WO2012023400A1 - Vehicle control system, drive control method for vehicle, and train control device - Google Patents

Vehicle control system, drive control method for vehicle, and train control device Download PDF

Info

Publication number
WO2012023400A1
WO2012023400A1 PCT/JP2011/067221 JP2011067221W WO2012023400A1 WO 2012023400 A1 WO2012023400 A1 WO 2012023400A1 JP 2011067221 W JP2011067221 W JP 2011067221W WO 2012023400 A1 WO2012023400 A1 WO 2012023400A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
output
vehicle
speed
electric motor
Prior art date
Application number
PCT/JP2011/067221
Other languages
French (fr)
Japanese (ja)
Inventor
俊晴 菅原
努 宮内
基也 鈴木
健志 篠宮
基巳 嶋田
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to GB1302746.1A priority Critical patent/GB2495886B/en
Publication of WO2012023400A1 publication Critical patent/WO2012023400A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/0097Predicting future conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/46Series type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/12Recording operating variables ; Monitoring of operating variables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/13Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines using AC generators and AC motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/06Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving electric generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/441Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/44Control modes by parameter estimation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/12Emission reduction of exhaust
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a vehicle control system that converts engine output into electric power and supplies AC electric power to a drive motor.
  • Patent Document 1 As a conventional technique, there is a control technique shown in Patent Document 1 as a method for accelerating a diesel electric locomotive.
  • an AC generator is driven by the power of a diesel engine, and the generated AC power is converted into DC power by a rectifier. Furthermore, DC power is converted into AC power by a power converter, and an induction motor for vehicle propulsion is driven to accelerate the train.
  • Patent Document 1 all the power for accelerating the train must be provided by the engine. Therefore, if the engine responsiveness is suppressed in order to maintain the exhaust performance of the engine, there is a problem that the engine response becomes a bottleneck, the acceleration performance deteriorates, and the journey time increases. That is, in the known technology, there is a problem of achieving both the exhaust performance of the engine and the acceleration performance of the vehicle.
  • one of the desirable aspects of the present invention includes an engine load prediction unit that predicts an increase in the output of the electric motor, and the engine before the increase in the output of the electric motor based on the prediction of the increase in the output of the electric motor.
  • a train control system characterized by increasing the number of revolutions.
  • one of the desirable aspects of the present invention includes an engine load prediction unit that predicts an increase in the output of the electric motor, and subdivides the engine output so that the engine output can follow the increase in load based on the prediction of the increase in the output of the electric motor.
  • a vehicle control system having a driver guidance device for guiding a notch.
  • the block diagram in 1st Embodiment. An inverter output command calculation method according to the first embodiment.
  • the flowchart of the engine load estimation part in 1st Embodiment. The notch prediction method with respect to the speed limit in the first embodiment.
  • the effect of the train control system in a 1st embodiment. The operation mode display apparatus and operation mode switching apparatus in 1st Embodiment.
  • the flowchart of the engine load estimation part in 2nd Embodiment. The prediction method of the notch with respect to the gradient in 2nd Embodiment.
  • the target travel speed pattern in 3rd Embodiment. The structure of the train control system in 4th Embodiment.
  • the block diagram in 4th Embodiment. The structure of the train control system in 5th Embodiment.
  • the structure of the train control system in 6th Embodiment. The block diagram in 6th Embodiment.
  • FIG. 1 shows a configuration of a train control system 2 mounted on a diesel electric locomotive 1 according to a first embodiment of the present invention.
  • the train control system 2 includes a motor 14 that drives a vehicle, an inverter 12 that generates AC power for driving the motor 14, a converter 10 that generates DC power input to the inverter from AC power generated by the generator 9, A generator 9 that generates AC power and outputs AC power to the converter, a diesel engine 8 that drives the generator 9, an inverter control device 13 that controls the inverter 12, and a converter control device 11 that controls the converter 10.
  • An engine control device 7 that controls the diesel engine 8, a train control device 6 that issues a command to each control device, a master controller 3 that detects the notch operation of the driver, and a speed detection device 4 that detects the speed of the vehicle
  • the operation mode of the route database 5 storing the speed limit data and the train control device 6 is switched.
  • each device constituting the train control system 2 is distributed and arranged in a plurality of vehicles. May be.
  • a so-called DEMU Diesel-electric multiple unit in which the train control system 2 excluding the master controller 3 is mounted on a plurality of vehicles may be used.
  • Train control device 6 receives a notch command from master controller 3, vehicle speed from speed detection device 4, and speed limit data shown in FIG.
  • the speed detection apparatus 4 calculates
  • the method of obtaining the speed is not limited to this, and any method capable of speeding the vehicle can be replaced.
  • the train control device 6 obtains an engine speed command, a DC voltage command, and an inverter output command based on the notch command, the vehicle speed, and the speed limit data.
  • the engine control device 7 controls the engine speed of the engine based on the engine speed command. Note that the engine control device 7 sets a speed limit on the engine speed so that the engine speed does not increase rapidly in order to prevent exhaust deterioration.
  • the generator 9 is driven by the power generated by the engine to output three-phase AC power.
  • the converter control device 11 converts the three-phase AC power output from the generator 9 into a DC voltage as much as necessary, and controls the voltage of the DC unit so as to be the DC unit voltage command.
  • the inverter control device 13 supplies power to the motor 14 based on the inverter output command. Power is transmitted to the wheels 17 by the driven electric motor 9, and the vehicle is accelerated.
  • a high-power diesel engine 8 is generally used as the engine, but another internal combustion engine such as a gasoline engine may be used.
  • a three-phase AC generator 9 (induction generator 9 or synchronous generator 9) is generally used.
  • the converter 10 includes a rectifier and a PWM converter 10.
  • a three-phase AC motor 14 (induction motor 14 or synchronous motor 14) is generally used.
  • ON / OFF input of the operation mode switching device 15 is input to the train control device 6 so that the engine control mode of the train control device 6 can be switched.
  • the operation mode display apparatus 16 can show an engine control mode to a driver
  • the inverter output command calculation unit 31 uses a map representing the relationship between the vehicle speed for each notch and the inverter output command shown in FIG. 3 to respond to the tensile characteristics (acceleration characteristics).
  • the inverter output command is calculated.
  • the inverter output command greatly deviates digitally. Therefore, the speed at which the inverter output command rises is limited. That is, the rising speed of the inverter output command is increased in proportion to the height of the notch after switching the notch command.
  • the rise is delayed so that the inverter output command obtained in FIG. 3 rises slowly. Further, when switching from coasting to 7 notches, the rising speed is increased so that the inverter output command obtained in FIG.
  • the inverter output rises quickly, and the driver's desired acceleration performance can be obtained.
  • the inverter output exceeds the engine output, the engine speed decreases and the engine may stall. Therefore, the inverter output command should not exceed the engine output.
  • an inverter output command is used as a command to the inverter, but an inverter current command and an inverter torque command corresponding to the inverter output command may be obtained.
  • the inverter output command obtained as described above is input to the inverter control device 13.
  • the engine output command calculation unit 32 obtains an engine output command as an output required for the engine based on the inverter output command.
  • the engine speed command calculation unit 33 obtains an engine speed command corresponding to the engine output command. It is desirable that the engine speed command is appropriately calculated in consideration of engine fuel consumption, exhaust gas, and the like.
  • the engine speed command is corrected by an engine speed correction unit 34 described later.
  • the engine speed command corrected by the engine speed correction unit 34 as described above is input to the engine control device 7.
  • the DC section voltage command is input to the converter control device 11.
  • the voltage of the DC part is controlled to be kept constant.
  • the DC voltage command is set to 1500 V, and the converter control device 11 controls the generator 9 as necessary so as to keep the voltage of the DC voltage at 1500 V.
  • the engine speed prediction unit 35 receives the speed limit data and the vehicle speed as shown in FIG.
  • the engine load prediction unit 35 calculates the host vehicle position x 1 [m] after a predetermined time ⁇ t seconds from the equation (1) in S51.
  • x 0 [m] is the current vehicle position
  • ⁇ [m / s] is the vehicle speed.
  • the current vehicle position is estimated by integrating the vehicle speed.
  • the calculation method of the vehicle position need not be limited to the above, and may be determined by GPS or the like.
  • the speed limit after ⁇ t seconds is obtained from the speed limit data shown in FIG. 4 and the vehicle position after ⁇ t seconds.
  • the deviation between the speed limit after ⁇ t seconds and the vehicle speed is calculated.
  • a notch after ⁇ t seconds is predicted from the map shown in FIG. In FIG. 6, when the vehicle speed is high and the difference between the speed limit and the vehicle speed is small, it is predicted that the driver makes a large notch because an output exceeding the running resistance during high speed running is necessary.
  • the maximum value of the engine that can be output is determined by the engine speed, and if the engine speed is low, a large engine output cannot be obtained.
  • the engine speed in order to prevent exhaust deterioration as described above, there is a restriction on the increase speed of the engine speed. For this reason, even if the engine tries to produce a large output suddenly under the condition of a low engine speed, the engine speed increases slowly due to the speed limitation of the engine speed, and thus there is a problem that the desired engine output cannot be produced. .
  • the engine speed correcting unit 34 increases the engine speed before increasing the engine load as necessary. Specifically, the engine speed correction unit 34 compares the predicted value of the engine load with the fastest response of the engine output (response when the engine output is started up earliest), and the engine output must follow the load fluctuation. If determined, the engine speed is increased.
  • the fastest response of the engine output is obtained from the engine speed limit and the maximum output curve of the engine output.
  • the calculation method of the fastest response of the engine output is not limited to this, and may be determined in consideration of the responsiveness of EGR and supercharging pressure in order to prevent exhaust deterioration.
  • Example 1 demonstrated above is demonstrated using FIG. This is a section where the speed limit is switched to 140 [km / h], 80 [km / h], and 140 [km / h].
  • the notch is switched from 3 [N] to 6 [N] by the driver at the timing (time t 1 sec) when the speed limit is switched from 80 [km / h] to 140 [km / h].
  • the engine speed increases according to the speed restriction of the engine speed according to the notch operation of the driver, and the engine speed and the motor output are increased as the engine speed increases. Since the output can be obtained, the rise of the vehicle speed is delayed.
  • the engine load prediction unit 35 predicts that the deviation between the speed limit and the vehicle speed will be 60 [km / h] at time t 1 after a predetermined time.
  • the engine load predicting unit 35 predicts that the engine load increases as the notch is switched from 3 [N] to 6 [N] from FIG. 5.
  • the engine speed correction unit 34 compares the predicted value of the engine load and the fastest response of the engine output and corrects the engine speed command before increasing the engine load when it is determined that the engine output cannot follow the load. Increase.
  • an engine preparation mode a mode in which the engine speed is increased before the engine load is increased.
  • the generator output and the motor output can be increased in accordance with the notch without being limited by the speed limitation of the engine speed.
  • the engine speed is increased in advance at a point before the point where the output of the electric motor predicted by the engine load prediction unit 35 is increased. That is, in the example of FIG.
  • the acceleration performance can be improved and the journey time can be shortened without deteriorating the exhaust performance and fuel consumption characteristics of the engine as compared with the known example indicated by the dotted line.
  • the present invention increases the engine speed independently of the driver's notch operation.
