WO2012020839A1 - Pharmaceutical composition for cancer therapy - Google Patents

Pharmaceutical composition for cancer therapy Download PDF

Info

Publication number
WO2012020839A1
WO2012020839A1 PCT/JP2011/068438 JP2011068438W WO2012020839A1 WO 2012020839 A1 WO2012020839 A1 WO 2012020839A1 JP 2011068438 W JP2011068438 W JP 2011068438W WO 2012020839 A1 WO2012020839 A1 WO 2012020839A1
Authority
WO
WIPO (PCT)
Prior art keywords
gene
sirna
seq
expression
nucleotide sequence
Prior art date
Application number
PCT/JP2011/068438
Other languages
French (fr)
Japanese (ja)
Inventor
義成 我原
六嶋 正知
陽子 山口
和彦 前川
Original Assignee
塩野義製薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 塩野義製薬株式会社 filed Critical 塩野義製薬株式会社
Publication of WO2012020839A1 publication Critical patent/WO2012020839A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/7105Natural ribonucleic acids, i.e. containing only riboses attached to adenine, guanine, cytosine or uracil and having 3'-5' phosphodiester links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/713Double-stranded nucleic acids or oligonucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/11Antisense
    • C12N2310/113Antisense targeting other non-coding nucleic acids, e.g. antagomirs
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.

