WO2012021959A1 - Composições combustíveis ternárias contendo biodiesel, óleo vegetal e álcoois inferiores para alimentação de motores de ciclo diesel - Google Patents

Composições combustíveis ternárias contendo biodiesel, óleo vegetal e álcoois inferiores para alimentação de motores de ciclo diesel Download PDF

Info

Publication number
WO2012021959A1
WO2012021959A1 PCT/BR2011/000297 BR2011000297W WO2012021959A1 WO 2012021959 A1 WO2012021959 A1 WO 2012021959A1 BR 2011000297 W BR2011000297 W BR 2011000297W WO 2012021959 A1 WO2012021959 A1 WO 2012021959A1
Authority
WO
WIPO (PCT)
Prior art keywords
diesel
biodiesel
fuel
ethanol
engine
Prior art date
Application number
PCT/BR2011/000297
Other languages
English (en)
French (fr)
Inventor
Márcio TURRA DE ÁVILA
Original Assignee
Empresa Brasileira De Pesquisa Agropecuária - Embrapa -
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Empresa Brasileira De Pesquisa Agropecuária - Embrapa - filed Critical Empresa Brasileira De Pesquisa Agropecuária - Embrapa -
Priority to PCT/BR2011/000297 priority Critical patent/WO2012021959A1/pt
Priority to US13/818,001 priority patent/US20130269240A1/en
Publication of WO2012021959A1 publication Critical patent/WO2012021959A1/pt

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/02Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only
    • C10L1/026Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only for compression ignition
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/04Use of additives to fuels or fires for particular purposes for minimising corrosion or incrustation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Definitions

  • the present invention relates to technology which deals with fuel compositions based on biodiesel, alcohol, such as anhydrous ethanol, and vegetable oil, to be applied to diesel cycle engines. Moreover, it is technologically superior than diesel oil, since it is found to promote a more perfect burn, less pollutant emissions and less deposits of impurities in the internal engine components. Alternatively, the invention also relates to compositions, as described above, associated with petrodiesel, in different proportions. BACKGROUND OF THE INVENTION
  • Biodiesel a traditional substitute for diesel oil because it has a suitable cetane index and viscosity for use in Diei cycle engines, is a very expensive product because, in addition to the high price of the raw material (vegetable oil), it has if the cost aggregation of the order of 25% in the processing phase.
  • PI 0605525-7 A2 provides for the use of ternary mixtures containing 10-30% ethanol, 20-60% biodiesel, and 30-60% hydrotreated vegetable oil.
  • the present invention is of a distinct composition, does not employ hydrotreated vegetable oil, and operates with different component ratios, and has a distinct technical effect.
  • MU8702637-6U2 provides for the use of binary, ternary and quaternary mixtures of biodiesel, vegetable oil and higher alcohols.
  • the present invention differs in both composition and proportion, and has the advantage of the direct use of ethyl alcohol or methanol among other no higher alcohols.
  • PI0602633-8A2 Provides blending of diesel with superior alcohol, biodiesel and vegetable oil, more complete combustion, reductions in particulate matter and carbon deposits, increased fuel lubricity, maintenance of engine performance and durability and their injection systems.
  • a composition is more complex and costly, involving more components, so that the present invention is superior due to the fact that the mixture is obtained by means of all renewable components and in smaller number, in particular. different proportions, as well as showing excellent technical effect on energy efficiency, pollutant emission and impurities deposition in the internal components of diesel cycle engines. It should be noted that it also does not need to have an alcoholic component of the higher alcohol type (alcohols with many carbon atoms in the chain, such as cetyl alcohol).
  • the present invention consists of the combination of three renewable fuels (biodiesel, alcohol, such as anhydrous ethanol, and vegetable oil), which can be employed directly, without any prior treatment, in given proportions of interest, so as to form mixtures, whereby the physicochemical characteristics of each other complement each other so as to make a final fuel suitable for use in diesel engines with excellent fuel properties.
  • renewable fuels biodiesel, alcohol, such as anhydrous ethanol, and vegetable oil
  • the present invention is a diesel fueled engine fuel which has the following composition:
  • i. alcohol preferably anhydrous, in the range of 10% to 50% by weight;
  • ethyl or methyl ester in the proportion range 20% to 80% by mass.
  • said composition may be alcohol in the form of ethanol or methanol, preferably anhydrous type.
  • composition may be as follows:
  • Another possible embodiment is based on the use of the ternary mixture (biodiesel, alcohol and vegetable oil) associated with petrodiesel in any proportion.
  • Figure 1 Miscibility maps for ternary mixtures at different temperatures. Dots in yellow mean miscible mixtures and red means immiscible ones.
  • Figure 2 thermal efficiency as a function of applied load.
  • Figure 3 emission of particulate matter as a function of applied load.
  • Figure 4 emission of particulate matter, within 5 minutes of collection, as a function of the load applied by the generator to the engine.
  • Figure 6 Diesel engine fuel injector nozzle.
  • Figure 7 Injector nozzle fed with ternary mixture.
  • Figure 8 Top of diesel engine powered piston.
  • Figure 9 Top of the ternary-mix engine piston.
  • the present invention consists of the combination of the three described fuels (biodiesel, alcohol, such as anhydrous ethanol, and oil). getal) for the formation of mixtures, whereby the physicochemical characteristics of each other complement each other to make a final fuel suitable for use in diesel engines.
  • the three described fuels biodiesel, alcohol, such as anhydrous ethanol, and oil. getal
  • the combustible compositions of the present invention are based on some physicochemical properties of interest, see: (i) alcohol, preferably ethanol or methanol, is a polar substance; (ii) vegetable oil is a nonpolar substance; logo (iii) use of biodiesel as a double solubility cosolvent agent. It is important to note that the mixing process of the components for all combustible compositions object of this patent involves conventional association employing containers or tanks according to the following mixing order: association of biodiesel to ethanol, followed by the addition of vegetable oil , according to the proportions of interest. Mixing, optionally not considering the ideal embodiment, may involve the addition of petrodiesel. Moreover, it is expressed that the mentioned components can be associated in different orders, given the aforementioned physicochemical properties, in terms of miscibility.
  • mixtures have a density similar to that of diesel oil, as well as chemical affinity with it (since it contains biodiesel that performs the function of co-solvent), there are possibilities of making quaternary mixtures, that is, proposed ternary mixtures (biodiesel, anhydrous ethanol and vegetable oil) with petroleum diesel, in the most varied proportions.
  • the invention is therefore based on the use of renewable fuel blends (biodiesel, anhydrous ethanol and vegetable oil) in diesel cycle engines, thereby seeking the technical, ecological and operational advantages described above.
  • a composition of quaternary mixtures formed by the presented mixtures and by diesel oil may be employed in various proportions.
  • Figure 2 shows the thermal efficiency profile as a function of the applied load, so that the yield of the ternary mixture of the present invention is superior to that of the control treatment (Petroleum Diesel (B4)).
  • the control treatment Pulleum Diesel (B4)
  • particulate emissions were around 70% lower with the use of ternary mixture due to the replacement of diesel, with large molecules and high boiling points, by: (i) ethanol, formed by a molecule simple and low boiling point (ii) non-sulfur biodiesel, which shares oxygen with the carbon resulting from partial burning.
  • the experiment also involved a 150-hour durability test based on analyzes after this period of the following elements: diesel-fueled engine nozzle (Figure 6); engine injector nozzle fed with ternary mixture (Figure 7); piston top of diesel engine (Figure 8); piston top of the ternary-mix engine ( Figure 9).
  • Diesel-fueled engine nozzle Figure 6
  • engine injector nozzle fed with ternary mixture Figure 7
  • piston top of diesel engine Figure 8
  • piston top of the ternary-mix engine Figure 9
  • the ternary mixture causes much less formation of carbon residues and, as a consequence: (i) less contamination of the lubricant, which allows full performance of its functions (lubrication); (ii) less wear on moving parts inside the engine.
  • Emission compounds from both diesel and Otto cycle engines can be classified into two types: those that do not cause harm to health (O 2 , CO 2 , H 2 O and N 2 ) and those that have a low - health (CO, HC, NOx, SOx and MP). 8th
