WO2012021174A2 - CODECS D'EXPÉRIENCE OU "SENTIO" ET PROCÉDÉS ET SYSTÈMES D'AMÉLIORATION DE QUALITÉ D'EXPÉRIENCE (QoE) ET D'ENCODAGE SUR LA BASE DE LA QoE POUR DES EXPÉRIENCES - Google Patents
CODECS D'EXPÉRIENCE OU "SENTIO" ET PROCÉDÉS ET SYSTÈMES D'AMÉLIORATION DE QUALITÉ D'EXPÉRIENCE (QoE) ET D'ENCODAGE SUR LA BASE DE LA QoE POUR DES EXPÉRIENCES Download PDFInfo
- Publication number
- WO2012021174A2 WO2012021174A2 PCT/US2011/001425 US2011001425W WO2012021174A2 WO 2012021174 A2 WO2012021174 A2 WO 2012021174A2 US 2011001425 W US2011001425 W US 2011001425W WO 2012021174 A2 WO2012021174 A2 WO 2012021174A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- codec
- sentio
- experience
- codecs
- encoding
- Prior art date
Links
- 238000000034 method Methods 0.000 title abstract description 7
- 230000005540 biological transmission Effects 0.000 claims description 9
- 230000008451 emotion Effects 0.000 claims description 7
- 238000012546 transfer Methods 0.000 claims description 3
- 238000010586 diagram Methods 0.000 description 6
- 238000012545 processing Methods 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000013459 approach Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000008447 perception Effects 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 230000003044 adaptive effect Effects 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000008921 facial expression Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/20—Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
- H04N21/23—Processing of content or additional data; Elementary server operations; Server middleware
- H04N21/234—Processing of video elementary streams, e.g. splicing of video streams or manipulating encoded video stream scene graphs
- H04N21/2343—Processing of video elementary streams, e.g. splicing of video streams or manipulating encoded video stream scene graphs involving reformatting operations of video signals for distribution or compliance with end-user requests or end-user device requirements
- H04N21/23439—Processing of video elementary streams, e.g. splicing of video streams or manipulating encoded video stream scene graphs involving reformatting operations of video signals for distribution or compliance with end-user requests or end-user device requirements for generating different versions
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/102—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
- H04N19/12—Selection from among a plurality of transforms or standards, e.g. selection between discrete cosine transform [DCT] and sub-band transform or selection between H.263 and H.264
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/134—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
- H04N19/162—User input
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/134—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
- H04N19/164—Feedback from the receiver or from the transmission channel
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/20—Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
- H04N21/23—Processing of content or additional data; Elementary server operations; Server middleware
- H04N21/234—Processing of video elementary streams, e.g. splicing of video streams or manipulating encoded video stream scene graphs
- H04N21/2343—Processing of video elementary streams, e.g. splicing of video streams or manipulating encoded video stream scene graphs involving reformatting operations of video signals for distribution or compliance with end-user requests or end-user device requirements
- H04N21/234327—Processing of video elementary streams, e.g. splicing of video streams or manipulating encoded video stream scene graphs involving reformatting operations of video signals for distribution or compliance with end-user requests or end-user device requirements by decomposing into layers, e.g. base layer and one or more enhancement layers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/20—Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
- H04N21/23—Processing of content or additional data; Elementary server operations; Server middleware
- H04N21/24—Monitoring of processes or resources, e.g. monitoring of server load, available bandwidth, upstream requests
- H04N21/2402—Monitoring of the downstream path of the transmission network, e.g. bandwidth available
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/20—Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
- H04N21/25—Management operations performed by the server for facilitating the content distribution or administrating data related to end-users or client devices, e.g. end-user or client device authentication, learning user preferences for recommending movies
- H04N21/258—Client or end-user data management, e.g. managing client capabilities, user preferences or demographics, processing of multiple end-users preferences to derive collaborative data
- H04N21/25866—Management of end-user data
- H04N21/25891—Management of end-user data being end-user preferences
Definitions
- the present teaching relates to experience or "sentio" codecs enabling adaptive encoding and transmission for heterogeneous data streams of different nature involving a variety of content and data types including video, audio, physical gesture, , geo-location, voice input, synchronization events, computer-generated graphics etc.
