WO2012023325A1 - Throwaway tip - Google Patents

Throwaway tip Download PDF

Info

Publication number
WO2012023325A1
WO2012023325A1 PCT/JP2011/061877 JP2011061877W WO2012023325A1 WO 2012023325 A1 WO2012023325 A1 WO 2012023325A1 JP 2011061877 W JP2011061877 W JP 2011061877W WO 2012023325 A1 WO2012023325 A1 WO 2012023325A1
Authority
WO
WIPO (PCT)
Prior art keywords
cutting edge
throw
away tip
width
cutting
Prior art date
Application number
PCT/JP2011/061877
Other languages
French (fr)
Japanese (ja)
Inventor
鈴木 智恵
伊藤 実
岡田 吉生
アノンサック パサート
秀明 金岡
Original Assignee
住友電工ハードメタル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電工ハードメタル株式会社 filed Critical 住友電工ハードメタル株式会社
Priority to JP2012529509A priority Critical patent/JPWO2012023325A1/en
Publication of WO2012023325A1 publication Critical patent/WO2012023325A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • B23B27/141Specially shaped plate-like cutting inserts, i.e. length greater or equal to width, width greater than or equal to thickness
    • B23B27/145Specially shaped plate-like cutting inserts, i.e. length greater or equal to width, width greater than or equal to thickness characterised by having a special shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2200/00Details of cutting inserts
    • B23B2200/24Cross section of the cutting edge
    • B23B2200/245Cross section of the cutting edge rounded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2200/00Details of cutting inserts
    • B23B2200/36Other features of cutting inserts not covered by B23B2200/04 - B23B2200/32
    • B23B2200/3645Lands, i.e. the outer peripheral section of the rake face
    • B23B2200/3654Lands, i.e. the outer peripheral section of the rake face being variable

Definitions

  • the present invention relates to a throw-away tip, and to a throw-away tip used for milling or turning.
  • the cutting edge of the throw-away tip is generally composed of a linear cutting edge part and an arcuate cutting edge part.
  • the arcuate cutting edge portion is an intersection where one rake face and two flank faces intersect, and means a rounded portion cutting edge. It means a straight cutting edge connecting the arcuate cutting edges.
  • JP 2002-192407 Patent Document 1
  • JP 09-019819 Patent Document 2
  • JP 63-306806 Patent Document 3
  • JP 01-188202 Patent Document
  • Patent Document 5 disclose a technique for making the chamfer width of the cutting edge different.
  • the chamfering width at the midpoint of the arcuate cutting edge portion of the nose is wider than the chamfering width at the connection point between the arcuate cutting edge portion and the linear cutting edge portion.
  • the throw-away tip of Patent Document 2 has a chamfering width in the linear cutting edge portion wider than a chamfering width in the vicinity of the arcuate cutting edge portion.
  • the throw-away tip of Patent Document 1 has a high frictional resistance at the arcuate cutting edge portion, so that chips easily flow to the front cutting edge side. Then, the chips scrape the vicinity of the front cutting edge to cause crater wear, and as a result, abnormal wear or chipping tends to occur in the throw-away tip.
  • the throw-away tip of Patent Document 2 has a narrow chamfer width of the arcuate cutting edge.
  • the chips are located on the side center side of the main cutting edge (in the direction indicated by “side 10” in FIG. 1, that is, the linear cutting edge of the throwaway tip). To the center).
  • the work material is rarely in a uniform cylindrical shape, and it is inevitable that the cutting amount or machining allowance of the work material fluctuates during the cutting process.
  • Patent Documents 3 to 5 when the amount of cut of the work material fluctuates during cutting, the chips cannot be appropriately treated, and crater wear or chipping outside the cutting edge occurs. It was easy to occur.
  • the present invention has been made in view of the current situation as described above, and an object of the present invention is a throwaway that can be cut while appropriately flowing chips even if the amount of cut of the work material varies. Is to provide a chip.
  • the throw-away tip of the present invention is continuously chamfered along the cutting edge, and the cutting edge includes an arcuate cutting edge portion and a linear cutting edge portion, and is viewed in a plan view in the rake face direction.
  • the ratio of the chamfering width A at the midpoint of the arcuate cutting edge to the chamfering width B at the connection point between the arcuate cutting edge and the linear cutting edge (when viewing the throwaway tip from the rake face direction) A / B is 0.5 or more and 0.95 or less, and the chamfer width B is a maximum chamfer width in the arcuate cutting edge portion.
  • the minimum chamfer width C is preferably smaller than the chamfer width A.
  • the throw-away tip may be composed only of a base material, or may include a base material and a coating film formed on the base material.
  • the coating film has a thickness of 1 ⁇ m or more and 30 ⁇ m or less, and at least one layer constituting the coating film is selected from the group consisting of IVa group element, Va group element, VIa group element, and aluminum in the periodic table It is preferable to form a compound of one or more elements selected from the group consisting of carbon, nitrogen, oxygen, and boron, or a solid solution of the compound.
  • the throw-away tip of the present invention has the above-described configuration, so that even if the amount of cut of the work material varies, cutting can be performed while appropriately flowing chips. Thereby, chipping and chipping are less likely to occur, and the life of the throw-away tip can be extended.
  • the thickness of the coating film is measured by a scanning electron microscope (SEM), and the composition of the coating film is an energy dispersive X-ray analyzer (EDS: Energy Dispersive X-ray Spectroscopy). ).
  • FIG. 1 is a schematic view of a throwaway tip of the present invention in plan view of a rake face
  • FIG. 2 is an enlarged schematic view of an arcuate cutting edge portion of FIG.
  • the throw-away tip 1 of the present invention is continuously chamfered along the cutting edge.
  • the cutting edge includes an arcuate cutting edge portion 3 and a linear cutting edge portion 4.
  • continuous chamfered means that chamfering is performed without interruption along the cutting edge.
  • the throw-away tip 1 of the present invention has a rake face 5 that comes into contact with chips of the work material during cutting and a flank face that comes into contact with the work material itself.
  • the shape of the throw-away tip may be either a negative type or a positive type. From the viewpoint that both sides can be used, it is preferable to use a negative type having many usable cutting edges per chip.
  • the side surface of the throw away tip becomes a flank, since both FIG. 1 and FIG. 2 are top views, the flank is not shown.
  • the throw-away tip 1 of the present invention may be composed of only a base material, or a coating film may be formed on the base material. By providing the coating film, chipping and chipping during cutting can be prevented.
  • the throw-away tip 1 of the present invention having such a basic configuration is, for example, a drill, an end mill, a milling or turning edge cutting type cutting tip, a metal saw, a gear cutting tool, a reamer, a tap, or a crankshaft pin. It can be used very effectively as a chip for milling.
  • the rake face 5 constituting the throw-away tip of the present invention means a face that comes into contact with chips of the work material during cutting, and the upper surface and the bottom face of the throw-away tip are usually the rake face 5.
  • the rake face 5 preferably has a convex or concave chip breaker. By having the chip breaker, the chips are curled and finely divided into an appropriate size, so that it is possible to prevent the chips from being wound and obstructing the cutting process.
  • flank that forms the throw-away tip of the present invention means a surface that contacts the work material itself during cutting.
  • the cutting edge means a portion obtained by honing a portion where the rake face and the flank face intersect (hereinafter also referred to as “cutting edge ridge line”).
  • cutting edge ridge line Such a cutting edge may be further given a name to each part depending on the contact state with the work material. That is, when cutting while rotating the work material, the cutting edge on the side in contact with the part of the work material cut in the previous cycle is called the "front cutting edge", and the new part of the work material is The cutting edge on the side to be cut is called “main cutting edge”.
  • the rounded part at the intersection of one rake face and two flank faces is called an arcuate cutting edge.
  • a straight cutting edge connecting the arcuate cutting edges is referred to as a straight cutting edge.
  • the “connection point between the arcuate cutting edge part and the linear cutting edge part” means an inflection point between the arcuate cutting edge part and the linear cutting edge part.
  • the throw-away tip of the present invention has an arcuate cutting edge with respect to a chamfering width B at a connection point between the arcuate cutting edge part 3 and the linear cutting edge part 4 in plan view in the rake face direction.
  • the ratio A / B of the chamfering width A at the midpoint of the portion 3 is 0.5 or more and 0.95 or less, and the chamfering width B is the maximum chamfering width in the arcuate cutting edge portion 4.
  • the ratio A / B is more preferably 0.6 or more and 0.8 or less.
  • the chamfering width A with respect to the chamfering width B satisfies the above numerical range, it becomes easy for chips to flow toward the center side of the main cutting edge (in the direction indicated by “side 10” in FIG. 1), and in the vicinity of the front cutting edge. Scratching due to chips can be suppressed. Thereby, generation
  • a / B is less than 0.5, it is not preferable because when the rough cutting is performed, the linear cutting edge 4 entrains chips and easily causes chipping outside the cutting edge.
  • the minimum chamfer width C in the linear cutting edge portion 4 is smaller than the chamfer width A. As a result, it becomes easier for the chips to flow toward the center side of the main cutting edge, and scraping of the chips in the vicinity of the front cutting edge can be suppressed.
  • the midpoint of the linear cutting edge part 4 or its vicinity becomes the minimum of the chamfering width C in the linear cutting edge part 4.
  • the ratio A / C of the chamfering width A to the chamfering width C is more preferably 1 or more and 1.3 or less. As a result, scraping of chips in the vicinity of the front cutting edge is further less likely to occur.
  • the chamfering width B is larger than the chamfering width C.
  • the connection point (part of the chamfering width B) between the arcuate cutting edge portion and the linear cutting edge portion is cut during the cutting process. It becomes easy to contact the work material. This increases the frictional resistance at the connection point, and chips flow in the direction of the front cutting edge when performing rough cutting.
  • the curl diameter of the chip is small and does not contact the vicinity of the front cutting edge. Therefore, although crater wear occurs on the rake face, it does not have a short life.
  • 3 (a) to 3 (c) are cross-sectional views schematically showing the cross-sections of the chamfering widths A, B, and C described above.
  • the chamfering width as shown in FIGS. 3A to 3C is obtained.
  • 3 (a) to 3 (c) show a honed cutting edge ridge line where the rake face 2 and the flank face 3 intersect, but a land surface or a negative land surface may be formed. Needless to say, it is good.
  • a conventionally known base material known as a base material for cutting tools can be used without particular limitation.
  • cemented carbide for example, WC base cemented carbide, including WC, including Co, or further including carbonitride such as Ti, Ta, Nb, etc.
  • cermet TiC, TiN, TiCN, etc.
  • High-speed steel, ceramics titanium carbide, silicon carbide, silicon nitride, aluminum nitride, aluminum oxide, and mixtures thereof), cubic boron nitride sintered body, diamond sintered body Etc. can be mentioned as examples of such a substrate.
  • a cemented carbide is used as such a base material, the effect of the present invention is exhibited even if such a cemented carbide contains an abnormal phase called free carbon or ⁇ phase in the structure.
  • these base materials may have a modified surface.
  • a de- ⁇ layer may be formed on the surface
  • a surface hardened layer may be formed. The effect of the invention is shown.
  • the coating film of the present invention is preferably composed of a single layer or a plurality of layers having a film thickness of 1 ⁇ m or more and 30 ⁇ m or less.
  • at least 1 layer which comprises a coating film is 1 or more types of elements chosen from the group which consists of a IVa group element of a periodic table, a Va group element, a VIa group element, and aluminum, carbon, nitrogen, oxygen, And a compound with one or more elements selected from the group consisting of boron and a solid solution of the compound.
  • Such a coating film of the present invention includes an aspect in which the entire surface of the substrate is coated, and also includes an aspect in which the coating film is not partially formed.
  • stacking aspect of a part differs is also included.
  • the coating film of this invention is the whole film thickness of 1 micrometer or more and 30 micrometers or less. If it is less than 1 ⁇ m, the abrasion resistance may be inferior, and if it exceeds 30 ⁇ m, the adhesion to the substrate and the fracture resistance may be reduced.
  • a particularly preferable film thickness of such a coating film is 5 ⁇ m or more and 20 ⁇ m or less. In addition, the same effect is shown even if two or more layers having the above composition are laminated on the coating film. The value measured by SEM shall be employ
  • said chamfering width A, B, C refers to the chamfering width of the substrate surface when the throw-away tip is made of only a base material, and when the throw-away tip is coated with a coating film.
  • the chamfering width of the surface of the coating film That is, the chamfering widths A, B, and C mean the chamfering width of the outermost surface of the throw-away tip.
  • FIG. 4 is a schematic side view showing a state when the throw-away tip of the present invention is chamfered.
  • a chamfering process with a chamfering width ratio A / B of 0.5 to 0.95 can be performed by chamfering the cutting edge by the method shown in FIG.
  • the chamfering process shown in FIG. 4 will be described.
  • the base material 1 is fixed with a throw-away tip fixing jig 9. Then, after adjusting the position of the brush so that the brush hits the linear cutting edge portion 4 of the base material 1 in the vertical direction, while rotating the brush 7, the front side of the paper surface in FIG. To move the brush 7.
  • the brush is uniformly applied to all the corner portions, it was impossible to perform the cutting edge processing to a desired size for each corner portion of the throw-away tip.
  • the edge can be processed to a desired (separate) size for each corner portion, and the angle of chamfering can be set. It also has the feature that it can be adjusted freely.
  • the shape of the corner portion can be optimized in accordance with applications having different required performance. Therefore, it is possible to provide a throw-away tip that can be used for a wide range of applications from roughing to finishing.
  • the cutting depth is an arc-shaped cutting blade. It is preferably 200% or more and 800% or less of the nose radius R of the portion (hereinafter, the cutting depth with respect to the nose radius R is also referred to as “cutting rate”).
  • the chamfering width B can be made larger than the chamfering width A and the chamfering width C by cutting at the above-mentioned cutting rate. If it is less than 200%, the chamfering width A of the arcuate cutting edge is smaller than the chamfering width C of the linear cutting edge, which is not preferable. On the other hand, if it exceeds 800%, the chamfering width C of the linear cutting edge portion is larger than the chamfering width B at the connection point between the arcuate cutting edge portion and the linear cutting edge portion. Absent. In addition, it is preferable that the rotation speed of said brush 7 is 500 rpm or more and 2000 rpm or less.
  • the throw-away tip produced by the above manufacturing method is continuously chamfered along the cutting edge, and the cutting edge includes an arcuate cutting edge part and a linear cutting edge part,
  • the ratio A / B of the chamfering width A at the midpoint of the arcuate cutting edge portion to the chamfering width B at the connection point between the arcuate cutting edge portion and the linear cutting edge portion in the rake face direction plan view is 0.5.
  • the chamfer width B is 0.95 or less, and the chamfer width B is the maximum chamfer width in the arcuate cutting edge portion.
  • Example 1 to 6 and Comparative Example 1 a base material made of cemented carbide having a model number of CNMG120408 with a nose radius of 0.8 mm and a material of P10 grade was used.
  • the base material was subjected to brush treatment under the conditions shown in “Chamfering conditions” in Table 1 to perform chamfering of the cutting edge of the base material.
  • the base material 1 was fixed with a throw-away tip fixing jig 9.
  • the position of the brush was adjusted so that the brush hits from the upper direction perpendicular to the linear cutting edge portion of the substrate 1 and at an angle of 10 ° from the linear cutting edge portion.
  • apply the brush to the cutting depth shown in the column of “cutting depth” in Table 1, and rotate the brush 7 at a rotational speed of 1500 rpm, while making the brush 7 parallel to the linear cutting edge. And moved at a speed of 7000 mm / min. In this way, the chamfering of the throw-away tip was performed.
  • a nylon fiber embedded with diamond abrasive grains was used as described above, a throw-away tip having a chamfering width shown in the column of “Chamfering Width” in Table 1 was produced.
  • Comparative Example 2 In Comparative Example 2, the same base material as in Example 1 was used, and after setting the base material 1 on the rotary jig 8 shown in FIG. 6, the rotary jig 8 was rotated at a rotational speed of 40 rpm. It was. Then, as shown in FIG. 5, the rotary jig 8 was chamfered from the upper surface of the base material 1 while rotating the brush 7 at a rotation speed of 450 rpm. The brush was brought into contact with the substrate with a cut width of 4 mm. In this way, a throw-away tip with a chamfer width shown in the column of “Chamfer Width” in Table 1 was produced.
  • Comparative Example 3 a throw-away tip was produced by the same method as Comparative Example 2 except that the shape of the rotating jig was different. Specifically, chamfering was performed using the rotating jig shown in FIG. 7 instead of the rotating jig shown in FIG.
  • the rotary jig shown in FIG. 7 has a recess having an elliptical diameter formed at the center thereof, and a brush treatment is performed after setting a base material thereon.
  • Example 7 to 12 and Comparative Examples 4 to 6 In Examples 7 to 12 and Comparative Examples 4 to 6, first, as a base material, as in Examples 1 to 6, the model number is CNMG120408 of ISO standard, and the nose R is 0.8 mm. Used was a P10 grade cemented carbide. And the base material and the plastic media which embedded the alumina abrasive grain were put in the barrel, and the chamfering process of the width
  • the base material which chamfered in this way was coat
  • a coating film is, in order from the substrate side, a TiN layer having a thickness of 0.5 ⁇ m, a TiCN layer having a thickness of 8.5 ⁇ m, a TiBN layer having a thickness of 0.7 ⁇ m, and an Al 2 O 3 layer having a thickness of 3.5 ⁇ m.
  • a five-layer structure of a layer and a TiN layer having a layer thickness of 1.0 ⁇ m was formed.
  • the base material covered with this coating film was chamfered with a throw-away tip by the same method as in Examples 1 to 6 as shown in FIG.
  • the cutting depth here is shown in the “cutting depth” column of Table 3, and the cutting rate is shown in the “cutting rate” column of Table 3.
  • a throw-away tip with a chamfering width shown in the column of “Chamfering Width” in Table 3 was produced.
  • a throw-away tip with a chamfering width shown in the “Chamfering Width” column of Table 3 was produced using the same rotating jig as in Comparative Examples 2 to 3 above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Milling Processes (AREA)