  • the notch operation and the engine speed move in conjunction with each other, which may give the driver anxiety. Therefore, in order to convey a sense of security to the driver that the system increases the engine speed with a normal judgment, as shown in FIG. 8, the operation mode display device 16 clearly indicates the engine preparation mode to the driver. To do.
  • the operation mode display device 16 is not limited to the above, and may notify the driver by voice or the like, for example. Further, in a scene where the train control device 6 cannot predict an increase in engine load, an operation mode switching device 15 as shown in FIG. 8 is provided so that the driver can freely improve the acceleration performance in the engine preparation mode.
  • the second embodiment will be described with a focus on the differences from the first embodiment. Since the second embodiment is the same as the first embodiment except for the route database 5 and the engine load prediction unit 35, the description thereof will be omitted, and only the route database 5 and the engine load prediction unit 35 will be described.
  • the route database 5 stores gradient data shown in FIG.
  • the upward gradient is positive.
  • the format of the gradient data need not be limited to this.
  • the engine load prediction unit 35 will be described with reference to FIG.
  • the vehicle position x 1 [m] after a predetermined ⁇ t seconds is calculated by the same process as in S51 of the first embodiment.
  • the gradient after ⁇ t seconds is estimated from the gradient data and the vehicle position after ⁇ t seconds.
  • a notch after ⁇ t seconds is predicted from the map shown in FIG.
  • the notch is switched from 3 [N] to 6 [N] by the driver at the timing when the gradient is switched from -5 [ ⁇ ] to 40 [ ⁇ ] (time t 1 second).
  • the engine speed increases according to the speed restriction of the engine speed according to the notch operation of the driver. Since only the generator output and the motor output can be obtained in accordance with the increase in the engine speed, the acceleration is slow and the vehicle speed is lowered by the gradient.
  • the engine load prediction unit 35 predicts that the gradient at time t 1 after a predetermined time is 40 [ ⁇ ].
  • the engine load prediction unit 35 predicts that the engine load increases as the notch is switched from 3 [N] to 6 [N] from FIG. 11.
  • the engine speed correction unit 34 compares the predicted engine load value with the fastest response of the engine output, determines that the engine output cannot increase the load, and increases the engine speed before the actual engine load increases. .
  • the generator output and the motor output can be increased in accordance with the notch without being limited by the speed limitation of the engine speed.
  • the train control system 2 of the second embodiment can improve the acceleration performance without deteriorating the exhaust performance of the engine as compared with the known example, and can shorten the journey time.
  • the third embodiment is intended for trains to which ATO (Automatic Train Operation) is applied.
  • the configuration of the train control system 2 in the third embodiment is a configuration in which the route database 5 in FIG. 1 is replaced with a target travel speed pattern database 18 that stores the travel pattern shown in FIG. The description of the same part is omitted.
  • FIG. 13 shows a block diagram in the third embodiment.
  • the master controller 3 inputs to the train control device 6 that it is in the AT mode.
  • the notch determination unit 36 plays a role of determining an ATO notch operation.
  • the notch determining unit 36 integrates the current vehicle speed to estimate the current vehicle position, and obtains the target speed from the target travel speed pattern data and the current vehicle position.
  • the notch determination unit 36 determines a notch command from the target speed and the vehicle speed.
  • the notch determination method need not be limited to the above.
  • the notch determination method may be determined using route information such as a route speed limit and a gradient, or may be in accordance with another ATO method.
  • the components other than the engine load prediction unit 35 are the same as those in the block diagram in the first embodiment, and a description thereof will be omitted.
  • the target travel speed pattern and the vehicle speed are input to the engine load prediction unit 35 in the third embodiment.
  • the engine load prediction unit 35 first calculates the host vehicle position x 1 [m] after a predetermined time ⁇ t seconds by the same processing as S51 of the first embodiment. Next, a target speed after ⁇ t seconds is estimated from the target travel speed pattern and the vehicle position after ⁇ t seconds. A notch command after ⁇ t seconds is predicted from the target speed after ⁇ t seconds by the same processing as the notch determination unit 36. Subsequent processing is the same as that of the first embodiment, and thus description thereof is omitted. As described above, the engine load prediction unit 35 can predict a notch command following the target travel pattern in advance. Based on the predicted predicted engine load value, the engine speed correction unit 34 corrects the engine speed command before increasing the engine load as necessary, and increases the engine speed.
  • the train control system 2 according to the third embodiment can improve the acceleration performance without deteriorating the exhaust performance of the engine as compared with the known example, and can shorten the journey time.
  • FIG. 15 is a configuration diagram of the train control system 2 according to the fourth embodiment of the present invention.
  • the fourth embodiment is the same as the second embodiment except for the driver guidance device 19 for guiding the driver's notch operation and the target travel speed pattern database 18, and thus the description thereof is omitted.
  • the driver guidance device 19 outputs notch guidance to the master controller 3 based on the target travel speed pattern and the vehicle speed.
  • the driver guidance device 19 integrates the current vehicle speed to estimate the current position, and obtains the target speed from the target travel speed pattern data and the current vehicle position.
  • the driver guidance device 19 determines notch guidance from the target speed and the vehicle speed.
  • the notch guidance determination method need not be limited to the above, and may be determined using, for example, route information such as a route speed limit and a gradient.
  • the driver guidance device 19 determines notch guidance for the master controller 3 based on the target travel speed pattern and the vehicle speed. Since the master controller 3 and subsequent parts are the same as those in the first embodiment except for the engine load prediction unit 35, the description thereof is omitted.
  • the target travel speed pattern and the vehicle speed are input to the engine load prediction unit 35 in the fourth embodiment.
  • the engine load prediction unit 35 first calculates the host vehicle position x 1 [m] after a predetermined time ⁇ t seconds by the same processing as S51 of the first embodiment. Next, a target speed after ⁇ t seconds is estimated from the target travel speed pattern and the vehicle position after ⁇ t seconds. A notch command after ⁇ t seconds is predicted from the target speed after ⁇ t seconds by the same processing as the driver guidance device 19. Subsequent processing is the same as that of the first embodiment, and thus description thereof is omitted. As described above, the engine load prediction unit 35 can predict the engine load. Based on the predicted value of the engine load, the engine speed correction unit 34 corrects the engine speed command before increasing the engine load as necessary to increase the engine speed.
  • the train control system 2 of the fourth embodiment can improve the acceleration performance without deteriorating the exhaust performance of the engine as compared with the known example, and can shorten the journey time.
  • FIG. 17 shows the configuration of the train control system 2 according to the fifth embodiment of the present invention. Only the differences from the first embodiment will be described below.
  • the train control system 2 of the fifth embodiment is different from the first embodiment in that a brake chopper 20 and a brake resistor 21 are added to the DC unit, and the train control device 6 controls the brake chopper 20. The difference is that the control method of the converter 10 is changed.
  • a block diagram of the fifth embodiment will be described with reference to FIG.
  • the generator output is also generated simultaneously with the engine speed. increase. Since the voltage of the direct current section increases due to the generator output, the brake resistor 21 generates heat and the voltage of the direct current section is maintained.
  • the converter 10 control and the control of the brake chopper 20 which are the differences between the fifth embodiment and the first embodiment will be specifically described.
  • the converter 10 output command calculation unit increases the converter output command when the engine output is compared with the fastest response between the engine load and the engine output based on the predicted engine load value and it is determined that the engine output cannot follow the load.
  • the engine speed (controlled by the engine speed correction unit 34) and the engine load (controlled by the converter output command calculation unit 37) can be freely set. It is desirable that the engine speed be determined in consideration of the optimum.
  • the DC voltage control unit 38 performs constant voltage control based on the voltage command of the DC unit so that the voltage of the DC unit is not increased by the generator output during the engine preparation mode.
  • the brake chopper 20 is driven by the constant voltage control, and the electric power in the resistor is consumed.
  • the same control as that in the first embodiment is performed except in the engine preparation mode.
  • the train control device 6 performs the same control as in the first embodiment until time t 0 .
  • the predicted value of the engine load is compared with the fastest response of the engine output, and it is determined that the engine output cannot follow the load.
  • the engine speed and the generator output are increased before the actual output of the electric motor 14 is increased.
  • the train control device 6 is an electric motor output increases to match the notch command.
  • the train control device 6 performs constant voltage control on the DC voltage unit. Accordingly, as shown in FIG. 19, as the output of the motor increases, the surplus power in the direct current section decreases, so the power consumption of the brake resistor 21 decreases. Finally, all of the generated power at time t 2 becomes an electric motor 14 output. Time t 2 later, the train control device 6 performs the same control as in Example 1.
  • the train control system 2 of the fifth embodiment can improve the acceleration performance without deteriorating the exhaust performance of the engine as compared with the known example, and can shorten the journey time.
  • the engine speed and the engine load can be freely set independently of the notch command, the engine can be controlled to optimize engine exhaust and fuel consumption.
  • the methods for simultaneously increasing the engine speed and the generator output during the engine preparation mode shown in FIGS. 17 and 18 are the second embodiment, the third embodiment, and the fourth embodiment. It can also be used in combination with the embodiment.
  • FIG. 21 shows a block diagram in the sixth embodiment.
  • the engine load predicting unit 35 predicts an increase in engine load by the same method as in the first embodiment.
  • the train control device 6 inputs the predicted value of the engine load to the driver guidance device 19.
  • the driver guidance device 19 compares the predicted value of the engine load and the fastest response of the engine output and determines that the engine output cannot follow the load, the predicted value of the engine load becomes equal to or less than the fastest response of the engine output.
  • the notch guidance to the driver Since the other changes are the same as those in the first embodiment, description thereof is omitted.
  • FIG. 22 is a section where the speed limit is switched to 140 [km / h], 80 [km / h], and 180 [km / h].
  • the coasting speed is switched to 7 [N] at the timing (time t 1 second) when the speed limit is switched from 80 [km / h] to 180 [km / h].
  • the engine speed is increased by the speed limitation of the engine speed according to the notch operation of the driver, and the generator output and the motor output can be taken as the engine speed increases. As a result, the vehicle speed rises slowly.
  • the engine load prediction unit 35 predicts that the engine load increases rapidly at time t 1 after a predetermined time.
  • the driver guidance device 19 compares the predicted value of the engine load with the fastest response of the engine output, determines that the engine output cannot follow the load, and coasts ⁇ 3 [N] ⁇ 7 so that the engine output can follow the load. [N] and the notch guidance are determined so as to divide the notch into pieces. By cutting the notch as coasting ⁇ 3 [N] ⁇ 7 [N], the generator output and motor output can be increased according to the notch without being limited by the speed limitation of the engine speed. .
  • the train control system 2 of the sixth embodiment can select an appropriate notch in consideration of engine responsiveness, and shortens the journey time without deteriorating the exhaust performance of the engine as compared with the known example. it can.
  • acceleration performance differs between electrified sections and non-electrified sections. It ’s difficult. Therefore, the sixth embodiment in which appropriate notch guidance is performed in consideration of engine responsiveness is particularly effective.
  • the engine speed can be increased, or the engine output can follow the increase in load.
  • the exhaust performance of the engine and the acceleration performance of the vehicle can be made compatible, and the environmental performance can be greatly improved.
  • the first to sixth embodiments can be combined or various modifications can be made in accordance with the particularity of the route, the specifications of the vehicle, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Power Engineering (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Human Computer Interaction (AREA)
  • General Engineering & Computer Science (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

