WO2012023626A1 - Binder composition for use in electrodes - Google Patents

Binder composition for use in electrodes Download PDF

Info

Publication number
WO2012023626A1
WO2012023626A1 PCT/JP2011/068818 JP2011068818W WO2012023626A1 WO 2012023626 A1 WO2012023626 A1 WO 2012023626A1 JP 2011068818 W JP2011068818 W JP 2011068818W WO 2012023626 A1 WO2012023626 A1 WO 2012023626A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
structural unit
binder composition
mass
active material
Prior art date
Application number
PCT/JP2011/068818
Other languages
French (fr)
Japanese (ja)
Inventor
武志 茂木
博紀 北口
幸志 樫下
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Priority to JP2012529638A priority Critical patent/JPWO2012023626A1/en
Publication of WO2012023626A1 publication Critical patent/WO2012023626A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • H01G11/28Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to an electrode binder composition.
  • Electrochemical devices such as secondary batteries such as lithium ion secondary batteries and nickel metal hydride secondary batteries; capacitors such as lithium ion capacitors and electric double layer capacitors, a laminate in which an electrode active material layer is formed on a current collector
  • the electrode active material layer in this electrode is formed by applying an electrode slurry onto a current collector to form a coating film, then drying the coating film, and preferably further pressing the dried coating film. .
  • the electrode slurry is prepared by mixing an electrode binder composition and an electrode active material.
  • the binder composition for electrodes is a dispersion in which a binder component such as polyvinylidene fluoride is dispersed in a solution or dispersion medium dissolved in a solvent.
  • characteristics such as capacity, cycle characteristics, and discharge rate characteristics are problematic. These characteristics are greatly influenced by the characteristics of the binder as well as the type and amount of the electrode active material and the electrolyte contained in the electrode. For example, if the binding property of the binder is insufficient, a sufficient amount of electrode active material is not bound on the current collector, or the binding force between the electrode active materials is insufficient. The capacity becomes insufficient. In addition, the binding force of the binder may decrease due to repeated charging and discharging. In this case, when charging and discharging are repeated, the electrode active material gradually falls off from the current collector, and as a result, the capacity of the electrochemical device decreases with time (the cycle characteristics are poor). .
  • the binder used in the electrochemical device collects the electrode active material due to high adhesion between the electrode active material and the current collector, high binding property between the electrode active materials, and repeated charge and discharge. High binding durability that does not fall off the electric body is required.
  • JP 2002-42819 A discloses a binder composition containing a polymer having a structural unit derived from a fluorine-containing (meth) acrylate. Japanese Patent No.
  • 3539448 (JP-A-8-287915) has a structural unit derived from (meth) acrylate, a structural unit derived from acrylonitrile, and a structural unit derived from an unsaturated carboxylic acid at the same time. Binder compositions containing polymers have been proposed and have achieved some success.
  • electrochemical devices have begun to be installed in automobiles. For example, secondary batteries such as lithium ion secondary batteries are used as main power sources for electric vehicles and hybrid cars, and capacitors such as electric double layer capacitors are used as auxiliary power sources for large vehicles such as trucks. Since automobiles have significantly different usage environments (especially usage temperatures) depending on the area of use and seasonal factors, electrochemical devices mounted on automobiles are required to exhibit stable performance over a wide temperature range.
  • An object of the present invention is to provide a binder composition for an electrode that provides an electrochemical device that has high binding properties and is excellent in both discharge rate characteristics in a low temperature environment and electrochemical stability in a high temperature environment. Is to provide.
  • Structural unit (A) derived from a monomer represented by the following general formula (1) and Structural unit derived from ⁇ , ⁇ -unsaturated nitrile monomer (B) Containing a polymer having The content ratio of the structural unit (A) is 5 to 60% by mass, The content of the structural unit (B) is 5 to 40% by mass, and This is achieved by a binder composition for electrodes in which the total content of the structural unit (A) and the structural unit (B) is 10 to 70% by mass.
  • R 1 represents a hydrogen atom or a methyl group
  • R 2 Represents a fluorinated hydrocarbon group having 1 to 18 carbon atoms.
  • the binder composition for electrodes of the present invention is a polymer having a structural unit (A) derived from the monomer represented by the general formula (1) and a structural unit (B) derived from an ⁇ , ⁇ -unsaturated nitrile monomer. (Hereinafter referred to as “specific polymer”).
  • This binder composition for electrodes further contains a liquid medium and can optionally contain a thickener.
  • the binder composition for electrodes of the present invention may further contain other components such as an emulsifier, a polymerization initiator or a residue thereof, a surfactant, and a neutralizing agent.
  • the specific polymer contained in the binder composition for an electrode of the present invention has a structural unit (A) and a derived structural unit (B). This specific polymer may have another structural unit in addition to the structural unit (A) and the structural unit (B).
  • Structural unit (A) The specific polymer in this invention has the structural unit (A) derived from the monomer represented by the said General formula (1).
  • R in the general formula (1) 2 Examples thereof include a fluorinated alkyl group having 1 to 18 carbon atoms, a fluorinated aryl group having 6 to 18 carbon atoms, and a fluorinated aralkyl group having 7 to 18 carbon atoms.
  • R 2 Is preferably a fluorinated alkyl group having 1 to 11 carbon atoms, and particularly preferably a group represented by the following general formula (2).
  • R 3 Represents a hydrogen atom or a fluorinated hydrocarbon group having 1 to 10 carbon atoms
  • R 4 Represents a fluorinated hydrocarbon group having 1 to 10 carbon atoms.
  • R in the general formula (2) 3 And R 4 The fluorinated hydrocarbon group having 1 to 10 carbon atoms is preferably a fluorinated alkyl group having 1 to 10 carbon atoms.
  • Preferable specific examples of the group represented by the general formula (2) include, for example, 2,2,2-trifluoroethyl group, 1,1,1-trifluoropropan-2-yl group, 2- (perfluoro Octyl) ethyl group, 2,2,3,3-tetrafluoropropyl group, 2,2,3,4,4,4-hexafluorobutyl group, 1H, 1H, 9H-perfluoro-1-nonyl group, 1H , 1H, 11H-perfluoroundecyl group, perfluorooctyl group, etc., among which 2,2,2-trifluoroethyl group and 2,2,2-trifluoroisopropyl group are more preferable, In particular, 2,2,2-trifluoroethyl group is preferable.
  • the monomer represented by the general formula (1) for deriving the structural unit (A) only one of the above may be used alone, or two or more selected from the above may be used in combination. May be.
  • the specific polymer in the present invention has a structural unit (B) derived from an ⁇ , ⁇ -unsaturated nitrile monomer together with the structural unit (A).
  • ⁇ , ⁇ -unsaturated nitrile monomer leading to the structural unit (B) include (meth) acrylonitrile, ⁇ -chloroacrylonitrile, vinylidene cyanide and the like. In these, (meth) acrylonitrile is preferable and acrylonitrile is especially preferable. These ⁇ , ⁇ -unsaturated nitrile monomers can be used singly or in combination of two or more. (Other structural unit types) As described above, the specific polymer in the present invention may have another structural unit in addition to the structural unit (A) and the structural unit (B).
  • a structural unit (C) derived from an unsaturated carboxylic acid monomer Structural unit (D) derived from a monomer represented by the following general formula (3), Structural units (E) derived from at least one monomer selected from the group consisting of conjugated dienes and aromatic vinyl monomers and Structural units derived from other monomers (F)
  • R 5 Represents a hydrogen atom or a methyl group
  • R 6 Represents a hydrocarbon group having 1 to 18 carbon atoms.
  • Examples of the unsaturated carboxylic acid monomer that leads to the structural unit (C) include unsaturated monocarboxylic acid, unsaturated dicarboxylic acid, monoalkyl ester of unsaturated dicarboxylic acid, monoamide of unsaturated dicarboxylic acid, and the like.
  • Examples of the monocarboxylic acid include (meth) acrylic acid and crotonic acid;
  • Examples of the unsaturated dicarboxylic acid include maleic acid, fumaric acid, itaconic acid, and the like.
  • (meth) acrylic acid and itaconic acid are preferable as the unsaturated carboxylic acid monomer for leading the structural unit (C), and methacrylic acid is particularly preferable.
  • R in the general formula (3) 6 Is preferably an alkyl group having 1 to 12 carbon atoms, for example, methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, n-amyl group, i- An amyl group, n-hexyl group, 2-ethylhexyl group, n-octyl group, i-nonyl group, n-decyl group, etc. can be mentioned.
  • the monomer represented by the general formula (3) for deriving the structural unit (D) can be used alone or in combination of two or more.
  • examples of conjugated dienes include 1,3-butadiene, 2-methyl-1,3-butadiene (isoprene), 2,3-dimethyl-1,3-butadiene, 2- Such as chloro-1,3-butadiene (chloroprene);
  • examples of the aromatic vinyl monomer include styrene, ⁇ -methylstyrene, p-methylstyrene, vinyltoluene, chlorostyrene, and divinylbenzene.
  • Monomers that lead to the structural unit (E) can be used singly or in combination of two or more.
  • Examples of other monomers that lead to the structural unit (F) include hydroxyalkyl (meth) acrylates such as hydroxymethyl (meth) acrylate and hydroxyethyl (meth) acrylate; Polyfunctional (meth) acrylate monomers such as ethylene glycol di (meth) acrylate; Carboxylic acid vinyl esters such as vinyl acetate and vinyl propionate; Unsaturated dicarboxylic acid anhydrides; Monoamides of unsaturated dicarboxylic acids; Examples thereof include aminoalkylamides of ethylenically unsaturated carboxylic acids such as aminoethylacrylamide, dimethylaminomethylmethacrylamide, and methylaminopropylmethacrylamide, and one or more selected from these are used.
  • the content ratio of the structural unit (A) in the specific polymer is 5 to 60% by mass, preferably 7 to 55% by mass in all the structural units.
  • the content ratio of the structural unit (A) in the specific polymer is 5 to 40% by mass, preferably 5 to 35% by mass, based on all the structural units.
  • the total content of the structural unit (A) and the structural unit (B) is 10 to 70% by mass, preferably 15 to 65% by mass, based on all the structural units. .
  • this ratio is within the above range, the discharge rate characteristics under a low temperature environment and the electrochemical stability under a high temperature environment are further improved, which is preferable.
  • the electrode active material is aggregated when the binder composition of the present invention is mixed with the electrode active material. Therefore, it is possible to produce a slurry for an electrode having good dispersibility of the electrode active material.
  • the specific polymer having too much content of the structural unit (C) is inferior in oxidation resistance, so that the polymer is oxidatively deteriorated by repeated charge and discharge, and the electrode active material layer cannot be retained. As a result, there may be a disadvantage that the charge / discharge characteristics deteriorate with time.
  • the content ratio of the structural unit (C) in the specific polymer is preferably 10% by mass or less, more preferably 1 to 5% by mass in all the structural units.
  • the content ratio of the structural unit (D) in the specific polymer is preferably 90% by mass or less, and more preferably 25 to 80% by mass in all the structural units.
  • a binder composition for an electrode containing a specific polymer having the structural unit (E) together with the structural unit (A) and the structural unit (B) is applied to the negative electrode, a carbon material generally used as a negative electrode active material (for example, there is an advantage of having an appropriate binding property to graphite. Furthermore, the obtained electrode layer has good flexibility and adhesion to the current collector.
  • the specific polymer having too much content of the structural unit (E) is inferior in its ionic conductivity and oxidation resistance, and therefore has the disadvantages of increased electrode resistance and deterioration over time in charge / discharge characteristics.
  • the content ratio of the structural unit (E) in the specific polymer is preferably 75% by mass or less, more preferably 40 to 60% by mass in all the structural units. It is preferable that the content rate of the structural unit (F) in a specific polymer shall be 10 mass% or less in all the structural units. By setting the ratio in this range, it is possible to suppress deterioration of ion conductivity and adhesion due to the introduction of the structural units (C), (D), and (E).
  • the specific polymer contained in the composition includes the structural unit (C) and the structural unit together with the structural unit (A) and the structural unit (B). It has a unit (D) and it is preferable that these content rates are as follows in all the structural units.
  • the specific polymer contained in the electrode binder composition applied to the positive electrode or the capacitor electrode has a content ratio of the structural unit (E) and the structural unit (F) of 5% by mass or less in each of the structural units. It is preferable to contain neither the structural unit (E) nor the structural unit (F).
  • the specific polymer contained in the composition includes the structural unit (C) and the structural unit (E) together with the structural unit (A) and the structural unit (B). It is preferable that these content ratios are as follows in all structural units.
  • the specific polymer contained in the binder composition for an electrode applied to the negative electrode is preferably such that the content ratio of the structural unit (D) and the structural unit (F) is 5% by mass or less in all the structural units. It is preferable that neither the structural unit (D) nor the structural unit (F) is contained.
  • the specific polymer can be produced by polymerizing a mixture of the monomers described above.
  • the polymerization method of the monomer mixture is not particularly limited, but it is preferable to use an emulsion polymerization method.
  • an emulsifier, a polymerization initiator, a molecular weight regulator and the like can be appropriately used.
  • anionic surfactant, nonionic surfactant, amphoteric surfactant etc. can be used individually by 1 type or in combination of 2 or more types.
  • anionic surfactant examples include, for example, higher alcohol sulfates, alkylbenzene sulfonates, aliphatic sulfonates, and polyethylene glycol alkyl ether sulfates;
  • nonionic surfactant may include, for example, polyethylene glycol alkyl ester, polyethylene glycol alkyl ether, polyethylene glycol alkylphenyl ether, and the like.
  • amphoteric surfactant a salt in which the anion portion is a carboxylate salt, a sulfate ester salt, a sulfonate salt or a phosphate ester salt and the cation portion is an amine salt or a quaternary ammonium salt can be used.
  • amphoteric surfactants include betaines such as lauryl betaine and stearyl betaine; Examples thereof include surfactants of amino acid type such as lauryl- ⁇ -alanine, lauryl di (aminoethyl) glycine, octyldi (aminoethyl) glycine.
  • the use ratio of such an emulsifier is preferably 0.5 to 5 parts by mass with respect to a total of 100 parts by mass of the monomers used.
  • the polymerization initiator include water-soluble polymerization initiators such as sodium persulfate, potassium persulfate, and ammonium persulfate; Oil-soluble polymerization initiators such as benzoyl peroxide, lauryl peroxide, 2,2′-azobisisobutyronitrile; Examples thereof include a redox polymerization initiator in combination with a reducing agent such as sodium bisulfite. These polymerization initiators can be used alone or in combination of two or more.
  • the use ratio of the polymerization initiator is preferably 0.3 to 3 parts by mass with respect to 100 parts by mass in total of the monomers used.
  • the molecular weight regulator include halogenated hydrocarbons such as chloroform and carbon tetrachloride; mercaptan derivatives such as n-hexyl mercaptan, n-octyl mercaptan, n-dodecyl mercaptan, t-dodecyl mercaptan, thioglycolic acid; Xanthogen derivatives such as dimethylxanthogen disulfide and diisopropylxanthogen disulfide; Other molecular weight regulators such as terpinolene and ⁇ -methylstyrene dimer can be mentioned.
  • the usage-amount of a molecular weight modifier shall be 5 mass parts or less with respect to 100 mass parts of total of the monomer used.
  • Emulsion polymerization is preferably carried out in a suitable aqueous medium, particularly preferably in water.
  • the total content of the monomers in the aqueous medium can be 10 to 50% by weight, and preferably 20 to 40% by weight.
  • the conditions for emulsion polymerization are not particularly limited.
  • the polymerization temperature can be 40 to 85 ° C. and the polymerization time can be 2 to 16 hours.
  • Particularly preferred emulsion polymerization methods are as follows.
  • emulsion polymerization is started by adding an emulsion of a monomer mixture (hereinafter referred to as “monomer emulsion”), and, if necessary, polymerization is continued after the addition of the monomer emulsion is completed.
  • the temperature of the aqueous medium containing the polymerization initiator is preferably 40 to 85 ° C, and more preferably 60 to 80 ° C.
  • a polymerization initiator is added thereto, and after the polymerization initiator is added. It is preferable to start adding the monomer emulsion before the excessive time has elapsed.
  • the aqueous medium containing a polymerization initiator may further contain optional components such as the molecular weight regulator described above.
  • the monomer emulsified liquid can be prepared by adding a monomer and an emulsifier and other optional components as required to an aqueous medium, and sufficiently stirring them.
  • the monomer content in the emulsion is preferably 40 to 80% by weight, more preferably 50 to 70% by weight.
  • the addition of the monomer emulsion into the aqueous medium containing the polymerization initiator is preferably performed slowly so that the polymerization initiator is not unevenly distributed in the reaction solution and a non-uniform polymerization reaction does not occur.
  • the addition time is preferably 0.5 to 6 hours, and more preferably 1 to 4 hours. It is preferable to continue the polymerization after completing the addition of the monomer emulsion.
  • the temperature of the continuous polymerization is preferably 40 to 85 ° C, more preferably 60 to 80 ° C.
  • the continuous polymerization time is preferably 0.5 to 6 hours, more preferably 1 to 4 hours.
  • the total polymerization time from the start of addition of the monomer emulsion is preferably 1 to 12 hours, and more preferably 3 to 8 hours.
  • the specific polymer contained in the electrode binder composition of the present invention preferably has a glass transition temperature (Tg) of ⁇ 45 to 25 ° C.
  • the glass transition temperature (Tg) of the specific polymer can be measured as follows. About 4 g of the latex in which the specific polymer is dispersed is poured into a 5 cm ⁇ 4 cm Teflon (registered trademark) petri dish and dried in a thermostat at 70 ° C. for 24 hours to obtain a film having a thickness of about 100 ⁇ m.
  • the binder composition for electrodes of the present invention contains a liquid medium together with the above specific polymer.
  • the liquid state body can be an aqueous medium or a non-aqueous medium.
  • the electrode binder composition of the present invention is in the form of a slurry or latex in which the specific polymer as described above is dispersed in an aqueous medium, or in the form of a solution in which the specific polymer is dissolved in a non-aqueous medium. Is preferred.
  • the aqueous medium contains water.
  • the aqueous medium can contain a small amount of a non-aqueous medium in addition to water.
  • non-aqueous medium examples include amide compounds, hydrocarbons, alcohols, ketones, esters, amine compounds, lactones, sulfoxides, sulfone compounds, and the like, and one or more selected from these are used. can do.
  • the content ratio of such a non-aqueous medium is preferably 10% by mass or less, and more preferably 5% by mass or less, based on the whole of the aqueous medium. It is most preferable that it consists only of.
  • the specific polymer is preferably particulate in an aqueous medium.
  • the number average particle diameter of the specific polymer in the aqueous medium is preferably 50 to 190 nm, and more preferably 70 to 185 nm.
  • the number average particle diameter of the specific polymer is a number from the hydrodynamic diameter measured by a dynamic light scattering method using water as a dispersion medium using a laser particle size analysis system “LPA-3000s / 3100” manufactured by Otsuka Electronics Co., Ltd. It can be calculated as an average value.
  • the non-aqueous medium can be suitably used as long as it can dissolve the specific polymer.
  • the non-aqueous medium include aliphatic hydrocarbons such as n-octane, isooctane, nonane, decane, decalin, pinene, and chlorododecane; Cycloaliphatic hydrocarbons such as cyclopentane, cyclohexane, cycloheptane, methylcyclopentane; Aromatic hydrocarbons such as chlorobenzene, chlorotoluene, ethylbenzene, diisopropylbenzene, cumene; Alcohols such as methanol, ethanol, propanol, isopropanol, butanol, benzyl alcohol, glycerin; Ketones such as acetone, methyl ethyl ketone, cyclopentanone, isophorone; Ethers such as methyl
  • the content ratio of the specific polymer in the electrode binder composition of the present invention is preferably 20 to 60% by mass, and more preferably 25 to 50% by mass.
  • Thickener The above thickener can be contained in the electrode binder composition of the present invention in order to further improve the applicability, charge / discharge characteristics and the like of the electrode binder composition.
  • thickeners examples include cellulose derivatives such as carboxymethylcellulose, methylcellulose, and hydroxypropylcellulose; In addition to polyacrylates such as sodium polyacrylate, Polyvinyl alcohol, polyethylene oxide, polyvinyl pyrrolidone, (meth) acrylic acid-vinyl alcohol copolymer, maleic acid-vinyl alcohol copolymer, modified polyvinyl alcohol, polyethylene glycol, ethylene-vinyl alcohol copolymer, polyvinyl acetate partial ken And the like.
  • the content of the thickener in the electrode binder composition of the present invention is 20% by weight or less based on the total solid content of the electrode binder composition (total mass of components other than the liquid medium in the composition).
  • the binder composition for electrodes of the present invention is preferably in the form of a latex in which the specific polymer is in the form of particles and dispersed in an aqueous medium.
  • the electrode binder composition of the present invention the polymerization reaction mixture after synthesizing (polymerizing) the specific polymer as described above in an aqueous medium is used as it is after adjusting the liquidity as necessary. It is particularly preferred. Therefore, the electrode binder composition of the present invention can contain other components such as an emulsifier, a polymerization initiator or a residue thereof, a surfactant, and a neutralizer in addition to the polymer particles and the aqueous medium.
  • the content ratio of these other components is preferably 3% by weight or less, more preferably 2% by weight or less as a ratio of the total weight of the other components to the solid content of the composition.
  • the solid content concentration of the electrode binder composition (the ratio of the total mass of components other than the liquid medium in the composition to the total mass of the composition) is preferably 20 to 60% by weight, 25 More preferably, it is ⁇ 50% by weight.
  • the liquid property of the binder composition for electrodes is preferably near neutral, more preferably pH 6.0 to 8.5, and particularly preferably pH 7.0 to 8.0. For adjusting the liquidity of the composition, a known water-soluble acid or base can be used.
  • the binder composition for electrodes of the present invention contains a polymer having a structural unit (A) and a structural unit (B). Therefore, as will be apparent from the examples described later, high binding properties are obtained, and the electrochemical device is excellent in both discharge rate characteristics in a low temperature environment and electrochemical stability in a high temperature environment. Can be given.
  • the slurry for an electrode of the present invention is Electrode active material and The electrode binder composition of the present invention as described above Containing.
  • the electrode slurry of the present invention may contain other components as required in addition to the electrode active material and the electrode binder composition of the present invention.
  • the electrode active material is appropriately selected according to the type of the target electrochemical device.
  • examples of the electrode active material (positive electrode active material) include lithium cobalt oxide. Lithium nickelate, lithium manganate, lithium iron phosphate, ternary nickel cobalt lithium manganate and the like can be suitably used.
  • examples of the electrode active material include carbon materials, Carbon or the like can be suitably used.
  • examples of the carbon material include carbon materials obtained by firing organic polymer compounds, coke, pitch, and the like.
  • examples of the organic polymer compounds that are precursors of the carbon materials include phenol resins and polyacrylonitrile. And cellulose.
  • Examples of the carbon include artificial graphite and natural graphite.
  • the electrode binder composition of the present invention When the electrode binder composition of the present invention is applied to an electrode slurry for forming an electrode for an electric double layer capacitor, examples of the electrode active material include graphite, non-graphitizable carbon, and hard carbon; Carbon material obtained by firing coke, pitch, etc .; A polyacene organic semiconductor (PAS) or the like can be used. (Other ingredients)
  • the electrode slurry of the present invention may further contain a thickener, a dispersant, a surfactant, an antifoaming agent, and the like as necessary.
  • the binder composition for electrodes of this invention can contain arbitrarily;
  • the dispersant include sodium hexametaphosphate, sodium tripolyphosphate, and sodium polyacrylate;
  • the surfactant include a nonionic surfactant or an anionic surfactant as a latex stabilizer.
  • the content ratio of these other components is preferably 10% by weight or less based on the total solid content of the slurry for electrodes of the present invention (total mass of components other than the liquid medium in the composition). It is more preferable that it is ⁇ 5% by weight.
  • the electrode slurry preferably contains 0.1 to 10 parts by mass, and 0.3 to 4 parts by mass of the electrode binder composition in terms of solid content with respect to 100 parts by mass of the electrode active material. More preferably.
  • the content ratio of the electrode binder composition is 0.1 to 10 parts by mass in terms of solid content, the specific polymer becomes difficult to dissolve in the electrolyte solution used in the electrochemical device. An adverse effect on device characteristics due to the rise can be suppressed.
  • the electrode slurry is prepared by mixing the electrode binder composition of the present invention, the electrode active material as described above, and other components used as necessary.
  • a known mixing device such as a stirrer, a defoamer, a bead mill, a high-pressure homogenizer, or the like can be used.
  • the preparation of the electrode slurry is preferably performed under reduced pressure, thereby preventing bubbles from being generated in the obtained electrode active material layer.
  • the electrode slurry as described above contains the electrode binder composition of the present invention to form an electrode active material layer having high adhesion between the electrode active materials and between the electrode active material and the current collector.
  • the electrode in the present invention is A current collector, An electrode active material layer formed through a process of applying and drying the electrode slurry described above on the surface of the current collector; Is provided. After the coating film is dried, press working is preferably performed.
  • a current collector for example, a metal foil, an etching metal foil, an expanded metal, or the like can be used. Specific examples of these materials include metals such as aluminum, copper, nickel, tantalum, stainless steel, titanium, and the like, which can be appropriately selected and used according to the type of the target electrochemical device. For example, when forming the positive electrode of a lithium ion secondary battery, it is preferable to use aluminum among the above as a collector.
  • the thickness of the current collector is preferably 5 to 30 ⁇ m, and more preferably 8 to 25 ⁇ m.
  • the thickness of the current collector is preferably 5 to 30 ⁇ m, and more preferably 8 to 25 ⁇ m.
  • the thickness of the current collector is preferably 5 to 30 ⁇ m, and more preferably 8 to 25 ⁇ m.
  • the thickness of the current collector is preferably 5 to 100 ⁇ m, more preferably 10 to 70 ⁇ m, and particularly preferably 15 to 30 ⁇ m.
  • the electrode active material layer in the electrode is formed by applying and drying the electrode slurry on the surface of the current collector as described above.
  • a method for applying the electrode slurry onto the current collector for example, an appropriate method such as a doctor blade method, a reverse roll method, a comma bar method, a gravure method, or an air knife method can be applied.
  • the coating film is preferably dried in a temperature range of 20 to 250 ° C., more preferably 50 to 150 ° C., preferably for 1 to 120 minutes, more preferably 5 to 60 minutes.
  • the dried coating film is preferably subjected to press working.
  • Examples of means for performing the pressing include a roll press machine, a high-pressure super press machine, a soft calendar, and a 1-ton press machine.
  • the press working conditions are appropriately set according to the type of processing machine used and the desired thickness and density of the electrode active material layer.
  • the electrode active material layer has a thickness of 40 to 100 ⁇ m and a density of 1.3 to 2.0 g / cm. 3 It is preferable that (Characteristics of electrode)
  • the electrode formed as described above is Since the electrode active material layer is formed using the electrode slurry containing the binder composition of the present invention, the electrode active material layer has high adhesion between the electrode active materials and between the electrode active material and the current collector. Is.
  • the electrode of the present invention can be suitably used as an electrode of an electrochemical device such as a lithium ion secondary battery, an electric double layer capacitor, or a lithium ion capacitor.
  • an electrochemical device such as a lithium ion secondary battery, an electric double layer capacitor, or a lithium ion capacitor.
  • the electrode formed using the binder composition of the present invention exhibits a performance superior to that of the prior art, both as a positive electrode and a negative electrode.
  • the electrochemical device in the present invention includes the electrode as described above.
  • the electrochemical device according to the present invention has a structure in which the electrode as described above is opposed to the counter electrode via the electrolytic solution, and is preferably isolated by the presence of the separator.
  • a manufacturing method thereof for example, two electrodes (two of a positive electrode and a negative electrode or two of a capacitor electrode) are overlapped via a separator, and this is wound or folded in accordance with the battery shape. And injecting the electrolyte into the battery container and sealing it.
  • the shape of the battery can be an appropriate shape such as a coin shape, a button shape, a sheet shape, a cylindrical shape, a square shape, or a flat shape.
  • the electrolytic solution is appropriately selected and used according to the type of target electrochemical device.
  • the electrolytic solution a solution in which an appropriate electrolyte is dissolved in a solvent is used.
  • a lithium compound is used as an electrolyte.
  • LiClO 4 , LiBF 4 , LiI, LiPF 6 , LiCF 3 SO 3 , LiAsF 6 , LiSbF 6 LiAlCl 4 , LiCl, LiBr, LiB (C 2 H 5 ) 4 , LiCH 3 SO 3 , LiC 4 F 9 SO 3 , Li (CF 3 SO 2 ) 2 N etc. can be mentioned.
  • the electrolyte concentration in this case is preferably 0.5 to 3.0 mol / L, more preferably 0.7 to 2.0 mol / L.
  • an electric double layer capacitor for example, tetraethylammonium tetrafluoroborate, triethylmethylammonium tetrafluoroborate, tetraethylammonium hexafluorophosphate or the like is used as an electrolyte.
  • the electrolyte concentration in this case is preferably 0.5 to 3.0 mol / L, more preferably 0.7 to 2.0 mol / L.
  • the type and concentration of the electrolyte in manufacturing the lithium ion capacitor are the same as in the case of the lithium ion secondary battery.
  • examples of the solvent used in the electrolyte include carbonates such as propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, and methyl ethyl carbonate; lactones such as ⁇ -butyrolactone; Ethers such as trimethoxysilane, 1,2-dimethoxyethane, diethyl ether, 2-ethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran; Sulfoxides such as dimethyl sulfoxide; Oxolane derivatives such as 1,3-dioxolane, 4-methyl-1,3-dioxolane; Nitrogen-containing compounds such as acetonitrile and nitromethane; Esters such as methyl formate, methyl acetate, butyl acetate, methyl propionate, ethyl propionate, phosphate triester; Glyme compounds such as diglyme, triglyme and
  • Such an electrochemical device has high adhesion between the electrode active materials and between the electrode active material and the current collector in the electrode active material layer, and also has a discharge rate characteristic in a low temperature environment and electrochemical in a high temperature environment. Excellent in both stability and stability. Therefore, this electrochemical device is suitable as a secondary battery or a capacitor mounted on an automobile such as an electric vehicle, a hybrid car, and a truck, as well as a secondary battery used for AV equipment, OA equipment, communication equipment, It is also suitable as a capacitor.
  • a tape having a width of 18 mm (JIS Z1522-compliant product, trade name “Cerotape (registered trademark)”, manufactured by Nichiban Co., Ltd.) was attached to the current collector side surface of the test piece on the aluminum plate. While maintaining the angle with the aluminum plate at 90 °, the peel strength (mN / 2 cm) when this tape was pulled upward at a speed of 50 mm / min and peeled at a peel angle of 90 ° was measured 6 times. The average value was calculated as the peel strength (mN / 2 cm) of the electrode active material layer. “MN / 2 cm” is a unit indicating the peel strength per 2 cm width.
  • the low temperature rate characteristic (3.0 C / 0.2 C) (%) of the lithium ion secondary battery was calculated by the following formula.
  • Low-temperature rate characteristic (%) ⁇ (C 3.0 ) ⁇ (C 0.2 ) ⁇ ⁇ 100 It can be determined that the larger the value of the low temperature rate characteristic is, the smaller the change in the characteristic of the electrode is in the low temperature environment. In particular, this value is good when it is 80% or more.
  • “1C” indicates a current value at which discharge is completed in one hour after constant current discharge of a cell having a certain electric capacity.
  • “0.1 C” is a current value at which discharge is completed over 10 hours
  • 10 C is a current value at which discharge is completed over 0.1 hours.
  • the battery was charged at a normal temperature (25 ° C.) by a constant current (0.2 C) / constant voltage (3.8 V) method, left at 85 ° C. for 3 days, and then allowed to cool to normal temperature (25 ° C.).
  • the discharge capacity (C after ) when discharged by the constant current (0.2 C) method was measured.
  • Cycle characteristics A cycle in which a lithium ion secondary battery was charged by a constant current (0.2 C) / constant voltage (3.8 V) system and discharged by a constant current (0.2 C) system was repeated 50 times.
  • the third cycle discharge capacity (C 3Cycles) and 50th cycle discharge capacity (C 50Cycles) was measured to calculate the cycle characteristics (%) by the following equation.
  • Cycle characteristics (%) ⁇ (C 50 Cycles ) / (C 3 Cycles ) ⁇ ⁇ 100 It can be determined that the deterioration of the battery characteristics due to the oxidative decomposition of the binder due to charging and discharging is suppressed as the value of the cycle characteristics is closer to 100%.
  • Self-discharge rate (%) [ ⁇ (V before ) ⁇ (V after ) ⁇ ⁇ (V before )] ⁇ 100 It can be determined that the smaller the value of the self-discharge rate, the more the self-discharge is suppressed in a high temperature environment. In particular, this value is good when it is less than 30%.
  • Cycle characteristics The cycle in which the electric double layer capacitor was charged by the constant current (1C) / constant voltage (3.5 V) method and discharged by the constant current (1C) method was repeated 100 times. In this case, the third cycle discharge capacity (C 3Cycles) and 100 th cycle discharge capacity (C 100Cycles) was measured to calculate the cycle characteristics (%) by the following equation.
  • Cycle characteristics (%) ⁇ (C 100 Cycles ) / (C 3 Cycles ) ⁇ ⁇ 100 It can be determined that the deterioration of the battery characteristics due to the oxidative decomposition of the binder due to charging and discharging is suppressed as the value of the cycle characteristics is closer to 100%. In particular, this value is good when it is 80% or more.
  • ether sulfate type emulsifier (trade name “ADEKA rear soap SR1025”, manufactured by ADEKA Co., Ltd.) as an emulsifier, 0.8 parts in terms of solid content, and 2,2,2 as monomers -A monomer emulsion containing 25 parts of trifluoroethyl methacrylate, 25 parts of acrylonitrile, 10 parts of methyl methacrylate, 40 parts of 2-ethylhexyl acrylate and 5 parts of methacrylic acid and containing a mixture of the above monomers was stirred well.
  • ether sulfate type emulsifier trade name “ADEKA rear soap SR1025”, manufactured by ADEKA Co., Ltd.
  • the temperature inside the separable flask was started, and when the temperature inside the separable flask reached 60 ° C., 0.5 part of ammonium persulfate was added as a polymerization initiator. Then, when the temperature inside the separable flask reaches 70 ° C., the addition of the monomer emulsion prepared above is started, and the monomer emulsion is added while maintaining the temperature inside the separable flask at 70 ° C. Slowly added over time. Thereafter, the temperature inside the separable flask was raised to 85 ° C., and this temperature was maintained for 3 hours to carry out the polymerization reaction.
  • an electrode binder composition (s1).
  • the solid content concentration of the obtained binder composition for electrodes (s1) was 30% by mass.
  • the polymer in the electrode binder composition (s1) was in the form of particles having a glass transition temperature of ⁇ 10 ° C. and a number average particle diameter of 100 nm.
  • Examples 2 to 6 and Comparative Examples 1 to 5 and 7 The electrode binder compositions (s2) to (s6) and (r1) to (r5) and (r7) were carried out in the same manner as in Example 1 except that the monomers were used in accordance with the formulation shown in Table 1 below. ) Were prepared respectively.
  • Example 7 In a 7-liter separable flask, 150 parts of water and 0.2 part of sodium dodecylbenzenesulfonate were charged, and the inside of the separable flask was sufficiently purged with nitrogen.
  • ether sulfate type emulsifier (trade name “ADEKA rear soap SR1025”, manufactured by ADEKA Co., Ltd.) as an emulsifier, 0.8 parts in terms of solid content, and 2,2,2 as monomers -A monomer emulsion containing 25 parts of trifluoroethyl methacrylate, 25 parts of acrylonitrile, 10 parts of methyl methacrylate, 40 parts of 2-ethylhexyl acrylate and 5 parts of methacrylic acid and containing a mixture of the above monomers was stirred well.
  • ether sulfate type emulsifier trade name “ADEKA rear soap SR1025”, manufactured by ADEKA Co., Ltd.
  • the temperature increase was started, and when the temperature inside the separable flask reached 60 ° C., 0.5 parts of ammonium persulfate as a polymerization initiator was used. Was added.
  • the temperature inside the separable flask was raised to 70 ° C., and this temperature was maintained for 3 hours, and then the temperature was raised to 85 ° C. to conduct a polymerization reaction for another 3 hours. Thereafter, the separable flask was cooled to stop the reaction, and then ammonium water was added to adjust the pH to 7.6 to prepare an electrode binder composition (s7).
  • the solid content concentration of the obtained binder composition for electrodes (s7) was 30% by mass.
  • the polymer in the electrode binder composition (s7) was in the form of particles having a glass transition temperature of ⁇ 10 ° C. and a number average particle diameter of 100 nm.
  • Comparative Example 6 An electrode binder composition (r6) was prepared in the same manner as in Example 7 except that the monomer was used in accordance with the formulation shown in Table 1 below.
  • the glass transition temperature of the polymer and the number average particle diameter of the polymer particles in the obtained binder composition for electrodes (r6) are shown in Table 1 below.
  • Example 8 In a temperature-controllable autoclave equipped with a stirrer, 200 parts of water, 0.6 part of sodium dodecylbenzenesulfonate, 1.0 part of potassium persulfate and 0.5 part of sodium bisulfite and 2,2,2 as monomers -25 parts of trifluoroethyl methacrylate, 25 parts of acrylonitrile, 16 parts of styrene, 35 parts of butadiene and 4 parts of methacrylic acid were charged all at once and a polymerization reaction was carried out at 80 ° C for 6 hours to obtain a polymer dispersion.
  • the glass transition temperature of the polymer and the number average particle diameter of the polymer particles in the obtained binder composition for electrodes (r8) are shown in Table 1 below.
  • an electrode active material layer was formed by pressing using a roll press so that the density of the film was 1.7 g / cm 3 to form a laminate.
  • a disc-shaped positive electrode for a lithium ion secondary battery having a diameter of 15.95 mm was manufactured.
  • the peel strength of the electrode active material layer in each of the obtained positive electrodes for lithium ion secondary batteries is shown in Table 2 below.
  • the slurry for negative electrodes was prepared by stirring and mixing for 1.5 minutes at 1,800 rpm.
  • the negative electrode slurry prepared above is uniformly applied to the surface of a current collector made of copper foil having a thickness of 20 ⁇ m by a doctor blade method so that the film thickness after drying is 150 ⁇ m, and dried at 120 ° C. for 20 minutes.
  • a coating film was obtained.
  • a disc-shaped negative electrode for a lithium ion secondary battery having a diameter of 16.16 mm was produced.
  • Lithium Ion Secondary Battery A negative electrode for a lithium ion secondary battery was placed on a bipolar coin cell (trade name “HS Flat Cell”, manufactured by Hosen Co., Ltd.) in a glove box. Next, a separator (trade name “Celguard # 2400”, manufactured by Celgard Co., Ltd.) made of a disk-shaped polypropylene porous film having a diameter of 18 mm is placed on the negative electrode, and an electrolyte solution is added so that air does not enter. Injected. Next, after placing a positive electrode for a lithium ion secondary battery on this separator, a lithium ion secondary battery was manufactured by tightening and sealing the outer body of the bipolar coin cell with a screw.
  • Table 2 shows the low-temperature rate characteristics, the self-discharge rate under a high-temperature environment, and the cycle characteristics of each obtained lithium ion secondary battery.
  • the electrode binder compositions (s1) to (s7) of the present invention are used, a positive electrode for a lithium ion secondary battery having a high peel strength of the electrode active material layer can be obtained. .
  • binder compositions for electrodes (s1) to (s3) using 2,2,2-trifluoroethyl methacrylate as the specific fluorine-containing (meth) acrylate and acrylonitrile as the ⁇ , ⁇ -unsaturated nitrile compound are as follows:
  • a lithium ion secondary battery positive electrode for a lithium ion secondary battery having a higher peel strength of the electrode active material layer can be obtained, and further excellent in discharge rate characteristics in a low temperature environment and electrochemical stability in a high temperature environment.
  • the electrode active material layer was formed by pressing using a roll press so that the density of the film was 1.8 g / cm 3 to form a laminate.
  • a disc-shaped negative electrode for a lithium ion secondary battery having a diameter of 16.16 mm was produced.
  • the peel strength of the electrode active material layer in each of the obtained negative electrodes for lithium ion secondary batteries is shown in Table 3 below.
  • a slurry for positive electrode was prepared by stirring and mixing at 1,800 rpm for 1.5 minutes below.
  • the positive electrode slurry prepared above was uniformly applied to the surface of a current collector made of an aluminum foil having a thickness of 30 ⁇ m by a doctor blade method so that the film thickness of the coated film after drying was 90 ⁇ m.
  • the coating film was obtained by drying for 20 minutes.
  • a negative electrode is obtained. And it was confirmed that the lithium ion secondary battery provided with such a negative electrode is excellent in both discharge rate characteristics in a low temperature environment and electrochemical stability in a high temperature environment.
  • the difference between the example and the comparative example is about the low temperature rate characteristics and the self-discharge rate under a high temperature environment. Small (see Table 2 above). From this, it was found that the electrode binder composition of the present invention has a greater effect when applied to the positive electrode.
  • Examples 19 and 20 and Comparative Examples 19-21 (1) Manufacture of electrodes for electric double-layer capacitors Activated carbon (trade name “Kuraray Coal YP”) as an electrode active material in a biaxial planetary mixer (trade name “TK Hibismix 2P-03”, manufactured by Primix Co., Ltd.) , Kuraray Chemical Co., Ltd.
  • Activated carbon trade name “Kuraray Coal YP”
  • TK Hibismix 2P-03 manufactured by Primix Co., Ltd.
  • conductive carbon (trade name “Denka Black”, manufactured by Denki Kagaku Kogyo Co., Ltd.), thickener (trade name “CMC2200”, manufactured by Daicel Chemical Industries, Ltd.) ) 2 parts and 278 parts of water were added and stirred at 60 rpm for 1 hour. Thereafter, 4 parts (in terms of solid content) of each electrode binder composition produced in the above Examples and Comparative Examples were added, and the mixture was further stirred for 1 hour to obtain a paste.
  • conductive carbon trade name “Denka Black”, manufactured by Denki Kagaku Kogyo Co., Ltd.
  • thickener trade name “CMC2200”, manufactured by Daicel Chemical Industries, Ltd.
  • the positive electrode slurry prepared above is uniformly applied to the surface of a current collector made of an aluminum foil having a thickness of 20 ⁇ m by a doctor blade method so that the thickness of the coating film after drying becomes 150 ⁇ m.
  • the coating film was obtained by drying for 20 minutes.
  • an electrode active material layer was formed by pressing using a roll press so that the density of the film was 1.5 g / cm 3 to form a laminate.
  • two types of disc-shaped electrodes for electric double layer capacitors having a diameter of 15.95 mm and 16.16 mm were manufactured.
  • the peel strength of the electrode active material layer in the obtained electric double layer capacitor electrode is shown in Table 4 below.
  • a disk-shaped cellulose separator having a diameter of 18 mm (trade name “TF4535”, manufactured by Nippon Kogyo Paper Industries Co., Ltd.) was placed on the electrode, and an electrolyte was injected so that air did not enter.
  • an electrode for an electric double layer capacitor having a diameter of 15.95 mm was placed on the separator, and then the outer body of the bipolar coin cell was tightened and sealed to manufacture an electric double layer capacitor.
  • the electrolytic solution used here is a propylene carbonate solution containing 1 mol / L triethylmethylammonium tetrafluoroborate. Table 4 below shows the self-discharge rate and cycle characteristics of each electric double layer capacitor obtained under a high temperature environment.