Abstract

The present invention provides a throwaway tip (1) which enables cutting while appropriately releasing cuttings even in an event of a change in the depth of cut or the width of margin for a workpiece, the throwaway tip (1) being chamfered continuously along the cutting edge. The throwaway tip (1) is characterized in that the cutting edge includes an arcuate cutting edge portion (3) and a linear cutting edge portion (4); when the rake surface is viewed from above, the ratio (A/B) of a chamfered width (A) at the midpoint of the arcuate cutting edge portion to a chamfered width (B) at the connecting point between the arcuate cutting edge portion and the linear cutting edge portion is 0.5-0.95 inclusive; and the chamfered width (B) is the maximum chamfered width in the arcuate cutting edge portion (3).

Description

スローアウェイチップThrowaway tip
 本発明は、スローアウェイチップに関し、フライス加工または旋削加工に使用するスローアウェイチップに関する。 The present invention relates to a throw-away tip, and to a throw-away tip used for milling or turning.
 最近のスローアウェイチップの動向として、被削材が多様化しており、加工能率を一層向上させるため切削速度がより高速になってきている。このため、スローアウェイチップに要求される特性は厳しくなる一方である。中でも、スローアウェイチップが短寿命であることが問題視されており、その長寿命化を図ることが急務である。 As a recent trend of throw-away inserts, the work materials have been diversified, and the cutting speed has been increased to further improve the machining efficiency. For this reason, the characteristics required for the throw-away chip are becoming stricter. Above all, it is regarded as a problem that the throw-away tip has a short life, and there is an urgent need to extend its life.
 スローアウェイチップの長寿命化を図るために、切れ刃の面取り幅をそれぞれ異ならしめることは従来から試みられている。スローアウェイチップの切れ刃は、一般に直線状切れ刃部と円弧状切れ刃部とから構成される。ここで、円弧状切れ刃部とは、1つのすくい面と2つの逃げ面とが交差する交点であって、丸みを帯びた部分の切れ刃を意味し、直線状切れ刃部とは、該円弧状切れ刃部をつなぐ直線部分の切れ刃を意味する。特開2002-192407号公報(特許文献1)、特開平09-019819号公報(特許文献2)、特開昭63-306806号公報(特許文献3)、特開平01-188202号公報(特許文献4)、および実開平05-021285号公報(特許文献5)では、切れ刃の面取り幅を異ならしめる技術が開示されている。 In the past, attempts have been made to make the chamfer widths of the cutting edges different in order to extend the life of the throw-away tip. The cutting edge of the throw-away tip is generally composed of a linear cutting edge part and an arcuate cutting edge part. Here, the arcuate cutting edge portion is an intersection where one rake face and two flank faces intersect, and means a rounded portion cutting edge. It means a straight cutting edge connecting the arcuate cutting edges. JP 2002-192407 (Patent Document 1), JP 09-019819 (Patent Document 2), JP 63-306806 (Patent Document 3), JP 01-188202 (Patent Document) 4) and Japanese Utility Model Laid-Open No. 05-021285 (Patent Document 5) disclose a technique for making the chamfer width of the cutting edge different.
 たとえば特許文献1のスローアウェイチップは、ノーズの円弧状切れ刃部の中間点における面取り幅を、円弧状切れ刃部と直線状切れ刃部との接続点における面取り幅よりも広くとっている。また、特許文献2のスローアウェイチップは、直線状切れ刃部における面取り幅を、円弧状切れ刃部の近傍の面取り幅よりも広くとっている。 For example, in the throw-away tip of Patent Document 1, the chamfering width at the midpoint of the arcuate cutting edge portion of the nose is wider than the chamfering width at the connection point between the arcuate cutting edge portion and the linear cutting edge portion. In addition, the throw-away tip of Patent Document 2 has a chamfering width in the linear cutting edge portion wider than a chamfering width in the vicinity of the arcuate cutting edge portion.
特開2002-192407号公報JP 2002-192407 A 特開平09-019819号公報JP 09-019819 A 特開昭63-306806号公報JP-A 63-306806 特開平01-188202号公報Japanese Unexamined Patent Publication No. 01-188202 実開平05-021285号公報Japanese Utility Model Publication No. 05-021285
 しかしながら、特許文献1のスローアウェイチップは、円弧状切れ刃部の摩擦抵抗が高いことにより、切屑が前切れ刃側に流れやすくなる。そして、この切屑により前切れ刃の近傍が擦過されてクレータ摩耗が生じ、その結果、スローアウェイチップに異常摩耗や欠損が生じやすくなる。 However, the throw-away tip of Patent Document 1 has a high frictional resistance at the arcuate cutting edge portion, so that chips easily flow to the front cutting edge side. Then, the chips scrape the vicinity of the front cutting edge to cause crater wear, and as a result, abnormal wear or chipping tends to occur in the throw-away tip.
 一方、特許文献2のスローアウェイチップは、円弧状切れ刃部の面取り幅が狭い。この円弧状切れ刃部の面取り幅よりも切込量が大きくなると、切屑が主切刃の辺中央側(図1中の「辺10」に示す方向、すなわちスローアウェイチップの直線状切れ刃部の中央部側)に流れてしまう。そもそも切削加工において、被削材が均一の円筒形状であることは少なく、切削加工中に被削材の切込量または取代幅が変動することは避けられない。このため、特許文献2のスローアウェイチップのように、切込量が大きくなったときに、それに対応して切屑を適切に流すことができないと、直線状切れ刃部において切屑を巻き込みやすく、切れ刃外欠損が生じやすかった。なお、「切込量の変動」とは、略円柱状の被削材を切削加工する場合における被削材の切り込み深さの変動を意味する。 On the other hand, the throw-away tip of Patent Document 2 has a narrow chamfer width of the arcuate cutting edge. When the depth of cut becomes larger than the chamfered width of the arcuate cutting edge, the chips are located on the side center side of the main cutting edge (in the direction indicated by “side 10” in FIG. 1, that is, the linear cutting edge of the throwaway tip). To the center). In the first place, in the cutting process, the work material is rarely in a uniform cylindrical shape, and it is inevitable that the cutting amount or machining allowance of the work material fluctuates during the cutting process. For this reason, like the throw-away tip of Patent Document 2, when the cutting amount becomes large, if the chip cannot be appropriately flowed correspondingly, the chip is likely to be caught in the linear cutting edge portion, and the chip is cut. Out-of-blade defects were likely to occur. “Variation in cutting amount” means variation in the cutting depth of a work material when a substantially cylindrical work material is cut.
 特許文献3~5についても、特許文献2と同様、切削加工中に被削材の切込量が変動したときに、その切屑を適切に処理することができず、クレータ摩耗または切れ刃外欠損が生じやすかった。 In Patent Documents 3 to 5, as in Patent Document 2, when the amount of cut of the work material fluctuates during cutting, the chips cannot be appropriately treated, and crater wear or chipping outside the cutting edge occurs. It was easy to occur.
 本発明は、上記のような現状に鑑みなされたものであって、その目的とするところは、被削材の切込量が変動しても、切屑を適切に流しながら切削加工し得るスローアウェイチップを提供することである。 The present invention has been made in view of the current situation as described above, and an object of the present invention is a throwaway that can be cut while appropriately flowing chips even if the amount of cut of the work material varies. Is to provide a chip.
 本発明のスローアウェイチップは、切れ刃に沿って連続的に面取りされているものであって、該切れ刃は、円弧状切れ刃部と直線状切れ刃部とを含み、すくい面方向平面視(すくい面方向からスローアウェイチップを見たとき)において、円弧状切れ刃部と直線状切れ刃部との接続点における面取り幅Bに対する、円弧状切れ刃部の中間点の面取り幅Aの比率A/Bは、0.5以上0.95以下であり、面取り幅Bは、円弧状切れ刃部において最大の面取り幅であることを特徴とする。 The throw-away tip of the present invention is continuously chamfered along the cutting edge, and the cutting edge includes an arcuate cutting edge portion and a linear cutting edge portion, and is viewed in a plan view in the rake face direction. The ratio of the chamfering width A at the midpoint of the arcuate cutting edge to the chamfering width B at the connection point between the arcuate cutting edge and the linear cutting edge (when viewing the throwaway tip from the rake face direction) A / B is 0.5 or more and 0.95 or less, and the chamfer width B is a maximum chamfer width in the arcuate cutting edge portion.
 直線状切れ刃部において、最小の面取り幅Cは、面取り幅Aよりも小さいことが好ましい。スローアウェイチップは、基材のみで構成されていてもよいし、基材と該基材上に形成された被覆膜とを備えてもよい。 In the linear cutting edge portion, the minimum chamfer width C is preferably smaller than the chamfer width A. The throw-away tip may be composed only of a base material, or may include a base material and a coating film formed on the base material.
 上記の被覆膜は、その層厚が1μm以上30μm以下であり、それを構成する少なくとも1層は、周期律表のIVa族元素、Va族元素、VIa族元素、およびアルミニウムからなる群より選ばれる1種以上の元素と、炭素、窒素、酸素、および硼素からなる群より選ばれる1種以上の元素との化合物、または該化合物の固溶体で形成されることが好ましい。 The coating film has a thickness of 1 μm or more and 30 μm or less, and at least one layer constituting the coating film is selected from the group consisting of IVa group element, Va group element, VIa group element, and aluminum in the periodic table It is preferable to form a compound of one or more elements selected from the group consisting of carbon, nitrogen, oxygen, and boron, or a solid solution of the compound.
 本発明のスローアウェイチップは、上記のような構成を有することにより、被削材の切込量が変動しても、切屑を適切に流しながら切削加工し得る。これによりチッピングや欠損が発生しにくくなり、スローアウェイチップを長寿命化させることができる。 The throw-away tip of the present invention has the above-described configuration, so that even if the amount of cut of the work material varies, cutting can be performed while appropriately flowing chips. Thereby, chipping and chipping are less likely to occur, and the life of the throw-away tip can be extended.