In order to achieve both the engine emission performance and the vehicle acceleration performance in a diesel electric locomotive, this control system for a vehicle is a vehicle control system which is provided with an engine, an electric generator, a converter, an inverter, and an electric motor, comprises an engine load prediction unit for predicting the increase of the output of the electric motor on the basis of any one or more of route data, the speed of the vehicle, and a travel speed pattern, and comprises an engine speed correction unit for increasing the engine speed before the increase of the output of the electric motor on the basis of the predicted value of the increase of the output of the electric motor.

Description

車両制御システム及び車両の駆動制御方法、列車制御装置Vehicle control system, vehicle drive control method, and train control device
 本発明は、エンジンの出力を電力に変換して、駆動用電動機に交流電力を供給する車両制御システムに関する。 The present invention relates to a vehicle control system that converts engine output into electric power and supplies AC electric power to a drive motor.
 従来技術として、ディーゼル電気機関車を加速させる方法として特許文献1に示す制御技術がある。特許文献1では、ディーゼルエンジンの動力により交流発電機を駆動し、発生された交流電力を整流器により直流電力に変換する。さらに、直流電力を電力変換器にて交流電力に変換して、車両推進用の誘導電動機を駆動し、列車を加速させる。 As a conventional technique, there is a control technique shown in Patent Document 1 as a method for accelerating a diesel electric locomotive. In Patent Document 1, an AC generator is driven by the power of a diesel engine, and the generated AC power is converted into DC power by a rectifier. Furthermore, DC power is converted into AC power by a power converter, and an induction motor for vehicle propulsion is driven to accelerate the train.
特開2000-115907号公報JP 2000-115907 A
 一方で、環境意識の高まりからディーゼルエンジンの排ガスについても規制が厳しくなりつつある。ディーゼルエンジンの排ガス浄化技術として、EGR(排気ガス再循環)やDPF(ディーゼルパーティキュレータフィルター)、高圧多段噴射のような技術が開発されてきている。しかし、EGRガスの還流遅れや過給圧の遅れなどを考えると、煤の発生を抑えるためには、エンジン回転数やエンジン出力の急変を抑える必要がある。また、こうしたエンジン回転数やエンジン出力の急変は、ディーゼルエンジンの燃費特性をも大きく悪化させる原因にもなる。 On the other hand, regulations on diesel engine exhaust gas are becoming stricter due to growing environmental awareness. As exhaust gas purification technologies for diesel engines, technologies such as EGR (exhaust gas recirculation), DPF (diesel particulate filter), and high-pressure multistage injection have been developed. However, considering the delay in recirculation of EGR gas and the delay in supercharging pressure, it is necessary to suppress sudden changes in engine speed and engine output in order to suppress the generation of soot. Such sudden changes in engine speed and engine output can also cause the fuel efficiency characteristics of diesel engines to deteriorate significantly.
 しかしながら、特許文献1では列車を加速させるための動力をエンジンで全て賄わなければならない。よって、エンジンの排気性能を維持しようとしてエンジンの応答性を抑えると、エンジンの応答がボトルネックになって加速性能が悪化し、ジャーニータイムが増加するという課題があった。すなわち、公知技術は、エンジンの排気性能と車両の加速性能の両立が課題であった。 However, in Patent Document 1, all the power for accelerating the train must be provided by the engine. Therefore, if the engine responsiveness is suppressed in order to maintain the exhaust performance of the engine, there is a problem that the engine response becomes a bottleneck, the acceleration performance deteriorates, and the journey time increases. That is, in the known technology, there is a problem of achieving both the exhaust performance of the engine and the acceleration performance of the vehicle.
 上記課題を解決するため本発明の望ましい態様の一つは、電動機の出力の上昇を予測するエンジン負荷予測部を有し、前記電動機の出力上昇の予測に基づいて電動機の出力上昇の前にエンジン回転数を増加させることを特徴とする列車制御システムである。
 さらに本発明の望ましい態様の一つは、電動機の出力の上昇を予測するエンジン負荷予測部を有し、前記電動機の出力上昇の予測に基づいて、エンジン出力が負荷上昇に追随できるよう、細分化したノッチをガイダンスする運転士ガイダンス装置を有することを特徴とする車両制御システムである。
In order to solve the above-described problems, one of the desirable aspects of the present invention includes an engine load prediction unit that predicts an increase in the output of the electric motor, and the engine before the increase in the output of the electric motor based on the prediction of the increase in the output of the electric motor. A train control system characterized by increasing the number of revolutions.
Furthermore, one of the desirable aspects of the present invention includes an engine load prediction unit that predicts an increase in the output of the electric motor, and subdivides the engine output so that the engine output can follow the increase in load based on the prediction of the increase in the output of the electric motor. A vehicle control system having a driver guidance device for guiding a notch.
 本発明により、エンジンの排気性能と、車両の加速性能を両立させることができる。 According to the present invention, it is possible to achieve both engine exhaust performance and vehicle acceleration performance.
第1の実施形態における列車制御システムの構成。The structure of the train control system in 1st Embodiment. 第1の実施形態におけるブロック図。The block diagram in 1st Embodiment. 第1の実施形態におけるインバータ出力指令の演算方法。An inverter output command calculation method according to the first embodiment. 第1の実施形態における制限速度データ。Speed limit data in the first embodiment. 第1の実施形態におけるエンジン負荷予測部のフローチャート。The flowchart of the engine load estimation part in 1st Embodiment. 第1の実施形態における制限速度に対するノッチの予測方法。The notch prediction method with respect to the speed limit in the first embodiment. 第1の実施形態における列車制御システムの効果。The effect of the train control system in a 1st embodiment. 第1の実施形態における動作モード表示装置と動作モード切り替え装置。The operation mode display apparatus and operation mode switching apparatus in 1st Embodiment. 第2の実施形態における路線の勾配データ。The gradient data of the route in 2nd Embodiment. 第2の実施形態におけるエンジン負荷予測部のフローチャート。The flowchart of the engine load estimation part in 2nd Embodiment. 第2の実施形態における勾配に対するノッチの予測方法。The prediction method of the notch with respect to the gradient in 2nd Embodiment. 第2の実施形態における列車制御システムの効果。The effect of the train control system in 2nd Embodiment. 第3の実施形態におけるブロック図。The block diagram in 3rd Embodiment. 第3の実施形態における目標走行速度パターン。The target travel speed pattern in 3rd Embodiment. 第4の実施形態における列車制御システムの構成。The structure of the train control system in 4th Embodiment. 第4の実施形態におけるブロック図。The block diagram in 4th Embodiment. 第5の実施形態における列車制御システムの構成。The structure of the train control system in 5th Embodiment. 第5の実施形態におけるブロック図。The block diagram in 5th Embodiment. 第5の実施形態における効果。Effect in the fifth embodiment. 第6の実施形態における列車制御システムの構成。The structure of the train control system in 6th Embodiment. 第6の実施形態におけるブロック図。The block diagram in 6th Embodiment. 第6の実施形態における効果。The effect in 6th Embodiment.
(第1の実施形態)
 図1は本発明の第1の実施形態のディーゼル電気機関車1に搭載された列車制御システム2の構成である。列車制御システム2は、車両を駆動する電動機14と、電動機14駆動用の交流電力を生成するインバータ12と、発電機9の発生する交流電力からインバータに入力する直流電力を生成するコンバータ10と、交流電力を発電してコンバータに交流電力を出力する発電機9と、発電機9を駆動するディーゼルエンジン8と、インバータ12を制御するインバータ制御装置13と、コンバータ10を制御するコンバータ制御装置11と、ディーゼルエンジン8を制御するエンジン制御装置7と、各制御装置に指令を出す列車制御装置6と、運転士のノッチ操作を検出するマスターコントローラ3と、車両の速度を検出する速度検出装置4と、制限速度データが格納されている路線データベース5と、列車制御装置6の動作モードを切り替える動作モード切り替え装置15と、列車制御装置6の動作モードを表示する動作モード表示装置16から構成されている。
 なお、本実施形態では、列車制御システム2が同一の車両に搭載されている例を用いたが、それに限定せず、列車制御システム2を構成する各装置が複数の車両に分散して配置されてもよい。
 また、マスターコントローラ3を除く列車制御システム2が複数の車両に搭載されている、いわゆるDEMU(Diesel-eclectric multiple unit)でもよい。
(First embodiment)
FIG. 1 shows a configuration of a train control system 2 mounted on a diesel electric locomotive 1 according to a first embodiment of the present invention. The train control system 2 includes a motor 14 that drives a vehicle, an inverter 12 that generates AC power for driving the motor 14, a converter 10 that generates DC power input to the inverter from AC power generated by the generator 9, A generator 9 that generates AC power and outputs AC power to the converter, a diesel engine 8 that drives the generator 9, an inverter control device 13 that controls the inverter 12, and a converter control device 11 that controls the converter 10. An engine control device 7 that controls the diesel engine 8, a train control device 6 that issues a command to each control device, a master controller 3 that detects the notch operation of the driver, and a speed detection device 4 that detects the speed of the vehicle The operation mode of the route database 5 storing the speed limit data and the train control device 6 is switched. A work mode switch 15, and a operating mode display unit 16 for displaying the operation mode of the train control device 6.
In the present embodiment, the example in which the train control system 2 is mounted on the same vehicle is used. However, the present invention is not limited thereto, and each device constituting the train control system 2 is distributed and arranged in a plurality of vehicles. May be.
Also, a so-called DEMU (Diesel-electric multiple unit) in which the train control system 2 excluding the master controller 3 is mounted on a plurality of vehicles may be used.
 列車制御装置6は、マスターコントローラ3からノッチ指令を、速度検出装置4から車両速度を、路線データベース5から図4に示す制限速度データを受信する。なお、速度検出装置4は、各車輪に取り付けられた車輪回転角度センサから各車輪17の速度を求め、各車輪から求めた速度の平均値を使って速度を求める。但し、速度の求め方はこれに限定されず、車両の速度可能な方法であれば置換え可能である。詳細は後述するが列車制御装置6は、前記ノッチ指令、前記車両速度、前記制限速度データに基づき、エンジン回転数指令、直流部電圧指令、インバータ出力指令を求める。 Train control device 6 receives a notch command from master controller 3, vehicle speed from speed detection device 4, and speed limit data shown in FIG. In addition, the speed detection apparatus 4 calculates | requires the speed of each wheel 17 from the wheel rotation angle sensor attached to each wheel, and calculates | requires speed using the average value of the speed calculated | required from each wheel. However, the method of obtaining the speed is not limited to this, and any method capable of speeding the vehicle can be replaced. Although details will be described later, the train control device 6 obtains an engine speed command, a DC voltage command, and an inverter output command based on the notch command, the vehicle speed, and the speed limit data.
 エンジン制御装置7は、前記エンジン回転数指令に基づきエンジンのエンジン回転数を制御する。なお、エンジン制御装置7は排気悪化を防ぐためにエンジン回転数が急増しないように、エンジン回転数に速度の制約を設けている。エンジンで発生した動力で、発電機9を駆動し3相の交流電力を出力する。コンバータ制御装置11は、発電機9で出力される3相交流電力を必要な分だけ直流電圧に変換し、前記直流部電圧指令になるように直流部の電圧を制御する。インバータ制御装置13は、インバータ出力指令に基づき電動機14に電力を供給する。駆動された電動機9により車輪17に動力が伝わり車両が加速する。なお、鉄道分野ではエンジンは、大出力のディーゼルエンジン8が一般に用いられるが、ガソリンエンジン等の他の内燃機関でもよい。発電機9としては、3相交流発電機9(誘導発電機9又は同期発電機9)が一般的である。コンバータ10は、整流器やPWMコンバータ10で構成される。電動機14としては、3相交流電動機14(誘導電動機14または同期電動機14)が一般的である。 The engine control device 7 controls the engine speed of the engine based on the engine speed command. Note that the engine control device 7 sets a speed limit on the engine speed so that the engine speed does not increase rapidly in order to prevent exhaust deterioration. The generator 9 is driven by the power generated by the engine to output three-phase AC power. The converter control device 11 converts the three-phase AC power output from the generator 9 into a DC voltage as much as necessary, and controls the voltage of the DC unit so as to be the DC unit voltage command. The inverter control device 13 supplies power to the motor 14 based on the inverter output command. Power is transmitted to the wheels 17 by the driven electric motor 9, and the vehicle is accelerated. In the railway field, a high-power diesel engine 8 is generally used as the engine, but another internal combustion engine such as a gasoline engine may be used. As the generator 9, a three-phase AC generator 9 (induction generator 9 or synchronous generator 9) is generally used. The converter 10 includes a rectifier and a PWM converter 10. As the motor 14, a three-phase AC motor 14 (induction motor 14 or synchronous motor 14) is generally used.
 詳細は後述するが、動作モード切り替え装置15のON、OFF入力が列車制御装置6に入力され、列車制御装置6のエンジン制御モードが切り替えできるようになっている。また、詳細は後述するが、動作モード表示装置16は、列車制御装置6から入力されたエンジン制御モードに応じてランプを点灯させることで、運転士にエンジン制御モードを明示することができる。 Although details will be described later, ON / OFF input of the operation mode switching device 15 is input to the train control device 6 so that the engine control mode of the train control device 6 can be switched. Moreover, although mentioned later for details, the operation mode display apparatus 16 can show an engine control mode to a driver | operator by lighting a lamp | ramp according to the engine control mode input from the train control apparatus 6. FIG.
 続いて、実施例1におけるブロック図を図2に示す。インバータ出力指令演算部31は、前記車両速度と前記ノッチ指令に基づき、図3に示す、ノッチ毎の車両速度とインバータ出力指令の関係を表すマップを使用して、引っ張り特性(加速特性)に応じたインバータ出力指令を演算する。しかし、例えば、ある速度で惰行から5ノッチに指令が切り替わった場合、図3から求めたインバータ出力指令を直接出力すると、インバータ出力指令はデジタル的に大きく偏差してしまう。そこで、インバータ出力指令の立ち上がる速度を制限する。つまり、インバータ出力指令の立ち上がる速度はノッチ指令を切り替えた後のノッチの高さに比例して上げるものとする。例えば、惰行から1ノッチに切り替えた場合は立ち上がりを遅くし、図3で求められるインバータ出力指令にゆっくり立ち上がるようにする。また、惰行から7ノッチに切り替えた場合は、立ち上がり速度を早くし、図3で求められる前記インバータ出力指令に急に立ち上がるようにする。これにより、運転士が車両を急加速させたいと思ってノッチ指令を高いノッチに急激に切り替えた時に、インバータ出力の立ち上がりが速くなり、運転士の所望の加速性能が得られるようになる。但し、インバータ出力がエンジン出力を超えるとエンジン回転数が減少し、エンジンがストールする可能性があるので、インバータ出力指令はエンジン出力を超えないようにする。
 なお、本願ではインバータへの指令として、インバータ出力指令を用いているが、それに対応したインバータ電流指令やインバータトルク指令を求めるようにしてよい。