Abstract

A binder composition for use in electrodes, which contains a polymer that comprises structural units (A) derived from a monomer represented by general formula (1) and structural units (B) derived from an α,β-unsaturated nitrile monomer, and which is characterized in that: the content of the structural units (A) is 5 to 60% by mass; the content of the structural units (B) is 5 to 40% by mass; and the total content of the structural units (A) and (B) is 10 to 70% by mass. In general formula (1), R1 is a hydrogen atom or a methyl group, and R2 is a C1-18 fluorinated hydrocarbon group.

Description

電極用バインダー組成物Electrode binder composition
 本発明は、電極用バインダー組成物に関する。 The present invention relates to an electrode binder composition.
 リチウムイオン二次電池、ニッケル水素二次電池などの二次電池;リチウムイオンキャパシタ、電気二重層キャパシタなどのキャパシタといった電気化学デバイスにおいては、集電体上に電極活物質層が形成された積層体からなる電極を具備する。この電極における電極活物質層は、集電体上に電極用スラリーを塗布して塗膜とし、次いで該塗膜を乾燥し、好ましくは乾燥後の塗膜をさらにプレス加工することによって形成される。前記電極用スラリーは、電極用バインダー組成物と電極活物質とを混合することによって調製される。前記電極用バインダー組成物は、例えばポリフッ化ビニリデンなどのバインダー成分が、溶媒に溶解された溶液または分散媒に分散された分散体である。
 このような電極を具備する電気化学デバイスにおいては、容量、サイクル特性、放電レート特性などの特性が問題とされる。これらの特性は、電極が含有する電極活物質および電解液の種類および量などとともに、バインダーの特性によって大きな影響を受ける。例えばバインダーの結着特性が不十分であると、集電体上に十分な量の電極活物質が結着されず、あるいは電極活物質同士の結着力が不足する結果、得られる電気化学デバイスの容量が不十分となる。また、充放電の繰り返しによってバインダーの結着力が低下する場合ある。この場合には、充放電を繰り返すと、集電体上から電極活物質が徐々に脱落し、その結果、電気化学デバイスの容量が経時的に低下する(サイクル特性が不良である)こととなる。
 このように、電気化学デバイスに用いられるバインダーには、電極活物質−集電体間の高い密着性および電極活物質相互間の高い結着性や、充放電の繰り返しによっても電極活物質が集電体から脱落しない高い結着持続性が要求される。
 上記のような事情が考慮され、高い結着性と高い結着持続性とを備えることを標榜するバインダー組成物がいくつか提案されている。
 例えば特開2002−42819号公報には、フッ素含有(メタ)アクリレートに由来する構造単位を有する重合体を含有するバインダー組成物が、
特許3539448号明細書(特開平8−287915号公報)には、(メタ)アクリレートに由来する構造単位と、アクリロニトリルに由来する構造単位と、不飽和カルボン酸に由来する構造単位と、を同時に有する重合体を含有するバインダー組成物が、それぞれ提案され、ある程度の成果を上げている。
 近年、電気化学デバイスは、自動車に搭載され始めている。例えばリチウムイオン二次電池などの二次電池は電気自動車およびハイブリッドカーの主電源として使用されており、電気二重層キャパシタなどのキャパシタはトラックなど大型車の補助電源として使用されている。
 自動車は、使用地域・季節要因などによって、使用環境(特に使用温度)が著しく異なるため、自動車に搭載される電気化学デバイスは広い温度範囲にわたって安定した性能を発揮することが要求される。しかし、従来公知のバインダー組成物を自動車搭載用途に適用すると、使用温度に起因する種々の問題が生ずることが指摘されている。例えば上記特開2002−42819号公報のバインダー組成物を用いて製造された電気化学デバイスは、低温環境下で高速放電した場合に放電レート特性が劣化することが指摘されている。上記特許3539448号明細書のバインダー組成物を用いて製造された電気化学デバイスは、高温環境下における電気化学的安定性が低く、高温環境下に放置すると自己放電してしまうとの問題がある。
In electrochemical devices such as secondary batteries such as lithium ion secondary batteries and nickel metal hydride secondary batteries; capacitors such as lithium ion capacitors and electric double layer capacitors, a laminate in which an electrode active material layer is formed on a current collector The electrode which consists of consists of. The electrode active material layer in this electrode is formed by applying an electrode slurry onto a current collector to form a coating film, then drying the coating film, and preferably further pressing the dried coating film. . The electrode slurry is prepared by mixing an electrode binder composition and an electrode active material. The binder composition for electrodes is a dispersion in which a binder component such as polyvinylidene fluoride is dispersed in a solution or dispersion medium dissolved in a solvent.
In an electrochemical device having such an electrode, characteristics such as capacity, cycle characteristics, and discharge rate characteristics are problematic. These characteristics are greatly influenced by the characteristics of the binder as well as the type and amount of the electrode active material and the electrolyte contained in the electrode. For example, if the binding property of the binder is insufficient, a sufficient amount of electrode active material is not bound on the current collector, or the binding force between the electrode active materials is insufficient. The capacity becomes insufficient. In addition, the binding force of the binder may decrease due to repeated charging and discharging. In this case, when charging and discharging are repeated, the electrode active material gradually falls off from the current collector, and as a result, the capacity of the electrochemical device decreases with time (the cycle characteristics are poor). .
As described above, the binder used in the electrochemical device collects the electrode active material due to high adhesion between the electrode active material and the current collector, high binding property between the electrode active materials, and repeated charge and discharge. High binding durability that does not fall off the electric body is required.
In view of the above circumstances, several binder compositions have been proposed that have a high binding property and a high binding durability.
For example, JP 2002-42819 A discloses a binder composition containing a polymer having a structural unit derived from a fluorine-containing (meth) acrylate.
Japanese Patent No. 3539448 (JP-A-8-287915) has a structural unit derived from (meth) acrylate, a structural unit derived from acrylonitrile, and a structural unit derived from an unsaturated carboxylic acid at the same time. Binder compositions containing polymers have been proposed and have achieved some success.
In recent years, electrochemical devices have begun to be installed in automobiles. For example, secondary batteries such as lithium ion secondary batteries are used as main power sources for electric vehicles and hybrid cars, and capacitors such as electric double layer capacitors are used as auxiliary power sources for large vehicles such as trucks.
Since automobiles have significantly different usage environments (especially usage temperatures) depending on the area of use and seasonal factors, electrochemical devices mounted on automobiles are required to exhibit stable performance over a wide temperature range. However, it has been pointed out that when a conventionally known binder composition is applied to a vehicle-mounted application, various problems resulting from the use temperature occur. For example, it has been pointed out that an electrochemical device manufactured using the binder composition described in JP-A-2002-42819 has deteriorated discharge rate characteristics when subjected to high-speed discharge in a low temperature environment. The electrochemical device manufactured using the binder composition of the above-mentioned Japanese Patent No. 3539448 has a problem that the electrochemical stability in a high temperature environment is low, and self-discharge occurs when left in a high temperature environment.
 本発明は、以上のような事情に基づいてなされたものである。
 本発明の目的は、高い結着性が得られ、しかも、低温環境下における放電レート特性と、高温環境下における電気化学的安定性と、の双方に優れる電気化学デバイスを与える電極用バインダー組成物を提供することにある。
 本発明によると、本発明の上記目的および利点は、
下記一般式(1)で表されるモノマーに由来する構造単位(A)および
α,β−不飽和ニトリルモノマーに由来する構造単位(B)
を有する重合体を含有し、
前記構造単位(A)の含有割合が5~60質量%であり、
前記構造単位(B)の含有割合が5~40質量%であり、そして
前記構造単位(A)および前記構造単位(B)の合計の含有割合が10~70質量%である電極用バインダー組成物によって達成される。
Figure JPOXMLDOC01-appb-I000003
(ただし、Rは水素原子またはメチル基を示し、Rは炭素数1~18のフッ素化炭化水素基を示す。)
 以下、本発明の電極用バインダー組成物について詳細に説明する。
<電極用バインダー組成物>
 本発明の電極用バインダー組成物は、上記一般式(1)で表されるモノマーに由来する構造単位(A)およびα,β−不飽和ニトリルモノマーに由来する構造単位(B)を有する重合体(以下、「特定重合体」という。)を含有する。この電極用バインダー組成物は、さらに液状媒体を含有し、任意的に増粘剤を含有することができる。本発明の電極用バインダー組成物は、さらに、乳化剤、重合開始剤またはその残滓、界面活性剤、中和剤などの他の成分を含有していてもよい。
[特定重合体]
 本発明の電極用バインダー組成物に含有される特定重合体は構造単位(A)および由来する構造単位(B)を有する。この特定重合体は、構造単位(A)および構造単位(B)のほかに、さらに別の構造単位を有していてもよい。
(構造単位(A))
 本発明における特定重合体は、上記一般式(1)で表されるモノマーに由来する構造単位(A)を有する。
 上記一般式(1)におけるRとしては、例えば炭素数1~18のフッ素化アルキル基、炭素数6~18のフッ素化アリール基、炭素数7~18のフッ素化アラルキル基などを挙げることができる。Rとしては、炭素数1~11のフッ素化アルキル基であることが好ましく、特に、下記一般式(2)で表される基であることが好ましい。
Figure JPOXMLDOC01-appb-I000004
(ただし、Rは水素原子または炭素数1~10のフッ素化炭化水素基を示し、Rは炭素数1~10のフッ素化炭化水素基を示す。)
 上記一般式(2)におけるRおよびRの炭素数1~10のフッ素化炭化水素基としては、炭素数1~10のフッ素化アルキル基であることが好ましい。
 上記一般式(2)で表される基の好ましい具体例としては、例えば2,2,2−トリフルオロエチル基、1,1,1−トリフルオロプロパン−2−イル基,2−(パーフルオロオクチル)エチル基、2,2,3,3−テトラフルオロプロピル基、2,2,3,4,4,4−ヘキサフルオロブチル基、1H,1H,9H−パーフルオロ−1−ノニル基、1H,1H,11H−パーフルオロウンデシル基、パーフルオロオクチル基などを挙げることができ、これらのうち2,2,2−トリフルオロエチル基および2,2,2−トリフルオロイソプロピル基がより好ましく、特に2,2,2−トリフルオロエチル基が好ましい。
 上記一般式(2)においては、Rが水素原子であり、Rが炭素数1~3のフッ素化アルキル基であることが好ましい。
 構造単位(A)を導く上記一般式(1)で表されるモノマーは、上記のうちの1種のみを単独で用いてもよく、上記のうちから選択される2種以上を混合して用いてもよい。
(構造単位(B))
 本発明における特定重合体は、上記構造単位(A)とともに、α,β−不飽和ニトリルモノマーに由来する構造単位(B)を有する。
 構造単位(B)を導くα,β−不飽和ニトリルモノマーの具体例としては、例えば(メタ)アクリロニトリル、α−クロルアクリロニトリル、シアン化ビニリデンなどを挙げることができる。これらの中では、(メタ)アクリロニトリルが好ましく、アクリロニトリルが特に好ましい。これらのα,β−不飽和ニトリルモノマーは、1種単独でまたは2種以上を組み合わせて用いることができる。
(その他の構造単位の種類)
 上記したとおり、本発明における特定重合体は、構造単位(A)および構造単位(B)のほかに、さらに別の構造単位を有していてもよい。このような別の構造単位としては、不飽和カルボン酸モノマーに由来する構造単位(C)、
下記一般式(3)で表されるモノマーに由来する構造単位(D)、
共役ジエンおよび芳香族ビニルモノマーよりなる群から選択される少なくとも1種のモノマーに由来する構造単位(E)および
その他のモノマーに由来する構造単位(F)
を挙げることができる。
Figure JPOXMLDOC01-appb-I000005
(ただし、Rは水素原子またはメチル基を示し、Rは炭素数1~18の炭化水素基を示す。)
 構造単位(C)を導く不飽和カルボン酸モノマーとしては、例えば不飽和モノカルボン酸、不飽和ジカルボン酸、不飽和ジカルボン酸のモノアルキルエステル、不飽和ジカルボン酸のモノアミドなどを挙げることができる。
 上記モノカルボン酸としては、例えば(メタ)アクリル酸、クロトン酸などを;
上記不飽和ジカルボン酸としては、例えばマレイン酸、フマル酸、イタコン酸などを、それぞれ挙げることができる。構造単位(C)を導く不飽和カルボン酸モノマーとしては、上記のうち、(メタ)アクリル酸およびイタコン酸が好ましく、特にメタクリル酸が好ましい。
 これらの不飽和カルボン酸モノマーは、1種単独でまたは2種以上を組み合わせて用いることができる。
 上記一般式(3)におけるRは、炭素数1~12のアルキル基であることが好ましく、例えばメチル基、エチル基、n−プロピル基、i−プロピル基、n−ブチル基、i−ブチル基、n−アミル基、i−アミル基、n−ヘキシル基、2−エチルヘキシル基、n−オクチル基、i−ノニル基、n−デシル基などを挙げることができる。
 構造単位(D)を導く上記一般式(3)で表されるモノマーは、1種単独でまたは2種以上を組み合わせて用いることができる。
 構造単位(E)を導くモノマーのうち、共役ジエンとしては、例えば1,3−ブタジエン、2−メチル−1,3−ブタジエン(イソプレン)、2,3−ジメチル−1,3−ブタジエン、2−クロル−1,3−ブタジエン(クロロプレン)などを;
芳香族ビニルモノマーとしては、例えばスチレン、α−メチルスチレン、p−メチルスチレン、ビニルトルエン、クロルスチレン、ジビニルベンゼンなどを、それぞれ挙げることができる。
 構造単位(E)を導くモノマーは、1種単独でまたは2種以上を組み合わせて用いることができる。
 構造単位(F)を導くその他のモノマーとしては、例えばヒドロキシメチル(メタ)アクリレート、ヒドロキシエチル(メタ)アクリレートなどのヒドロキシアルキル(メタ)アクリレート;
エチレングリコールジ(メタ)アクリレートなどの多官能(メタ)アクリレートモノマー;
酢酸ビニル、プロピオン酸ビニルなどのカルボン酸ビニルエステル;
不飽和ジカルボン酸の酸無水物;
不飽和ジカルボン酸のモノアミド;
アミノエチルアクリルアミド、ジメチルアミノメチルメタクリルアミド、メチルアミノプロピルメタクリルアミドなどのエチレン性不飽和カルボン酸のアミノアルキルアミドなどを挙げることができ、これらのうちから選択される1種または2種以上を使用することができる。
(特定重合体における各構造単位の含有割合)
 特定重合体中の構造単位(A)の含有割合は、全構造単位中5~60質量%であり、好ましくは7~55質量%である。構造単位(A)の含有割合が過小である場合には、得られる電気化学デバイスのサイクル特性が低下するおそれがある。一方、構造単位(A)の含有割合が過大である場合には、集電体に対する密着性が高い電極活物質層を形成することが困難となる場合がある。
 特定重合体における構造単位(B)の含有割合は、全構造単位中5~40質量%であり、好ましくは5~35質量%である。構造単位(B)の含有割合が過小である場合には、得られる電気化学デバイスを高温環境下において保存したときの自己放電が大きく、耐久性が低いものとなる場合がある。一方、構造単位(B)の含有割合が過大である場合には、得られる電極活物質層が堅くて脆いものとなる傾向があり、集電体に対する密着性や柔軟性が低いものとなるおそれがある。
 本発明における特定重合体中、上記構造単位(A)および上記構造単位(B)の合計の含有割合は、全構造単位中10~70質量%であり、15~65質量%とすることが好ましい。この割合が上記範囲内にあると、低温環境下における放電レート特性および高温環境下における電気化学的安定性をさらに向上することとなり、好ましい。
 本発明における特定重合体が、構造単位(A)および構造単位(B)とともに、構造単位(C)を有すると、本発明のバインダー組成物を電極活物質と混合するときに電極活物質を凝集させることがなく、電極活物質の分散性が良好な電極用スラリーを製造することができ、好ましい。反面、構造単位(C)の含有割合が多すぎる特定重合体は耐酸化性に劣ることとなるため、充放電の繰り返しによって重合体が酸化劣化して電極活物質層を保持することができなくなり、その結果、充放電特性が経時劣化するという不利益が生ずる場合がある。これらのことを考慮して、特定重合体における構造単位(C)の含有割合は、全構造単位中、10質量%以下とすることが好ましく、1~5質量%とすることがより好ましい。
 構造単位(A)および構造単位(B)とともに構造単位(D)を有する特定重合体を含有する電極用バインダー組成物を正極またはキャパシタの電極に適用すると、集電体と電極活物質層との間の密着性が向上するという利点が生ずる。反面、構造単位(D)の含有割合が多すぎる特定重合体は、そのイオン導電性および耐酸化性に劣ることとなり、その結果、電極抵抗の上昇および充放電特性の経時劣化といった不利益が生ずる場合がある。これらのことを考慮して、特定重合体における構造単位(D)の含有割合は、全構造単位中、90質量%以下とすることが好ましく、25~80質量%とすることがより好ましい。
 構造単位(A)および構造単位(B)とともに構造単位(E)を有する特定重合体を含有する電極用バインダー組成物を負極に適用すると、負極活物質として一般的に使用されている炭素材料(例えばグラファイトなど)に対して適度な結着性を有するという利点が生ずる。さらに、得られる電極層は、柔軟性や集電体に対する密着性が良好なものとなる。反面、構造単位(E)の含有割合が多すぎる特定重合体は、そのイオン導電性および耐酸化性に劣ることとなるため、電極抵抗の上昇および充放電特性の経時劣化という不利益が生ずる。これらのことを考慮して、特定重合体における構造単位(E)の含有割合は、全構造単位中、75質量%以下とすることが好ましく、40~60質量%とすることがより好ましい。
 特定重合体における構造単位(F)の含有割合は、全構造単位中10質量%以下とすることが好ましい。この範囲の割合とすることにより、構造単位(C)、(D)、(E)の導入に伴うイオン導電性の劣化や密着性の劣化を抑制することができる。
 本発明の電極用バインダー組成物を正極またはキャパシタの電極に適用する場合、該組成物に含有される特定重合体は、構造単位(A)および構造単位(B)とともに構造単位(C)および構造単位(D)を有し、これらの含有割合が全構造単位中、以下のとおりであることが好ましい。
 構造単位(A):10~50質量%、特に15~40質量%
 構造単位(B):5~30質量%、特に10~30質量%
 構造単位(A)と構造単位(B)との合計:20~60質量%、特に25~50質量%
 構造単位(C):2~5質量%
 構造単位(D):30~75質量%、特に35~60質量%
 正極またはキャパシタの電極に適用される電極用バインダー組成物に含有される特定重合体は、構造単位(E)および構造単位(F)の含有割合を、全構造単位中、それぞれ5質量%以下とすることが好ましく、構造単位(E)および構造単位(F)のいずれをも含有しないことが好ましい。
 本発明の電極用バインダー組成物を負極に適用する場合、該組成物に含有される特定重合体は、構造単位(A)および構造単位(B)とともに構造単位(C)および構造単位(E)を有し、これらの含有割合が全構造単位中、以下のとおりであることが好ましい。
 構造単位(A):10~50質量%、特に15~40質量%
 構造単位(B):5~30質量%、特に10~30質量%
 構造単位(A)と構造単位(B)との合計:20~60質量%、特に25~50質量%
 構造単位(C):2~5質量%
 構造単位(E):45~55質量%
 負極に適用される電極用バインダー組成物に含有される特定重合体は、構造単位(D)および構造単位(F)の含有割合を、全構造単位中、それぞれ5質量%以下とすることが好ましく、構造単位(D)および構造単位(F)のいずれをも含有しないことが好ましい。
[特定重合体の製造方法]
 特定重合体は、上記説明した各モノマーの混合物を重合することによって製造することができる。モノマー混合物の重合方法は特に制限されないが、乳化重合法を用いることが好ましい。乳化重合法によって特定重合体を得る際には、乳化剤、重合開始剤、分子量調節剤などを適宜用いることができる。
 上記乳化剤としては、アニオン性界面活性剤、ノニオン性界面活性剤、両性界面活性剤などを、1種単独でまたは2種以上を組み合わせて用いることができる。上記アニオン性界面活性剤の具体例としては、例えば高級アルコールの硫酸エステル、アルキルベンゼンスルホン酸塩、脂肪族スルホン酸塩、ポリエチレングリコールアルキルエーテルの硫酸エステルなどを;
ノニオン性界面活性剤の具体例としては、例えばポリエチレングリコールのアルキルエステル、ポリエチレングリコールのアルキルエーテル、ポリエチレングリコールのアルキルフェニルエーテルなどを、それぞれ挙げることができる。上記両性界面活性剤としては、アニオン部分がカルボン酸塩、硫酸エステル塩、スルホン酸塩またはリン酸エステル塩であり、カチオン部分がアミン塩、第4級アンモニウム塩である塩を用いることができる。このような両性界面活性剤の具体例としては、例えばラウリルベタイン、ステアリルベタインなどのベタイン類;
ラウリル−β−アラニン、ラウリルジ(アミノエチル)グリシン、オクチルジ(アミノエチル)グリシンなどのアミノ酸タイプの界面活性剤などを挙げることができる。
 このような乳化剤の使用割合は、用いられるモノマーの合計100質量部に対して0.5~5質量部とすることが好ましい。
 上記重合開始剤の具体例としては、例えば過硫酸ナトリウム、過硫酸カリウム、過硫酸アンモニウムなどの水溶性重合開始剤;
過酸化ベンゾイル、ラウリルパーオキサイド、2,2’−アゾビスイソブチロニトリルなどの油溶性重合開始剤;
重亜硫酸ナトリウムなどの還元剤との組合せによるレドックス系重合開始剤などを挙げることができる。これらの重合開始剤は1種単独でまたは2種以上を組み合わせて用いることができる。
 重合開始剤の使用割合は、用いられるモノマーの合計100質量部に対して0.3~3質量部とすることが好ましい。
 上記分子量調節剤の具体例としては、例えばクロロホルム、四塩化炭素などのハロゲン化炭化水素;
n−ヘキシルメルカプタン、n−オクチルメルカプタン、n−ドデシルメルカプタン、t−ドデシルメルカプタン、チオグリコール酸などのメルカプタン誘導体;
ジメチルキサントゲンジサルファイド、ジイソプロピルキサントゲンジサルファイドなどのキサントゲン誘導体;
ターピノーレン、α−メチルスチレンダイマーなどのその他の分子量調節剤を挙げることができる。
 分子量調節剤の使用割合は、用いられるモノマーの合計100質量部に対して5質量部以下とすることが好ましい。
 乳化重合は適当な水系媒体中で行うことが好ましく、特に水中で行うことが好ましい。この水系媒体中におけるモノマーの合計の含有割合は、10~50重量%とすることができ、20~40重量%とすることが好ましい。
 乳化重合の条件は、特に限定されないが、例えば重合温度を40~85℃、重合時間を2~16時間として行うことができる。
 特に好ましい乳化重合の方法は以下のとおりである。すなわち、
少なくとも重合開始剤を含有する水系媒体中に、
モノマー混合物の乳化液(以下、「モノマー乳化液」という。)を添加することによって乳化重合を開始し、必要に応じて、モノマー乳化液の添加終了後にさらに重合を継続する方法である。
 上記重合開始剤を含有する水系媒体の温度は40~85℃とすることが好ましく、60~80℃とすることがより好ましい。このとき、昇温過程における重合開始剤の分解を避けるため、水系媒体をある程度昇温した後に(例えば40~70℃になった後に)、ここに重合開始剤を添加し、重合開始剤添加後に過大な時間が経過しないうちに、モノマー乳化液の添加を始めることが好ましい。
 重合開始剤を含有する水系媒体は、上述した分子量調節剤などの任意成分をさらに含有していてもよい。モノマー乳化液は、水系媒体中に、モノマーおよび乳化剤ならびに必要に応じてその他の任意成分を投入し、これを十分に撹拌することにより調整することができる。この乳化液中におけるモノマーの含有割合は、40~80重量%とすることが好ましく、50~70重量%とすることがより好ましい。
 重合開始剤を含有する水系媒体中へのモノマー乳化液の添加は、反応液中で重合開始剤が偏在化し、不均一な重合反応が発生しないように、ゆっくりと行うことが好ましい。添加時間は、0.5~6時間とすることが好ましく、1~4時間とすることがより好ましい。
 モノマー乳化液の添加終了後、さらに重合を継続することが好ましい。この場合の継続重合の温度は、40~85℃とすることが好ましく、60~80℃とすることがより好ましい。継続重合の時間は、0.5~6時間とすることが好ましく、1~4時間とすることがより好ましい。モノマー乳化液の添加開始からの合計の重合時間としては、1~12時間とすることが好ましく、3~8時間とすることがより好ましい。
[特定重合体の特性]
 本発明の電極用バインダー組成物に含有される特定重合体は、そのガラス転移温度(Tg)が−45~25℃であることが好ましい。
 特定重合体のガラス転移温度(Tg)は、以下のようにして測定することができる。特定重合体が分散されてなるラテックスの約4gを5cm×4cmのテフロン(登録商標)シャーレに流し、70℃の恒温槽中において24時間乾燥して膜厚約100μmのフィルムとする。得られたフィルムから約10mgの試料を切り出し、これをアルミニウム容器中に採取して密封する。そして、示差走査熱量測定装置(NETZSCH−Ger▲a▼tebau GmbH製、型式「DSC204F1」)を用い、空気雰囲気下で昇温速度20℃/minにて−80℃~100℃の温度領域について示差走査熱量測定を行い、得られたDSCチャートに基づいてガラス転移温度Tgを求める。DSCチャートからガラス転移温度(Tg)を求める際には、JIS K7121に記載の中間点ガラス転移温度の求め方に準拠して行う。
(液状媒体)
 本発明の電極用バインダー組成物は、上記のような特定重合体とともに液状媒体を含有する。この液状態体としては、水系媒体または非水系媒体であることができる。
 本発明の電極用バインダー組成物は、上記のような特定重合体が水系媒体に分散されたスラリー状もしくはラテックス状であるか、または特定重合体が非水系媒体に溶解された溶液状であることが好ましい。
 上記水系媒体は、水を含有する。水系媒体は、水以外に少量の非水媒体を含有することができる。このような非水媒体としては、例えばアミド化合物、炭化水素、アルコール、ケトン、エステル、アミン化合物、ラクトン、スルホキシド、スルホン化合物などを挙げることができ、これらのうちから選択される1種以上を使用することができる。このような非水媒体の含有割合は、水系媒体の全部に対して好ましくは10質量%以下であり、より好ましくは5質量%以下である、水系媒体は、非水媒体を含有せずに水のみからなるものであることが最も好ましい。
 特定重合体は水系媒体中で、粒子状であることが好ましい。水系媒体中における特定重合体の数平均粒子径は、50~190nmであることが好ましく、70~185nmであることがより好ましい。特定重合体の数平均粒子径が上記の範囲にあることにより、電極活物質層を形成する際の乾燥工程において、重合体粒子のマイグレーションが生じず、従って得られる電極活物質層の組成が均一なものとなり、その結果、電極活物質と重合体粒子と集電体との間に十分な数の有効接着点が得られるため、高い結着性が得られることとなり、好ましい。
 特定重合体の数平均粒子径は、大塚電子(株)製レーザー粒径解析システム「LPA−3000s/3100」を用いて水を分散媒として動的光散乱法により測定した流体力学的径から数平均値として算出することができる。
 一方、上記非水系媒体は、特定重合体を溶解しうるものであれば好適に使用することができる。非水系媒体の具体例としては、例えばn−オクタン、イソオクタン、ノナン、デカン、デカリン、ピネン、クロロドデカンなどの脂肪族炭化水素;
シクロペンタン、シクロヘキサン、シクロヘプタン、メチルシクロペンタンなどの環状脂肪族炭化水素;
クロロベンゼン、クロロトルエン、エチルベンゼン、ジイソプロピルベンゼン、クメンなどの芳香族炭化水素;
メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、ベンジルアルコール、グリセリンなどのアルコール;
アセトン、メチルエチルケトン、シクロペンタノン、イソホロンなどのケトン;
メチルエチルエーテル、ジエチルエーテル、テトラヒドロフラン、ジオキサンなどのエーテル;
γ−ブチロラクトン、δ−ブチロラクトンなどのラクトン;
β−ラクタムなどのラクタム;
ジメチルホルムアミド、N−メチルピロリドン、ジメチルアセトアミドなどの鎖状または環状のアミド化合物;
メチレンシアノヒドリン、エチレンシアノヒドリン、3,3’−チオジプロピオニトリル、アセトニトリルなどの、ニトリル基を有する化合物;
ピリジン、ピロールなどの含窒素複素環化合物;
エチレングリコール、プロピレングリコールなどのグリコール化合物;
ジエチレングリコール、ジエチレングリコールモノエチルエーテル、ジエチレングリコールエチルブチルエーテルなどのジエチレングリコールまたは誘導体;
ギ酸エチル、乳酸エチル、乳酸プロピル、安息香酸メチル、酢酸メチル、アクリル酸メチルなどのエステルなどを挙げることができる。
 本発明の電極用バインダー組成物における特定重合体の含有割合は、20~60質量%であることが好ましく、25~50質量%であることがより好ましい。
(増粘剤)
 上記増粘剤は、電極用バインダー組成物の塗布性、充放電特性などをさらに向上するために、本発明の電極用バインダー組成物中に含有されることができる。
 このような増粘剤としては、例えばカルボキシメチルセルロース、メチルセルロース、ヒドロキシプロピルセルロースなどのセルロース誘導体;
ポリアクリル酸ナトリウムなどのポリアクリル酸塩などのほか、
ポリビニルアルコール、ポリエチレンオキシド、ポリビニルピロリドン、(メタ)アクリル酸−ビニルアルコール共重合体、マレイン酸−ビニルアルコール共重合体、変性ポリビニルアルコール、ポリエチレングリコール、エチレン−ビニルアルコール共重合体、ポリ酢酸ビニル部分ケン化物などを挙げることができる。
 本発明の電極用バインダー組成物における増粘剤の含有割合は、電極用バインダー組成物の全固形分量(組成物中の液状媒体以外の成分の合計質量)に対して、20重量%以下とすることが好ましく、0.1~10重量%であるとより好ましい。
(電極用バインダー組成物の好ましい態様)
 本発明の電極用バインダー組成物は、特定重合体が粒子状で水系媒体に分散されたラテックス状であることが好ましい。本発明の電極用バインダー組成物としては、水系媒体中で上記のような特定重合体を合成(重合)した後の重合反応混合物を、必要に応じて液性を調整した後、これをそのまま用いることが特に好ましい。従って、本発明の電極用バインダー組成物は、重合体粒子および水系媒体のほか、乳化剤、重合開始剤またはその残滓、界面活性剤、中和剤などの他の成分を含有することができる。これら他の成分の含有割合としては、他の成分の合計重量が組成物の固形分量に対する割合として、3重量%以下であることが好ましく、2重量%以下であることがより好ましい。
 電極用バインダー組成物の固形分濃度(組成物中の液状媒体以外の成分の合計質量が、組成物の全質量に対して占める割合)としては、20~60重量%であることが好ましく、25~50重量%であることがより好ましい。
 電極用バインダー組成物の液性としては、中性付近であることが好ましく、pH6.0~8.5であることがより好ましく、特にpH7.0~8.0であることが好ましい。組成物の液性の調整には、公知の水溶性の酸または塩基を用いることができる。酸としては、例えば塩酸、硝酸、硫酸、リン酸などを;
塩基としては、例えば水酸化ナトリウム、水酸化カリウム、水酸化リチウム、アンモニア水などを、それぞれ挙げることができる。
 本発明の電極用バインダー組成物は、構造単位(A)および構造単位(B)を有する重合体を含有する。そのため、後述する実施例から明らかなように、高い結着性が得られ、しかも、低温環境下における放電レート特性と、高温環境下における電気化学的安定性と、の双方に優れた電気化学デバイスを与えることができる。
<電極用スラリー>
 本発明の電極用スラリーは、
電極活物質および
上記のような本発明の電極用バインダー組成物
を含有する。本発明の電極用スラリーは、電極活物質および本発明の電極用バインダー組成物以外に、必要に応じてその他の成分を含有していてもよい。
(電極活物質)
 電極活物質は、目的とする電気化学デバイスの種類などに応じて適宜選択される。
 本発明の電極用バインダー組成物を、リチウムイオン二次電池の正極を形成するための電極用スラリー(正極用スラリー)に適用する場合、電極活物質(正極活物質)としては、例えばコバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム、リン酸鉄リチウム、三元系ニッケルコバルトマンガン酸リチウムなどを好適に用いることができる。
 本発明の電極用バインダー組成物を、リチウムイオン二次電池の負極を形成するための電極用スラリー(負極用スラリー)に適用する場合、電極活物質(負極活物質)としては、例えば炭素材料、カーボンなどを好適に用いることができる。上記炭素材料としては有機高分子化合物、コークス、ピッチなどを焼成して得られる炭素材料を例示することができ、該炭素材料の前駆体である有機高分子化合物としては、例えばフェノール樹脂、ポリアクリロニトリル、セルロースなどを挙げることができる。上記カーボンとしては、例えば人造グラファイト、天然グラファイトなどを挙げることができる。
 本発明の電極用バインダー組成物を、電気二重層キャパシタ用の電極を形成するための電極用スラリーに適用する場合、電極活物質としては、例えば黒鉛、難黒鉛化炭素、ハードカーボン;
コークス、ピッチなどを焼成して得られる炭素材料;
ポリアセン系有機半導体(PAS)などを用いることができる。
(その他の成分)
 本発明の電極用スラリーは、必要に応じて増粘剤、分散剤、界面活性剤、消泡剤などをさらに含有することができる。
 上記増粘剤としては、本発明の電極用バインダー組成物が任意的に含有することのできる増粘剤として上記に例示したものと同じものを;
上記分散剤としては、例えばヘキサメタリン酸ナトリウム、トリポリリン酸ナトリウム、ポリアクリル酸ナトリウムなどを;
上記界面活性剤としては、例えばラテックスの安定化剤としてのノニオン性界面活性剤またはアニオン性界面活性剤などを、それぞれ挙げることができる。
 これらその他の成分の含有割合は、本発明の電極用スラリーの全固形分量(組成物中の液状媒体以外の成分の合計質量)に対して、10重量%以下とすることが好ましく、0.5~5重量%であるとより好ましい。
(電極用スラリーの好ましい態様)
 電極用スラリーは、電極活物質100質量部に対して、電極用バインダー組成物が、固形分換算で0.1~10質量部含有されていることが好ましく、0.3~4質量部含有されていることがより好ましい。電極用バインダー組成物の含有割合、固形分換算で0.1~10質量部であることにより、特定重合体が、電気化学デバイスにおいて使用される電解液に溶解し難くなり、その結果、過電圧の上昇によるデバイス特性への悪影響を抑制することができる。
 電極用スラリーは、本発明の電極用バインダー組成物と、上記のような電極活物質と、必要に応じて用いられる他の成分と、を混合することにより調製される。これらを混合するための手段としては、例えば攪拌機、脱泡機、ビーズミル、高圧ホモジナイザーなどの公知の混合装置を利用することができる。
 電極用スラリーの調製は減圧下で行うことが好ましく、これにより、得られる電極活物質層内に気泡が生じることを防止することができる。
 上記のような電極用スラリーは、本発明の電極用バインダー組成物を含有することにより、電極活物質相互間および電極活物質−集電体間の密着性の高い電極活物質層を形成することができ、また、低温環境下における放電レート特性と、高温環境下における電気化学的安定性と、の双方に優れた電気化学デバイスを与えることができる。
<電極>
 本発明における電極は、
集電体と、
前記集電体の表面上に、上記で説明した電極用スラリーを塗布して乾燥する工程を経て形成された電極活物質層と
を備える。塗膜の乾燥後、好ましくはプレス加工が行われる。
(集電体)
 集電体としては、例えば金属箔、エッチング金属箔、エキスパンドメタルなどを用いることができる。これらの材料の具体例としては、例えばアルミニウム、銅、ニッケル、タンタル、ステンレス、チタンなどの金属を挙げることができ、目的とする電気化学デバイスの種類に応じて適宜選択して用いることができる。
 例えばリチウムイオン二次電池の正極を形成する場合、集電体としては上記のうちのアルミニウムを用いることが好ましい。この場合、集電体の厚みは、5~30μmとすることが好ましく、8~25μmとすることがより好ましい。
 一方、リチウムイオン二次電池の負極を形成する場合、集電体としては上記のうちの銅を用いることが好ましい。この場合、集電体の厚みは、5~30μmとすることが好ましく、8~25μmとすることがより好ましい。
 さらに、電気二重層キャパシタ用の電極を形成する場合、集電体としては上記のうちのアルミニウムまたは銅を用いることが好ましい。この場合、集電体の厚みは、5~100μmとすることが好ましく、10~70μmとすることがより好ましく、特に15~30μmとすることが好ましい。
(電極活物質層の形成)
 電極における電極活物質層は、上記のような集電体の表面上に、電極用スラリーを塗布して乾燥する工程を経ることにより、形成される。