本発明のスローアウェイチップを上面から見たときの図である。It is a figure when the throw away tip of this invention is seen from the upper surface. 本発明のスローアウェイチップの円弧状切れ刃部を拡大した図である。It is the figure which expanded the circular arc-shaped cutting-blade part of the throw away tip of this invention. (a)は、すくい面に対し垂直で、かつ円弧状切れ刃部の中間点を含む面で切断したときの断面図であり、(b)は、すくい面に対し垂直で、かつ円弧状切れ刃部と直線状切れ刃部との接続点を含む面で切断したときの断面図であり、(c)は、すくい面に対し垂直で、かつ直線状切れ刃部の面取り幅のうち、最小の面取り幅Cとなる地点を含む面で切断したときの断面図である。(A) is sectional drawing when cut | disconnecting by the surface perpendicular | vertical to a rake face and including the intermediate point of an arc-shaped cutting edge part, (b) is perpendicular | vertical to a rake face, and is circular arc-shaped cut | disconnecting. It is sectional drawing when cut | disconnecting in the surface containing the connection point of a blade part and a linear cutting blade part, (c) is perpendicular | vertical to a rake face, and is the smallest among the chamfering widths of a linear cutting blade part. It is sectional drawing when cut | disconnecting in the surface containing the point used as the chamfering width C of. 本発明のスローアウェイチップを面取り加工しているときの状態を示す模式的な側面図である。It is a typical side view showing a state when chamfering the throw away tip of the present invention. 従来のスローアウェイチップを面取り加工しているときの状態を示す模式的な側面図である。It is a typical side view which shows a state when the conventional throwaway tip is chamfered. 従来のスローアウェイチップを面取り加工しているときの冶具の上面図である。It is a top view of the jig when chamfering the conventional throw away tip. 従来のスローアウェイチップを面取り加工しているときの冶具の上面図である。It is a top view of the jig when chamfering the conventional throw away tip.
 以下、本発明について、詳細に説明する。以下の実施の形態の説明では、図面を用いて説明しているが、本願の図面において同一の参照符号を付したものは、同一部分または相当部分を示している。なお、本発明において、被覆膜の膜厚は走査型電子顕微鏡(SEM:Scanning Electron Microscope)により測定し、被覆膜の組成はエネルギー分散型X線分析装置(EDS:Energy Dispersive X-ray Spectroscopy)により測定するものとする。 Hereinafter, the present invention will be described in detail. In the following description of the embodiments, description is made with reference to the drawings. In the drawings of the present application, the same reference numerals denote the same or corresponding parts. In the present invention, the thickness of the coating film is measured by a scanning electron microscope (SEM), and the composition of the coating film is an energy dispersive X-ray analyzer (EDS: Energy Dispersive X-ray Spectroscopy). ).
 <スローアウェイチップ>
 図1は、本発明のスローアウェイチップのすくい面平面視の模式図であり、図2は、図1の円弧状切れ刃部を拡大した模式図である。本発明のスローアウェイチップ1は、図1に示されるように、切れ刃に沿って連続的に面取りされているものである。この切れ刃は、円弧状切れ刃部3と直線状切れ刃部4とを含むものである。ここで、「連続的に面取りされる」とは、切れ刃に沿って途切れることなく面取り加工が施されていることを意味する。
<Throw away tip>
FIG. 1 is a schematic view of a throwaway tip of the present invention in plan view of a rake face, and FIG. 2 is an enlarged schematic view of an arcuate cutting edge portion of FIG. As shown in FIG. 1, the throw-away tip 1 of the present invention is continuously chamfered along the cutting edge. The cutting edge includes an arcuate cutting edge portion 3 and a linear cutting edge portion 4. Here, “continuously chamfered” means that chamfering is performed without interruption along the cutting edge.
 本発明のスローアウェイチップ1は、切削加工時において被削材の切屑と接するすくい面5と、被削材自体に接触する逃げ面とを有する。スローアウェイチップの形状は、ネガティブタイプまたはポジティブタイプのいずれであってもよい。両面使用できるという観点から、チップ1個あたりの使用可能な切れ刃が多いネガティブタイプを用いることが好ましい。なお、スローアウェイチップの側面が逃げ面となるが、図1および図2はいずれも、上面図であるため逃げ面が示されていない。 The throw-away tip 1 of the present invention has a rake face 5 that comes into contact with chips of the work material during cutting and a flank face that comes into contact with the work material itself. The shape of the throw-away tip may be either a negative type or a positive type. From the viewpoint that both sides can be used, it is preferable to use a negative type having many usable cutting edges per chip. In addition, although the side surface of the throw away tip becomes a flank, since both FIG. 1 and FIG. 2 are top views, the flank is not shown.
 本発明のスローアウェイチップ1は、基材のみからなる場合であってもよいし、基材の上に被覆膜が形成されていてもよい。被覆膜を備えることにより、切削時のチッピングや欠損を防止することができる。このような基本的構成を有する本発明のスローアウェイチップ1は、たとえばドリル、エンドミル、フライス加工用または旋削加工用刃先交換型切削チップ、メタルソー、歯切工具、リーマ、タップ、またはクランクシャフトのピンミーリング加工用チップ等として極めて有用に用いることができる。 The throw-away tip 1 of the present invention may be composed of only a base material, or a coating film may be formed on the base material. By providing the coating film, chipping and chipping during cutting can be prevented. The throw-away tip 1 of the present invention having such a basic configuration is, for example, a drill, an end mill, a milling or turning edge cutting type cutting tip, a metal saw, a gear cutting tool, a reamer, a tap, or a crankshaft pin. It can be used very effectively as a chip for milling.
 <すくい面>
 本発明のスローアウェイチップを構成するすくい面5とは、切削加工時において被削材の切屑と接する面を意味し、通常スローアウェイチップの上面および底面がすくい面5である。すくい面5は、凸状もしくは凹凸形状のチップブレーカを有することが好ましい。チップブレーカを有することにより、切屑がカールして適度な大きさに細かく分断されるため、切屑が巻き付いて切削加工が妨げられるのを抑制することができる。
<Rake face>
The rake face 5 constituting the throw-away tip of the present invention means a face that comes into contact with chips of the work material during cutting, and the upper surface and the bottom face of the throw-away tip are usually the rake face 5. The rake face 5 preferably has a convex or concave chip breaker. By having the chip breaker, the chips are curled and finely divided into an appropriate size, so that it is possible to prevent the chips from being wound and obstructing the cutting process.
 <逃げ面>
 本発明のスローアウェイチップを構成する逃げ面とは、切削加工時において被削材自体に接触する面を意味する。
<Flank>
The flank that forms the throw-away tip of the present invention means a surface that contacts the work material itself during cutting.
 <切れ刃>
 本発明のスローアウェイチップにおいて、切れ刃は、すくい面と逃げ面とが交差する部分(以下において「切れ刃稜線」とも記す)をホーニング加工して得られた部分を意味する。このような切れ刃は、被削材との接触様態によって、さらに各部位に名称が付される場合がある。すなわち、被削材を回転させながら切削加工する場合において、前周期で切削した被削材の部分と接する側の切れ刃のことを「前切れ刃」といい、被削材の新たな部分を切削する側の切れ刃のことを「主切れ刃」という。
<Cutting edge>
In the throw-away tip of the present invention, the cutting edge means a portion obtained by honing a portion where the rake face and the flank face intersect (hereinafter also referred to as “cutting edge ridge line”). Such a cutting edge may be further given a name to each part depending on the contact state with the work material. That is, when cutting while rotating the work material, the cutting edge on the side in contact with the part of the work material cut in the previous cycle is called the "front cutting edge", and the new part of the work material is The cutting edge on the side to be cut is called “main cutting edge”.
 また、1つのすくい面と2つの逃げ面とが交差する交点であって、丸みを帯びた部分を円弧状切れ刃部という。該円弧状切れ刃部をつなぐ直線部分の切れ刃のことを直線状切れ刃部という。また、「円弧状切れ刃部と直線状切れ刃部との接続点」とは、円弧状切れ刃部と直線状切れ刃部との変曲点を意味する。 Also, the rounded part at the intersection of one rake face and two flank faces is called an arcuate cutting edge. A straight cutting edge connecting the arcuate cutting edges is referred to as a straight cutting edge. The “connection point between the arcuate cutting edge part and the linear cutting edge part” means an inflection point between the arcuate cutting edge part and the linear cutting edge part.
 <面取り幅>
 本発明のスローアウェイチップは、図2に示されるように、すくい面方向平面視において、円弧状切れ刃部3と直線状切れ刃部4との接続点における面取り幅Bに対する、円弧状切れ刃部3の中間点の面取り幅Aの比率A/Bは、0.5以上0.95以下であり、面取り幅Bは、円弧状切れ刃部4において最大の面取り幅であることを特徴とする。上記の比率A/Bは、0.6以上0.8以下であることがより好ましい。
<Chamfer width>
As shown in FIG. 2, the throw-away tip of the present invention has an arcuate cutting edge with respect to a chamfering width B at a connection point between the arcuate cutting edge part 3 and the linear cutting edge part 4 in plan view in the rake face direction. The ratio A / B of the chamfering width A at the midpoint of the portion 3 is 0.5 or more and 0.95 or less, and the chamfering width B is the maximum chamfering width in the arcuate cutting edge portion 4. . The ratio A / B is more preferably 0.6 or more and 0.8 or less.