- "Sentio" codec expands the existing concept of codecs by to maximize final Quality of Service/Experience in real-time,
- the present invention contemplates a variety of experience or "sentio" codecs, and methods and systems for enabling an experience platform, as well as a Quality of Experience (QoE) engine which allows the sentio codec to select a suitable encoding engine or device.
- QoE Quality of Experience
- "Sentio" codec expands the existing concept of codec to work in real-time, heterogeneous network, multi-device, social environment to maximize final Quality of Service/Experience.
- the sentio codec is capable of encoding and transmitting data streams that correspond to participant experiences with a variety of different dimensions and features.
- the following description provides one paradigm for understanding the multi-dimensional experience available to the participants, and as implemented utilizing a sentio codec. There are many suitable ways of describing, characterizing and implementing the sentio codec and experience platform contemplated herein.
- FIG. 1 is a block diagram of a sentio codec
- FIG. 2 provides a screen shot useful for illustrating how a hybrid encoding scheme can be used to accomplish low-latency transmission
- FIG. 3 is a block diagram of "sentio" codec model that shows event, data streams, different encoders selection based on device capabilities and network feedback.
- FIG 4. illustrates an exemplary selection of particular codec based on device capabilities (screen size in the example) and network type (3G vs Wi-Fi in the example).
- FIG 5. is a block diagram of "sentio" codec model that shows event, data streams, different encoders selection, applying specific group analysis services in massive social environment.
- FIG. 6 illustrates an ensemble of devices interacting and their output streamed to and displayed on a single display; and illustrates an exemplary architecture of a simple operating system.
- the present invention contemplates a variety of experience or "sentio" codecs, and methods and systems for enabling an experience platform, as well as a Quality of Experience (QoS) engine which allows the sentio codec to select a suitable encoding engine or device.
- QoS Quality of Experience
- the sentio codec is capable of encoding and transmitting data streams that correspond to participant experiences with a variety of different dimensions and features.
- the term "sentio" is Latin roughly corresponding to perception or to perceive with one's senses, hence the original nomenclature "sensio codec"
- video codec The primary goal of a video codec is to achieve maximum compression rate for digital video while maintaining great picture quality video; audio codecs are similar. But video and audio codecs alone are insufficient to generate and capture a full experience, such as a real-time experience enabled by hybrid encoding, and encoding of other experience aspects such as gestures, emotions, etc.
- Fig. 2 will now be described to provide an example experience showing 4 layers where video encoding alone is inadequate under constrained network connectivity conditions (low bandwidth, high packet loss or j itter, etc.)
- a first layer is generated by Autodesk 3ds Max instantiated on a suitable layer source, such as on an experience server or a content server.
- a second layer is an interactive frame around the 3ds Max layer, and in this example is generated on a client device by an experience agent.
- a third layer is the black box in the bottom-left corner with the text "FPS" and "bandwidth”, and is generated on the client device but pulls data by accessing a service engine available on the service platform.
- a fourth layer is a red-green- yellow grid which demonstrates an aspect of region-detection code (e.g., different regions being selectively encoded) and is generated and computed on the service platform, and then merged with the 3ds Max layer on the experience server.
- Figures 2 3 and 4 illustrate hybrid encoding approaches can be used to accomplish low-latency transmission.
- the first ' layer provides an Autodesk 3ds Max image including a rotating teapot, the first layer moving images, static or nearly static images, and graphic and/or text portions.
- FIG. 3 is a block diagram of "sentio" codec model that shows event, data streams, different encoders selection based on device capabilities and network feedback.
- FIG 5. is a block diagram of "sentio" codec model that shows event, data streams, different encoders selection, applying specific group analysis services in massive social environment.
- a video codec alone is inadequate to accomplish the hybrid encoding scheme covering video, pictures and commands. While it is theoretically possible to encode the entire first layer using only a video codec, latency and other issues can prohibit real-time and/or quality experiences. A low-latency protocol can solve this problem by efficiently encoding the data.
- a multiplicity of video codecs can be used to improve encoding and transmission.
- h.264 can be used if a hardware decoder is available, thus saving battery life and improving performance, or a better video codec (e.g., low latency) can be used if the device fails to support h.264.
- a better video codec e.g., low latency
- the present teaching contemplates an experience or sentio codec capable of encoding and transmitting data streams that correspond to experiences with a variety of different dimensions and features.