 集電体上への電極用スラリーの塗布方法としては、例えばドクターブレード法、リバースロール法、コンマバー法、グラビヤ法、エアーナイフ法などの適宜の方法を適用することができる。
 塗膜の乾燥処理は、好ましくは20~250℃、より好ましくは50~150℃の温度範囲において、好ましくは1~120分間、より好ましくは5~60分間の処理時間で行われる。
 乾燥後の塗膜は、好ましくはプレス加工に供される。このプレス加工を行うための手段としては、例えばロールプレス機、高圧スーパープレス機、ソフトカレンダー、1トンプレス機などを挙げることができる。プレス加工の条件は、用いる加工機の種類ならびに電極活物質層の所望の厚みおよび密度に応じて、適宜に設定される。
 電極活物質層は、厚みが40~100μmであり、密度が1.3~2.0g/cmであることが好ましい。
(電極の特徴)
 上記のようにして形成された電極は、
電極活物質層が本発明のバインダー組成物を含有する電極用スラリーを用いて形成されるため、電極活物質層における、電極活物質相互間および電極活物質−集電体間の密着性が高いものである。また、この電極を用いると、低温環境下における放電レート特性と、高温環境下における電気化学的安定性と、の双方に優れた電気化学デバイスが得られる。
 本発明の電極は、例えばリチウムイオン二次電池、電気二重層キャパシタ、リチウムイオンキャパシタなどの電気化学デバイスの電極として好適に用いることができる。
 リチウムイオン二次電池などの二次電池を構成する場合、本発明のバインダー組成物を用いて形成された電極は、正極としても負極としても、従来技術を凌賀する性能を示すが、後述する実施例から明らかなように、正極として用いられるときに一層高い効果が得られる点で好ましい。
<電気化学デバイス>
 本発明における電気化学デバイスは、上記のような電極を具備する。
 本発明における電気化学デバイスは、上記のような電極が、電解液を介して対向電極と相対し、好ましくはセパレータの存在によって隔離された構造を有する。
 その製造方法としては、例えば、2つの電極(正極および負極の2つ、またはキャパシタ用電極の2つ)をセパレータを介して重ね合わせ、これを電池形状に応じて巻く、折るなどして電池容器に入れ、電池容器に電解液を注入して封口する方法が挙げられる。電池の形状は、コイン型、ボタン型、シート型、円筒型、角形、扁平型など、適宜の形状であることができる。
 上記電解液は、目的とする電気化学デバイスの種類に応じて適宜選択して用いられる。電解液としては、適当な電解質が溶媒中に溶解された溶液が用いられる。
 リチウムイオン二次電池を製造する場合には、電解質としてリチウム化合物が用いられる。具体的には、例えばLiClO、LiBF、LiI、LiPF、LiCFSO、LiAsF、LiSbF、LiAlCl、LiCl、LiBr、LiB(C、LiCHSO、LiCSO、Li(CFSONなどを挙げることができる。この場合の電解質濃度は、好ましくは0.5~3.0モル/Lであり、より好ましくは0.7~2.0モル/Lである。
 電気二重層キャパシタを製造する場合には、電解質として例えばテトラエチルアンモニウムテトラフルオロボレート、トリエチルメチルアンモニウムテトラフルオロボレート、テトラエチルアンモニウムヘキサフルオロホスフェートなどが用いられる。この場合の電解質濃度は、好ましくは0.5~3.0モル/Lであり、より好ましくは0.7~2.0モル/Lである。
 リチウムイオンキャパシタを製造する場合における電解質の種類および濃度は、リチウムイオン二次電池の場合と同じである。
 上記いずれの場合であっても、電解液に用いられる溶媒としては、例えばプロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネートなどのカーボネート;
γ−ブチロラクトンなどのラクトン;
トリメトキシシラン、1,2−ジメトキシエタン、ジエチルエーテル、2−エトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフランなどのエーテル;
ジメチルスルホキシドなどのスルホキシド;
1,3−ジオキソラン、4−メチル−1,3−ジオキソランなどのオキソラン誘導体;
アセトニトリル、ニトロメタンなどの窒素含有化合物;
ギ酸メチル、酢酸メチル、酢酸ブチル、プロピオン酸メチル、プロピオン酸エチル、リン酸トリエステルなどのエステル;
ジグライム、トリグライム、テトラグライムなどのグライム化合物;
アセトン、ジエチルケトン、メチルエチルケトン、メチルイソブチルケトンなどのケトン;
スルホランなどのスルホン化合物;
2−メチル−2−オキサゾリジノンなどのオキサゾリジノン誘導体;
1,3−プロパンスルトン、1,4−ブタンスルトン、2,4−ブタンスルトン、1,8−ナフタスルトンなどのスルトン化合物などを挙げることができる。
 このような電気化学デバイスは、電極活物質層における電極活物質相互間および電極活物質−集電体間の密着性が高く、しかも、低温環境下における放電レート特性と、高温環境下における電気化学的安定性と、の双方に優れる。従って、この電気化学デバイスは、電気自動車、バイブリッドカー、トラックなどの自動車に搭載される二次電池またはキャパシタとして好適であるほか、AV機器、OA機器、通信機器などに用いられる二次電池、キャパシタとしても好適である。
The present invention has been made based on the above situation.
An object of the present invention is to provide a binder composition for an electrode that provides an electrochemical device that has high binding properties and is excellent in both discharge rate characteristics in a low temperature environment and electrochemical stability in a high temperature environment. Is to provide.
According to the present invention, the above objects and advantages of the present invention are:
Structural unit (A) derived from a monomer represented by the following general formula (1) and
Structural unit derived from α, β-unsaturated nitrile monomer (B)
Containing a polymer having
The content ratio of the structural unit (A) is 5 to 60% by mass,
The content of the structural unit (B) is 5 to 40% by mass, and
This is achieved by a binder composition for electrodes in which the total content of the structural unit (A) and the structural unit (B) is 10 to 70% by mass.
Figure JPOXMLDOC01-appb-I000003
(However, R 1 Represents a hydrogen atom or a methyl group, R 2 Represents a fluorinated hydrocarbon group having 1 to 18 carbon atoms. )
Hereinafter, the binder composition for electrodes of the present invention will be described in detail.
<Binder composition for electrode>
The binder composition for electrodes of the present invention is a polymer having a structural unit (A) derived from the monomer represented by the general formula (1) and a structural unit (B) derived from an α, β-unsaturated nitrile monomer. (Hereinafter referred to as “specific polymer”). This binder composition for electrodes further contains a liquid medium and can optionally contain a thickener. The binder composition for electrodes of the present invention may further contain other components such as an emulsifier, a polymerization initiator or a residue thereof, a surfactant, and a neutralizing agent.
[Specific polymer]
The specific polymer contained in the binder composition for an electrode of the present invention has a structural unit (A) and a derived structural unit (B). This specific polymer may have another structural unit in addition to the structural unit (A) and the structural unit (B).
(Structural unit (A))
The specific polymer in this invention has the structural unit (A) derived from the monomer represented by the said General formula (1).
R in the general formula (1) 2 Examples thereof include a fluorinated alkyl group having 1 to 18 carbon atoms, a fluorinated aryl group having 6 to 18 carbon atoms, and a fluorinated aralkyl group having 7 to 18 carbon atoms. R 2 Is preferably a fluorinated alkyl group having 1 to 11 carbon atoms, and particularly preferably a group represented by the following general formula (2).
Figure JPOXMLDOC01-appb-I000004
(However, R 3 Represents a hydrogen atom or a fluorinated hydrocarbon group having 1 to 10 carbon atoms, R 4 Represents a fluorinated hydrocarbon group having 1 to 10 carbon atoms. )
R in the general formula (2) 3 And R 4 The fluorinated hydrocarbon group having 1 to 10 carbon atoms is preferably a fluorinated alkyl group having 1 to 10 carbon atoms.
Preferable specific examples of the group represented by the general formula (2) include, for example, 2,2,2-trifluoroethyl group, 1,1,1-trifluoropropan-2-yl group, 2- (perfluoro Octyl) ethyl group, 2,2,3,3-tetrafluoropropyl group, 2,2,3,4,4,4-hexafluorobutyl group, 1H, 1H, 9H-perfluoro-1-nonyl group, 1H , 1H, 11H-perfluoroundecyl group, perfluorooctyl group, etc., among which 2,2,2-trifluoroethyl group and 2,2,2-trifluoroisopropyl group are more preferable, In particular, 2,2,2-trifluoroethyl group is preferable.
In the general formula (2), R 3 Is a hydrogen atom and R 4 Is preferably a fluorinated alkyl group having 1 to 3 carbon atoms.
As the monomer represented by the general formula (1) for deriving the structural unit (A), only one of the above may be used alone, or two or more selected from the above may be used in combination. May be.
(Structural unit (B))
The specific polymer in the present invention has a structural unit (B) derived from an α, β-unsaturated nitrile monomer together with the structural unit (A).
Specific examples of the α, β-unsaturated nitrile monomer leading to the structural unit (B) include (meth) acrylonitrile, α-chloroacrylonitrile, vinylidene cyanide and the like. In these, (meth) acrylonitrile is preferable and acrylonitrile is especially preferable. These α, β-unsaturated nitrile monomers can be used singly or in combination of two or more.
(Other structural unit types)
As described above, the specific polymer in the present invention may have another structural unit in addition to the structural unit (A) and the structural unit (B). As such another structural unit, a structural unit (C) derived from an unsaturated carboxylic acid monomer,
Structural unit (D) derived from a monomer represented by the following general formula (3),
Structural units (E) derived from at least one monomer selected from the group consisting of conjugated dienes and aromatic vinyl monomers and
Structural units derived from other monomers (F)
Can be mentioned.
Figure JPOXMLDOC01-appb-I000005
(However, R 5 Represents a hydrogen atom or a methyl group, R 6 Represents a hydrocarbon group having 1 to 18 carbon atoms. )
Examples of the unsaturated carboxylic acid monomer that leads to the structural unit (C) include unsaturated monocarboxylic acid, unsaturated dicarboxylic acid, monoalkyl ester of unsaturated dicarboxylic acid, monoamide of unsaturated dicarboxylic acid, and the like.
Examples of the monocarboxylic acid include (meth) acrylic acid and crotonic acid;
Examples of the unsaturated dicarboxylic acid include maleic acid, fumaric acid, itaconic acid, and the like. Among the above, (meth) acrylic acid and itaconic acid are preferable as the unsaturated carboxylic acid monomer for leading the structural unit (C), and methacrylic acid is particularly preferable.
These unsaturated carboxylic acid monomers can be used singly or in combination of two or more.
R in the general formula (3) 6 Is preferably an alkyl group having 1 to 12 carbon atoms, for example, methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, n-amyl group, i- An amyl group, n-hexyl group, 2-ethylhexyl group, n-octyl group, i-nonyl group, n-decyl group, etc. can be mentioned.
The monomer represented by the general formula (3) for deriving the structural unit (D) can be used alone or in combination of two or more.
Among the monomers leading to the structural unit (E), examples of conjugated dienes include 1,3-butadiene, 2-methyl-1,3-butadiene (isoprene), 2,3-dimethyl-1,3-butadiene, 2- Such as chloro-1,3-butadiene (chloroprene);
Examples of the aromatic vinyl monomer include styrene, α-methylstyrene, p-methylstyrene, vinyltoluene, chlorostyrene, and divinylbenzene.
Monomers that lead to the structural unit (E) can be used singly or in combination of two or more.
Examples of other monomers that lead to the structural unit (F) include hydroxyalkyl (meth) acrylates such as hydroxymethyl (meth) acrylate and hydroxyethyl (meth) acrylate;
Polyfunctional (meth) acrylate monomers such as ethylene glycol di (meth) acrylate;
Carboxylic acid vinyl esters such as vinyl acetate and vinyl propionate;
Unsaturated dicarboxylic acid anhydrides;
Monoamides of unsaturated dicarboxylic acids;
Examples thereof include aminoalkylamides of ethylenically unsaturated carboxylic acids such as aminoethylacrylamide, dimethylaminomethylmethacrylamide, and methylaminopropylmethacrylamide, and one or more selected from these are used. be able to.
(Content ratio of each structural unit in the specific polymer)
The content ratio of the structural unit (A) in the specific polymer is 5 to 60% by mass, preferably 7 to 55% by mass in all the structural units. When the content rate of a structural unit (A) is too small, there exists a possibility that the cycling characteristics of the electrochemical device obtained may fall. On the other hand, when the content ratio of the structural unit (A) is excessive, it may be difficult to form an electrode active material layer having high adhesion to the current collector.
The content ratio of the structural unit (B) in the specific polymer is 5 to 40% by mass, preferably 5 to 35% by mass, based on all the structural units. When the content ratio of the structural unit (B) is too small, self-discharge may be large when the resulting electrochemical device is stored in a high temperature environment, and the durability may be low. On the other hand, when the content ratio of the structural unit (B) is excessive, the obtained electrode active material layer tends to be hard and brittle, and the adhesion and flexibility to the current collector may be low. There is.
In the specific polymer of the present invention, the total content of the structural unit (A) and the structural unit (B) is 10 to 70% by mass, preferably 15 to 65% by mass, based on all the structural units. . When this ratio is within the above range, the discharge rate characteristics under a low temperature environment and the electrochemical stability under a high temperature environment are further improved, which is preferable.
When the specific polymer in the present invention has the structural unit (C) together with the structural unit (A) and the structural unit (B), the electrode active material is aggregated when the binder composition of the present invention is mixed with the electrode active material. Therefore, it is possible to produce a slurry for an electrode having good dispersibility of the electrode active material. On the other hand, the specific polymer having too much content of the structural unit (C) is inferior in oxidation resistance, so that the polymer is oxidatively deteriorated by repeated charge and discharge, and the electrode active material layer cannot be retained. As a result, there may be a disadvantage that the charge / discharge characteristics deteriorate with time. Considering these, the content ratio of the structural unit (C) in the specific polymer is preferably 10% by mass or less, more preferably 1 to 5% by mass in all the structural units.
When the binder composition for an electrode containing the specific polymer having the structural unit (D) together with the structural unit (A) and the structural unit (B) is applied to the positive electrode or the electrode of the capacitor, the current collector and the electrode active material layer There is an advantage that the adhesion between them is improved. On the other hand, a specific polymer having too much content of the structural unit (D) is inferior in ionic conductivity and oxidation resistance, resulting in disadvantages such as an increase in electrode resistance and deterioration of charge / discharge characteristics over time. There is a case. Considering these, the content ratio of the structural unit (D) in the specific polymer is preferably 90% by mass or less, and more preferably 25 to 80% by mass in all the structural units.
When a binder composition for an electrode containing a specific polymer having the structural unit (E) together with the structural unit (A) and the structural unit (B) is applied to the negative electrode, a carbon material generally used as a negative electrode active material ( For example, there is an advantage of having an appropriate binding property to graphite. Furthermore, the obtained electrode layer has good flexibility and adhesion to the current collector. On the other hand, the specific polymer having too much content of the structural unit (E) is inferior in its ionic conductivity and oxidation resistance, and therefore has the disadvantages of increased electrode resistance and deterioration over time in charge / discharge characteristics. Considering these facts, the content ratio of the structural unit (E) in the specific polymer is preferably 75% by mass or less, more preferably 40 to 60% by mass in all the structural units.
It is preferable that the content rate of the structural unit (F) in a specific polymer shall be 10 mass% or less in all the structural units. By setting the ratio in this range, it is possible to suppress deterioration of ion conductivity and adhesion due to the introduction of the structural units (C), (D), and (E).
When the binder composition for an electrode of the present invention is applied to a positive electrode or a capacitor electrode, the specific polymer contained in the composition includes the structural unit (C) and the structural unit together with the structural unit (A) and the structural unit (B). It has a unit (D) and it is preferable that these content rates are as follows in all the structural units.
Structural unit (A): 10 to 50% by mass, especially 15 to 40% by mass
Structural unit (B): 5 to 30% by mass, especially 10 to 30% by mass
Total of structural unit (A) and structural unit (B): 20 to 60% by mass, especially 25 to 50% by mass
Structural unit (C): 2 to 5% by mass
Structural unit (D): 30 to 75% by mass, especially 35 to 60% by mass
The specific polymer contained in the electrode binder composition applied to the positive electrode or the capacitor electrode has a content ratio of the structural unit (E) and the structural unit (F) of 5% by mass or less in each of the structural units. It is preferable to contain neither the structural unit (E) nor the structural unit (F).
When the binder composition for an electrode of the present invention is applied to a negative electrode, the specific polymer contained in the composition includes the structural unit (C) and the structural unit (E) together with the structural unit (A) and the structural unit (B). It is preferable that these content ratios are as follows in all structural units.
Structural unit (A): 10 to 50% by mass, especially 15 to 40% by mass
Structural unit (B): 5 to 30% by mass, especially 10 to 30% by mass
Total of structural unit (A) and structural unit (B): 20 to 60% by mass, especially 25 to 50% by mass
Structural unit (C): 2 to 5% by mass
Structural unit (E): 45-55 mass%
The specific polymer contained in the binder composition for an electrode applied to the negative electrode is preferably such that the content ratio of the structural unit (D) and the structural unit (F) is 5% by mass or less in all the structural units. It is preferable that neither the structural unit (D) nor the structural unit (F) is contained.
[Method for producing specific polymer]
The specific polymer can be produced by polymerizing a mixture of the monomers described above. The polymerization method of the monomer mixture is not particularly limited, but it is preferable to use an emulsion polymerization method. When obtaining a specific polymer by the emulsion polymerization method, an emulsifier, a polymerization initiator, a molecular weight regulator and the like can be appropriately used.
As said emulsifier, anionic surfactant, nonionic surfactant, amphoteric surfactant etc. can be used individually by 1 type or in combination of 2 or more types. Specific examples of the anionic surfactant include, for example, higher alcohol sulfates, alkylbenzene sulfonates, aliphatic sulfonates, and polyethylene glycol alkyl ether sulfates;
Specific examples of the nonionic surfactant may include, for example, polyethylene glycol alkyl ester, polyethylene glycol alkyl ether, polyethylene glycol alkylphenyl ether, and the like. As the amphoteric surfactant, a salt in which the anion portion is a carboxylate salt, a sulfate ester salt, a sulfonate salt or a phosphate ester salt and the cation portion is an amine salt or a quaternary ammonium salt can be used. Specific examples of such amphoteric surfactants include betaines such as lauryl betaine and stearyl betaine;
Examples thereof include surfactants of amino acid type such as lauryl-β-alanine, lauryl di (aminoethyl) glycine, octyldi (aminoethyl) glycine.
The use ratio of such an emulsifier is preferably 0.5 to 5 parts by mass with respect to a total of 100 parts by mass of the monomers used.
Specific examples of the polymerization initiator include water-soluble polymerization initiators such as sodium persulfate, potassium persulfate, and ammonium persulfate;
Oil-soluble polymerization initiators such as benzoyl peroxide, lauryl peroxide, 2,2′-azobisisobutyronitrile;
Examples thereof include a redox polymerization initiator in combination with a reducing agent such as sodium bisulfite. These polymerization initiators can be used alone or in combination of two or more.
The use ratio of the polymerization initiator is preferably 0.3 to 3 parts by mass with respect to 100 parts by mass in total of the monomers used.
Specific examples of the molecular weight regulator include halogenated hydrocarbons such as chloroform and carbon tetrachloride;
mercaptan derivatives such as n-hexyl mercaptan, n-octyl mercaptan, n-dodecyl mercaptan, t-dodecyl mercaptan, thioglycolic acid;
Xanthogen derivatives such as dimethylxanthogen disulfide and diisopropylxanthogen disulfide;
Other molecular weight regulators such as terpinolene and α-methylstyrene dimer can be mentioned.
It is preferable that the usage-amount of a molecular weight modifier shall be 5 mass parts or less with respect to 100 mass parts of total of the monomer used.
Emulsion polymerization is preferably carried out in a suitable aqueous medium, particularly preferably in water. The total content of the monomers in the aqueous medium can be 10 to 50% by weight, and preferably 20 to 40% by weight.