 面取り幅Bに対する面取り幅Aが、上記の数値範囲を満たすことにより、切屑が主切れ刃の辺中央側(図1中の「辺10」に示す方向)へ流れやすくなり、前切れ刃の近傍の切屑による擦過を抑えることができる。これにより前切れ刃におけるクレータ摩耗の発生を抑制することができる。A/Bが0.5未満であると、粗切削を行なったときに直線状切れ刃4が切屑を巻込み、切れ刃外欠損が生じやすくなるため好ましくない。一方、A/Bが0.95を超えると、円弧状切れ刃3の摩擦抵抗が高くなることにより、切屑が前切れ刃側へ流れやすくなる。このため、切屑の擦過による前切れ刃の近傍にクレータ摩耗が形成されやすく、前切れ刃から欠損が生じやすくなる。 When the chamfering width A with respect to the chamfering width B satisfies the above numerical range, it becomes easy for chips to flow toward the center side of the main cutting edge (in the direction indicated by “side 10” in FIG. 1), and in the vicinity of the front cutting edge. Scratching due to chips can be suppressed. Thereby, generation | occurrence | production of the crater wear in a front cutting edge can be suppressed. When A / B is less than 0.5, it is not preferable because when the rough cutting is performed, the linear cutting edge 4 entrains chips and easily causes chipping outside the cutting edge. On the other hand, when A / B exceeds 0.95, the frictional resistance of the arcuate cutting edge 3 increases, so that chips easily flow to the front cutting edge side. For this reason, crater wear is likely to be formed in the vicinity of the front cutting edge due to scraping of chips, and defects are likely to occur from the front cutting edge.
 上記の直線状切れ刃部4における最小の面取り幅Cは、上記の面取り幅Aよりも小さいことが好ましい。これにより切屑を主切れ刃の辺中央側に流れやすくなり、前切れ刃の近傍における切屑の擦過を抑えることができる。ここで、直線状切れ刃部4の中点またはその近傍が、直線状切れ刃部4における面取り幅Cの最小となる。 It is preferable that the minimum chamfer width C in the linear cutting edge portion 4 is smaller than the chamfer width A. As a result, it becomes easier for the chips to flow toward the center side of the main cutting edge, and scraping of the chips in the vicinity of the front cutting edge can be suppressed. Here, the midpoint of the linear cutting edge part 4 or its vicinity becomes the minimum of the chamfering width C in the linear cutting edge part 4.
 面取り幅Cが面取り幅Aと同等以上の大きさであると、粗切削時に切屑が主切れ刃の逃げ面側に流れやすくなり、切れ刃外欠損が生じやすくなる。面取り幅Cに対する面取り幅Aの比率A/Cは、1以上1.3以下であることがより好ましい。これにより前切れ刃の近傍における切屑の擦過がさらに生じにくくなる。 When the chamfering width C is equal to or larger than the chamfering width A, chips are likely to flow toward the flank side of the main cutting edge during rough cutting, and chipping outside the cutting edge is likely to occur. The ratio A / C of the chamfering width A to the chamfering width C is more preferably 1 or more and 1.3 or less. As a result, scraping of chips in the vicinity of the front cutting edge is further less likely to occur.
 また、面取り幅Cよりも面取り幅Aが大きいことにより、面取り幅Cよりも面取り幅Bが大きくなる。このように面取り幅Bが、面取り幅Cおよび面取り幅Aのいずれよりも大きくなると、円弧状切れ刃部と直線状切れ刃部との接続点(面取り幅Bの部分)が、切削加工中に被削材に接触しやすくなる。これにより該接続点での摩擦抵抗が高くなり、粗切削加工を行なうときに切屑が前切れ刃の方向に流れる。しかし、粗切削においては切屑の厚みが厚いため、切屑のカール径が小さく、前切れ刃の近傍に接触しない。したがって、すくい面にクレータ摩耗は発生するが、短寿命とはならない。 Also, since the chamfering width A is larger than the chamfering width C, the chamfering width B is larger than the chamfering width C. When the chamfering width B becomes larger than both the chamfering width C and the chamfering width A in this way, the connection point (part of the chamfering width B) between the arcuate cutting edge portion and the linear cutting edge portion is cut during the cutting process. It becomes easy to contact the work material. This increases the frictional resistance at the connection point, and chips flow in the direction of the front cutting edge when performing rough cutting. However, in rough cutting, since the thickness of the chip is thick, the curl diameter of the chip is small and does not contact the vicinity of the front cutting edge. Therefore, although crater wear occurs on the rake face, it does not have a short life.
 図3(a)~(c)は、上述の面取り幅A、B、Cの断面を模式的に示した断面図である。本発明のスローアウェイチップにおいて、各部位の面取り幅を図解すると、図3(a)~(c)に示されるような面取り幅となる。なお、図3(a)~図3(c)において、すくい面2と逃げ面3とが交差する切れ刃稜線をホーニング加工したものを示しているが、ランド面またはネガランド面を形成してもよいことは言うまでもない。 3 (a) to 3 (c) are cross-sectional views schematically showing the cross-sections of the chamfering widths A, B, and C described above. In the throw-away tip of the present invention, when the chamfering width of each part is illustrated, the chamfering width as shown in FIGS. 3A to 3C is obtained. 3 (a) to 3 (c) show a honed cutting edge ridge line where the rake face 2 and the flank face 3 intersect, but a land surface or a negative land surface may be formed. Needless to say, it is good.
 <基材>
 本発明のスローアウェイチップに用いる基材としては、切削工具の基材として知られる従来公知のものを特に限定なく使用することができる。たとえば、超硬合金(たとえばWC基超硬合金、WCの他、Coを含み、あるいはさらにTi、Ta、Nb等の炭窒化物等を添加したものも含む)、サーメット(TiC、TiN、TiCN等を主成分とするもの)、高速度鋼、セラミックス(炭化チタン、炭化硅素、窒化硅素、窒化アルミニウム、酸化アルミニウム、およびこれらの混合体など)、立方晶型窒化硼素焼結体、ダイヤモンド焼結体等をこのような基材の例として挙げることができる。このような基材として超硬合金を使用する場合、そのような超硬合金は、組織中に遊離炭素やη相と呼ばれる異常相を含んでいても本発明の効果は示される。
<Base material>
As the base material used for the throw-away tip of the present invention, a conventionally known base material known as a base material for cutting tools can be used without particular limitation. For example, cemented carbide (for example, WC base cemented carbide, including WC, including Co, or further including carbonitride such as Ti, Ta, Nb, etc.), cermet (TiC, TiN, TiCN, etc.) High-speed steel, ceramics (titanium carbide, silicon carbide, silicon nitride, aluminum nitride, aluminum oxide, and mixtures thereof), cubic boron nitride sintered body, diamond sintered body Etc. can be mentioned as examples of such a substrate. When a cemented carbide is used as such a base material, the effect of the present invention is exhibited even if such a cemented carbide contains an abnormal phase called free carbon or η phase in the structure.
 なお、これらの基材は、その表面が改質されたものであっても差し支えない。たとえば、超硬合金の場合はその表面に脱β層が形成されていたり、サーメットの場合には表面硬化層が形成されていたりしてもよく、このように表面が改質されていても本発明の効果は示される。 It should be noted that these base materials may have a modified surface. For example, in the case of cemented carbide, a de-β layer may be formed on the surface, and in the case of cermet, a surface hardened layer may be formed. The effect of the invention is shown.
 <被覆膜>
 本発明の被覆膜は、その膜厚が1μm以上30μm以下の単層または複数層からなるものであることが好ましい。そして、被覆膜を構成する少なくとも1層は、周期律表のIVa族元素、Va族元素、VIa族元素、およびアルミニウムからなる群より選ばれる1種以上の元素と、炭素、窒素、酸素、および硼素からなる群より選ばれる1種以上の元素との化合物、または該化合物の固溶体で形成されることがより好ましい。
<Coating film>
The coating film of the present invention is preferably composed of a single layer or a plurality of layers having a film thickness of 1 μm or more and 30 μm or less. And at least 1 layer which comprises a coating film is 1 or more types of elements chosen from the group which consists of a IVa group element of a periodic table, a Va group element, a VIa group element, and aluminum, carbon, nitrogen, oxygen, And a compound with one or more elements selected from the group consisting of boron and a solid solution of the compound.
 このような本発明の被覆膜は、基材上の全面を被覆する態様を含むとともに、部分的に被覆膜が形成されていない態様をも含み、さらにまた部分的に被覆膜の一部の積層態様が異なっているような態様をも含む。また、本発明の被覆膜は、その全体の膜厚が1μm以上30μm以下であることが好ましい。1μm未満であると耐摩耗性に劣る場合があり、30μmを超えると基材との密着性および耐欠損性が低下する場合がある。このような被覆膜の特に好ましい膜厚は5μm以上20μm以下である。なお、上記の被覆膜は、上記の組成からなる層を2層以上積層させても同一の効果は示される。このような被覆膜の膜厚は、SEMにより測定した値を採用するものとする。 Such a coating film of the present invention includes an aspect in which the entire surface of the substrate is coated, and also includes an aspect in which the coating film is not partially formed. The aspect which the lamination | stacking aspect of a part differs is also included. Moreover, it is preferable that the coating film of this invention is the whole film thickness of 1 micrometer or more and 30 micrometers or less. If it is less than 1 μm, the abrasion resistance may be inferior, and if it exceeds 30 μm, the adhesion to the substrate and the fracture resistance may be reduced. A particularly preferable film thickness of such a coating film is 5 μm or more and 20 μm or less. In addition, the same effect is shown even if two or more layers having the above composition are laminated on the coating film. The value measured by SEM shall be employ | adopted for the film thickness of such a coating film.
 なお、上記の面取り幅A、B、Cは、スローアウェイチップが基材のみからなる場合は、基材表面の面取り幅をいい、スローアウェイチップが被覆膜で被覆されたものである場合は、被覆膜の表面の面取り幅をいう。すなわち、面取り幅A、B、Cは、スローアウェイチップの最表面の面取り幅を意味する。 In addition, said chamfering width A, B, C refers to the chamfering width of the substrate surface when the throw-away tip is made of only a base material, and when the throw-away tip is coated with a coating film. The chamfering width of the surface of the coating film. That is, the chamfering widths A, B, and C mean the chamfering width of the outermost surface of the throw-away tip.
 <製造方法>
 図4は、本発明のスローアウェイチップを面取り加工しているときの状態を示す模式的な側面図である。本発明のスローアウェイチップにおいて、図4に示される方法で切れ刃の面取り加工を行なうことにより、面取り幅の比率A/Bが0.5以上0.95以下の面取り加工を行なうことができる。以下において、図4に示される面取り加工を説明する。
<Manufacturing method>
