufactured by JASCO Corporation), and the reflectance is measured for each wavelength of 200 nm to 2,500 nm.
  • the reflectance of the standard white board attached to the apparatus is set to 100%.
  • the width of the stretched film is preferably little changed with respect to the width of the film after stretching.
  • the change in the width (W) of the stretched film with respect to the width (W 0 ) of the film (film before stretching) is represented by an index called a neck-in ratio (NR).
  • the neck-in ratio is preferably 0.05 to 0.5, more preferably 0.05 to 0.3, and particularly preferably 0.05 to 0.15. When the neck-in ratio is in the particularly preferable range, it is advantageous in that necking stretching can be performed stably.
  • ⁇ Measurement> The glass transition point and crystallite size were measured by the following methods.
  • Tg glass transition point of the film was measured with a differential thermal analyzer (DSC).
  • ⁇ 2 Measurement of half-width of crystalline peak
  • PET polyethylene terephthalate
  • IV intrinsic viscosity
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • IV intrinsic viscosity
  • IV 0.64
  • a polymer molded body (film C) having a width of 100 mm and an average thickness of 90 ⁇ m was obtained by extrusion from a T die at 260 ° C. using a machine and solidifying with a casting drum.
  • the glass transition point of the obtained film C was 90 ° C. It was confirmed that the half width of the crystalline peak in X-ray diffraction of the obtained film C was 11 ° as 2 ⁇ .
  • Example 1 ⁇ Stretching of film>
  • the film A was necked and stretched using the stretched film manufacturing apparatus shown in FIG. First, the transport speed of the film A at a position in contact with the low speed roll 3 is 200 mm / min, the transport speed of the film A at a position in contact with the high speed roll 4 is 1,100 mm / min, and the film A is removed from the low speed roll 3. It was conveyed toward the high-speed roll 4. At this time, a tension of 10 MPa was applied to the film A. The film A was conveyed so as to be in contact with the heatable member 6a. While transporting the film A, a part of the film A was set to 25 ° C.
  • the film A was not cut and a stretched film could be produced stably.
  • the following evaluation was performed about the obtained stretched film.
  • the evaluation results are shown in Table 1.
  • the external appearance of the film A was transparent, the external appearance of the stretched film which has the cavity obtained by extending
  • ⁇ Evaluation> ⁇ 1 Average thickness of (stretched) film Using a long-range contact displacement meter AF030 (measurement unit) and AF350 (indicating unit) manufactured by Keyence Corporation, the thickness of the (stretched) film was measured at 10 points. The average value was defined as the average thickness.
  • ⁇ 2 Stretching Unevenness
  • the stretched film was visually observed, and the stretching unevenness was evaluated according to the following evaluation criteria. No stretching unevenness: Streaks are not visible in the width direction of the film. Small stretch unevenness: Streaks appear in the width direction of the film. Uneven stretching: streaks appear in the width direction of the film, and there are still undrawn portions that are not stretched.
  • the undrawn portion refers to a portion having a thickness that is twice or more the average thickness of the stretched film. The thickness was measured using a long range contact displacement meter AF030 (measurement unit) and AF350 (instruction unit) manufactured by Keyence Corporation.
  • the neck-in ratio (NR) was measured.
  • the neck-in ratio (NR) is an index showing the relationship between the width (W 0 ) of the film before stretching and the width (W) of the stretched film in FIG.
  • Formula NR (W 0 ⁇ W) / W 0
  • ⁇ 4 Presence / absence of voids Photographs taken with an optical microscope or a scanning electron microscope were observed to confirm the presence / absence of voids.
  • ⁇ 5 Aspect Ratio
  • a cross section parallel to the direction (see FIG. 2C) was examined using a scanning electron microscope at an appropriate magnification of 300 to 3000 times, and a measurement frame was set in each of the cross-sectional photographs. This measurement frame was set so that 50 to 100 cavities were included in the measurement frame. Next, the number of cavities included in the measurement frame is measured, and the number of cavities included in the measurement frame having a cross section perpendicular to the longitudinal stretching direction (see FIG. 2B) is m and the cross section parallel to the longitudinal stretching direction.
  • ⁇ 6 Reflectance An integrating sphere was attached to a spectrophotometer (“V-570”; manufactured by JASCO Corp.), and the reflectance was measured for each wavelength of 200 nm to 2,500 nm. Of these, the reflectance at a wavelength of 550 nm was taken as the reflectance in this measurement. Here, as a reference value, the reflectance of the standard white board attached to the apparatus was set to 100%.
  • Example 2 ⁇ Stretching of film>
  • the film A was necked and stretched using the stretched film manufacturing apparatus shown in FIG. First, the transport speed of the film A at a position in contact with the low speed roll 3 is 110 mm / min, the transport speed of the film A at a position in contact with the high speed roll 4 is 510 mm / min, and the film A is moved from the low speed roll 3 to the high speed. It was conveyed toward the roll 4. At this time, a tension of 10 MPa was applied to the film A. Further, the film A was conveyed so as to come into contact with the coolable member 5 and the heatable member 6a.
  • Example 3 ⁇ Stretching of film>
  • the film A was necked and stretched using the stretched film manufacturing apparatus shown in FIG.
  • the interval between the low speed roll 3 and the high speed roll 4 was set to 20 cm.
  • the heating part 6b was installed so that the edge part might be installed in the position 5 cm away from the said low speed roll 3, and the said high speed roll 4 may be covered.
  • the high speed roll 4 may be outside the heating unit 6b.
  • the conveyance speed of the film A at a position in contact with the low-speed roll 3 is 110 mm / min
  • the conveyance speed of the film A at a position in contact with the high-speed roll 4 is 510 mm / min
  • the film A is removed from the low-speed roll 3. It was conveyed toward the high-speed roll 4.
  • a tension of 10 MPa was applied to the film A.
  • a part of the film A is placed at 25 ° C. (the width of the film is outside the heating unit 6b and upstream of the heating unit 6b in the transport direction of the film A). Temperature). A part of the film A at 25 ° C.
  • Example 1 Evaluation similar to Example 1 was performed about the obtained stretched film. The evaluation results are shown in Table 1.
  • Example 4 ⁇ Stretching of film>
  • the film A was necked and stretched using the stretched film manufacturing apparatus shown in FIG.
  • the distance between the low speed roll 3 and the high speed roll 4 was set to 20 cm.
  • the heating part 6b was installed so that the edge part might be installed in the position 5 cm away from the said low speed roll 3, and the said high speed roll 4 may be covered.
  • the high speed roll 4 may be outside the heating unit 6b.
  • the conveyance speed of the film A at a position in contact with the low-speed roll 3 is 100 mm / min
  • the conveyance speed of the film A at a position in contact with the high-speed roll 4 is 520 mm / min
  • the film A is removed from the low-speed roll 3.
  • Example 5 ⁇ Stretching of film>
  • the film A was necked and stretched using the stretched film manufacturing apparatus shown in FIG.
  • the distance between the low speed roll 3 and the high speed roll 4 was set to 20 cm.
  • the heating part 6b was installed so that the edge part might be installed in the position 5 cm away from the said low speed roll 3, and the member 5 which can be cooled, and the said high speed roll 4 may be covered.
  • the high speed roll 4 may be outside the heating unit 6b.
  • the transport speed of the film A at a position in contact with the low speed roll 3 is 150 mm / min
  • the transport speed of the film A at a position in contact with the high speed roll 4 is 810 mm / min
  • the film A is moved from the low speed roll 3. It was conveyed toward the high-speed roll 4.
  • a tension of 10 MPa was applied to the film A.
  • a part of the film A was brought into contact with the coolable member 5 and cooled to 15 ° C. (a temperature at which the width of the film did not change).
  • a part of the cooled film A was moved downstream in the transport direction by transport of the film A, and the temperature was raised to 41 ° C.
  • Example 1 (temperature at which necking occurred) in the heating unit 6b. Necking occurred in the film A by these treatments. Necking occurred in the heating unit 6b, and the position of necking was fixed at a position 1 to 2 cm away from the coolable member 5 in the heating unit 6b on the downstream side in the transport direction. During the necking stretching, the film A was not cut and a stretched film could be produced stably. Evaluation similar to Example 1 was performed about the obtained stretched film. The evaluation results are shown in Table 1.
  • Example 6 ⁇ Stretching of film>
  • the film A was cooled at 15 ° C. by the coolable member 5 and the film A was heated at 39 ° C. by the heatable member 6a.
  • A was necked and stretched.
  • the position of necking was the position of b in FIG. 4 immediately after starting the necking stretching, but when the necking stretching was continued, the position of FIG. 4 a (the film maintained at a temperature at which the film width did not change). It moved back to the vicinity of A), fixed at that position, and then stopped moving.
  • the film A was not cut and a stretched film could be produced stably. Evaluation similar to Example 1 was performed about the obtained stretched film. The evaluation results are shown in Table 1.
  • Example 7 ⁇ Stretching of film>
  • the transport speed of the film A at the position in contact with the low-speed roll 3 is 110 mm / min
  • the transport speed of the film A at the position in contact with the high-speed roll 4 is 510 mm / min
  • the film by the coolable member 5 The film A was necked and stretched in the same manner as in Example 4 except that the cooling temperature of A was 15 ° C. and the heating temperature of the film A in the heating unit 6b was 40 ° C. Necking occurred in the heating unit 6b, and the position of necking was fixed at a desired position in the heating unit 6b. During the necking stretching, the film A was not cut and a stretched film could be produced stably. Evaluation similar to Example 1 was performed about the obtained stretched film. The evaluation results are shown in Table 1.
  • Example 8 ⁇ Stretching of film>
  • the film B was necked and stretched by the same stretching method as in Example 2 except that the film type, cooling temperature, and heating temperature were the conditions shown in Table 1.
  • the position of necking was the position of b in FIG. 4 immediately after starting the necking stretching, but when the necking stretching was continued, the position of FIG. 4 a (the film maintained at a temperature at which the film width did not change). It moved back to the vicinity of B), fixed at that position, and then stopped moving.
  • the film B was not cut, and a stretched film could be produced stably. Evaluation similar to Example 1 was performed about the obtained stretched film. The evaluation results are shown in Table 1.
  • Example 9 ⁇ Stretching of film>
  • the transport speed of the film A at the position in contact with the low speed roll 3 is 110 mm / min
  • the transport speed of the film A at the position in contact with the high speed roll 4 is 510 mm / min
  • the type of film and the cooling temperature The film B was necked and stretched by the same stretching method as in Example 4 except that the heating temperature was changed to the conditions shown in Table 1. Necking occurred in the heating unit 6b, and the position of necking was fixed at a desired position in the heating unit 6b. During the necking stretching, the film B was not cut, and a stretched film could be produced stably. Evaluation similar to Example 1 was performed about the obtained stretched film. The evaluation results are shown in Table 1.
  • Example 10 ⁇ Stretching of film>
  • the film C was necked and stretched in the same manner as in Example 2 except that the film type, cooling temperature, and heating temperature were the conditions shown in Table 1.
  • the position of necking was the position of b in FIG. 4 immediately after starting the necking stretching, but when the necking stretching was continued, the position of FIG. 4 a (the film maintained at a temperature at which the film width did not change). It moved back to the vicinity of C), fixed at that position, and then stopped moving. During the necking stretching, the film C was not cut, and a stretched film could be produced stably. Evaluation similar to Example 1 was performed about the obtained stretched film. The evaluation results are shown in Table 1.
  • Example 11 ⁇ Stretching of film>
  • the transport speed of the film A at the position in contact with the low speed roll 3 is 110 mm / min
  • the transport speed of the film A at the position in contact with the high speed roll 4 is 510 mm / min
  • the type of film and the cooling temperature The film C was necked and stretched in the same manner as in Example 4 except that the heating temperature was changed to the conditions shown in Table 1. Necking occurred in the heating unit 6b, and the position of necking was fixed at a desired position in the heating unit 6b. During the necking stretching, the film C was not cut, and a stretched film could be produced stably. Evaluation similar to Example 1 was performed about the obtained stretched film. The evaluation results are shown in Table 1.
  • a part of the heated film A was moved to the downstream side in the conveyance direction by conveyance of the film A, and contacted with the heatable member 6a and maintained at 40 ° C. (temperature at which necking occurred). Necking occurred in the film A by these treatments. While necking is being stretched, the state of necking is unstable and the position of necking moves to a part that contacts the low-speed roll. As a result, film A often breaks, producing a stretched film stably. could not. Evaluation similar to Example 1 was performed about the obtained stretched film. The evaluation results are shown in Table 1.
  • Reference Example 4 ⁇ Stretching of film>
  • the film C was necked and stretched in the same manner as in Reference Example 1 except that the type of film and the heating temperature were changed to the conditions shown in Table 1. While necking is being stretched, the state of necking is unstable and the position of necking moves to the part that contacts the low-speed roll. As a result, film C often breaks, producing a stretched film stably. could not. Evaluation similar to Example 1 was performed about the obtained stretched film. The evaluation results are shown in Table 1.
  • the stretched film manufacturing method and stretched film manufacturing apparatus of the present invention can be suitably used for manufacturing a stretched film having a cavity, for example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Polarising Elements (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

A method for manufacturing a stretched film, the method comprising: imparting tension to a film; and raising the temperature of part of the tensioned film from a temperature at which there is no change in film width to a temperature at which necking occurs, whereby the film is caused to undergo necking/stretching.