The conditions for emulsion polymerization are not particularly limited. For example, the polymerization temperature can be 40 to 85 ° C. and the polymerization time can be 2 to 16 hours.
Particularly preferred emulsion polymerization methods are as follows. That is,
In an aqueous medium containing at least a polymerization initiator,
In this method, emulsion polymerization is started by adding an emulsion of a monomer mixture (hereinafter referred to as “monomer emulsion”), and, if necessary, polymerization is continued after the addition of the monomer emulsion is completed.
The temperature of the aqueous medium containing the polymerization initiator is preferably 40 to 85 ° C, and more preferably 60 to 80 ° C. At this time, in order to avoid decomposition of the polymerization initiator in the temperature raising process, after raising the temperature of the aqueous medium to some extent (for example, after reaching 40 to 70 ° C.), a polymerization initiator is added thereto, and after the polymerization initiator is added. It is preferable to start adding the monomer emulsion before the excessive time has elapsed.
The aqueous medium containing a polymerization initiator may further contain optional components such as the molecular weight regulator described above. The monomer emulsified liquid can be prepared by adding a monomer and an emulsifier and other optional components as required to an aqueous medium, and sufficiently stirring them. The monomer content in the emulsion is preferably 40 to 80% by weight, more preferably 50 to 70% by weight.
The addition of the monomer emulsion into the aqueous medium containing the polymerization initiator is preferably performed slowly so that the polymerization initiator is not unevenly distributed in the reaction solution and a non-uniform polymerization reaction does not occur. The addition time is preferably 0.5 to 6 hours, and more preferably 1 to 4 hours.
It is preferable to continue the polymerization after completing the addition of the monomer emulsion. In this case, the temperature of the continuous polymerization is preferably 40 to 85 ° C, more preferably 60 to 80 ° C. The continuous polymerization time is preferably 0.5 to 6 hours, more preferably 1 to 4 hours. The total polymerization time from the start of addition of the monomer emulsion is preferably 1 to 12 hours, and more preferably 3 to 8 hours.
[Characteristics of specific polymer]
The specific polymer contained in the electrode binder composition of the present invention preferably has a glass transition temperature (Tg) of −45 to 25 ° C.
The glass transition temperature (Tg) of the specific polymer can be measured as follows. About 4 g of the latex in which the specific polymer is dispersed is poured into a 5 cm × 4 cm Teflon (registered trademark) petri dish and dried in a thermostat at 70 ° C. for 24 hours to obtain a film having a thickness of about 100 μm. About 10 mg of sample is cut out from the obtained film, and this is collected in an aluminum container and sealed. Then, using a differential scanning calorimeter (NETZSCH-Ger atebau GmbH, model “DSC204F1”), the temperature range of −80 ° C. to 100 ° C. at a temperature rising rate of 20 ° C./min in an air atmosphere is shown. Scanning calorimetry is performed, and the glass transition temperature Tg is obtained based on the obtained DSC chart. When obtaining the glass transition temperature (Tg) from the DSC chart, it is performed in accordance with the method for obtaining the midpoint glass transition temperature described in JIS K7121.
(Liquid medium)
The binder composition for electrodes of the present invention contains a liquid medium together with the above specific polymer. The liquid state body can be an aqueous medium or a non-aqueous medium.
The electrode binder composition of the present invention is in the form of a slurry or latex in which the specific polymer as described above is dispersed in an aqueous medium, or in the form of a solution in which the specific polymer is dissolved in a non-aqueous medium. Is preferred.
The aqueous medium contains water. The aqueous medium can contain a small amount of a non-aqueous medium in addition to water. Examples of such a non-aqueous medium include amide compounds, hydrocarbons, alcohols, ketones, esters, amine compounds, lactones, sulfoxides, sulfone compounds, and the like, and one or more selected from these are used. can do. The content ratio of such a non-aqueous medium is preferably 10% by mass or less, and more preferably 5% by mass or less, based on the whole of the aqueous medium. It is most preferable that it consists only of.
The specific polymer is preferably particulate in an aqueous medium. The number average particle diameter of the specific polymer in the aqueous medium is preferably 50 to 190 nm, and more preferably 70 to 185 nm. When the number average particle diameter of the specific polymer is within the above range, migration of the polymer particles does not occur in the drying step when forming the electrode active material layer, and therefore the composition of the obtained electrode active material layer is uniform. As a result, a sufficient number of effective adhesion points are obtained among the electrode active material, the polymer particles, and the current collector, so that high binding properties can be obtained, which is preferable.
The number average particle diameter of the specific polymer is a number from the hydrodynamic diameter measured by a dynamic light scattering method using water as a dispersion medium using a laser particle size analysis system “LPA-3000s / 3100” manufactured by Otsuka Electronics Co., Ltd. It can be calculated as an average value.
On the other hand, the non-aqueous medium can be suitably used as long as it can dissolve the specific polymer. Specific examples of the non-aqueous medium include aliphatic hydrocarbons such as n-octane, isooctane, nonane, decane, decalin, pinene, and chlorododecane;
Cycloaliphatic hydrocarbons such as cyclopentane, cyclohexane, cycloheptane, methylcyclopentane;
Aromatic hydrocarbons such as chlorobenzene, chlorotoluene, ethylbenzene, diisopropylbenzene, cumene;
Alcohols such as methanol, ethanol, propanol, isopropanol, butanol, benzyl alcohol, glycerin;
Ketones such as acetone, methyl ethyl ketone, cyclopentanone, isophorone;
Ethers such as methyl ethyl ether, diethyl ether, tetrahydrofuran, dioxane;
lactones such as γ-butyrolactone and δ-butyrolactone;
lactams such as β-lactams;
Linear or cyclic amide compounds such as dimethylformamide, N-methylpyrrolidone, dimethylacetamide;
Compounds having a nitrile group, such as methylene cyanohydrin, ethylene cyanohydrin, 3,3′-thiodipropionitrile, acetonitrile;
Nitrogen-containing heterocyclic compounds such as pyridine and pyrrole;
Glycol compounds such as ethylene glycol and propylene glycol;
Diethylene glycol or derivatives such as diethylene glycol, diethylene glycol monoethyl ether, diethylene glycol ethyl butyl ether;
Examples thereof include esters such as ethyl formate, ethyl lactate, propyl lactate, methyl benzoate, methyl acetate, and methyl acrylate.
The content ratio of the specific polymer in the electrode binder composition of the present invention is preferably 20 to 60% by mass, and more preferably 25 to 50% by mass.
(Thickener)
The above thickener can be contained in the electrode binder composition of the present invention in order to further improve the applicability, charge / discharge characteristics and the like of the electrode binder composition.
Examples of such thickeners include cellulose derivatives such as carboxymethylcellulose, methylcellulose, and hydroxypropylcellulose;
In addition to polyacrylates such as sodium polyacrylate,
Polyvinyl alcohol, polyethylene oxide, polyvinyl pyrrolidone, (meth) acrylic acid-vinyl alcohol copolymer, maleic acid-vinyl alcohol copolymer, modified polyvinyl alcohol, polyethylene glycol, ethylene-vinyl alcohol copolymer, polyvinyl acetate partial ken And the like.
The content of the thickener in the electrode binder composition of the present invention is 20% by weight or less based on the total solid content of the electrode binder composition (total mass of components other than the liquid medium in the composition). It is preferably 0.1 to 10% by weight.
(Preferred embodiment of electrode binder composition)
The binder composition for electrodes of the present invention is preferably in the form of a latex in which the specific polymer is in the form of particles and dispersed in an aqueous medium. As the electrode binder composition of the present invention, the polymerization reaction mixture after synthesizing (polymerizing) the specific polymer as described above in an aqueous medium is used as it is after adjusting the liquidity as necessary. It is particularly preferred. Therefore, the electrode binder composition of the present invention can contain other components such as an emulsifier, a polymerization initiator or a residue thereof, a surfactant, and a neutralizer in addition to the polymer particles and the aqueous medium. The content ratio of these other components is preferably 3% by weight or less, more preferably 2% by weight or less as a ratio of the total weight of the other components to the solid content of the composition.
The solid content concentration of the electrode binder composition (the ratio of the total mass of components other than the liquid medium in the composition to the total mass of the composition) is preferably 20 to 60% by weight, 25 More preferably, it is ~ 50% by weight.
The liquid property of the binder composition for electrodes is preferably near neutral, more preferably pH 6.0 to 8.5, and particularly preferably pH 7.0 to 8.0. For adjusting the liquidity of the composition, a known water-soluble acid or base can be used. Examples of the acid include hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid and the like;
Examples of the base include sodium hydroxide, potassium hydroxide, lithium hydroxide, and aqueous ammonia.
The binder composition for electrodes of the present invention contains a polymer having a structural unit (A) and a structural unit (B). Therefore, as will be apparent from the examples described later, high binding properties are obtained, and the electrochemical device is excellent in both discharge rate characteristics in a low temperature environment and electrochemical stability in a high temperature environment. Can be given.
<Slurry for electrodes>
The slurry for an electrode of the present invention is
Electrode active material and
The electrode binder composition of the present invention as described above
Containing. The electrode slurry of the present invention may contain other components as required in addition to the electrode active material and the electrode binder composition of the present invention.
(Electrode active material)
The electrode active material is appropriately selected according to the type of the target electrochemical device.
When the electrode binder composition of the present invention is applied to an electrode slurry (positive electrode slurry) for forming a positive electrode of a lithium ion secondary battery, examples of the electrode active material (positive electrode active material) include lithium cobalt oxide. Lithium nickelate, lithium manganate, lithium iron phosphate, ternary nickel cobalt lithium manganate and the like can be suitably used.
When the electrode binder composition of the present invention is applied to an electrode slurry (negative electrode slurry) for forming a negative electrode of a lithium ion secondary battery, examples of the electrode active material (negative electrode active material) include carbon materials, Carbon or the like can be suitably used. Examples of the carbon material include carbon materials obtained by firing organic polymer compounds, coke, pitch, and the like. Examples of the organic polymer compounds that are precursors of the carbon materials include phenol resins and polyacrylonitrile. And cellulose. Examples of the carbon include artificial graphite and natural graphite.
When the electrode binder composition of the present invention is applied to an electrode slurry for forming an electrode for an electric double layer capacitor, examples of the electrode active material include graphite, non-graphitizable carbon, and hard carbon;
Carbon material obtained by firing coke, pitch, etc .;
A polyacene organic semiconductor (PAS) or the like can be used.
(Other ingredients)
The electrode slurry of the present invention may further contain a thickener, a dispersant, a surfactant, an antifoaming agent, and the like as necessary.
As said thickener, the same thing as what was illustrated above as a thickener which the binder composition for electrodes of this invention can contain arbitrarily;
Examples of the dispersant include sodium hexametaphosphate, sodium tripolyphosphate, and sodium polyacrylate;
Examples of the surfactant include a nonionic surfactant or an anionic surfactant as a latex stabilizer.
The content ratio of these other components is preferably 10% by weight or less based on the total solid content of the slurry for electrodes of the present invention (total mass of components other than the liquid medium in the composition). It is more preferable that it is ~ 5% by weight.
(Preferred embodiment of slurry for electrode)
The electrode slurry preferably contains 0.1 to 10 parts by mass, and 0.3 to 4 parts by mass of the electrode binder composition in terms of solid content with respect to 100 parts by mass of the electrode active material. More preferably. When the content ratio of the electrode binder composition is 0.1 to 10 parts by mass in terms of solid content, the specific polymer becomes difficult to dissolve in the electrolyte solution used in the electrochemical device. An adverse effect on device characteristics due to the rise can be suppressed.
The electrode slurry is prepared by mixing the electrode binder composition of the present invention, the electrode active material as described above, and other components used as necessary. As a means for mixing them, for example, a known mixing device such as a stirrer, a defoamer, a bead mill, a high-pressure homogenizer, or the like can be used.
The preparation of the electrode slurry is preferably performed under reduced pressure, thereby preventing bubbles from being generated in the obtained electrode active material layer.
The electrode slurry as described above contains the electrode binder composition of the present invention to form an electrode active material layer having high adhesion between the electrode active materials and between the electrode active material and the current collector. In addition, it is possible to provide an electrochemical device excellent in both discharge rate characteristics in a low temperature environment and electrochemical stability in a high temperature environment.
<Electrode>
The electrode in the present invention is
A current collector,
An electrode active material layer formed through a process of applying and drying the electrode slurry described above on the surface of the current collector;
Is provided. After the coating film is dried, press working is preferably performed.
(Current collector)
As the current collector, for example, a metal foil, an etching metal foil, an expanded metal, or the like can be used. Specific examples of these materials include metals such as aluminum, copper, nickel, tantalum, stainless steel, titanium, and the like, which can be appropriately selected and used according to the type of the target electrochemical device.
For example, when forming the positive electrode of a lithium ion secondary battery, it is preferable to use aluminum among the above as a collector. In this case, the thickness of the current collector is preferably 5 to 30 μm, and more preferably 8 to 25 μm.
On the other hand, when forming the negative electrode of a lithium ion secondary battery, it is preferable to use copper among the above as the current collector. In this case, the thickness of the current collector is preferably 5 to 30 μm, and more preferably 8 to 25 μm.
Furthermore, when forming an electrode for an electric double layer capacitor, it is preferable to use aluminum or copper among the above as the current collector. In this case, the thickness of the current collector is preferably 5 to 100 μm, more preferably 10 to 70 μm, and particularly preferably 15 to 30 μm.
(Formation of electrode active material layer)
The electrode active material layer in the electrode is formed by applying and drying the electrode slurry on the surface of the current collector as described above.
As a method for applying the electrode slurry onto the current collector, for example, an appropriate method such as a doctor blade method, a reverse roll method, a comma bar method, a gravure method, or an air knife method can be applied.
The coating film is preferably dried in a temperature range of 20 to 250 ° C., more preferably 50 to 150 ° C., preferably for 1 to 120 minutes, more preferably 5 to 60 minutes.
The dried coating film is preferably subjected to press working. Examples of means for performing the pressing include a roll press machine, a high-pressure super press machine, a soft calendar, and a 1-ton press machine. The press working conditions are appropriately set according to the type of processing machine used and the desired thickness and density of the electrode active material layer.
The electrode active material layer has a thickness of 40 to 100 μm and a density of 1.3 to 2.0 g / cm. 3 It is preferable that
(Characteristics of electrode)
The electrode formed as described above is
Since the electrode active material layer is formed using the electrode slurry containing the binder composition of the present invention, the electrode active material layer has high adhesion between the electrode active materials and between the electrode active material and the current collector. Is. Further, when this electrode is used, an electrochemical device excellent in both discharge rate characteristics in a low temperature environment and electrochemical stability in a high temperature environment can be obtained.
The electrode of the present invention can be suitably used as an electrode of an electrochemical device such as a lithium ion secondary battery, an electric double layer capacitor, or a lithium ion capacitor.
In the case of constituting a secondary battery such as a lithium ion secondary battery, the electrode formed using the binder composition of the present invention exhibits a performance superior to that of the prior art, both as a positive electrode and a negative electrode. As is clear from the examples, it is preferable in that a higher effect can be obtained when used as a positive electrode.
<Electrochemical device>
The electrochemical device in the present invention includes the electrode as described above.
The electrochemical device according to the present invention has a structure in which the electrode as described above is opposed to the counter electrode via the electrolytic solution, and is preferably isolated by the presence of the separator.
As a manufacturing method thereof, for example, two electrodes (two of a positive electrode and a negative electrode or two of a capacitor electrode) are overlapped via a separator, and this is wound or folded in accordance with the battery shape. And injecting the electrolyte into the battery container and sealing it. The shape of the battery can be an appropriate shape such as a coin shape, a button shape, a sheet shape, a cylindrical shape, a square shape, or a flat shape.