  • particulate matter is the air pollutant most commonly associated with adverse effects on human health.
  • the objective of this work was to quantify the emission of particulate matter from ternary mixtures 6 composed of ethyl alcohol, biodiesel and vegetable oil in a diesel engine, having as standard condition an identical engine running on conventional diesel.
  • the particulate material from the engine exhaust was collected through the use of a circular filter with a diameter of 5 cm, made from fiberglass tir.
  • the three volumetric biofuel blends used in the tests consisted of:
  • the work system used was as follows: first, the filters were oven dehydrated at 105 ° C and weighed; later, they were coupled to the exhaust end, where they remained for 2, 5, 8 and 10 minutes. Then the filters were again dehydrated and weighed, which allowed to record the mass of the retained material.
  • the objective of this study was to quantify the emission of particulate matter from ternary mixtures composed of alcohol, biodiesel and vegetable oil in a diesel cycle engine, having as witness an identical engine running on petroleum diesel.
  • particulate matter from engine exhaust was collected using a circular filter paper made from fiberglass.
  • the results obtained from the use of ternary biofuel blends indicated an expressive reduction in the level of particulate matter emitted by the engine at its maximum speed. It can be concluded from the work that the use of the ternary mixtures, under the conditions and methods of the experiment, was efficient in reducing the emission of particulate matter present in the diesel engine exhaust gases.
  • Emission compounds from both diesel and gasoline engines or mixed fuels can be classified into two types: those that do not cause harm to health, namely 02, CO2, H2O and N2; and those presenting health hazards, which are subdivided into compounds whose emission is regulated, which are: CO, hydrocarbons (HC), nitrogen oxides (NOx), sulfur oxides (SOx) and particulate matter ( MP); and those not yet regulated: aldehydes, ammonia, benzene, cyanides, toluene and polynuclear aromatic hydrocarbons (HPA) (NEEFT et al., 1996).
  • HPA polynuclear aromatic hydrocarbons
  • Diesel exhaust is quite complex, consisting of three phases: solids, liquids and gases (DEGOBERT, 1995).
  • the operation under oxidizing conditions of diesel engines which contributes to a good eco- Compared to gasoline engines, fuel economy results in lower CO2 production, a combustion process operating at lower temperatures, with formation and, consequently, a lower emission of NOx, CO and hydrocarbons (HC).
  • this process also results in high emission levels of particulate matter (MP) and compounds responsible for the characteristic odor of diesel emission, the emission of the latter being highly critical during low temperature operating conditions. (BRAUN et al., 2003).
  • MP particulate matter
  • Particulate matter produced by a diesel engine consists primarily of carbon core clusters, and hydrocarbons, SO3 or sulfuric acid, and water, adsorbed or condensed on these carbonic cores (NEEFT et. Al., 1996; LAHAYE & EHRBURGER-DOLLE, 1994).
  • Carbonic nuclei are primary particles, ie small spherical units composed primarily of carbon and some inorganic material with an approximate diameter in the range of 10 to 80 nm, which is equivalent to approximately one million atoms of this element. Hydrocarbons resulting from incomplete combustion of diesel oil and lubricating oil are generated on carbonic cores, generating aggregates. Several aggregates thus formed, in turn, agglomerate and form the secondary particles, with aerodynamic diameters between 100 and 1000 nm. However, 90% of the particulate matter produced by any diesel engine has an average diameter of less than 300 nm.
  • the average basic composition of the particulate material is 70% by weight carbon, 20% oxygen, 3% sulfur, 1.5% hydrogen, less than 1% nitrogen and approximately 1% trace element. (NEEFT et al. 1996). Particulate matter is the air pollutant most consistently associated with adverse effects on human health. The toxicity of particulate matter depends on its composition and aerodynamic diameter. Several studies have linked continued exposure to environmental levels of particulate matter with reduced life expectancy (LIPFERT 1984; DOCKERY & POPE, 1994; ABBEY 1999).
  • Ethanol, vegetable oil and biodiesel are all derived from biomass and, unlike petroleum, are renewable fuels.
  • hydrated ethyl alcohol fuel presents itself as an interesting alternative fuel to diesel oil to reduce pollutant emissions. This is because ethanol contains oxygen in its molecule, it is an extremely volatile fuel that burns as a group and because AEHC contains water in its composition (7% by mass).
  • ethanol as a fuel is advocated by many especially because of the reduction in greenhouse gas emissions by replacing fossil fuels.
  • Macedo (2004) analyzed the energy balance of fossil energy consumed in the production and processing of sugarcane compared to the energy provided by the use of ethanol and the energy generated by sugarcane bagasse.
  • the ratio between the renewable energy produced and the fossil energy consumed in ethanol production is 8.3 to 10.2, that is, for each unit of fossil energy spent in the ethanol production cycle, it is obtained back between 8, 3 to 10.2 units of renewable energy.
  • alcohol has virtually no sulfur in its composition, so its use does not contribute to the emission of SOx, and its lower molecular complexity allows combustion with very low formation of particulate matter. which results in negligible emission of PM.
  • biodiesel also finds its place and presents rapid growth in the domestic market of liquid biofuels.
  • biodiesel is still in the stage of intense research and development (PNA, 2005).
  • PNA intense research and development
  • biodiesel has been used not only as an alternative to replace petroleum diesel, but also as an emulsifying additive to compose ternary diesel / biodiesel / alcohol mixtures.
  • Blend 2 50% biodiesel from soybean oil, 40% anhydrous ethanol and 10% vegetable oil
  • particulate matter from engine exhaust was collected using a 5 cm diameter circular filter paper made from glass fiber from Energética - air.
  • This material was previously dehydrated in a 105oC oven to remove existing moisture. After this drying, the filters were weighed and tared in a precision digital scale to finally be installed at the end of the exhaust pipe, where they were able to retain the particulate matter expelled by the engine.
  • the work employed was as follows: the filters remained coupled at the exhaust end for 5 minutes, time required to retain sufficient amount of particles, since the filters were exposed to a longer time and there was no difference in their weights. .
  • the filter papers were dried again and then taken to the precision balance to measure the mass of particulate matter produced by the engines.
  • biodiesel Another compound present in the mixture, which was also responsible for the drop in particulate emissions, is biodiesel. Although the amount of particulate matter retained by the filter is greater with increasing biodiesel concentration in the mixtures due to the decreased amount of ethanol ( Figure 5), the biodiesel-containing fuel present in both mixtures has shown to be less polluting than conventional diesel, thus attesting to the important ability of this biofuel to reduce engine particulate emissions.
  • HOLMER E .
  • BERG P. S
  • BERTILSSON B. I. The use of alternative fuels in a Diesel engine using different methods. Society of Automotive Engineers, SAE paper 800544. 1980.
  • KWANCHAREON P .; LUENGNARUEMITCHAI, A .; JAI-IN, S. Solubility of a diesel-biodiesel-ethanol blend, its fuel properties, and its emission characteristics from diesel engine. Fuel, v.10, p. 1053-1061, 2006.
  • KERMINEN V .; M ⁇ KEL ⁇ , T.E .; OJANEN, C. H .; HILLAMO, R. E .; Vilhnen, J. K .; RANTANEN, L; HAVERS, N .; VON BOHLEN, A .; Klockk, D. Environ. Sci. Technol., 31, 1883, 1997.
  • MACEDO I. C. Balance of greenhouse gas emissions in ethanol production and use in Brazil. Interdisciplinary Center for Energy Planning at the State University of Campinas (NIPE). Campinas, jan. 2004
  • PETERSON C. & REECE, D. Emission characteristics of ethyl and methyl ester of rapeseed oil compared with low sulfur diesel control fuel in a chassis dynamometer test of a pickup truck. Transaction of the ASAE. v. 39, no. 3, p. 805-816, 1996.
  • soybean, hydrous ethanol and vegetable oil soybean, hydrous ethanol and vegetable oil.
  • Biodiesel was produced at UNAERP from refined soybean oil, anhydrous ethyl alcohol and sodium hydroxide as a homogeneous catalyst. The resulting biodiesel was washed with water and evaporated to remove glycerine, fatty acid soaps and residual moisture. Ternary mixtures were prepared in proportions from 0 to 100% by weight of each component in 10 mL test tubes. After mechanical agitation for a few minutes, the tubes were centrifuged and the phase miscibility verified by visual inspection. Two vegetable oils were tested: soy and castor. The tests were conducted at 3 different temperatures: 10 ° C, 25 ° C and 50 ° C.