Definitions

  • the present invention relates to a pharmaceutical composition for treating cancer comprising a substance that suppresses the expression of a specific gene. More specifically, the present invention relates to a pharmaceutical composition for cancer treatment containing a substance that suppresses the expression of AQR gene, NHP2L1 gene or NUP205 gene, and a method for screening a substance for cancer treatment based on the expression variation of any of the above genes.
  • the most common feature of cancer cells is their rapid and uncontrollable growth compared to normal cells. Taking advantage of this feature, chemotherapy using drugs that are toxic to proliferating cells has been performed in the oncology region.
  • the types of drugs (anticancer agents) that suppress the growth of cancer cells include nucleic acid synthesis inhibitors such as cyclophosphamide, antibiotics such as actinomycin D and bleomycin, and antimetabolites such as 5-fluorouracil and methotrexate.
  • microtubule depolymerization inhibitors such as paclitaxel and molecular target drugs such as imatinib and gefitinib are known.
  • RNA oligonucleotide strands of about 21 bases complementary to the desired gene (mRNA) and double-stranded RNA (small RNA interfering RNA: siRNA) consisting of the antisense RNA oligonucleotide strand have been developed, and can be arbitrarily selected in mammalian cells. It has become possible to suppress the expression of these genes (Non-patent Document 1: Nature, Vol. 411, 494-498, 2001).
  • siRNA technology is actively used in life science research and is expected to be applied to various diseases including cancer.
  • siRNAs for treating diseases that are sold as pharmaceuticals including oncology there are no siRNAs for treating diseases that are sold as pharmaceuticals including oncology.
  • An object of the present invention is to find a novel cancer treatment target gene, that is, a gene capable of suppressing cancer cell growth by suppressing its expression and enabling the treatment of cancer. Is to provide.
  • the present inventors introduced three types of genes that remarkably suppress the growth of lung cancer-derived cell lines by suppressing gene expression by introducing a siRNA library covering all human genes into the lung cancer-derived cell lines. AQR, NHP2L1 and NUP205) were identified. By suppressing the expression of one or more of these three genes, it was confirmed that the growth of cancer cells could be suppressed, and the present invention was completed.
  • a pharmaceutical composition for treating cancer comprising a substance that suppresses the expression of AQR gene, NHP2L1 gene or NUP205 gene.
  • a pharmaceutical composition for treating cancer comprising a substance that suppresses the expression of AQR gene, NHP2L1 gene or NUP205 gene.
  • the pharmaceutical composition according to [1], wherein the substance that suppresses gene expression is siRNA, an antisense oligonucleotide or a ribozyme, or an expression vector thereof.
  • the pharmaceutical composition according to [1] or [2], wherein the substance that suppresses gene expression is siRNA or an siRNA expression vector.
  • siRNA is one or more siRNA selected from the group consisting of siRNAs according to any one of (a) to (i) below: Composition: (A) siRNA in which the double-stranded RNA portion consists of the first to 19th nucleotide sequence in SEQ ID NO: 7 and the first to 19th nucleotide sequence in SEQ ID NO: 8; (B) siRNA in which the double-stranded RNA portion consists of the first to 19th nucleotide sequence in SEQ ID NO: 9 and the first to 19th nucleotide sequence in SEQ ID NO: 10; (C) siRNA in which the double-stranded RNA portion comprises the first to the 19th nucleotide sequence in the nucleotide sequence of SEQ ID NO: 11 and the first to the 19th nucleotide sequence in SEQ ID NO: 12; (D) siRNA in which the double-stranded RNA portion consists of the first to the 19
  • a method for treating cancer comprising a step of administering a substance that suppresses expression of an AQR gene, NHP2L1 gene, or NUP205 gene.
  • the substance that suppresses gene expression is siRNA or an siRNA expression vector.
  • a method for screening a substance for treating cancer comprising the following steps (a) to (c): (A) contacting a test substance with a cell capable of measuring the expression of AQR gene, NHP2L1 gene or NUP205 gene; (B) measuring the expression level of the gene in cells contacted with the test substance, and comparing the expression level with the expression level of the gene in control cells not contacted with the test substance; Next, (c) when the expression of the gene in a cell given the test substance is lower than the expression of the gene in a cell not given the test substance, the test substance is selected as a cancer treatment substance Process.
  • the present invention it is possible to suppress the growth of cancer cells by suppressing the expression of AQR, NHP2L1 or NUP205 gene, and substances that inhibit the expression of these genes are effective for pharmaceutical compositions for cancer treatment. It can be used as a component.
  • the pharmaceutical composition for cancer treatment according to the present invention provides an anticancer agent having a new mechanism of action that specifically suppresses the expression of a specific gene, and is characterized by being less toxic than conventional anticancer agents. To do.
  • the present invention also provides a method for screening a cancer therapeutic substance using the above gene as a target.
  • FIG. 1 is a diagram showing the influence on cell proliferation by transfection of three types of siRNA (s18725, s18726, s18727) for the AQR gene. The results of each siRNA are shown for each of the six cell lines (A549, RERF-LC-AI, HCT116, BxPC-3, MRC-5, BEAS-2B). The vertical axis represents the number of viable cells (%). The number of viable cells when negative control siRNA (NC- # 1) was added was taken as 100%.
  • FIG. 2 is a graph showing the effect on cell proliferation by transfection of two types of siRNA (s9548, s9549) for the NHP2L1 gene.
  • FIG. 3 is a diagram showing the effect on cell proliferation by transfection of three types of siRNA (s23175, s23176, s23177) for the NUP205 gene.
  • the results of each siRNA are shown for each of the six cell lines (A549, RERF-LC-AI, HCT116, BxPC-3, MRC-5, BEAS-2B).
  • the vertical axis represents the number of viable cells (%).
  • FIG. 4 is a diagram showing the influence of the transfection of three types of siRNA (s18725, RNAs18726, s18727) on the AQR gene on the mRNA expression of the target gene.
