WO2012022207A1 - 加密方法及装置、硬盘 - Google Patents

加密方法及装置、硬盘 Download PDF

Info

Publication number
WO2012022207A1
WO2012022207A1 PCT/CN2011/077170 CN2011077170W WO2012022207A1 WO 2012022207 A1 WO2012022207 A1 WO 2012022207A1 CN 2011077170 W CN2011077170 W CN 2011077170W WO 2012022207 A1 WO2012022207 A1 WO 2012022207A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage area
encryption
data
storage
state
Prior art date
Application number
PCT/CN2011/077170
Other languages
English (en)
French (fr)
Inventor
于红旗
徐欣
吴佳
Original Assignee
湖南源科高新技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖南源科高新技术有限公司 filed Critical 湖南源科高新技术有限公司
Publication of WO2012022207A1 publication Critical patent/WO2012022207A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/70Protecting specific internal or peripheral components, in which the protection of a component leads to protection of the entire computer
    • G06F21/78Protecting specific internal or peripheral components, in which the protection of a component leads to protection of the entire computer to assure secure storage of data
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/70Protecting specific internal or peripheral components, in which the protection of a component leads to protection of the entire computer
    • G06F21/88Detecting or preventing theft or loss
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2221/00Indexing scheme relating to security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F2221/21Indexing scheme relating to G06F21/00 and subgroups addressing additional information or applications relating to security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F2221/2143Clearing memory, e.g. to prevent the data from being stolen

