WO2012024831A1 - 一种车载充电器 - Google Patents

一种车载充电器 Download PDF

Info

Publication number
WO2012024831A1
WO2012024831A1 PCT/CN2010/076308 CN2010076308W WO2012024831A1 WO 2012024831 A1 WO2012024831 A1 WO 2012024831A1 CN 2010076308 W CN2010076308 W CN 2010076308W WO 2012024831 A1 WO2012024831 A1 WO 2012024831A1
Authority
WO
WIPO (PCT)
Prior art keywords
output
network
conversion module
rds
ground
Prior art date
Application number
PCT/CN2010/076308
Other languages
English (en)
French (fr)
Inventor
刘毅
陈芳艳
Original Assignee
深圳市领华卫通数码科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市领华卫通数码科技有限公司 filed Critical 深圳市领华卫通数码科技有限公司
Priority to PCT/CN2010/076308 priority Critical patent/WO2012024831A1/zh
Publication of WO2012024831A1 publication Critical patent/WO2012024831A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • H02J7/1469Regulation of the charging current or voltage otherwise than by variation of field
    • H02J7/1492Regulation of the charging current or voltage otherwise than by variation of field by means of controlling devices between the generator output and the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00036Charger exchanging data with battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with provisions for charging different types of batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/92Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles

Definitions

  • the invention relates to the field of radio frequency and EMC, in particular to an on-board charger for incorporating a charging line of an RDS antenna and a charger onto a USB head.
  • TMC is a traffic information channel (Traffic Message) Abbreviation for Channel), which is a functional system for assisting GPS navigation in Europe.
  • RDS is the abbreviation of Radio Data System, which is the digital receiving system of FM band.
  • TMC sends real-time traffic information and weather conditions via RDS.
  • data information can be received and decoded, and information related to the current travel route can then be presented to the driver in a user language or visually.
  • the car navigation system can realize real-time and dynamic navigation functions.
  • the receiving antenna of the RDS is conventionally used with a separate receiving antenna to prevent other conductive substances from affecting the parameters of the antenna or the influence of interference on the antenna.
  • this makes the space layout requirements large, and it is easy to drop the TMC antenna during the movement of the car.
  • the present invention combines the charging line of the RDS receiving antenna and the charger to the USB interface.
  • the RDS antenna is used as the digital receiving device of the FM band.
  • the ambient noise of this frequency band is very complicated. Therefore, the receiving sensitivity has a very high noise requirement, but the car charger is used as a switching power supply product.
  • the noise itself is extremely complicated. It is necessary to place the two in a small space with a distance of only 0.8 mm, and the antenna and the power line are placed next to each other with a high probability, and the noise requirement for the power supply is at least 1 time higher than the EMC test requirement.
  • the technical problem to be solved by the present invention is how to make full use of space under the condition of compact space, solve the problem that the independent TMC antenna is extremely slippery, and try to make the receiving antenna free from noise and interference, and the above-mentioned prior art Defect, providing a TMC antenna with charger charging line in Mini A device that shares the same interface in a smaller space of USB.
  • An in-vehicle charger including a power conversion module, a charging line, and a charging interface. One end of the charging line is connected to the charging interface, and the other end is soldered to the power conversion module.
  • the power conversion module further includes a notch network and a filter circuit for filtering interference waves of the same frequency band as the RDS receiving antenna operating frequency.
  • the power conversion module includes a filter network, a constant current/constant voltage decompression DC converter connected in sequence, and the trap network and the filter circuit are connected to the constant current/constant A voltage-reducing DC converter is connected between the output terminal and the output end; and a ground network reinforcement and shielding module is further connected between the input end and the output end.
  • the notch network and the filter circuit comprise a second inductance (L2) connected between the positive terminal of the notch network and the filter circuit (303) and the positive terminal of the output terminal.
  • An input bypass capacitor (C1) connected between the positive terminal of the input terminal and the ground, and an output bypass capacitor (C2) connected between the positive terminal and the ground of the output terminal, wherein the positive terminal of the input terminal is sequentially connected
  • the input bypass capacitor (C1) and the first inductor (L1) are connected to the negative terminal of the output terminal.
  • the first leg of the charging interface is connected to the DC power output line
  • the fourth leg is connected to the RDS receiving antenna
  • the fifth leg is connected to the output ground.
  • the 2-in-1 device of the present invention achieves advances in wiring capacity, installation space, system layout, etc., and achieves compact wiring and compact system layout, thereby saving system use.
  • the space improves the versatility of the wiring device and system combination.
  • the present invention also has an advantage in cost, saving antenna plugs and antenna sockets. There is also an advantage in packaging, no longer need to separate packaging, but as a whole package to improve the efficiency of packaging, but also reduce the use of bubble bags.
  • FIG. 1 is a layout diagram of a general technical solution according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of wiring of the wiring Mini-USB interface of the present invention.
  • FIG. 3 is a block diagram of an actual circuit of the power conversion module of the present invention.