Next, a block diagram in the first embodiment is shown in FIG. Based on the vehicle speed and the notch command, the inverter output command calculation unit 31 uses a map representing the relationship between the vehicle speed for each notch and the inverter output command shown in FIG. 3 to respond to the tensile characteristics (acceleration characteristics). The inverter output command is calculated. However, for example, when the command is switched from coasting to 5 notches at a certain speed, if the inverter output command obtained from FIG. 3 is directly output, the inverter output command greatly deviates digitally. Therefore, the speed at which the inverter output command rises is limited. That is, the rising speed of the inverter output command is increased in proportion to the height of the notch after switching the notch command. For example, when switching from coasting to one notch, the rise is delayed so that the inverter output command obtained in FIG. 3 rises slowly. Further, when switching from coasting to 7 notches, the rising speed is increased so that the inverter output command obtained in FIG. As a result, when the driver wants to accelerate the vehicle suddenly and switches the notch command to a high notch, the inverter output rises quickly, and the driver's desired acceleration performance can be obtained. However, if the inverter output exceeds the engine output, the engine speed decreases and the engine may stall. Therefore, the inverter output command should not exceed the engine output.
In this application, an inverter output command is used as a command to the inverter, but an inverter current command and an inverter torque command corresponding to the inverter output command may be obtained.
 上述のように求められたインバータ出力指令はインバータ制御装置13に入力される。
エンジン出力指令演算部32は、前記インバータ出力指令に基づき、エンジンに必要な出力としてエンジン出力指令を求める。エンジン回転数指令演算部33は、前記エンジン出力指令に対応したエンジン回転数指令を求める。なお、エンジン回転数指令は、エンジンの燃費、排気などを考慮して適切に算出されることが望ましい。前記エンジン回転数指令は、後述するエンジン回転数補正部34によって補正される。以上のようにエンジン回転数補正部34で補正されたエンジン回転数指令がエンジン制御装置7に入力される。
The inverter output command obtained as described above is input to the inverter control device 13.
The engine output command calculation unit 32 obtains an engine output command as an output required for the engine based on the inverter output command. The engine speed command calculation unit 33 obtains an engine speed command corresponding to the engine output command. It is desirable that the engine speed command is appropriately calculated in consideration of engine fuel consumption, exhaust gas, and the like. The engine speed command is corrected by an engine speed correction unit 34 described later. The engine speed command corrected by the engine speed correction unit 34 as described above is input to the engine control device 7.
 また、直流部電圧指令は、コンバータ制御装置11に入力される。一般的に、直流部の電圧は一定に保たれるように制御されている。例えば、直流部電圧指令は1500Vと設定されており、コンバータ制御装置11は直流部の電圧を1500Vに保つように必要に応じて発電機9を制御する。 Further, the DC section voltage command is input to the converter control device 11. In general, the voltage of the DC part is controlled to be kept constant. For example, the DC voltage command is set to 1500 V, and the converter control device 11 controls the generator 9 as necessary so as to keep the voltage of the DC voltage at 1500 V.
 続いて、図5を用いてエンジン負荷予測部35について説明する。エンジン負荷予測部35には、路線データベース5から図4に示すような前記制限速度データ及び前記車両速度が入力される。エンジン負荷予測部35は、S51で(1)式より所定時間Δt秒後の自車位置x1[m]を算出する。但し、x0[m]は現在の自車位置、ν[m/s]は車両速度である。 Next, the engine load prediction unit 35 will be described with reference to FIG. The engine speed prediction unit 35 receives the speed limit data and the vehicle speed as shown in FIG. The engine load prediction unit 35 calculates the host vehicle position x 1 [m] after a predetermined time Δt seconds from the equation (1) in S51. However, x 0 [m] is the current vehicle position, and ν [m / s] is the vehicle speed.
  x1=x0+νΔt       (1)
 前記現在の自車位置は、前記車両速度を積分して推定する。自車位置の算出方法は、上記に限定する必要はなくGPS等で求めてもよい。次に、S52にて図4に示す制限速度データと前記Δt秒後の自車位置より、Δt秒後の制限速度を取得する。S53では、Δt秒後の制限速度と車両速度の偏差を算出する。S54では、図6に示すマップよりΔt秒後のノッチを予測する。図6では、車両速度が高く、制限速度と車両速度の差が小さい場合は、高速走行中の走行抵抗を超える出力が必要なため運転士は大きなノッチにすると予測する。また、車両速度が低く、制限速度と車両速度の差が大きい場合は、つまり制限速度が車両速度よりも大幅に大きい場合には、大きな加速が必要なので運転士が大きなノッチを入れると予測する。同様の考えから、車両速度が低く、制限速度と車両速度の差が小さい場合は、ノッチが小さくなり、車両速度が高く、制限速度と車両速度の差が高い場合は、ノッチが高くなると予測する。次に、S55では、前記予測したノッチより、インバータ出力指令演算部31と同様の演算を行い、Δt秒後以降の電動機14の出力すなわちエンジン負荷の増加を予測する。以上の処理により、エンジン負荷予測部35は、Δt秒後以降のエンジン負荷の増加を予測できる。
x 1 = x 0 + νΔt (1)
The current vehicle position is estimated by integrating the vehicle speed. The calculation method of the vehicle position need not be limited to the above, and may be determined by GPS or the like. Next, in S52, the speed limit after Δt seconds is obtained from the speed limit data shown in FIG. 4 and the vehicle position after Δt seconds. In S53, the deviation between the speed limit after Δt seconds and the vehicle speed is calculated. In S54, a notch after Δt seconds is predicted from the map shown in FIG. In FIG. 6, when the vehicle speed is high and the difference between the speed limit and the vehicle speed is small, it is predicted that the driver makes a large notch because an output exceeding the running resistance during high speed running is necessary. In addition, when the vehicle speed is low and the difference between the speed limit and the vehicle speed is large, that is, when the speed limit is significantly higher than the vehicle speed, it is predicted that the driver will make a large notch because a large acceleration is required. Based on the same idea, if the vehicle speed is low and the difference between the speed limit and the vehicle speed is small, the notch will be small, and if the vehicle speed is high, if the difference between the speed limit and the vehicle speed is high, the notch will be high. . Next, in S55, the same calculation as that of the inverter output command calculation unit 31 is performed from the predicted notch, and an increase in the output of the motor 14, that is, the engine load after Δt seconds is predicted. With the above processing, the engine load prediction unit 35 can predict an increase in engine load after Δt seconds.
 ここでエンジンの特性について述べる。エンジンは、エンジン回転数によって出力できる最大値が決まっており、エンジン回転数が低いと大きなエンジン出力をとれない。一方で、上述のように排気悪化を防ぐため、エンジン回転数の増加速度に制約を設けている。そのため、エンジンが低回転数の状況で急激に大きな出力を出そうとしても、エンジン回転数の速度制約に律速されてエンジン回転数はゆっくり増加するため、所望のエンジン出力が出せないという課題がある。 Here we describe the characteristics of the engine. The maximum value of the engine that can be output is determined by the engine speed, and if the engine speed is low, a large engine output cannot be obtained. On the other hand, in order to prevent exhaust deterioration as described above, there is a restriction on the increase speed of the engine speed. For this reason, even if the engine tries to produce a large output suddenly under the condition of a low engine speed, the engine speed increases slowly due to the speed limitation of the engine speed, and thus there is a problem that the desired engine output cannot be produced. .
 上記課題を解決するため、エンジン負荷予測部35で予測した前記エンジン負荷予測値に基づき、エンジン回転数補正部34は必要に応じてエンジン負荷増加前にエンジン回転数を増加させる。具体的には、エンジン回転数補正部34は、前記エンジン負荷の予測値とエンジン出力の最速応答(エンジン出力を一番早く立ち上げた時の応答)を比べ、エンジン出力が負荷変動についていけないと判断した場合に、エンジン回転数を増加させる。なお、エンジン出力の最速応答は、エンジン回転数の速度制約とエンジン出力の最大出力曲線から求める。但し、エンジン出力の最速応答の算出方法は、これに限定することはなく、排気悪化を防ぐためにEGRや過給圧の応答性を考慮して決めてもよい。 In order to solve the above-mentioned problem, based on the predicted engine load value predicted by the engine load predicting unit 35, the engine speed correcting unit 34 increases the engine speed before increasing the engine load as necessary. Specifically, the engine speed correction unit 34 compares the predicted value of the engine load with the fastest response of the engine output (response when the engine output is started up earliest), and the engine output must follow the load fluctuation. If determined, the engine speed is increased. The fastest response of the engine output is obtained from the engine speed limit and the maximum output curve of the engine output. However, the calculation method of the fastest response of the engine output is not limited to this, and may be determined in consideration of the responsiveness of EGR and supercharging pressure in order to prevent exhaust deterioration.
 以上説明した実施例1の効果について図7を用いて説明する。制限速度が140[km/h]、80[km/h]、140[km/h]と切り替わる区間である。図7に示すように、制限速度が80[km/h]から140[km/h]に切り替わるタイミング(時刻t1秒)で、運転士によってノッチが3[N]から6[N]に切り替わっている。公知技術(破線)では、運転士のノッチ操作に応じて、エンジン回転数の速度制約に律速されてエンジン回転数が増加し、そのエンジン回転数の増加に合わせて、発電機の出力及び電動機の出力がとれるので、車両速度の立ち上がりが遅くなる。 The effect of Example 1 demonstrated above is demonstrated using FIG. This is a section where the speed limit is switched to 140 [km / h], 80 [km / h], and 140 [km / h]. As shown in FIG. 7, the notch is switched from 3 [N] to 6 [N] by the driver at the timing (time t 1 sec) when the speed limit is switched from 80 [km / h] to 140 [km / h]. ing. In the known technique (broken line), the engine speed increases according to the speed restriction of the engine speed according to the notch operation of the driver, and the engine speed and the motor output are increased as the engine speed increases. Since the output can be obtained, the rise of the vehicle speed is delayed.
 続いて、本発明の実施例1の動作について図7を用いて一点破線で説明する。時刻t0において、エンジン負荷予測部35は、所定時間後の時刻t1において制限速度と自車速度の偏差が60[km/h]となると予測する。次に、エンジン負荷予測部35は、図5よりノッチが現在の3[N]から6[N]に切り替わって、エンジン負荷が増加することを予測する。エンジン回転数補正部34は、エンジン負荷の予測値とエンジン出力の最速応答を比べ、エンジン出力が負荷についていけないと判断した場合に、エンジン負荷増加前にエンジン回転数指令を補正し、エンジン回転数を増加させる。なお、以上のようなエンジン負荷増加前にエンジン回転数を増加させるモードをエンジン準備モードと呼ぶ。以上により、発電機出力、電動機出力は、エンジン回転数の速度制約に律速されることなく、ノッチに合わせて出力を増加させることができる。言い換えると、エンジン負荷予測部35で予測された電動機の出力が増加される地点よりも手前の地点で、前もってエンジン回転数を増加させる。
 すなわち、図7の例では、時刻t0において、エンジン負荷予測部35が時刻t1におけるノッチが3[N]から6[N]に切り換えられることを予測すると、時刻t0から、実際にノッチ6[N]に対応した、高い電動機出力が要求される時刻t1までの期間において、排気特性、燃費特性を悪化させないよう、エンジン回転数を徐々に高めておき、時刻t1において、エンジンが、要求される電動機出力に対応して十分なトルクを出力できるようにしている。
Next, the operation of the first embodiment of the present invention will be described with a one-dot broken line with reference to FIG. At time t 0 , the engine load prediction unit 35 predicts that the deviation between the speed limit and the vehicle speed will be 60 [km / h] at time t 1 after a predetermined time. Next, the engine load predicting unit 35 predicts that the engine load increases as the notch is switched from 3 [N] to 6 [N] from FIG. 5. The engine speed correction unit 34 compares the predicted value of the engine load and the fastest response of the engine output and corrects the engine speed command before increasing the engine load when it is determined that the engine output cannot follow the load. Increase. Note that a mode in which the engine speed is increased before the engine load is increased is referred to as an engine preparation mode. As described above, the generator output and the motor output can be increased in accordance with the notch without being limited by the speed limitation of the engine speed. In other words, the engine speed is increased in advance at a point before the point where the output of the electric motor predicted by the engine load prediction unit 35 is increased.
That is, in the example of FIG. 7, at time t 0, when predicting that the engine load prediction unit 35 is notched at time t 1 is switched from the 3 [N] to 6 [N], from the time t 0, actually notch 6 corresponding to [N], in the period up to a high time t 1 the motor output is required, the exhaust characteristics, so as not to deteriorate the fuel consumption characteristics, advance gradually increased engine speed, at time t 1, the engine Therefore, a sufficient torque can be output corresponding to the required motor output.
 その結果、点線で示す公知例に比べて、エンジンの排気性能や燃費特性を悪化させることなく加速性能を改善でき、ジャーニータイムを短縮できる。 As a result, the acceleration performance can be improved and the journey time can be shortened without deteriorating the exhaust performance and fuel consumption characteristics of the engine as compared with the known example indicated by the dotted line.
 次に、動作モード表示装置16及び動作モード切り替え装置15の一例を図8に示す。
上記のように本発明は、運転士のノッチ操作とは独立にエンジン回転数を増加させることになる。一般的な列車制御システム2は、ノッチ操作とエンジン回転数は連動して動くため、運転士にとって不安感を与える可能性がある。そこで、システムが正常な判断でエンジン回転数を増加させるということを運転士に伝えて安心感を与えるため、図8に示すように、動作モード表示装置16は、エンジン準備モードを運転士に明示する。但し、動作モード表示装置16は上記に限定するものではなく、例えば音声などで運転士に知らせてもよい。また、列車制御装置6がエンジン負荷の上昇を予測できないシーンにおいて、運転士が自由にエンジン準備モードにより加速性能を向上できるようにするため、図8に示すような動作モード切り替え装置15を設ける。
Next, an example of the operation mode display device 16 and the operation mode switching device 15 is shown in FIG.
As described above, the present invention increases the engine speed independently of the driver's notch operation. In the general train control system 2, the notch operation and the engine speed move in conjunction with each other, which may give the driver anxiety. Therefore, in order to convey a sense of security to the driver that the system increases the engine speed with a normal judgment, as shown in FIG. 8, the operation mode display device 16 clearly indicates the engine preparation mode to the driver. To do. However, the operation mode display device 16 is not limited to the above, and may notify the driver by voice or the like, for example. Further, in a scene where the train control device 6 cannot predict an increase in engine load, an operation mode switching device 15 as shown in FIG. 8 is provided so that the driver can freely improve the acceleration performance in the engine preparation mode.