Definitions

  • the present invention relates to the field of encryption, and in particular to an encryption method and apparatus, and a hard disk.
  • Data protection technology is generally divided into software and hardware. The former uses software to encrypt, and the latter uses a dedicated encryption chip to move to the hard disk to encrypt from the hardware level.
  • Software encryption This type of encryption generally sets access rights in the driver, requiring the user to enter a password, and so on. Everything is done in a software environment. Mobile hard disk encryption in software program mode is easy to read and cracked by modifying the program, so hardware encryption is currently considered more reliable.
  • the mobile hard disk encrypts the data hardware for the entire disk to prevent data loss on the storage link.
  • the decryption process includes data integrity authentication.
  • the system compares the feature values input by the verification object with the preset parameters to achieve security protection of the data.
  • an effective solution has not been proposed yet.
  • the present invention has been made in view of the problems in the prior art that the protection of data in a storage device is not sufficiently high. Therefore, it is a primary object of the present invention to provide an encryption method and apparatus, and a hard disk to solve the above problems.
  • an encryption method includes: receiving radio frequency information; and controlling a storage area in the storage device for display, wherein an initial state of the storage area is a hidden state.
  • an encryption apparatus is provided.
  • the encryption device includes: a first receiving module, configured to receive radio frequency information; and a control module, configured to control a storage area in the storage device for display, wherein an initial state of the storage area is a hidden state.
  • the receiving of the radio frequency information is used; and the storage area in the storage device is controlled for display, wherein the initial state of the storage area is a hidden state.
  • FIG. 1 is a schematic diagram of an encryption apparatus according to a first embodiment of the present invention
  • FIG. 2 is a schematic diagram of an encryption apparatus according to a second embodiment of the present invention
  • FIG. 3 is an encryption method according to a first embodiment of the present invention.
  • FIG. 4 is a flow chart of an encryption method according to a second embodiment of the present invention
  • Figure 5 is a flow chart of AES encryption according to an embodiment of the present invention
  • Figure 6 is an implementation according to the present invention.
  • 1 is a schematic diagram of an encryption apparatus according to a first embodiment of the present invention. As shown in FIG. 1, the encryption device includes a first receiving module 10 and a control module 20.
  • the first receiving module 10 is configured to receive radio frequency information; and the control module 20 is configured to control a storage area in the storage device for display, where an initial state of the storage area is a hidden state.
  • an initial state of the storage area is a hidden state.
  • the encryption device displays the hidden storage area when receiving the radio frequency information, thereby improving the security of data protection in the storage device.
  • Figure 2 is a schematic diagram of an encryption apparatus in accordance with a second embodiment of the present invention.
  • the encryption device further includes: a second receiving module 50, configured to receive a destruction instruction input by the user, wherein the destruction instruction is used to indicate that the data in the storage area is destroyed; and the destruction module 60 is used Destroying data in the storage area.
  • the data in the storage area is destroyed in the case where the user's destruction instruction is received, and the security of the data protection in the storage device can be further improved.
  • the above encryption device may further include: a decryption module 30, configured to decrypt the storage area.
  • Figure 3 is a flow chart showing the encryption method of the first embodiment of the present invention. As shown in FIG. 3, the method includes: Step S102: Receive radio frequency information.
  • an encryption chip connected to a storage device receives radio frequency information from an external tag or transponder.
  • Step S104 Control a storage area in the storage device to display, wherein an initial state of the storage area is a hidden state.
  • the step may further include: decrypting the storage area, wherein the storage area is in an initial state in an encrypted state; and controlling the decrypted storage area to display.
  • the method further includes: performing an Advanced Encryption Standard (AES) for the storage area.
  • AES Advanced Encryption Standard
  • the AES encryption/decryption method is as follows:
  • AES is an iterative, symmetric key grouping cipher that uses 128, 192, and 256-bit keys and encrypts and decrypts data with 128-bit (16-byte) packets. Unlike public key cryptography, which uses a key pair, symmetric key cryptography uses the same key to encrypt and decrypt data. The number of bits of encrypted data returned by the block cipher is the same as the input data.
  • the AES encryption/decryption block diagram is shown in Figure 5 and Figure 6. In the picture
  • AES is based on permutation and substitution.
  • a permutation is a rearrangement of data, and instead of replacing one cell with another.
  • AES uses several different techniques to implement replacement and replacement. For example, the following are the 128-bit values to be encrypted, and their corresponding index arrays:
  • the value of the 192-bit key is:
  • the replacement box for the first table is called the S box. Is a 16x16 matrix. The first 5 rows and the first 5 columns of the S box are shown in Table 1.
  • the encryption routine gets the key array and generates a key schedule called w[], as shown in Table 2 - Key schedule
  • the initial Nk (6) line of the w port is used as the seed, using the original key value (0x00 0xl7).
  • the remaining lines are generated from the seed key.
  • the variable Nk represents the seed key length in units of 32-bit words.
  • the new key is called the round keys.
  • the AES encryption routine begins by copying a 16-byte input array into a 4x4 byte matrix called State. as shown in Table 3.
  • State matrix a 4x4 byte matrix
  • the main loop of the AES algorithm performs four different operations on the State matrix: SubBytes, ShiftRows, MixColumns, and AddRoundKey.
  • SubBytes is a substitute operation that will be in the State matrix. Replace each byte with one
  • the new byte decided by Sbox.
  • ShiftRows is a permutation operation that rotates the bytes in the State matrix to the left. As shown in Table 4, the 0th line of State is rotated 0 position to the left, the 1st line of State is rotated 1 position to the left, the 2nd line of State is rotated 2 places to the left, and the 3rd of State The line is rotated 3 positions to the left.
  • MixColumns is an alternative operation that replaces each byte with the result of mathematical domain addition and domain multiplication using the value of the State byte column.
  • AddRoundKey using the first 4 lines in the key schedule to perform a one-byte one-byte XOR operation on the State matrix, and using the round key table w[e , r] XOR input of State [r. c].
  • the SubBytes, ShiftRows, MixColumns, and AddRoundKev operations are invoked in a loop that executes Nr times, and Nr is the number of rounds for a given key size minus one.
  • the number of rounds used by the encryption algorithm is either 10, 12, or 14, depending on whether the seed key length is 128 bits, 192 bits, or 256 bits. Here, since Nr is equal to 12, these 4 operations are called 11 times.
  • the encryption algorithm calls SubBytes, ShiftRows, and AddRoundKey before copying the State matrix to the output parameters.
  • the core of the AES encryption algorithm has four operations, and the AddRoundKey uses the round key generated from the seed key value instead of the four sets of bytes.
  • SubBytes substitution replaces a single byte with an alternate table.
  • ShiftRows performs sequence permutation by rotating 4 sets of bytes of a 4-byte line.
  • MixColumns replaces bytes with a combination of domain plus field multiplication.
  • Controlling the storage area in the storage device for display includes: authenticating the radio frequency information; and, in the case of successful authentication, controlling the storage area in the storage device for display.