- These dimensions include known audio and video, but further may include any conceivable element of a participant experience, such as gestures, gestures + voice commands, "game mechanics" (which you can use to boost QoE when current conditions (such as network) do not allow you to do so - i.e. apply sound distortion effect specific to a given experience when loss of data happened), emotions (perhaps as detected via voice or facial expressions, various sensor data, microphone input, etc.
- virtual experiences can be encoded via the sentio codec.
- virtual goods are evolved into virtual experiences. Virtual experiences expand upon limitations imposed by virtual goods by adding additional dimensions to the virtual goods.
- User A transmits flowers as a virtual good to User B.
- the transmission of the virtual flowers is enhanced by adding emotion by way of sound, for example.
- the virtual flowers are also changed to a virtual experience when User B can do something with the flowers, for example User B can affect the flowers through any sort of motion or gesture.
- User A can also transmit the virtual goods to User B by making a "throwing" gesture using a mobile device, so as to "toss" the virtual goods to User B.
- the sentio codec improves the QoE to a consumer or experience participant on the device of their choice. This is accomplished through a variety of mechanisms, selected and implemented, possibly dynamically, based on the specific application and available resources.
- the sentio codec encodes multi-dimensional data streams in real-time, adapting to network capability.
- a QoE engine operating within the sentio codec a makes decisions on how to use different available codecs.
- the network stack can be implemented as hybrid, as described above, and in further detail with reference to Vonog et al.'s US Pat. App. 12/569,876.
- the sentio codec can include 1) a variety of codecs for each segment of experience described above, 2) a hybrid network stack with network intelligence, 3) data about available devices, and 4) a QoE engine that makes decisions on how to encode. It will be appreciated that QoE is achieved through various strategies that work differently for each given experience (say a zombie karaoke game vs. live stadium rock concert experience), and adapt in real-time to the network and other available resources, know the devices involved and take advantages of various psychological tricks to conceal imperfections which inevitably arise, particularly when the provided experience is scaled for many participants and devices.
- Fig. 1 illustrates a block diagram of one embodiment of a sentio codec 200.
- the sentio codec 200 includes a plurality of codecs such as video codecs 202, audio codecs 204, graphic language codecs 206, sensor data codecs 208, and emotion codecs 210.
- the sentio codec 200 further includes a quality of experience (QoE) decision engine 212 and a network engine 214.
- QoE quality of experience
- the codecs, the QoE decision engine 212, and the network engine 214 work together to encode one or more data streams and transmit the encoded data according to a low- latency transfer protocol supporting the various encoded data types.
- a low-latency transfer protocol supporting the various encoded data types.
- One suitable low-latency protocol and more details related to the network engine 214 can be found in Vonog et al.'s U.S. Pat. App. No. 12/569,876.
- the sentio codec 200 can be designed to take all aspects of the experience platform into consideration when executing the transfer protocol.
- the parameters and aspects include available network bandwidth, transmission device characteristics and receiving device characteristics.
- the sentio codec 200 can be implemented to be responsive to commands from an experience composition engine or other outside entity to determine how to prioritize data for transmission.
- audio is the most important component of an experience data stream.
- a specific application may desire to emphasize video or gesture commands.
- the sentio codec provides the capability of encoding data streams corresponding to many different senses or dimensions of an experience.
- a device 12 may include a video camera capturing video images and audio from a participant.
- the user image and audio data may be encoded and transmitted directly or, perhaps after some intermediate processing, via the experience composition engine 48, to the service platform 46 where one or a combination of the service engines can analyze the data stream to make a determination about an emotion of the participant. This emotion can then be encoded by the sentio codec and transmitted to the experience composition engine 48, which in turn can incorporate this into a dimension of the experience.
- a participant gesture can be captured as a data stream, e.g. by a motion sensor or a camera on device 12, and then transmitted to the service platform 46, where the gesture can be interpreted, and transmitted to the experience composition engine 48 or directly back to one or more devices 12 for incorporation into a dimension of the experience.
- the sentio codec delivers the best QoE to a consumer on the device of their choice through current network. This is accomplished through a variety of mechanisms, selected and implemented based on the specific application and available resources.
- the sentio codec encodes multi-dimensional data streams in real-time, adapting to network capability.
