WO2012021263A3 - Air separation method and apparatus - Google Patents
Air separation method and apparatus Download PDFInfo
- Publication number
- WO2012021263A3 WO2012021263A3 PCT/US2011/044460 US2011044460W WO2012021263A3 WO 2012021263 A3 WO2012021263 A3 WO 2012021263A3 US 2011044460 W US2011044460 W US 2011044460W WO 2012021263 A3 WO2012021263 A3 WO 2012021263A3
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- stream
- oxygen
- liquid
- liquid nitrogen
- air separation
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04078—Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
- F25J3/0409—Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04078—Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
- F25J3/04084—Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04151—Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
- F25J3/04187—Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
- F25J3/04218—Parallel arrangement of the main heat exchange line in cores having different functions, e.g. in low pressure and high pressure cores
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04151—Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
- F25J3/04187—Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
- F25J3/0423—Subcooling of liquid process streams
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04284—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
- F25J3/0429—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
- F25J3/04296—Claude expansion, i.e. expanded into the main or high pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04375—Details relating to the work expansion, e.g. process parameter etc.
- F25J3/04387—Details relating to the work expansion, e.g. process parameter etc. using liquid or hydraulic turbine expansion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04406—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
- F25J3/04412—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04642—Recovering noble gases from air
- F25J3/04648—Recovering noble gases from air argon
- F25J3/04654—Producing crude argon in a crude argon column
- F25J3/04666—Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
- F25J3/04672—Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser
- F25J3/04678—Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser cooled by oxygen enriched liquid from high pressure column bottoms
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04763—Start-up or control of the process; Details of the apparatus used
- F25J3/04866—Construction and layout of air fractionation equipments, e.g. valves, machines
- F25J3/04951—Arrangements of multiple air fractionation units or multiple equipments fulfilling the same process step, e.g. multiple trains in a network
- F25J3/04957—Arrangements of multiple air fractionation units or multiple equipments fulfilling the same process step, e.g. multiple trains in a network and inter-connecting equipments upstream of the fractionation unit (s), i.e. at the "front-end"
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2230/00—Processes or apparatus involving steps for increasing the pressure of gaseous process streams
- F25J2230/24—Multiple compressors or compressor stages in parallel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2230/00—Processes or apparatus involving steps for increasing the pressure of gaseous process streams
- F25J2230/40—Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2240/00—Processes or apparatus involving steps for expanding of process streams
- F25J2240/02—Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream
- F25J2240/10—Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream the fluid being air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2290/00—Other details not covered by groups F25J2200/00 - F25J2280/00
- F25J2290/12—Particular process parameters like pressure, temperature, ratios
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Emergency Medicine (AREA)
- Separation By Low-Temperature Treatments (AREA)
- Oxygen, Ozone, And Oxides In General (AREA)
Abstract