Description

延伸フィルムの製造方法及び製造装置Method and apparatus for producing stretched film
 本発明は、延伸フィルムの製造方法、及び延伸フィルムの製造装置に関する。 The present invention relates to a stretched film manufacturing method and a stretched film manufacturing apparatus.
 従来より、延伸フィルムの製造方法として、低速ロールと高速ロールとの間にフィルムを通して該フィルムに張力を付与し、必要により前記低速ロールと前記高速ロールとの間に設置した加熱ヒーターを用いて前記フィルムを加熱することにより、前記フィルムを縦方向に延伸する製造方法が知られている(例えば、特許文献1から特許文献3)。また、縦方向の延伸に続いて、横方向にも延伸する製造方法が知られている(例えば、特許文献4)。 Conventionally, as a method for producing a stretched film, tension is applied to the film through a film between a low-speed roll and a high-speed roll, and if necessary, the heater is installed between the low-speed roll and the high-speed roll. A manufacturing method is known in which the film is stretched in the longitudinal direction by heating the film (for example, Patent Document 1 to Patent Document 3). Moreover, the manufacturing method which extends | stretches also to a horizontal direction following the extending | stretching of the vertical direction is known (for example, patent document 4).
 そして、前記延伸フィルムの製造方法における延伸には、ネッキング延伸という延伸方法がある。前記ネッキング延伸は、前記フィルムの狭い範囲においてネッキング(くびれ)を生じさせ、前記フィルムを延伸させる延伸方法である。前記延伸フィルムの製造方法において前記ネッキング延伸をすることの利点としては、ブロー延伸などにおいて行われる処理であって、幅方向の過度の収縮を防止するための前記フィルム端部の厚みを厚くする処理が必要ないため、切り落とされて屑となる端部を減少でき、生産性を高くできることが挙げられる。 And in the stretched film production method, there is a stretching method called necking stretching. The necking stretching is a stretching method in which necking (necking) occurs in a narrow range of the film and the film is stretched. The advantage of carrying out the necking stretching in the method for producing the stretched film is a process performed in blow stretching or the like, and a process for increasing the thickness of the film end for preventing excessive shrinkage in the width direction. Therefore, it is possible to reduce the ends that are cut off and become waste, and to increase productivity.
 しかしながら、前記ネッキング延伸において、前記ネッキングの位置、安定性などを制御することは難しい。
 前記ネッキング延伸においては、通常、前記ネッキングの位置を制御することができず、前記ネッキングの位置が、前記フィルムがロールに接する部位に移動する結果、前記フィルムが切れてしまい、安定して延伸フィルムが製造できない。そのため、前記ネッキングの位置を制御できることが望まれている。
 また、前記ネッキングの安定性が制御できないと、強度の弱い部分や不均一な部分から延伸開始点が複数点現れ、延伸ムラの少ない延伸フィルムが製造できない。そのため、前記ネッキングの安定性を制御できることが望まれている。
 また、前記ネッキング延伸の際には、前記ネッキングによる幅の変化(ネックイン)が起こる(例えば、非特許文献1)が、該ネックインが大きいと得られる延伸フィルムの生産性に影響するため、前記ネッキングのネックイン比(NR)を小さくできることが望まれている。
However, in the necking stretching, it is difficult to control the position and stability of the necking.
In the necking stretching, usually, the position of the necking cannot be controlled, and the position of the necking is moved to a site where the film is in contact with the roll. Cannot be manufactured. Therefore, it is desired that the position of the necking can be controlled.
Further, if the stability of the necking cannot be controlled, a plurality of stretching start points appear from weak or non-uniform portions, and a stretched film with little stretching unevenness cannot be produced. Therefore, it is desired that the stability of the necking can be controlled.
Further, when the necking is stretched, a change in the width due to the necking (neck-in) occurs (for example, Non-Patent Document 1), which affects the productivity of the stretched film obtained when the neck-in is large. It is desired that the necking-in ratio (NR) of the necking can be reduced.
 前記ネッキング延伸に関する技術として、熱板を用い、該熱板に延伸されるフィルム入口側の低温部から延伸されたフィルム送出側の高温部へと温度勾配を設け、かつ延伸に伴いフィルムに生ずるネッキングを前記熱板の前記低温部で行ない、前記熱板の前記高温部で延伸を完了させる技術が提案されている(例えば、特許文献5)。
 しかしながら、この提案では、前記ネッキングを生ずるフィルムの温度について検討されていないため、前記ネッキングの位置を制御できず、前記ネッキングの位置が移動する結果、前記フィルムが切れてしまうという問題があった。また、前記ネッキングの安定性を十分には制御できず、延伸ムラの少ない延伸フィルムが得られにくいという問題があった。更に、前記ネッキングの範囲が比較的広いため、ネックイン比を小さくすることが困難であるという問題があった。
As a technique related to the necking stretching, a hot plate is used, and a temperature gradient is provided from the low temperature portion on the film inlet side stretched to the hot plate to the high temperature portion on the film delivery side, and the necking generated in the film along with stretching. A technique has been proposed in which stretching is performed at the low temperature portion of the hot plate and stretching is completed at the high temperature portion of the hot plate (for example, Patent Document 5).
However, in this proposal, since the temperature of the film that causes the necking is not examined, the position of the necking cannot be controlled, and as a result of the movement of the position of the necking, the film is cut. Moreover, the stability of the necking cannot be sufficiently controlled, and there is a problem that it is difficult to obtain a stretched film with little stretch unevenness. Furthermore, since the range of the necking is relatively wide, there is a problem that it is difficult to reduce the neck-in ratio.
 また、延伸フィルムの製造方法において、二軸延伸により延伸フィルムを製造する際に、1段目の延伸でネッキング延伸を行う延伸フィルムの製造方法が提案されている(例えば、特許文献6)。この提案では、1段目の延伸をフィルムのガラス転移温度以下の温度で行うことが提案されている。
 しかしながら、この提案では、前記ネッキングを生ずるフィルムの温度について検討されていないため、前記ネッキングの位置を制御できず、前記ネッキングの位置が移動する結果、前記フィルムが切れてしまうという問題があった。また、前記ネッキングの安定性を十分には制御できず、延伸ムラの少ない延伸フィルムが得られにくいという問題があった。
Moreover, in the manufacturing method of a stretched film, when manufacturing a stretched film by biaxial stretching, the manufacturing method of the stretched film which performs necking extending | stretching by the 1st step | stretch is proposed (for example, patent document 6). In this proposal, it is proposed that the first-stage stretching is performed at a temperature lower than the glass transition temperature of the film.
However, in this proposal, since the temperature of the film that causes the necking is not examined, the position of the necking cannot be controlled, and as a result of the movement of the position of the necking, the film is cut. Moreover, the stability of the necking cannot be sufficiently controlled, and there is a problem that it is difficult to obtain a stretched film with little stretch unevenness.
 したがって、ネッキングの位置を制御してネッキング延伸を行うことができ、かつネッキングの安定性を制御して延伸ムラの少ない延伸フィルムを得ることができ、更にネックイン比を小さくできる延伸フィルムの製造方法及び延伸フィルムの製造装置の提供が求められているのが現状である。 Therefore, a method for producing a stretched film that can perform necking stretching by controlling the position of necking, can obtain a stretched film with little stretching unevenness by controlling the stability of necking, and can further reduce the neck-in ratio. In addition, the present situation is that provision of an apparatus for producing a stretched film is required.
特開平1-195020号公報Japanese Patent Laid-Open No. 1-195020 特開2007-216658号公報JP 2007-216658 A 特開2009-39983号公報JP 2009-39983 A 特開2009-173009号公報JP 2009-173309 A 特開平5-104619号公報JP-A-5-104619 特開平9-295344号公報JP-A-9-295344
 本発明は、従来における前記諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、ネッキングの位置を制御してネッキング延伸を行うことができ、かつネッキングの安定性を制御して延伸ムラの少ない延伸フィルムを得ることができ、更にネックイン比を小さくできる延伸フィルムの製造方法及び延伸フィルムの製造装置を提供することを目的とする。 This invention makes it a subject to solve the said various problems in the past and to achieve the following objectives. That is, the present invention can perform necking stretching by controlling the position of necking, and can achieve a stretched film with less stretching unevenness by controlling the stability of necking, and further can reduce the neck-in ratio. It aims at providing the manufacturing method of a film, and the manufacturing apparatus of a stretched film.
 前記課題を解決するための手段としては、以下の通りである。即ち、
 <1> フィルムに対し張力を付与し、張力が付与された該フィルムの一部を、フィルムの幅が変化しない温度からネッキングが生ずる温度に昇温させることにより、前記フィルムをネッキング延伸することを特徴とする延伸フィルムの製造方法である。
 <2> フィルムに対し張力を付与し、張力が付与された該フィルムの一部を、冷却手段によりフィルムの幅が変化しない温度にした後、加熱手段によりネッキングが生ずる温度に昇温させることにより、前記フィルムをネッキング延伸する前記<1>に記載の延伸フィルムの製造方法である。
 <3> 冷却手段が冷却可能な部材であり、加熱手段が加熱可能な部材であり、
 フィルムが前記冷却手段及び前記加熱手段に接触した状態で、張力が付与される前記<2>に記載の延伸フィルムの製造方法である。
 <4> 冷却手段による冷却温度が、フィルムのガラス転移点よりも5℃以上低い温度である前記<2>から<3>のいずれかに記載の延伸フィルムの製造方法である。
 <5> フィルムが、X線回折における結晶性ピークの半値幅が2θとして9°未満である前記<1>から<4>のいずれか記載の延伸フィルムの製造方法である。
 <6> フィルムの平均厚みが、1.5μm~200μmである前記<1>から<5>のいずれかに記載の延伸フィルムの製造方法である。
 <7> 得られる延伸フィルムが、内部に空洞を延伸方向に配向した状態で有してなり、該空洞の平均長さをL(μm)とし、前記空洞の配向方向と直交方向における該空洞の平均径をr(μm)とした際のL/r比が、10以上である前記<1>から<6>のいずれかに記載の延伸フィルムの製造方法である。
 <8> 得られる延伸フィルムが、結晶性ポリマーのみからなる前記<1>から<7>のいずれかに記載の延伸フィルムの製造方法である。
 <9> 得られる延伸フィルムの反射率が、50%以上である前記<1>から<8>のいずれかに記載の延伸フィルムの製造方法である。
 <10> ネッキングが生ずる温度に昇温させたフィルムにネッキングを生じさせ、前記フィルムをネッキング延伸するとともに、該ネッキングの位置を、フィルムの幅が変化しない温度に維持されたフィルム近傍に移動させ、固定させる前記<1>から<9>のいずれかに記載の延伸フィルムの製造方法である。
 <11> 加熱手段によりネッキングが生ずる温度に昇温させたフィルムにネッキングを生じさせ、前記フィルムをネッキング延伸するとともに、該ネッキングの位置を、冷却手段によりフィルムの幅が変化しない温度に維持されたフィルム近傍に移動させ、固定させる前記<1>から<10>のいずれかに記載の延伸フィルムの製造方法である。
 <12> フィルムに対し張力を付与する張力付与手段と、
 前記張力付与手段により張力が付与された前記フィルムの一部を、フィルムの幅が変化しない温度からネッキングが生ずる温度に昇温させるネッキング発生手段とを有すること特徴とする延伸フィルムの製造装置である。
 <13> ネッキング発生手段が、張力が付与されたフィルムの一部を、フィルムの幅が変化しない温度に冷却する冷却手段と、ネッキングが生ずる温度に昇温させる加熱手段とを有する前記<12>に記載の延伸フィルムの製造装置である。
 <14> 冷却手段が冷却可能な部材であり、加熱手段が加熱可能な部材である前記<13>に記載の延伸フィルムの製造装置である。
Means for solving the problems are as follows. That is,
<1> Necking and stretching the film by applying a tension to the film and raising a part of the film to which the tension is applied from a temperature at which the width of the film does not change to a temperature at which necking occurs. It is the manufacturing method of the stretched film characterized.
<2> By applying tension to the film, and heating a part of the film to which the tension is applied to a temperature at which the width of the film does not change by the cooling means, and then raising the temperature to a temperature at which necking occurs by the heating means. The method for producing a stretched film according to <1>, wherein the film is necked and stretched.
<3> The cooling means is a coolable member, the heating means is a heatable member,
It is a manufacturing method of the stretched film as described in said <2> in which tension | tensile_strength is provided in the state which the film contacted the said cooling means and the said heating means.
<4> The method for producing a stretched film according to any one of <2> to <3>, wherein the cooling temperature by the cooling means is a temperature lower by 5 ° C. or more than the glass transition point of the film.
<5> The method for producing a stretched film according to any one of <1> to <4>, wherein the film has a half width of a crystalline peak in X-ray diffraction of less than 9 ° as 2θ.
<6> The method for producing a stretched film according to any one of <1> to <5>, wherein the average thickness of the film is 1.5 μm to 200 μm.
<7> The obtained stretched film has cavities oriented in the stretching direction inside, the average length of the cavities is L (μm), and the cavities in the direction orthogonal to the orientation direction of the cavities The method for producing a stretched film according to any one of <1> to <6>, wherein the L / r ratio when the average diameter is r (μm) is 10 or more.
<8> The method for producing a stretched film according to any one of <1> to <7>, wherein the obtained stretched film is composed of only a crystalline polymer.
<9> The method for producing a stretched film according to any one of <1> to <8>, wherein the obtained stretched film has a reflectance of 50% or more.
<10> Necking is caused in a film heated to a temperature at which necking occurs, the film is necked and stretched, and the position of the necking is moved to the vicinity of the film maintained at a temperature at which the width of the film does not change, It is a manufacturing method of the stretched film in any one of said <1> to <9> to fix.
<11> Necking is caused in the film heated to a temperature at which necking occurs by the heating means, the film is necked and stretched, and the position of the necking is maintained at a temperature at which the width of the film does not change by the cooling means. It is the manufacturing method of the stretched film in any one of said <1> to <10> which moves to the film vicinity and fixes.
<12> tension applying means for applying tension to the film;
An apparatus for producing a stretched film, comprising: a necking generating unit that raises a part of the film to which tension is applied by the tension applying unit to a temperature at which necking occurs from a temperature at which the width of the film does not change. .
<13> The above-mentioned <12>, wherein the necking generating means includes a cooling means for cooling a part of the film to which tension is applied to a temperature at which the width of the film does not change, and a heating means for raising the temperature to a temperature at which necking occurs. It is a manufacturing apparatus of the stretched film as described in.
<14> The stretched film manufacturing apparatus according to <13>, wherein the cooling unit is a coolable member, and the heating unit is a heatable member.
 本発明によると、従来における前記諸問題を解決することができ、ネッキングの位置を制御してネッキング延伸を行うことができ、かつネッキングの安定性を制御して延伸ムラの少ない延伸フィルムを得ることができ、更にネックイン比を小さくできる延伸フィルムの製造方法及び延伸フィルムの製造装置を提供することができる。 According to the present invention, the conventional problems can be solved, necking can be controlled by controlling the position of necking, and the stability of necking can be controlled to obtain a stretched film with less stretching unevenness. It is possible to provide a stretched film manufacturing method and a stretched film manufacturing apparatus capable of reducing the neck-in ratio.
図1は、ネッキングの概略を示す図である。FIG. 1 is a diagram showing an outline of necking. 図2Aは、アスペクト比を具体的に説明するための図であって、空洞を有する延伸フィルムの斜視図である。FIG. 2A is a diagram for specifically explaining the aspect ratio, and is a perspective view of a stretched film having a cavity. 図2Bは、アスペクト比を具体的に説明するための図であって、図2Aにおける空洞を有する延伸フィルムのA-A’断面図である。FIG. 2B is a diagram for specifically explaining the aspect ratio, and is a cross-sectional view taken along line A-A ′ of the stretched film having a cavity in FIG. 2A. 図2Cは、アスペクト比を具体的に説明するための図であって、図2Aにおける空洞を有する延伸フィルムのB-B’断面図である。FIG. 2C is a diagram for specifically explaining the aspect ratio, and is a B-B ′ sectional view of a stretched film having a cavity in FIG. 2A. 図3は、本発明の延伸フィルムの製造装置の一態様の概略図である。FIG. 3 is a schematic view of one embodiment of the stretched film production apparatus of the present invention. 図4は、本発明の延伸フィルムの製造装置の一態様の概略図である。FIG. 4 is a schematic view of one embodiment of the stretched film production apparatus of the present invention. 図5は、本発明の延伸フィルムの製造装置の一態様の概略図である。FIG. 5 is a schematic view of one embodiment of the stretched film production apparatus of the present invention. 図6は、本発明の延伸フィルムの製造装置の一態様の概略図である。FIG. 6 is a schematic view of one embodiment of the stretched film production apparatus of the present invention. 図7は、本発明の延伸フィルムの製造装置の一態様の概略図である。FIG. 7 is a schematic view of one embodiment of the stretched film production apparatus of the present invention. 図8は、参考例に用いた延伸フィルムの製造装置の概略図である。FIG. 8 is a schematic view of a stretched film manufacturing apparatus used in the reference example. 図9は、参考例に用いた延伸フィルムの製造装置の概略図である。FIG. 9 is a schematic view of a stretched film manufacturing apparatus used in the reference example.
(延伸フィルムの製造方法及び延伸フィルムの製造装置)
 本発明の延伸フィルムの製造方法は、延伸工程を少なくとも含み、更に必要に応じて、その他の工程を含む。
 前記延伸工程は、フィルムを延伸する工程であり、張力付与処理と、ネッキング発生処理とを少なくとも含み、更に必要に応じて、その他の処理を含む。
 本発明の延伸フィルムの製造装置は、延伸機を少なくとも有し、更に必要に応じて、その他の機器を有する。
 前記延伸機は、張力付与手段と、ネッキング発生手段とを少なくとも有し、更に必要に応じて、その他の手段を有する。
 なお、本発明の延伸フィルムの製造方法において、前記延伸工程は、前記延伸機により行うことができる。また、前記張力付与処理は、前記張力付与手段により行うことができる。また、前記ネッキング発生処理は、前記ネッキング発生手段により行うことができる。
(Stretched film manufacturing method and stretched film manufacturing apparatus)
The method for producing a stretched film of the present invention includes at least a stretching step, and further includes other steps as necessary.
The stretching step is a step of stretching the film, and includes at least a tension applying process and a necking generating process, and further includes other processes as necessary.
The stretched film production apparatus of the present invention has at least a stretching machine, and further includes other equipment as necessary.
The stretching machine has at least a tension applying unit and a necking generating unit, and further includes other units as necessary.
In the method for producing a stretched film of the present invention, the stretching step can be performed by the stretching machine. The tension applying process can be performed by the tension applying means. The necking generation process can be performed by the necking generating means.
 ネッキング延伸では、延伸が非常に狭い範囲で一気に起こるためにネッキング位置でフィルムの幅方向に均一に加熱することが重要になる。なぜなら、フィルムの幅方向に均一に加熱することで、ネッキング延伸時にフィルムにしわが発生することを抑制でき、また、フィルムの厚みムラも発生しにくくなるためである。そのため、フィルムの幅方向に均一に加熱することが好ましい。
 フィルムの幅方向の加熱が不均一であると、ネッキング位置が一定にならず、フィルムが波打ってしまうことがある。また、フィルムの波打ちにより、フィルムに歪が生じてフィルムが破断することもある。なお、通常の加熱延伸では、延伸ゾーン全体にわたって加熱され、フィルムが充分に柔らかくなっているため、ネッキング延伸と比べるとフィルムのムラの発生は少なく、またフィルムの破断も少ない。
In necking stretching, since stretching occurs at once in a very narrow range, it is important to heat uniformly in the width direction of the film at the necking position. This is because uniform heating in the width direction of the film can suppress wrinkling of the film during necking stretching, and it is also difficult for uneven thickness of the film to occur. Therefore, it is preferable to heat uniformly in the width direction of the film.
If the heating in the width direction of the film is not uniform, the necking position may not be constant, and the film may wave. Moreover, the film may be distorted by the undulation of the film, and the film may be broken. In normal heating and stretching, since the entire stretching zone is heated and the film is sufficiently soft, the occurrence of unevenness of the film is less than that of necking stretching, and the film is less broken.
<フィルム>
 前記フィルムの材質としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、熱可塑性樹脂などが挙げられる。
 前記フィルムは、耐熱安定剤、酸化防止剤、有機の易滑剤、核剤、染料、顔料、分散剤、カップリング剤などを含有していてもよい。また、延伸後に、延伸フィルム内に空洞を作製させるための、無機微粒子、相溶しない樹脂などの空洞形成剤を含有していてもよい。
 前記熱可塑性樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、結晶性ポリマー、非晶性ポリマーが挙げられる。これらの中でも、結晶性ポリマーが、無機微粒子、相溶しない樹脂などの空洞形成剤を使用せずに空洞を有する延伸フィルムが得られる点で好ましい。
<Film>
There is no restriction | limiting in particular as a material of the said film, According to the objective, it can select suitably, For example, a thermoplastic resin etc. are mentioned.
The film may contain a heat stabilizer, an antioxidant, an organic lubricant, a nucleating agent, a dye, a pigment, a dispersant, a coupling agent, and the like. Moreover, after extending | stretching, you may contain cavity formation agents, such as an inorganic fine particle and resin which is not compatible, for producing a cavity in a stretched film.
There is no restriction | limiting in particular as said thermoplastic resin, According to the objective, it can select suitably, For example, a crystalline polymer and an amorphous polymer are mentioned. Among these, the crystalline polymer is preferable in that a stretched film having a cavity can be obtained without using a cavity forming agent such as inorganic fine particles or incompatible resin.
-結晶性ポリマー-
 一般に、ポリマーは、結晶性ポリマーと非晶性(アモルファス)ポリマーとに分けられるが、結晶性ポリマーといえども100%結晶ということはなく、分子構造の中に長い鎖状の分子が規則的に並んだ結晶性領域と、規則的に並んでいない非結晶(アモルファス)領域とを含んでいる。
 したがって、前記結晶性ポリマーとしては、分子構造の中に少なくとも前記結晶性領域を含んでいればよく、結晶性領域と非結晶領域とが混在していてもよい。
-Crystalline polymer-
In general, polymers are classified into crystalline polymers and amorphous (amorphous) polymers, but even crystalline polymers are not 100% crystalline, and long chain molecules are regularly formed in the molecular structure. It includes aligned crystalline regions and non-regularly arranged amorphous (amorphous) regions.
Therefore, the crystalline polymer only needs to include at least the crystalline region in the molecular structure, and the crystalline region and the amorphous region may be mixed.
 前記結晶性ポリマーとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ポリオレフィン類(例えば、低密度ポリエチレン、高密度ポリエチレン、ポリプロピレンなど)、ポリアミド類(PA)(例えば、ナイロン-6など)、ポリアセタール類(POM)、ポリエステル類(例えば、PET、PEN、PTT、PBT、PPT、PHT、PBN、PES、PBSなど)、シンジオタクチック・ポリスチレン(SPS)、ポリフェニレンサルファイド類(PPS)、ポリエーテルエーテルケトン類(PEEK)、液晶ポリマー類(LCP)、フッ素樹脂、アイソタクティックポリプロピレン(isoPP)などが挙げられる。これらの中でも、耐久性、力学強度、製造及びコストの観点から、ポリオレフィン類、ポリエステル類、シンジオタクチック・ポリスチレン(SPS)、液晶ポリマー類(LCP)が好ましく、ポリオレフィン類、ポリエステル類がより好ましい。また、これらのうち2種以上のポリマーをブレンドしたり、共重合させたりして使用してもよい。 There is no restriction | limiting in particular as said crystalline polymer, According to the objective, it can select suitably, For example, polyolefin (for example, low density polyethylene, high density polyethylene, polypropylene, etc.), polyamides (PA) (for example, Nylon-6, etc.), polyacetals (POM), polyesters (eg, PET, PEN, PTT, PBT, PPT, PHT, PBN, PES, PBS, etc.), syndiotactic polystyrene (SPS), polyphenylene sulfide ( PPS), polyether ether ketones (PEEK), liquid crystal polymers (LCP), fluororesin, isotactic polypropylene (isoPP) and the like. Among these, polyolefins, polyesters, syndiotactic polystyrene (SPS), and liquid crystal polymers (LCP) are preferable, and polyolefins and polyesters are more preferable from the viewpoints of durability, mechanical strength, production, and cost. Two or more kinds of these polymers may be blended or copolymerized.
 前記結晶性ポリマーの溶融粘度としては、特に制限はなく、目的に応じて適宜選択することができるが、50Pa・s~700Pa・sが好ましく、70Pa・s~500Pa・sがより好ましく、80Pa・s~300Pa・sが特に好ましい。前記溶融粘度が、前記好ましい範囲であると、溶融製膜時にダイヘッドから吐出される溶融膜の形状が安定し、均一に製膜しやすくなる点、また、溶融製膜時の粘度が適切になって押出ししやすくなったり、製膜時の溶融膜がレベリングされて凹凸を低減できたりする点で有利であり、前記特に好ましい範囲であると、前記効果が顕著となる点で有利である。
 ここで、前記溶融粘度は、プレートタイプのレオメーターやキャピラリーレオメーターにより測定することができる。
The melt viscosity of the crystalline polymer is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 50 Pa · s to 700 Pa · s, more preferably 70 Pa · s to 500 Pa · s, and more preferably 80 Pa · s. Particularly preferred is s to 300 Pa · s. When the melt viscosity is within the preferred range, the shape of the melt film discharged from the die head during melt film formation is stable, and it is easy to form a uniform film, and the viscosity during melt film formation is appropriate. It is advantageous in that it is easy to extrude, and the melted film at the time of film formation can be leveled to reduce unevenness, and if it is in the particularly preferred range, it is advantageous in that the effect becomes remarkable.