Abstract

Composições combustíveis baseadas em biodiesel, álcoois não superiores e óleo vegetal para alimentação de motores do ciclo Diesel, possibilitando queima mais perfeita, menor emissão de poluentes e menor formação de depósitos internos de impurezas sobre a superfície interna de motores. Como as misturas apresentam densidade similar à do óleo diesel, assim como afinidade química com este (por conter biodiesel, que desempenha a função de cossolvente), a presente invenção também contempla composições de misturas quaternárias, ou seja, junção das misturas ternárias propostas (biodiesel, álcool não superior e óleo vegetal) com diesel de petróleo, nas mais diversas proporções. A concretização preferencial desta invenção proporciona a substituição de combustível de fonte não renovável (óleo diesel) por outros de fonte renovável, naturais, não tóxicos, biodegradáveis e excelente desempenho técnico.

Description

Composições combustíveis ternárias contendo Biodiesel, Óleo vegetal e Álcoois inferiores para alimentação de motores de ciclo Diesel
CAMPO DA INVENÇÃO
A presente invenção refere-se à tecnologia que trata de compo- sições combustíveis à base de biodiesel, álcool, tal como o etanol anidro, e óleo vegetal, a serem aplicadas em motores do ciclo Diesel. Ademais, apre- senta-se superior tecnologicamente do que o óleo Diesel, uma vez que se constata que promove uma queima mais perfeita, menor emissão de poluentes e menor formação de depósitos de impurezas nos componentes internos de motores. Alternativamente, a invenção também trata de composições, tal como descritas acima, associadas ao petrodiesel, em distintas proporções. FUNDAMENTOS DA INVENÇÃO
O biodiesel, tradicional substituto do óleo diesel por apresentar índice de cetano e viscosidade adequados ao uso em motores de ciclo Die- sei, apresenta-se como produto muito caro, pois além do preço elevado da matéria-prima (óleo vegetal), tem-se a agregação de custo da ordem de 25% na fase de processamento.
Por outro lado, combustíveis mais baratos como os óleos vegetais "in natura" e, principalmente, o etanol demonstram problemas de ordem técnica para serem utilizados em motores do ciclo Diesel. Os óleos vegetais, apesar de possuírem índice de cetano compatível com motores de ignição por compressão, apresentam viscosidade muito elevada, conduzindo à formação de depósitos de carvão e borras nos motores quando utilizados. Já o etanol possui viscosidade e cetanagem muito baixas, não atendendo aos requisitos necessários a um bom combustível para ciclo Diesel.
Considerando a literatura científica, a composição mais relevante verificada foram os trabalhos de KWANCHAREON et ai, 2006; FERNANDO & HANNA, 2006; CHEN et ai, 2008, que abordaram combustíveis à base de etanol, biodiesel e diesel.
Do ponto de vista patentário, tem-se os principais documentos verificados:
(i) PI 0605525-7 A2: prevê o uso de misturas ternárias contendo 10-30% de etanol, 20-60% de biodiesel, e 30-60% de óleo vegetal hidrotra- tado. Comparativamente, a presente invenção constitui-se de uma composição distinta, não emprega óleo vegetal hidrotratado, bem como opera com proporções distintas de componentes, além de apresentar efeito técnico dis- tinto.
(ii) MU8702637-6U2: prevê o uso de misturas binárias, ternárias e quaternárias de biodiesel, óleo vegetal e álcoois superiores. Neste caso, a presente invenção difere tanto em composição quanto em proporção, além de ter como vantagem o uso direto de álcool etílico ou metanol, dentre ou- tros álcoois não superiores.
(iii) PI0602633-8A2: prevê mistura de diesel com álcool superior, biodiesel e óleo vegetal, combustão mais completa, reduções de material particulado nas emissões e de depósitos carbonosos, elevação da lubricidade do combustível, manutenção dos níveis de desempenho e durabilidade dos motores e de seus sistemas de injeção. Neste presente caso, tal composição apresenta-se mais complexa e onerosa, envolvendo mais componentes, de modo que a invenção em pauta revela-se superior dado ao fato de que a mistura é obtida por meio de componentes todos renováveis e em menor número, em proporções distintas, além de revelar efeito técnico exce- lente em matéria de eficiência energética, emissão de poluentes e deposição de impurezas nos componentes internos de motores ciclo Diesel. Deve-se observar que não necessita, ademais, de apresentar componente alcoólico do tipo álcool superior (álcoois com muitos átomos de carbono na cadeia, tal como o álcool cetílico).
Concluindo, a presente invenção consiste da junção de três combustíveis renováveis (biodiesel, álcool, tal como o etanol anidro, e óleo vegetal), que podem ser empregados de forma direta, sem qualquer prévio tratamento, em dadas proporções de interesse, de modo a formar misturas, com o que as características físico-químicas de cada um se completam mu- tuamente, de modo a compor um combustível final apropriado ao uso em motores do ciclo Diesel, com propriedades combustíveis excelentes. SUMÁRIO DA INVENÇÃO
A presente invenção trata-se de combustível para alimentação de motor de ciclo Diesel caracterizado por apresentar a seguinte composição:
i. álcool, preferencialmente tipo anidro, na faixa de proporção de 10% a 50%, em massa;
ii. óleo vegetal na faixa de proporção de 10% a 60%, em massa; e
iii. éster etílico ou metílico (biodiesel) na faixa de proporção de 20% a 80%, em massa.
Alternativamente, a citada composição pode apresentar álcool na forma de etanol ou metanol, preferencialmente tipo anidro.
Para certas aplicações, sendo a concretização não ideal, a composição pode apresentar-se da seguinte forma:
i. álcool, preferencialmente anidro, na faixa de proporção de
10% a 50%, em massa;
ii. óleo vegetal na faixa de proporção de 10% a 60%, em massa; e
iii. petrodiesel, biodiesel ou qualquer mistura de ambos na faixa de proporção de 20% a 80%, em massa.
Outra concretização possível está baseada no emprego da mistura ternária (biodiesel, álcool e óleo vegetal) associada ao petrodiesel em qualquer proporção.
Tecnicamente, as composições combustíveis apresentadas re- velam-se de grande relevo devido, dentre outros motivos, aos seguintes fato- res:
(i) diminuição do atraso de ignição do combustível final (misturas de biodiesel, álcool, preferencialmente etanol anidro, e óleo vegetal) devido ao menor ponto de fulgor do álcool e sua maior volatilidade e ao maior índice de cetano do biodiesel, o que se traduz em aumento do rendimento térmico e maior aceleração, principalmente nas baixas rotações, pela vaporização mais intensa do combustível utilizado; (ii) diminuição da viscosidade final do combustível utilizado comparativamente ao uso dos mais diversos óleos vegetais puros, o que facilita a pulverização do combustível injetado na câmara de combustão e resulta em diminuição ou eliminação da formação de borras e vernizes (causados pela polimerização do combustível - "coking") na bomba injetora, nos bicos injetores e no interior dos cilindros, além de contribuir para uma combustão mais completa, com consequente aumento de rendimento térmico e redução da emissão de poluentes, entre eles, os óxidos de nitrogénio, os materiais particulados, o monóxido de carbono e os hidrocarbonetos livres;
(iii) abaixamento da temperatura de início de cristalização (ponto de névoa) do combustível final por possuírem álcool, preferencialmente etanol ou metanol, na sua composição, conduzindo a menores problemas de partida quando se utilizam tais misturas em ambientes de baixas temperaturas.
BREVE DESCRIÇÃO DAS FIGURAS
Figura 1 : mapas de miscibilidade para as misturas ternárias em temperaturas distintas. Pontos em amarelo significam misturas miscíveis e em vermelho as imiscíveis.
Figura 2: rendimento térmico em função da carga aplicada.
Figura 3: emissão de material particulado em função da carga aplicada.
Figura 4: emissão de material particulado, num intervalo de 5 minutos de coleta, em função da carga aplicada pelo gerador ao motor.
Figura 5: emissão de material particulado coletado.
Figura 6: Bico injetor do motor alimentado com óleo diesel.
Figura 7: Bico injetor do motor alimentado com mistura ternária.
Figura 8: Topo do pistão do motor alimentado com óleo diesel.
Figura 9: Topo do pistão do motor alimentado com mistura ternária.
DESCRIÇÃO DETALHADA DA INVENÇÃO
Assim sendo, a presente invenção consiste da junção dos três combustíveis descritos (biodiesel, álcool, tal como etanol anidro, e óleo ve- getal) para a formação de misturas, com o que as características físico- químicas de cada um se completam mutuamente, de modo a compor um combustível final apropriado ao uso em motores do ciclo Diesel.
As composições combustíveis da presente invenção estão ali- cerçadas em algumas propriedades físico-químicas de interesse, vide: (i) álcool, preferencialmente etanol ou metanol, é uma substância polar; (ii) óleo vegetal trata-se de substância apolar; logo (iii) uso do biodiesel como agente cossolvente de dupla solubilidade. É importante salientar que o processo de mistura dos componentes relativos a todas as composições combustíveis objeto desta patente de invenção, envolve associação convencional empregando recipientes ou tanques de acordo com a seguinte ordem de mistura: associação de biodiesel a etanol, seguida da adição de óleo vegetal, de a- cordo com as proporções de interesse. A mistura, opcionalmente, considerando não a concretização ideal, pode envolver a adição de petrodiesel. A- demais, expressa-se que os componentes citados podem ser associados segundo ordens diversas, haja vista as citadas propriedades físico-químicas que apresentam, em termos de miscibilidade.
A diminuição do atraso de ignição de um combustível no interior do cilindro de um motor de ciclo Diesel implica em aumento do rendimento térmico do mesmo. Com a utilização de misturas que contêm, entre outros combustíveis, etanol anidro, composto com ponto de fulgor relativamente baixo e considerável volatilidade, ocorre maior velocidade de quebra das grandes moléculas formadoras das mesmas misturas, diminuindo o tempo de reação e aumentando o rendimento térmico do motor.
A presença de etanol anidro e biodiesel nas misturas propostas implica em viscosidades bem mais baixas que aquelas relacionadas ao óleo vegetal puro, o que atua como elemento atenuador ou até mesmo inibidor da formação de borras e vernizes (causados pela polimerização do combustível - "coking") na bomba injetora, nos bicos injetores e nos cilindros de motores do ciclo Diesel; o etanol presente nas misturas resulta no abaixamento da temperatura de início de cristalização (ponto de névoa) do combustível final, conduzindo a menores problemas de partida em ambientes frios quando se utilizam tais misturas. Além desses aspectos, como as misturas apresentam densidade similar à do óleo diesel, assim como afinidade química com este (por conter biodiesel que desempenha a função de co-solvente), há possibilidades de se efetuarem composições de misturas quaternárias, ou seja, jun- ção das misturas ternárias propostas (biodiesel, etanol anidro e óleo vegetal) com diesel de petróleo, nas mais diversas proporções.