An air separation method and apparatus in which a supercritical oxygen product is produced by heating a pumped liquid oxygen stream having a supercritical pressure, through indirect heat exchange with a boosted pressure air stream. The indirect heat exchange is conducted within a heat exchanger and a liquid nitrogen stream is vaporized in the heat exchanger to depress the pressure that would otherwise be required of the boosted pressure air stream to heat the pumped liquid oxygen stream. The pumped liquid oxygen stream constitutes 90 percent of the oxygen-rich liquid removed from an air separation unit in which the air is rectified, the liquid nitrogen constitutes at least 90 percent of the liquid nitrogen that is not used as reflux and a flow-rate ratio between the liquid nitrogen stream and the oxygen-rich liquid is between about 0.3 and 0.90.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP11752365.4A EP2603755A2 (en) | 2010-08-12 | 2011-07-19 | Air separation method and apparatus |
CN201180049163.3A CN103827612A (en) | 2010-08-12 | 2011-07-19 | Air separation method and apparatus |
JP2013524084A JP2014510247A (en) | 2010-08-12 | 2011-07-19 | Air separation method and apparatus |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/855,313 | 2010-08-12 | ||
US12/855,313 US20120036891A1 (en) | 2010-08-12 | 2010-08-12 | Air separation method and apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2012021263A2 WO2012021263A2 (en) | 2012-02-16 |
WO2012021263A3 true WO2012021263A3 (en) | 2014-07-31 |
Family
ID=44583382
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2011/044460 WO2012021263A2 (en) | 2010-08-12 | 2011-07-19 | Air separation method and apparatus |
Country Status (5)
Country | Link |
---|---|
US (2) | US20120036891A1 (en) |
EP (1) | EP2603755A2 (en) |
JP (1) | JP2014510247A (en) |
CN (1) | CN103827612A (en) |
WO (1) | WO2012021263A2 (en) |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8899075B2 (en) * | 2010-11-18 | 2014-12-02 | Praxair Technology, Inc. | Air separation method and apparatus |
EP2551619A1 (en) * | 2011-07-26 | 2013-01-30 | Linde Aktiengesellschaft | Method and device for extracting pressurised oxygen and pressurised nitrogen by cryogenic decomposition of air |
CN104776685A (en) * | 2014-03-19 | 2015-07-15 | 摩尔动力(北京)技术股份有限公司 | Method and system for preparing low-oxygen liquid nitrogen |
EP3067650B1 (en) * | 2015-03-13 | 2018-04-25 | Linde Aktiengesellschaft | Installation and method for producing gaseous oxygen by cryogenic air decomposition |
EP3688391A1 (en) | 2017-09-29 | 2020-08-05 | ExxonMobil Upstream Research Company | Natural gas liquefaction by a high pressure expansion process |
CN108036584A (en) * | 2017-12-28 | 2018-05-15 | 乔治洛德方法研究和开发液化空气有限公司 | The method and apparatus of High Purity Nitrogen, oxygen and liquid oxygen is produced from air by cryogenic rectification |
CN108120226A (en) * | 2017-12-28 | 2018-06-05 | 乔治洛德方法研究和开发液化空气有限公司 | The method and apparatus of High Purity Nitrogen and oxygen is produced from air by cryogenic rectification |
US11578916B2 (en) * | 2017-12-29 | 2023-02-14 | L'Air Liquide, Societe Anonyme Pour L'Etude Et L'Exploitation Des Procedes Georqes Claude | Method and device for producing air product based on cryogenic rectification |
US10816263B2 (en) | 2018-04-25 | 2020-10-27 | Praxair Technology, Inc. | System and method for high recovery of nitrogen and argon from a moderate pressure cryogenic air separation unit |
US10663224B2 (en) * | 2018-04-25 | 2020-05-26 | Praxair Technology, Inc. | System and method for enhanced recovery of argon and oxygen from a nitrogen producing cryogenic air separation unit |
US10981103B2 (en) | 2018-04-25 | 2021-04-20 | Praxair Technology, Inc. | System and method for enhanced recovery of liquid oxygen from a nitrogen and argon producing cryogenic air separation unit |
US10663223B2 (en) | 2018-04-25 | 2020-05-26 | Praxair Technology, Inc. | System and method for enhanced recovery of argon and oxygen from a nitrogen producing cryogenic air separation unit |
US10663222B2 (en) | 2018-04-25 | 2020-05-26 | Praxair Technology, Inc. | System and method for enhanced recovery of argon and oxygen from a nitrogen producing cryogenic air separation unit |
CN112969896B (en) * | 2018-10-26 | 2023-05-02 | 乔治洛德方法研究和开发液化空气有限公司 | Plate-fin heat exchanger assembly |
CN115461584B (en) * | 2020-05-11 | 2024-08-02 | 普莱克斯技术有限公司 | System and method for recovering nitrogen, argon and oxygen from an intermediate pressure cryogenic air separation unit |