The electrolytic solution is appropriately selected and used according to the type of target electrochemical device. As the electrolytic solution, a solution in which an appropriate electrolyte is dissolved in a solvent is used.
When manufacturing a lithium ion secondary battery, a lithium compound is used as an electrolyte. Specifically, for example, LiClO 4 , LiBF 4 , LiI, LiPF 6 , LiCF 3 SO 3 , LiAsF 6 , LiSbF 6 LiAlCl 4 , LiCl, LiBr, LiB (C 2 H 5 ) 4 , LiCH 3 SO 3 , LiC 4 F 9 SO 3 , Li (CF 3 SO 2 ) 2 N etc. can be mentioned. The electrolyte concentration in this case is preferably 0.5 to 3.0 mol / L, more preferably 0.7 to 2.0 mol / L.
When manufacturing an electric double layer capacitor, for example, tetraethylammonium tetrafluoroborate, triethylmethylammonium tetrafluoroborate, tetraethylammonium hexafluorophosphate or the like is used as an electrolyte. The electrolyte concentration in this case is preferably 0.5 to 3.0 mol / L, more preferably 0.7 to 2.0 mol / L.
The type and concentration of the electrolyte in manufacturing the lithium ion capacitor are the same as in the case of the lithium ion secondary battery.
In any case, examples of the solvent used in the electrolyte include carbonates such as propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, and methyl ethyl carbonate;
lactones such as γ-butyrolactone;
Ethers such as trimethoxysilane, 1,2-dimethoxyethane, diethyl ether, 2-ethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran;
Sulfoxides such as dimethyl sulfoxide;
Oxolane derivatives such as 1,3-dioxolane, 4-methyl-1,3-dioxolane;
Nitrogen-containing compounds such as acetonitrile and nitromethane;
Esters such as methyl formate, methyl acetate, butyl acetate, methyl propionate, ethyl propionate, phosphate triester;
Glyme compounds such as diglyme, triglyme and tetraglyme;
Ketones such as acetone, diethyl ketone, methyl ethyl ketone, methyl isobutyl ketone;
Sulfone compounds such as sulfolane;
Oxazolidinone derivatives such as 2-methyl-2-oxazolidinone;
Examples include sultone compounds such as 1,3-propane sultone, 1,4-butane sultone, 2,4-butane sultone, and 1,8-naphtha sultone.
Such an electrochemical device has high adhesion between the electrode active materials and between the electrode active material and the current collector in the electrode active material layer, and also has a discharge rate characteristic in a low temperature environment and electrochemical in a high temperature environment. Excellent in both stability and stability. Therefore, this electrochemical device is suitable as a secondary battery or a capacitor mounted on an automobile such as an electric vehicle, a hybrid car, and a truck, as well as a secondary battery used for AV equipment, OA equipment, communication equipment, It is also suitable as a capacitor.
 以下、実施例および比較例を示して本発明について具体的に説明する。しかしながら本発明はこれらの実施例に限定されるものではない。
 以下の実施例および比較例における「部」は、特に断らない限り質量基準である。
 以下の実施例および比較例における電極および電気化学デバイスの評価方法は、それぞれ下記の通りである。
<電極の評価>
(1)電極活物質層のピール強度
 電極(積層体)から幅2cm×長さ12cmの試験片を切り出した。この試験片の電極活物質層側の表面を、両面テープによりアルミニウム板に貼り付けた。アルミニウム板上の試験片の集電体側表面に、幅が18mmのテープ(JIS Z1522準拠品、商品名「セロテープ(登録商標)」、ニチバン(株)製)を貼り付けた。
 アルミニウム板との角度を90°に維持しつつ、このテープを上方向に50mm/分の速度で引き上げて剥離角度90°で剥離したときの剥離強度(mN/2cm)を6回測定し、その平均値を電極活物質層のピール強度(mN/2cm)として算出した。なお「mN/2cm」は、幅2cmあたりの剥離強度を示す単位である。
 ピール強度の値が大きいほど、集電体と電極活物質層との密着強度が高く、集電体から電極活物質層が剥離し難いと判断することができる。特に、この値が90mN/2cm以上である場合、良好である。
<リチウムイオン二次電池の評価>
(1)低温レート特性(3.0C/0.2C)
 先ず、リチウムイオン二次電池を−20℃で定電流(0.2C)・定電圧(3.8V)方式により充電して定電流(0.2C)方式により放電するサイクルを3回繰り返した後の放電容量(C0.2)を測定した。次いで、この電池を−20℃で定電流(0.2C)・定電圧(3.8V)方式で充電し、定電流(3.0C)方式で放電したときの放電容量(C3.0)を測定した。
 これらの測定値を用いて、下記数式によってリチウムイオン二次電池の低温レート特性(3.0C/0.2C)(%)を算出した。
 低温レート特性(%)={(C3.0)÷(C0.2)}×100
 この低温レート特性の値が大きいほど、低温環境下における電極の特性変化が小さいと判断することができる。特に、この値が80%以上である場合、良好である。
 なお、測定条件において「1C」とは、ある一定の電気容量を有するセルを定電流放電して1時間で放電終了となる電流値のことを示す。たとえば「0.1C」とは、10時間かけて放電終了となる電流値のことであり、10Cとは0.1時間かけて放電完了となる電流値のことをいう。
(2)高温環境下の自己放電率
 先ず、リチウムイオン二次電池を常温(25℃)で定電流(0.2C)・定電圧(3.8V)方式により充電し、定電流(0.2C)方式により放電したときの放電容量(Cbefore)を測定した。次いで、この電池を常温(25℃)で定電流(0.2C)・定電圧(3.8V)方式により充電して85℃にて3日間静置した後、常温(25℃)まで放冷したうえで定電流(0.2C)方式により放電したときの放電容量(Cafter)を測定した。
 これらの測定値を用い、下記式によって自己放電率(%)を算出した。
 自己放電率(%)=[{(Cbefore)−(Cafter)}÷(Cbefore)]×100
 この自己放電率の値が小さいほど、高温環境下における自己放電が抑制されていると判断することができる。特に、この値が30%未満である場合、良好である。
(3)サイクル特性
 リチウムイオン二次電池を定電流(0.2C)・定電圧(3.8V)方式により充電し、定電流(0.2C)方式により放電するサイクルを50回繰り返した。このとき、3サイクル目の放電容量(C3Cycles)および50サイクル目の放電容量(C50Cycles)を測定し、下記式によってサイクル特性(%)を算出した。
 サイクル特性(%)={(C50Cycles)÷(C3Cycles)}×100
 このサイクル特性の値が100%に近いほど、充放電によるバインダーの酸化分解などに起因する電池特性の劣化が抑制されていると判断することができる。特にこの値が80%以上である場合、良好である。
<電気二重層キャパシタの評価>
(1)高温環境下の自己放電率(%)
 電気二重層キャパシタを常温(25℃)で定電流(10mA/F)・定電圧(2.5V)方式により1時間充電した後の電圧(Vbefore)を測定した。次いで、この電気二重層キャパシタを85℃で3日間放置した後の電圧(Vafter)を測定した。
 これらの測定値を用い、下記式によって自己放電率(%)を算出した。
 自己放電率(%)=[{(Vbefore)−(Vafter)}÷(Vbefore)]×100
 この上記自己放電率の値が小さいほど、高温環境下における自己放電が抑制されていると判断することができる。特にこの値が30%未満である場合、良好である。
(2)サイクル特性
 電気二重層キャパシタを定電流(1C)・定電圧(3.5V)方式により充電し、定電流(1C)方式により放電するサイクルを100回繰り返した。このとき、3サイクル目の放電容量(C3Cycles)および100サイクル目の放電容量(C100Cycles)を測定し、下記式によってサイクル特性(%)を算出した。
 サイクル特性(%)={(C100Cycles)÷(C3Cycles)}×100
 このサイクル特性の値が100%に近いほど、充放電によるバインダーの酸化分解などに起因する電池特性の劣化が抑制されていると判断することができる。特にこの値が80%以上である場合、良好である。
<電極用バインダー組成物の調製例>
実施例1
 容量7リットルのセパラブルフラスコに、水150部およびドデシルベンゼンスルホン酸ナトリウム0.2部を仕込み、セパラブルフラスコの内部を十分に窒素置換した。
 一方、別の容器に、水60部、乳化剤としてエーテルサルフェート型乳化剤(商品名「アデカリアソープSR1025」、(株)ADEKA製)を固形分換算で0.8部ならびにモノマーとして2,2,2−トリフルオロエチルメタクリレート25部、アクリロニトリル25部、メチルメタクリレート10部、2−エチルヘキシルアクリレート40部およびメタクリル酸5部を加え、十分に攪拌して上記モノマーの混合物を含有するモノマー乳化液を調製した。
 その後、上記セパラブルフラスコの内部の昇温を開始し、当該セパラブルフラスコの内部の温度が60℃に到達した時点で、重合開始剤として過硫酸アンモニウム0.5部を加えた。そして、セパラブルフラスコの内部の温度が70℃に到達した時点で、上記で調製したモノマー乳化液の添加を開始し、セパラブルフラスコの内部の温度を70℃に維持したままモノマー乳化液を3時間かけてゆっくりと添加した。その後、セパラブルフラスコの内部の温度を85℃に昇温し、この温度を3時間維持して重合反応を行った。3時間後、セパラブルフラスコを冷却して反応を停止した後、アンモニウム水を加えてpHを7.6に調整することにより、電極用バインダー組成物(s1)を調製した。
 得られた電極用バインダー組成物(s1)の固形分濃度は30質量%であった。電極用バインダー組成物(s1)中の重合体は、ガラス転移温度が−10℃であり、数平均粒子径が100nmの粒子状であった。
実施例2~6ならびに比較例1~5および7
 下記第1表に示した配合処方に従ってモノマーを用いたほかは上記実施例1と同様に実施して、電極用バインダー組成物(s2)~(s6)ならびに(r1)~(r5)および(r7)を、それぞれ調製した。
 得られた各電極用バインダー組成物中の重合体のガラス転移温度および重合体粒子の数平均粒子径を、下記第1表に合わせて示した。
実施例7
 容量7リットルのセパラブルフラスコに、水150部およびドデシルベンゼンスルホン酸ナトリウム0.2部を仕込み、セパラブルフラスコの内部を十分に窒素置換した。
 一方、別の容器に、水60部、乳化剤としてエーテルサルフェート型乳化剤(商品名「アデカリアソープSR1025」、(株)ADEKA製)を固形分換算で0.8部ならびにモノマーとして2,2,2−トリフルオロエチルメタクリレート25部、アクリロニトリル25部、メチルメタクリレート10部、2−エチルヘキシルアクリレート40部およびメタクリル酸5部を加え、十分に攪拌して上記モノマーの混合物を含有するモノマー乳化液を調製した。
 このモノマー乳化液の全量を、上記セパラブルフラスコに添加した後、昇温を開始し、当該セパラブルフラスコの内部の温度が60℃に到達した時点で、重合開始剤として過硫酸アンモニウム0.5部を加えた。次いで、セパラブルフラスコの内部の温度を70℃に昇温し、この温度を3時間維持した後、温度を85℃に昇温してさらに3時間重合反応を行った。その後、セパラブルフラスコを冷却して反応を停止した後、アンモニウム水を加えてpHを7.6に調整することにより、電極用バインダー組成物(s7)を調製した。得られた電極用バインダー組成物(s7)の固形分濃度は30質量%であった。電極用バインダー組成物(s7)中の重合体は、ガラス転移温度が−10℃であり、数平均粒子径が100nmの粒子状であった。
比較例6
 下記第1表に示した配合処方に従ってモノマーを用いたほかは上記実施例7と同様に実施して、電極用バインダー組成物(r6)を調製した。
 得られた電極用バインダー組成物(r6)中の重合体のガラス転移温度および重合体粒子の数平均粒子径を、下記第1表に合わせて示した。
実施例8
 攪拌機を備えた温度調節の可能なオートクレーブ中に、水200部、ドデシルベンゼンスルホン酸ナトリウム0.6部、過硫酸カリウム1.0部および重亜硫酸ナトリウム0.5部ならびにモノマーとして2,2,2−トリフルオロエチルメタクリレート25部、アクリロニトリル25部、スチレン16部、ブタジエン35部およびメタクリル酸4部を一括して仕込み、80℃で6時間重合反応を行い、重合体分散液を得た。その後、得られた重合体分散液にアンモニウム水溶液を加えてpHを7.4に調整し、増粘剤としてポリアクリル酸ソーダ1部を添加した後、残留したモノマーについて水蒸気蒸留による除去処理を行った後、減圧下で固形分濃度が48質量%となるまで濃縮することにより、電極用バインダー組成物(s8)を調製した。
 得られた電極用バインダー組成物(s8)中の重合体のガラス転移温度および重合体粒子の数平均粒子径を、下記第1表に合わせて示した。
比較例8
 下記第1表に示した配合処方に従ってモノマーを用いたほかは上記実施例8と同様に実施して、電極用バインダー組成物(r8)を調製した。
 得られた電極用バインダー組成物(r8)中の重合体のガラス転移温度および重合体粒子の数平均粒子径を、下記第1表に合わせて示した。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-I000007
<リチウムイオン二次電池の製造および評価(1)、本発明の電極用バインダー組成物を正極に適用した例>
実施例9~15および比較例9~15
 上記実施例1~7および比較例1~7で調製した電極用バインダー組成物(s1)~(s7)および(r1)~(r7)を用いて、以下のようにしてリチウムイオン二次電池を製造し、評価した。
(1)リチウムイオン二次電池用正極の製造
 二軸型プラネタリーミキサー(商品名「TKハイビスミックス 2P−03」、プライミクス(株)製)に、増粘剤(商品名「CMC800H」、ダイセル化学工業(株)製)1部(固形分換算)、正極活物質としてリン酸鉄リチウム100部(固形分換算)、導電剤としてアセチレンブラック5部(固形分換算)および水70部を投入し、60rpmで1時間撹拌を行った。その後、上記実施例および比較例で調製した各電極用バインダー組成物2部(固形分換算)を加え、さらに1時間撹拌してペーストを得た。得られたペーストに水90部を追加して固形分濃度を40質量%に調整した後、撹拌脱泡機(商品名「あわとり練太郎」、(株)シンキー製)を使用して、200rpmで2分間、次いで1,800rpmで5分間、さらに減圧下において1,800rpmで1.5分間撹拌・混合することにより、正極用スラリーを調製した。
 次いで、厚み30μmのアルミニウム箔からなる集電体の表面に、上記で調製した正極用スラリーを、乾燥後の塗膜の膜厚が90μmとなるようドクターブレード法によって均一に塗布し、120℃で20分間乾燥して塗膜を得た。その後、膜の密度が1.7g/cmとなるようにロールプレス機を使用してプレス加工を施すことにより、電極活物質層を形成して積層体を形成した。この積層体に対して打ち抜き加工を施すことにより、直径が15.95mmの円盤状のリチウムイオン二次電池用正極を製造した。
 得られた各リチウムイオン二次電池用正極における電極活物質層のピール強度を下記第2表に示した。
(2)リチウムイオン二次電池用負極の製造
 二軸型プラネタリーミキサー(プライミクス(株)製、商品名「TKハイビスミックス 2P−03」)に、ポリフッ化ビニリデン(PVDF)4部(固形分換算)、負極活物質としてグラファイト100部(固形分換算)、N−メチルピロリドン(NMP)80部を投入し、60rpmで1時間撹拌を行った。その後、さらにNMP20部を投入した後、撹拌脱泡機((株)シンキー製、製品名「あわとり練太郎」)を使用して、200rpmで2分間、次いで1,800rpmで5分間、さらに減圧下において1,800rpmで1.5分間撹拌・混合することにより、負極用スラリーを調製した。
 厚み20μmの銅箔からなる集電体の表面に、上記で調製した負極用スラリーを、乾燥後の膜厚が150μmとなるようにドクターブレード法によって均一に塗布し、120℃で20分間乾燥し塗膜を得た。その後、膜の密度が1.8g/cmとなるようにロールプレス機を使用してプレス加工して積層体を形成した。この積層体に対して打ち抜き加工を施すことにより、直径が16.16mmの円盤状のリチウムイオン二次電池用負極を製造した。
(3)リチウムイオン二次電池の製造
 グローブボックス内で、2極式コインセル(商品名「HSフラットセル」、宝泉(株)製)に、リチウムイオン二次電池用負極を載置した。次いでこの負極上に、直径18mmの円盤状のポリプロピレン製多孔膜からなるセパレータ(商品名「セルガード#2400」、セルガード(株)製)を載置し、さらに、空気が入らないように電解液を注入した。次いで、このセパレータ上にリチウムイオン二次電池用正極を載置した後、前記2極式コインセルの外装ボディーをネジで締めて封止することにより、リチウムイオン二次電池を製造した。
 ここで使用した電解液は、エチレンカーボネート/エチルメチルカーボネート=1/1(質量比)の溶媒に、LiPFを濃度1mol/Lの濃度で溶解した溶液である。
 得られた各リチウムイオン二次電池の低温レート特性、高温環境下の自己放電率およびサイクル特性を、下記第2表に示した。
Figure JPOXMLDOC01-appb-T000008
 第2表の結果から理解されるように、本発明の電極用バインダー組成物(s1)~(s7)を用いると、電極活物質層のピール強度が高いリチウムイオン二次電池用正極が得られる。そして、このような正極を備えたリチウムイオン二次電池は、低温環境下における放電レート特性と、高温環境下における電気化学的安定性と、の双方に優れたものであることが確認された。
 特に、特定のフッ素含有(メタ)アクリレートとして2,2,2−トリフルオロエチルメタクリレートを用い、α,β−不飽和ニトリル化合物としてアクリロニトリルを用いた電極用バインダー組成物(s1)~(s3)は、電極活物質層のピール強度が一層高いリチウムイオン二次電池用正極が得られ、しかも、低温環境下における放電レート特性および高温環境下における電気化学的安定性に一層優れたリチウムイオン二次電池が得られることが確認された。
<リチウムイオン二次電池の製造および評価(2)、本発明の電極用バインダー組成物を負極に適用した例>
実施例16~18および比較例16~18
 上記実施例1、7および8ならびに比較例5、6および8で調製した電極用バインダー組成物(s1)、(s7)および(s8)ならびに(r5)~(r6)および(r8)をそれぞれ用いて、以下のようにしてリチウムイオン二次電池を製造し、評価した。
(1)リチウムイオン二次電池用負極の製造
 二軸型プラネタリーミキサー(商品名「TKハイビスミックス 2P−03」、プライミクス(株)製)に、増粘剤(商品名「CMC2200」、ダイセル化学工業(株)製)1部(固形分換算)、負極活物質としてグラファイト100部(固形分換算)および水68部を投入し、60rpmで1時間撹拌を行った。その後、上記実施例および比較例で調製した各電極用バインダー組成物1部(固形分換算)を加え、さらに1時間撹拌してペーストを得た。得られたペーストに水34部を追加して固形分濃度を50質量%に調整した後、撹拌脱泡機(商品名「あわとり練太郎」、(株)シンキー製)を使用して、200rpmで2分間、次いで1,800rpmで5分間、さらに減圧下において1,800rpmで1.5分間撹拌・混合することにより、負極用スラリーを調製した。
 次いで、厚み20μmの銅箔からなる集電体の表面に、上記で調製した負極用スラリーを、乾燥後の塗膜の膜厚が80μmとなるようドクターブレード法によって均一に塗布し、120℃で20分間乾燥して塗膜を得た。その後、膜の密度が1.8g/cmとなるようにロールプレス機を使用してプレス加工を施すことにより、電極活物質層を形成して積層体を形成した。この積層体に対して打ち抜き加工を施すことにより、直径が16.16mmの円盤状のリチウムイオン二次電池用負極を製造した。
 得られた各リチウムイオン二次電池用負極における電極活物質層のピール強度を下記第3表に示した。
(2)リチウムイオン二次電池用正極の製造
 二軸型プラネタリーミキサー(商品名「TKハイビスミックス 2P−03」、プライミクス(株)製)に、ポリフッ化ビニリデン5部(固形分換算)、正極活物質としてリン酸鉄リチウム100部(固形分換算)、導電剤としてアセチレンブラック5部(固形分換算)およびN−メチルピロリドン(NMP)25部を投入し、60rpmで1時間撹拌を行った。次いで、さらにNMP10部を投入した後、撹拌脱泡機(商品名「あわとり練太郎」、(株)シンキー製)を使用して、200rpmで2分間、次いで1,800rpmで5分間、さらに減圧下において1,800rpmで1.5分間撹拌・混合することにより、正極用スラリーを調製した。
 次いで、厚み30μmのアルミニウム箔からなる集電体の表面に、上記で調製した正極用スラリーを、乾燥後の塗膜の膜厚が90μmとなるようドクターブレード法によって均一に塗布し、120℃で20分間乾燥して塗膜を得た。その後、膜の密度が1.7g/cmとなるようにロールプレス機を使用してプレス加工を施すことにより、電極活物質層を形成して積層体を形成した。この積層体に対して打ち抜き加工を施すことにより、直径が15.95mmの円盤状のリチウムイオン二次電池用正極を製造した。
(3)リチウムイオン二次電池の製造
 上記で製造した負極および正極を用いたほかは、上記実施例9~15および比較例9~15と同様にしてリチウムイオン二次電池を製造し、評価した。
 評価結果は第3表に示した。
Figure JPOXMLDOC01-appb-T000009
 第3表の結果から理解されるように、本発明の電極用バインダー組成物(s1)、(s7)および(s8)を用いると、電極活物質層のピール強度が高いリチウムイオン二次電池用負極が得られる。そして、このような負極を備えたリチウムイオン二次電池は、低温環境下における放電レート特性と、高温環境下における電気化学的安定性と、の双方に優れたものであることが確認された。
 ただし、本発明の電極用バインダー組成物をリチウムイオン二次電池用正極に適用した場合と比較すると、低温レート特性および高温環境下の自己放電率については実施例と比較例との間の差が小さい(上記第2表参照)。このことから、本発明の電極用バインダー組成物は、これを正極に適用する場合により大きい効果が得られることが分かった。
<電気二重層キャパシタの製造および評価、本発明の電極用バインダー組成物をキャパシタ用電極に適用した例>
実施例19および20ならびに比較例19~21
(1)電気二重層キャパシタ用電極の製造
 二軸型プラネタリーミキサー(商品名「TKハイビスミックス 2P−03」、プライミクス(株)製)に、電極活物質として活性炭(商品名「クラレコールYP」、クラレケミカル(株)製)100部、導電性カーボン(商品名「デンカブラック」、電気化学工業(株)製)6部、増粘剤(商品名「CMC2200」、ダイセル化学工業(株)製)2部および水278部を投入し、60rpmで1時間撹拌を行った。その後、上記実施例および比較例で製造した各電極用バインダー組成物4部(固形分換算)を加え、さらに1時間撹拌してペーストを得た。得られたペーストに水58部を追加して固形分濃度を25質量%に調整した後、撹拌脱泡機(商品名「あわとり練太郎」、(株)シンキー製)を使用して、200rpmで2分間、次いで1,800rpmで5分間、さらに減圧下において1,800rpmで1.5分間撹拌・混合することにより、電極用スラリーを調製した。
 次いで、厚み20μmのアルミニウム箔からなる集電体の表面に、上記で調製した正極用スラリーを、乾燥後の塗膜の膜厚が150μmとなるようドクターブレード法によって均一に塗布し、120℃で20分間乾燥して塗膜を得た。その後、膜の密度が1.5g/cmとなるようにロールプレス機を使用してプレス加工を施すことにより、電極活物質層を形成して積層体を形成した。この積層体に対して打ち抜き加工を施すことにより、直径が15.95mmおよび16.16mmの2種類の円盤状の電気二重層キャパシタ用電極を製造した。
 得られた電気二重層キャパシタ用電極における電極活物質層のピール強度を下記第4表に示した。
(2)電気二重層キャパシタの製造および評価
 グローブボックス内で、2極式コインセル(商品名「HSフラットセル」、宝泉(株)製)に、直径16.16mmの電気二重層キャパシタ用電極を載置した。次いでこの電極上に、直径18mmの円盤状のセルロース系セパレータ(商品名「TF4535」、ニッポン高度紙工業(株)製)を載置し、さらに、空気が入らないように電解液を注入した。次いで、このセパレータ上に直径15.95mmの電気二重層キャパシタ用電極を載置した後、前記2極式コインセルの外装ボディーをネジで締めて封止することにより、電気二重層キャパシタを製造した。
 ここで使用した電解液は、1mol/L濃度のトリエチルメチルアンモニウムテトラフルオロボレートを含有するプロピレンカーボネート溶液である。
 得られた各電気二重層キャパシタの高温環境下の自己放電率およびサイクル特性を、下記第4表に示した。
Figure JPOXMLDOC01-appb-T000010
 第4表の結果から、本発明の電極用バインダー組成物(s1)および(s7)を用いると、低温環境下における放電レート特性と、高温環境下における電気化学的安定性と、の双方に優れる電気二重層キャパシタが得られることが分かった。
Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples. However, the present invention is not limited to these examples.
“Parts” in the following examples and comparative examples are based on mass unless otherwise specified.
The evaluation methods of electrodes and electrochemical devices in the following examples and comparative examples are as follows.
<Evaluation of electrode>
(1) Peel strength of electrode active material layer A test piece having a width of 2 cm and a length of 12 cm was cut out from the electrode (laminate). The surface of the test piece on the electrode active material layer side was attached to an aluminum plate with a double-sided tape. A tape having a width of 18 mm (JIS Z1522-compliant product, trade name “Cerotape (registered trademark)”, manufactured by Nichiban Co., Ltd.) was attached to the current collector side surface of the test piece on the aluminum plate.
While maintaining the angle with the aluminum plate at 90 °, the peel strength (mN / 2 cm) when this tape was pulled upward at a speed of 50 mm / min and peeled at a peel angle of 90 ° was measured 6 times. The average value was calculated as the peel strength (mN / 2 cm) of the electrode active material layer. “MN / 2 cm” is a unit indicating the peel strength per 2 cm width.
It can be determined that the greater the peel strength value, the higher the adhesion strength between the current collector and the electrode active material layer, and the more difficult the electrode active material layer peels from the current collector. In particular, this value is good when it is 90 mN / 2 cm or more.
<Evaluation of lithium ion secondary battery>
(1) Low temperature rate characteristics (3.0C / 0.2C)
First, after repeating a cycle of charging a lithium ion secondary battery at −20 ° C. by a constant current (0.2 C) / constant voltage (3.8 V) method and discharging by a constant current (0.2 C) method three times. The discharge capacity (C 0.2 ) of was measured. Next, this battery was charged at −20 ° C. by a constant current (0.2 C) / constant voltage (3.8 V) method and discharged by a constant current ( 3.0 C) method (C 3.0 ). Was measured.
Using these measured values, the low temperature rate characteristic (3.0 C / 0.2 C) (%) of the lithium ion secondary battery was calculated by the following formula.
Low-temperature rate characteristic (%) = {(C 3.0 ) ÷ (C 0.2 )} × 100
It can be determined that the larger the value of the low temperature rate characteristic is, the smaller the change in the characteristic of the electrode is in the low temperature environment. In particular, this value is good when it is 80% or more.
In the measurement conditions, “1C” indicates a current value at which discharge is completed in one hour after constant current discharge of a cell having a certain electric capacity. For example, “0.1 C” is a current value at which discharge is completed over 10 hours, and 10 C is a current value at which discharge is completed over 0.1 hours.
(2) Self-discharge rate in a high temperature environment First, a lithium ion secondary battery is charged at a normal temperature (25 ° C.) by a constant current (0.2 C) / constant voltage (3.8 V) method, and a constant current (0.2 C) is obtained. ) The discharge capacity (C before ) when discharged by the method was measured. Next, the battery was charged at a normal temperature (25 ° C.) by a constant current (0.2 C) / constant voltage (3.8 V) method, left at 85 ° C. for 3 days, and then allowed to cool to normal temperature (25 ° C.). In addition, the discharge capacity (C after ) when discharged by the constant current (0.2 C) method was measured.
Using these measured values, the self-discharge rate (%) was calculated by the following formula.
Self-discharge rate (%) = [{(C before ) − (C after )} ÷ (C before )] × 100
It can be determined that the smaller the value of the self-discharge rate, the more self-discharge is suppressed in a high temperature environment. In particular, this value is good when it is less than 30%.
(3) Cycle characteristics A cycle in which a lithium ion secondary battery was charged by a constant current (0.2 C) / constant voltage (3.8 V) system and discharged by a constant current (0.2 C) system was repeated 50 times. In this case, the third cycle discharge capacity (C 3Cycles) and 50th cycle discharge capacity (C 50Cycles) was measured to calculate the cycle characteristics (%) by the following equation.
Cycle characteristics (%) = {(C 50 Cycles ) / (C 3 Cycles )} × 100
It can be determined that the deterioration of the battery characteristics due to the oxidative decomposition of the binder due to charging and discharging is suppressed as the value of the cycle characteristics is closer to 100%. In particular, this value is good when it is 80% or more.
<Evaluation of electric double layer capacitor>
(1) Self-discharge rate in high temperature environment (%)
The voltage (V before ) after charging the electric double layer capacitor at room temperature (25 ° C.) for 1 hour by a constant current (10 mA / F) / constant voltage (2.5 V) method was measured. Next, the voltage (V after ) after this electric double layer capacitor was left at 85 ° C. for 3 days was measured.
Using these measured values, the self-discharge rate (%) was calculated by the following formula.
Self-discharge rate (%) = [{(V before ) − (V after )} ÷ (V before )] × 100
It can be determined that the smaller the value of the self-discharge rate, the more the self-discharge is suppressed in a high temperature environment. In particular, this value is good when it is less than 30%.
(2) Cycle characteristics The cycle in which the electric double layer capacitor was charged by the constant current (1C) / constant voltage (3.5 V) method and discharged by the constant current (1C) method was repeated 100 times. In this case, the third cycle discharge capacity (C 3Cycles) and 100 th cycle discharge capacity (C 100Cycles) was measured to calculate the cycle characteristics (%) by the following equation.
Cycle characteristics (%) = {(C 100 Cycles ) / (C 3 Cycles )} × 100
It can be determined that the deterioration of the battery characteristics due to the oxidative decomposition of the binder due to charging and discharging is suppressed as the value of the cycle characteristics is closer to 100%. In particular, this value is good when it is 80% or more.
<Preparation Example of Electrode Binder Composition>
Example 1
In a 7-liter separable flask, 150 parts of water and 0.2 part of sodium dodecylbenzenesulfonate were charged, and the inside of the separable flask was sufficiently purged with nitrogen.
On the other hand, in another container, 60 parts of water, ether sulfate type emulsifier (trade name “ADEKA rear soap SR1025”, manufactured by ADEKA Co., Ltd.) as an emulsifier, 0.8 parts in terms of solid content, and 2,2,2 as monomers -A monomer emulsion containing 25 parts of trifluoroethyl methacrylate, 25 parts of acrylonitrile, 10 parts of methyl methacrylate, 40 parts of 2-ethylhexyl acrylate and 5 parts of methacrylic acid and containing a mixture of the above monomers was stirred well.