(第2の実施形態)
 続いて、第2の実施形態について、第1の実施形態と相違のある部分を中心に説明する。第2の実施例は、路線データベース5及びエンジン負荷予測部35以外は実施例1と同じため説明を省略し、路線データベース5及びエンジン負荷予測部35のみ説明する。
(Second Embodiment)
Next, the second embodiment will be described with a focus on the differences from the first embodiment. Since the second embodiment is the same as the first embodiment except for the route database 5 and the engine load prediction unit 35, the description thereof will be omitted, and only the route database 5 and the engine load prediction unit 35 will be described.
 路線データベース5には、図9に示す勾配データが格納されている。なお、ここでは上り勾配を正とする。但し、勾配データの形式はこれに限定する必要はない。 The route database 5 stores gradient data shown in FIG. Here, the upward gradient is positive. However, the format of the gradient data need not be limited to this.
 続いて、エンジン負荷予測部35を、図10を用いて説明する。S101では、実施例1のS51と同様の処理で所定Δt秒後の自車位置x1[m]を算出する。
 次に、S102で前記勾配データと前記Δt秒後の自車位置より、Δt秒後の勾配を推定する。続いて、S103で、図11に示すマップよりΔt秒後のノッチを予測する。車両速度が高く勾配が小さい場合は、高速走行中の走行抵抗に対抗する出力が必要なため運転士は大きなノッチにすると予測する。また、車両速度が低く勾配が大きい場合は、勾配による走行抵抗を超える出力が必要なので運転士が大きなノッチを入れると予測する。同様の考えから、車両速度が低く勾配が小さい場合はノッチが小さく、車両速度が高く勾配大きい場合はノッチが高いと予測する。
 次に、S104では、前記予測したノッチより、インバータ出力指令演算部31と同様の演算を行い、Δt秒後以降のエンジン負荷の出力増加を予測する。
 以上の処理により、エンジン負荷予測部35は、路線の勾配に応じてΔt秒後以降のエンジン負荷の出力増加を予測できる。
Next, the engine load prediction unit 35 will be described with reference to FIG. In S101, the vehicle position x 1 [m] after a predetermined Δt seconds is calculated by the same process as in S51 of the first embodiment.
Next, in S102, the gradient after Δt seconds is estimated from the gradient data and the vehicle position after Δt seconds. Subsequently, in S103, a notch after Δt seconds is predicted from the map shown in FIG. When the vehicle speed is high and the gradient is small, the driver is expected to make a large notch because an output is required to counter the running resistance during high speed running. Also, when the vehicle speed is low and the gradient is large, it is predicted that the driver will make a large notch because an output exceeding the running resistance due to the gradient is required. From the same idea, it is predicted that when the vehicle speed is low and the gradient is small, the notch is small, and when the vehicle speed is high and the gradient is large, the notch is high.
Next, in S104, a calculation similar to that of the inverter output command calculation unit 31 is performed from the predicted notch to predict an increase in engine load output after Δt seconds.
With the above processing, the engine load predicting unit 35 can predict an increase in engine load output after Δt seconds according to the gradient of the route.
 第2の実施例における効果を、図12を用いて説明する。勾配が-5[‰]から40[‰]へ切り替わる区間を走行する場合について説明する。図12に示すように、勾配が-5[‰]から40[‰]に切り替わるタイミング(時刻t1秒)で、運転士によってノッチが3[N]から6[N]に切り替わっている。公知技術(点線)では、運転士のノッチ操作に応じて、エンジン回転数の速度制約に律速されてエンジン回転数が増加する。そのエンジン回転数の増加に合わせた発電機出力及び電動機出力しかとれないので、加速が遅く、勾配によって車両速度が低下する。 The effect of the second embodiment will be described with reference to FIG. A case where the vehicle travels in a section where the gradient is switched from −5 [‰] to 40 [‰] will be described. As shown in FIG. 12, the notch is switched from 3 [N] to 6 [N] by the driver at the timing when the gradient is switched from -5 [‰] to 40 [‰] (time t 1 second). In the known technique (dotted line), the engine speed increases according to the speed restriction of the engine speed according to the notch operation of the driver. Since only the generator output and the motor output can be obtained in accordance with the increase in the engine speed, the acceleration is slow and the vehicle speed is lowered by the gradient.
 続いて、本発明の第2の実施形態の動作について説明する。時刻t0において、エンジン負荷予測部35は、所定時間後の時刻t1における勾配が40[‰]となると予測する。次に、エンジン負荷予測部35は、図11よりノッチが現在の3[N]から6[N]に切り替わって、エンジン負荷が増加すること予測する。次に、エンジン回転数補正部34は、エンジン負荷の予測値とエンジン出力の最速応答を比べ、エンジン出力が負荷の増加についていけないと判断し、実際のエンジン負荷増加前にエンジン回転数を増加させる。以上により、発電機出力、電動機出力は、エンジン回転数の速度制約に律速されることなく、ノッチに合わせて出力を増加させることができる。その結果、第2の実施形態の列車制御システム2により、公知例に比べてエンジンの排気性能を悪化させることなく加速性能を改善でき、ジャーニータイムを短縮できる。 Subsequently, the operation of the second exemplary embodiment of the present invention will be described. At time t 0 , the engine load prediction unit 35 predicts that the gradient at time t 1 after a predetermined time is 40 [‰]. Next, the engine load prediction unit 35 predicts that the engine load increases as the notch is switched from 3 [N] to 6 [N] from FIG. 11. Next, the engine speed correction unit 34 compares the predicted engine load value with the fastest response of the engine output, determines that the engine output cannot increase the load, and increases the engine speed before the actual engine load increases. . As described above, the generator output and the motor output can be increased in accordance with the notch without being limited by the speed limitation of the engine speed. As a result, the train control system 2 of the second embodiment can improve the acceleration performance without deteriorating the exhaust performance of the engine as compared with the known example, and can shorten the journey time.
(第3の実施形態)
 続いて、第3の実施形態について、第1の実施形態と相違のある部分を中心に説明する。第3の実施例は、ATO(Automatic Train Operation)が適用されている列車が対象となる。第3の実施形態における列車制御システム2の構成は、図1の路線データベース5が、図14に示す走行パターンを格納する目標走行速度パターンデータベース18に置き換わった構成であるため、第1の実施形態と重複する部分は説明を省略する。
(Third embodiment)
Next, the third embodiment will be described with a focus on differences from the first embodiment. The third embodiment is intended for trains to which ATO (Automatic Train Operation) is applied. The configuration of the train control system 2 in the third embodiment is a configuration in which the route database 5 in FIG. 1 is replaced with a target travel speed pattern database 18 that stores the travel pattern shown in FIG. The description of the same part is omitted.
 第3の実施形態におけるブロック図を図13に示す。マスターコントローラ3は、ATモードであることを列車制御装置6に入力する。ノッチ決定部36は、ATOのノッチ操作を決める役割をになう。ノッチ決定部36は、実施例1と同様に現在の車両速度を積分して現在の車両位置を推定し、前記目標走行速度パターンデータと前記現在車両位置から、目標速度を求める。次に、ノッチ決定部36は、前記目標速度と前記車両速度からノッチ指令を決める。なお、ノッチの決定方法は上記に限定する必要はなく、例えば路線の制限速度、勾配などの路線情報の情報も利用して決定されてもよく、他のATOの方式に従ってもよい。第3の実施形態におけるブロック図のノッチ指令以降は、エンジン負荷予測部35以外は第1の実施形態におけるブロック図と同じため説明を省略する。 FIG. 13 shows a block diagram in the third embodiment. The master controller 3 inputs to the train control device 6 that it is in the AT mode. The notch determination unit 36 plays a role of determining an ATO notch operation. As in the first embodiment, the notch determining unit 36 integrates the current vehicle speed to estimate the current vehicle position, and obtains the target speed from the target travel speed pattern data and the current vehicle position. Next, the notch determination unit 36 determines a notch command from the target speed and the vehicle speed. The notch determination method need not be limited to the above. For example, the notch determination method may be determined using route information such as a route speed limit and a gradient, or may be in accordance with another ATO method. After the notch command in the block diagram in the third embodiment, the components other than the engine load prediction unit 35 are the same as those in the block diagram in the first embodiment, and a description thereof will be omitted.
 第3の実施形態におけるエンジン負荷予測部35には、前記目標走行速度パターン及び前記車両速度が入力される。エンジン負荷予測部35は、まず、実施例1のS51と同様の処理で所定時間Δt秒後の自車位置x1[m]を算出する。次に、前記目標走行速度パターンと前記Δt秒後の自車位置より、Δt秒後の目標速度を推定する。前記Δt秒後の目標速度から前記ノッチ決定部36と同様の処理により、Δt秒後のノッチ指令を予測する。以降の処理は、第1の実施形態と同様のため説明を省略する。以上により、エンジン負荷予測部35で目標走行パターンに追従するノッチ指令を事前に予測できる。予測したエンジン負荷予測値に基づき、エンジン回転数補正部34は、必要に応じてエンジン負荷増加前にエンジン回転数指令を補正し、エンジン回転数を増加させる。 The target travel speed pattern and the vehicle speed are input to the engine load prediction unit 35 in the third embodiment. The engine load prediction unit 35 first calculates the host vehicle position x 1 [m] after a predetermined time Δt seconds by the same processing as S51 of the first embodiment. Next, a target speed after Δt seconds is estimated from the target travel speed pattern and the vehicle position after Δt seconds. A notch command after Δt seconds is predicted from the target speed after Δt seconds by the same processing as the notch determination unit 36. Subsequent processing is the same as that of the first embodiment, and thus description thereof is omitted. As described above, the engine load prediction unit 35 can predict a notch command following the target travel pattern in advance. Based on the predicted predicted engine load value, the engine speed correction unit 34 corrects the engine speed command before increasing the engine load as necessary, and increases the engine speed.
 第3の実施形態における効果は、ATOによりノッチが決定される以外は、第1の実施形態の効果と同様のため詳細説明を割愛する。以上より、第3の実施形態による列車制御システム2により、公知例に比べてエンジンの排気性能を悪化させることなく加速性能を改善でき、ジャーニータイムを短縮できる。 Since the effect in the third embodiment is the same as the effect of the first embodiment except that the notch is determined by ATO, detailed description is omitted. As described above, the train control system 2 according to the third embodiment can improve the acceleration performance without deteriorating the exhaust performance of the engine as compared with the known example, and can shorten the journey time.
(第4の実施形態)
 図15は本発明の第4の実施形態による列車制御システム2の構成図である。以後は、第2の実施形態と相違のある部分のみを説明する。第4の実施形態は、運転士のノッチ操作をガイダンスする運転士ガイダンス装置19および目標走行速度パターンデータベース18以外は第2の実施形態と同じなので、説明を省略する。運転士ガイダンス装置19は、目標走行速度パターン及び車両速度に基づき、マスターコントローラ3へノッチガイダンスを出力する。
(Fourth embodiment)
FIG. 15 is a configuration diagram of the train control system 2 according to the fourth embodiment of the present invention. Hereinafter, only parts different from the second embodiment will be described. The fourth embodiment is the same as the second embodiment except for the driver guidance device 19 for guiding the driver's notch operation and the target travel speed pattern database 18, and thus the description thereof is omitted. The driver guidance device 19 outputs notch guidance to the master controller 3 based on the target travel speed pattern and the vehicle speed.
 図16を用いて、第4の実施形態のブロック図を説明する。運転士ガイダンス装置19は、まず、現在の車両速度を積分して現在の位置を推定し、前記目標走行速度パターンデータと前記現在車両位置から、目標速度を求める。次に、運転士ガイダンス装置19は、前記目標速度と前記車両速度からノッチガイダンスを決める。なお、ノッチガイダンスの決定方法は上記に限定する必要はなく、例えば路線の制限速度、勾配などの路線情報の情報も利用して決定されてもよい。以上により、運転士ガイダンス装置19は、目標走行速度パターン及び車両速度に基づき、マスターコントローラ3へノッチガイダンスを決定する。マスターコントローラ3以降はエンジン負荷予測部35を除いて、第1の実施形態と同様のため説明を省略する。 A block diagram of the fourth embodiment will be described with reference to FIG. First, the driver guidance device 19 integrates the current vehicle speed to estimate the current position, and obtains the target speed from the target travel speed pattern data and the current vehicle position. Next, the driver guidance device 19 determines notch guidance from the target speed and the vehicle speed. The notch guidance determination method need not be limited to the above, and may be determined using, for example, route information such as a route speed limit and a gradient. Thus, the driver guidance device 19 determines notch guidance for the master controller 3 based on the target travel speed pattern and the vehicle speed. Since the master controller 3 and subsequent parts are the same as those in the first embodiment except for the engine load prediction unit 35, the description thereof is omitted.
 第4の実施形態におけるエンジン負荷予測部35には、前記目標走行速度パターン及び前記車両速度が入力される。エンジン負荷予測部35は、まず、実施例1のS51と同様の処理で所定時間Δt秒後の自車位置x1[m]を算出する。次に、前記目標走行速度パターンと前記Δt秒後の自車位置より、Δt秒後の目標速度を推定する。前記Δt秒後の目標速度から運転士ガイダンス装置19と同様の処理により、Δt秒後のノッチ指令を予測する。以降の処理は、第1の実施形態と同様のため説明を省略する。以上により、エンジン負荷予測部35はエンジン負荷を予測できる。エンジン回転数補正部34は、前記エンジン負荷の予測値に基づいて、必要に応じてエンジン負荷増加前にエンジン回転数指令を補正し、エンジン回転数を増加させる。 The target travel speed pattern and the vehicle speed are input to the engine load prediction unit 35 in the fourth embodiment. The engine load prediction unit 35 first calculates the host vehicle position x 1 [m] after a predetermined time Δt seconds by the same processing as S51 of the first embodiment. Next, a target speed after Δt seconds is estimated from the target travel speed pattern and the vehicle position after Δt seconds. A notch command after Δt seconds is predicted from the target speed after Δt seconds by the same processing as the driver guidance device 19. Subsequent processing is the same as that of the first embodiment, and thus description thereof is omitted. As described above, the engine load prediction unit 35 can predict the engine load. Based on the predicted value of the engine load, the engine speed correction unit 34 corrects the engine speed command before increasing the engine load as necessary to increase the engine speed.