Outra grande vantagem dessas misturas se liga ao fato de serem formadas por compostos extraídos de produtos agrícolas e, portanto, de origem renovável, naturais, não tóxicas e biodegradáveis.
Como é do conhecimento dos profissionais da área, os atuais motores do ciclo Diesel possuem uma série de inconvenientes tanto no que diz respeito à sua operação como no que se relaciona aos aspectos ecológicos. Dentre esses problemas, podem-se citar:
(i) comparativamente aos motores do ciclo Otto, apresentam a- celeração mais lenta pela baixa taxa de vaporização do combustível após sua injeção na câmara de combustão, sobretudo nas rotações mais baixas;
(ii) elevado nível de emissão de óxidos de nitrogénio devido às altas temperaturas de combustão impostas pelas altas taxas de compressão dos motores; e
(iii) utilização de combustível fóssil (óleo diesel), que se apresenta com grandes cadeias carbónicas, o que conduz à queima incompleta no interior do cilindro e excessiva emissão de materiais particulados.
Empregando-se as misturas propostas (biodiesel, álcool, tal como etanol anidro, e óleo vegetal) como combustível em motores do ciclo Di- esel, as seguintes vantagens são obtidas:
(i) substituição total do diesel de petróleo consumido pelo motor, ou seja, um combustível de fonte não renovável (óleo diesel) é substituído por outro de fonte renovável (misturas contendo biodiesel, etanol anidro e óleo vegetal); no caso de substituição parcial, pode ser feita uma composi- ção de misturas quaternárias formadas pelas misturas propostas e por óleo diesel, nas mais diversas proporções;
(ii) diminuição do atraso de ignição do combustível final (mistu- ras de biodiesel, etanol anidro e óleo vegetal) devido ao menor ponto de fulgor do etanol e sua maior volatilidade, e ao maior índice de cetano do biodiesel, claramente implicando em aumento do rendimento térmico;
(iii) maior aceleração, principalmente nas baixas rotações, pela vaporização mais intensa do combustível utilizado;
(iv) diminuição ou eliminação da formação de borras e vernizes produzidos na bomba injetora, nos bicos injetores e no interior dos cilindros;
(v) diminuição da viscosidade final do combustível utilizado (misturas) em relação ao uso dos mais diversos óleos vegetais puros, facilitando a pulverização do combustível injetado na câmara de combustão, o que resulta em uma combustão mais completa, consequente aumento de rendimento térmico e redução da emissão de poluentes, entre eles, os óxidos de nitrogénio e os materiais particulados; paralelamente, podem-se obter menores valores de emissão de monóxido de carbono e de hidrocarbonetos livres, em função da combustão ser mais eficiente; e
(vi) abaixamento da temperatura de início de cristalização do combustível (ponto de névoa) por possuírem etanol na sua composição.
A invenção baseia-se, portanto, na utilização de misturas de combustíveis renováveis (biodiesel, etanol anidro e óleo vegetal) em motores do ciclo Diesel, buscando, desta forma, as vantagens técnicas, ecológicas e operacionais acima descritas. Alternativamente, pode ser empregada uma composição de misturas quaternárias formadas pelas misturas apresentadas e por óleo diesel, nas mais diversas proporções.
EXEMPLOS
Trabalho 1: avaliação de desempenho e durabilidade de motores alimentados com composição da presente invenção em relação à óleo diesel de petróleo (B4).
Um dos experimentos para validar a tecnologia proposta consistiu dos seguintes tratamentos: (i) Diesel de petróleo (B4); e (ii) mistura terná- ria: 50% biodiesel + 40% etanol anidro + 10% óleo vegetal (composição volumétrica). Os combustíveis foram testados em dois motores de ciclo Diesel de 6 HP (um para teste com óleo diesel; outro para a mistura), bem como se utilizou, para fim de elementos de consumo de energia (carga), um gerador de energia elétrica e 18 lâmpadas de 150 W.
A Figura 2 revela o perfil de rendimento térmico em função da carga aplicada, de modo que se observa que o rendimento da mistura terná- ria da presente invenção se comporta de forma superior ao do tratamento de controle (Diesel de petróleo (B4). Ademais, verificou-se que a emissão de particulados foi em torno de 70% menor com o uso da mistura ternária em função da substituição do óleo diesel, com grandes moléculas e elevados pontos de ebulição, por: (i) etanol, formado por uma molécula simples e pon- to de ebulição reduzido; (ii) biodiesel, que não apresenta enxofre, o qual compartilha o oxigénio com o carbono resultante da queima parcial.
O experimento também envolveu teste de durabilidade de 150 horas tendo por base as análises, após este período, dos seguintes elementos: bico injetor do motor alimentado com óleo diesel (Figura 6); bico injetor do motor alimentado com mistura ternária (Figura 7); topo do pistão do motor alimentado com óleo diesel (Figura 8); topo do pistão do motor alimentado com mistura ternária (Figura 9). Como se pode observar nestas figuras, todos os componentes do motor alimentado com a mistura ternária da presente invenção ficaram mais bem conservados após o período de teste em rela- ção aos correspondentes do motor alimentado com Diesel de petróleo (B4).
Sendo assim, ademais, a mistura ternária determina muito menor formação de resíduos carbonosos e, como consequência: (i) menor contaminação do lubrificante, o que permite pleno desempenho das suas funções (lubrificação); (ii) menor desgaste das peças móveis internas ao motor.
Conclui-se, portanto, que o uso da mistura renovável (50 - 40 -
10) permitiu observar, em comparação à utilização do diesel de petróleo: funcionamento normal do motor (sem irregularidades); rendimento térmico 10% maior; emissão de material particulado cerca de 70% menor; menor carbonização interna e menor desgaste.
Trabalho 2: quantificação do materíal particulado emitido por um motor de ciclo Diesel alimentado com misturas ternárias contendo biodiesel, etanol e óleo vegetal. Introdução
Os compostos de emissão, tanto dos motores de ciclo Diesel como aqueles de ciclo Otto, podem ser classificados em dois tipos: os que não causam danos à saúde (O2, CO2, H2O e N2) e os que apresentam peri- gos à saúde (CO, HC, NOx, SOx e MP).8
Dentre esses últimos, o material particulado (MP) é o poluente atmosférico mais comumente associado a efeitos adversos à saúde humana.1
Nas últimas décadas, um grande esforço tem sido feito para re- duzir a utilização de combustíveis derivados de petróleo para geração de energia e transporte em todo o mundo. Entre as recentes alternativas propostas, biodiesel e etanol, além de misturas contendo biodiesel/ diesel e álcool/diesel, têm chamado muita atenção para o uso em motores de ciclo Diesel, apresentando-se como uma das soluções, em diversos países, para redução de suas importações de petróleo e diminuição das emissões de poluentes.
Nesse contexto, o objetivo deste trabalho fixou-se em quantificar a emissão de material particulado de misturas ternárias6 compostas de álcool etílico, biodiesel e óleo vegetal em um motor de ciclo Diesel, tendo como condição padrão um motor idêntico funcionando com diesel convencional. Materiais e Métodos
Para a realização dos testes, foram utilizados dois motores estacionários, de ciclo Diesel a 4 tempos, da marca Toyama, modelo T70f, refrigerados a ar, com injeção direta e 6 HP de potência nominal, sendo que um deles foi abastecido somente com óleo diesel convencional, e o outro com as misturas ternárias. Assim sendo, cada motor pôde ser avaliado individualmente de acordo com o combustível empregado. Para imprimir carga ao motor, foi empregado um gerador elétrico da marca Bambozzi, de 10 kVA, com rotação nominal de 1.800 rpm.
Para a comparação da emissão produzida, foi realizada a coleta do material particulado proveniente dos gases de escape dos motores através do uso de um filtro circular, com diâmetro de 5 cm, confeccionado a par- tir de fibra de vidro.
As três misturas volumétricas de biocombustíveis, usadas nos testes, eram compostas de:
a) 60% de biodiesel, 20% de etanol anidro e 20% de óleo vege- tal (mistura 1);
b) 60% de biodiesel, 30% de etanol anidro e 10% de óleo vegetal (mistura 2);
c) 50% de biodiesel, 40% de etanol anidro e 0% de óleo vegetal
(mistura 3).
Além dessas, houve emprego do combustível padrão (óleo diesel derivado do petróleo) para estabelecimento de um referencial.
A sistemática de trabalho utilizada foi a seguinte: primeiramente, os filtros foram desidratados em estufa a 105°C e pesados; posteriormente, foram acoplados na extremidade do escapamento, onde permaneceram por 2, 5, 8 e 10 minutos. Em seguida, os filtros foram novamente desidratados e pesados, o que permitiu registrar a massa do material retido.
Para a determinação do tempo ideal de coleta, foram realizados diversos testes nos quais se notou diferença expressiva de quantidade de material particulado entre os filtros expostos aos gases de escape por 2 e 5 minutos (com maior concentração de partículas no filtro de maior tempo de exposição).
Com 8 e 10 minutos de coleta, não se verificou diferença entre o material retido nos mesmos e no filtro com 5 minutos de exposição. Assim, para a coleta de material particulado, adotou-se o tempo padrão de 5 minu- tos.
Conforme pode ser verificado na Figura 4, os resultados obtidos com a utilização das misturas ternárias de biocombustíveis indicaram uma redução expressiva no nível de material particulado emitido pelo motor na rotação de 3.600 rpm (rotação máxima), em relação ao diesel convencional. Esse comportamento das emissões de particulados dos motores ocorreu em decorrência da substituição de um combustível de cadeia carbónica longa (óleo diesel), com 13 átomos de carbono, em média, e alto ponto de ebulição (de 190°C a 330°C), por uma mistura de combustíveis contendo etanol, de cadeia carbónica mais simples e menor temperatura de ebulição.