CN115485519A (en) | 2020-05-15 | 2022-12-16 | 普莱克斯技术有限公司 | Integrated nitrogen liquefier for cryogenic air separation unit producing nitrogen and argon |
US11619442B2 (en) | 2021-04-19 | 2023-04-04 | Praxair Technology, Inc. | Method for regenerating a pre-purification vessel |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080307828A1 (en) * | 2007-06-15 | 2008-12-18 | Neil Mark Prosser | Air separation method and apparatus |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52106369A (en) * | 1976-03-05 | 1977-09-06 | Hitachi Ltd | Separation of high pressure nitrogen gas from air separation apparatus |
US5148680A (en) * | 1990-06-27 | 1992-09-22 | Union Carbide Industrial Gases Technology Corporation | Cryogenic air separation system with dual product side condenser |
GB9405072D0 (en) * | 1994-03-16 | 1994-04-27 | Boc Group Plc | Air separation |
US5682765A (en) * | 1996-12-12 | 1997-11-04 | Praxair Technology, Inc. | Cryogenic rectification system for producing argon and lower purity oxygen |
JP3715497B2 (en) * | 2000-02-23 | 2005-11-09 | 株式会社神戸製鋼所 | Method for producing oxygen |
US7533540B2 (en) * | 2006-03-10 | 2009-05-19 | Praxair Technology, Inc. | Cryogenic air separation system for enhanced liquid production |
-
2010
- 2010-08-12 US US12/855,313 patent/US20120036891A1/en not_active Abandoned
-
2011
- 2011-07-12 US US13/180,690 patent/US20120036892A1/en not_active Abandoned
- 2011-07-19 EP EP11752365.4A patent/EP2603755A2/en not_active Withdrawn
- 2011-07-19 JP JP2013524084A patent/JP2014510247A/en active Pending
- 2011-07-19 CN CN201180049163.3A patent/CN103827612A/en active Pending
- 2011-07-19 WO PCT/US2011/044460 patent/WO2012021263A2/en active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080307828A1 (en) * | 2007-06-15 | 2008-12-18 | Neil Mark Prosser | Air separation method and apparatus |
Also Published As
Publication number | Publication date |
---|---|
US20120036892A1 (en) | 2012-02-16 |
US20120036891A1 (en) | 2012-02-16 |
JP2014510247A (en) | 2014-04-24 |
EP2603755A2 (en) | 2013-06-19 |
WO2012021263A2 (en) | 2012-02-16 |
CN103827612A (en) | 2014-05-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012021263A3 (en) | Air separation method and apparatus | |
WO2009020686A3 (en) | Air separation method and apparatus | |
WO2010056829A3 (en) | Separation method and apparatus | |
WO2015036708A3 (en) | Device for recovering vapours from a cryogenic tank | |
GB201208586D0 (en) | A heat exchanger | |
WO2014099792A3 (en) | Cooling tower with indirect heat exchanger | |
EP2656898A3 (en) | Purification of carbon dioxide using cryogenic distillation | |
MX2014005059A (en) | Polyisobutylene prepared at high velocity and circulation rate. | |
WO2011090506A3 (en) | Process and apparatus for oxygen production | |
WO2010147698A3 (en) | Method and apparatus for pressurized product production | |
EP3205964A3 (en) | Recovery of helium from nitrogen-rich streams | |
WO2015003809A3 (en) | Method and device for oxygen production by low-temperature separation of air at variable energy consumption | |
WO2015060930A3 (en) | Air separation method and apparatus | |
WO2015095040A3 (en) | An apparatus for producing liquid nitrogen | |
WO2013088160A3 (en) | Heat absorption | |
WO2011030050A3 (en) | Method and facility for producing oxygen through air distillation | |
EP2366969A3 (en) | Air separation method and apparatus | |
WO2014167283A3 (en) | Process and apparatus for separation of hydrocarbons and nitrogen | |
WO2009102561A3 (en) | Distillation method and apparatus | |
WO2011107685A3 (en) | Apparatus and method for the distillation separation of a mixture containing carbon dioxide | |
WO2013053425A3 (en) | Method and device for generating two purified partial air streams | |
WO2013052288A3 (en) | Air separation method and apparatus | |
WO2013113123A3 (en) | Multi-stage aeration apparatus | |
BR112017006788A2 (en) | process and device for the variable production of argon through low temperature separation | |
WO2014158214A3 (en) | Method and system for air separation using a supplemental refrigeration cycle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11752365 Country of ref document: EP Kind code of ref document: A2 |
|
ENP | Entry into the national phase |
Ref document number: 2013524084 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011752365 Country of ref document: EP |