  • the method further includes: receiving a destruction instruction input by a user, wherein the destruction instruction is used to instruct destruction of data in the storage area; and destroying data in the storage area.
  • the one-button destruction function is simple and convenient to use.
  • a dial switch can be set. When the user presses the external dial switch for one second, the hard disk starts to be destroyed, and the destruction speed can reach 2.5G/S ⁇ 3G/S.
  • the specific implementation process is as follows: The user presses the dial switch to trigger the controller to start destroying. The controller erases each data block of the hard disk FLASH, and all the data of the FLASH is set to 1 or 0 after the erasure, according to the FLASH storage. The characteristics of the medium, the erased data is impossible to recover.
  • FIG. 4 is a flow chart showing an encryption method according to a second embodiment of the present invention.
  • the method includes the following steps: after the tag (transponder) enters the magnetic field, receives the RF signal from the reader (radio frequency identification reader), and the energy obtained by the induced current is sent out and stored in the chip.
  • Product information passive tag, passive tag or passive tag
  • Active Tag active tag or active tag
  • the reader reads the information and decodes it, then sends it to the central information system Related data processing.
  • the RFID system of the present invention is mainly composed of a reader (Reader) and an electronic tag (TAG), which is a so-called transponder and an application software system.
  • the working principle is that the reader emits a specific frequency.
  • the radio wave energy is sent to the Transponder to drive the Transponder circuit to send the internal data.
  • the Reader receives the interpretation data in order, and sends it to the application for processing.
  • Inductive Coupling and Backscatter Coupling In terms of communication and energy sensing between RFID card readers and electronic tags, it can be roughly divided into two types: Inductive Coupling and Backscatter Coupling.
  • low-frequency RFID is mostly used.
  • the first type and the higher frequency mostly uses the second way.
  • the reader can be a read or read/write device depending on the structure and technology used, and is the information control and processing center of the RFID system.
  • the reader usually consists of a coupling module, a transceiver module, a control module, and an interface unit.
  • the half-duplex communication is generally used for information exchange between the reader and the transponder, while the reader provides energy and timing by coupling to the passive transponder.
  • management functions such as collection, processing, and remote transmission of object identification information can be further implemented through Ethernet or WLAN.
  • the transponder is the information carrier of the RFID system. Currently, the transponder is mostly composed of a coupling element (a coil, a microstrip antenna, etc.) and a microchip.
  • the RFID standard mainly involves the following aspects: air interface specification, physical characteristics, reader protocol, coding system, test specification, application specification, data management and information security.
  • the RFID system of the present invention may also be composed of a tag, a reader/writer, an application interface or a middleware software computer network and a terminal server.
  • the RFID tag is similar to a bar code on a package of goods, and holds electronic data in an agreed format to record information of the goods.
  • the reader is similar to the tag-reading optoelectronic reader, mainly responsible for the two-way communication with the electronic tag, and can also accept the host's control commands; the application interface or middleware completes the collection of the RFID tag data information; the transmission network realizes the data transmission, Read and write according to The terminal can give you a variety of transmission methods; the terminal server realizes the orderly management of RFID tags.
  • RFID tag also known as smart tag, is an ultra-miniature small tag composed of an IC chip and a wireless communication antenna. It is the real data carrier of the RFID system.
  • the RFID reader wirelessly communicates with the RFID electronic tag through the antenna, and can read or write the tag identification code and the memory data.
  • a typical reader includes a high frequency module (transmitter and receiver), a control unit, and a reader antenna. The reader sends a set of electromagnetic waves of fixed frequency to the tag.
  • the tag card has an LC series resonant circuit whose frequency is the same as the frequency of the reader. Under the excitation of the electromagnetic wave, the LC resonant circuit generates resonance, so that the resonant capacitor is inside.
  • the high-secure mobile solid-state hard disk based on the RFID technology mainly comprises: a USB2.0 interface, a USB-SATA bridge circuit module, an AES data encryption module, an RFID sensing module, and a solid-state storage module.
  • the storage device includes a first storage area and a second storage area, wherein the first storage area initial state is a display state, and the initial state of the second storage area is the hidden state.
  • the data After entering the hard disk via USB2.0 interface, the data first enters the USB-SATA bridge encryption module. After the bridge, the signal enters the solid-state storage module through the SATA interface.
  • the entire solid-state storage space is divided into two parts: 1. a common area (ie, the above-mentioned first storage area); 2. an encryption area (ie, the above-mentioned second storage area), in which encryption The data stored in the area is encrypted with the AES 128 encryption algorithm.
  • the encrypted data space is usually invisible, and the data area is only visible when the user temporarily decrypts the encrypted area using the RFID tag. Because the encryption process uses the combination of AES data encryption algorithm and RFID hardware identification encryption, the security of sensitive data in the user's hard disk is effectively guaranteed. While ensuring the security of sensitive data in the encrypted area of the user, the high-secure mobile solid-state hard disk designed by the present invention can provide rapid data destruction operation to ensure that the user can quickly and thoroughly sell in extreme situations. Destroy the data in the hard disk. In this design, one-click intelligent destruction fast destruction technology developed by Yuanke can be used to achieve this function. For example, the external button triggers the destruction signal to the hard disk main controller, and the main controller erases the flash storage medium.
  • the invention uses the RFID radio frequency setting technology to ensure that the AES encryption algorithm is not cracked, so that the encrypted area of the hard disk can be recognized only when the correct RFID proximity card is used, and the encryption area cannot be identified without being set to the encryption area.
  • the encryption area (AES encryption algorithm) is cracked.
  • the invention combines RFID radio frequency technology and AES data encryption, and combines hardware and software.
  • the encryption of the software is protected by hardware, so that the data encryption crack is impossible to start, and there is no object to be cracked;
  • the user can delete the hard disk data at any time conveniently, quickly and reliably. From the above description, it can be seen that the present invention greatly improves the security of data storage, thereby improving the security of the hard disk.
  • the steps shown in the flowchart of the accompanying drawings may be performed in a computer system such as a set of computer executable instructions, and, although the logical order is shown in the flowchart, in some cases, The steps shown or described may be performed in an order different from that herein.
  • modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device, such that they may be stored in the storage device by the computing device, or they may be separately fabricated into individual integrated circuit modules, or they may be Multiple modules or steps are made into a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.
  • the above is only the preferred embodiment of the present invention, and is not intended to limit the present invention, and various modifications and changes can be made to the present invention. Any modifications, equivalent substitutions, improvements, etc. made within the scope of the present invention are intended to be included within the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Storage Device Security (AREA)