Here, the melt viscosity can be measured by a plate type rheometer or a capillary rheometer.
 前記結晶性ポリマーの極限粘度(IV)としては、特に制限はなく、目的に応じて適宜選択することができるが、0.4~1.2が好ましく、0.6~1.0がより好ましく、0.7~0.9が特に好ましい。前記IVが、前記好ましい範囲であると、製膜されたフィルムの強度が高くなり、効率よく延伸することができる点で有利であり、前記特に好ましい範囲であると、前記効果が顕著となる点で有利である。
 ここで、前記IVは、ウベローデ型粘度計により測定することができる。
The intrinsic viscosity (IV) of the crystalline polymer is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.4 to 1.2, more preferably 0.6 to 1.0. 0.7 to 0.9 is particularly preferable. When the IV is in the preferred range, it is advantageous in that the strength of the film formed becomes high and the film can be efficiently stretched, and when the particularly preferred range, the effect becomes remarkable. Is advantageous.
Here, the IV can be measured by an Ubbelohde viscometer.
 前記結晶性ポリマーの融点(Tm)としては、特に制限はなく、目的に応じて適宜選択することができるが、40℃~350℃が好ましく、100℃~300℃がより好ましく、100℃~260℃が特に好ましい。前記融点が、前記好ましい範囲であると、通常の使用で予想される温度範囲で形を保ちやすくなる点、また、高温での加工に必要とされる特殊な技術を特に用いなくても、均一な製膜ができる点で有利であり、前記特に好ましい範囲であると、前記効果が顕著となる点で有利である。
 ここで、前記融点は、示差熱分析装置(DSC)により測定することができる。
The melting point (Tm) of the crystalline polymer is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 40 ° C to 350 ° C, more preferably 100 ° C to 300 ° C, and more preferably 100 ° C to 260 ° C. ° C is particularly preferred. When the melting point is in the preferred range, it is easy to keep the shape in the temperature range expected for normal use, and even without special techniques required for processing at high temperatures, it is uniform. It is advantageous in that a stable film can be formed, and if it is in the particularly preferable range, it is advantageous in that the above-described effect becomes remarkable.
Here, the melting point can be measured by a differential thermal analyzer (DSC).
--ポリエステル樹脂--
 前記ポリエステル類(以下、「ポリエステル樹脂」と称する。)は、エステル結合を主鎖の主要な結合鎖とする高分子化合物の総称を意味する。したがって、前記結晶性ポリマーとして好適な前記ポリエステル樹脂としては、前記例示したPET(ポリエチレンテレフタレート)、PEN(ポリエチレンナフタレート)、PTT(ポリトリメチレンテレフタレート)、PBT(ポリブチレンテレフタレート)、PPT(ポリペンタメチレンテレフタレート)、PHT(ポリヘキサメチレンテレフタレート)、PBN(ポリブチレンナフタレート)、PES(ポリエチレンサクシネート)、PBS(ポリブチレンサクシネート)だけでなく、ジカルボン酸成分とジオール成分との重縮合反応によって得られるポリマーが全て含まれる。
--- Polyester resin--
The polyesters (hereinafter referred to as “polyester resins”) mean a general term for polymer compounds having an ester bond as a main bond chain. Therefore, as the polyester resin suitable as the crystalline polymer, the exemplified PET (polyethylene terephthalate), PEN (polyethylene naphthalate), PTT (polytrimethylene terephthalate), PBT (polybutylene terephthalate), PPT (polypenta). Methylene terephthalate), PHT (polyhexamethylene terephthalate), PBN (polybutylene naphthalate), PES (polyethylene succinate), PBS (polybutylene succinate), as well as by polycondensation reaction of dicarboxylic acid component and diol component All the resulting polymers are included.
 前記ジカルボン酸成分としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、芳香族ジカルボン酸、脂肪族ジカルボン酸、脂環族ジカルボン酸、オキシカルボン酸、多官能酸などが挙げられる。 The dicarboxylic acid component is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include aromatic dicarboxylic acids, aliphatic dicarboxylic acids, alicyclic dicarboxylic acids, oxycarboxylic acids, and polyfunctional acids. Can be mentioned.
 前記芳香族ジカルボン酸としては、例えば、テレフタル酸、イソフタル酸、ジフェニルジカルボン酸、ジフェニルスルホンジカルボン酸、ナフタレンジカルボン酸、ジフェノキシエタンジカルボン酸、5-ナトリウムスルホイソフタル酸などが挙げられる。これらの中でも、テレフタル酸、イソフタル酸、ジフェニルジカルボン酸、ナフタレンジカルボン酸が好ましく、テレフタル酸、ジフェニルジカルボン酸、ナフタレンジカルボン酸がより好ましい。 Examples of the aromatic dicarboxylic acid include terephthalic acid, isophthalic acid, diphenyldicarboxylic acid, diphenylsulfone dicarboxylic acid, naphthalenedicarboxylic acid, diphenoxyethanedicarboxylic acid, and 5-sodium sulfoisophthalic acid. Among these, terephthalic acid, isophthalic acid, diphenyldicarboxylic acid, and naphthalenedicarboxylic acid are preferable, and terephthalic acid, diphenyldicarboxylic acid, and naphthalenedicarboxylic acid are more preferable.
 前記脂肪族ジカルボン酸としては、例えば、シュウ酸、コハク酸、エイコ酸、アジピン酸、セバシン酸、ダイマー酸、ドデカンジオン酸、マレイン酸、フマル酸などが挙げられる。前記脂環族ジカルボン酸としては、例えば、シクロヘキサンジカルボン酸などが挙げられる。前記オキシカルボン酸としては、例えば、p-オキシ安息香酸などが挙げられる。前記多官能酸としては、例えば、トリメリット酸、ピロメリット酸などが挙げられる。前記脂肪族ジカルボン酸及び脂環族ジカルボン酸の中では、コハク酸、アジピン酸、シクロヘキサンジカルボン酸が好ましく、コハク酸、アジピン酸がより好ましい。 Examples of the aliphatic dicarboxylic acid include oxalic acid, succinic acid, eicoic acid, adipic acid, sebacic acid, dimer acid, dodecanedioic acid, maleic acid, and fumaric acid. Examples of the alicyclic dicarboxylic acid include cyclohexane dicarboxylic acid. Examples of the oxycarboxylic acid include p-oxybenzoic acid. Examples of the polyfunctional acid include trimellitic acid and pyromellitic acid. Among the aliphatic dicarboxylic acids and alicyclic dicarboxylic acids, succinic acid, adipic acid, and cyclohexanedicarboxylic acid are preferable, and succinic acid and adipic acid are more preferable.
 前記ジオール成分としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、脂肪族ジオール、脂環族ジオール、芳香族ジオール、ジエチレングリコール、ポリアルキレングリコールなどが挙げられる。これらの中でも、脂肪族ジオールが好ましい。 The diol component is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include aliphatic diols, alicyclic diols, aromatic diols, diethylene glycol, and polyalkylene glycols. Of these, aliphatic diols are preferred.
 前記脂肪族ジオールとしては、例えば、エチレングリコール、プロパンジオール、ブタンジオール、ペンタンジオール、ヘキサンジオール、ネオペンチルグリコール、トリエチレングリコールなどが挙げられる。これらの中でも、プロパンジオール、ブタンジオール、ペンタンジオール、ヘキサンジオールが特に好ましい。
 前記脂環族ジオールとしては、例えば、シクロヘキサンジメタノールなどが挙げられる。
 前記芳香族ジオールとしては、例えば、ビスフェノールA、ビスフェノールSなどが挙げられる。
Examples of the aliphatic diol include ethylene glycol, propane diol, butane diol, pentane diol, hexane diol, neopentyl glycol, and triethylene glycol. Among these, propanediol, butanediol, pentanediol, and hexanediol are particularly preferable.
Examples of the alicyclic diol include cyclohexanedimethanol.
Examples of the aromatic diol include bisphenol A and bisphenol S.
 前記ポリエステル樹脂の溶融粘度としては、特に制限はなく、目的に応じて適宜選択することができるが、50Pa・s~700Pa・sが好ましく、70Pa・s~500Pa・sがより好ましく、80Pa・s~300Pa・sが特に好ましい。前記溶融粘度が大きいほうが延伸時に空洞を発現しやすいが、前記溶融粘度が、前記好ましい範囲であると、製膜時に押出しがしやすくなったり、樹脂の流れが安定して滞留が発生しづらくなり、品質が安定したりする点、延伸時に延伸張力が適切に保たれるために、均一に延伸しやすくなり、破断しづらくなる点、及び、製膜時にダイヘッドから吐出される溶融膜の形態が維持しやすくなって、安定的に成形できたり、製品が破損しにくくなったりするなど、物性が高まる点で有利であり、前記特に好ましい範囲であると、前記効果が顕著となる点で有利である。 The melt viscosity of the polyester resin is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 50 Pa · s to 700 Pa · s, more preferably 70 Pa · s to 500 Pa · s, and more preferably 80 Pa · s. ˜300 Pa · s is particularly preferred. The higher the melt viscosity, the easier to express cavities during stretching, but if the melt viscosity is within the above preferred range, it will be easier to extrude during film formation or the resin flow will be more stable and less likely to stay. The point that the quality is stabilized, the stretching tension is properly maintained at the time of stretching, it is easy to stretch uniformly, it is difficult to break, and the form of the molten film discharged from the die head at the time of film formation is It is advantageous in terms of improving physical properties such as being easy to maintain, being able to be stably molded, and being less likely to break the product, and is advantageous in that the above-described effects become significant if it is in the particularly preferred range. is there.
 前記ポリエステル樹脂の極限粘度(IV)としては、特に制限はなく、目的に応じて適宜選択することができるが、0.4~1.2が好ましく、0.6~1.0がより好ましく、0.7~0.9が特に好ましい。前記IVが大きいほうが延伸時に空洞を発現しやすいが、前記IVが、前記好ましい範囲であると、製膜時に押出しがしやすくなったり、樹脂の流れが安定して滞留が発生しづらくなり、品質が安定したりする点で有利であり、前記特に好ましい範囲であると、前記効果が顕著となる点で有利である。さらに、前記IVが、前記好ましい範囲であると、延伸時に延伸張力が適切に保たれるために、均一に延伸しやすくなり、装置に負荷がかかりにくい点で有利であり、前記特に好ましい範囲であると、前記効果が顕著となる点で有利である。加えて、前記IVが、前記好ましい範囲であると、製品が破損しにくくなって、物性が高まる点で有利であり、前記特に好ましい範囲であると、前記効果が顕著となる点で有利である。 The intrinsic viscosity (IV) of the polyester resin is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.4 to 1.2, more preferably 0.6 to 1.0, 0.7 to 0.9 is particularly preferable. When the IV is larger, cavities are more likely to be generated during stretching. However, when the IV is within the preferred range, extrusion is easy during film formation, and the resin flow is stable and stagnation is difficult to occur. Is advantageous in that it is stable, and if it is in the particularly preferred range, it is advantageous in that the above-described effect becomes remarkable. Furthermore, when the IV is within the preferable range, the stretching tension is appropriately maintained at the time of stretching, so that it is easy to stretch uniformly, and it is advantageous in that the load is not easily applied to the apparatus. If it exists, it is advantageous at the point from which the said effect becomes remarkable. In addition, when the IV is in the preferred range, it is advantageous in that the product is less likely to be damaged and the physical properties are increased, and in the particularly preferred range, it is advantageous in that the effect is remarkable. .
 前記ポリエステル樹脂の融点としては、特に制限はなく、目的に応じて適宜選択することができるが、耐熱性や製膜性などの観点から、70℃~300℃が好ましく、90℃~270℃がより好ましい。 The melting point of the polyester resin is not particularly limited and may be appropriately selected depending on the intended purpose. However, from the viewpoint of heat resistance and film forming property, 70 ° C. to 300 ° C. is preferable, and 90 ° C. to 270 ° C. More preferred.
 なお、前記ポリエステル樹脂として、前記ジカルボン酸成分と前記ジオール成分とが、それぞれ1種で重合してポリマーを形成していてもよく、前記ジカルボン酸成分及び/又は前記ジオール成分が、2種以上で共重合してポリマーを形成していてもよい。また、前記ポリエステル樹脂として、2種以上のポリマーをブレンドして使用してもよい。 In addition, as said polyester resin, the said dicarboxylic acid component and the said diol component may respectively superpose | polymerize with 1 type, and may form the polymer, and the said dicarboxylic acid component and / or the said diol component are 2 or more types. A polymer may be formed by copolymerization. Further, as the polyester resin, two or more kinds of polymers may be blended and used.
 前記2種以上でのポリマーのブレンドにおいて、主たるポリマーに対して添加されるポリマーは、前記主たるポリマーに対して、溶融粘度及び極限粘度が近く、添加量が少量であるほうが、製膜時や溶融押出し時に物性が高まり、押出ししやすくなる点で好ましい。 In the blend of two or more polymers, the polymer added to the main polymer has a melt viscosity and an intrinsic viscosity that are close to those of the main polymer, and the addition amount is smaller when the film is formed or melted. It is preferable in that the physical properties are enhanced during extrusion and the extrusion becomes easy.
 また、前記ポリエステル樹脂の流動特性の改良、光線透過性の制御、塗布液との密着性の向上などを目的として、前記ポリエステル樹脂に対してポリエステル系以外の樹脂を添加してもよい。 In addition, for the purpose of improving the flow characteristics of the polyester resin, controlling light transmittance, and improving the adhesion with the coating solution, a resin other than polyester may be added to the polyester resin.
 前記フィルムは、X線回折において結晶性ピークの半値幅が確認できることが好ましい。半値幅としては、2θとして9°未満が好ましく、7°以下がより好ましく、5°以下が特に好ましい。前記半値幅が、9°以上であると、空洞を有する延伸フィルムを得ることが困難である。前記半値幅が、特に好ましい範囲であると、光輝性の優れた外観の空洞を有する延伸フィルムを安定した品質で製造できる点で有利である。 It is preferable that the film can confirm the half width of the crystalline peak in X-ray diffraction. As a half value width, 2θ is preferably less than 9 °, more preferably 7 ° or less, and particularly preferably 5 ° or less. If the half width is 9 ° or more, it is difficult to obtain a stretched film having a cavity. When the half width is in a particularly preferable range, it is advantageous in that a stretched film having a cavity having an appearance with excellent glitter can be produced with stable quality.
 前記半値幅は、例えば、X線回折装置(例えば、RINT TTR III、リガク社製)により測定することができる。 The half width can be measured by, for example, an X-ray diffractometer (for example, RINT TTR III, manufactured by Rigaku Corporation).
 前記フィルムの平均厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、1.5μm~200μmであることが好ましく、5μm~150μmであることがより好ましく、20μm~100μmであることが特に好ましい。前記平均厚みが、1.5μm未満であると、均一な延伸ができないことがあり、200μmを超えると、製造機に負担がかかり製造適性がない(製造が困難となる)ことがある。前記平均厚みが、前記特に好ましい範囲であると、均一なネッキング延伸が可能な点、及び製造適性の点で有利である。 The average thickness of the film is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 1.5 μm to 200 μm, more preferably 5 μm to 150 μm, and more preferably 20 μm to 100 μm. It is particularly preferred. If the average thickness is less than 1.5 μm, uniform stretching may not be possible, and if it exceeds 200 μm, the manufacturing machine may be burdened and may not be suitable for production (manufacturing may be difficult). When the average thickness is within the particularly preferable range, it is advantageous in that uniform necking stretching is possible and in terms of production suitability.
 前記フィルムの平均厚みは、例えば、キーエンス社製、ロングレンジ接触式変位計AF030(測定部)、AF350(指示部)を用いて、前記フィルムの厚みを10点測定した際の平均値である。 The average thickness of the film is an average value when the thickness of the film is measured at 10 points using, for example, Long Range Contact Displacement Meter AF030 (measurement unit) and AF350 (instruction unit) manufactured by Keyence Corporation.
<張力付与処理及び張力付与手段>
 前記張力付与処理は、前記張力付与手段により行うことができる。
<Tension applying treatment and tension applying means>
The tension applying process can be performed by the tension applying means.
-張力付与手段-
 前記張力付与手段としては、前記フィルムに対し張力を付与する手段であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、低速ロールと高速ロールとを有する張力付与手段、前記フィルムの両端をそれぞれ把持する把持部材を用いた張力付与手段などが挙げられる。これらの中でも、低速ロールと高速ロールとを有する張力付与手段が、前記フィルムに対し連続的に張力を付与できる点で好ましい。
-Tensioning means-
The tension applying means is not particularly limited as long as it is a means for applying tension to the film, and can be appropriately selected according to the purpose. For example, a tension applying means having a low speed roll and a high speed roll, Examples include tension applying means using gripping members that grip both ends of the film. Among these, a tension applying means having a low speed roll and a high speed roll is preferable in that a tension can be continuously applied to the film.
 前記低速ロールと高速ロールとを有する張力付与手段による張力の付与は、例えば、前記低速ロールと前記高速ロールを用いた前記フィルムの搬送において、前記フィルムの搬送方向の上流側に前記低速ロールを配置し、下流側に前記高速ロールを配置し、これらロールに接触するように前記フィルムを搬送させ、これらロールの周速差を用いて行われる。 For example, in the conveyance of the film using the low-speed roll and the high-speed roll, the low-speed roll is arranged on the upstream side in the conveyance direction of the film. Then, the high-speed roll is arranged on the downstream side, the film is conveyed so as to be in contact with these rolls, and the difference between the peripheral speeds of these rolls is used.
 前記フィルムの搬送速度としては、特に制限はなく、目的に応じて適宜選択することができる。
 前記低速ロールに接する位置における前記フィルムの搬送速度としては、前記高速ロールに接する位置における前記フィルムの搬送速度より低速であれば、特に制限はなく、目的に応じて適宜選択することができるが、1mm/分間~500,000mm/分間が好ましく、10mm/分間~100,000mm/分間がより好ましく、40mm/分間~50,000mm/分間が特に好ましい。前記搬送速度が、1mm/分間未満であると、機械的制御が困難になることがあり、500,000mm/分間を超えると、製造負荷が大きくなることがある。前記搬送速度が、前記特に好ましい範囲であると、安定してネッキング延伸を行うことができる点で有利である。
 前記高速ロールに接する位置における前記フィルムの搬送速度としては、前記低速ロールに接する位置における前記フィルムの搬送速度より高速であれば、特に制限はなく、目的に応じて適宜選択することができるが、10mm/分間~1,000,000mm/分間が好ましく、100mm/分間~500,000mm/分間がより好ましく、400mm/分間~200,000mm/分間が特に好ましい。前記搬送速度が、10mm/分間未満であると、機械的制御が困難になることがあり、1,000,000mm/分間を超えると、製造負荷が大きくなることがある。前記搬送速度が、前記特に好ましい範囲であると、安定してネッキング延伸を行うことができる点で有利である。
There is no restriction | limiting in particular as the conveyance speed of the said film, According to the objective, it can select suitably.
The transport speed of the film at the position in contact with the low-speed roll is not particularly limited as long as it is lower than the transport speed of the film at the position in contact with the high-speed roll, and can be appropriately selected according to the purpose. 1 mm / min to 500,000 mm / min is preferable, 10 mm / min to 100,000 mm / min is more preferable, and 40 mm / min to 50,000 mm / min is particularly preferable. If the conveying speed is less than 1 mm / min, mechanical control may be difficult, and if it exceeds 500,000 mm / min, the production load may be increased. When the conveyance speed is in the particularly preferred range, it is advantageous in that necking stretching can be performed stably.
The transport speed of the film at the position in contact with the high-speed roll is not particularly limited as long as it is higher than the transport speed of the film at the position in contact with the low-speed roll, and can be appropriately selected according to the purpose. 10 mm / min to 1,000,000 mm / min is preferable, 100 mm / min to 500,000 mm / min is more preferable, and 400 mm / min to 200,000 mm / min is particularly preferable. If the conveying speed is less than 10 mm / min, mechanical control may be difficult, and if it exceeds 1,000,000 mm / min, the production load may be increased. When the conveyance speed is in the particularly preferred range, it is advantageous in that necking stretching can be performed stably.
 ここで、前記低速ロールに接する位置における前記フィルムの搬送速度は、前記低速ロールの周速と同じ速度のため、前記低速ロールの周速から求めることができる。また、前記高速ロールに接する位置における前記フィルムの搬送速度は、前記高速ロールの周速と同じ速度のため、前記高速ロールの周速から求めることができる。 Here, the conveyance speed of the film at the position in contact with the low-speed roll can be obtained from the peripheral speed of the low-speed roll because it is the same speed as the peripheral speed of the low-speed roll. Moreover, since the conveyance speed of the film in the position in contact with the high-speed roll is the same as the peripheral speed of the high-speed roll, it can be obtained from the peripheral speed of the high-speed roll.
 前記低速ロールに接する位置における前記フィルムの搬送速度(l)と、前記高速ロールに接する位置における前記フィルムの搬送速度(h)との比(h/l)としては、1を超えれば、特に制限はなく、目的に応じて適宜選択することができるが、(h/l)=1.1~10が好ましく、2~8がより好ましく、3~6が特に好ましい。前記比が、1.1未満であると、延伸できないことがあり、10を超えると、延伸中にフィルムが切れることがある。前記比が、前記特に好ましい範囲であれば、安定してネッキング延伸を行うことができる点で有利である。 The ratio (h / l) of the film conveyance speed (l) at the position in contact with the low-speed roll and the film conveyance speed (h) at the position in contact with the high-speed roll is particularly limited as long as it exceeds 1. However, (h / l) = 1.1 to 10 is preferable, 2 to 8 is more preferable, and 3 to 6 is particularly preferable. If the ratio is less than 1.1, stretching may not be possible, and if it exceeds 10, the film may be broken during stretching. If the ratio is within the particularly preferable range, it is advantageous in that necking stretching can be performed stably.
 前記低速ロールと高速ロールとを有する張力付与手段は、更にニップロールを有していることが好ましい。前記ニップロールと、前記低速ロール及び前記高速ロールのいずれかとで前記フィルムをニップすることで、前記フィルムに張力を安定して付与できる。 The tension applying means having the low speed roll and the high speed roll preferably further has a nip roll. By niping the film with the nip roll and any of the low-speed roll and the high-speed roll, tension can be stably applied to the film.
 前記低速ロール、前記高速ロール、及び前記ニップロールの構造、大きさとしては、特に制限はなく、目的に応じて適宜選択することができる。
 前記低速ロール、前記高速ロール、及び前記ニップロールの形状としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、円柱状が挙げられる。
 前記低速ロール、前記高速ロール、及び前記ニップロールの材質としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、金属、シリコンゴムなどが挙げられる。
There is no restriction | limiting in particular as a structure and a magnitude | size of the said low speed roll, the said high speed roll, and the said nip roll, According to the objective, it can select suitably.
There is no restriction | limiting in particular as a shape of the said low speed roll, the said high speed roll, and the said nip roll, According to the objective, it can select suitably, For example, a column shape is mentioned.
There is no restriction | limiting in particular as a material of the said low speed roll, the said high speed roll, and the said nip roll, According to the objective, it can select suitably, For example, a metal, silicon rubber, etc. are mentioned.
 また、前記低速ロールと高速ロールとを有する張力付与手段は、更に補助ロールを有していることが好ましい。前記補助ロールを有することで、前記フィルムへ張力を均一に付与できる。 The tension applying means having the low speed roll and the high speed roll preferably further has an auxiliary roll. By having the auxiliary roll, tension can be uniformly applied to the film.
 前記張力付与処理により前記フィルムに付与される張力としては、特に制限はなく、目的に応じて適宜選択することができるが、5MPa~40MPaが好ましく、10MPa~30MPaがより好ましく、10MPa~20MPaが特に好ましい。前記張力が、5MPa未満であると、延伸ムラが発生しやすいことがあり、40MPaを超えると、フィルムが切れやすくなることがある。前記張力が、前記特に好ましい範囲であると、高速度でも安定して延伸ができる点で有利である。
 ここで、前記張力は、フィルム(延伸前のフィルム)に対する張力を示す。
The tension applied to the film by the tension application treatment is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 5 MPa to 40 MPa, more preferably 10 MPa to 30 MPa, and particularly preferably 10 MPa to 20 MPa. preferable. When the tension is less than 5 MPa, stretching unevenness is likely to occur, and when it exceeds 40 MPa, the film may be easily cut. When the tension is within the particularly preferable range, it is advantageous in that stretching can be performed stably even at a high speed.
Here, the said tension | tensile_strength shows the tension | tensile_strength with respect to a film (film before extending | stretching).
<ネッキング発生処理及びネッキング発生手段>
 前記ネッキング発生処理は、前記ネッキング発生手段により行うことができる。
<Necking generation processing and necking generation means>
The necking generation process can be performed by the necking generation means.
 ここで、ネッキングとは、延伸の際にフィルムの狭い範囲において生じるくびれである。ネッキングの概略を図1に示す。図1において、Wは前記フィルム(延伸前のフィルム)の幅を示し、Wは延伸フィルムの幅を示し、Lはネッキングが生じているフィルムの範囲の長さである。通常、ネッキング延伸においては、Lの長さは、0.05mm~5mmとなる。 Here, necking is a constriction that occurs in a narrow area of a film during stretching. An outline of necking is shown in FIG. In FIG. 1, W 0 indicates the width of the film (film before stretching), W indicates the width of the stretched film, and L 0 is the length of the range of the film in which necking occurs. Usually, in necking stretching, the length of L 0 is 0.05 mm to 5 mm.
-ネッキング発生手段-
 前記ネッキング発生手段としては、張力が付与された前記フィルムの一部を、フィルムの幅が変化しない温度からネッキングが生ずる温度に昇温させる手段であれば、特に制限はなく、目的に応じて適宜選択することができる。
-Necking generation means-