Enquanto a carga demandada pelo gerador não ultrapassava 1800 Watts, a emissão de MP entre os combustíveis era semelhante, porém, na medida em que se elevava a carga até 2.700 Watts (o que exigia maior volume de combustível injetado na câmara de combustão), a quantidade de MP emitido pelo uso de óleo diesel foi bastante superior àquela proveniente da queima de todas as misturas. Em termos numéricos, observaram-se 28 mg emitidos pelo diesel, enquanto as misturas ternárias produziram de 10 a 13 mg, para a carga máxima estabelecida. Observou-se, também, que o aumento da proporção de etanol na mistura ternária favoreceu a queda na emissão de MP, fato que, segundo Dietrich & Bindel (1983)2, pode ser explicado pela capacidade do etanol em proporcionar uma combustão mais eficiente, o que implica em redução no teor de carbono não queimado.
A diminuição na emissão de particulados também foi verificada nos experimentos de Holmer et al. (1980)5 que realizaram substituições de até 32% do óleo diesel por etanol através do uso do artifício da microemul- são. Resultados similares foram obtidos por Goering et al. (1992)4 que notaram supressão na emissão de fumaça quando utilizaram injeção de etanol no coletor de admissão ou no injetor do cilindro. Nessa mesma linha de pesquisa, Feitosa (2003)3 conseguiu expressiva diminuição de emissão de particulados com substituição de até 50% de diesel por etanol.
Além do etanol, a presença de biodiesel na mistura também influenciou positivamente a redução da emissão de MP, visto que, na literatu- ra, diversos autores demonstraram tal fato. Misturas de biodiesel de girassol/diesel (B25, B50, B75 e B100) foram utilizadas por Munoz et al. (2004)7, em motor Diesel automotivo, para determinação dos níveis de emissão de poluentes. A redução do grau de enegrecimento e da emissão específica de material particulado foi bastante representativa e favorável ao uso do biodie- sei, o que, em parte, é causado pela ausência de enxofre no biodiesel. O enxofre compartilha o oxigénio disponível na fase tardia da combustão com o carbono resultante da queima parcial, em algumas condições de funcio- namento do motor, aumentando a produção de material particulado . Como conclusão final, pode-se dizer que os resultados do presente trabalho levaram à confirmação de que a utilização das misturas ternárias de biocombus- tíveis, nas condições e métodos de realização do experimento, foi eficiente na redução de emissão de material particulado presente nos gases de e- xaustão do motor de ciclo Diesel estudado.
Bibliografia
1 Abbey, D. E.; Nishino, N.; McDonnell, W. F.; Burchette, R. J.; Knutsen, S. F.; Beeson, W. L; Yang, J. X. Longterm inhalable particles and other air pol- lutants related to mortality in nonsmokers. American Journal of Respiratory and Criticai Care Medicine 159, n. 373-382, 1999.
2 Dietrich, W.; Bindel, H. W. H. O desenvolvimento da "injeção piloto" para uso de álcoois em motores ciclo Diesel. In: SIMPÓSIO DE ENGENHARIA AUTOMOTIVA 1.; ENCONTRO DOS CENTROS DE APOIO TECNOLÓGI- CO, 1 1 , 1983, Brasília, DF. Anais. 1983. p. 515-533.
3 Feitosa, M. V. Desenvolvimento do motor de ignição por compressão alimentado por injeção direta de óleo diesel e por etanol pós vaporizado no coletor de admissão. 2003. 217p.
Tese (Doutorado) - Escola de Engenharia de São Carlos - Universidade de São Paulo, São Carlos.
4 Goering, C. E.; Crowell, T. J.; Griffith, D. R.; Jarrett, M. W.; Savage, L. D. Compression-ignition, flexible-fuel engine. Transactions of the ASAE, v. 35, n. 2, p. 423-428, 1992.
5 Holmer, E.; Berg, P. S; Bertilsson, B. I. The utilization of alternative fuels in a Diesel engine using different methods. Society of Automotive Engineers,
SAE paper 800544. 1980.
6 Kwanchareon, P.; Luengnaruemitchai, A.; Jai-in, S. Solubility of a diesel- biodiesel-ethanol blend, its fuel properties, and its emission characteristics from diesel engine. Fuel, v. 10, p. 1053-1061 , 2006.
7 Munhoz, M.; Moreno, F.; Morea, J. Emissions of na automobile diesel engine fueled ith sunflower methyl éster. Transactions of the ASAE. v. 47, n. 1 , p. 5-1 1 , 2004. 8 Neeft, J. P. A.; Makkee, M.; Moulijn, J. A. Diesel particulate emission con- trol. Fuel Processing Technology, v. 47, p.1-69, 1996.
Trabalho 3: emissão de material particulado por misturas ternárias contendo biodiesel, óleo vegetal e etanol: uma comparação com diesel convencional.
Resumo
O objetivo deste estudo foi quantificar a emissão de material particulado de misturas ternárias compostas de álcool, biodiesel e óleo vegetal em um motor ciclo Diesel, tendo como testemunha um motor idêntico funcio- nando com diesel de petróleo. Para a comparação da emissão dos dois combustíveis, foi realizada a coleta de material particulado proveniente dos escapamentos dos motores através do uso de um papel filtro circular, confeccionado a partir de fibra de vidro. Os resultados obtidos com a utilização das misturas ternárias de biocombustíveis indicaram uma redução expressi- va no nível de material particulado emitido pelo motor em sua rotação máxima. Pode-se concluir com o trabalho que, a utilização das misturas ternárias, nas condições e métodos de realização do experimento, foi eficiente na redução de emissão de material particulado presente nos gases de exaustão do motor ciclo Diesel.
Introdução
Os compostos de emissão, tanto dos motores a diesel quanto a gasolina ou combustíveis mistos, podem ser classificados em dois tipos: os que não causam danos à saúde, ou seja, 02, CO2, H2O e N2; e os que a- presentam perigos à saúde, sendo esses subdivididos em compostos cuja emissão está regulamentada, que são: CO, os hidrocarbonetos (HC), os óxidos de nitrogénio (NOx), os óxidos de enxofre (SOx) e material particulado (MP); e aqueles que ainda não estão sob regulamentação: aldeídos, amónia, benzeno, cianetos, tolueno e hidrocarbonetos aromáticos polinucleares (HPA) (NEEFT et al., 1996).
A exaustão diesel é bastante complexa, sendo composta por três fases: sólidos, líquidos e gases (DEGOBERT, 1995). A operação em condições oxidantes das máquinas diesel, que contribui para uma boa eco- nomia de combustível, resulta, comparativamente com motores à gasolina, em menor produção de CO2, num processo de combustão operando em temperaturas mais baixas, com formação e, consequentemente, emissão de menor quantidade de NOx, CO e hidrocarbonetos (HC). Entretanto, esse processo também resulta em elevados níveis de emissão de material parti- culado (MP) e de compostos responsáveis pelo odor característico da emissão diesel, sendo a emissão desses últimos altamente crítica durante condições de operação em baixo nível de temperatura. (BRAUN et. al,2003).
O material particulado produzido por uma máquina diesel consis- te, basicamente, de aglomerados de núcleos de carbono, e de hidrocarbonetos, SO3 ou ácido sulfúrico, e água, adsorvidos ou condensados sobre esses núcleos carbónicos (NEEFT et. al., 1996; LAHAYE & EHRBURGER-DOLLE, 1994).
Os núcleos carbónicos são partículas primárias, ou seja, peque- nas unidades esféricas compostas basicamente de carbono e algum material inorgânico com diâmetro aproximado na faixa de 10 a 80 nm, o que equivale a, aproximadamente, um milhão de átomos desse elemento. Sobre os núcleos carbónicos se adsorvem os hidrocarbonetos resultantes da combustão incompleta do óleo diesel e do óleo lubrificante, gerando agregados. Vários agregados assim formados, por sua vez, aglomeram-se e formam as partículas secundárias, com diâmetros aerodinâmicos entre 100 e 1000 nm. Entretanto, 90% do material particulado produzido por uma máquina diesel qualquer apresenta diâmetro médio menor que 300 nm. A aglomeração dos núcleos de carbono contendo HC adsorvidos começa na câmara de combustão e continua até a exaustão, onde grandes moléculas de hidrocarbonetos podem se condensar sobre esses na temperatura que prevalece na exaustão diesel (KERMINEN et al.,1997). O conglomerado final denomina-se "material particulado", ou simplesmente "particulado".
A composição básica média do material particulado é 70% em massa de carbono, 20% de oxigénio, 3% de enxofre, 1 ,5% de hidrogénio, menos que 1% de nitrogénio e, aproximadamente, 1 % de elemento traços. (NEEFT et al. 1996). O material particulado é o poluente atmosférico mais consistentemente associado a efeitos adversos à saúde humana. A toxicidade do material particulado depende de sua composição e diâmetro aerodinâmico. Diversos estudos têm relacionado a exposição continuada aos níveis ambien- tais de material particulado com a redução da expectativa de vida (LIPFERT 1984; DOCKERY & POPE, 1994; ABBEY 1999).
Os efeitos crónicos também têm sido demonstrados a partir da detecção de alterações estruturais dos pulmões de indivíduos que habitam regiões com concentrações de MP. A primeira demonstração clara de que os níveis de MP promovem alterações inflamatórias difusas do trato respiratório em humanos veio de estudos de Souza et al. (1998), onde foram detectados hiperplasia muco-secretora, remodelamento com fibrose das pequenas vias aéreas e lesão da região centro acinar de jovens falecidos por causas externas na região metropolitana de São Paulo. Neste mesmo estudo, as lesões observadas estavam em íntima relação anatómica com focos de deposição e retenção de material carbonáceo (antracose), sugerindo uma relação de causa e efeito.
Nas últimas décadas, um grande esforço tem sido feito para reduzir a utilização de combustíveis derivados de petróleo para geração de energia e transporte em todo o mundo. Dentre as recentes alternativas propostas, biodiesel, etanol, além de misturas contendo biodíesel/diesel e álcool/diesel, têm chamado muita atenção para o uso em motores de ciclo Diesel, apresentando-se como uma das soluções, em diversos países, para redução de suas importações de petróleo e diminuição de suas emissões de poluentes.
Etanol, óleo vegetal e biodiesel são todos derivados da biomas- sa e, ao contrário do petróleo, são combustíveis renováveis. Entre estes combustíveis, o álcool etílico hidratado combustível (AEHC) se apresenta como um interessante combustível alternativo ao óleo diesel para reduzir as emissões de poluentes. Isso porque o etanol contém oxigénio na sua molécula, é um combustível extremamente volátil, que queima como grupo e porque o AEHC contém água na sua composição (7% em massa). Essas carac- terísticas são geralmente favoráveis para uma boa combustão (PÉREZ et al. 2006).
Nesse sentido, muitos trabalhos de pesquisa estão investigando os efeitos da adição de etanol na formação de poluentes oriundos da queima de diesel. Tem sido amplamente mostrado que quando é adicionado o etanol ao diesel, o principal benefício é a redução de fuligem e material particulado, seguido pela diminuição de CO. Ajav et al. (1999) mostraram que ao incrementar a porcentagem de etanol na mistura com diesel, a temperatura de saída de gases e as emissões de CO e MP foram reduzidas. Suppes (2000) analisou os resultados experimentais de diferentes autores concluindo que se pode falar efetivamente de uma redução do material particulado quando se adiciona etanol ao diesel. Mas não se pode concluir o mesmo para o NOx, dado que uns pesquisadores reportam aumento de sua emissão e outros sua diminuição.