  • FIG. 4 is a circuit diagram of a notch network and a filter circuit in accordance with the present invention.
  • FIG. 5 is a schematic diagram of a network reinforcement and shielding module in accordance with an embodiment of the present invention.
  • 6A is a transverse wave EMC test chart before noise processing according to the present invention.
  • 6B is a longitudinal wave EMC test chart of the noise treatment of the present invention.
  • FIG. 7A is a transverse wave EMC test chart after noise treatment according to the present invention.
  • Fig. 7B is a longitudinal wave EMC test chart of the noise treatment of the present invention.
  • the in-vehicle charger device of the RDS antenna and the power cord 2 of the present invention mainly comprises the following parts: a charging interface 104 (for example, a standard Mini) USB interface), RDS receiving antenna 103, charging line 102 and power conversion module 101.
  • the RDS receiving antenna 103 and the charging line 102 are sequentially molded together at the charging interface 104, and the charging line 104 is soldered to the power conversion module.
  • FIG. 2 is a schematic diagram of wiring of the wiring Mini-USB interface of the present invention.
  • the standard Mini The first pin 201 of the USB interface is connected to the charger DC power output line 211, and the fifth leg 203 is connected to the output ground line 213 to form a charging circuit.
  • the Mini The fourth pin 202 of the USB interface is connected to the RDS receiving antenna 212 for receiving the RDS broadcast signal.
  • the RDS receiving antenna 212, the DC power output line 211 and the output ground 213 are arranged in parallel, and the spatial distance between the RDS receiving antenna 212 and the power output line 211 and the power ground 213 is tight, which achieves compact wiring and compact system layout. It saves space in the system and improves the versatility of the wiring device and system combination.
  • the power conversion module includes a filter network 301, a constant current/constant voltage decompression DC converter 302, a notch network, and a filter circuit 303 connected in sequence, and is further connected between the input end and the output end.
  • the network network strengthens and blocks the module 304.
  • the power signal enters the charging circuit through the input terminal, flows into the constant current/constant voltage decompression DC converter 302 after simple filtering by the filter network 301, and the constant current/constant voltage decompression DC converter 302 outputs the vehicle power supply.
  • the higher voltage (Max40V) DC current is decompressed to output a lower voltage (eg 5V) DC current.
  • the low-voltage DC current processed by the constant current/constant voltage decompression DC converter 302 flows into the notch network and the filter circuit 303, and after further filtering, filters the power supply noise of the corresponding frequency band, and then outputs it from the output terminal.
  • a network reinforcement and shielding module 304 is added between the input end and the output end to limit the loop path of the power supply loop, so that the power supply loop can directly suppress the radiation generated by the signal electric field and shield the signal of the uninterrupted frequency to prevent the power supply noise from being smashed. Improve the impact of electromagnetic interference on surrounding electronic components.
  • Figure 4 It is a circuit diagram of a notch network and a filter circuit according to the present invention.
  • the notch network and the filter circuit include a second inductor (L2) connected between the input terminal positive terminal and the output terminal positive terminal of the notch network and the filter circuit (303), connected to the An input bypass capacitor (C1) between the positive terminal of the input terminal and the ground, and an output bypass capacitor (C2) connected between the positive terminal and the ground of the output terminal, the positive terminal of the input terminal being bypassed by the input connected in sequence
  • the capacitor (C1) and the first inductor (L1) are connected to the negative terminal of the output terminal.
  • the first inductor L1, the second inductor L2, the input bypass capacitor C1, and the output bypass capacitor C2 each have their own impedance in a certain frequency band, and the notch network and the filter circuit need the same output load (for example, an audio playback device, a GPS navigation system)
  • the input impedance of the circuit is matched to prevent reflection of the power signal. If the signal is reflected, it will cause signal crosstalk and loss, so front-end matching is very important.