The necking generating means is not particularly limited as long as it is a means for raising a part of the film to which tension is applied from a temperature at which the width of the film does not change to a temperature at which necking occurs. You can choose.
--フィルムの幅が変化しない温度--
 前記フィルムの幅が変化しない温度とは、前記張力が付与された状態においてフィルムの幅が変化しない温度であり、例えば、フィルムのガラス転移点(Tg)よりも5℃以上低い温度である。
 前記フィルムの幅とは、前記フィルムにおける前記張力が付与される方向の直交方向の長さを指す。前記変化とは、通常、短くなることを指す。
 ここで、前記ガラス転移点(Tg)は、示差熱分析装置(DSC)により測定することができる。
 前記フィルムの幅が変化しない温度にする方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、冷却手段によりフィルムの幅が変化しない温度にする方法などが挙げられる。
 前記冷却手段により前記フィルムの幅が変化しない温度に冷却することにより、ネッキングの位置を、フィルムの幅が変化しない温度に維持されたフィルム近傍に移動させ、固定させることができる。
--Temperature at which film width does not change--
The temperature at which the width of the film does not change is a temperature at which the width of the film does not change in the state where the tension is applied, for example, a temperature that is 5 ° C. or more lower than the glass transition point (Tg) of the film.
The width of the film refers to the length in the direction perpendicular to the direction in which the tension is applied in the film. The change usually means shortening.
Here, the glass transition point (Tg) can be measured by a differential thermal analyzer (DSC).
There is no restriction | limiting in particular as the method of making it the temperature which does not change the width | variety of the said film, According to the objective, it can select suitably, For example, the method of making it the temperature which does not change the width | variety of a film with a cooling means, etc. are mentioned.
By cooling to a temperature at which the width of the film does not change by the cooling means, the position of necking can be moved and fixed in the vicinity of the film maintained at a temperature at which the width of the film does not change.
---冷却手段---
 前記冷却手段としては、張力が付与された前記フィルムをフィルムの幅が変化しない温度に冷却できる手段であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、冷却可能な部材、冷風発生装置、前記延伸フィルムの製造装置を設置した部屋自体を冷却温度に設定することなどが挙げられる。これらの中でも冷却可能な部材が好ましい。
--- Cooling means ---
The cooling means is not particularly limited as long as it can cool the tensioned film to a temperature at which the width of the film does not change, and can be appropriately selected according to the purpose. Examples thereof include setting a member, a cold air generator, and a room in which the stretched film manufacturing apparatus is installed to a cooling temperature. Among these, a coolable member is preferable.
 前記冷却可能な部材としては、その部材自体が冷却されることにより、前記フィルムを冷却できる部材であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、内部を冷媒が循環する金属部材、電子冷却を用いた冷却素子を張り付けた金属部材などが挙げられる。
 前記冷媒としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、冷却された気体、液体などが挙げられる。前記冷却された気体としては、例えば、冷却された空気が挙げられる。前記冷却された液体としては、例えば、冷却された水や不凍液などが挙げられる。
The member that can be cooled is not particularly limited as long as the member itself can be cooled to cool the film, and can be appropriately selected according to the purpose. Examples include a metal member that circulates and a metal member that is attached with a cooling element using electronic cooling.
There is no restriction | limiting in particular as said refrigerant | coolant, According to the objective, it can select suitably, For example, the cooled gas, liquid, etc. are mentioned. An example of the cooled gas is cooled air. Examples of the cooled liquid include cooled water and antifreeze.
 前記冷却可能な部材の大きさ、構造、材質としては、特に制限はなく、目的に応じて適宜選択することができる。
 また、前記冷却可能な部材の形状としては、特に制限はなく、目的に応じて適宜選択することができるが、略円弧状の凸面を有する冷却可能な部材が、前記フィルムが接触しやすく前記フィルムの温度を制御し易い点で好ましい。
There is no restriction | limiting in particular as a magnitude | size of the said member which can be cooled, a structure, and a material, According to the objective, it can select suitably.
The shape of the coolable member is not particularly limited and may be appropriately selected depending on the purpose. However, the coolable member having a substantially arcuate convex surface is easy to contact the film. It is preferable in that it can easily control the temperature.
 前記略円弧状の凸面を有する冷却可能な部材としては、特に制限はなく、目的に応じて適宜選択することができるが、図4や図6に記載のごとく、略円弧状の凸面の端部が前記フィルムに接触しない構造の冷却可能な部材が、前記フィルムが前記端部に接触して切れることを防止できる点で好ましい。 The coolable member having the substantially arcuate convex surface is not particularly limited and may be appropriately selected depending on the purpose. However, as shown in FIGS. 4 and 6, the end of the substantially arcuate convex surface However, a coolable member having a structure that does not contact the film is preferable in that it can prevent the film from coming into contact with the end portion.
 前記冷却可能な部材を用いる際には、前記フィルムが前記冷却可能な部材に接触した状態であることが、前記フィルムの温度を制御し易い点で好ましい。 When using the member that can be cooled, it is preferable that the film is in contact with the member that can be cooled in terms of easy control of the temperature of the film.
 前記冷風発生装置としては、前記フィルムに冷風を当てることができる装置であれば、特に制限はなく、目的に応じて適宜選択することができる。
 前記冷風発生装置は、防塵フィルターを有していることが好ましい。防塵フィルターを設けることにより、冷風に含まれる塵、埃などを取り除くことができ、塵、埃などの付着がない、きれいな延伸フィルムを製造することができる。
The cold air generator is not particularly limited as long as it can apply cold air to the film, and can be appropriately selected according to the purpose.
The cold air generator preferably has a dustproof filter. By providing the dustproof filter, dust, dust and the like contained in the cold air can be removed, and a clean stretched film free from adhesion of dust and dust can be produced.
 前記冷却手段により冷却される前記フィルムの冷却温度としては、フィルムの幅が変化しない温度であれば、特に制限はなく、目的に応じて適宜選択することができるが、フィルムのガラス転移点より5℃以上低い温度が好ましく、フィルムのガラス転移点より50℃以上低い温度がより好ましく、フィルムのガラス転移点より60℃低い温度からフィルムのガラス転移点より100℃低い温度の範囲の温度が特に好ましい。前記冷却温度が、フィルムのガラス転移点より5℃以上低い温度より高い温度であると、延伸位置が加熱可能な部材上から外れたり、延伸のムラが発生したりすることがある。前記冷却温度が、前記特に好ましい範囲であると、加熱可能な部材上で安定的にネッキング延伸ができる点で有利である。 The cooling temperature of the film cooled by the cooling means is not particularly limited as long as the width of the film does not change, and can be appropriately selected according to the purpose, but is 5 from the glass transition point of the film. Preferred is a temperature lower by 50 ° C. or more, more preferred is a temperature lower by 50 ° C. than the glass transition point of the film, and particularly preferred is a temperature in the range of 60 ° C. lower than the glass transition point of the film to 100 ° C. lower than the glass transition point of the film. . If the cooling temperature is higher than a temperature that is 5 ° C. or more lower than the glass transition point of the film, the stretching position may deviate from the heatable member, or stretching unevenness may occur. When the cooling temperature is in the particularly preferable range, it is advantageous in that necking stretching can be stably performed on a heatable member.
--ネッキングが生ずる温度--
 前記ネッキングが生ずる温度とは、前記張力が付与された状態において前記フィルムにネッキングが生ずる温度であり、例えば、フィルムのガラス転移点(Tg)より5℃低い温度以上の温度である。
 前記ネッキングが生ずる温度にする方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、加熱手段によりネッキングが生ずる温度にする方法が挙げられる。
--Temperature at which necking occurs--
The temperature at which necking occurs is a temperature at which necking occurs in the film in a state where the tension is applied, and is, for example, a temperature of 5 ° C. lower than the glass transition point (Tg) of the film.
There is no restriction | limiting in particular as the method of making the said necking temperature, It can select suitably according to the objective, For example, the method of making it the temperature which necking with a heating means is mentioned.
---加熱手段---
 前記加熱手段としては、張力が付与された前記フィルムをネッキングが生ずる温度に加熱できる手段であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、加熱可能な部材、加熱部、レーザーなどが挙げられる。これらの中でも、前記加熱可能な部材が好ましい。
--- Heating means ---
The heating means is not particularly limited as long as it can heat the film to which tension is applied to a temperature at which necking occurs, and can be appropriately selected according to the purpose. And laser. Among these, the heatable member is preferable.
 前記加熱可能な部材としては、その部材自体が加熱されることにより、前記フィルムを加熱できる部材であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、電気ヒーター、内部を熱媒が循環する金属部材が挙げられる。
 前記熱媒としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、加熱された気体、液体などが挙げられる。前記加熱された気体としては、例えば、加熱された空気が挙げられる。前記加熱された液体としては、例えば、加熱された水や熱媒油などが挙げられる。
The heatable member is not particularly limited as long as the member can be heated by heating the member itself, and can be appropriately selected according to the purpose. The metal member with which a heat medium circulates is mentioned.
There is no restriction | limiting in particular as said heat medium, According to the objective, it can select suitably, For example, the heated gas, liquid, etc. are mentioned. Examples of the heated gas include heated air. Examples of the heated liquid include heated water and heat transfer oil.
 前記加熱可能な部材の大きさ、構造、材質としては、特に制限はなく、目的に応じて適宜選択することができる。
 また、前記加熱可能な部材の形状としては、特に制限はなく、目的に応じて適宜選択することができるが、略円弧状の凸面を有する加熱可能な部材が、前記フィルムが接触しやすく前記フィルムの温度を制御し易い点で好ましい。
There is no restriction | limiting in particular as a magnitude | size of the said member which can be heated, a structure, and a material, According to the objective, it can select suitably.
Further, the shape of the heatable member is not particularly limited and may be appropriately selected according to the purpose. However, the heatable member having a substantially arc-shaped convex surface is easily contacted with the film. It is preferable in that it can easily control the temperature.
 前記略円弧状の凸面を有する加熱可能な部材としては、特に制限はなく、目的に応じて適宜選択することができるが、図3や図4に記載のごとく、略円弧状の凸面の端部が前記フィルムに接触しない構造の加熱可能な部材が、前記フィルムが前記端部に接触して切れることを防止できる点で好ましい。 The heatable member having the substantially arc-shaped convex surface is not particularly limited and can be appropriately selected according to the purpose. However, as shown in FIGS. 3 and 4, the end of the substantially arc-shaped convex surface. However, a heatable member having a structure that does not come into contact with the film is preferable in that it can prevent the film from coming out of contact with the end portion.
 前記加熱可能な部材を用いる場合、前記フィルムが前記加熱可能な部材に接触した状態であることが、前記フィルムの温度を制御し易い点で好ましい。 When using the heatable member, it is preferable that the film is in contact with the heatable member in terms of easy control of the temperature of the film.
 前記加熱部としては、前記フィルムを加熱できる空間を有する部であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、熱風炉、遠赤外線炉などが挙げられる。 The heating unit is not particularly limited as long as it has a space capable of heating the film, and can be appropriately selected according to the purpose. Examples thereof include a hot air furnace and a far infrared furnace.
 前記加熱手段により加熱される前記フィルムの加熱温度としては、ネッキングが生ずる温度であれば、特に制限はなく、目的に応じて適宜選択することができるが、フィルムのガラス転移点(Tg)より5℃低い温度以上の温度が好ましく、フィルムのガラス転移点以上の温度がより好ましく、フィルムのガラス転移点(Tg)からフィルムのガラス転移点(Tg)より10℃高い温度の範囲の温度が特に好ましい。前記加熱温度が、フィルムのガラス転移点(Tg)より10℃高い温度を超えると、ネックイン比が大きくなり生産性が劣ることがある。前記加熱温度が、前記特に好ましい範囲であると、ネッキング延伸が安定化し生産性が良好になる点で有利である。 The heating temperature of the film heated by the heating means is not particularly limited as long as it is a temperature at which necking occurs, and can be appropriately selected according to the purpose, but it is 5 from the glass transition point (Tg) of the film. A temperature equal to or higher than the lower temperature is preferable, a temperature equal to or higher than the glass transition point of the film is more preferable, and a temperature in the range of 10 ° C. higher than the glass transition point (Tg) of the film is particularly preferable. . When the heating temperature exceeds a temperature 10 ° C. higher than the glass transition point (Tg) of the film, the neck-in ratio increases and the productivity may be inferior. When the heating temperature is within the particularly preferred range, it is advantageous in that necking stretching is stabilized and productivity is improved.
--温度差--
 前記ネッキング発生処理における、前記フィルムの幅が変化しない温度(A)と前記ネッキングが生ずる温度(B)との温度差(B-A)としては、特に制限はなく、目的に応じて適宜選択することができるが、1℃~100℃が好ましく、5℃~80℃がより好ましく、10℃~50℃が特に好ましい。前記温度差が、1℃未満であると、ネッキングが生じにくくなることがあり、100℃を超えると、フィルムが切れやすくなることがある。前記温度差が、前記特に好ましい範囲であると、フィルムが切れず安定して製造が可能な点で有利である。
 また、前記フィルムの材質が、ポリエステル樹脂である場合には、前記温度差としては、5℃~80℃が好ましく、8℃~50℃がより好ましく、10℃~20℃が特に好ましい。前記温度差が、80℃を超えると、ネッキングが生じないことがある。前記温度差が、前記特に好ましい範囲であると、フィルムが切れず安定して製造が可能な点で有利である。
--- Temperature difference--
In the necking generation process, the temperature difference (BA) between the temperature (A) at which the width of the film does not change and the temperature (B) at which the necking occurs is not particularly limited and is appropriately selected depending on the purpose. However, it is preferably 1 ° C to 100 ° C, more preferably 5 ° C to 80 ° C, and particularly preferably 10 ° C to 50 ° C. If the temperature difference is less than 1 ° C, necking may be difficult to occur, and if it exceeds 100 ° C, the film may be easily cut. If the temperature difference is within the particularly preferred range, it is advantageous in that the film can be stably produced without being cut.
When the film material is a polyester resin, the temperature difference is preferably 5 ° C. to 80 ° C., more preferably 8 ° C. to 50 ° C., and particularly preferably 10 ° C. to 20 ° C. If the temperature difference exceeds 80 ° C., necking may not occur. If the temperature difference is within the particularly preferred range, it is advantageous in that the film can be stably produced without being cut.
 前記ネッキング発生処理において、ネッキングが生ずる温度に昇温させた前記フィルムにネッキングを生じさせ、前記フィルムをネッキング延伸するとともに、該ネッキングの位置を、フィルムの幅が変化しない温度に維持された前記フィルム近傍に移動させ、固定させることが、ネッキングの位置を制御し易い点から好ましい。
 ネッキングの位置を、フィルムの幅が変化しない温度に維持された前記フィルム近傍に移動させ、固定させる方法としては、例えば、前記フィルムの搬送方向の下流側でネッキングを生じさせた後、ネッキングの位置を、次第に、ネッキングを生じた位置よりも前記フィルムの搬送方向の上流側であって、フィルムの幅が変化しない温度に維持された前記フィルム近傍にまで移動させて、その位置にネッキングの位置を固定させる方法などが挙げられる。
In the necking generation process, the film that has been heated to a temperature at which necking occurs is necked, the film is necked and stretched, and the position of the necking is maintained at a temperature at which the width of the film does not change It is preferable to move it to the vicinity and fix it from the viewpoint of easily controlling the position of necking.
As a method of moving and fixing the position of necking in the vicinity of the film maintained at a temperature at which the width of the film does not change, for example, after necking is generated on the downstream side in the film transport direction, the position of necking is set. Is gradually moved to the vicinity of the film, which is upstream of the film conveyance direction from the position where the necking occurs and is maintained at a temperature at which the film width does not change, and the position of the necking is moved to that position. The method of fixing is mentioned.
 ここで、図4の製造装置を用いて、ネッキングの位置を、フィルムの幅が変化しない温度に維持された前記フィルム近傍に移動させ、固定させる方法について、一例を説明する。
 図4の延伸フィルムの製造装置は、低速ロール3、高速ロール4、冷却可能な部材(冷却手段)5、加熱可能な部材(加熱手段)6a、ニップロール7、補助ロール8を有する。前記冷却可能な部材5は、略円弧状の凸面を有し、内部を冷媒が循環する金属部材であり、前記略円弧状の凸面はフィルム2に接触するが、前記略円弧状の凸面の端部はフィルム2に接触しない構造となっている。前記加熱可能な部材6aは、略円弧状の凸面を有し、内部を熱媒が循環する金属部材であり、前記略円弧状の凸面はフィルム2に接触するが、前記略円弧状の凸面の端部はフィルム2に接触しない構造となっている。
Here, an example of a method for moving and fixing the position of necking in the vicinity of the film maintained at a temperature at which the width of the film does not change will be described using the manufacturing apparatus of FIG.
The stretched film manufacturing apparatus in FIG. 4 includes a low-speed roll 3, a high-speed roll 4, a coolable member (cooling means) 5, a heatable member (heating means) 6 a, a nip roll 7, and an auxiliary roll 8. The coolable member 5 is a metal member having a substantially arc-shaped convex surface through which a coolant circulates, and the substantially arc-shaped convex surface is in contact with the film 2, but the end of the substantially arc-shaped convex surface. The part has a structure that does not contact the film 2. The heatable member 6a is a metal member having a substantially arc-shaped convex surface, in which a heat medium circulates. The substantially arc-shaped convex surface is in contact with the film 2, but the substantially arc-shaped convex surface The end has a structure that does not contact the film 2.
 前記ネッキングの位置を、フィルムの幅が変化しない温度に維持された前記フィルム近傍に移動させ、固定させる方法としては、まず、フィルム2を前記低速ロール3と前記高速ロール4との間で搬送させる。この際、前記低速ロール3よりも前記高速ロール4の周速を速くすることにより、前記フィルム2を、前記低速ロール3側から前記高速ロール4側に搬送させる。また、前記低速ロール3と前記高速ロール4の周速差により、前記フィルム2に張力を付与する。前記低速ロール3と前記ニップロール7により前記フィルム2をニップし、更に前記高速ロール4と前記ニップロール7により前記フィルム2をニップすることにより、前記フィルム2には張力が安定して付与される。
 続いて、搬送している前記フィルム2の一部を、前記冷却可能な部材5に接触させることにより、フィルムの幅が変化しない温度に冷却する。続いて、フィルムの幅が変化しない温度に冷却された前記フィルム2の一部を、前記フィルム2の搬送により移動させ、前記加熱可能な部材6aに接触させて、ネッキングが生ずる温度に昇温する。この昇温により、前記フィルム2にネッキングが生じ、前記フィルムはネッキング延伸される。
 この際に、ネッキングは、前記フィルム2の搬送方向の下流側(図4のbの位置)で生じ、ネッキング延伸が開始する。そして、ネッキング延伸を続けると、ネッキングの位置は、前記フィルム2の搬送方向の上流側であって、前記冷却可能な部材5によりフィルムの幅が変化しない温度に維持された前記フィルム2近傍(図4のaの位置)に遡るように移動し、ネッキングの位置は前記位置(図4のaの位置)で固定される。
 なお、図4において付した各符号は、図3~図8において同一の構成を表す。
As a method of moving and fixing the position of the necking in the vicinity of the film maintained at a temperature at which the width of the film does not change, first, the film 2 is transported between the low-speed roll 3 and the high-speed roll 4. . At this time, the film 2 is conveyed from the low-speed roll 3 side to the high-speed roll 4 side by making the peripheral speed of the high-speed roll 4 faster than the low-speed roll 3. Further, tension is applied to the film 2 by the difference in peripheral speed between the low-speed roll 3 and the high-speed roll 4. The film 2 is nipped by the low-speed roll 3 and the nip roll 7, and the film 2 is nipped by the high-speed roll 4 and the nip roll 7, whereby a tension is stably applied to the film 2.
Subsequently, a part of the film 2 being conveyed is brought into contact with the member 5 that can be cooled to cool the film 2 to a temperature at which the width of the film does not change. Subsequently, a part of the film 2 cooled to a temperature at which the width of the film does not change is moved by conveying the film 2 and brought into contact with the heatable member 6a to raise the temperature to a temperature at which necking occurs. . By this temperature increase, necking occurs in the film 2, and the film is necked and stretched.
At this time, necking occurs on the downstream side (position b in FIG. 4) in the transport direction of the film 2, and necking stretching starts. When the necking stretching is continued, the necking position is upstream in the transport direction of the film 2, and the vicinity of the film 2 maintained at a temperature at which the width of the film does not change by the coolable member 5 (see FIG. The position of necking is fixed at the position (position a in FIG. 4).
4 denote the same components in FIGS. 3 to 8. FIG.
<延伸フィルム>
 前記延伸フィルムの材質としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、結晶性ポリマーのみからなるものであってもよいし、結晶性ポリマー以外のその他の成分を含むものであってもよい。これらの中でも、前記延伸フィルムが前記結晶性ポリマーのみからなることが、得られる延伸フィルムが空洞を有する延伸フィルムであり、かつ前記空洞を有する延伸フィルムを安定した品質で製造できる点で好ましい。
<Stretched film>
There is no restriction | limiting in particular as a material of the said stretched film, According to the objective, it can select suitably, For example, it may consist only of crystalline polymers and contains other components other than crystalline polymers. It may be a thing. Among these, it is preferable that the stretched film is composed only of the crystalline polymer in that the stretched film obtained is a stretched film having cavities, and the stretched film having the cavities can be produced with stable quality.
 ここで、結晶性ポリマーのみからなる前記延伸フィルムは、空洞の発現に寄与しない成分であれば、必要に応じて前記結晶性ポリマー以外のその他の成分を含んでいてもよい。前記その他の成分としては、耐熱安定剤、酸化防止剤、有機の易滑剤、核剤、染料、顔料、分散剤、カップリング剤などが挙げられる。前記その他の成分が空洞の発現に寄与したかどうかは、空洞内又は空洞の界面部分に、結晶性ポリマー以外の成分が検出されるかどうかで判別できる。 Here, the stretched film made of only the crystalline polymer may contain other components other than the crystalline polymer as necessary as long as it does not contribute to the development of the cavity. Examples of the other components include a heat resistance stabilizer, an antioxidant, an organic lubricant, a nucleating agent, a dye, a pigment, a dispersant, and a coupling agent. Whether or not the other component contributes to the development of the cavity can be determined by whether or not a component other than the crystalline polymer is detected in the cavity or at the interface portion of the cavity.
-空洞を有する延伸フィルム-
 前記空洞を有する延伸フィルムは、その内部に空洞を有する延伸フィルムである。
-Stretched film with cavities-
The stretched film having a cavity is a stretched film having a cavity therein.
 前記空洞とは、前記空洞を有する延伸フィルム内部に存在する、真空状態のドメイン又は気相のドメインを意味する。前記空洞は、光学顕微鏡や走査型電子顕微鏡により撮影した写真により確認することができる。 The term “cavity” means a vacuum domain or a gas phase domain present inside a stretched film having the cavity. The cavity can be confirmed by a photograph taken with an optical microscope or a scanning electron microscope.
 前記空洞を有する延伸フィルムは、前記空洞を延伸方向に配向した状態で有してなり、該空洞のアスペクト比が特定範囲であることが好ましい。 The stretched film having the cavities preferably has the cavities oriented in the stretching direction, and the aspect ratio of the cavities is preferably in a specific range.
 前記アスペクト比とは、前記空洞の平均長さをL(μm)とし、前記空洞の配向方向と直交方向における該空洞の平均径をr(μm)とした際のL/r比(以下、「アスペクト比」と省略することがある。)を意味する。
 前記アスペクト比としては、特に制限はなく、目的に応じて適宜選択することができるが、10以上が好ましく、15以上がより好ましく、20以上が特に好ましい。
The aspect ratio is an L / r ratio when the average length of the cavities is L (μm) and the average diameter of the cavities in the direction orthogonal to the orientation direction of the cavities is r (μm) (hereinafter, “ It may be abbreviated as “aspect ratio”.)
There is no restriction | limiting in particular as said aspect-ratio, Although it can select suitably according to the objective, 10 or more are preferable, 15 or more are more preferable, and 20 or more are especially preferable.