Abstract

本发明公开了一种加密方法及装置、硬盘,其中,该加密方法包括:接收射频信息;以及控制存储装置中的存储区进行显示,其中,所述存储区的初始状态为隐藏状态。通过本发明,能够提高存储装置中数据保护的安全性。

Description

加密方法^置、 ^ίΑ 技术领域 本发明涉及加密领域, 具体地, 涉及一种加密方法及装置、 硬盘。 背景技术 随着信息化时代的到来, 以计算机为犯罪手段和以计算机信息为犯罪目标 的犯罪活动也在日益增加。 数据保护技术一般分软件和硬件两种, 前者利用软 件进行加密, 后者将专用加密芯片故到移动硬盘中, 从硬件层面进行加密。 软件加密: 这类加密一般在驱动程序中设置访问权限, 要求用户输入口令 等。 一切都在软件环境下实现。 以软件程序方式进行的移动硬盘加密很容易被读取并通过修改程序破解, 所以目前认为硬件加密更为可靠。 硬件加密: 移动硬盘针对整个盘进行数据硬件加密, 防止存储环节上的数 据失密。 通常要经过加密法转换、 附加密码、 加密模块等一系列的过程。 解密 过程则包括数据完整性鉴别。 系统对比验证对象输入的特征值是否符合预先设 定的参数, 实现对数据的安全保护。 针对相关技术中对存储装置中数据的保护安全性不够高的问题, 目前尚未 提出有效的解决方案。 发明内容 针对相关技术中对存储装置中数据的保护安全性不够高的问题而提出本 发明, 为此, 本发明的主要目的在于提供一种加密方法及装置、 硬盘, 以解决 上述问题。 为了实现上述目的, 才艮据本发明的一个方面, 提供了一种加密方法。 该加 密方法包括: 接收射频信息; 以及控制存储装置中的存储区进行显示, 其中, 所述存储区的初始状态为隐藏状态。 为了实现上述目的, 根据本发明的另一方面, 提供了一种加密装置。 该加 密装置包括: 第一接收模块, 用于接收射频信息; 以及控制模块, 用于控制存 储装置中的存储区进行显示, 其中, 所述存储区的初始状态为隐藏状态。 通过本发明,釆用接收射频信息; 以及控制存储装置中的存储区进行显示, 其中, 所述存储区的初始状态为隐藏状态。 解决了相关技术中对存储装置中数 据的保护安全性不够高的问题, 进而达到了提高存储装置中数据保护的安全性 的效果。 附图说明 此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部 分, 本发明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的不 当限定。 在附图中: 图 1是 居本发明第一实施例的加密装置的示意图; 图 2是 居本发明第二实施例的加密装置的示意图; 图 3是 居本发明第一实施例的加密方法的流程图; 图 4是才艮据本发明第二实施例的加密方法的流程图; 图 5是才艮据本发明实施例的 AES加密的流程图; 以及 图 6是才艮据本发明实施例的 AES解密的流程图。 具体实施方式 需要说明的是, 在不冲突的情况下, 本申请中的实施例及实施例中的特征 可以相互组合。 下面将参考附图并结合实施例来详细说明本发明。 图 1是 居本发明第一实施例的加密装置的示意图。 如图 1所示, 该加密装置包括第一接收模块 10和控制模块 20。 其中, 第一接收模块 10用于接收射频信息; 以及控制模块 20用于控制存 储装置中的存储区进行显示, 其中, 所述存储区的初始状态为隐藏状态。 在存储装置中的存储区为初始状态的情况下, 当存储装置连接至计算机 时, 该存储区为隐藏状态。 通过该实施例, 加密装置在接收到射频信息的情况 下, 对隐藏的存储区进行显示, 能够提高存储装置中数据保护的安全性。 图 2是 居本发明第二实施例的加密装置的示意图。 优选地, 加密装置, 还包括: 第二接收模块 50 , 用于接收用户输入的销毁 指令, 其中, 所述销毁指令用于指示对所述存储区中的数据进行销毁; 以及销 毁模块 60, 用于对所述存储区中的数据进行销毁。 通过该实施例, 在接收到用 户的销毁指令的情况下, 对存储区中的数据进行销毁, 可以进一步地提高存储 装置中数据保护的安全性。 上述的加密装置还可以包括: 解密模块 30 , 用于对所述存储区进行解密。 图 3是 居本发明第一实施例的加密方法的流程图。 如图 3所示, 该方法 包括: 步骤 S 102 , 接收射频信息。 例如, 与存储装置相连接的加密芯片接收来自外部标签或应答器的射频信 息。 步骤 S 104, 控制存储装置中的存储区进行显示, 其中, 所述存储区的初始 状态为隐藏状态。 该步骤还可以包括: 对所述存储区进行解密, 其中, 所述存储区在初始状 态为加密状态; 以及控制解密后的存储区进行显示。 在对所述存储区进行解密之前, 所述方法还包括: 对所述存储区进行高级 数据加密标准 ( Advanced Encryption Standard , 简称为 AES )力口密。
AES加密 /解密方法具体如下:
AES是一个迭代的、 对称密钥分组的密码, 可使用 128、 192和 256位密 钥, 并用 128位( 16字节)分组加密和解密数据。 与公共密钥密码使用密钥对 不同, 对称密钥密码使用相同的密钥加密和解密数据。 通过分组密码返回的加 密数据的位数与输入数据相同。 AES加密 /解密框图如图 5和图 6所示。 在图
5中, 可以对于加密过程 (由 S盒变换至与扩展密钥的异或运算) 进行循环, 例如, AES中 128位密钥版本可以进行 10个加密循环, 图 6为数据解密, 相 应地, 对于 AES中 128位密钥版本也需要经过 10个解密循环 (由反行变换至 反列变换) 过程。
AES算法基于置换和代替。 置换是数据的重新排列, 而代替是用一个单元 数据替换另一个。 AES使用了几种不同的技术来实现置换和替换。 例如以下是 要加密的 128位值, 以及它们对应的索引数组:
00 11 22 33 44 55 66 77 88 99 aa bb cc dd ee f