- a QoE engine operating within the sentio codec a makes decisions on how to use different available codecs.
- the network stack can be implemented as hybrid, as described above, and in further detail with reference to Vonog et al.'s US Pat. App. 12/569,876. [0028] Additionally, the following description is related to a simple operating system, which follows generally the fundamental concepts discussed above with further distinctions.
- a server communicates with a first device, wherein the first device can detect surrounding devices, and an application program is executable by the server, wherein the application program is controlled by the first device and the output of the application program is directed by the server to one of the devices detected by the first device.
- a minimum set of requirements exists in order for the first device to detect and interact with other devices in the cloud computing environment.
- a traditional operating system is inappropriate for such enablement because the device does not need full operating system capabilities. Instead, a plurality of codecs is sufficient to enable device interaction.
- Figure 6 illustrates an ensemble of devices interacting and their output streamed to and displayed on a single display.
- Multiple users having devices participate in an activity, for example watching live sports.
- The.video of the live sports is streamed as a layer (layerl ) from a content delivery network and displayed to the users.
- a user having device 1 can play the role of commentator and the audio from device 1 is streamed as a layer (layer2) and rendered to the users.
- a user having device2 can, for example, be drawing plays and the drawings are streamed as another layer and displayed to the users.
- a user having device3 can, for example, be typing up facts that are streamed as another layer and displayed to the users as a ticker tape.
- the devices and users make an ensemble in that they have different roles and experiences together while participating in the same activity.
- Figure 7 illustrates an exemplary architecture of a simple operating system.
- a simple operating system includes input capabilities, output capabilities, a network stack, a device agent, a plurality of codecs, services routing and an optional user interface shell.
- the simple operating system receives input including requests for services, and routes the requests for services to the appropriate available computing capabilities.
- the simple operating system performs minimal input processing to decipher what services are being requested, only to determine where to route the request.
- the device agent provides information regarding the location of best computing available for a particular request.
- the simple operating system performs no input processing and automatically routes input for processing to another device or to the cloud.
- the simple operating system routes requests for services to another device, to a server in the cloud, or to computing capability available locally on the device hosting the simple operating system.
- the plurality of codecs maintain a network connection and can activate output capabilities.
- the simple operating system does not include any local services. All requests are sent to the cloud for services.
- a device hosting the simple operating system can also host a traditional operating system.
- Services are defined at the API Layer of the platform. Services are categorized into Dimensions. Dimensions can be recombined into Layers. Layers form to make features in the user experience
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Databases & Information Systems (AREA)
- Physics & Mathematics (AREA)
- Discrete Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Graphics (AREA)
- Compression, Expansion, Code Conversion, And Decoders (AREA)
- Information Transfer Between Computers (AREA)
Abstract
Certains modes de réalisation concernent une variété de codecs d'expérience ou "sentio", et des procédés et des systèmes d'activation de plate-forme d'expérience, ainsi qu'un moteur de qualité d'expérience (QoE) qui permet au codec "sentio" de sélectionner un moteur ou dispositif d'encodage approprié. Le codec "sentio" est capable d'encoder et de transmettre des flux de données qui correspondent à des expériences de participants présentant différentes dimensions et caractéristiques. Comme on peut le remarquer, la description ci-après présente un paradigme pour comprendre l'expérience multidimensionnelle disponible aux participants, et tel que mis en oeuvre par l'utilisation d'un codec "sentio". Il existe de nombreuses façons appropriées de décrire, caractériser et mettre en oeuvre le codec "sentio" et la plate-forme d'expérience de l'invention.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US37322910P | 2010-08-12 | 2010-08-12 | |