 図2A~2Cは、アスペクト比を具体的に説明するための図であって、図2Aは、空洞を有する延伸フィルムの斜視図であり、図2Bは、図2Aにおける空洞を有する延伸フィルムのA-A’断面図であり、図2Cは、図2Aにおける空洞を有する延伸フィルムのB-B’断面図である。 2A to 2C are diagrams for specifically explaining the aspect ratio, FIG. 2A is a perspective view of a stretched film having a cavity, and FIG. 2B is an A view of the stretched film having a cavity in FIG. 2A. FIG. 2C is a cross-sectional view taken along the line −A ′, and FIG. 2C is a cross-sectional view taken along the line BB ′ of the stretched film having a cavity in FIG. 2A.
 前記空洞を有する延伸フィルムの製造工程において、前記空洞は、通常、第一の延伸方向に沿って配向する。したがって、前記「空洞の平均長さ(L(μm))」は、独立した空洞を有する延伸フィルム1の表面1aに垂直で、かつ、前記第一の延伸方向に平行な断面(図2AにおけるB-B’断面)における空洞100の平均の長さL(図2C参照)に相当する。また、前記「空洞の平均径(r(μm))」は、独立した空洞を有する延伸フィルム1の表面1aに垂直で、かつ、第一の延伸方向に直角な断面(図2AにおけるA-A’断面)における空洞100の平均の厚みr(図2B参照)に相当する。 In the manufacturing process of the stretched film having the cavities, the cavities are usually oriented along the first stretching direction. Accordingly, the “average length of the cavities (L (μm))” is a cross section perpendicular to the surface 1a of the stretched film 1 having independent cavities and parallel to the first stretching direction (B in FIG. 2A). This corresponds to the average length L (see FIG. 2C) of the cavity 100 in (−B ′ cross section). The “average diameter of cavities (r (μm))” is a cross section perpendicular to the surface 1a of the stretched film 1 having independent cavities and perpendicular to the first stretching direction (AA in FIG. 2A). This corresponds to the average thickness r (see FIG. 2B) of the cavity 100 in the “cross section”.
 なお、前記第一の延伸方向とは、延伸が1軸のみの場合には、その1軸の延伸方向を示す。本発明においては、前記延伸フィルムの製造時に前記フィルムの搬送方向に沿ってネッキング延伸を行うため、このネッキング延伸の方向が前記第一の延伸方向に相当する。
 また、延伸が2軸以上の場合には、空洞形成を目的とした延伸方向のうち少なくとも1方向を示す。通常は、2軸以上の延伸においても、ネッキング延伸の方向が前記第一の延伸方向に相当する。
In addition, said 1st extending | stretching direction shows the extending direction of 1 axis | shaft, when extending | stretching is only 1 axis | shaft. In the present invention, since the necking stretching is performed along the transport direction of the film during the production of the stretched film, the necking stretching direction corresponds to the first stretching direction.
Moreover, when extending | stretching is biaxial or more, at least 1 direction is shown among the extending directions aiming at cavity formation. Usually, even in biaxial or more stretching, the necking stretching direction corresponds to the first stretching direction.
 ここで、前記空洞の平均長さ(L(μm))は、光学顕微鏡や電子顕微鏡の画像により測定することができる。同様に、前記空洞の平均径(r(μm))は、光学顕微鏡や電子顕微鏡の画像により測定することができる。 Here, the average length (L (μm)) of the cavity can be measured by an image of an optical microscope or an electron microscope. Similarly, the average diameter (r (μm)) of the cavities can be measured by an image of an optical microscope or an electron microscope.
 前記空洞の配向方向と直交方向(前記空洞を有する延伸フィルムの厚み方向)における前記空洞の平均の個数Pとしては、特に制限はなく、目的に応じて適宜選択することができるが、5個以上が好ましく、10個以上がより好ましく、15個以上が特に好ましい。 The average number P of the cavities in the direction orthogonal to the orientation direction of the cavities (the thickness direction of the stretched film having the cavities) is not particularly limited and may be appropriately selected depending on the purpose, but may be 5 or more. 10 or more is more preferable, and 15 or more is particularly preferable.
 前記空洞を有する延伸フィルムの製造工程において、前記空洞は、通常、第一の延伸方向に沿って配向する。したがって、前記「空洞の配向方向と直交方向における前記空洞の個数」は、前記空洞を有する延伸フィルム1の表面1aに垂直で、かつ、第一の延伸方向に直角な断面(図2AにおけるA-A’断面)において、膜厚方向に含まれる空洞100の個数に相当する。
 ここで、前記空洞の配向方向と直交方向における前記空洞の平均の個数Pは、光学顕微鏡や電子顕微鏡の画像により測定することができる。
In the manufacturing process of the stretched film having the cavities, the cavities are usually oriented along the first stretching direction. Therefore, the “number of the cavities in the direction orthogonal to the orientation direction of the cavities” is a cross section perpendicular to the surface 1a of the stretched film 1 having the cavities and perpendicular to the first stretch direction (A− in FIG. 2A). In the A ′ cross section), this corresponds to the number of cavities 100 included in the film thickness direction.
Here, the average number P of the cavities in the direction orthogonal to the orientation direction of the cavities can be measured by an image of an optical microscope or an electron microscope.
 前記延伸フィルムの平均厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、1.5μm~200μmであることが好ましく、5μm~150μmであることがより好ましく、20μm~100μmであることが特に好ましい。前記平均厚みが、1.5μm未満であると均一な延伸ができないことがあり、200μmを超えると、製造機に負担がかかり製造適性がない(製造が困難になる)ことがある。前記平均厚みが、前記特に好ましい範囲であると、均一なネッキング延伸が可能な点、及び製造適性の点で有利である。 The average thickness of the stretched film is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 1.5 μm to 200 μm, more preferably 5 μm to 150 μm, and more preferably 20 μm to 100 μm. It is particularly preferred that If the average thickness is less than 1.5 μm, uniform stretching may not be possible, and if it exceeds 200 μm, the manufacturing machine may be burdened and may not be suitable for production (manufacturing may be difficult). When the average thickness is within the particularly preferable range, it is advantageous in that uniform necking stretching is possible and in terms of production suitability.
 前記延伸フィルムの平均厚みは、例えば、キーエンス社製、ロングレンジ接触式変位計AF030(測定部)、AF350(指示部)を用いて、前記延伸フィルムの厚みを10点測定した際の平均値である。 The average thickness of the stretched film is, for example, an average value when the thickness of the stretched film is measured at 10 points using a long range contact displacement meter AF030 (measurement unit) and AF350 (instruction unit) manufactured by Keyence Corporation. is there.
 前記延伸フィルムの反射率としては、特に制限はなく、目的に応じて適宜選択することができるが、50%以上であることが好ましく、80%以上であることがより好ましく、85%以上であることが特に好ましい。前記反射率が、前記特に好ましい範囲内であると、得られる延伸フィルムがアルミニウムの代替の反射フィルムに適用可能となる点で有利である。 There is no restriction | limiting in particular as a reflectance of the said stretched film, Although it can select suitably according to the objective, It is preferable that it is 50% or more, It is more preferable that it is 80% or more, It is 85% or more. It is particularly preferred. When the reflectance is within the particularly preferable range, it is advantageous in that the obtained stretched film can be applied to an aluminum reflective film.
 前記延伸フィルムの反射率は、分光光度計(「V-570」;日本分光社製)に積分球を取り付け、波長200nm~2,500nmについて、波長1nm毎に反射率を測定した際の、波長550nmにおける反射率である。ここで、基準値として、装置付属の標準白板の反射率を100%とする。 The reflectance of the stretched film is the wavelength when the integrating sphere is attached to a spectrophotometer (“V-570”; manufactured by JASCO Corporation), and the reflectance is measured for each wavelength of 200 nm to 2,500 nm. The reflectance at 550 nm. Here, as a reference value, the reflectance of the standard white board attached to the apparatus is set to 100%.
 前記延伸フィルムの幅は、延伸後において、前記フィルムの幅に対して変化が少ないことが好ましい。前記フィルム(延伸前のフィルム)の幅(W)に対する前記延伸フィルムの幅(W)の変化は、ネックイン比(NR)という指標で表される。前記ネックイン比は、次式で表される。
 式 NR=(W-W)/W
 ネックイン比は、数値が小さいほど、延伸前後でのフィルムの幅の変化が少なく、優れていることを示す。
 前記ネックイン比は、0.05~0.5であることが好ましく、0.05~0.3であることがより好ましく、0.05~0.15であることが特に好ましい。前記ネックイン比が、前記特に好ましい範囲であると、安定してネッキング延伸を行うことができる点で有利である。
The width of the stretched film is preferably little changed with respect to the width of the film after stretching. The change in the width (W) of the stretched film with respect to the width (W 0 ) of the film (film before stretching) is represented by an index called a neck-in ratio (NR). The neck-in ratio is expressed by the following equation.
Formula NR = (W 0 −W) / W 0
The smaller the numerical value, the smaller the value of the neck-in ratio, and the smaller the change in the width of the film before and after stretching, the better.
The neck-in ratio is preferably 0.05 to 0.5, more preferably 0.05 to 0.3, and particularly preferably 0.05 to 0.15. When the neck-in ratio is in the particularly preferable range, it is advantageous in that necking stretching can be performed stably.
 以下、本発明の実施例について説明するが、本発明は下記実施例に何ら限定されるものではない。 Examples of the present invention will be described below, but the present invention is not limited to the following examples.
(製造例1)
<フィルムの製造>
 極限粘度(IV)=0.71であるPBT(ポリブチレンテレフタレート100%樹脂)を、溶融押出機を用いて245℃でTダイから押出し、キャスティングドラムで固化させて、幅100mm、平均厚み158μmのポリマー成形体(フィルムA)を得た。
 得られたフィルムAのガラス転移点は、36℃であった。
 得られたフィルムAのX線回折における結晶性ピークの半値幅が2θとして9°未満であることを確認した。
(Production Example 1)
<Manufacture of film>
PBT (polybutylene terephthalate 100% resin) having an intrinsic viscosity (IV) = 0.71 was extruded from a T-die at 245 ° C. using a melt extruder and solidified by a casting drum to have a width of 100 mm and an average thickness of 158 μm. A polymer molded body (film A) was obtained.
The glass transition point of the obtained film A was 36 ° C.
It was confirmed that the half width of the crystalline peak in X-ray diffraction of the obtained film A was less than 9 ° as 2θ.
<測定>
 ガラス転移点及び結晶子サイズは以下の方法により測定した。
<<1>>ガラス転移点(Tg)
 フィルムのガラス転移点(Tg)は、示差熱分析装置(DSC)により測定した。
<Measurement>
The glass transition point and crystallite size were measured by the following methods.
<< 1 >> Glass transition point (Tg)
The glass transition point (Tg) of the film was measured with a differential thermal analyzer (DSC).
<<2>>結晶性ピークの半値幅の測定
 得られたフィルムを幅25mmにしガラス試料ホルダ上に貼り付け、X線回折装置(RINT TTR III、リガク社製)を用いて、以下の測定条件で測定後、結晶性ピ-クと非晶性ピ-ク(2θ=20°)のピーク分離を行い、各ピ-クの半値幅を測定した。
-測定条件-
 X線強度    :50kV-300mA
 発散スリット  :開放
 発散縦スリット :10mm
 散乱スリット  :0.05mm
 受光スリット  :0.15mm
 スキャン速度  :4°/min
 スキャン範囲  :2θ=5~60°
<< 2 >> Measurement of half-width of crystalline peak The obtained film was made to have a width of 25 mm and pasted on a glass sample holder, and the following measurement conditions were used using an X-ray diffractometer (RINT TTR III, manufactured by Rigaku Corporation). After the measurement, the peak separation of the crystalline peak and the amorphous peak (2θ = 20 °) was performed, and the half width of each peak was measured.
-Measurement condition-
X-ray intensity: 50 kV-300 mA
Divergent slit: Open Divergent longitudinal slit: 10mm
Scattering slit: 0.05 mm
Light receiving slit: 0.15 mm
Scanning speed: 4 ° / min
Scan range: 2θ = 5-60 °
(製造例2)
<フィルムの製造>
 極限粘度(IV)=0.66であるPET(ポリエチレンテレフタレート)を、溶融押出機を用いて300℃でTダイから押出し、キャスティングドラムで固化させて、幅100mm、平均厚み80μmのポリマー成形体(フィルムB)を得た。
 得られたフィルムBのガラス転移点は、75℃であった。
 得られたフィルムBのX線回折における結晶性ピークの半値幅が2θとして9°未満であることを確認した。
(Production Example 2)
<Manufacture of film>
PET (polyethylene terephthalate) having an intrinsic viscosity (IV) = 0.66 is extruded from a T die using a melt extruder at 300 ° C. and solidified by a casting drum, and a polymer molded body having a width of 100 mm and an average thickness of 80 μm ( Film B) was obtained.
The glass transition point of the obtained film B was 75 ° C.
It was confirmed that the half width of the crystalline peak in X-ray diffraction of the obtained film B was less than 9 ° as 2θ.
(製造例3)
<フィルムの製造>
 極限粘度(IV)=0.66であるPET(ポリエチレンテレフタレート)と、極限粘度(IV)=0.64であるPEN(ポリエチレンナフタレート)とを60/40(質量比)で混合し、溶融押出機を用いて260℃でTダイから押出し、キャスティングドラムで固化させて、幅100mm、平均厚み90μmのポリマー成形体(フィルムC)を得た。
 得られたフィルムCのガラス転移点は、90℃であった。
 得られたフィルムCのX線回折における結晶性ピークの半値幅が2θとして11°であることを確認した。
(Production Example 3)
<Manufacture of film>
PET (polyethylene terephthalate) with intrinsic viscosity (IV) = 0.66 and PEN (polyethylene naphthalate) with intrinsic viscosity (IV) = 0.64 are mixed at 60/40 (mass ratio), and melt extrusion is performed. A polymer molded body (film C) having a width of 100 mm and an average thickness of 90 μm was obtained by extrusion from a T die at 260 ° C. using a machine and solidifying with a casting drum.
The glass transition point of the obtained film C was 90 ° C.
It was confirmed that the half width of the crystalline peak in X-ray diffraction of the obtained film C was 11 ° as 2θ.
(実施例1)
<フィルムの延伸>
 図3に示す延伸フィルムの製造装置を用い、前記フィルムAをネッキング延伸した。
 まず、低速ロール3に接する位置における前記フィルムAの搬送速度を200mm/分間、高速ロール4に接する位置における前記フィルムAの搬送速度を1,100mm/分間とし、前記フィルムAを前記低速ロール3から前記高速ロール4に向かって搬送させた。この際、前記フィルムAに10MPaの張力を付与した。また、前記フィルムAは、加熱可能な部材6aに接触するように搬送させた。
 前記フィルムAを搬送させつつ、前記加熱可能な部材6aよりも前記フィルムAの搬送方向の上流側において、前記フィルムAの一部を、25℃(フィルムの幅が変化しない温度)にした。25℃の前記フィルムAの一部を、前記フィルムAの搬送により搬送方向の下流側に移動させ、前記加熱可能な部材6aに接触させ43℃(ネッキングが生ずる温度)に昇温した。
 これら処理により、前記フィルムAにネッキングが生じた。ネッキングの位置は、ネッキング延伸を開始した直後には、図3のbの位置であったが、ネッキング延伸を続けると、図3のaの位置(フィルムの幅が変化しない温度に維持されたフィルムA近傍)まで遡るように移動し、その位置で固定され、その後は移動しなくなった。
 ネッキング延伸している際に、前記フィルムAが切れることはなく、安定して延伸フィルムを製造できた。
 得られた延伸フィルムについて以下の評価を行った。評価結果を表1に示す。
 なお、フィルムAの外観は透明だが、延伸により得られた空洞を有する延伸フィルムの外観は銀色であった。そのため、延伸中のフィルムの外観を目視により観察することにより、ネッキングの位置は、容易に確認できた。
Example 1
<Stretching of film>
The film A was necked and stretched using the stretched film manufacturing apparatus shown in FIG.
First, the transport speed of the film A at a position in contact with the low speed roll 3 is 200 mm / min, the transport speed of the film A at a position in contact with the high speed roll 4 is 1,100 mm / min, and the film A is removed from the low speed roll 3. It was conveyed toward the high-speed roll 4. At this time, a tension of 10 MPa was applied to the film A. The film A was conveyed so as to be in contact with the heatable member 6a.
While transporting the film A, a part of the film A was set to 25 ° C. (temperature at which the width of the film does not change) on the upstream side in the transport direction of the film A from the heatable member 6a. A part of the film A at 25 ° C. was moved to the downstream side in the conveyance direction by conveyance of the film A, brought into contact with the heatable member 6a, and heated to 43 ° C. (temperature at which necking occurred).
Necking occurred in the film A by these treatments. The position of necking was the position of b in FIG. 3 immediately after starting the necking stretching, but when the necking stretching was continued, the position of FIG. 3 a (the film maintained at a temperature at which the film width did not change). It moved back to the vicinity of A), fixed at that position, and then stopped moving.
During the necking stretching, the film A was not cut and a stretched film could be produced stably.
The following evaluation was performed about the obtained stretched film. The evaluation results are shown in Table 1.
In addition, although the external appearance of the film A was transparent, the external appearance of the stretched film which has the cavity obtained by extending | stretching was silver. Therefore, the position of necking was easily confirmed by visually observing the appearance of the film being stretched.
<評価>
<<1>>(延伸)フィルムの平均厚み
 キーエンス社製、ロングレンジ接触式変位計AF030(測定部)、AF350(指示部)を用いて、(延伸)フィルムの厚みを10点測定し、その平均値を平均厚みとした。
<Evaluation>
<< 1 >> Average thickness of (stretched) film Using a long-range contact displacement meter AF030 (measurement unit) and AF350 (indicating unit) manufactured by Keyence Corporation, the thickness of the (stretched) film was measured at 10 points. The average value was defined as the average thickness.
<<2>>延伸ムラ
 延伸されたフィルムを目視で観察し、下記評価基準により延伸ムラを評価した。
  延伸ムラなし:フィルムの幅方向にスジが見えない。
  延伸ムラ小 :フィルムの幅方向にスジが見える。
  延伸ムラ大 :フィルムの幅方向にスジが見え、更に、延伸されない引き残り部分がある。
 ここで、引き残り部分とは、延伸フィルムの平均厚みの2倍以上の厚みの部分を指す。厚みは、キーエンス社製、ロングレンジ接触式変位計AF030(測定部)、AF350(指示部)を用いて測定した。
<< 2 >> Stretching Unevenness The stretched film was visually observed, and the stretching unevenness was evaluated according to the following evaluation criteria.
No stretching unevenness: Streaks are not visible in the width direction of the film.
Small stretch unevenness: Streaks appear in the width direction of the film.
Uneven stretching: streaks appear in the width direction of the film, and there are still undrawn portions that are not stretched.
Here, the undrawn portion refers to a portion having a thickness that is twice or more the average thickness of the stretched film. The thickness was measured using a long range contact displacement meter AF030 (measurement unit) and AF350 (instruction unit) manufactured by Keyence Corporation.
<<3>>ネックイン比(NR)
 ネックイン比(NR)を測定した。ネックイン比(NR)は、次式で表される、図1における延伸前のフィルムの幅(W)と延伸フィルムの幅(W)との関係を示す指標である。
 式 NR=(W-W)/W
 ネックイン比は、数値が小さいほど、延伸前後でのフィルムの幅の変化が少なく、優れていることを示す。
<< 3 >> Neck-in ratio (NR)
The neck-in ratio (NR) was measured. The neck-in ratio (NR) is an index showing the relationship between the width (W 0 ) of the film before stretching and the width (W) of the stretched film in FIG.
Formula NR = (W 0 −W) / W 0
The smaller the numerical value, the smaller the value of the neck-in ratio, and the smaller the change in the width of the film before and after stretching, the better.
<<4>>空洞の有無
 光学顕微鏡や走査型電子顕微鏡により撮影した写真を観察して、空洞の有無を確認した。
<< 4 >> Presence / absence of voids Photographs taken with an optical microscope or a scanning electron microscope were observed to confirm the presence / absence of voids.
<<5>>アスペクト比
 延伸フィルムの表面に垂直で、かつ、縦延伸方向(ネッキング延伸方向)に直角な断面(図2B参照)と、前記延伸フィルムの表面に垂直で、かつ、前記縦延伸方向に平行な断面(図2C参照)を、走査型電子顕微鏡を用いて300倍~3,000倍の適切な倍率で検鏡し、前記各断面写真において測定枠をそれぞれ設定した。この測定枠は、その枠内に空洞が50個~100個含まれるように設定した。
 次に、測定枠に含まれる空洞の数を計測し、前記縦延伸方向に直角な断面の測定枠(図2B参照)に含まれる空洞の数をm個、前記縦延伸方向に平行な断面の測定枠(図2C参照)に含まれる空洞の数をn個とした。
 そして、前記縦延伸方向に直角な断面の測定枠(図2B参照)に含まれる空洞の1個づつの厚み(r)を測定し、その平均の厚みを平均径rとした。また、前記縦延伸方向に平行な断面の測定枠(図2C参照)に含まれる空洞の1個づつの長さ(L)を測定し、その平均の長さをLとした。
 即ち、r及びLは、それぞれ下記の(1)式及び(2)式で表すことができる。
 r=(Σr)/m   ・・・(1)
 L=(ΣL)/n   ・・・(2)
 そして、L/rを算出し、アスペクト比とした。
<< 5 >> Aspect Ratio A section (see FIG. 2B) perpendicular to the surface of the stretched film and perpendicular to the longitudinal stretching direction (necking stretching direction), and perpendicular to the surface of the stretched film and the longitudinal stretching A cross section parallel to the direction (see FIG. 2C) was examined using a scanning electron microscope at an appropriate magnification of 300 to 3000 times, and a measurement frame was set in each of the cross-sectional photographs. This measurement frame was set so that 50 to 100 cavities were included in the measurement frame.
Next, the number of cavities included in the measurement frame is measured, and the number of cavities included in the measurement frame having a cross section perpendicular to the longitudinal stretching direction (see FIG. 2B) is m and the cross section parallel to the longitudinal stretching direction. The number of cavities included in the measurement frame (see FIG. 2C) was n.
Then, the longitudinal stretching direction perpendicular cross section of the measurement frame measured one by one in the thickness of the cavity (r i) included in (see FIG. 2B), and the thickness of the average and the average diameter r. Further, the length (L i ) of each cavity included in the measurement frame (see FIG. 2C) having a cross section parallel to the longitudinal stretching direction was measured, and the average length was defined as L.
That is, r and L can be represented by the following formulas (1) and (2), respectively.
r = (Σr i ) / m (1)
L = (ΣL i ) / n (2)
Then, L / r was calculated as an aspect ratio.
<<6>>反射率
 分光光度計(「V-570」;日本分光社製)に積分球を取り付け、波長200nm~2,500nmについて、波長1nm毎に反射率を測定した。このうち、波長550nmにおける反射率を、本測定における反射率とした。ここで、基準値として、装置付属の標準白板の反射率を100%とした。
<< 6 >> Reflectance An integrating sphere was attached to a spectrophotometer (“V-570”; manufactured by JASCO Corp.), and the reflectance was measured for each wavelength of 200 nm to 2,500 nm. Of these, the reflectance at a wavelength of 550 nm was taken as the reflectance in this measurement. Here, as a reference value, the reflectance of the standard white board attached to the apparatus was set to 100%.
(実施例2)
<フィルムの延伸>
 図4に示す延伸フィルムの製造装置を用い、前記フィルムAをネッキング延伸した。
 まず、低速ロール3に接する位置における前記フィルムAの搬送速度を110mm/分間、高速ロール4に接する位置における前記フィルムAの搬送速度を510mm/分間とし、前記フィルムAを前記低速ロール3から前記高速ロール4に向かって搬送させた。この際、前記フィルムAに10MPaの張力を付与した。また、前記フィルムAは、冷却可能な部材5及び加熱可能な部材6aに接触するように搬送させた。
 前記フィルムAを搬送させつつ、前記フィルムAの一部を、冷却可能な部材5に接触させ10℃(フィルムの幅が変化しない温度)に冷却した。冷却された前記フィルムAの一部を、前記フィルムAの搬送により搬送方向の下流側に移動させ、前記加熱可能な部材6aに接触させ38℃(ネッキングが生ずる温度)に昇温した。
 これら処理により、前記フィルムAにネッキングが生じた。ネッキングの位置は、ネッキング延伸を開始した直後には、図4のbの位置であったが、ネッキング延伸を続けると、図4のaの位置(フィルムの幅が変化しない温度に維持されたフィルムA近傍)まで遡るように移動し、その位置で固定され、その後は移動しなくなった。
 ネッキング延伸している際に、前記フィルムAが切れることはなく、安定して延伸フィルムを製造できた。
 得られた延伸フィルムについて実施例1と同様の評価を行った。評価結果を表1に示す。
(Example 2)
<Stretching of film>
The film A was necked and stretched using the stretched film manufacturing apparatus shown in FIG.
First, the transport speed of the film A at a position in contact with the low speed roll 3 is 110 mm / min, the transport speed of the film A at a position in contact with the high speed roll 4 is 510 mm / min, and the film A is moved from the low speed roll 3 to the high speed. It was conveyed toward the roll 4. At this time, a tension of 10 MPa was applied to the film A. Further, the film A was conveyed so as to come into contact with the coolable member 5 and the heatable member 6a.
While transporting the film A, a part of the film A was brought into contact with the coolable member 5 and cooled to 10 ° C. (temperature at which the width of the film did not change). A part of the cooled film A was moved to the downstream side in the transport direction by transport of the film A, brought into contact with the heatable member 6a, and heated to 38 ° C. (temperature at which necking occurred).
Necking occurred in the film A by these treatments. The position of necking was the position of b in FIG. 4 immediately after starting the necking stretching, but when the necking stretching was continued, the position of FIG. 4 a (the film maintained at a temperature at which the film width did not change). It moved back to the vicinity of A), fixed at that position, and then stopped moving.
During the necking stretching, the film A was not cut and a stretched film could be produced stably.
Evaluation similar to Example 1 was performed about the obtained stretched film. The evaluation results are shown in Table 1.
(実施例3)
<フィルムの延伸>
 図5に示す延伸フィルムの製造装置を用い、前記フィルムAをネッキング延伸した。なお、図5に示す延伸フィルムの製造装置において、低速ロール3と高速ロール4の間隔を20cmにした。また、加熱部6bは、前記低速ロール3から5cm離れた位置にその端部を設置し、かつ前記高速ロール4を覆うように設置した。なお、前記高速ロール4は加熱部6b外にあってもよい。