  • the frequency band of the RDS signal is at 80MHz-- 120MHz, considering that the inductance and capacitance have different impedances for the high and low frequency bands, to reduce noise interference, we should try to reduce it at 80MHz-- Power supply noise in the 120MHz band.
  • the impedance characteristic R of the inductor becomes larger as the frequency f increases.
  • the first inductor L1 and the second inductor L2 have a large impedance, and after calculation, it can be obtained.
  • the theoretical value of the first inductance L1 and the second inductance L2, and the final value is a value corrected by experiments.
  • the impedance characteristic R of the capacitor becomes larger as the frequency f decreases.
  • the input bypass capacitor C1 and the output bypass capacitor C2 have a smaller impedance.
  • the theoretical value is the value of the pF level, and the final value is the corrected value obtained through the experiment.
  • the entire notch network and filter circuit is a low-pass filter.
  • the 120MHz low frequency signal and a few high frequency signals flow into the branch where the second inductor L2 is located.
  • a few of the high frequency signals are filtered by the output bypass capacitor C2, and the remaining low frequency signals flow into the positive terminal of the output terminal. Meanwhile, the power signal is large.
  • the 120MHz high frequency signal and a few low frequency signals flow into the branch of the input bypass capacitor C1, and a few of the low frequency signals pass through the first inductor to the output terminal negative.
  • FIG. 5 Is a schematic diagram of a network reinforcement and shielding module in accordance with one embodiment of the present invention.
  • a shield cover 501 is provided on the outer casing of the constant current/constant voltage decompression DC converter (for example, a shield cover which is added by a green oil on the PCB), and between the input end and the output end. All grounding points are introduced into the shield cover. This can suppress power supply noise interference and improve the electromagnetic compatibility (EMC) of the system or equipment.
  • EMC electromagnetic compatibility
  • 6A is a transverse wave EMC test chart before noise processing according to the present invention.
  • 6B is a longitudinal wave EMC test chart of the noise treatment of the present invention.
  • FIG. 7A is a transverse wave EMC test chart after noise treatment according to the present invention.
  • Fig. 7B is a longitudinal wave EMC test chart of the noise treatment of the present invention.
  • FIG. 5A, FIG. 6A and FIG. 5B and FIG. 6B Comparing FIG. 5A, FIG. 6A and FIG. 5B and FIG. 6B respectively, the application of the 100 MHz high-resistance large current notch and the filter circuit can be found, and the noise output between 80 MHz and 120 MHz is greatly improved.
  • the enhanced processing of the ground network and the use of shielding reduce the interference radiation of the switching power supply to the extreme.
  • the noise between 80MHz and 120MHz is reduced to normal background noise, and even the background noise of this band is reduced by about 5--10dB.
  • the sensitivity of the car charger When the noise is at 25--30dBuV/m, the sensitivity of the car charger is not plugged in and plugged in, which is about 10dB different; and the antenna is placed in parallel with the charging line, the sensitivity varies more.
  • the TMC function is almost impossible to use normally.
  • the background noise of the FM band drops to about 20dBuV/m.
  • the receiving sensitivity of the TMC When the car charger is charged and not charged, the receiving sensitivity of the TMC is less than 1 dB, and the TMC antenna is parallel to the charging line. For a long period of time, the impact on the receiving sensitivity of TMC is minimal.
  • the invention can be used in a standard Mini
  • Mini The USB space puts the power cable and the RF receiving antenna together, and does not affect the receiving effect, thereby reducing the requirement for more space, making the overall system simple and improved, and the overall system can satisfy more.
  • Mini The reliability of the USB connection method, the user will not fall out of the cradle when the vehicle speed changes suddenly, which improves the reliability of use.
  • the efficiency of packaging has also improved. It also contributed to the reduction in overall costs. The most important point is that the user's use is more convenient and simple.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本发明公开了一种将RDS天线与充电线合并到USB头上的车载充电器。所述车载充电器包括电源转换模块(101)、充电线(102)和充电接口(104),所述充电线(102)一端接入所述充电接口,另一端焊到所述电源转换模块(101)上,其特征在于,还包括一端接入所述充电接口(104)的RDS接收天线(103);在所述电源转换模块(101)中还包括用于滤除与所述RDS接收天线(103)工作频率相同频段的干扰波的陷波网络及滤波电路(303)。采用本发明所述2合1装置,与现有技术相比,在节省系统使用空间,提高配线装置和系统组合的通用性等的基础上,又不影响RDS天线的正常工作,因而节约了成本,提高了包装效率。