FIG. 4 is a schematic side view showing a state when the throw-away tip of the present invention is chamfered. In the throw-away tip of the present invention, a chamfering process with a chamfering width ratio A / B of 0.5 to 0.95 can be performed by chamfering the cutting edge by the method shown in FIG. Hereinafter, the chamfering process shown in FIG. 4 will be described.
 まず、図4に示されるように、スローアウェイチップ固定冶具9で基材1を固定する。そして、基材1の直線状切れ刃部4に対して垂直方向にブラシが当たるようにブラシの位置を調整した上で、ブラシ7を回転させながら、図4中の紙面の手前から奥に向けてブラシ7を移動させる。 First, as shown in FIG. 4, the base material 1 is fixed with a throw-away tip fixing jig 9. Then, after adjusting the position of the brush so that the brush hits the linear cutting edge portion 4 of the base material 1 in the vertical direction, while rotating the brush 7, the front side of the paper surface in FIG. To move the brush 7.
 このようにブラシ7を移動させることにより、円弧状切れ刃部3にブラシ7があたるときには、円弧状切れ刃部3の外側にブラシ7の毛先が逃げる。このため、切れ刃に対するブラシの研削力が弱まって円弧状切れ刃部の面取り幅が狭くなる。 By moving the brush 7 in this way, when the brush 7 hits the arcuate cutting edge 3, the tip of the brush 7 escapes outside the arcuate cutting edge 3. For this reason, the grinding force of the brush with respect to the cutting edge is weakened, and the chamfering width of the arcuate cutting edge portion is narrowed.
 そして、円弧状切れ刃部3から直線状切れ刃部4にブラシが移動するにつれて、円弧状切れ刃部3の外側にブラシ7の毛先が逃げにくくなり、円弧状切れ刃部3と直線状切れ刃部4との接続点においてブラシ7が逃げずに、ブラシの研削力が最も強くなる。よって、円弧状切れ刃部3と直線状切れ刃部4との接続点における面取り幅Bが最大となる。 Then, as the brush moves from the arcuate cutting edge part 3 to the linear cutting edge part 4, the tip of the brush 7 becomes difficult to escape outside the arcuate cutting edge part 3, and the arcuate cutting edge part 3 and the linear cutting edge part 3 become linear. The brush 7 does not escape at the connection point with the cutting edge portion 4, and the grinding force of the brush becomes strongest. Therefore, the chamfering width B at the connection point between the arcuate cutting edge portion 3 and the linear cutting edge portion 4 is maximized.
 次に、円弧状切れ刃部3と直線状切れ刃部4との接続点から、直線状切れ刃部4にブラシが移動するにつれて、次第にブラシ7の研削力が弱まって、直線状切れ刃部4の面取り幅Cが最小となる。このようにして面取り幅A、B、Cが形成される。 Next, as the brush moves from the connection point between the arcuate cutting edge part 3 and the linear cutting edge part 4 to the linear cutting edge part 4, the grinding force of the brush 7 gradually decreases, and the linear cutting edge part The chamfer width C of 4 is minimized. In this way, chamfered widths A, B, and C are formed.
 従来技術では、全てのコーナー部に対して、一様にブラシがあたることになるため、スローアウェイチップのコーナー部ごとに所望の大きさに刃先処理することができなかった。しかし、上述の本発明の製造方法のように、コーナー部のそれぞれに個別にブラシをあてることにより、コーナー部ごとに所望(別々)の大きさに刃先処理することができる他、面取りの角度を自由自在に調整することができるという特徴も併せ持つ。 In the prior art, since the brush is uniformly applied to all the corner portions, it was impossible to perform the cutting edge processing to a desired size for each corner portion of the throw-away tip. However, as in the manufacturing method of the present invention described above, by separately applying brushes to each corner portion, the edge can be processed to a desired (separate) size for each corner portion, and the angle of chamfering can be set. It also has the feature that it can be adjusted freely.
 たとえば、面取りの角度を小さくすれば、耐摩耗性に優れたスローアウェイチップとすることができ、一方、面取りの角度を大きくすれば、靭性に優れたスローアウェイチップとすることができる。このように本発明の製造方法によれば、要求性能が異なる用途に併せて、コーナー部の形状を最適化することができる。このため粗加工から仕上げ加工に至るまでの幅広い用途に対応し得るスローアウェイチップを提供することができる。 For example, if the chamfering angle is reduced, a throw-away tip with excellent wear resistance can be obtained, while if the chamfering angle is increased, a throw-away tip with excellent toughness can be obtained. As described above, according to the manufacturing method of the present invention, the shape of the corner portion can be optimized in accordance with applications having different required performance. Therefore, it is possible to provide a throw-away tip that can be used for a wide range of applications from roughing to finishing.
 ここで、上記のブラシ7の毛先がスローアウェイチップに接触する部分から、スローアウェイチップの切れ刃稜線までの長さをブラシ7の切り込み深さとすると、かかる切り込み深さは、円弧状切れ刃部のノーズ半径Rの200%以上800%以下であることが好ましい(以下において、ノーズ半径Rに対する切り込み深さのことを「切込率」とも記す)。 Here, when the length from the portion where the bristles of the brush 7 are in contact with the throw-away tip to the cutting edge ridge line of the throw-away tip is the cutting depth of the brush 7, the cutting depth is an arc-shaped cutting blade. It is preferably 200% or more and 800% or less of the nose radius R of the portion (hereinafter, the cutting depth with respect to the nose radius R is also referred to as “cutting rate”).
 上記の切込率で切り込むことにより、面取り幅Aおよび面取り幅Cよりも面取り幅Bを大きくとることができる。200%未満であると、円弧状切れ刃部の面取り幅Aが、最小となる直線状切れ刃部の面取り幅Cよりも小さくなるため好ましくない。一方、800%を超えると、直線状切れ刃部の面取り幅Cが円弧状切れ刃部と直線状切れ刃部との接続点における面取り幅Bよりも大きくなるため、所望の形状とならず好ましくない。なお、上記のブラシ7の回転数は、500rpm以上2000rpm以下であることが好ましい。 The chamfering width B can be made larger than the chamfering width A and the chamfering width C by cutting at the above-mentioned cutting rate. If it is less than 200%, the chamfering width A of the arcuate cutting edge is smaller than the chamfering width C of the linear cutting edge, which is not preferable. On the other hand, if it exceeds 800%, the chamfering width C of the linear cutting edge portion is larger than the chamfering width B at the connection point between the arcuate cutting edge portion and the linear cutting edge portion. Absent. In addition, it is preferable that the rotation speed of said brush 7 is 500 rpm or more and 2000 rpm or less.
 上記の製造方法により作製されたスローアウェイチップは、切れ刃に沿って連続的に面取りされているものであって、該切れ刃は、円弧状切れ刃部と直線状切れ刃部とを含み、すくい面方向平面視において、円弧状切れ刃部と直線状切れ刃部との接続点における面取り幅Bに対する、円弧状切れ刃部の中間点の面取り幅Aの比率A/Bは、0.5以上0.95以下であり、該面取り幅Bは、円弧状切れ刃部において最大の面取り幅である。 The throw-away tip produced by the above manufacturing method is continuously chamfered along the cutting edge, and the cutting edge includes an arcuate cutting edge part and a linear cutting edge part, The ratio A / B of the chamfering width A at the midpoint of the arcuate cutting edge portion to the chamfering width B at the connection point between the arcuate cutting edge portion and the linear cutting edge portion in the rake face direction plan view is 0.5. The chamfer width B is 0.95 or less, and the chamfer width B is the maximum chamfer width in the arcuate cutting edge portion.
 以下、実施例を挙げて本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.
 <実施例1~6および比較例1>
 実施例1~6および比較例1においては、型番がISO規格のCNMG120408であって、ノーズ半径が0.8mmであり、材質がP10グレードの超硬合金からなる基材を用いた。実施例1~6および比較例1においては、この基材に対し、表1の「面取り加工条件」に示される条件でブラシ処理を行ない、基材の切れ刃の面取り加工を行なった。
<Examples 1 to 6 and Comparative Example 1>
In Examples 1 to 6 and Comparative Example 1, a base material made of cemented carbide having a model number of CNMG120408 with a nose radius of 0.8 mm and a material of P10 grade was used. In Examples 1 to 6 and Comparative Example 1, the base material was subjected to brush treatment under the conditions shown in “Chamfering conditions” in Table 1 to perform chamfering of the cutting edge of the base material.
 具体的には、図4に示されるように、スローアウェイチップ固定冶具9で基材1を固定した。基材1の直線状切れ刃部に対して垂直であって、直線状切れ刃部から10°の角度をなす上部方向からブラシが当たるようにブラシの位置を調整した。そして、表1の「切込深さ」の欄に示される切込深さに、ブラシをあてて、ブラシ7を1500rpmの回転数で回転させながら、ブラシ7を直線状切れ刃部に平行に沿って7000mm/分の速度で移動させた。このようにして、スローアウェイチップの面取り加工を行なった。ここで用いたブラシとしては、ナイロン繊維にダイヤモンド砥粒を埋め込んだものを用いた。以上のようにして、表1の「面取り幅」の欄に示される面取り幅のスローアウェイチップを作製した。 Specifically, as shown in FIG. 4, the base material 1 was fixed with a throw-away tip fixing jig 9. The position of the brush was adjusted so that the brush hits from the upper direction perpendicular to the linear cutting edge portion of the substrate 1 and at an angle of 10 ° from the linear cutting edge portion. Then, apply the brush to the cutting depth shown in the column of “cutting depth” in Table 1, and rotate the brush 7 at a rotational speed of 1500 rpm, while making the brush 7 parallel to the linear cutting edge. And moved at a speed of 7000 mm / min. In this way, the chamfering of the throw-away tip was performed. As the brush used here, a nylon fiber embedded with diamond abrasive grains was used. As described above, a throw-away tip having a chamfering width shown in the column of “Chamfering Width” in Table 1 was produced.
 <比較例2>
 比較例2においては、上記の実施例1と同様の基材を用いて、これを図6に示す回転冶具8に基材1をセットした上で、回転冶具8を40rpmの回転数で回転させた。そして、この回転冶具8に対し、図5に示されるように、その基材1の上面から、450rpmの回転数でブラシ7を回転させながら面取り加工を行なった。ブラシは、基材に対し、4mmの切込幅で接触させた。このようにして表1の「面取り幅」の欄に示される面取り幅のスローアウェイチップを作製した。
<Comparative Example 2>