Thereafter, the temperature inside the separable flask was started, and when the temperature inside the separable flask reached 60 ° C., 0.5 part of ammonium persulfate was added as a polymerization initiator. Then, when the temperature inside the separable flask reaches 70 ° C., the addition of the monomer emulsion prepared above is started, and the monomer emulsion is added while maintaining the temperature inside the separable flask at 70 ° C. Slowly added over time. Thereafter, the temperature inside the separable flask was raised to 85 ° C., and this temperature was maintained for 3 hours to carry out the polymerization reaction. After 3 hours, the separable flask was cooled to stop the reaction, and ammonium water was added to adjust the pH to 7.6, thereby preparing an electrode binder composition (s1).
The solid content concentration of the obtained binder composition for electrodes (s1) was 30% by mass. The polymer in the electrode binder composition (s1) was in the form of particles having a glass transition temperature of −10 ° C. and a number average particle diameter of 100 nm.
Examples 2 to 6 and Comparative Examples 1 to 5 and 7
The electrode binder compositions (s2) to (s6) and (r1) to (r5) and (r7) were carried out in the same manner as in Example 1 except that the monomers were used in accordance with the formulation shown in Table 1 below. ) Were prepared respectively.
The glass transition temperature of the polymer in each obtained binder composition for electrodes and the number average particle diameter of the polymer particles are shown in Table 1 below.
Example 7
In a 7-liter separable flask, 150 parts of water and 0.2 part of sodium dodecylbenzenesulfonate were charged, and the inside of the separable flask was sufficiently purged with nitrogen.
On the other hand, in another container, 60 parts of water, ether sulfate type emulsifier (trade name “ADEKA rear soap SR1025”, manufactured by ADEKA Co., Ltd.) as an emulsifier, 0.8 parts in terms of solid content, and 2,2,2 as monomers -A monomer emulsion containing 25 parts of trifluoroethyl methacrylate, 25 parts of acrylonitrile, 10 parts of methyl methacrylate, 40 parts of 2-ethylhexyl acrylate and 5 parts of methacrylic acid and containing a mixture of the above monomers was stirred well.
After adding the total amount of the monomer emulsion to the separable flask, the temperature increase was started, and when the temperature inside the separable flask reached 60 ° C., 0.5 parts of ammonium persulfate as a polymerization initiator was used. Was added. Next, the temperature inside the separable flask was raised to 70 ° C., and this temperature was maintained for 3 hours, and then the temperature was raised to 85 ° C. to conduct a polymerization reaction for another 3 hours. Thereafter, the separable flask was cooled to stop the reaction, and then ammonium water was added to adjust the pH to 7.6 to prepare an electrode binder composition (s7). The solid content concentration of the obtained binder composition for electrodes (s7) was 30% by mass. The polymer in the electrode binder composition (s7) was in the form of particles having a glass transition temperature of −10 ° C. and a number average particle diameter of 100 nm.
Comparative Example 6
An electrode binder composition (r6) was prepared in the same manner as in Example 7 except that the monomer was used in accordance with the formulation shown in Table 1 below.
The glass transition temperature of the polymer and the number average particle diameter of the polymer particles in the obtained binder composition for electrodes (r6) are shown in Table 1 below.
Example 8
In a temperature-controllable autoclave equipped with a stirrer, 200 parts of water, 0.6 part of sodium dodecylbenzenesulfonate, 1.0 part of potassium persulfate and 0.5 part of sodium bisulfite and 2,2,2 as monomers -25 parts of trifluoroethyl methacrylate, 25 parts of acrylonitrile, 16 parts of styrene, 35 parts of butadiene and 4 parts of methacrylic acid were charged all at once and a polymerization reaction was carried out at 80 ° C for 6 hours to obtain a polymer dispersion. Thereafter, an aqueous ammonium solution was added to the obtained polymer dispersion to adjust the pH to 7.4, 1 part of sodium polyacrylate was added as a thickener, and the remaining monomer was removed by steam distillation. Then, the binder composition for electrodes (s8) was prepared by concentrating under reduced pressure until the solid content concentration was 48% by mass.
The glass transition temperature of the polymer and the number average particle diameter of the polymer particles in the obtained electrode binder composition (s8) are shown in Table 1 below.
Comparative Example 8
An electrode binder composition (r8) was prepared in the same manner as in Example 8 except that the monomer was used in accordance with the formulation shown in Table 1 below.
The glass transition temperature of the polymer and the number average particle diameter of the polymer particles in the obtained binder composition for electrodes (r8) are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-I000007
<Production and Evaluation of Lithium Ion Secondary Battery (1), Example of Applying Binder Composition for Electrode of the Present Invention to Positive Electrode>
Examples 9 to 15 and Comparative Examples 9 to 15
Using the electrode binder compositions (s1) to (s7) and (r1) to (r7) prepared in Examples 1 to 7 and Comparative Examples 1 to 7, lithium ion secondary batteries were prepared as follows. Manufactured and evaluated.
(1) Manufacture of positive electrode for lithium ion secondary battery Biaxial planetary mixer (trade name “TK Hibismix 2P-03”, manufactured by Primics Co., Ltd.), thickener (trade name “CMC800H”, Daicel Chemical) Industrial Co., Ltd.) 1 part (in terms of solid content), 100 parts of lithium iron phosphate (in terms of solid content) as the positive electrode active material, 5 parts of acetylene black (in terms of solid content) and 70 parts of water as the conductive agent, Stirring was performed at 60 rpm for 1 hour. Thereafter, 2 parts of each electrode binder composition prepared in the above Examples and Comparative Examples (in terms of solid content) was added, and the mixture was further stirred for 1 hour to obtain a paste. After 90 parts of water was added to the obtained paste to adjust the solid content concentration to 40% by mass, it was stirred at 200 rpm using a stirring defoamer (trade name “Awatori Nertaro”, manufactured by Shinkey Co., Ltd.). The mixture was stirred and mixed for 2 minutes at 1,800 rpm for 5 minutes, and further under reduced pressure at 1,800 rpm for 1.5 minutes to prepare a positive electrode slurry.
Next, the positive electrode slurry prepared above was uniformly applied to the surface of a current collector made of an aluminum foil having a thickness of 30 μm by a doctor blade method so that the film thickness of the coated film after drying was 90 μm. The coating film was obtained by drying for 20 minutes. Then, an electrode active material layer was formed by pressing using a roll press so that the density of the film was 1.7 g / cm 3 to form a laminate. By punching the laminate, a disc-shaped positive electrode for a lithium ion secondary battery having a diameter of 15.95 mm was manufactured.
The peel strength of the electrode active material layer in each of the obtained positive electrodes for lithium ion secondary batteries is shown in Table 2 below.
(2) Manufacture of negative electrode for lithium ion secondary battery A biaxial planetary mixer (product name “TK Hibismix 2P-03” manufactured by PRIMIX Corporation) and 4 parts of polyvinylidene fluoride (PVDF) (in terms of solid content) ), 100 parts of graphite (in terms of solid content) and 80 parts of N-methylpyrrolidone (NMP) were added as the negative electrode active material, and the mixture was stirred at 60 rpm for 1 hour. Then, after adding 20 parts of NMP further, using a stirring defoamer (product name “Awatori Neraro” manufactured by Shinky Co., Ltd.), the pressure was further reduced at 200 rpm for 2 minutes and then at 1,800 rpm for 5 minutes. Below, the slurry for negative electrodes was prepared by stirring and mixing for 1.5 minutes at 1,800 rpm.
The negative electrode slurry prepared above is uniformly applied to the surface of a current collector made of copper foil having a thickness of 20 μm by a doctor blade method so that the film thickness after drying is 150 μm, and dried at 120 ° C. for 20 minutes. A coating film was obtained. Then, it pressed using the roll press machine so that the density of a film | membrane might be 1.8 g / cm < 3 >, and the laminated body was formed. By punching the laminate, a disc-shaped negative electrode for a lithium ion secondary battery having a diameter of 16.16 mm was produced.
(3) Manufacture of Lithium Ion Secondary Battery A negative electrode for a lithium ion secondary battery was placed on a bipolar coin cell (trade name “HS Flat Cell”, manufactured by Hosen Co., Ltd.) in a glove box. Next, a separator (trade name “Celguard # 2400”, manufactured by Celgard Co., Ltd.) made of a disk-shaped polypropylene porous film having a diameter of 18 mm is placed on the negative electrode, and an electrolyte solution is added so that air does not enter. Injected. Next, after placing a positive electrode for a lithium ion secondary battery on this separator, a lithium ion secondary battery was manufactured by tightening and sealing the outer body of the bipolar coin cell with a screw.
The electrolytic solution used here is a solution obtained by dissolving LiPF 6 at a concentration of 1 mol / L in a solvent of ethylene carbonate / ethyl methyl carbonate = 1/1 (mass ratio).
Table 2 below shows the low-temperature rate characteristics, the self-discharge rate under a high-temperature environment, and the cycle characteristics of each obtained lithium ion secondary battery.
Figure JPOXMLDOC01-appb-T000008
As understood from the results in Table 2, when the electrode binder compositions (s1) to (s7) of the present invention are used, a positive electrode for a lithium ion secondary battery having a high peel strength of the electrode active material layer can be obtained. . And it was confirmed that the lithium ion secondary battery provided with such a positive electrode is excellent in both discharge rate characteristics in a low temperature environment and electrochemical stability in a high temperature environment.
In particular, binder compositions for electrodes (s1) to (s3) using 2,2,2-trifluoroethyl methacrylate as the specific fluorine-containing (meth) acrylate and acrylonitrile as the α, β-unsaturated nitrile compound are as follows: In addition, a lithium ion secondary battery positive electrode for a lithium ion secondary battery having a higher peel strength of the electrode active material layer can be obtained, and further excellent in discharge rate characteristics in a low temperature environment and electrochemical stability in a high temperature environment. It was confirmed that
<Production and Evaluation of Lithium Ion Secondary Battery (2), Example of Applying Electrode Binder Composition of the Present Invention to Negative Electrode>
Examples 16 to 18 and Comparative Examples 16 to 18
The electrode binder compositions (s1), (s7) and (s8) and (r5) to (r6) and (r8) prepared in Examples 1, 7 and 8 and Comparative Examples 5, 6 and 8 were used, respectively. Thus, lithium ion secondary batteries were manufactured and evaluated as follows.
(1) Manufacture of negative electrode for lithium ion secondary battery Biaxial planetary mixer (trade name “TK Hibismix 2P-03”, manufactured by Primix Co., Ltd.), thickener (trade name “CMC2200”, Daicel Chemical) 1 part (in terms of solid content) manufactured by Kogyo Co., Ltd., 100 parts of graphite (in terms of solid content) and 68 parts of water were added as the negative electrode active material, and the mixture was stirred at 60 rpm for 1 hour. Thereafter, 1 part (in terms of solid content) of each electrode binder composition prepared in the above Examples and Comparative Examples was added and further stirred for 1 hour to obtain a paste. After adding 34 parts of water to the obtained paste and adjusting the solid content concentration to 50% by mass, using a stirring defoamer (trade name “Awatori Neritaro”, manufactured by Shinky Co., Ltd.), 200 rpm The mixture was stirred and mixed for 2 minutes at 1,800 rpm for 5 minutes and further under reduced pressure at 1,800 rpm for 1.5 minutes to prepare a negative electrode slurry.
Next, the negative electrode slurry prepared above was uniformly applied to the surface of a current collector made of copper foil having a thickness of 20 μm by a doctor blade method so that the thickness of the coating film after drying was 80 μm. The coating film was obtained by drying for 20 minutes. Then, the electrode active material layer was formed by pressing using a roll press so that the density of the film was 1.8 g / cm 3 to form a laminate. By punching the laminate, a disc-shaped negative electrode for a lithium ion secondary battery having a diameter of 16.16 mm was produced.
The peel strength of the electrode active material layer in each of the obtained negative electrodes for lithium ion secondary batteries is shown in Table 3 below.
(2) Manufacture of a positive electrode for a lithium ion secondary battery A biaxial planetary mixer (trade name “TK Hibismix 2P-03”, manufactured by Primics Co., Ltd.), 5 parts of polyvinylidene fluoride (in terms of solid content), positive electrode As active materials, 100 parts of lithium iron phosphate (in terms of solid content), 5 parts of acetylene black (in terms of solid content) and 25 parts of N-methylpyrrolidone (NMP) as the conductive agent were added and stirred at 60 rpm for 1 hour. Then, after further adding 10 parts of NMP, the mixture was further depressurized at 200 rpm for 2 minutes, then at 1,800 rpm for 5 minutes using a stirring defoamer (trade name “Awatori Nertaro”, manufactured by Shinky Co., Ltd.). A slurry for positive electrode was prepared by stirring and mixing at 1,800 rpm for 1.5 minutes below.
Next, the positive electrode slurry prepared above was uniformly applied to the surface of a current collector made of an aluminum foil having a thickness of 30 μm by a doctor blade method so that the film thickness of the coated film after drying was 90 μm. The coating film was obtained by drying for 20 minutes. Then, an electrode active material layer was formed by pressing using a roll press so that the density of the film was 1.7 g / cm 3 to form a laminate. By punching the laminate, a disc-shaped positive electrode for a lithium ion secondary battery having a diameter of 15.95 mm was manufactured.
(3) Production of lithium ion secondary battery Lithium ion secondary batteries were produced and evaluated in the same manner as in Examples 9 to 15 and Comparative Examples 9 to 15 except that the negative electrode and positive electrode produced above were used. .
The evaluation results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000009
As understood from the results in Table 3, when the electrode binder compositions (s1), (s7) and (s8) of the present invention are used, the electrode active material layer has a high peel strength for a lithium ion secondary battery. A negative electrode is obtained. And it was confirmed that the lithium ion secondary battery provided with such a negative electrode is excellent in both discharge rate characteristics in a low temperature environment and electrochemical stability in a high temperature environment.
However, when compared with the case where the binder composition for an electrode of the present invention is applied to a positive electrode for a lithium ion secondary battery, the difference between the example and the comparative example is about the low temperature rate characteristics and the self-discharge rate under a high temperature environment. Small (see Table 2 above). From this, it was found that the electrode binder composition of the present invention has a greater effect when applied to the positive electrode.
<Production and Evaluation of Electric Double Layer Capacitor, Example of Applying Electrode Binder Composition of the Present Invention to Capacitor Electrode>
Examples 19 and 20 and Comparative Examples 19-21
(1) Manufacture of electrodes for electric double-layer capacitors Activated carbon (trade name “Kuraray Coal YP”) as an electrode active material in a biaxial planetary mixer (trade name “TK Hibismix 2P-03”, manufactured by Primix Co., Ltd.) , Kuraray Chemical Co., Ltd. 100 parts, conductive carbon (trade name “Denka Black”, manufactured by Denki Kagaku Kogyo Co., Ltd.), thickener (trade name “CMC2200”, manufactured by Daicel Chemical Industries, Ltd.) ) 2 parts and 278 parts of water were added and stirred at 60 rpm for 1 hour. Thereafter, 4 parts (in terms of solid content) of each electrode binder composition produced in the above Examples and Comparative Examples were added, and the mixture was further stirred for 1 hour to obtain a paste. After adding 58 parts of water to the obtained paste to adjust the solid content concentration to 25% by mass, using a stirring defoamer (trade name “Awatori Neritaro”, manufactured by Shinky Co., Ltd.), 200 rpm For 2 minutes, then at 1,800 rpm for 5 minutes, and further under reduced pressure at 1,800 rpm for 1.5 minutes to prepare an electrode slurry.
Next, the positive electrode slurry prepared above is uniformly applied to the surface of a current collector made of an aluminum foil having a thickness of 20 μm by a doctor blade method so that the thickness of the coating film after drying becomes 150 μm. The coating film was obtained by drying for 20 minutes. Then, an electrode active material layer was formed by pressing using a roll press so that the density of the film was 1.5 g / cm 3 to form a laminate. By punching the laminate, two types of disc-shaped electrodes for electric double layer capacitors having a diameter of 15.95 mm and 16.16 mm were manufactured.
The peel strength of the electrode active material layer in the obtained electric double layer capacitor electrode is shown in Table 4 below.
(2) Manufacture and Evaluation of Electric Double Layer Capacitor An electrode for an electric double layer capacitor having a diameter of 16.16 mm is placed on a bipolar coin cell (trade name “HS Flat Cell”, manufactured by Hosen Co., Ltd.) in a glove box. Placed. Next, a disk-shaped cellulose separator having a diameter of 18 mm (trade name “TF4535”, manufactured by Nippon Kogyo Paper Industries Co., Ltd.) was placed on the electrode, and an electrolyte was injected so that air did not enter. Next, an electrode for an electric double layer capacitor having a diameter of 15.95 mm was placed on the separator, and then the outer body of the bipolar coin cell was tightened and sealed to manufacture an electric double layer capacitor.
The electrolytic solution used here is a propylene carbonate solution containing 1 mol / L triethylmethylammonium tetrafluoroborate.
Table 4 below shows the self-discharge rate and cycle characteristics of each electric double layer capacitor obtained under a high temperature environment.
Figure JPOXMLDOC01-appb-T000010
From the results of Table 4, when the electrode binder compositions (s1) and (s7) of the present invention are used, both the discharge rate characteristics under a low temperature environment and the electrochemical stability under a high temperature environment are excellent. It has been found that an electric double layer capacitor can be obtained.