Description

一种车载充电器 技术领域
本发明涉及射频与EMC领域,尤其涉及一种将RDS天线与充电器的充电线合并到USB头上的车载充电器。
背景技术
TMC是交通信息频道(Traffic Message Channel)的简称,它是欧洲的辅助GPS导航的功能系统。RDS是无线数据广播系统(Radio Data System)的简称,它是FM频段的数字接收系统。 TMC通过RDS方式发送实时交通信息和天气状况。借助于具有TMC功能的导航系统,数据信息可以被接收并解码,然后以用户语言或可视化的方式将和当前旅行路线相关的信息展现给驾驶者。通过TMC信息,车载导航系统可以实现实时、动态导航功能。
RDS的接收天线按传统一般是采用独立的接收天线以防其他具有传导性的物质影响天线的参数或干扰对天线的影响。但这样使得空间布局要求大,而且汽车运动过程中极易将TMC天线摔落。为了节省外观使用空间并解决独立TMC天线极易滑落问题,本发明将RDS接收天线与充电器的充电线合并到USB接口上。但这样又带来了新问题,RDS天线作为FM频段的数字接收装置,这个频段的环境噪音是非常复杂的,因此,其接收灵敏度对噪音的要求非常高,但车载充电器作为开关电源产品,其本身的噪音极其复杂,要将两者放在间距仅0.8毫米的狭小空间里,且天线与电源线并排放置使用的机率极高,对电源的噪音要求比EMC测试要求高至少1倍以上。
技术问题
本发明要解决的技术问题在于如何在紧凑空间条件下,尽可能充分利用空间、解决独立TMC天线极易滑落问题,而又尽量使接收天线不受噪声和干扰的影响,针对现有技术的上述缺陷,提供一种TMC天线与充电器充电线在Mini USB较小的空间内共用同一接口的装置。
技术解决方案
本发明解决其技术问题所采用的技术方案是:
  提供一种车载充电器,包括电源转换模块、充电线和充电接口,所述充电线一端接入所述充电接口,另一端焊到所述电源转换模块上,其特征在于,还包括一端接入所述充电接口的RDS接收天线;
  在所述电源转换模块中还包括用于滤除与所述RDS接收天线工作频率相同频段的干扰波的陷波网络及滤波电路。
  在本发明所述的车载充电器中,所述电源转换模块包括依次连接的滤波网络、恒流/恒压减压直流转换器,所述陷波网络及滤波电路接在所述恒流/恒压减压直流转换器与输出端之间;在输入端和所述输出端之间还连接有地网络加强及屏蔽模块。
  在本发明所述的车载充电器中,所述陷波网络及滤波电路包括连接在所述陷波网络及滤波电路(303)的输入端正极与输出端正极之间的第二电感(L2)、连接在所述输入端正极与地之间的输入旁路电容(C1)以及连接在所述输出端正极与地之间的输出旁路电容(C2),所述输入端正极通过依次连接的所述输入旁路电容(C1)、第一电感(L1)接输出端负极。
  在本发明所述的车载充电器中,所述充电接口的第一脚接直流电源输出线,第四脚接RDS接收天线,第五脚接输出地线。
有益效果
采用本发明所述2合1装置,与现有技术相比,取得了在配线容量、安装空间、系统布局等方面的进步,达到了配线紧凑和系统布局紧凑的效果,节省了系统使用空间,提高了配线装置和系统组合的通用性等。
  本发明在成本上也有优势,节省了天线插头和天线插座。在包装上也有优势,不再需要分开包装,而是作为整体包装提高了包装的效率,也减少了泡泡袋的使用。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
  图1 是根据本发明一个实施例的总体技术方案布局图;
  图2 是本发明配线Mini-USB接口接线示意图;
  图3 是本发明电源转换模块实际电路框图;
  图4 是根据本发明的陷波网络及滤波电路的电路图;
  图5 是根据本发明的一个实施例的地网络加强及屏蔽模块的示意图;
  图6A 是本发明噪音处理前横波EMC测试图;
  图6B 是本发明噪音处理前纵波EMC测试图;
  图7A 是本发明噪音处理后横波EMC测试图;
  图7B 是本发明噪音处理后纵波EMC测试图。
本发明的实施方式
下面结合附图对技术方案的实施作进一步的详细描述。
  图1 是根据本发明一个实施例的总体技术方案布局图。如图1所示,本发明RDS天线与电源线2合1的车载充电器装置主要包括以下几部分:充电接口104(例如标准的Mini USB接口)、RDS接收天线103、充电线102和电源转换模块101。RDS接收天线103与充电线102在充电接口104处按顺序塑封在一起,充电线104再焊到电源转换模块上。
  图2 是本发明配线Mini-USB接口接线示意图。如图2所示,标准Mini USB接口的第一脚201接充电器直流电源输出线211,第五脚203接输出地线213,构成充电回路。其特征在于,所述Mini USB接口的第四脚202接RDS接收天线212,用于接收RDS广播信号。RDS接收天线212、直流电源输出线211和输出地线213并行排列,RDS接收天线212与电源输出线211和电源地线213的空间距离很紧,达到了配线紧凑和系统布局紧凑的效果,节省了系统使用空间,提高了配线装置和系统组合的通用性等。