O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
192位密钥的值是:
00 01 02 03 04 05 06 07 08 09 0a Ob 0c Od Oe Of 10 11 12 13 14 15 16 17
0 1 2 3 4 5 6 7 8 9 10 1112 13 14 15 16 17 18 19 20 21 22 23
AES的构造函数被调用时, 用于加密方法的两个表被初始化。 第一个表的 代替盒称为 S一盒。 是一个 16x16的矩阵。 S一盒的前 5行和前 5列如表 1所 示。
-^. 1 S-^T
Figure imgf000006_0001
加密例程获取该密钥数组并生成一个名为 w[]的密钥调度表, 如表 2所示- 密钥调度表
Figure imgf000007_0001
w口最初的 Nk ( 6 )行被作为种子, 用原始密钥值(0x00 0xl7 )。 剩余行从 种子密钥产生。 变量 Nk代表 32位字为单位的种子密钥长度。 新的密钥被称为 轮密钥 (round keys )。
AES加密例程开始是拷贝 16字节的输入数组到一个名为 State(态)的 4x4 字节矩阵中。 如表 3所示。 AES算法的主循环对 State矩阵执行 4个不同的操 作为: SubBytes (字节替换 ), ShiftRows (行位移变换 ), MixColumns (列混 合变换) 和 AddRoundKey„ SubBytes 是一个代替操作, 它将 State 矩阵中的每个字节替换成一个由
Sbox决定的新字节。
ShiftRows是一个置换操作, 它将 State矩阵中的字节向左旋转。 如表 4所 示, State的第 0行被向左旋转 0个位置, State的第 1行被向左旋转 1个位置, State的第 2行被向左旋转 2个位置, 而 State的第 3行被向左旋转 3个位置。 MixColumns是一个代替操作, 它用 State字节列的值进行数学域加和域乘 的结果代替每个字节。
AddRoundKey (轮密钥加), 用密钥调度表中的前 4行对 State矩阵实行一 个字节一个字节的异或 (XOR ) 操作, 并用轮密钥表 w[e , r]异或输入的 State [r. c]。 SubBytes、 ShiftRows、 MixColumns和 AddRoundKev 4个操作在 一个执行 Nr次的循环里被调用, Nr为给定密钥大小的轮数减 1。加密算法使用 的轮数或是 10, 12, 或是 14, 这依赖于种子密钥长度是 128位、 192位还是 256位。 在这里, 因为 Nr等于 12, 则这 4个操作被调用 11次。 该迭代完成后, 在拷贝 State 矩阵到输出参数前, 加密算法调用 SubBytes、 ShiftRows 和 AddRoundKey后结束。
AES加密算法的核心有 4个操作, AddRoundKey使用从种子密钥值中生 成的轮密钥代替 4 组字节。 SubBytes 替换用一个代替表替换单个字节。 ShiftRows通过旋转 4字节行的 4组字节进行序列置换。 MixColumns用域加和 域乘的组合来替换字节。
AES算法的实现更简单. 同时由于 AES算法具备很强的扩散性能, 最终 形成的密码有很高的随机性, 抗分析攻击能力强。 在软件工程中, 更便于制作 成通用的加密对象类型或加密标准组件, 在不降氏安全性能的条件下, 极大的 简化数据加密程序的开发难度。 AES算法的实现程序, 对处理器性能、 内存的需求量等方面的要求低, 可 以广泛的应用到智能卡、 卫星通信、 数字电视、 流式媒体、 加密键盘、 ATM、 CDM等智能设备中, 可提供很高的安全性能, 因此, AES将在今后很长时间 内具备广阔的应用前景。 控制存储装置中的存储区进行显示包括: 对所述射频信息进行鉴权; 以及 在鉴权成功的情况下, 控制存储装置中的存储区进行显示。 上述方法还包括: 接收用户输入的销毁指令, 其中, 所述销毁指令用于指 示对所述存储区中的数据进行销毁; 以及对所述存储区中的数据进行销毁。 一键销毁功能使用简单方便, 在本发明中可以设置一个拨码开关, 用户按 下外部拨码开关一秒钟时间, 硬盘开始启动销毁, 销毁速度可以达到 2.5G/S〜3G/S。 具体实现过程如下: 用户按下拨码开关, 触发控制器启动销毁, 控制器针 对硬盘 FLASH的每一个数据块来进行擦除,擦除后 FLASH所有的数据都置为 1或者 0, 根据 FLASH存储介质的特性, 擦除后的数据是不可能被恢复的。 在硬盘中加入 RFID控制, 能有效的提高硬盘数据保密性能的强度。 图 4是才艮据本发明第二实施例的加密方法的流程图。 如图所示, 该方法包 括以下步 4聚: 在标签 (应答器) 进入磁场后, 接收解读器 (射频识别阅读器)发出的射 频信号, 凭借感应电流所获得的能量发送出存储在芯片中的产品信息 (Passive Tag, 无源标签或被动标签), 或者主动发送某一频率的信号(Active Tag, 有源 标签或主动标签); 解读器读取信息并解码后, 送至中央信息系统进行有关数 据处理。 本发明中的 RFID 系统主要是由阅读器 (Reader ) 与电子标签 (TAG ) 也 就是所谓的应答器 ( Transponder )及应用软件系统三个部份所组成, 其工作原 理是 Reader 发射一特定频率的无线电波能量给 Transponder , 用以驱动 Transponder电路将内部的数据送出, 此时 Reader便依序接收解读数据, 送给 应用程序故^!应的处理。 以 RFID卡片阅读器及电子标签之间的通讯及能量感应方式来看大致上可 以分成,感应 禺合 ( Inductive Coupling )及后向散射禺合 ( Backscatter Coupling ) 两种, 一般低频的 RFID大都釆用第一种式, 而较高频大多釆用第二种方式。 