Claims (7)

  1.  下記一般式(1)で表されるモノマーに由来する構造単位(A)および
    α,β−不飽和ニトリルモノマーに由来する構造単位(B)
    を有する重合体を含有し、
    前記構造単位(A)の含有割合が5~60質量%であり、
    前記構造単位(B)の含有割合が5~40質量%であり、そして
    前記構造単位(A)および前記構造単位(B)の合計の含有割合が10~70質量%であることを特徴とする、電極用バインダー組成物。
    Figure JPOXMLDOC01-appb-I000001
    (ただし、Rは水素原子またはメチル基を示し、Rは炭素数1~18のフッ素化炭化水素基を示す。)
    Structural unit (A) derived from a monomer represented by the following general formula (1) and structural unit (B) derived from an α, β-unsaturated nitrile monomer
    Containing a polymer having
    The content ratio of the structural unit (A) is 5 to 60% by mass,
    The content ratio of the structural unit (B) is 5 to 40 mass%, and the total content ratio of the structural unit (A) and the structural unit (B) is 10 to 70 mass%. The binder composition for electrodes.
    Figure JPOXMLDOC01-appb-I000001
    (However, R 1 represents a hydrogen atom or a methyl group, and R 2 represents a fluorinated hydrocarbon group having 1 to 18 carbon atoms.)
  2.  前記重合体が、さらに
    不飽和酸モノマーに由来する構造単位(C)および
    下記一般式(3)で表されるモノマーに由来する構造単位(D)
    を有し、そして
    前記組成物が正極用である、請求項1に記載の電極用バインダー組成物。
    Figure JPOXMLDOC01-appb-I000002
    (ただし、Rは水素原子またはメチル基を示し、Rは炭素数1~18の炭化水素基を示す。)
    The polymer is a structural unit derived from an unsaturated acid monomer (C) and a structural unit derived from a monomer represented by the following general formula (3) (D)
    The electrode binder composition according to claim 1, wherein the composition is for a positive electrode.
    Figure JPOXMLDOC01-appb-I000002
    (However, R 5 represents a hydrogen atom or a methyl group, and R 6 represents a hydrocarbon group having 1 to 18 carbon atoms.)
  3.  前記重合体が、さらに
    不飽和カルボン酸モノマーに由来する構造単位(C)ならびに
    共役ジエンおよび芳香族ビニルモノマーよりなる群から選択される少なくとも1種のモノマーに由来する構造単位(E)
    を有し、そして
    前記組成物が負極用である、請求項1に記載の電極用バインダー組成物。
    The polymer further comprises a structural unit (C) derived from an unsaturated carboxylic acid monomer and a structural unit (E) derived from at least one monomer selected from the group consisting of conjugated dienes and aromatic vinyl monomers.
    The electrode binder composition according to claim 1, wherein the composition is for a negative electrode.
  4.  前記重合体が、
    少なくとも重合開始剤を含有する温度40~85℃の水系媒体中に、
    モノマー混合物の乳化液を添加することによって重合を開始する工程を経て製造されたものである、請求項1~3のいずれか一項に記載の電極用バインダー組成物。
    The polymer is
    In an aqueous medium having a temperature of 40 to 85 ° C. containing at least a polymerization initiator,
    The binder composition for an electrode according to any one of claims 1 to 3, which is produced through a step of starting polymerization by adding an emulsion of a monomer mixture.
  5.  電極活物質および
    請求項1~3のいずれか一項に記載の電極用バインダー組成物
    を含有することを特徴とする、電極用スラリー。
    An electrode slurry comprising the electrode active material and the electrode binder composition according to any one of claims 1 to 3.
  6.  集電体と、
    前記集電体の表面上に、請求項5に記載の電極用スラリーを塗布して乾燥する工程を経て形成された電極活物質層と
    を備えることを特徴とする、電極。
    A current collector,
    An electrode active material layer formed through a step of applying and drying the electrode slurry according to claim 5 on the surface of the current collector.
  7.  請求項6に記載の電極を具備することを特徴とする、電気化学デバイス。 An electrochemical device comprising the electrode according to claim 6.
PCT/JP2011/068818 2010-08-20 2011-08-16 Binder composition for use in electrodes WO2012023626A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012529638A JPWO2012023626A1 (en) 2010-08-20 2011-08-16 Electrode binder composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-184539 2010-08-20
JP2010184539 2010-08-20