US37323610P | 2010-08-12 | 2010-08-12 | |
US61/373,236 | 2010-08-12 | ||
US61/373,229 | 2010-08-12 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2012021174A2 true WO2012021174A2 (fr) | 2012-02-16 |
WO2012021174A3 WO2012021174A3 (fr) | 2012-05-24 |
Family
ID=45568103
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2011/001425 WO2012021174A2 (fr) | 2010-08-12 | 2011-08-12 | CODECS D'EXPÉRIENCE OU "SENTIO" ET PROCÉDÉS ET SYSTÈMES D'AMÉLIORATION DE QUALITÉ D'EXPÉRIENCE (QoE) ET D'ENCODAGE SUR LA BASE DE LA QoE POUR DES EXPÉRIENCES |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2012021174A2 (fr) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9401937B1 (en) | 2008-11-24 | 2016-07-26 | Shindig, Inc. | Systems and methods for facilitating communications amongst multiple users |
US9661270B2 (en) | 2008-11-24 | 2017-05-23 | Shindig, Inc. | Multiparty communications systems and methods that optimize communications based on mode and available bandwidth |
US9711181B2 (en) | 2014-07-25 | 2017-07-18 | Shindig. Inc. | Systems and methods for creating, editing and publishing recorded videos |
US9712579B2 (en) | 2009-04-01 | 2017-07-18 | Shindig. Inc. | Systems and methods for creating and publishing customizable images from within online events |
US9734410B2 (en) | 2015-01-23 | 2017-08-15 | Shindig, Inc. | Systems and methods for analyzing facial expressions within an online classroom to gauge participant attentiveness |
US9733333B2 (en) | 2014-05-08 | 2017-08-15 | Shindig, Inc. | Systems and methods for monitoring participant attentiveness within events and group assortments |
US9779708B2 (en) | 2009-04-24 | 2017-10-03 | Shinding, Inc. | Networks of portable electronic devices that collectively generate sound |
US9947366B2 (en) | 2009-04-01 | 2018-04-17 | Shindig, Inc. | Group portraits composed using video chat systems |
US9952751B2 (en) | 2014-04-17 | 2018-04-24 | Shindig, Inc. | Systems and methods for forming group communications within an online event |
US10133916B2 (en) | 2016-09-07 | 2018-11-20 | Steven M. Gottlieb | Image and identity validation in video chat events |
US10271010B2 (en) | 2013-10-31 | 2019-04-23 | Shindig, Inc. | Systems and methods for controlling the display of content |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002041121A2 (fr) * | 2000-10-20 | 2002-05-23 | Wavexpress, Inc. | Navigateur de radiodiffusion comprenant un revetement d'outils multimedias et procede destine a fournir un affichage multimedia convergent contenant des donnees ameliorees par un utilisateur |
US7516255B1 (en) * | 2005-03-30 | 2009-04-07 | Teradici Corporation | Method and apparatus for providing a low-latency connection between a data processor and a remote graphical user interface over a network |
US20090183205A1 (en) * | 2008-01-16 | 2009-07-16 | Qualcomm Incorporated | Intelligent client: multiple channel switching over a digital broadcast network |
JP2010016662A (ja) * | 2008-07-04 | 2010-01-21 | Kddi Corp | メディアストリームの階層数を制御する送信装置、方法及びプログラム |
-
2011
- 2011-08-12 WO PCT/US2011/001425 patent/WO2012021174A2/fr active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002041121A2 (fr) * | 2000-10-20 | 2002-05-23 | Wavexpress, Inc. | Navigateur de radiodiffusion comprenant un revetement d'outils multimedias et procede destine a fournir un affichage multimedia convergent contenant des donnees ameliorees par un utilisateur |
US7516255B1 (en) * | 2005-03-30 | 2009-04-07 | Teradici Corporation | Method and apparatus for providing a low-latency connection between a data processor and a remote graphical user interface over a network |
US20090183205A1 (en) * | 2008-01-16 | 2009-07-16 | Qualcomm Incorporated | Intelligent client: multiple channel switching over a digital broadcast network |
JP2010016662A (ja) * | 2008-07-04 | 2010-01-21 | Kddi Corp | メディアストリームの階層数を制御する送信装置、方法及びプログラム |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9401937B1 (en) | 2008-11-24 | 2016-07-26 | Shindig, Inc. | Systems and methods for facilitating communications amongst multiple users |