In Comparative Example 2, the same base material as in Example 1 was used, and after setting the base material 1 on the rotary jig 8 shown in FIG. 6, the rotary jig 8 was rotated at a rotational speed of 40 rpm. It was. Then, as shown in FIG. 5, the rotary jig 8 was chamfered from the upper surface of the base material 1 while rotating the brush 7 at a rotation speed of 450 rpm. The brush was brought into contact with the substrate with a cut width of 4 mm. In this way, a throw-away tip with a chamfer width shown in the column of “Chamfer Width” in Table 1 was produced.
 <比較例3>
 比較例3においては、回転冶具の形状が異なる他は、比較例2と同様の方法によってスローアウェイチップを作製した。具体的には、図6に示される回転冶具に代えて、図7に示される回転冶具を用いて面取り加工を行なった。図7に示される回転冶具は、その中央部に楕円径の凹部が形成されており、その上に基材をセットした上で、ブラシ処理を行なうものである。
<Comparative Example 3>
In Comparative Example 3, a throw-away tip was produced by the same method as Comparative Example 2 except that the shape of the rotating jig was different. Specifically, chamfering was performed using the rotating jig shown in FIG. 7 instead of the rotating jig shown in FIG. The rotary jig shown in FIG. 7 has a recess having an elliptical diameter formed at the center thereof, and a brush treatment is performed after setting a base material thereon.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 <切削評価>
 上記で得られた実施例1~6および比較例1~3のスローアウェイチップを用いて、次の切削条件1~2の条件で被削材の端面を切削加工した。被削材としては、直径200mmで、厚み50mmの円盤形状であって、材質がS45Cのものを用いた。
<Cutting evaluation>
Using the throwaway tips of Examples 1 to 6 and Comparative Examples 1 to 3 obtained above, the end face of the work material was cut under the following cutting conditions 1 and 2. As the work material, a disc having a diameter of 200 mm and a thickness of 50 mm and having a material of S45C was used.
 (切削条件1)
 切削速度:150m/min
   送り:0.2mm/rev
切り込み量:d=1.0mm
  切削油:湿式
 (切削条件2)
 切削速度:150m/min
   送り:0.2mm/rev
切り込み量:d=5.0mm
  切削油:湿式
 上記の切削条件1~2において、スローアウェイチップの摩耗幅が0.3mm以上になるか、または切削加工中に欠損が生じた場合に、切削加工を中止し、そのときまでに加工した加工数を表2の「加工数」の欄に示した。なお、中止に至ったときの損傷形態を表2の「損傷形態」の欄に示した。
(Cutting condition 1)
Cutting speed: 150 m / min
Feed: 0.2mm / rev
Cutting depth: d = 1.0 mm
Cutting oil: Wet (Cutting condition 2)
Cutting speed: 150 m / min
Feed: 0.2mm / rev
Cutting depth: d = 5.0mm
Cutting oil: Wet If the wear width of the throw-away tip is 0.3 mm or more in the above cutting conditions 1 or 2, or if a defect occurs during the cutting process, the cutting process is stopped. The number of processed parts is shown in the “Number of processed parts” column of Table 2. In addition, the damage form at the time of the cancellation is shown in the column of “Damage form” in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示される結果により、各実施例のスローアウェイチップは、各比較例のスローアウェイチップに比して、加工数が多くなっていることが示されている。これは、実施例1~6のスローアウェイチップが、被削材の切込量が変動しても、切屑を適切に流しながら切削加工することができたことによるものと考えられる。 The results shown in Table 2 indicate that the throw-away tip of each example has a larger number of processing than the throw-away tip of each comparative example. This is considered to be because the throw-away inserts of Examples 1 to 6 were able to perform cutting while appropriately flowing chips even when the depth of cut of the work material varied.
 <実施例7~12および比較例4~6>
 実施例7~12および比較例4~6においては、まず、基材として、上記実施例1~6と同様に、型番がISO規格のCNMG120408であって、ノーズRが0.8mmであり、材質がP10グレードの超硬合金のものを用いた。そして、基材とアルミナ砥粒を埋め込んだプラスチックメディアとをバレルに入れて、4Hバレル研磨を行なうことにより、基材の切れ刃の全面に対し、0.06mmの幅の面取り加工を施した。
<Examples 7 to 12 and Comparative Examples 4 to 6>
In Examples 7 to 12 and Comparative Examples 4 to 6, first, as a base material, as in Examples 1 to 6, the model number is CNMG120408 of ISO standard, and the nose R is 0.8 mm. Used was a P10 grade cemented carbide. And the base material and the plastic media which embedded the alumina abrasive grain were put in the barrel, and the chamfering process of the width | variety of 0.06 mm was performed with respect to the whole surface of the cutting edge of a base material by performing 4H barrel grinding | polishing.
 次に、このように面取りを行なった基材に対し、既知のCVD法により、基材の表面上に複数のセラミック材料からなる被覆膜を被覆した。かかる被覆膜は、基材側から順に、0.5μmの層厚のTiN層、8.5μmの層厚のTiCN層、0.7μmのTiBN層、3.5μmの層厚のAl23層、および1.0μmの層厚のTiN層の5層構造とした。 Next, the base material which chamfered in this way was coat | covered with the coating film which consists of a several ceramic material on the surface of a base material by the well-known CVD method. Such a coating film is, in order from the substrate side, a TiN layer having a thickness of 0.5 μm, a TiCN layer having a thickness of 8.5 μm, a TiBN layer having a thickness of 0.7 μm, and an Al 2 O 3 layer having a thickness of 3.5 μm. A five-layer structure of a layer and a TiN layer having a layer thickness of 1.0 μm was formed.
 この被覆膜で覆った基材に対し、図4に示されるように、上記実施例1~6と同様の方法により、スローアウェイチップの面取り加工を行なった。ここでの切り込み深さは、表3の「切込深さ」の欄に示し、その切込率は、表3の「切込率」の欄に示した。以上のようにして、表3の「面取り幅」の欄に示される面取り幅のスローアウェイチップを作製した。また、比較例5~6においては、上記の比較例2~3と同様の回転冶具を用いて、表3の「面取り幅」の欄に示される面取り幅のスローアウェイチップを作製した。 The base material covered with this coating film was chamfered with a throw-away tip by the same method as in Examples 1 to 6 as shown in FIG. The cutting depth here is shown in the “cutting depth” column of Table 3, and the cutting rate is shown in the “cutting rate” column of Table 3. As described above, a throw-away tip with a chamfering width shown in the column of “Chamfering Width” in Table 3 was produced. In Comparative Examples 5 to 6, a throw-away tip with a chamfering width shown in the “Chamfering Width” column of Table 3 was produced using the same rotating jig as in Comparative Examples 2 to 3 above.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 <切削評価>
 上記で得られた実施例7~12および比較例4~6のスローアウェイチップを用いて、以下の切削条件3~4に示す条件により、直径200mmで、厚み50mmの円盤形状であって、材質がSCM435の被削材の端面を加工した。
<Cutting evaluation>
Using the throw-away tips of Examples 7 to 12 and Comparative Examples 4 to 6 obtained above, a disc shape having a diameter of 200 mm and a thickness of 50 mm according to the conditions shown in the following cutting conditions 3 to 4, Machined the end face of the SCM435 work material.
 (切削条件3)
 切削速度:200m/min
   送り:0.3mm/rev
切り込み量:d=1.0mm
  切削油:乾式
 (切削条件4)
 切削速度:200m/min
   送り:0.3mm/rev
切り込み量:d=5.0mm
  切削油:乾式
 上記の切削条件3~4において、スローアウェイチップの摩耗幅が0.3mm以上になるか、または切削加工中に欠損が生じた場合に、切削加工を中止し、そのときまでに加工した加工数を表4の「加工数」の欄に示した。なお、中止に至ったときの損傷形態を表4の「損傷形態」の欄に示した。
(Cutting condition 3)
Cutting speed: 200 m / min
Feed: 0.3mm / rev
Cutting depth: d = 1.0 mm
Cutting oil: Dry type (Cutting condition 4)
Cutting speed: 200 m / min
Feed: 0.3mm / rev
Cutting depth: d = 5.0mm
Cutting oil: dry type If the wear width of the throw-away tip is 0.3 mm or more in the above cutting conditions 3 to 4, or if a chip occurs during the cutting process, the cutting process is stopped, and by that time The number of processed parts is shown in the “Number of processed parts” column of Table 4. The form of damage at the time of the cancellation was shown in the column of “Damage form” in Table 4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4に示される結果により、各実施例のスローアウェイチップは、各比較例のスローアウェイチップに比して、加工数が多くなっていることが示されている。これは、実施例7~12のスローアウェイチップが、被削材の切込量または取代量が変動しても、切屑を適切に流しながら切削加工することができたことによるものと考えられる。 The results shown in Table 4 indicate that the throw-away tip of each example has a larger number of processing than the throw-away tip of each comparative example. This is considered to be because the throw-away inserts of Examples 7 to 12 were able to perform cutting while appropriately flowing chips even when the cut amount or machining allowance of the work material varied.
 以上のように本発明の実施の形態および実施例について説明を行なったが、上述の各実施の形態および実施例の構成を適宜組み合わせることも当初から予定している。 Although the embodiments and examples of the present invention have been described above, it is also planned from the beginning to appropriately combine the configurations of the above-described embodiments and examples.
 今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 It should be considered that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 1 スローアウェイチップ、3 円弧状切れ刃部、4 直線状切れ刃部、5 すくい面、7 ブラシ、8 回転冶具、9 スローアウェイチップ固定冶具、10 辺、A 円弧状切れ刃部の中間点の面取り幅、B 円弧状切れ刃部と直線状切れ刃部との接続点における面取り幅、C 直線状切れ刃部における最小の面取り幅。 1. 1 throwaway tip, 3 arcuate cutting edge, 4 linear cutting edge, 5 rake face, 7 brush, 8 rotating jig, 9 throwaway tip fixing jig, 10 sides, A middle point of arcuate cutting edge Chamfering width, B Chamfering width at the connection point between the arcuate cutting edge and the straight cutting edge, C Minimum chamfering width at the linear cutting edge.