Publications (1)

Publication Number Publication Date
WO2012023626A1 true WO2012023626A1 (en) 2012-02-23

Family

ID=45605277

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/068818 WO2012023626A1 (en) 2010-08-20 2011-08-16 Binder composition for use in electrodes

Country Status (3)

Country Link
JP (1) JPWO2012023626A1 (en)
TW (1) TW201209116A (en)
WO (1) WO2012023626A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014024967A1 (en) * 2012-08-10 2014-02-13 日本ゼオン株式会社 Slurry composition for lithium-ion secondary cell negative electrode
KR20150021018A (en) * 2012-05-25 2015-02-27 제온 코포레이션 Lithium ion secondary battery
CN108701833A (en) * 2016-03-10 2018-10-23 日本瑞翁株式会社 Non-aqueous secondary battery binding agent for electrode, non-aqueous secondary battery electrode slurry, non-aqueous secondary battery electrode and non-aqueous secondary battery
CN109997262A (en) * 2016-11-25 2019-07-09 出光兴产株式会社 binder for electrochemical element
CN110828779A (en) * 2019-12-11 2020-02-21 东莞维科电池有限公司 Lithium ion battery negative plate, preparation method thereof and lithium ion battery
CN113613768A (en) * 2019-03-29 2021-11-05 东洋油墨Sc控股株式会社 Dispersant, dispersion, resin composition, composite material slurry, electrode film, and nonaqueous electrolyte secondary battery
JP2022074127A (en) * 2020-10-30 2022-05-17 長興材料工業股▲ふん▼有限公司 Graft copolymer and use thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006278303A (en) * 2005-03-25 2006-10-12 Nippon Zeon Co Ltd Binder for electrode of nonaqueous electrolyte secondary battery, binder composition, composition for electrode, and electrode
WO2008120786A1 (en) * 2007-03-30 2008-10-09 Zeon Corporation Binder for secondary battery electrode, secondary battery electrode, and secondary battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006278303A (en) * 2005-03-25 2006-10-12 Nippon Zeon Co Ltd Binder for electrode of nonaqueous electrolyte secondary battery, binder composition, composition for electrode, and electrode
WO2008120786A1 (en) * 2007-03-30 2008-10-09 Zeon Corporation Binder for secondary battery electrode, secondary battery electrode, and secondary battery

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101978462B1 (en) 2012-05-25 2019-05-14 제온 코포레이션 Lithium ion secondary battery
KR20150021018A (en) * 2012-05-25 2015-02-27 제온 코포레이션 Lithium ion secondary battery
JPWO2013176232A1 (en) * 2012-05-25 2016-01-14 日本ゼオン株式会社 Lithium ion secondary battery
JPWO2014024967A1 (en) * 2012-08-10 2016-07-25 日本ゼオン株式会社 Slurry composition for negative electrode of lithium ion secondary battery
WO2014024967A1 (en) * 2012-08-10 2014-02-13 日本ゼオン株式会社 Slurry composition for lithium-ion secondary cell negative electrode
CN108701833A (en) * 2016-03-10 2018-10-23 日本瑞翁株式会社 Non-aqueous secondary battery binding agent for electrode, non-aqueous secondary battery electrode slurry, non-aqueous secondary battery electrode and non-aqueous secondary battery
US20190097235A1 (en) * 2016-03-10 2019-03-28 Zeon Corporation Binder for non-aqueous secondary battery electrode, slurry for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, and non-aqueous secondary battery
US10910651B2 (en) * 2016-03-10 2021-02-02 Zeon Corporation Binder for non-aqueous secondary battery electrode, slurry for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, and non-aqueous secondary battery
CN109997262A (en) * 2016-11-25 2019-07-09 出光兴产株式会社 binder for electrochemical element
CN113613768A (en) * 2019-03-29 2021-11-05 东洋油墨Sc控股株式会社 Dispersant, dispersion, resin composition, composite material slurry, electrode film, and nonaqueous electrolyte secondary battery
CN110828779A (en) * 2019-12-11 2020-02-21 东莞维科电池有限公司 Lithium ion battery negative plate, preparation method thereof and lithium ion battery
CN110828779B (en) * 2019-12-11 2022-08-23 东莞维科电池有限公司 Lithium ion battery negative plate, preparation method thereof and lithium ion battery
JP2022074127A (en) * 2020-10-30 2022-05-17 長興材料工業股▲ふん▼有限公司 Graft copolymer and use thereof
JP7313412B2 (en) 2020-10-30 2023-07-24 長興材料工業股▲ふん▼有限公司 Graft copolymer and its use
US11827730B2 (en) 2020-10-30 2023-11-28 Eternal Materials Co., Ltd. Graft copolymer and use thereof

Also Published As

Publication number Publication date
TW201209116A (en) 2012-03-01
JPWO2012023626A1 (en) 2013-10-28

Similar Documents

Publication Publication Date Title
JP5488857B1 (en) Composition and protective film for producing protective film, and power storage device
JP5083586B2 (en) Electrode binder composition
JP5904330B2 (en) Electrode binder composition, electrode slurry, electrode, and electricity storage device
JP5163919B1 (en) Electrode binder composition
WO2012023626A1 (en) Binder composition for use in electrodes
JP2016126856A (en) Binder for secondary battery, separator for secondary battery, and secondary battery
WO2019107463A1 (en) Conductive material paste for electrochemical elements, slurry composition for electrochemical element positive electrodes and method for producing same, positive electrode for electrochemical elements, and electrochemical element
JP2018006334A (en) Slurry for lithium ion battery negative electrode, method for manufacturing the same, negative electrode for lithium ion battery, and lithium ion battery
JP2013084502A (en) Electrode binder composition
JP5446762B2 (en) Binder composition for electrochemical device electrode, slurry for electrochemical device electrode, electrochemical device electrode, and electrochemical device
JP7221592B2 (en) Composition for forming porous insulating layer, electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and method for producing electrode for non-aqueous electrolyte secondary battery
JP5057125B2 (en) Electrode binder composition, electrode slurry, electrode, and electrochemical device
JP5601476B2 (en) Electrode binder composition
JP2018006333A (en) Binder solution for lithium ion battery positive electrode, powdery binder for lithium ion battery positive electrode, slurry for lithium ion battery positive electrode, positive electrode for lithium ion battery, and lithium ion battery
JP5835581B2 (en) Binder composition for electrode of power storage device
JP5904350B1 (en) Binder composition for electricity storage device
JP2014053168A (en) Slurry for power storage device electrode, power storage device electrode, and power storage device
KR102258088B1 (en) Compositions for forming a porous insulating layer, electrode for non-aqueous electrolyte rechargeable battery having the same, method for manufacturing non-aqueous electrolyte rechargeable battery and electrode for non-aqueous electrolyte rechargeable battery
WO2015119084A1 (en) Composition for formation of lithium ion secondary battery electrode, electrode for lithium ion secondary battery, and lithium ion secondary battery, and method for producing composition for formation of lithium ion secondary battery electrode
JP2016015254A (en) Method for charging binder composition for power storage device into container
JP2016015270A (en) Binder composition for power storage device and method for producing the same
JP2014241197A (en) Composite for producing protective film, protective film, manufacture method of the same, and power storage device
JP2011009116A (en) Binder composition for electrochemical device electrodes, slurry for electrochemical device electrodes, and electrochemical device electrode
JP2016076311A (en) Binder composition for electrode
JP2013030288A (en) Binder composition for electrode

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11818266

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012529638

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11818266

Country of ref document: EP

Kind code of ref document: A1