 第4の実施形態の効果は、ノッチガイダンスに基づいて運転士がノッチを決定する以外は、第1の実施形態の効果と同様のため詳細説明を割愛する。以上より、第4の実施形態の列車制御システム2により、公知例に比べてエンジンの排気性能を悪化させることなく加速性能を改善でき、ジャーニータイムを短縮できる。 Since the effect of the fourth embodiment is the same as the effect of the first embodiment except that the driver determines the notch based on the notch guidance, the detailed description is omitted. As described above, the train control system 2 of the fourth embodiment can improve the acceleration performance without deteriorating the exhaust performance of the engine as compared with the known example, and can shorten the journey time.
(第5の実施形態)
 図17は本発明の第5の実施形態による列車制御システム2の構成である。以下、第1の実施例との相違点のみを説明する。第5の実施形態の列車制御システム2は、第1の実施形態に対して、直流部にブレーキチョッパ20及びブレーキ抵抗器21が追加されている点と、列車制御装置6がブレーキチョッパ20を制御している点と、コンバータ10の制御方式が変更されている点が異なる。
(Fifth embodiment)
FIG. 17 shows the configuration of the train control system 2 according to the fifth embodiment of the present invention. Only the differences from the first embodiment will be described below. The train control system 2 of the fifth embodiment is different from the first embodiment in that a brake chopper 20 and a brake resistor 21 are added to the DC unit, and the train control device 6 controls the brake chopper 20. The difference is that the control method of the converter 10 is changed.
 図18を用いて、第5の実施形態のブロック図を説明する。第5の実施形態では、エンジン負荷の予測値とエンジン出力の最速応答を比べ、エンジン出力が負荷の変動についていけないと判断した場合(エンジン準備モード時)に、エンジン回転数と同時に発電機出力も増加させる。発電機出力により直流部の電圧があがってしまうので、ブレーキ抵抗器21で発熱させて直流部の電圧を維持する。以下、第5の実施形態と第1の実施形態の相違点である、コンバータ10制御とブレーキチョッパ20の制御について具体的に説明する。コンバータ10出力指令演算部は、エンジン負荷予測値に基づき、エンジン負荷とエンジン出力の最速応答を比べ、エンジン出力が負荷についていけないと判断した場合に、コンバータ出力指令を増加させる。ノッチ指令とは独立にエンジン回転数(エンジン回転数補正部34で制御)とエンジン負荷(コンバータ出力指令演算部37で制御)を自由に設定できるので、コンバータ出力指令は、エンジンの燃費及び排気が最適となるように、エンジン回転数も考慮に入れて決定されることが望ましい。直流電圧制御部38は、エンジン準備モード中に発電機出力により直流部の電圧があがらないように、直流部の電圧指令に基づき定電圧制御を行う。定電圧制御により、ブレーキチョッパ20が駆動され、抵抗器での電力が消費される。なお、第5の実施形態においても、エンジン準備モード以外の場合は、第1の実施形態と同じ制御をする。 A block diagram of the fifth embodiment will be described with reference to FIG. In the fifth embodiment, when the predicted value of the engine load is compared with the fastest response of the engine output, and it is determined that the engine output cannot follow the load fluctuation (in the engine preparation mode), the generator output is also generated simultaneously with the engine speed. increase. Since the voltage of the direct current section increases due to the generator output, the brake resistor 21 generates heat and the voltage of the direct current section is maintained. Hereinafter, the converter 10 control and the control of the brake chopper 20 which are the differences between the fifth embodiment and the first embodiment will be specifically described. The converter 10 output command calculation unit increases the converter output command when the engine output is compared with the fastest response between the engine load and the engine output based on the predicted engine load value and it is determined that the engine output cannot follow the load. Independent of the notch command, the engine speed (controlled by the engine speed correction unit 34) and the engine load (controlled by the converter output command calculation unit 37) can be freely set. It is desirable that the engine speed be determined in consideration of the optimum. The DC voltage control unit 38 performs constant voltage control based on the voltage command of the DC unit so that the voltage of the DC unit is not increased by the generator output during the engine preparation mode. The brake chopper 20 is driven by the constant voltage control, and the electric power in the resistor is consumed. In the fifth embodiment, the same control as that in the first embodiment is performed except in the engine preparation mode.
 第5の実施形態における本願の効果について図19を用いて説明する。列車制御装置6は、時刻t0までは実施例1と同様の制御を行う。時刻t0で、エンジン負荷の予測値とエンジン出力の最速応答を比べ、エンジン出力が負荷についていけないと判断する。そして、図18に示す制御により、実際の電動機14出力の増加前に、エンジン回転数と発電機出力を増加させる。時刻t1では、列車制御装置6がノッチ指令に合わせて電動機出力が増加させる。列車制御装置6は、直流電圧部を定電圧制御している。従って、図19に示すように電動機の出力増加に伴い、直流部の余剰な電力が減るので、ブレーキ抵抗器21の消費電力は減少する。最終的に、時刻t2で発電電力の全てが、電動機14出力となる。時刻t2以降は、列車制御装置6が、実施例1と同様の制御を行う。 The effect of this application in 5th Embodiment is demonstrated using FIG. The train control device 6 performs the same control as in the first embodiment until time t 0 . At time t 0 , the predicted value of the engine load is compared with the fastest response of the engine output, and it is determined that the engine output cannot follow the load. Then, by the control shown in FIG. 18, the engine speed and the generator output are increased before the actual output of the electric motor 14 is increased. At time t 1, the train control device 6 is an electric motor output increases to match the notch command. The train control device 6 performs constant voltage control on the DC voltage unit. Accordingly, as shown in FIG. 19, as the output of the motor increases, the surplus power in the direct current section decreases, so the power consumption of the brake resistor 21 decreases. Finally, all of the generated power at time t 2 becomes an electric motor 14 output. Time t 2 later, the train control device 6 performs the same control as in Example 1.
 以上により、第5の実施形態の列車制御システム2により、公知例に比べてエンジンの排気性能を悪化させることなく加速性能を改善でき、ジャーニータイムを短縮できる。また、第5の実施形態では、ノッチ指令とは独立にエンジン回転数とエンジン負荷を自由に設定できるので、エンジンの排気と燃費を最適にするようにエンジンを制御することができる。 As described above, the train control system 2 of the fifth embodiment can improve the acceleration performance without deteriorating the exhaust performance of the engine as compared with the known example, and can shorten the journey time. In the fifth embodiment, since the engine speed and the engine load can be freely set independently of the notch command, the engine can be controlled to optimize engine exhaust and fuel consumption.
 詳細の説明は割愛するが、以上図17及び図18で示したエンジン準備モード中にエンジン回転数と発電機出力を同時に上げる方法は、第2の実施形態、第3の実施形態、第4の実施形態と組み合わせて使うことも可能である。 Although the detailed description is omitted, the methods for simultaneously increasing the engine speed and the generator output during the engine preparation mode shown in FIGS. 17 and 18 are the second embodiment, the third embodiment, and the fourth embodiment. It can also be used in combination with the embodiment.
(第6の実施形態)
 続いて、第6の実施形態について、第1の実施形態と相違のある部分を中心に説明する。第6の実施形態における列車制御システム2の構成について、図20を用いて説明する。列車制御装置6で演算したエンジン負荷の予測値を、運転士ガイダンス装置19に入力する。運転士ガイダンス装置19は、前記エンジン負荷の予測値に基づき、ノッチガイダンスを決定し、マスターコントローラ3に入力する。上記以外は第1の実施形態と同様のため説明を省略する。
(Sixth embodiment)
Next, the sixth embodiment will be described focusing on the parts that are different from the first embodiment. The structure of the train control system 2 in 6th Embodiment is demonstrated using FIG. The predicted value of the engine load calculated by the train control device 6 is input to the driver guidance device 19. The driver guidance device 19 determines notch guidance based on the predicted value of the engine load and inputs it to the master controller 3. Since other than the above is the same as the first embodiment, the description thereof is omitted.
 続いて、第6の実施形態におけるブロック図を図21に示す。エンジン負荷予測部35は、第1の実施形態と同様の方法でエンジン負荷の上昇を予測する。列車制御装置6は、前記エンジン負荷の予測値を運転士ガイダンス装置19に入力する。運転士ガイダンス装置19は、前記エンジン負荷の予測値とエンジン出力の最速応答を比べ、エンジン出力が負荷についていけないと判断した場合に、前記エンジン負荷の予測値が前記エンジン出力の最速応答以下になるように運転士へのノッチガイダンスを決定する。以上の変更点以外は実施例1と同様のため、説明を省略する。 Subsequently, FIG. 21 shows a block diagram in the sixth embodiment. The engine load predicting unit 35 predicts an increase in engine load by the same method as in the first embodiment. The train control device 6 inputs the predicted value of the engine load to the driver guidance device 19. When the driver guidance device 19 compares the predicted value of the engine load and the fastest response of the engine output and determines that the engine output cannot follow the load, the predicted value of the engine load becomes equal to or less than the fastest response of the engine output. To determine the notch guidance to the driver. Since the other changes are the same as those in the first embodiment, description thereof is omitted.
 第6の実施形態の列車制御システムの効果について図22を用いて説明する。制限速度が140[km/h]、80[km/h]、180[km/h]と切り替わる区間である。図22に示すように、公知例では制限速度が80[km/h]から180[km/h]に切り替わるタイミング(時刻t1秒)で、惰行から7[N]に切り替わっている。公知技術では、運転士のノッチ操作に応じて、エンジン回転数の速度制約に律速されてエンジン回転数が増加し、そのエンジン回転数の増加に合わせて、発電機の出力及び電動機の出力がとれるので、車両速度の立ち上がりが遅くなる。 The effect of the train control system of 6th Embodiment is demonstrated using FIG. This is a section where the speed limit is switched to 140 [km / h], 80 [km / h], and 180 [km / h]. As shown in FIG. 22, in the known example, the coasting speed is switched to 7 [N] at the timing (time t 1 second) when the speed limit is switched from 80 [km / h] to 180 [km / h]. In the known technology, the engine speed is increased by the speed limitation of the engine speed according to the notch operation of the driver, and the generator output and the motor output can be taken as the engine speed increases. As a result, the vehicle speed rises slowly.
 続いて、本発明の実施例6の動作について図22を用いて説明する。時刻t0において、エンジン負荷予測部35は、所定時間後の時刻t1においてエンジン負荷が急激に増加することを予測する。運転士ガイダンス装置19は、前記エンジン負荷の予測値とエンジン出力の最速応答を比較し、エンジン出力が負荷についていけないと判断して、エンジン出力が負荷についていけるように惰行→3[N]→7[N]とノッチを細分化して刻むようにノッチガイダンスを決定する。惰行→3[N]→7[N]とノッチを刻むことで、発電機出力、電動機出力は、エンジン回転数の速度制約に律速されることなく、ノッチに合わせて出力を増加させることができる。すなわち、第6の実施形態の列車制御システム2により、エンジンの応答性を考慮して適切なノッチを選択することができ、公知例に比べてエンジンの排気性能を悪化させることなくジャーニータイムを短縮できる。また、電化区間を架線からの電力で、非電化区間をディーゼルエンジン8の発電電力で走る列車では、電化区間と非電化区間で加速性能が違ってくるため、運転士が適切なノッチ操作をすることは難しい。よって、エンジンの応答性を考慮して適切なノッチガイダンスをする第6の実施例は特に有効である。 Next, the operation of the sixth embodiment of the present invention will be described with reference to FIG. At time t 0 , the engine load prediction unit 35 predicts that the engine load increases rapidly at time t 1 after a predetermined time. The driver guidance device 19 compares the predicted value of the engine load with the fastest response of the engine output, determines that the engine output cannot follow the load, and coasts → 3 [N] → 7 so that the engine output can follow the load. [N] and the notch guidance are determined so as to divide the notch into pieces. By cutting the notch as coasting → 3 [N] → 7 [N], the generator output and motor output can be increased according to the notch without being limited by the speed limitation of the engine speed. . That is, the train control system 2 of the sixth embodiment can select an appropriate notch in consideration of engine responsiveness, and shortens the journey time without deteriorating the exhaust performance of the engine as compared with the known example. it can. In addition, in trains that run on electrified sections with power from overhead lines and non-electrified sections with the power generated by diesel engine 8, acceleration performance differs between electrified sections and non-electrified sections. It ’s difficult. Therefore, the sixth embodiment in which appropriate notch guidance is performed in consideration of engine responsiveness is particularly effective.
 以上説明したように、本発明によれば、電動機の出力上昇の予測に基づいて、電動機の出力上昇に先立って、エンジン回転数を増加させたり、あるいは、エンジン出力が負荷上昇に追随できるよう、細分化したノッチを運転士にガイダンスすることにより、エンジンの排気性能と、車両の加速性能を両立させることができ、環境性能を大きく改善することができる。
 また、この観点から、路線の特殊性や、車両の仕様等に対応して、実施形態1ないし6を組み合わせたり、さまざまな変形を行うことが可能である。
As described above, according to the present invention, based on the prediction of the increase in the output of the electric motor, prior to the increase in the output of the electric motor, the engine speed can be increased, or the engine output can follow the increase in load. By guiding the subdivided notch to the driver, the exhaust performance of the engine and the acceleration performance of the vehicle can be made compatible, and the environmental performance can be greatly improved.
From this point of view, the first to sixth embodiments can be combined or various modifications can be made in accordance with the particularity of the route, the specifications of the vehicle, and the like.
1 ディーゼル電気機関車
2 列車制御システム
3 マスターコントローラ
4 速度検出装置
5 路線データベース
6 列車制御装置
7 エンジン制御装置
8 ディーゼルエンジン
9 発電機
10 コンバータ
11 コンバータ制御装置
12 インバータ
13 インバータ制御装置
14 電動機
15 動作モード切り替え装置
16 動作モード表示装置
17 車輪
18 目標走行速度パターンデータベース
19 運転士ガイダンス装置
20 ブレーキチョッパ
21 ブレーキ抵抗器
31 インバータ出力指令演算部
32 エンジン出力指令演算部
33 エンジン回転数指令演算部
34 エンジン回転数補正部
35 エンジン負荷予測部
36 ノッチ決定部
37 コンバータ出力指令演算部
38 直流電圧制御部
DESCRIPTION OF SYMBOLS 1 Diesel electric locomotive 2 Train control system 3 Master controller 4 Speed detection device 5 Route database 6 Train control device 7 Engine control device 8 Diesel engine 9 Generator 10 Converter 11 Converter control device 12 Inverter 13 Inverter control device 14 Electric motor 15 Operation mode Switching device 16 Operation mode display device 17 Wheel 18 Target travel speed pattern database 19 Driver guidance device 20 Brake chopper 21 Brake resistor 31 Inverter output command calculation unit 32 Engine output command calculation unit 33 Engine rotation speed command calculation unit 34 Engine rotation speed Correction unit 35 Engine load prediction unit 36 Notch determination unit 37 Converter output command calculation unit 38 DC voltage control unit