  图3 是本发明电源转换模块实际电路方框图。如图3所示,所述电源转换模块包括依次连接的滤波网络301、恒流/恒压减压直流转换器302和陷波网络及滤波电路303,在输入端与输出端之间还连接有地网络加强及屏蔽模块304。
  充电器工作时,电源信号通过输入端进入充电电路,经过滤波网络301的简单滤波后流入恒流/恒压减压直流转换器302,恒流/恒压减压直流转换器302将车载电源输出的较高压(Max40V)直流电流进行减压处理,输出较低压(例如5V)直流电流。经过恒流/恒压减压直流转换器302处理的低压直流电流流入陷波网络及滤波电路303,经过进一步的滤波处理,滤除相应频段的电源噪声,然后从输出端输出。在输入端与输出端之间增加地网络加强及屏蔽模块304,以限制电源回路的回路路径,令电源回路可更直接抑制信号电场产生的辐射及屏蔽无关干扰频率的信号,防止电源噪声乱窜,改善电磁干扰对周围电子元件的影响。
  图4 是根据本发明的陷波网络及滤波电路的电路图。如图4所示,所述陷波网络及滤波电路包括连接在所述陷波网络及滤波电路(303)的输入端正极与输出端正极之间的第二电感(L2)、连接在所述输入端正极与地之间的输入旁路电容(C1)以及连接在所述输出端正极与地之间的输出旁路电容(C2),所述输入端正极通过依次连接的所述输入旁路电容(C1)、第一电感(L1)接输出端负极。
  第一电感L1、第二电感L2和输入旁路电容C1、输出旁路电容C2在一定频段都具有各自的阻抗,陷波网络与滤波电路需要同输出端负载(例如音频播放装置、GPS导航系统等)的输入阻抗相匹配,防止电源信号的反射,如果信号发生反射就会造成信号串扰和丢失,所以前端匹配很重要。同时,由于噪声的频率范围很广,而RDS信号的频段在80MHz-- 120MHz,考虑到电感和电容对于高和低频段所具有的阻抗是不相同的,要想降低噪声干扰,就要尽量减小在80MHz-- 120MHz频段的电源噪声。取RDS信号的中心频率100MHz作为匹配频率,电感的阻抗计算公式为R=2πfL,电容的阻抗计算公式为R=1/2πfC。
  从电感的阻抗计算公式可以看出,电感的阻抗特性R是随频率f的增加而变大的,对于高频噪声,第一电感L1、第二电感L2具有很大阻抗,经过计算,可以得到第一电感L1、第二电感L2的理论值,最终的值是经过实验所得到修正的值。
  从电容的阻抗计算公式可以看出,电容的阻抗特性R是随频率f的减小而变大的,对于高频噪声,输入旁路电容C1、输出旁路电容C2具有较小阻抗,电容的理论值选取pF级的值,最终的值是经过实验所得到的修正的值。
  整个陷波网络及滤波电路就是一个低通滤波器,电源信号流经该模块时,大部分低于80MHz-- 120MHz的低频信号和少许高频信号流入第二电感L2所在的支路,其中的少许高频信号被输出旁路电容C2滤除,剩下的低频信号流入输出端正极;同时,电源信号中大部分高于或处于80MHz-- 120MHz的高频信号和少许低频信号流入输入旁路电容C1所在支路,其中的少许低频信号再通过第一电感流入输出端负极。
  对于电容的选择,由其是输出旁路电容C2的选择,还要考虑到电容的ESR(等效串联电阻)值。和理想电容相比,实际电容具有各种损耗,在外部表现为就像一个电阻跟电容串联在一起,这样会降低电容的滤波效果。因此,要选择低ESR值的电容。
  图5 是根据本发明的一个实施例的地网络加强及屏蔽模块的示意图。如图5所示,在恒流/恒压减压直流转换器的外壳设置一屏蔽盖501(例如在PCB板上通过露绿油方式来加的屏蔽盖),将输入端与输出端间的所有接地点引入该屏蔽盖中。这样就可以抑制电源噪声的干扰,改善系统或设备的电磁兼容性(EMC)。
  图6A 是本发明噪音处理前横波EMC测试图;
  图6B 是本发明噪音处理前纵波EMC测试图;
  图7A 是本发明噪音处理后横波EMC测试图;
  图7B 是本发明噪音处理后纵波EMC测试图。
  分别对比图5A、图6A和图5B、图6B,可以发现100MHz高阻大电流陷波及滤波电路的应用,极大的改善了80MHz--120MHz间的噪音输出。地网络的加强处理及屏蔽的采用,使开关电源部分的干扰辐射降到了极致。在80MHz--120MHz间的噪音降低到普通背景噪音,甚至这个频段的背景噪音整体降低5--10dB左右。
  当噪音处于25--30dBuV/m时,车载充电器不插电与插电在灵敏度上差别很大,约有10dB左右的不同;且将天线与充电线并行摆放,灵敏度的变化范围更大,几乎无法正常使用TMC功能。通过对噪音的特别处理后,FM频段的背景噪音降到了20dBuV/m左右时,车载充电器充电与不充电时,TMC的接收灵敏度差别在1?dB以下,且将TMC天线与充电线并行很长一段,对TMC的接收灵敏度的影响微乎其微。
本发明能够在标准Mini USB的空间将电源线与射频接收天线放在了一起,且不影响接收效果,从而减少了对更多空间的要求,使整体系统的简洁性改善效果非常明显,并且整体系统可以满足更多外设的空间布置需求。对用户储存与使用更加方便,还有就是利用了Mini USB连接方式的可靠性,用户使用时再不会因为汽车车速突变时天线从其座子里掉出来,改善了使用可靠性。包装的效率也得到了提高。 对整体成本的降低也作出了贡献。最重要的一点是,用户的使用更方便了,简单了。