 まず、前記低速ロール3に接する位置における前記フィルムAの搬送速度を110mm/分間、前記高速ロール4に接する位置における前記フィルムAの搬送速度を510mm/分間とし、前記フィルムAを前記低速ロール3から前記高速ロール4に向かって搬送させた。この際、前記フィルムAに10MPaの張力を付与した。
 前記フィルムAを搬送させつつ、前記加熱部6bの外であって、前記加熱部6bよりも前記フィルムAの搬送方向の上流側において、前記フィルムAの一部を、25℃(フィルムの幅が変化しない温度)にした。25℃の前記フィルムAの一部を、前記フィルムAの搬送により搬送方向の下流側に移動させ、前記加熱部6b内で40℃(ネッキングが生ずる温度)に昇温した。
 これら処理により、前記フィルムAにネッキングが生じた。ネッキングは、前記加熱部6b内で生じ、ネッキングの位置は前記加熱部6b内で前記低速ロール3から6cm付近の位置に固定された。
 ネッキング延伸している際に、前記フィルムAが切れることはなく、安定して延伸フィルムを製造できた。
 得られた延伸フィルムについて実施例1と同様の評価を行った。評価結果を表1に示す。
(Example 3)
<Stretching of film>
The film A was necked and stretched using the stretched film manufacturing apparatus shown in FIG. In the stretched film manufacturing apparatus shown in FIG. 5, the interval between the low speed roll 3 and the high speed roll 4 was set to 20 cm. Moreover, the heating part 6b was installed so that the edge part might be installed in the position 5 cm away from the said low speed roll 3, and the said high speed roll 4 may be covered. The high speed roll 4 may be outside the heating unit 6b.
First, the conveyance speed of the film A at a position in contact with the low-speed roll 3 is 110 mm / min, the conveyance speed of the film A at a position in contact with the high-speed roll 4 is 510 mm / min, and the film A is removed from the low-speed roll 3. It was conveyed toward the high-speed roll 4. At this time, a tension of 10 MPa was applied to the film A.
While transporting the film A, a part of the film A is placed at 25 ° C. (the width of the film is outside the heating unit 6b and upstream of the heating unit 6b in the transport direction of the film A). Temperature). A part of the film A at 25 ° C. was moved downstream in the transport direction by transport of the film A, and the temperature was raised to 40 ° C. (temperature at which necking occurred) in the heating unit 6b.
Necking occurred in the film A by these treatments. Necking occurred in the heating unit 6b, and the position of necking was fixed at a position near 6 cm from the low speed roll 3 in the heating unit 6b.
During the necking stretching, the film A was not cut and a stretched film could be produced stably.
Evaluation similar to Example 1 was performed about the obtained stretched film. The evaluation results are shown in Table 1.
(実施例4)
<フィルムの延伸>
 図6に示す延伸フィルムの製造装置を用い、前記フィルムAをネッキング延伸した。なお、図6に示す延伸フィルムの製造装置において、低速ロール3と高速ロール4の間隔を20cmにした。また、加熱部6bは、前記低速ロール3から5cm離れた位置にその端部を設置し、かつ前記高速ロール4を覆うように設置した。なお、前記高速ロール4は加熱部6b外にあってもよい。
 まず、前記低速ロール3に接する位置における前記フィルムAの搬送速度を100mm/分間、前記高速ロール4に接する位置における前記フィルムAの搬送速度を520mm/分間とし、前記フィルムAを前記低速ロール3から前記高速ロール4に向かって搬送させた。この際、前記フィルムAに10MPaの張力を付与した。
 前記フィルムAを搬送させつつ、前記フィルムAの一部を、冷却可能な部材5に接触させ10℃(フィルムの幅が変化しない温度)に冷却した。冷却された前記フィルムAの一部を、前記フィルムAの搬送により搬送方向の下流側に移動させ、前記加熱部6b内で37℃(ネッキングが生ずる温度)に昇温した。
 これら処理により、前記フィルムAにネッキングが生じた。ネッキングは、前記加熱部6b内で生じ、ネッキングの位置は前記加熱部6b内で前記低速ロール3から6cm付近の位置に固定された。
 ネッキング延伸している際に、前記フィルムAが切れることはなく、安定して延伸フィルムを製造できた。
 得られた延伸フィルムについて実施例1と同様の評価を行った。評価結果を表1に示す。
Example 4
<Stretching of film>
The film A was necked and stretched using the stretched film manufacturing apparatus shown in FIG. In the stretched film manufacturing apparatus shown in FIG. 6, the distance between the low speed roll 3 and the high speed roll 4 was set to 20 cm. Moreover, the heating part 6b was installed so that the edge part might be installed in the position 5 cm away from the said low speed roll 3, and the said high speed roll 4 may be covered. The high speed roll 4 may be outside the heating unit 6b.
First, the conveyance speed of the film A at a position in contact with the low-speed roll 3 is 100 mm / min, the conveyance speed of the film A at a position in contact with the high-speed roll 4 is 520 mm / min, and the film A is removed from the low-speed roll 3. It was conveyed toward the high-speed roll 4. At this time, a tension of 10 MPa was applied to the film A.
While transporting the film A, a part of the film A was brought into contact with the coolable member 5 and cooled to 10 ° C. (temperature at which the width of the film did not change). A part of the cooled film A was moved downstream in the transport direction by transport of the film A, and the temperature was raised to 37 ° C. (temperature at which necking occurred) in the heating unit 6b.
Necking occurred in the film A by these treatments. Necking occurred in the heating unit 6b, and the position of necking was fixed at a position near 6 cm from the low speed roll 3 in the heating unit 6b.
During the necking stretching, the film A was not cut and a stretched film could be produced stably.
Evaluation similar to Example 1 was performed about the obtained stretched film. The evaluation results are shown in Table 1.
(実施例5)
<フィルムの延伸>
 図7に示す延伸フィルムの製造装置を用い、前記フィルムAをネッキング延伸した。なお、図7に示す延伸フィルムの製造装置において、低速ロール3と高速ロール4の間隔を20cmにした。また、加熱部6bは、前記低速ロール3から5cm離れた位置にその端部を設置し、かつ冷却可能な部材5及び前記高速ロール4を覆うように設置した。なお、前記高速ロール4は加熱部6b外にあってもよい。
 まず、前記低速ロール3に接する位置における前記フィルムAの搬送速度を150mm/分間、前記高速ロール4に接する位置における前記フィルムAの搬送速度を810mm/分間とし、前記フィルムAを前記低速ロール3から前記高速ロール4に向かって搬送させた。この際、前記フィルムAに10MPaの張力を付与した。
 前記フィルムAを搬送させつつ、前記フィルムAの一部を、冷却可能な部材5に接触させ15℃(フィルムの幅が変化しない温度)に冷却した。冷却された前記フィルムAの一部を、前記フィルムAの搬送により搬送方向の下流側に移動させ、前記加熱部6b内で41℃(ネッキングが生ずる温度)に昇温した。
 これら処理により、前記フィルムAにネッキングが生じた。ネッキングは、前記加熱部6b内で生じ、ネッキングの位置は前記加熱部6b内の前記冷却可能な部材5から搬送方向の下流側に1~2cm離れた位置に固定された。
 ネッキング延伸している際に、前記フィルムAが切れることはなく、安定して延伸フィルムを製造できた。
 得られた延伸フィルムについて実施例1と同様の評価を行った。評価結果を表1に示す。
(Example 5)
<Stretching of film>
The film A was necked and stretched using the stretched film manufacturing apparatus shown in FIG. In the stretched film manufacturing apparatus shown in FIG. 7, the distance between the low speed roll 3 and the high speed roll 4 was set to 20 cm. Moreover, the heating part 6b was installed so that the edge part might be installed in the position 5 cm away from the said low speed roll 3, and the member 5 which can be cooled, and the said high speed roll 4 may be covered. The high speed roll 4 may be outside the heating unit 6b.
First, the transport speed of the film A at a position in contact with the low speed roll 3 is 150 mm / min, the transport speed of the film A at a position in contact with the high speed roll 4 is 810 mm / min, and the film A is moved from the low speed roll 3. It was conveyed toward the high-speed roll 4. At this time, a tension of 10 MPa was applied to the film A.
While transporting the film A, a part of the film A was brought into contact with the coolable member 5 and cooled to 15 ° C. (a temperature at which the width of the film did not change). A part of the cooled film A was moved downstream in the transport direction by transport of the film A, and the temperature was raised to 41 ° C. (temperature at which necking occurred) in the heating unit 6b.
Necking occurred in the film A by these treatments. Necking occurred in the heating unit 6b, and the position of necking was fixed at a position 1 to 2 cm away from the coolable member 5 in the heating unit 6b on the downstream side in the transport direction.
During the necking stretching, the film A was not cut and a stretched film could be produced stably.
Evaluation similar to Example 1 was performed about the obtained stretched film. The evaluation results are shown in Table 1.
(実施例6)
<フィルムの延伸>
 実施例2において、冷却可能な部材5によるフィルムAの冷却温度を15℃にし、かつ加熱可能な部材6aによるフィルムAの加熱温度を39℃にした以外は、実施例2と同じ方法により、フィルムAをネッキング延伸した。
 ネッキングの位置は、ネッキング延伸を開始した直後には、図4のbの位置であったが、ネッキング延伸を続けると、図4のaの位置(フィルムの幅が変化しない温度に維持されたフィルムA近傍)まで遡るように移動し、その位置で固定され、その後は移動しなくなった。
 ネッキング延伸している際に、前記フィルムAが切れることはなく、安定して延伸フィルムを製造できた。
 得られた延伸フィルムについて実施例1と同様の評価を行った。評価結果を表1に示す。
(Example 6)
<Stretching of film>
In Example 2, the film A was cooled at 15 ° C. by the coolable member 5 and the film A was heated at 39 ° C. by the heatable member 6a. A was necked and stretched.
The position of necking was the position of b in FIG. 4 immediately after starting the necking stretching, but when the necking stretching was continued, the position of FIG. 4 a (the film maintained at a temperature at which the film width did not change). It moved back to the vicinity of A), fixed at that position, and then stopped moving.
During the necking stretching, the film A was not cut and a stretched film could be produced stably.
Evaluation similar to Example 1 was performed about the obtained stretched film. The evaluation results are shown in Table 1.
(実施例7)
<フィルムの延伸>
 実施例4において、低速ロール3に接する位置における前記フィルムAの搬送速度を110mm/分間にし、高速ロール4に接する位置における前記フィルムAの搬送速度を510mm/分間にし、冷却可能な部材5によるフィルムAの冷却温度を15℃にし、前記加熱部6b内でのフィルムAの加熱温度を40℃にした以外は、実施例4と同じ方法により、フィルムAをネッキング延伸した。
 ネッキングは、前記加熱部6b内で生じ、ネッキングの位置は前記加熱部6b内の所望の位置に固定された。
 ネッキング延伸している際に、前記フィルムAが切れることはなく、安定して延伸フィルムを製造できた。
 得られた延伸フィルムについて実施例1と同様の評価を行った。評価結果を表1に示す。
(Example 7)
<Stretching of film>
In Example 4, the transport speed of the film A at the position in contact with the low-speed roll 3 is 110 mm / min, the transport speed of the film A at the position in contact with the high-speed roll 4 is 510 mm / min, and the film by the coolable member 5 The film A was necked and stretched in the same manner as in Example 4 except that the cooling temperature of A was 15 ° C. and the heating temperature of the film A in the heating unit 6b was 40 ° C.
Necking occurred in the heating unit 6b, and the position of necking was fixed at a desired position in the heating unit 6b.
During the necking stretching, the film A was not cut and a stretched film could be produced stably.
Evaluation similar to Example 1 was performed about the obtained stretched film. The evaluation results are shown in Table 1.
(実施例8)
<フィルムの延伸>
 実施例2において、フィルムの種類、冷却温度、加熱温度を表1に示す条件とした以外は、実施例2と同じ延伸方法で、フィルムBをネッキング延伸した。
 ネッキングの位置は、ネッキング延伸を開始した直後には、図4のbの位置であったが、ネッキング延伸を続けると、図4のaの位置(フィルムの幅が変化しない温度に維持されたフィルムB近傍)まで遡るように移動し、その位置で固定され、その後は移動しなくなった。
 ネッキング延伸している際に、前記フィルムBが切れることはなく、安定して延伸フィルムを製造できた。
 得られた延伸フィルムについて実施例1と同様の評価を行った。評価結果を表1に示す。
(Example 8)
<Stretching of film>
In Example 2, the film B was necked and stretched by the same stretching method as in Example 2 except that the film type, cooling temperature, and heating temperature were the conditions shown in Table 1.
The position of necking was the position of b in FIG. 4 immediately after starting the necking stretching, but when the necking stretching was continued, the position of FIG. 4 a (the film maintained at a temperature at which the film width did not change). It moved back to the vicinity of B), fixed at that position, and then stopped moving.
During the necking stretching, the film B was not cut, and a stretched film could be produced stably.
Evaluation similar to Example 1 was performed about the obtained stretched film. The evaluation results are shown in Table 1.
(実施例9)
<フィルムの延伸>
 実施例4において、低速ロール3に接する位置における前記フィルムAの搬送速度を110mm/分間にし、高速ロール4に接する位置における前記フィルムAの搬送速度を510mm/分間にし、かつフィルムの種類、冷却温度、加熱温度を表1に示す条件とした以外は、実施例4と同じ延伸方法で、フィルムBをネッキング延伸した。
 ネッキングは、前記加熱部6b内で生じ、ネッキングの位置は前記加熱部6b内の所望の位置に固定された。
 ネッキング延伸している際に、前記フィルムBが切れることはなく、安定して延伸フィルムを製造できた。
 得られた延伸フィルムについて実施例1と同様の評価を行った。評価結果を表1に示す。
Example 9
<Stretching of film>
In Example 4, the transport speed of the film A at the position in contact with the low speed roll 3 is 110 mm / min, the transport speed of the film A at the position in contact with the high speed roll 4 is 510 mm / min, and the type of film and the cooling temperature The film B was necked and stretched by the same stretching method as in Example 4 except that the heating temperature was changed to the conditions shown in Table 1.
Necking occurred in the heating unit 6b, and the position of necking was fixed at a desired position in the heating unit 6b.
During the necking stretching, the film B was not cut, and a stretched film could be produced stably.
Evaluation similar to Example 1 was performed about the obtained stretched film. The evaluation results are shown in Table 1.
(実施例10)
<フィルムの延伸>
 実施例2において、フィルムの種類、冷却温度、加熱温度を表1に示す条件とした以外は、実施例2と同じ方法で、フィルムCをネッキング延伸した。
 ネッキングの位置は、ネッキング延伸を開始した直後には、図4のbの位置であったが、ネッキング延伸を続けると、図4のaの位置(フィルムの幅が変化しない温度に維持されたフィルムC近傍)まで遡るように移動し、その位置で固定され、その後は移動しなくなった。
 ネッキング延伸している際に、前記フィルムCが切れることはなく、安定して延伸フィルムを製造できた。
 得られた延伸フィルムについて実施例1と同様の評価を行った。評価結果を表1に示す。
(Example 10)
<Stretching of film>
In Example 2, the film C was necked and stretched in the same manner as in Example 2 except that the film type, cooling temperature, and heating temperature were the conditions shown in Table 1.
The position of necking was the position of b in FIG. 4 immediately after starting the necking stretching, but when the necking stretching was continued, the position of FIG. 4 a (the film maintained at a temperature at which the film width did not change). It moved back to the vicinity of C), fixed at that position, and then stopped moving.
During the necking stretching, the film C was not cut, and a stretched film could be produced stably.
Evaluation similar to Example 1 was performed about the obtained stretched film. The evaluation results are shown in Table 1.
(実施例11)
<フィルムの延伸>
 実施例4において、低速ロール3に接する位置における前記フィルムAの搬送速度を110mm/分間にし、高速ロール4に接する位置における前記フィルムAの搬送速度を510mm/分間にし、かつフィルムの種類、冷却温度、加熱温度を表1に示す条件とした以外は、実施例4と同じ方法で、フィルムCをネッキング延伸した。
 ネッキングは、前記加熱部6b内で生じ、ネッキングの位置は前記加熱部6b内の所望の位置に固定された。
 ネッキング延伸している際に、前記フィルムCが切れることはなく、安定して延伸フィルムを製造できた。
 得られた延伸フィルムについて実施例1と同様の評価を行った。評価結果を表1に示す。
(Example 11)
<Stretching of film>
In Example 4, the transport speed of the film A at the position in contact with the low speed roll 3 is 110 mm / min, the transport speed of the film A at the position in contact with the high speed roll 4 is 510 mm / min, and the type of film and the cooling temperature The film C was necked and stretched in the same manner as in Example 4 except that the heating temperature was changed to the conditions shown in Table 1.
Necking occurred in the heating unit 6b, and the position of necking was fixed at a desired position in the heating unit 6b.
During the necking stretching, the film C was not cut, and a stretched film could be produced stably.
Evaluation similar to Example 1 was performed about the obtained stretched film. The evaluation results are shown in Table 1.
(参考例1)
<フィルムの延伸>
 図8に示す延伸フィルムの製造装置を用い、前記フィルムAをネッキング延伸した。
 まず、低速ロール3に接する位置における前記フィルムAの搬送速度を110mm/分間、高速ロール4に接する位置における前記フィルムAの搬送速度を510mm/分間とし、前記フィルムAを前記低速ロール3から前記高速ロール4に向かって搬送させた。この際、前記フィルムAに10MPaの張力を付与した。
 前記フィルムAを搬送させつつ、前記フィルムAの一部を、予熱ロール9により40℃(ネッキングが生ずる温度)に加熱した。加熱された前記フィルムAの一部を、前記フィルムAの搬送により搬送方向の下流側に移動させ、前記加熱可能な部材6aに接触させ40℃(ネッキングが生ずる温度)に維持した。
 これら処理により、前記フィルムAにネッキングが生じた。
 ネッキング延伸している間、ネッキングの状態が不安定な上に、ネッキングの位置が移動して低速ロールに接する部位に移動した結果、フィルムAが切れることがたびたび起こり、安定して延伸フィルムを製造できなかった。
 得られた延伸フィルムについて実施例1と同様の評価を行った。評価結果を表1に示す。
(Reference Example 1)
<Stretching of film>
The film A was necked and stretched using the stretched film manufacturing apparatus shown in FIG.
First, the transport speed of the film A at a position in contact with the low speed roll 3 is 110 mm / min, the transport speed of the film A at a position in contact with the high speed roll 4 is 510 mm / min, and the film A is moved from the low speed roll 3 to the high speed. It was conveyed toward the roll 4. At this time, a tension of 10 MPa was applied to the film A.
While transporting the film A, a part of the film A was heated to 40 ° C. (temperature at which necking occurs) by the preheating roll 9. A part of the heated film A was moved to the downstream side in the conveyance direction by conveyance of the film A, and contacted with the heatable member 6a and maintained at 40 ° C. (temperature at which necking occurred).
Necking occurred in the film A by these treatments.
While necking is being stretched, the state of necking is unstable and the position of necking moves to a part that contacts the low-speed roll. As a result, film A often breaks, producing a stretched film stably. could not.
Evaluation similar to Example 1 was performed about the obtained stretched film. The evaluation results are shown in Table 1.
(参考例2)
<フィルムの延伸>
 図9に示す延伸フィルムの製造装置を用い、前記フィルムAをネッキング延伸した。なお、前記製造装置において、低速ロール3と高速ロール4の間隔は20cmとした。また、加熱部6bは、前記低速ロール3及び前記高速ロール4を覆うように設置した。
 まず、前記低速ロール3に接する位置における前記フィルムAの搬送速度を110mm/分間、前記高速ロール4に接する位置における前記フィルムAの搬送速度を510mm/分間とし、前記フィルムAを前記低速ロール3から前記高速ロール4に向かって搬送させた。この際、前記フィルムAに10MPaの張力を付与した。
 前記フィルムAを搬送させつつ、前記フィルムAの一部を、前記加熱部6b内で40℃(ネッキングが生ずる温度)に昇温した。
 これら処理により、前記フィルムAにネッキングが生じた。
 ネッキング延伸している間、ネッキングの状態が不安定な上に、ネッキングの位置が移動して低速ロールに接する部位に移動した結果、フィルムAが切れることがたびたび起こり、安定して延伸フィルムを製造できなかった。
 得られた延伸フィルムについて実施例1と同様の評価を行った。評価結果を表1に示す。
(Reference Example 2)
<Stretching of film>
The film A was necked and stretched using the stretched film manufacturing apparatus shown in FIG. In the manufacturing apparatus, the distance between the low speed roll 3 and the high speed roll 4 was 20 cm. Moreover, the heating part 6b was installed so that the said low speed roll 3 and the said high speed roll 4 might be covered.
First, the conveyance speed of the film A at a position in contact with the low-speed roll 3 is 110 mm / min, the conveyance speed of the film A at a position in contact with the high-speed roll 4 is 510 mm / min, and the film A is removed from the low-speed roll 3. It was conveyed toward the high-speed roll 4. At this time, a tension of 10 MPa was applied to the film A.
While transporting the film A, a part of the film A was heated to 40 ° C. (temperature at which necking occurs) in the heating unit 6b.
Necking occurred in the film A by these treatments.
While necking is being stretched, the state of necking is unstable and the position of necking moves to a part that contacts the low-speed roll. As a result, film A often breaks, producing a stretched film stably. could not.
Evaluation similar to Example 1 was performed about the obtained stretched film. The evaluation results are shown in Table 1.
(参考例3)
<フィルムの延伸>
 参考例1において、フィルムの種類、及び加熱温度を表1に示す条件にした以外は、参考例1と同じ方法でフィルムBをネッキング延伸した。
 ネッキング延伸している間、ネッキングの状態が不安定な上に、ネッキングの位置が移動して低速ロールに接する部位に移動した結果、フィルムBが切れることがたびたび起こり、安定して延伸フィルムを製造できなかった。
 得られた延伸フィルムについて実施例1と同様の評価を行った。評価結果を表1に示す。
(Reference Example 3)
<Stretching of film>
In Reference Example 1, film B was necked and stretched in the same manner as in Reference Example 1 except that the film type and the heating temperature were changed to the conditions shown in Table 1.
While necking is being stretched, the state of necking is unstable and the position of necking moves to a part that contacts the low-speed roll. As a result, film B often breaks, producing a stretched film stably. could not.
Evaluation similar to Example 1 was performed about the obtained stretched film. The evaluation results are shown in Table 1.
(参考例4)
<フィルムの延伸>
 参考例1において、フィルムの種類、及び加熱温度を表1に示す条件にした以外は、参考例1と同じ方法でフィルムCをネッキング延伸した。
 ネッキング延伸している間、ネッキングの状態が不安定な上に、ネッキングの位置が移動して低速ロールに接する部位に移動した結果、フィルムCが切れることがたびたび起こり、安定して延伸フィルムを製造できなかった。
 得られた延伸フィルムについて実施例1と同様の評価を行った。評価結果を表1に示す。
(Reference Example 4)
<Stretching of film>
In Reference Example 1, the film C was necked and stretched in the same manner as in Reference Example 1 except that the type of film and the heating temperature were changed to the conditions shown in Table 1.
While necking is being stretched, the state of necking is unstable and the position of necking moves to the part that contacts the low-speed roll. As a result, film C often breaks, producing a stretched film stably. could not.
Evaluation similar to Example 1 was performed about the obtained stretched film. The evaluation results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
 フィルムAのX線回折では9つの結晶性ピークが観察され、それらの半値幅は0.4°~4.1°の範囲内であった。
 フィルムBのX線回折では5つの結晶性ピークが観察され、それらの半値幅は4°~7°の範囲内であった。
 実施例10、11及び参考例4で得られた延伸フィルムは、独立した空洞を有さないため、アスペクト比を求めることができなかった。
Figure JPOXMLDOC01-appb-T000001
Nine crystalline peaks were observed in the X-ray diffraction of film A, and their half-widths were in the range of 0.4 ° to 4.1 °.
In the X-ray diffraction of film B, five crystalline peaks were observed, and their half widths were in the range of 4 ° to 7 °.
Since the stretched films obtained in Examples 10 and 11 and Reference Example 4 did not have independent cavities, the aspect ratio could not be obtained.
 実施例1から11の延伸方法においては、ネッキングの状態が安定しており、延伸ムラがない又は小さい延伸フィルムが製造できた。ネッキング延伸を行っている際に、フィルムが切れるといったことがなく、また、ネックイン比に優れる延伸フィルムが製造できた。実施例2から9の延伸方法においては、延伸ムラがなく特に優れる延伸フィルムが製造できた。
 一方、参考例1から4の延伸方法においては、ネッキングの状態が不安定であり、得られた延伸フィルムは延伸ムラが大きいものであった。ネッキング延伸を行っている際に、フィルムが切れることがあり、更に、ネックイン比が実施例と比較して劣っていた。
In the stretching methods of Examples 1 to 11, the state of necking was stable, and a stretched film with little or no stretching unevenness could be produced. During necking stretching, the film was not cut and a stretched film having an excellent neck-in ratio could be produced. In the stretching methods of Examples 2 to 9, a stretched film having no stretching unevenness and particularly excellent could be produced.
On the other hand, in the stretching methods of Reference Examples 1 to 4, the state of necking was unstable, and the obtained stretched film had large stretching unevenness. During necking stretching, the film was sometimes cut and the neck-in ratio was inferior to that of the examples.
 本発明の延伸フィルムの製造方法、及び延伸フィルムの製造装置は、例えば、空洞を有する延伸フィルムの製造などに好適に用いることができる。 The stretched film manufacturing method and stretched film manufacturing apparatus of the present invention can be suitably used for manufacturing a stretched film having a cavity, for example.
   1  空洞を有する延伸フィルム
  1a  表面
   2  フィルム
   3  低速ロール
   4  高速ロール
   5  冷却可能な部材(冷却手段)
  6a  加熱可能な部材(加熱手段)
  6b  加熱部(加熱手段)
   7  ニップロール
   8  補助ロール
   9  予熱ロール
 100  空洞
   L  空洞の配向方向における空洞の長さ
   r  空洞の配向方向に直交する厚み方向における空洞の厚み
DESCRIPTION OF SYMBOLS 1 Stretched film which has a cavity 1a Surface 2 Film 3 Low speed roll 4 High speed roll 5 Coolable member (cooling means)
6a Heatable member (heating means)
6b Heating part (heating means)
7 Nip roll 8 Auxiliary roll 9 Preheating roll 100 Cavity L Cavity length in cavity orientation direction r Cavity thickness in thickness direction perpendicular to cavity orientation direction