A redução destes particulados também é destacada na ampla revisão bibliográfica feita por Hansen et al. (2005).
O uso de etanol como combustível é defendido por muitos especialmente por causa da redução nas emissões de gases responsáveis pelo efeito estufa ao substituir os combustíveis fósseis. Macedo (2004) analisou o balanço energético de energia fóssil consumida na produção e processamento da cana-de-açúcar comparativamente à energia proporcionada pelo uso do etanol e à energia gerada pelo bagaço da cana. A relação entre a energia renovável produzida e a energia fóssil consumida na produção de etanol é de 8,3 a 10,2, isto é, a cada unidade de energia fóssil gasta no ciclo de produção do etanol, são obtidas de volta entre 8,3 a 10,2 unidades de energia renovável.
Segundo Mma & Lima/coppe/ufrj (2002), o álcool praticamente não possui enxofre em sua composição, logo o seu uso não contribui para a emissão de SOx, e ainda a sua menor complexidade molecular possibilita uma combustão com baixíssima formação de partículas de carbono, o que resulta em uma emissão desprezível de MP.
Outro fator de estímulo ao mercado de álcool é a possibilidade de adição de etanol ao diesel: testes demostraram que a utilização de mistura de 3% de etanol para 97% de diesel pode ser adotada em qualquer motor sem ocasionar problemas, reduzindo as emissões de material particulado e de outros poluentes (GELLER et al, 2004; HE et al, 2003).
No Brasil, estudos com a mistura álcool/diesel vêm sendo realizados desde 1984, quando foi verificado que misturas de óleo diesel com álcool anidro eram viáveis, pois não causavam perda de eficiência do motor ou aumento do consumo de combustível, e geravam redução na emissão de particulados. Desta maneira, trabalhos de pesquisa e testes de campo têm sido realizados para implantação de um programa de adição de etanol à matriz energética do diesel. (ECONOMY & ENERGY, 2001).
Em tese, os óleos vegetais puros podem ser utilizados como combustíveis alternativos. Esta idéia ocorreu a Rudolph Diesel que usou ó- leo de amendoim em seus motores na exposição de Paris, em 1900. Contu- do, os óleos vegetais possuem alta viscosidade e, para que sejam utilizados em motores de ciclo Diesel sem necessidade de adaptações, é preciso reduzir os valores de viscosidade a valores próximos ao do diesel convencional (MA & HANNA, 1999; RABELO, 2003).
Um pouco mais recente que o etanol, o biodiesel também encon- tra seu espaço e apresenta crescimento acelerado no mercado nacional de biocombustíveis líquidos. Porém, ao contrário do etanol, que encontrou na cana-de-açúcar sua matéria-prima ideal, o biodiesel ainda está em estágio de intensa pesquisa e desenvolvimento (PNA, 2005). Entretanto, diversos são os trabalhos que apontam uma vantagem ambiental a favor do biodiesel em relação ao diesel convencional, fato que o coloca na linha de frente dos sucedâneos ao petrodiesel.
Peterson & Reece (1996) testaram ésteres metílico e etílico de óleo de colza em um motor de ciclo Diesel, marca Cummins, numa bancada dinamométrica. As emissões de hidrocarbonetos (HC), monóxido de carbono (CO), óxidos de nitrogénio (NOx) e material particulado (MP) proporcionadas pelo óleo vegetal tiveram, respectivamente, variações de - 52,5%, - 7,6%, 0,9%, - 10,0%, em relação às obtidas com o óleo diesel. Características da emissão de poluentes em testes dinamomé- tricos com motor de ignição por compressão, utilizando diesel, biodiesel e misturas de biodiesel/diesel (B20, B35, B65 e B100), foram determinadas por Schumacher et al. (2001). Os autores observaram que a emissão de NOx aumentou, enquanto as de HC, CO e MP diminuíram com o aumento da concentração de biodiesel.
Na mesma linha de pesquisa, Munoz et al. (2004) testaram misturas de metil éster de girassol e diesel (B25, B50, B75 e B100) em um motor Diesel automotivo para determinação dos níveis de emissão de poluen- tes. Nos testes realizados, a emissão de hidrocarbonetos com as misturas de biodiesel foi menor em relação ao diesel somente em algumas condições de operação, especialmente em cargas baixas. A concentração de NOx com biodiesel puro, entretanto, foi sempre maior do que com o diesel. Contudo, a redução do grau de enegrecimento e da emissão específica de material par- ticulado medido são representativas e favoráveis ao uso do biodiesel, o que, em parte, é explicado pela ausência de enxofre no biodiesel. O enxofre compartilha o oxigénio disponível na fase tardia da combustão com o carbono resultante da queima parcial, em algumas condições de funcionamento do motor, aumentando a produção de material particulado.
Segundo Fernando & Hanna (2004), o biodiesel tem sido usado não somente como uma alternativa para substituir o diesel de petróleo, mas também como um aditivo emulsificante para compor misturas ternárias de diesel/biodiesel/álcool.
Nesse contexto apresentado, o objetivo deste trabalho situou-se em quantificar a emissão de material particulado de misturas ternárias compostas de álcool, biodiesel e óleo vegetal em um motor de ciclo Diesel, tendo como testemunha um motor idêntico funcionando com diesel convencional, numa tentativa de demonstrar o potencial de utilização dessas misturas como possível combustível sucedâneo ao petrodiesel.
Materiais e métodos
Os testes envolvendo misturas de combustíveis alternativos foram realizados no setor de mecanização agrícola da unidade experimental da Embrapa Soja, em Londrina - PR, onde estão alocados os motores estacionários e o gerador de eletricidade empregados na experimentação. Foram utilizados para os testes dois motores estacionários, de ciclo Diesel a 4 tempos, da marca Toyama, modelo 70f, refrigerados a ar, com injeção direta e 6 hp de potência nominal, onde um deles foi abastecido somente com óleo diesel e o outro com as misturas ternárias contendo óleo vegetal/biodiesel/ etanol; dessa forma, cada motor pôde ser avaliado individualmente de acordo com o combustível empregado. As principais especificações técnicas e medidas dos motores são descritas na Tabela 1. Foi empregado também, afim de imprimir carga aos motores, um gerador elétrico da marca Bambozzi, de 10 KVa, com rotação nominal de 1.800 rpm, portanto, passível de ser utilizado com o motor supracitado que possui rotação nominal de 3.000 a 3.600 rpm. A transmissão de energia mecânica do motor Diesel para o gerador foi realizada por correias e um conjunto de polias acopladas em ambos eixos dos equipamentos.
Tabela 1. Especificações técnicas e medidas do motor Toyama 70f.
Item Especificação Técnica
Tipo Mono cilíndrico, 4 tempos
Refrigeração Refrigerado a ar
Cilindrada (L) 0,296
Rotação nominal (RPM) 3.000 - 3.600
Potência nominal (hp) 5,4 - 6,0
Velocidade média do pistão (m/s) 6,2 - 7,44
Pressão efetiva média (kgf/cm2) 5,52 - 5,07
Relação de consumo de combustível (g/HP.h) < 206 ; < 215
Relação de consumo de óleo lubrificante (g/HP.h) < 3
Capacidade do tanque de combustível (L) 3,5
Sentido do eixo de rotação Horário, visto do volante
Tipo e lubrificação Bomba de óleo
Tipo de partida Manual retrátil
Peso líquido (kg) 33 As misturas utilizadas no experimento eram compostas por: - Mistura 1 : 60% de biodiesel, proveniente de óleo de soja, 30% de etanol anidro e 10% de óleo vegetal
refinado de soja;
- Mistura 2: 50% de biodiesel, proveniente de óleo de soja, 40% de etanol anidro e 10% de óleo vegetal
refinado de soja.
Além, é claro, do combustível óleo Diesel convencional derivado de petróleo, empregado no motor testemunha.
Para a comparação da emissão dos combustíveis, foi realizada a coleta de material particulado proveniente dos escapamentos dos motores através do uso de um papel de filtro circular, com diâmetro de 5 cm, confeccionado a partir de fibra de vidro, da empresa Energética - Qualidade do ar.
Esse material foi desidratado previamente em estufa a 105oC para eliminação da umidade existente. Após esta secagem, os filtros foram pesados e tarados em balança digital de precisão para, finalmente, serem instalados na extremidade final da tubulação de escape, onde foram capazes de reter o material particulado expelido pelo motor.
A sistemática de trabalho empregada foi a seguinte: os filtros permaneceram acoplados na extremidade do escapamento durante 5 minutos, tempo necessário para a retenção de quantidade suficiente de partículas, já que os filtros foram expostos a um tempo maior e não houve diferença nos pesos dos mesmos.
Após a coleta do material, os papéis-filtro foram novamente se- cados e, então, levados para a balança de precisão, para ser aferida a quantidade, em massa, dos particulados produzidos pelos motores.
Resultados e discussão
Os resultados obtidos com a utilização das misturas ternárias de biocombustíveis indicaram uma redução expressiva no nível de material par- ticulado emitido pelo motor em sua rotação nominal máxima (3.600 rpm), comportamento este proveniente da substituição de um combustível de cadeia carbónica longa (óleo diesel), em média 13 carbonos, e alto ponto de ebulição (de 190° a 330°C), por uma mistura de combustíveis contendo etanol, de cadeia mais simples e menor temperatura de ebulição.
Os valores obtidos no experimento estão apresentados na Figura 5, na forma de massa específica do material retido, num intervalo de 5 minutos de coleta, utilizando o filtro de fibra de vidro.
Nota-se pelo gráfico acima que, à medida que se eleva a quantidade de etanol na mistura ternária, ocorre, concomitantemente, uma queda na emissão de material particulado, fato que, segundo Dietrich & Bindel (1983), se explica pela presença de etanol que conduz a uma combustão mais fácil, implicando em redução no teor de carbono não queimado, o que corrobora, assim, os resultados encontrados no experimento.
Redução na emissão de particulados também foi verificada nos experimentos de Holmer et al. (1980), que realizaram substituições de até 32% do óleo diesel por etanol, através do uso do artifício da microemulsão. Resultados similares foram obtidos por Goering et al. (1992) que notaram supressão na emissão de fumaça quando utilizaram injeção de etanol no coletor de admissão ou no injetor do cilindro. Nessa mesma linha de pesquisa, Feitosa (2003) conseguiu expressiva diminuição de emissão de particulados com substituição de até 50% de diesel por etanol.