Claims (15)

  1.  エンジンと、前記エンジンにより駆動される発電機と、前記発電機の出力する交流電力を直流電力へ変換するコンバータと、前記直流電力を変換して交流電力を生成して電動機を駆動するインバータと、を備える車両制御システムであって、
     将来の前記電動機の出力を予測するエンジン負荷予測部と、
     前記エンジン負荷予測部が、将来の前記電動機の出力の上昇を予測した場合に、前記エンジン負荷予測部で予測された前記電動機の出力上昇が生じる前に、エンジン回転数を増加させるエンジン回転数補正部と、を有することを特徴とする車両制御システム。
    An engine, a generator driven by the engine, a converter that converts AC power output from the generator into DC power, an inverter that converts the DC power to generate AC power and drives an electric motor, A vehicle control system comprising:
    An engine load prediction unit for predicting the output of the electric motor in the future;
    When the engine load prediction unit predicts a future increase in the output of the electric motor, the engine rotation number correction increases the engine rotation number before the increase in the output of the electric motor predicted by the engine load prediction unit occurs. And a vehicle control system.
  2.  請求項1に記載の車両制御システムであって、
     前記車両の走行位置を検出する位置検出手段を備え、
     前記エンジン負荷予測部は、位置情報と関連付けられた制限速度情報、路線の勾配情報、目標走行速度パターンのすくなくともいずれかの情報に基づいて、前記車両の進行方向前方の地点における前記電動機の出力を予測することを特徴とする車両制御システム。
    The vehicle control system according to claim 1,
    Comprising position detecting means for detecting the traveling position of the vehicle;
    The engine load predicting unit outputs the output of the electric motor at a point ahead of the traveling direction of the vehicle based on at least one of speed limit information associated with the position information, route gradient information, and target travel speed pattern. A vehicle control system characterized by predicting.
  3.  請求項1に記載の車両制御システムであって、
     前記車両の走行位置を検出する位置検出手段を備え、
     前記エンジン負荷予測部は、前記車両の進行方向前方の地点における予め定められた前記車両の制限速度が前記車両の速度よりも大きい場合に、前記電動機の出力上昇を予測することを特徴とする車両制御システム。
    The vehicle control system according to claim 1,
    Comprising position detecting means for detecting the traveling position of the vehicle;
    The engine load prediction unit predicts an increase in output of the electric motor when a predetermined speed limit of the vehicle at a point ahead in the traveling direction of the vehicle is larger than the speed of the vehicle. Control system.
  4.  請求項1に記載の車両制御システムであって、
     前記車両の走行位置を検出する位置検出手段を備え、
     前記エンジン負荷予測部は、前記車両の進行方向前方の地点における路線の上り勾配が現位置よりも大きくなる場合に前記電動機の出力上昇を予測することを特徴とする車両制御システム。
    The vehicle control system according to claim 1,
    Comprising position detecting means for detecting the traveling position of the vehicle;
    The engine load predicting unit predicts an increase in the output of the electric motor when an ascending slope of a route at a point ahead of the traveling direction of the vehicle is larger than a current position.
  5.  請求項1に記載の車両制御システムであって、
     前記車両の走行位置を検出する位置検出手段を備え、
     前記車両の走行位置に対応した目標速度に追従して走行速度を制御するノッチ決定部を有し、
     前記エンジン負荷予測部は、前記車両の進行方向前方の地点において前記ノッチ決定部で決定されるノッチを予測し、該ノッチの予測値に基づき前記電動機の出力上昇を予測することを特徴とする車両制御システム。
    The vehicle control system according to claim 1,
    Comprising position detecting means for detecting the traveling position of the vehicle;
    A notch determination unit that controls a traveling speed following a target speed corresponding to the traveling position of the vehicle;
    The engine load prediction unit predicts a notch determined by the notch determination unit at a point ahead of the traveling direction of the vehicle, and predicts an increase in output of the electric motor based on a predicted value of the notch. Control system.
  6.  請求項1に記載の車両制御システムであって、
     前記エンジン回転数補正部は、エンジン出力の最速応答から算出される前記電動機の出力値と前記電動機の出力の予測値を比較し、
     前記電動機の出力上昇の予測値が前記エンジン出力の最速応答から算出される前記電動機の出力値より大きい場合に、
     予測された前記電動機の出力上昇が生じる前に前記エンジン回転数を増加させることを特徴とする車両制御システム。
    The vehicle control system according to claim 1,
    The engine speed correction unit compares the output value of the motor calculated from the fastest response of the engine output with the predicted value of the output of the motor,
    When the predicted value of the output increase of the motor is larger than the output value of the motor calculated from the fastest response of the engine output,
    The vehicle control system characterized in that the engine speed is increased before the predicted output increase of the electric motor occurs.
  7.  請求項1に記載の車両制御システムであって、
     前記コンバータと前記インバータの間の直流電力部分に接続されるブレーキ抵抗器と、
     前記ブレーキ抵抗器への電流を調整するブレーキチョッパと、
     前記エンジン負荷予測部が将来の前記電動機の出力上昇を予測した場合に、前記エンジン負荷予測部で予測された前記電動機の出力上昇が生じる前に前記発電機の出力を増加させるコンバータ出力指令補正部と、
     前記発電機から出力される電力であって前記電動機の出力に使わない余剰な電力を、前記ブレーキ抵抗器で消費させるように前記ブレーキチョッパを制御する直流電圧制御部と、
    を有することを特徴とする車両制御システム。
    The vehicle control system according to claim 1,
    A brake resistor connected to a DC power portion between the converter and the inverter;
    A brake chopper for adjusting the current to the brake resistor;
    When the engine load prediction unit predicts a future increase in the output of the motor, a converter output command correction unit that increases the output of the generator before the increase in the output of the motor predicted by the engine load prediction unit occurs. When,
    A DC voltage control unit that controls the brake chopper so that excess power that is output from the generator and is not used for output of the motor is consumed by the brake resistor;
    A vehicle control system comprising:
  8.  請求項1に記載の車両制御システムであって、
     前記電動機の出力上昇の予測値に基づいて、前記車両の運転手に対してノッチをガイダンスする運転士ガイダンス装置を有することを特徴とする車両制御システム。
    The vehicle control system according to claim 1,
    A vehicle control system comprising: a driver guidance device for guiding a notch to a driver of the vehicle based on a predicted value of an increase in output of the electric motor.
  9.  エンジンと、前記エンジンにより駆動される発電機と、前記発電機の出力する交流電力を直流電力へ変換するコンバータと、前記直流電力を変換して交流電力を生成して電動機を駆動するインバータと、を備える車両制御システムにおいて、
     将来の前記電動機の出力上昇を予測するエンジン負荷予測部と、
     前記電動機の出力上昇の予測値に基づいて、予測された前記電動機の出力上昇が生じる前に、前記車両の運転手に対して、前記エンジン出力が負荷上昇に追随できるよう、細分化したノッチをガイダンスする運転士ガイダンス装置と、を有することを特徴とする車両制御システム。
    An engine, a generator driven by the engine, a converter that converts AC power output from the generator into DC power, an inverter that converts the DC power to generate AC power and drives an electric motor, In a vehicle control system comprising:
    An engine load prediction unit for predicting a future output increase of the electric motor;
    Based on the predicted increase in the output of the electric motor, the notch that is subdivided so that the engine output can follow the increase in load before the predicted increase in the output of the electric motor occurs. A vehicle control system comprising a driver guidance device for guidance.
  10.  請求項1ないし請求項8のいずれかに記載の車両制御システムであって、
     前記エンジン負荷予測部で予測された前記電動機の出力上昇が生じる前に前記エンジン回転数を増加させる場合に、
     前記運転手に対し前記エンジン回転数を増加させることを通知する動作モード表示装置を有することを特徴とする車両制御システム。
    A vehicle control system according to any one of claims 1 to 8,
    When increasing the engine speed before the output increase of the electric motor predicted by the engine load prediction unit occurs,
    A vehicle control system comprising: an operation mode display device that notifies the driver that the engine speed is to be increased.
  11.  請求項1ないし請求項8のいずれかに記載の車両制御システムであって、
     前記エンジン負荷予測部で予測された前記電動機の出力上昇が生じる前にエンジン回転数を増加させる動作モードと、
     エンジン回転数をノッチ指令に応じて制御する動作モードと、を切り替える切り替え装置を有することを特徴とする車両制御システム。
    A vehicle control system according to any one of claims 1 to 8,
    An operation mode for increasing the engine speed before the output increase of the electric motor predicted by the engine load prediction unit occurs;
    A vehicle control system comprising a switching device for switching between an operation mode for controlling an engine speed in accordance with a notch command.
  12.  エンジンと、前記エンジンにより駆動される発電機と、前記発電機の出力する交流電力を直流電力へ変換するコンバータと、前記直流電力を変換して交流電力を生成して電動機を駆動するインバータと、を備える車両の駆動制御方法であって、
     将来の前記電動機の出力上昇を予測するステップと、
     前記電動機の予測された出力上昇が生じる前に、前記エンジン回転数を増加させるステップと、を備えたことを特徴とする車両の駆動制御方法。
    An engine, a generator driven by the engine, a converter that converts AC power output from the generator into DC power, an inverter that converts the DC power to generate AC power and drives an electric motor, A vehicle drive control method comprising:
    Predicting a future output increase of the motor;
    And a step of increasing the engine speed before a predicted increase in the output of the electric motor occurs.
  13.  請求項12に記載の車両の駆動制御方法において、
     前記車両の走行位置を検出するステップを備え、
     前記将来の前記電動機の出力上昇は、位置情報と関連付けられた制限速度情報、路線の勾配情報、目標走行速度パターンの少なくともいずれか1つの情報に基づいて予測されることを特徴とする車両の駆動制御方法。
    The vehicle drive control method according to claim 12,
    Detecting the travel position of the vehicle,
    The future increase in the output of the electric motor is predicted based on at least one of speed limit information associated with position information, route gradient information, and a target travel speed pattern. Control method.
  14.  エンジンと、前記エンジンにより駆動される発電機と、前記発電機の出力する交流電力を直流電力へ変換するコンバータと、前記直流電力を変換して交流電力を生成して電動機を駆動するインバータと、を備える列車に搭載され、
     前記エンジンの回転数を制御するエンジン回転数指令を演算するエンジン回転数指令演算部と、
     車両の走行位置情報を用いて、将来の前記電動機の出力値を予測するエンジン負荷予測部と、
     前記エンジン負荷予測部が、将来の前記電動機の出力の上昇を予測した場合に、前記エンジン負荷予測部で予測された前記電動機の出力上昇が生じる前にエンジン回転数指令の値を増加させるエンジン回転数補正部と、を有することを特徴とする列車制御装置。
    An engine, a generator driven by the engine, a converter that converts AC power output from the generator into DC power, an inverter that converts the DC power to generate AC power and drives an electric motor, On a train with
    An engine speed command calculating unit for calculating an engine speed command for controlling the engine speed;
    An engine load prediction unit that predicts a future output value of the electric motor using vehicle travel position information;
    When the engine load prediction unit predicts a future increase in the output of the electric motor, the engine speed increases the value of the engine speed command before the increase in the output of the electric motor predicted by the engine load prediction unit occurs. A train control device comprising: a number correction unit.
  15.  請求項14に記載の列車制御装置であって、
     前記エンジン負荷予測部は、位置情報と関連付けられた制限速度情報、路線の勾配情報、目標走行速度パターンのすくなくともいずれか1つの情報と、車両の走行位置情報とに基づいて、前記車両の進行方向前方の地点における前記電動機の出力を予測することを特徴とする列車制御装置。
    The train control device according to claim 14,
    The engine load prediction unit is configured to determine the traveling direction of the vehicle based on speed limit information associated with the position information, route gradient information, at least one of the target traveling speed pattern, and the traveling position information of the vehicle. A train control apparatus for predicting an output of the electric motor at a point ahead.
PCT/JP2011/067221 2010-08-20 2011-07-28 Vehicle control system, drive control method for vehicle, and train control device WO2012023400A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB1302746.1A GB2495886B (en) 2010-08-20 2011-07-28 Vehicle control system, drive control method for vehicle, and train controller