Claims (4)

  1.  切れ刃に沿って連続的に面取りされているスローアウェイチップ(1)であって、
     前記切れ刃は、円弧状切れ刃部(3)と直線状切れ刃部(4)とを含み、
     すくい面方向平面視において、前記円弧状切れ刃部と前記直線状切れ刃部との接続点における面取り幅(B)に対する、前記円弧状切れ刃部の中間点の面取り幅(A)の比率A/Bは、0.5以上0.95以下であり、
     前記面取り幅(B)は、前記円弧状切れ刃部(3)において最大の面取り幅である、スローアウェイチップ(1)。
    A throw-away tip (1) that is continuously chamfered along the cutting edge,
    The cutting edge includes an arcuate cutting edge part (3) and a linear cutting edge part (4),
    The ratio A of the chamfering width (A) of the intermediate point of the arcuate cutting edge part to the chamfering width (B) at the connection point between the arcuate cutting edge part and the linear cutting edge part in plan view in the rake face direction / B is 0.5 or more and 0.95 or less,
    The chamfer width (B) is a throw-away tip (1) which is the maximum chamfer width in the arcuate cutting edge (3).
  2.  前記直線状切れ刃部における最小の面取り幅(C)は、前記面取り幅(A)よりも小さい、請求項1に記載のスローアウェイチップ(1)。 The throw-away tip (1) according to claim 1, wherein a minimum chamfer width (C) in the linear cutting edge portion is smaller than the chamfer width (A).
  3.  前記スローアウェイチップ(1)は、基材のみで構成される、請求項1に記載のスローアウェイチップ(1)。 The throw-away tip (1) according to claim 1, wherein the throw-away tip (1) is composed only of a base material.
  4.  前記スローアウェイチップ(1)は、基材と該基材上に形成された被覆膜とを備え、
     前記被覆膜は、その膜厚が1μm以上30μm以下であり、それを構成する少なくとも1層は、周期律表のIVa族元素、Va族元素、VIa族元素、およびアルミニウムからなる群より選ばれる1種以上の元素と、炭素、窒素、酸素、および硼素からなる群より選ばれる1種以上の元素との化合物、または該化合物の固溶体で形成される、請求項1に記載のスローアウェイチップ(1)。
    The throw-away tip (1) includes a base material and a coating film formed on the base material,
    The coating film has a thickness of 1 μm or more and 30 μm or less, and at least one layer constituting the coating film is selected from the group consisting of an IVa group element, a Va group element, a VIa group element, and aluminum in the periodic table The throw-away tip according to claim 1, wherein the throw-away tip is formed of a compound of one or more elements and one or more elements selected from the group consisting of carbon, nitrogen, oxygen, and boron, or a solid solution of the compound. 1).
PCT/JP2011/061877 2010-08-17 2011-05-24 Throwaway tip WO2012023325A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012529509A JPWO2012023325A1 (en) 2010-08-17 2011-05-24 Throwaway tip