Claims (14)

  1.  フィルムに対し張力を付与し、張力が付与された該フィルムの一部を、フィルムの幅が変化しない温度からネッキングが生ずる温度に昇温させることにより、前記フィルムをネッキング延伸することを特徴とする延伸フィルムの製造方法。 The film is necked and stretched by applying a tension to the film and raising a part of the film to which the tension is applied from a temperature at which the width of the film does not change to a temperature at which necking occurs. A method for producing a stretched film.
  2.  フィルムに対し張力を付与し、張力が付与された該フィルムの一部を、冷却手段によりフィルムの幅が変化しない温度にした後、加熱手段によりネッキングが生ずる温度に昇温させることにより、前記フィルムをネッキング延伸する請求項1に記載の延伸フィルムの製造方法。 Applying tension to the film, and heating the part of the film to which tension is applied to a temperature at which the width of the film does not change by the cooling means, and then raising the temperature to a temperature at which necking occurs by the heating means. The manufacturing method of the stretched film of Claim 1 which carries out necking extending | stretching.
  3.  冷却手段が冷却可能な部材であり、加熱手段が加熱可能な部材であり、
     フィルムが前記冷却手段及び前記加熱手段に接触した状態で、張力が付与される請求項2に記載の延伸フィルムの製造方法。
    The cooling means is a coolable member, the heating means is a heatable member,
    The manufacturing method of the stretched film of Claim 2 in which tension | tensile_strength is provided in the state which the film contacted the said cooling means and the said heating means.
  4.  冷却手段による冷却温度が、フィルムのガラス転移点よりも5℃以上低い温度である請求項2から3のいずれかに記載の延伸フィルムの製造方法。 The method for producing a stretched film according to any one of claims 2 to 3, wherein the cooling temperature by the cooling means is a temperature lower by 5 ° C or more than the glass transition point of the film.
  5.  フィルムが、X線回折における結晶性ピークの半値幅が2θとして9°未満である請求項1から4のいずれか記載の延伸フィルムの製造方法。 The method for producing a stretched film according to any one of claims 1 to 4, wherein the film has a half width of a crystallinity peak in X-ray diffraction of less than 9 ° as 2θ.
  6.  フィルムの平均厚みが、1.5μm~200μmである請求項1から5のいずれかに記載の延伸フィルムの製造方法。 6. The method for producing a stretched film according to claim 1, wherein the average thickness of the film is 1.5 μm to 200 μm.
  7.  得られる延伸フィルムが、内部に空洞を延伸方向に配向した状態で有してなり、該空洞の平均長さをL(μm)とし、前記空洞の配向方向と直交方向における該空洞の平均径をr(μm)とした際のL/r比が、10以上である請求項1から6のいずれかに記載の延伸フィルムの製造方法。 The obtained stretched film has cavities oriented in the stretching direction inside, the average length of the cavities is L (μm), and the average diameter of the cavities in the direction orthogonal to the orientation direction of the cavities is The method for producing a stretched film according to claim 1, wherein an L / r ratio when r (μm) is 10 or more.
  8.  得られる延伸フィルムが、結晶性ポリマーのみからなる請求項1から7のいずれかに記載の延伸フィルムの製造方法。 The method for producing a stretched film according to any one of claims 1 to 7, wherein the stretched film obtained is composed of only a crystalline polymer.
  9.  得られる延伸フィルムの反射率が、50%以上である請求項1から8のいずれかに記載の延伸フィルムの製造方法。 The method for producing a stretched film according to any one of claims 1 to 8, wherein the obtained stretched film has a reflectance of 50% or more.
  10.  ネッキングが生ずる温度に昇温させたフィルムにネッキングを生じさせ、前記フィルムをネッキング延伸するとともに、該ネッキングの位置を、フィルムの幅が変化しない温度に維持されたフィルム近傍に移動させ、固定させる請求項1から9のいずれかに記載の延伸フィルムの製造方法。 Necking is caused in a film that has been heated to a temperature at which necking occurs, the film is necked and stretched, and the position of the necking is moved to the vicinity of the film maintained at a temperature at which the width of the film does not change, and fixed. Item 10. A method for producing a stretched film according to any one of Items 1 to 9.
  11.  加熱手段によりネッキングが生ずる温度に昇温させたフィルムにネッキングを生じさせ、前記フィルムをネッキング延伸するとともに、該ネッキングの位置を、冷却手段によりフィルムの幅が変化しない温度に維持されたフィルム近傍に移動させ、固定させる請求項1から10のいずれかに記載の延伸フィルムの製造方法。 Necking occurs in the film heated to a temperature at which necking occurs by heating means, the film is necked and stretched, and the position of the necking is maintained in the vicinity of the film maintained at a temperature at which the width of the film does not change by the cooling means. The method for producing a stretched film according to claim 1, wherein the stretched film is moved and fixed.
  12.  フィルムに対し張力を付与する張力付与手段と、
     前記張力付与手段により張力が付与された前記フィルムの一部を、フィルムの幅が変化しない温度からネッキングが生ずる温度に昇温させるネッキング発生手段とを有すること特徴とする延伸フィルムの製造装置。
    Tension applying means for applying tension to the film;
    An apparatus for producing a stretched film, comprising: a necking generating unit that raises a part of the film to which tension is applied by the tension applying unit from a temperature at which the width of the film does not change to a temperature at which necking occurs.
  13.  ネッキング発生手段が、張力が付与されたフィルムの一部を、フィルムの幅が変化しない温度に冷却する冷却手段と、ネッキングが生ずる温度に昇温させる加熱手段とを有する請求項12に記載の延伸フィルムの製造装置。 The stretching according to claim 12, wherein the necking generating means includes a cooling means for cooling a part of the tensioned film to a temperature at which the width of the film does not change, and a heating means for raising the temperature to a temperature at which necking occurs. Film production equipment.
  14.  冷却手段が冷却可能な部材であり、加熱手段が加熱可能な部材である請求項13に記載の延伸フィルムの製造装置。 The apparatus for producing a stretched film according to claim 13, wherein the cooling means is a coolable member, and the heating means is a heatable member.
PCT/JP2011/068632 2010-08-24 2011-08-17 Method and apparatus for manufacturing stretched film WO2012026377A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010187164A JP5542579B2 (en) 2010-08-24 2010-08-24 Method and apparatus for producing stretched film
JP2010-187164 2010-08-24