Outro composto presente na mistura, que também foi responsável pela queda na emissão de particulados, é o biodiesel. Apesar de a quantidade de material particulado retido pelo filtro ser maior com o aumento da concentração de biodiesel nas misturas, devido à diminuição da quantidade etanol (Figura 5), o combustível contendo biodiesel presente nas duas mistu- ras mostrou ser menos poluente do que o diesel convencional, atestando, desta forma, a importante capacidade desse biocombustível em reduzir as emissões de particulados do motor.
Na literatura, diversos autores demonstram a eficiência do biodiesel na redução dos particulados totais do motor. Misturas de biodiesel de girassol/diesel (B25, B50, B75 e B100) foram utilizadas por Munoz et al. (2004), em motor Diesel automotivo, para determinação dos níveis de emissão de poluentes. A redução do grau de enegrecimento e da emissão espe- cífica de material particulado medido foi bastante representativa e favorável ao uso do biodiesel, o que, em parte, é explicado pela ausência de enxofre no biodiesel.
O enxofre compartilha o oxigénio disponível na fase tardia da combustão com o carbono resultante da queima parcial, em algumas condições de funcionamento do motor, aumentando a produção de material particulado (MUNOZ et al. 2004; GRABOSKI & MCCORNICK, 1997; SHARP et al., 2000).
Misturas ternárias estáveis contendo diesel/biodiesel/álcool etíli- co para alimentação de motores de ciclo Diesel foram preparadas com êxito por Kwanchareon et. al. (2006), Caetano (2003) e dos Santos (2005). Em todos os estudos, os autores obtiveram resultados positivos em relação à emissão de poluentes para a atmosfera, fato que, em tempos de exaustiva preocupação com a preservação do meio ambiente, mostra-se como uma excelente alternativa à utilização de um combustível puramente fóssil.
Conclusões
- A utilização das misturas ternárias de biocombustíveis, nas condições e métodos de realização do experimento, foi eficiente na redução de emissão de material particulado presente nos gases de exaustão do mo- tor de ciclo Diesel estudado.
- O aumento da concentração de etanol na mistura, nas condições de realização do trabalho, foi fundamental para a queda acentuada na emissão de material particulado.
Referências
ABBEY, D. E.; NISHINO, N.; MCDONNELL, W. F.; BURCHETTE, R. J.; KNUTSEN, S. F.; BEESON, W. L; YANG, J. X. Long-term inhalable particles and other air pollutants related to mortality in nonsmokers. Am. J. Resp. Crit. Care Méd. 159, n. 373-382, 1999.
AJAV, E. A.; SINGH, B.; BHATTACHARYA, T. K. Experimental study of so- me performance parameters of a constant speed stationary diesel engine using ethanol-diesel blends as fuel. Biomass and Bioenergy, n. 17, p. 357- 365, 1999. BRAUN, S.; APPEL, L. G.; SCHMAL, M. A poluição gerada por máquinas de combustão interna movidas a diesel - a questão dos particulados. Estratégias atuais para a redução e controle das emissões e tendências futuras. Quim. Nova, Vol. 27, n. 3, p. 472-482, 2003.
CAETANO, T. Estudo da miscibilidade de etanol com componentes do diesel e biodiesel. 2003. 118f. Dissertação (Mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Química, Campinas.
DEGOBERT, P. Automobiles and Pollution; ed. SAE Society of Automotive Engineers, Warrendale: United States of America, 1995.
DIETRICH, W.; BINDEL, H. W. H. O desenvolvimento da "injeção piloto" para uso de álcoois em motores ciclo Diesel. I Simpósio de Engenharia Automotiva - XI Encontro dos Centros de Apoio Tecnológico, Anais, Brasília, p. 515-533. 1983.
DOCKERY D. W.; POPE CA. III. Acute respiratory effects of particulate air pollution. Annu Rev Public Health, n. 15, p.107-132, 1994.
ECONOMY & ENERGY, Progressos na Matriz Energética e de Emissões de Gases Causadores do Efeito Estufa, Brasília, n. 25, Mar/Abr. 2001. Disponível em <http;//www.ecen.com> Acesso em 15 maio de 2008.
FERNANDO S.; HANNA, M. Development of a noval biofuel blend using e- thanol-biodiesel-diesel microemulsions. Energy Fuel, v.18, p. 1685-703, 2004.
FEITOSA, M. V. Desenvolvimento do motor de ignição por compressão alimentado por injeção direta de óleo diesel e por etanol pós vaporizado no coletor de admissão. 2003. 217f. Tese (Doutorado) - Escola de Engenharia de São Carlos - Universidade de São Paulo, São Carlos.
GELLER, H. SCHAEFFER, R., SKLO, A., TOLMASQUIM, M. Policies for advancing energy efficiency and renewable energy use in Brazil, Energy Po- licy. n. 32, p.1437-1450, 2004.
GOERING, C. E.; CROWELL, T.J.; GRIFFITH, D.R.; JARRETT, M. W.; SA- VAGE, L. D. Compressionignition, flexible-fuel engine. Trans. ASAE, n.35(2). p. 423-428. 1992.
GRABOSKI, M. S.; MCCORNICK, R. L. Combusion of fat and vegetable oil derived fuels in diesel engines. Prog. Energy Combust. Sci. n. 24, p.125-164, 1997.
HANSEN, A. C; ZHANG, Q.; LYNE, P. W. L. Ethanol-diesel fuel blends a review. Bioresoursource Technology; n.. 96, p. 227-285; 2005.
HE, B. Q.; SHUAI, S. J.; WANG, J. X.; HE, H. The effect of ethanol blended diesel fuels on emissions from a diesel engine, Atmospheric Environment 37, p. 4965-4971 , 1994.
HOLMER, E.; BERG, P. S; BERTILSSON, B. I. The utilization of alternative fuels in a Diesel engine using different methods. Society of Automotive Engi- neers, SAE paper 800544. 1980.
KWANCHAREON, P.; LUENGNARUEMITCHAI, A.; JAI-IN, S. Solubility of a diesel-biodiesel-ethanol blend, its fuel properties, and its emission characte- ristics from diesel engine. Fuel, v.10, p. 1053-1061 , 2006.
KERMINEN, V.; MÀKELÃ, T. E.; OJANEN, C. H.; HILLAMO, R. E.; VILHU- NEN, J. K.; RANTANEN, L; HAVERS, N.; VON BOHLEN, A.; KLOCKOW, D. Environ. Sci. Technol., 31 , 1883, 1997.
LAHAYE, J.; EHRBURGER-DOLLE, F. Carbon 1994, 32, 1319.
LIPFERT F. W. Air pollution and mortality: specification searches using SM- SA-based data. J. Environ. Econ. Manage. 11 , p.208-243, 1984.
MA, F.; HANNA, M.A. Biodiesel production: a review. Bioresource Technology, v.70, p. 1-15, 1999.
MACEDO, I. C. Balanço das emissões de gases do efeito estufa na produção e no uso do etanol no Brasil. Núcleo Interdisciplinar de Planejamento Energético da Universidade Estadual de Campinas (NIPE). Campinas, jan. 2004.
MMA, LIMA/COPPE/UFRJ, FEEMA. Avaliação do Programa de Inspeção e Manutenção de veículos em uso do Rio de Janeiro. 2002.
MUNHOZ, M.; MORENO, F.; MOREA, J. Emissions of an automobile diesel engine fueled with sunflower methyl éster. Transaction of the ASAE. v. 47, n. 1 , p. 5-11 , 2004.
NEEFT, J. P. A.; MAKKEE, M.; MOULIJN, J. A. Diesel particulate emission control. Fuel Process. Technology, v. 47, p.1- 69. 1996. PNA - Plano Nacional de Agroenergia. Caderno, n. 1 , 118 p, 2005.
PEREZ, E. P.; CARVALHO JÚNIOR, J. A.; CARROCCI, L. R.. Substituição do óleo diesel por álcool etílico hidratado na queima direta, uma comparação. In: AGRENER GD 2006 - 6o Congresso Internacional sobre Geração Distribuída e Energia no Meio Rural, 2006, Campinas. AGRENER GD 2006. Campinas: NIPE - Núcleo Interdisciplinar de Planejamento Energético, 2006. v. 01 , p. 01-09.
PETERSON, C. & REECE, D. Emission characteristics of ethyl and methyl ester of rapeseed oil compared with low sulfur diesel control fuel in a chassis dynamometer test of a pickup truck. Transaction of the ASAE. v. 39, n. 3, p. 805-816, 1996.
RABELO, I. D. Estudo de desempenho de combustíveis convencionais associados a biodiesel obtido pela transesterificação de óleo usado em fritura. 2003. 96 f. Dissertação (Mestrado) - Centro Federal de Educação Tecnológi- ca do Paraná, Curitiba.
SANTOS, M.A. dos. Inserção do biodiesel na matriz energética brasileira: aspectos técnicos e ambientais relacionados ao seu uso em motores de combustão. 2007. 123f. Dissertação (Mestrado - Programa interunidades de Pós-Graduação em energia) - Universidade de São Paulo, São Paulo.
SCHUMACHER, L. G.; MARSHALL, W.; KRAHL, J.; WETHEREL, W. B.; GRABOWSKI, M. S. Biodiesel emissions data from series 60 DDC Engines. Transaction of the ASAE. v. 44, n. 6, p. 1465-1468, 2001.
SHARP, C. A.; HOWELL, S. A.;JOBE, J. The effect of biodiesel fuels on transient emissions from modern diesel engines. Part 1 , Regulated emissions and performance, SAE technology paper ser. 2000-01-1967, 2000.
SOUZA M. B.; SALDIVA P. H.; POPE C. A. 3rd, Capelozzi V. L. Respiratory changes due to long-term exposure to urban leveis of air pollution: a histopa- thologic study in humans. Chest. 113(5): 1312-8, 1998.
SUPPES, G. J. Past Mistakes and Future Opportunities of Ethanol in Diesel. Bioenergy, Buffalo; October, 2000.
XING-CAI, L; JIAN-GUANG, Y.; WU-GAO, Z.; ZHEN, H. Effect of cetane number improver on heat release rate and emissions of high speed diesel engine fueled with etanol-diesel blend fuel. Fuel; n. 83, p. 2013-2020, 2004.
Trabalho 4: Estudo da miscibilidade de misturas ternárias de bi- odiesel etílico de
soja, etanol hidratado e óleo vegetal.
1. Obietivo
Dada a grande demanda de biodiesel no mercado, tem havido uma elevação do preço de muitas matérias-primas, e por isso há a busca de alternativas ainda mais económicas para a sua produção e uso eficiente em motores. Uma dessas alternativas é o uso de misturas ternárias compostas de óleo vegetal, biodiesel etílico e etanol hidratado. Essas misturas teriam propriedades que favoreceriam a combustão, com índice de cetano, poder calorífico e viscosidade próximos aos do diesel do petróleo ou mesmo ao biodiesel puro [1]. Neste contexto, o objetivo deste trabalho foi comparar a miscibilidade de misturas ternárias desses três componentes para uso em motores do ciclo diesel.
2. Materiais e Métodos
O biodiesel foi produzido na UNAERP, a partir de óleo refinado de soja, álcool etílico anidro e hidróxido de sódio, como catalisador homogéneo. O biodiesel resultante foi lavado com água e evaporado, para elimina- ção de glicerina, sabões de ácidos graxos e umidade residual. As misturas ternárias foram preparadas em proporções de 0 a 100% em massa de cada componente, em tubos de ensaio de 10 mL. Após agitação mecânica por alguns minutos, os tubos foram centrifugados e a miscibilidade das fases verificada por inspeção visual. Dois óleos vegetais foram testados: soja e mamona. Os ensaios foram conduzidos em 3 temperaturas distintas: 10°C, 25°C e 50°C.
3. Resultados
Os mapas de miscibilidade obtidos neste trabalho são mostrados na Figura 1. Tais mapas de miscibilidade para as misturas ternárias em tem- peraturas distintas. Pontos em amarelo significam misturas miscíveis e em vermelho as imiscíveis. 4. Conclusão
O grupo hidroxila situado no carbono 12 presente na ricinoleína (principal ácido graxo da mamona) conferiu ao óleo de mamona a maior tendência de solubilidade nas misturas estudadas, em comparação ao óleo de soja. O aumento de temperatura também resultou em maior número de misturas miscíveis.
5. Referências Bibliográficas
[1] P. Kwanchareon et al., Solubility of a diesel-biodiesel-ethanol blend, its fuel properties, and its emission characteristics from diesel engine. Fuel 86 (2007) 1053-106.