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010184548A JP5521890B2 (en) 2010-08-20 2010-08-20 Vehicle control system, vehicle drive control method, and train control device
JP2010-184548 2010-08-20

Publications (1)

Publication Number Publication Date
WO2012023400A1 true WO2012023400A1 (en) 2012-02-23

Family

ID=45605061

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/067221 WO2012023400A1 (en) 2010-08-20 2011-07-28 Vehicle control system, drive control method for vehicle, and train control device

Country Status (3)

Country Link
JP (1) JP5521890B2 (en)
GB (1) GB2495886B (en)
WO (1) WO2012023400A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110406527A (en) * 2018-04-27 2019-11-05 通用电气全球采购有限责任公司 Control system and method for the vehicle with dynamic brake
CN112751516A (en) * 2020-11-03 2021-05-04 宁波央腾汽车电子有限公司 Motor rotating speed control method and device based on subdivision prediction

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5476327B2 (en) * 2011-03-09 2014-04-23 株式会社日立製作所 Diesel vehicle drive system control system
CN103587522B (en) * 2013-12-04 2016-02-10 安徽工业大学 A kind of hybrid power automobile power assembly intelligent control method
CN103661355B (en) * 2013-12-04 2016-05-18 安徽工业大学 A kind of hybrid power automobile power assembly intelligence control system
EP3206296B1 (en) 2014-11-25 2020-01-01 Yamaha Hatsudoki Kabushiki Kaisha Electric power supply system, control device, vehicle, and engine generator unit for vehicle drive
DE102015007907A1 (en) * 2015-06-20 2016-12-22 Man Truck & Bus Ag Method and device for operating a hybrid vehicle
JP7363702B2 (en) * 2019-12-24 2023-10-18 トヨタ自動車株式会社 motor drive device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002354612A (en) * 2001-05-24 2002-12-06 Isuzu Motors Ltd Operation system for hybrid automobile

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4465104A (en) * 1981-02-27 1984-08-14 Hughes Tool Company Pressure energized pipeline plug
EP1038346A2 (en) * 1997-10-21 2000-09-27 Stridsberg Innovation Ab A hybrid powertrain
JP2000115907A (en) * 1998-10-09 2000-04-21 Mitsubishi Electric Corp Control equipment for locomotive driven by electric internal combustion engine
EP1316457A1 (en) * 2001-11-30 2003-06-04 Ford Global Technologies, Inc. Method and arrangement for controlling the take-off in a hybrid electric vehicle
JP4576434B2 (en) * 2006-02-08 2010-11-10 日立オートモティブシステムズ株式会社 Vehicle left and right wheel differential torque generator
JP2007270694A (en) * 2006-03-31 2007-10-18 Autech Japan Inc Engine control device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002354612A (en) * 2001-05-24 2002-12-06 Isuzu Motors Ltd Operation system for hybrid automobile

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110406527A (en) * 2018-04-27 2019-11-05 通用电气全球采购有限责任公司 Control system and method for the vehicle with dynamic brake
CN110406527B (en) * 2018-04-27 2022-09-02 Ip传输控股公司 Control system and method for a vehicle with dynamic braking
CN112751516A (en) * 2020-11-03 2021-05-04 宁波央腾汽车电子有限公司 Motor rotating speed control method and device based on subdivision prediction

Also Published As

Publication number Publication date
GB2495886B (en) 2015-07-08
JP2012044792A (en) 2012-03-01
GB201302746D0 (en) 2013-04-03
JP5521890B2 (en) 2014-06-18
GB2495886A (en) 2013-04-24

Similar Documents

Publication Publication Date Title
WO2012023400A1 (en) Vehicle control system, drive control method for vehicle, and train control device
US9067589B1 (en) Hybrid powertrain mode determination based on spatial domain route segmentation
JP4642083B2 (en) Electric car brake control device
US8093843B2 (en) Vehicle controller and control method
KR102444667B1 (en) Hybrid vehicle and method of changing operation mode for the same
KR102555912B1 (en) Vehicle having electric motor and method of driving controlling for the same
JP2007202344A (en) Motor drive apparatus
US8768546B2 (en) Method for controlling a railway vehicle
US8302713B2 (en) Method for operating a hybrid vehicle
JP5785897B2 (en) Drive system and control method of trained vehicle
US10486680B2 (en) Hybrid vehicle
JP2010093947A (en) Vehicle running control method
AU2013221903B2 (en) Method and system for motor thermal protection
WO2018096821A1 (en) Vehicle cruise control device
JP2017534522A (en) Engine control system
KR20210029877A (en) Hybrid vehicle and method of driving control for the same
KR20190003096A (en) Vehicle having electric motor and method of controlling coasting torque for the same
KR20190072925A (en) Method for controlling driving of hybrid vehicle using dynamic traffic information
KR101171831B1 (en) System for controlling pid feedback of hybride vehicle
JP2003274516A (en) Automatic train operating apparatus and train operation assisting device
JP5206329B2 (en) Control method and apparatus for hybrid vehicle
JP5853377B2 (en) Battery charging control device for electric vehicle
EP2735491A1 (en) Method and device for minimizing the energy consumption of vehicles
JP5814814B2 (en) Vehicle control system and vehicle drive control method
JP2012184687A (en) Vehicle control system and vehicle control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11818043

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 1302746

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20110728

WWE Wipo information: entry into national phase

Ref document number: 1302746.1

Country of ref document: GB

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11818043

Country of ref document: EP

Kind code of ref document: A1