Publications (1)

Publication Number Publication Date
WO2012026377A1 true WO2012026377A1 (en) 2012-03-01

Family

ID=45723379

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/068632 WO2012026377A1 (en) 2010-08-24 2011-08-17 Method and apparatus for manufacturing stretched film

Country Status (2)

Country Link
JP (1) JP5542579B2 (en)
WO (1) WO2012026377A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05104619A (en) * 1991-10-18 1993-04-27 Mitsubishi Petrochem Co Ltd Polypropylene low heat-shrinkable oriented tape and manufacture thereof
JPH1045930A (en) * 1996-08-01 1998-02-17 Mitsui Petrochem Ind Ltd Light reflecting polyester resin film and its production
JPH10176072A (en) * 1996-12-20 1998-06-30 Mitsui Chem Inc Polyester resin light scattering and reflecting film and its production
WO2008126464A1 (en) * 2007-03-30 2008-10-23 Fujifilm Corporation Void-containing resin molded product, process for producing the molded product, and reflector plate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05104619A (en) * 1991-10-18 1993-04-27 Mitsubishi Petrochem Co Ltd Polypropylene low heat-shrinkable oriented tape and manufacture thereof
JPH1045930A (en) * 1996-08-01 1998-02-17 Mitsui Petrochem Ind Ltd Light reflecting polyester resin film and its production
JPH10176072A (en) * 1996-12-20 1998-06-30 Mitsui Chem Inc Polyester resin light scattering and reflecting film and its production
WO2008126464A1 (en) * 2007-03-30 2008-10-23 Fujifilm Corporation Void-containing resin molded product, process for producing the molded product, and reflector plate

Also Published As

Publication number Publication date
JP2012045722A (en) 2012-03-08
JP5542579B2 (en) 2014-07-09

Similar Documents

Publication Publication Date Title
TWI632053B (en) Biaxially oriented polyester film
JP2007185898A (en) Biaxially oriented polyester film and its manufacturing process
JP4977054B2 (en) Fiber and method for producing the same
KR20100014536A (en) Void-containing resin molded product, process for producing the void-containing resin molded product, and image receiving film or sheet for sublimation transfer recording material or thermal transfer recording material
EP2689914B1 (en) Method for stretching film
JP4351168B2 (en) Method for producing polybutylene terephthalate film
JP5379980B2 (en) Cavity-containing resin molded body, method for producing the same, and image-receiving film or sheet for sublimation transfer recording material or thermal transfer recording material
JPWO2008126464A1 (en) Cavity-containing resin molded body, method for producing the same, and reflector
WO2010024068A1 (en) Process for production of void-containing resin moldings and void-containing resin moldings obtained by the process
JP5542579B2 (en) Method and apparatus for producing stretched film
JP3846024B2 (en) White film and method for producing white film
JP2018047593A (en) Method for producing film
WO2012026249A1 (en) Spinning method and spinning apparatus
JP2010059381A (en) Method for producing void-containing resin molding and void-containing resin molding produced by the same
JP4967486B2 (en) Stretched film and its molded product
JP2010069830A (en) Method of manufacturing unextended polymer molding, method of manufacturing cavity-containing resin molding using the unextended polymer molding, and cavity-containing resin molding obtained by the manufacturing method
JP5974328B2 (en) Biaxially oriented polyester film for in-mold transfer
JP2009214489A (en) Method of manufacturing laminated biaxially stretched polyester film
JP6272048B2 (en) Polyester film
WO2020241692A1 (en) Biaxially oriented polyester film
JP2009208324A (en) Molding
JP2010053264A (en) Method for producing void-containing resin molded product, and void-containing resin molded product produced by the method
JP5558333B2 (en) Method for producing void-containing resin molded body
JP2010070671A (en) Method for manufacturing cavity-containing resin molded article with coating film, and cavity-containing resin molded article with coating film manufactured by the method
JP2010053321A (en) Method for producing void-containing resin film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11819840

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11819840

Country of ref document: EP

Kind code of ref document: A1