阅读器根据使用的结构和技术不同可以是读或读 /写装置, 是 RFID系统的 信息控制和处理中心。 阅读器通常由耦合模块、 收发模块、 控制模块和接口单 元组成。 阅读器和应答器之间一般釆用半双工通信方式进行信息交换, 同时阅 读器通过耦合给无源应答器提供能量和时序。 在实际应用中, 可进一步通过 Ethernet或 WLAN等实现对物体识别信息的釆集、处理及远程传送等管理功能。 应答器是 RFID系统的信息载体, 目前应答器大多是由耦合原件 (线圏、 微带 天线等) 和微芯片组成无源单元。 从标准上来看, RFID 标准主要涉及到以下几个方面: 空中接口规范、 物 理特性、 读写器协议、 编码体系、 测试规范、 应用规范、 数据管理和信息安全 等。 本发明中的 RFID系统还可以由标签、 读写器、 应用接口或中间件软件计 算机网和终端服务器等组成, RFID 标签类似货物包装上的条形码, 保存有约 定格式的电子数据以记载货物的信息; 读写器类似识别标签的光电阅读器, 主 要负责与电子标签的双向通信, 同时也可以接受主机的控制命令; 应用接口或 中间件完成 RFID标签数据信息的收集; 传输网络实现数据的传送, 才艮据读写 器终端的给你可以釆用多种传输方式; 终端月艮务器则实现 RFID标识物的有序 管理。
RFID标签 (Tag ) 也称智能标签, 它是由 IC芯片和无线通信天线组成的 超微型的小标签, 是射频识别系统真正的数据载体。 RFID 读写器通过天线与 RFID 电子标签进行无线通信, 可以实现对标签识别码和内存数据的读出或写 入操作。 典型的读写器包含有高频模块 (发送器和接收器)、 控制单元以及读 写器天线。 读写器向标签发一组固定频率的电磁波, 标签卡片内有一个 LC 串联谐振 电路, 其频率与读写器发射的频率相同, 在电磁波的激励下, LC 谐振电路产 生共振, 使谐振电容内有了电荷, 在电容的另一端, 接有一个单向导通的电子 泵, 将电容内的电荷送到模块储存电容存储, 当所积累的电荷到达 2V以上时, 此电容可作为电源向模块电路提供工作电压, 将卡内数据发射出去或接受读写 器的数据。 本发明中的加密装置和加密方法可以用于硬盘的加密中。 本发明提供的技术方案是: 基于 RFID技术的高保密移动固态硬盘主要包 括: USB2.0接口、 USB-SATA桥接电路模块、 AES数据加密模块、 RFID感应 模块、 固态存储模块五个部分。 在本发明中, 存储装置包括第一存储区域和第二存储区域, 其中, 所述第 一存储区域初始状态为显示状态, 所述第二存储区域的初始状态为所述隐藏状 态。 数据经 USB2.0接口进入硬盘后首先进入 USB-SATA桥接加密模块, 桥接 后信号通过 SATA接口进入固态存储模块。 在 RFID控制模块的配合下, 整个 固态存储的空间被分为两个部分: 1、 公共区域(即, 上述第一存储区域); 2、 加密区域 (即, 上述第二存储区域), 其中加密区域中所存数据釆用 AES 128 加密算法进行加密。 经加密后的数据空间平时是不可见的, 只有当用户使用 RFID标签将加密区域暂时解密时,数据区域才会可见。由于加密过程釆用 AES 数据加密算法和 RFID硬件识别加密相结合的方式, 故用户硬盘中敏感数据的 安全性得到了有效地保障。 在保证用户加密区域中敏感数据安全性的同时, 本发明所设计的高保密移 动固态硬盘可提供数据快速销毁操作, 以保证用户在极端情况下快速、 彻底销 毁硬盘中数据。 本设计中, 可以釆用源科所开发的一键智能销毁快速销毁技术 来实现此项功能。 例如, 通过外部按钮触发销毁信号至硬盘主控制器, 主控制 器对 Flash存储介质进行擦除操作, 由于 Flash擦除是按块进行的,擦除速度较 快, 所以能达到快速数据销毁的目的, 而且由于 Flash存储介质不存在磁性介 质的"剩磁"效应, 从而确保进行数据快速销毁后的电子数据的不可恢复性。 本 发明使用 RFID射频设别技术来保证 AES加密算法不被破解,使得只有在使用 正确的 RFID感应卡的情况下才能识别到硬盘的加密区, 在没有设别到加密区 的情况下, 不能对加密区 ( AES加密算法) 进行破解。 本发明结合 RFID射频技术和 AES数据加密, 从硬件和软件上进行结合, 软件的加密利用硬件来保护, 使得数据加密破解根本无从下手, 没有破解的对 象; 加入拨码开关一键销毁功能, 使用户能随时方便迅速可靠永久地删除掉硬 盘数据。 从以上的描述中, 可以看出, 本发明极大地提高了数据存储的安全性, 进 而提高了对硬盘安全性的保护。 需要说明的是, 在附图的流程图示出的步骤可以在诸如一组计算机可执行 指令的计算机系统中执行, 并且, 虽然在流程图中示出了逻辑顺序, 但是在某 些情况下, 可以以不同于此处的顺序执行所示出或描述的步 4聚。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可以 用通用的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布在多 个计算装置所组成的网络上, 可选地, 它们可以用计算装置可执行的程序代码 来实现, 从而, 可以将它们存储在存储装置中由计算装置来执行, 或者将它们 分别制作成各个集成电路模块, 或者将它们中的多个模块或步骤制作成单个集 成电路模块来实现。 这样, 本发明不限制于任何特定的硬件和软件结合。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领 域的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的 ^"神和原则 之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之 内。