Claims

REIVINDICAÇÕES
1. Combustível para alimentação de motor de ciclo Diesel caracterizado por apresentar a seguinte composição:
i. álcool não superior na faixa de proporção de 10% a 50%, em massa;
ii. óleo vegetal na faixa de proporção de 10% a 60%, em massa; e iii. éster etílico ou metílico (biodiesel) na faixa de proporção de 20% a 80%, em massa.
2. Combustível para alimentação de motor de ciclo Diesel, de acordo com a reivindicação 1 , caracterizada por apresentar álcool anidro na forma de etanol, preferencialmente do tipo anidro.
3. Combustível para alimentação de motor de ciclo Diesel, de acordo com a reivindicação 1 , caracterizada por apresentar álcool anidro na forma de metanol, preferencialmente do tipo anidro.
4. Combustível para alimentação de motor de ciclo Diesel caracterizado por apresentar a seguinte composição:
i. álcool não superior, preferencialmente anidro, na faixa de proporção de 10% a 50%, em massa;
ii. óleo vegetal na faixa de proporção de 10% a 60%, em massa; e
iii. petrodiesel, biodiesel ou qualquer mistura de ambos na faixa de proporção de 20% a 80%, em massa.
5. Combustível para alimentação de motor de ciclo Diesel caracterizado por apresentar a composição combustível de acordo com a reivindi- cação 1 misturada a petrodiesel em qualquer proporção.
PCT/BR2011/000297 2010-08-20 2011-08-22 Composições combustíveis ternárias contendo biodiesel, óleo vegetal e álcoois inferiores para alimentação de motores de ciclo diesel WO2012021959A1 (pt)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/BR2011/000297 WO2012021959A1 (pt) 2010-08-20 2011-08-22 Composições combustíveis ternárias contendo biodiesel, óleo vegetal e álcoois inferiores para alimentação de motores de ciclo diesel
US13/818,001 US20130269240A1 (en) 2010-08-20 2011-08-22 Ternary fuel compositions containing biodiesel, plant oil and lower alcohols for feeding diesel-cycle motors

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BR020100081976 2010-08-20
PCT/BR2011/000297 WO2012021959A1 (pt) 2010-08-20 2011-08-22 Composições combustíveis ternárias contendo biodiesel, óleo vegetal e álcoois inferiores para alimentação de motores de ciclo diesel

Publications (1)

Publication Number Publication Date
WO2012021959A1 true WO2012021959A1 (pt) 2012-02-23

Family

ID=45604639

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2011/000297 WO2012021959A1 (pt) 2010-08-20 2011-08-22 Composições combustíveis ternárias contendo biodiesel, óleo vegetal e álcoois inferiores para alimentação de motores de ciclo diesel

Country Status (1)

Country Link
WO (1) WO2012021959A1 (pt)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013156872A2 (en) * 2012-04-15 2013-10-24 Suresh Narine Phase behaviors and properties of certain triacylglycerols and fatty acid methyl esters
WO2014138992A1 (en) * 2013-03-15 2014-09-18 Trent University Certain dimers as crystallization depressants
WO2014138993A1 (en) * 2013-03-14 2014-09-18 Trent University Polymorphism and microstructure of certain triacylglycerols and fatty acid methyl esters
US10604712B2 (en) 2013-04-15 2020-03-31 Trent University Phase behaviors and properties of certain triacylglycerols and fatty acid methyl esters

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020178650A1 (en) * 2001-05-03 2002-12-05 Michio Ikura Low temperature stable diesel oil/alcohol mixtures
FR2895418A1 (fr) * 2005-12-23 2007-06-29 Inst Francais Du Petrole Composition de carburant diesel a forte teneur en ethanol
BRMU8702637U2 (pt) * 2007-04-02 2008-11-18 B100 Participacoes Ltda processo de produÇço e uso de misturas biocombustÍvel binÁrias ternÁrias e quartenÁrias para substituiÇço ao àleo diesel de petràleo e constituÍdas de Álcoois, àleo vegetal, biodiesel e aditivos e suas aplicaÇÕes em frotas cativas de transporte urbano com possibilidade de geraÇço de crÉditos de carbono

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020178650A1 (en) * 2001-05-03 2002-12-05 Michio Ikura Low temperature stable diesel oil/alcohol mixtures
FR2895418A1 (fr) * 2005-12-23 2007-06-29 Inst Francais Du Petrole Composition de carburant diesel a forte teneur en ethanol
BRMU8702637U2 (pt) * 2007-04-02 2008-11-18 B100 Participacoes Ltda processo de produÇço e uso de misturas biocombustÍvel binÁrias ternÁrias e quartenÁrias para substituiÇço ao àleo diesel de petràleo e constituÍdas de Álcoois, àleo vegetal, biodiesel e aditivos e suas aplicaÇÕes em frotas cativas de transporte urbano com possibilidade de geraÇço de crÉditos de carbono

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BORGES, J. L. B. ET AL.: "Emissao de material particulado por misturas ternárias contendo biodiesel, 6leo - vegetal e etanol: uma comparação com diesel convencional.", REVISTA BRASILEIRA DE ENERGIA, vol. 15, 2009, pages 81 - 92 *
LABECKAS G. ET AL.: "Comparative performance of direct injection diesel engine operating on ethanol, petrol and rapeseed oil blends", ENERGY CONVERSION AND MANAGEMENT, vol. 50, 2009, pages 792 - 801, XP025922294, DOI: doi:10.1016/j.enconman.2008.09.029 *
RAKOPOULOS C. D. ET AL.: "Comparative performance and emissions study of a direct injection Diesel engine using blends of Diesel fuel with vegetable oils or bio-diesels of various origins.", ENERGY CONVERSION AND MANAGEMENT, vol. 47, 2006, pages 3272 - 3287, XP025067119, DOI: doi:10.1016/j.enconman.2006.01.006 *
RIBEIRO ET AL.: "The Role of Additives for Diesel and Diesel Blended (Etlianol or Biodiesel) Fuels: A Review", ENERGY & FUELS, vol. 21, 2007, pages 2433 - 2445 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013156872A2 (en) * 2012-04-15 2013-10-24 Suresh Narine Phase behaviors and properties of certain triacylglycerols and fatty acid methyl esters
WO2013156872A3 (en) * 2012-04-15 2014-02-20 Suresh Narine A biodiesel crystallization depressant composition
US9181507B2 (en) 2012-04-15 2015-11-10 Trent University Phase behaviors and properties of certain triacylglycerols and fatty acid methyl esters
WO2014138993A1 (en) * 2013-03-14 2014-09-18 Trent University Polymorphism and microstructure of certain triacylglycerols and fatty acid methyl esters
US9637697B2 (en) 2013-03-14 2017-05-02 Trent University Polymorphism and microstructure of certain triacylglycerols and fatty acid methyl esters
WO2014138992A1 (en) * 2013-03-15 2014-09-18 Trent University Certain dimers as crystallization depressants
US9637698B2 (en) 2013-03-15 2017-05-02 Trent University Certain dimers as crystallization depressants
US10604712B2 (en) 2013-04-15 2020-03-31 Trent University Phase behaviors and properties of certain triacylglycerols and fatty acid methyl esters

Similar Documents

Publication Publication Date Title
Murugesan et al. Role of hydrogen in improving performance and emission characteristics of homogeneous charge compression ignition engine fueled with graphite oxide nanoparticle-added microalgae biodiesel/diesel blends
Kalligeros et al. An investigation of using biodiesel/marine diesel blends on the performance of a stationary diesel engine
Labeckas et al. The effect of rapeseed oil methyl ester on direct injection diesel engine performance and exhaust emissions
Dhahad et al. Performance, regulated and unregulated exhaust emission of a stationary compression ignition engine fueled by water-ULSD emulsion
Shirneshan HC, CO, CO2 and NOx emission evaluation of a diesel engine fueled with waste frying oil methyl ester
Al-Kheraif et al. Experimental assessment of performance, combustion and emission characteristics of diesel engine fuelled by combined non-edible blends with nanoparticles
Khalid et al. Performance and emissions characteristics of diesel engine fuelled by biodiesel derived from palm oil
Yusuf et al. The effect of biodiesel and CeO2 nanoparticle blends on CRDI diesel engine: A special focus on combustion, particle number, PM2. 5 species, organic compound and gaseous emissions
Gomasta et al. An experimental investigation of ethanol blended diesel fuel on engine performance and emission of a diesel engine
Yilmaz et al. Diesel blends with high concentrations of biodiesel and n-butanol: Effects on regulated pollutants and polycyclic aromatic hydrocarbons
WO2012021959A1 (pt) Composições combustíveis ternárias contendo biodiesel, óleo vegetal e álcoois inferiores para alimentação de motores de ciclo diesel
Lodi et al. Gaseous and particulate emissions analysis using microalgae based dioctyl phthalate biofuel during cold, warm and hot engine operation
Sivasankar et al. Sustainable nano-added biofuel production from borassus flabellifer oil for conventional internal combustion engines
Krishna Chaitanya Experimental Investigations on Variable Compression Ratio Diesel Engine Fueled with Mahua Oil and Diesel Blends
Kaisan et al. Effect of butanol and camphor blended with premium motor spirit on performance and emission of spark ignition engine
US20130269240A1 (en) Ternary fuel compositions containing biodiesel, plant oil and lower alcohols for feeding diesel-cycle motors
Taymaz et al. Performance and emission characteristics of a diesel engine using esters of palm olein/soybean oil blends
Dwivedi et al. Production and performance evaluation of diesel engine using biodiesel from pongamia oil
BRPI1006027A2 (pt) composições combustìveis para alimentação de motores de ciclo diesel
Kumar et al. Study on performance and emission characteristics of cotton seed methyl ester, Sapindous mukorossi seed oil, and diesel blends on CI engine
Kumaresan Experimental study on the effects of camphor ethanol petrol blends in a spark ignition engine: performance and emissions analysis
US20240026238A1 (en) Process for preparing biodiesel (methyl ester)
Ashok et al. Experimental Studies on the Combustion Characteristics and Performance of A Direct Injection Diesel Engine Fueled with Rice-Bran Oil Derived Biodiesel/Diesel Blends
Jeyangel et al. Experimental Analysis of Performance, Combustion and Emission Characteristics of Single Cylinder Diesel Engine using Diesel-Turpentine Blend
Gujar et al. Study of citrullus biodiesel blends on emission and performance characterization of IC engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11817595

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13818001

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11817595

Country of ref document: EP

Kind code of ref document: A1