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010182267 2010-08-17
JP2010-182267 2010-08-17

Publications (1)

Publication Number Publication Date
WO2012023325A1 true WO2012023325A1 (en) 2012-02-23

Family

ID=45604988

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/061877 WO2012023325A1 (en) 2010-08-17 2011-05-24 Throwaway tip

Country Status (2)

Country Link
JP (1) JPWO2012023325A1 (en)
WO (1) WO2012023325A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015229240A (en) * 2014-06-03 2015-12-21 サンドビック インテレクチュアル プロパティー アクティエボラーグ Method of manufacturing cutting tool, and cutting tool
EP3006140A1 (en) * 2014-10-08 2016-04-13 Sandvik Intellectual Property AB Turning tool cutting insert and turning tool
JP2019005888A (en) * 2017-06-23 2019-01-17 株式会社タンガロイ Cutting tool
WO2019026698A1 (en) * 2017-08-02 2019-02-07 京セラ株式会社 Cutting insert, cutting tool, and method for manufacturing cut workpiece
US20190061016A1 (en) * 2017-08-30 2019-02-28 Tungaloy Corporation Cutting tool
JP2019042916A (en) * 2017-08-30 2019-03-22 株式会社タンガロイ Cutting tool
US20190091772A1 (en) * 2017-09-28 2019-03-28 Tungaloy Corporation Cutting tool
WO2019069916A1 (en) * 2017-10-02 2019-04-11 京セラ株式会社 Cutting insert, cutting tool, and manufacturing method for cut workpiece
US20190168310A1 (en) * 2016-07-28 2019-06-06 Kyocera Corporation Cutting insert, cutting tool, and method of manufacturing machined product
EP3498405A1 (en) * 2017-12-14 2019-06-19 Sandvik Intellectual Property AB Threading insert having variable edge roundness
CN110035851A (en) * 2017-10-31 2019-07-19 住友电工硬质合金株式会社 Cutting tool
US20200130072A1 (en) * 2018-10-31 2020-04-30 Kyocera Corporation Cutting insert, cutting tool, and method for manufacturing machined product
CN111148590A (en) * 2017-09-27 2020-05-12 京瓷株式会社 Cutting insert, cutting tool, and method for manufacturing cut product

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61159341A (en) * 1984-12-28 1986-07-19 Mitsubishi Metal Corp Manufacture of polygonal throw away tip having honing applied section
JPS61178101A (en) * 1985-01-31 1986-08-09 Sumitomo Electric Ind Ltd Throw away tip
JP2002192407A (en) * 2000-12-26 2002-07-10 Ngk Spark Plug Co Ltd Cutting tool

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61159341A (en) * 1984-12-28 1986-07-19 Mitsubishi Metal Corp Manufacture of polygonal throw away tip having honing applied section
JPS61178101A (en) * 1985-01-31 1986-08-09 Sumitomo Electric Ind Ltd Throw away tip
JP2002192407A (en) * 2000-12-26 2002-07-10 Ngk Spark Plug Co Ltd Cutting tool

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015229240A (en) * 2014-06-03 2015-12-21 サンドビック インテレクチュアル プロパティー アクティエボラーグ Method of manufacturing cutting tool, and cutting tool
EP3006140A1 (en) * 2014-10-08 2016-04-13 Sandvik Intellectual Property AB Turning tool cutting insert and turning tool
WO2016055468A1 (en) * 2014-10-08 2016-04-14 Sandvik Intellectual Property Ab Turning tool cutting insert and turning tool
US11517965B2 (en) * 2016-07-28 2022-12-06 Kyocera Corporation Cutting insert, cutting tool, and method of manufacturing machined product
US20190168310A1 (en) * 2016-07-28 2019-06-06 Kyocera Corporation Cutting insert, cutting tool, and method of manufacturing machined product
JP2019005888A (en) * 2017-06-23 2019-01-17 株式会社タンガロイ Cutting tool
US12011767B2 (en) 2017-08-02 2024-06-18 Kyocera Corporation Cutting insert, cutting tool, and method for manufacturing machined product
CN110944777A (en) * 2017-08-02 2020-03-31 京瓷株式会社 Cutting insert, cutting tool, and method for manufacturing cut product
WO2019026697A1 (en) * 2017-08-02 2019-02-07 京セラ株式会社 Cutting insert, cutting tool, and method for manufacturing cut workpiece
US11420267B2 (en) 2017-08-02 2022-08-23 Kyocera Corporation Cutting insert, cutting tool, and method for manufacturing machined product
CN111246954B (en) * 2017-08-02 2021-12-28 京瓷株式会社 Cutting insert, cutting tool, and method for manufacturing cut product
WO2019026698A1 (en) * 2017-08-02 2019-02-07 京セラ株式会社 Cutting insert, cutting tool, and method for manufacturing cut workpiece
JPWO2019026698A1 (en) * 2017-08-02 2020-07-02 京セラ株式会社 Manufacturing method of cutting insert, cutting tool, and cut product
JPWO2019026697A1 (en) * 2017-08-02 2020-06-18 京セラ株式会社 Manufacturing method of cutting insert, cutting tool, and machined product
CN111246954A (en) * 2017-08-02 2020-06-05 京瓷株式会社 Cutting insert, cutting tool, and method for manufacturing cut product
JP2019042916A (en) * 2017-08-30 2019-03-22 株式会社タンガロイ Cutting tool
US20190061016A1 (en) * 2017-08-30 2019-02-28 Tungaloy Corporation Cutting tool
US10507530B2 (en) 2017-08-30 2019-12-17 Tungaloy Corporation Cutting tool
EP3450064A1 (en) * 2017-08-30 2019-03-06 Tungaloy Corporation Cutting tool
CN111148590A (en) * 2017-09-27 2020-05-12 京瓷株式会社 Cutting insert, cutting tool, and method for manufacturing cut product
US11701715B2 (en) 2017-09-27 2023-07-18 Kyocera Corporation Cutting insert, cutting tool, and method for manufacturing machined product
CN111148590B (en) * 2017-09-27 2021-12-28 京瓷株式会社 Cutting insert, cutting tool, and method for manufacturing cut product
US20190091772A1 (en) * 2017-09-28 2019-03-28 Tungaloy Corporation Cutting tool
WO2019069916A1 (en) * 2017-10-02 2019-04-11 京セラ株式会社 Cutting insert, cutting tool, and manufacturing method for cut workpiece
JPWO2019069916A1 (en) * 2017-10-02 2020-10-15 京セラ株式会社 Manufacturing method for cutting inserts, cutting tools and cutting products
CN110035851A (en) * 2017-10-31 2019-07-19 住友电工硬质合金株式会社 Cutting tool
WO2019115025A1 (en) * 2017-12-14 2019-06-20 Sandvik Intellectual Property Ab Threading insert having variable edge roundness
EP3498405B1 (en) 2017-12-14 2022-08-17 Sandvik Intellectual Property AB Threading insert having variable edge roundness
JP2021506599A (en) * 2017-12-14 2021-02-22 サンドビック インテレクチュアル プロパティー アクティエボラーグ Threading insert with variable edge roundness
EP3498405A1 (en) * 2017-12-14 2019-06-19 Sandvik Intellectual Property AB Threading insert having variable edge roundness
JP7231632B2 (en) 2017-12-14 2023-03-01 サンドビック インテレクチュアル プロパティー アクティエボラーグ Threading insert with variable edge rounding
CN111344095A (en) * 2017-12-14 2020-06-26 山特维克知识产权股份有限公司 Thread insert with variable edge curvature
US11772165B2 (en) 2017-12-14 2023-10-03 Sandvik Intellectual Property Ab Threading insert having variable edge roundness
CN111344095B (en) * 2017-12-14 2023-10-20 山特维克知识产权股份有限公司 Screw blade with variable edge roundness
US20200130072A1 (en) * 2018-10-31 2020-04-30 Kyocera Corporation Cutting insert, cutting tool, and method for manufacturing machined product

Also Published As

Publication number Publication date
JPWO2012023325A1 (en) 2013-10-28

Similar Documents

Publication Publication Date Title
WO2012023325A1 (en) Throwaway tip
JP4891515B2 (en) Coated cutting tool
JP4739321B2 (en) Replaceable cutting edge
KR101419950B1 (en) Cutting tip of cutting edge replacement type
JP5866650B2 (en) Surface coated cutting tool
US4643620A (en) Coated hard metal tool
EP3412390B1 (en) Carbide end mill and cutting method using the end mill
JP4783153B2 (en) Replaceable cutting edge
US7033643B2 (en) Process of manufacturing a coated body
WO2017051471A1 (en) Cutting insert and replaceable tool edge rotary cutting tool
KR101267180B1 (en) Indexable insert and method of manufacturing the same
JP2001300813A (en) Ball end mill
JP2011177890A (en) Cutting edge replacement type cutting tip and method of manufacturing the same
KR20130004231A (en) Cutting tool
JP2003311524A (en) Cemented carbide ball end mill
JP3622846B2 (en) Sticky milling tool
KR20130025381A (en) Surface-coated cutting tool
JPH059201B2 (en)
JPH0440122B2 (en)
EP1867417A1 (en) Edge replacement cutter tip
JP5953173B2 (en) Cutting tools
JP2003165016A (en) Formed cutter for machining turbine blade mounting part
JP4344524B2 (en) End mill manufacturing method
JPS6322922B2 (en)
JP4878808B2 (en) Replaceable cutting edge

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11817974

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012529509

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11817974

Country of ref document: EP

Kind code of ref document: A1