Claims

权 利 要 求 书
1. 一种加密方法, 其特征在于, 包括:
接收射频信息; 以及
控制存储装置中的存储区进行显示, 其中, 所述存储区的初始状态 为隐藏状态。
2. 根据权利要求 1所述的加密方法, 其特征在于, 控制存储装置中的存储 区进行显示包括:
对所述存储区进行解密, 其中, 所述存储区在初始状态为加密状态; 以及 控制解密后的存储区进行显示。
3. 居权利要求 2所述的加密方法, 其特征在于, 在对所述存储区进行解 密之前, 所述方法还包括:
对所述存储区进行高级数据加密标准 AES加密。
4. 根据权利要求 1所述的加密方法, 其特征在于, 所述存储装置包括第一 存储区域和第二存储区域, 其中, 所述第一存储区域初始状态为显示状 态, 所述第二存储区域的初始状态为所述隐藏状态。
5. 根据权利要求 1所述的加密方法, 其特征在于, 控制存储装置中的存储 区进行显示包括:
对所述射频信息进行鉴权; 以及
在鉴权成功的情况下, 控制存储装置中的存储区进行显示。
6. 根据权利要求 1至 5中任一项所述的加密方法, 其特征在于, 所述方法 还包括:
接收用户输入的销毁指令, 其中, 所述销毁指令用于指示对所述存 储区中的数据进行销毁; 以及
对所述存储区中的数据进行销毁。
. —种加密装置, 其特征在于, 包括:
第一接收模块, 用于接收射频信息; 以及
控制模块, 用于控制存储装置中的存储区进行显示, 其中, 所述存 储区的初始状态为隐藏状态。 根据权利要求 7所述的加密装置, 其特征在于, 还包括:
第二接收模块, 用于接收用户输入的销毁指令, 其中, 所述销毁指 令用于指示对所述存储区中的数据进行销毁; 以及
销毁模块, 用于对所述存储区中的数据进行销毁。 根据权利要求 7所述的加密装置, 其特征在于, 还包括: 解密模块, 用于对所述存储区进行解密。
10. —种硬盘, 其特征在于, 具有权利要求 7至 9中任一项所述的加密装置。
PCT/CN2011/077170 2010-08-17 2011-07-14 加密方法及装置、硬盘 WO2012022207A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010255113.8 2010-08-17
CN2010102551138A CN101908024A (zh) 2010-08-17 2010-08-17 加密方法及装置、硬盘

Publications (1)

Publication Number Publication Date
WO2012022207A1 true WO2012022207A1 (zh) 2012-02-23