Claims (6)

 1、一种车载充电器,包括电源转换模块(101)、充电线(102)和充电接口(104),所述充电线(102)一端接入所述充电接口,另一端焊到所述电源转换模块(101)上,其特征在于,还包括一端接入所述充电接口(104)的RDS接收天线(103);
在所述电源转换模块(101)中还包括用于滤除与所述RDS接收天线(103)工作频率相同频段的干扰波的陷波网络及滤波电路(303)。
  2、根据权利要求1所述的车载充电器,其特征在于,所述电源转换模块(101)包括依次连接的滤波网络(301)、恒流/恒压减压直流转换器(302),所述陷波网络及滤波电路(303)接在所述恒流/恒压减压直流转换器(302)与输出端之间;在输入端和所述输出端之间还连接有地网络加强及屏蔽模块(304)。
  3、根据权利要求2所述的车载充电器,其特征在于,所述陷波网络及滤波电路(303)包括连接在所述陷波网络及滤波电路(303)的输入端正极与输出端正极之间的第二电感(L2)、连接在所述输入端正极与地之间的输入旁路电容(C1)以及连接在所述输出端正极与地之间的输出旁路电容(C2),所述输入端正极通过依次连接的所述输入旁路电容(C1)、第一电感(L1)接输出端负极。
  4、根据权利要求3所述的车载充电器,其特征在于,所述地网络加强及屏蔽模块(304)包括设置于恒流/恒压减压直流转换器(302)外壳的屏蔽盖(501)和引入所述屏蔽盖中的所述电流转换模块的所有接地线。
  5、根据权利要求4所述的车载充电器,其特征在于,所述充电接口(104)的第一脚(201)接直流电源输出线(211),第四脚(202)接RDS接收天线(212),第五脚(203)接输出地线(213)。
  6、根据权利要求5所述的车载充电器,其特征在于,所述充电接口是标准Mini USB接口。
PCT/CN2010/076308 2010-08-24 2010-08-24 一种车载充电器 WO2012024831A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/076308 WO2012024831A1 (zh) 2010-08-24 2010-08-24 一种车载充电器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/076308 WO2012024831A1 (zh) 2010-08-24 2010-08-24 一种车载充电器

Publications (1)

Publication Number Publication Date
WO2012024831A1 true WO2012024831A1 (zh) 2012-03-01

Family

ID=45722813

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/076308 WO2012024831A1 (zh) 2010-08-24 2010-08-24 一种车载充电器

Country Status (1)

Country Link
WO (1) WO2012024831A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201178116Y (zh) * 2007-12-25 2009-01-07 希姆通信息技术(上海)有限公司 手机充电装置
CN101547015A (zh) * 2008-03-26 2009-09-30 亚旭电脑股份有限公司 由单一连接端口充电及天线传输功能的无线讯号处理电路
CN101553708A (zh) * 2006-01-27 2009-10-07 高明有限公司 接收机与电源集成一体的适配器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101553708A (zh) * 2006-01-27 2009-10-07 高明有限公司 接收机与电源集成一体的适配器
CN201178116Y (zh) * 2007-12-25 2009-01-07 希姆通信息技术(上海)有限公司 手机充电装置
CN101547015A (zh) * 2008-03-26 2009-09-30 亚旭电脑股份有限公司 由单一连接端口充电及天线传输功能的无线讯号处理电路

Similar Documents

Publication Publication Date Title
US8154150B2 (en) Power line communication system
US7385466B2 (en) Differential transmission circuit and common mode choke coil
US5903850A (en) Mobile phone and interface configuration in a mobile phone
CN106657715B (zh) 一种车载模拟视频信号抗干扰系统
CN102570462A (zh) 一种输入与输出高隔离度滤波器及其设计方法
CN1707979B (zh) 降低来自电子模块的幅射发射的设备
JP5746517B2 (ja) 電力線通信システム
WO2012024831A1 (zh) 一种车载充电器
CN210015954U (zh) 一种车载多功能天线
CN104218305B (zh) Am/fm电源线天线
CN212992292U (zh) 高压直流输入的滤波电路
CN203300791U (zh) Am/fm电源线天线
CN211577254U (zh) 一种高压直流隔离采样电路
CN210202037U (zh) 一种电源保护电路及一种蓝牙耳机
CA2188843A1 (en) Connecting arrangement for reducing induced noise
CN219834106U (zh) 一种滤波电路
US10128906B2 (en) Power line signal coupler
CN116800284B (zh) 蓝牙多媒体收音机
CN111741149A (zh) 一种电子设备
CN109743653B (zh) 耳机电路结构及通讯设备
CN213879840U (zh) 带对讲发射功能的调频收音装置
CN213906902U (zh) 一种音频功放滤波装置及系统、音频功放滤波线及转接器
CN211710631U (zh) 一种充电电路及汽车
CN211457131U (zh) 一种基于电力载波通讯的耦合电路
CN215680928U (zh) 一种基于bt+wifi+gps整合成三合一天线的小型化电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10856284

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 15.07.2013)

122 Ep: pct application non-entry in european phase

Ref document number: 10856284

Country of ref document: EP

Kind code of ref document: A1