US9661270B2 (en) | 2008-11-24 | 2017-05-23 | Shindig, Inc. | Multiparty communications systems and methods that optimize communications based on mode and available bandwidth |
US10542237B2 (en) | 2008-11-24 | 2020-01-21 | Shindig, Inc. | Systems and methods for facilitating communications amongst multiple users |
US9712579B2 (en) | 2009-04-01 | 2017-07-18 | Shindig. Inc. | Systems and methods for creating and publishing customizable images from within online events |
US9947366B2 (en) | 2009-04-01 | 2018-04-17 | Shindig, Inc. | Group portraits composed using video chat systems |
US9779708B2 (en) | 2009-04-24 | 2017-10-03 | Shinding, Inc. | Networks of portable electronic devices that collectively generate sound |
US10271010B2 (en) | 2013-10-31 | 2019-04-23 | Shindig, Inc. | Systems and methods for controlling the display of content |
US9952751B2 (en) | 2014-04-17 | 2018-04-24 | Shindig, Inc. | Systems and methods for forming group communications within an online event |
US9733333B2 (en) | 2014-05-08 | 2017-08-15 | Shindig, Inc. | Systems and methods for monitoring participant attentiveness within events and group assortments |
US9711181B2 (en) | 2014-07-25 | 2017-07-18 | Shindig. Inc. | Systems and methods for creating, editing and publishing recorded videos |
US9734410B2 (en) | 2015-01-23 | 2017-08-15 | Shindig, Inc. | Systems and methods for analyzing facial expressions within an online classroom to gauge participant attentiveness |
US10133916B2 (en) | 2016-09-07 | 2018-11-20 | Steven M. Gottlieb | Image and identity validation in video chat events |
Also Published As
Publication number | Publication date |
---|---|
WO2012021174A3 (fr) | 2012-05-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9172979B2 (en) | Experience or “sentio” codecs, and methods and systems for improving QoE and encoding based on QoE experiences | |
Yaqoob et al. | A survey on adaptive 360 video streaming: Solutions, challenges and opportunities | |
WO2012021174A2 (fr) | CODECS D'EXPÉRIENCE OU "SENTIO" ET PROCÉDÉS ET SYSTÈMES D'AMÉLIORATION DE QUALITÉ D'EXPÉRIENCE (QoE) ET D'ENCODAGE SUR LA BASE DE LA QoE POUR DES EXPÉRIENCES | |
US20220193542A1 (en) | Compositing multiple video streams into a single media stream | |
US11522925B2 (en) | Systems and methods for teleconferencing virtual environments | |
US10335691B2 (en) | System and method for managing audio and video channels for video game players and spectators | |
US8903740B2 (en) | System architecture and methods for composing and directing participant experiences | |
US8549167B2 (en) | Just-in-time transcoding of application content | |
US20190314728A1 (en) | System and Method for Managing Audio and Video Channels for Video Game Players and Spectators | |
US8966095B2 (en) | Negotiate multi-stream continuous presence | |
US20220109758A1 (en) | Method and apparatus for teleconference | |
CN114666225B (zh) | 带宽调整方法、数据传输方法、设备及计算机存储介质 | |
US11128739B2 (en) | Network-edge-deployed transcoding methods and systems for just-in-time transcoding of media data | |
JP7508586B2 (ja) | 没入型テレカンファレンスおよびテレプレゼンスのためのマルチグルーピングの方法、装置、およびコンピュータプログラム | |
CN105635188B (zh) | 一种可视化内容分发方法及系统 | |
WO2024114146A1 (fr) | Procédé et appareil de traitement de flux multimédia, et dispositif informatique et support de stockage | |
KR20160015128A (ko) | 클라우드 스트리밍 서비스 시스템, 이미지 타입에 따른 클라우드 스트리밍 서비스 방법 및 이를 위한 장치 | |
US11985181B2 (en) | Orchestrating a multidevice video session | |
US12069121B1 (en) | Adaptive video quality for large-scale video conferencing | |
CN114630144B (zh) | 直播间内的音频替换方法、系统、装置、计算机设备及存储介质 | |
KR102719180B1 (ko) | 몰입형 원격 회의 및 텔레프레즌스를 위한 다중 그룹화 | |
Stamm | Assessing Image Quality Impact of View Bypass in Cloud Rendering | |
WO2024043925A1 (fr) | Système, procédé, et dispositifs pour fournir une interprétation de texte à de multiples dispositifs de co-visionnage | |
Baskaran | Serverless parallel video combiner with dominant speaker detection for ultra–high definition multipoint video communication systems |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11816715 Country of ref document: EP Kind code of ref document: A2 |
|
NENP | Non-entry into the national phase in: |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11816715 Country of ref document: EP Kind code of ref document: A2 |