Family

ID=43263488

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/077170 WO2012022207A1 (zh) 2010-08-17 2011-07-14 加密方法及装置、硬盘

Country Status (2)

Country Link
CN (1) CN101908024A (zh)
WO (1) WO2012022207A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101908024A (zh) * 2010-08-17 2010-12-08 湖南源科高新技术有限公司 加密方法及装置、硬盘
CN103200169A (zh) * 2013-01-30 2013-07-10 中国科学院自动化研究所 一种基于Proxy代理的用户数据保护方法及其系统
CN108964870B (zh) * 2018-07-05 2020-04-28 西南交通大学 基于自同步混沌密码的铁路应答器报文安全增强方法
CN110851825B (zh) * 2019-11-20 2022-04-15 恒宝股份有限公司 一种eSIM卡及其工作方法
CN112528311B (zh) * 2020-12-23 2024-02-20 杭州海康汽车软件有限公司 数据管理方法、装置及终端

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1400602A (zh) * 2001-07-31 2003-03-05 台均实业有限公司 具有usb接口的便携式可读写存储器及其数据管理的方法
CN201229570Y (zh) * 2008-07-18 2009-04-29 北京中科联众科技有限公司 一种移动硬盘数据保护装置
CN101692264A (zh) * 2009-09-25 2010-04-07 天津大学 利用隐藏分区与cpu序列号及软键盘的文件加密保护方法
CN101908024A (zh) * 2010-08-17 2010-12-08 湖南源科高新技术有限公司 加密方法及装置、硬盘
CN201698408U (zh) * 2010-06-23 2011-01-05 沈刚 通过rf射频感应方式隐藏或显示部分存储空间存储机构

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9812836D0 (en) * 1998-06-16 1998-08-12 Ncr Int Inc Data security arrangement
CN1333348C (zh) * 2004-05-13 2007-08-22 瀚群科技股份有限公司 含生物辨识的可携式加密储存装置及储存资料的保护方法
CN101478595A (zh) * 2008-09-08 2009-07-08 广东南方信息安全产业基地有限公司 移动通信终端数据保护方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1400602A (zh) * 2001-07-31 2003-03-05 台均实业有限公司 具有usb接口的便携式可读写存储器及其数据管理的方法
CN201229570Y (zh) * 2008-07-18 2009-04-29 北京中科联众科技有限公司 一种移动硬盘数据保护装置
CN101692264A (zh) * 2009-09-25 2010-04-07 天津大学 利用隐藏分区与cpu序列号及软键盘的文件加密保护方法
CN201698408U (zh) * 2010-06-23 2011-01-05 沈刚 通过rf射频感应方式隐藏或显示部分存储空间存储机构
CN101908024A (zh) * 2010-08-17 2010-12-08 湖南源科高新技术有限公司 加密方法及装置、硬盘

Also Published As

Publication number Publication date
CN101908024A (zh) 2010-12-08

Similar Documents

Publication Publication Date Title
US9887843B1 (en) RFID tags with dynamic key replacement
US9407445B2 (en) Security system and method
KR100931507B1 (ko) Rfid 시스템에서 대칭키 암호화 기반 통신 데이터 보호방법과 이를 수행하기 위한 리더 및 태그
de Koning Gans et al. A practical attack on the MIFARE Classic
US20160261591A1 (en) Rfid authentication architecture and methods for rfid authentication
US20090153290A1 (en) Secure interface for access control systems
Choi et al. Anti-cloning protocol suitable to EPCglobal Class-1 Generation-2 RFID systems
CN103279775B (zh) 能够保证秘密性和数据完整性的rfid系统及其实现方法
KR20110015022A (ko) 프라이버시를 보호하고 추적을 회피하면서 트랜스폰더의 고정 식별 번호를 송신 및 수신하는 방법, 트랜스폰더, 판독기, 통신 시스템 및 컴퓨터 판독 가능한 기록 매체
WO2012022207A1 (zh) 加密方法及装置、硬盘
WO2012019397A1 (zh) 一种射频识别标签识别的方法及系统
Engels et al. On security with the new Gen2 RFID security framework
Rahnama et al. Securing RFID-based authentication systems using ParseKey+
CN113988103B (zh) 一种基于多标签的rfid识别方法
CN101887503B (zh) 种子流通监管系统及其认证方法
Peris-Lopez et al. Lightweight cryptography for low-cost RFID tags
Peris-Lopez et al. RFID specification revisited
CN108319870A (zh) 一种无按键的电子密钥设备
He et al. Research on RFID technology security
KR101053636B1 (ko) 다중 암호방식을 이용한 태그와 rfid리더간 인증 방법 및 시스템
Seshabhattar et al. Security implementation within GEN2 protocol
Xiao et al. Design of a UHF RFID tag baseband with the hummingbird cryptographic engine
Maarof et al. Security analysis of low cost RFID systems
CN111787535A (zh) 一种ndef格式安全动态码生成方法、装置及近场通信方法、系统
ElMahgoub Pre-encrypted user data for secure passive UHF RFID communication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11817734

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11817734

Country of ref document: EP

Kind code of ref document: A1