  • the results of each siRNA are shown for each of six types of cell lines (A549, RERF-LC-AI, HCT116, BxPC-3, MRC-5, BEAS-2B).
  • the vertical axis shows the expression level (%) of the target gene (mRNA).
  • the expression level when adding negative control siRNA (NC- # 1) was 100%.
  • FIG. 5 is a diagram showing the influence on mRNA expression of a target gene by transfection of two types of siRNA (s9548, s9549) for the NHP2L1 gene.
  • the results of each siRNA are shown for each of six types of cell lines (A549, RERF-LC-AI, HCT116, BxPC-3, MRC-5, BEAS-2B).
  • the vertical axis shows the expression level (%) of the target gene (mRNA).
  • the expression level when adding negative control siRNA (NC- # 1) was 100%.
  • FIG. 6 is a diagram showing the influence on mRNA expression of a target gene by transfection of three types of siRNA (s23175, s23176, s23177) for the NUP205 gene.
  • the results of each siRNA are shown for each of six types of cell lines (A549, RERF-LC-AI, HCT116, BxPC-3, MRC-5, BEAS-2B).
  • the vertical axis shows the expression level (%) of the target gene (mRNA).
  • the expression level when adding negative control siRNA (NC- # 1) was 100%.
  • the present invention provides a pharmaceutical composition comprising a substance that suppresses the expression of AQR gene, NHP2L1 gene or NUP205 gene.
  • a pharmaceutical composition can be used, for example, for the treatment of cancer.
  • the AQR gene, NHP2L1 gene or NUP205 gene was found as a novel target gene for cancer.
  • AQR is an RNA-binding protein (GeneBank Accession ID: NM_014691) and is presumed to be a component of the spliceosome complex (Gene Ontology database), but the details of the function are unknown. Inhibition of AQR expression with siRNA in human HEK293T cells has been reported to reduce the infection efficiency of human immunodeficiency virus HIV-1 (Cell, 135, 49-60, 2008). However, the relationship between AQR and cancer is not known.
  • NHP2L1 is a component of the spliceosome complex (GeneBank Accession ID: NM_001003796; Nature, 419, 182-185, 2002) and binds to U4 small nuclear RNA (snRNA), It plays an important role in the meeting (EMBO Journal, 18, 6119-6133, 1999). However, the relationship between NHP2L1 and cancer is not known.
  • NUP205 is one of the components of the nuclear pore complex called nucleoporin (GeneBank Accession ID: NM_015135; Molecular Biology of the cell, 15, 4261-4277, 2004) and is localized in the nuclear pore It is involved in protein transport from the cytoplasm to the nucleus (Molecular Biology of the cell, Vol. 8, 2017-2038, 1997). However, the effect of NUP205 expression on cancer cell proliferation is not known.
  • AQR gene means a gene encoding a human AQR protein.
  • the base sequence of the human AQR gene and the amino acid sequence of the human AQR protein are known.
  • the base sequence of the human AQR gene (SEQ ID NO: 1) and the human AQR protein amino acid sequence (SEQ ID NO: 2) are registered in GenBank (GenBank Accession No. NM_014691), published.
  • the human AQR protein includes not only a protein consisting of the amino acid sequence of SEQ ID NO: 2 but also a variant that can occur in a human individual, and the protein consisting of the sequence of SEQ ID NO: 2 lacks one amino acid or several amino acids.
  • the “AQR gene” includes not only a gene consisting of the base sequence of SEQ ID NO: 1 but also mutants that can occur in human individuals. For example, in the gene consisting of the base sequence of SEQ ID NO: 1, Genes with bases deleted, substituted and / or added, which are caused by mutations based on polymorphisms or mutations are included.
  • the “AQR gene” is 80% or more, for example, 85% or more, 90% or more, 95% or more, 97% or more, 98% or more, 99% or more with respect to the nucleotide sequence of SEQ ID NO: 1. Variants consisting of nucleotide sequences having 5% or more, 99.7% or more, or 99.9% or more identity are included. The identity of the base sequence can be determined using a known algorithm such as BLAST or FASTA. Furthermore, the “AQR gene” includes a variant consisting of a base sequence that hybridizes to the gene consisting of the base sequence of SEQ ID NO: 1 under stringent conditions.
  • Examples of stringent hybridization conditions include, for example, conditions of about “1 ⁇ SSC, 0.1% SDS, 37 ° C.” as washing conditions after hybridization.
  • the complementary strand is preferably one that maintains a hybridized state with the target positive strand even when washed under such conditions.
  • the more stringent hybridization conditions are about “0.5 ⁇ SSC, 0.1% SDS, 42 ° C.”, and the more severe hybridization conditions are “0.1 ⁇ SSC, 0.1% SDS, 65 ° C.”.
  • Hybridization Molecular Cloning: A Laboratory Manual, Second Edition (1989) (Cold Spring Harbor Laboratory Press), Current Protocol in Coil in Amplification (Clinic): Current Protocol in Coil, 1994 (W). It can be carried out according to the method described in Edition (1995) (Oxford University Press).
  • these mutant genes encode proteins having functions equivalent to those of the protein consisting of the amino acid sequence of SEQ ID NO: 2.
  • “NHP2L1 gene” means a gene encoding human NHP2L1 protein.
  • the base sequence of the human NHP2L1 gene and the amino acid sequence of the human NHP2L1 protein are known.
  • the base sequence of the human NHP2L1 gene (SEQ ID NO: 3) and the human NHP2L1 protein amino acid sequence (SEQ ID NO: 4) are registered in GenBank (GenBank Accession No. NM_001003796).
  • human NHP2L1 protein includes not only a protein consisting of the amino acid sequence of SEQ ID NO: 4 but also a variant that can occur in a human individual, and the protein consisting of the sequence of SEQ ID NO: 4 lacks one amino acid or several amino acids.
  • the “NHP2L1 gene” includes not only a gene consisting of the base sequence of SEQ ID NO: 3 but also a variant that can occur in a human individual.
  • the gene consisting of the base sequence of SEQ ID NO: 3 Genes with bases deleted, substituted and / or added, which are caused by mutations based on polymorphisms or mutations are included.
  • the “NHP2L1 gene” is 80% or more, for example, 85% or more, 90% or more, 95% or more, 97% or more, 98% or more, 99% or more, 99. Variants consisting of nucleotide sequences having 5% or more, 99.7% or more, or 99.9% or more identity are included. The identity of the base sequence can be determined using a known algorithm such as BLAST or FASTA. Furthermore, the “NHP2L1 gene” includes a variant consisting of a base sequence that hybridizes to the gene consisting of the base sequence of SEQ ID NO: 3 under stringent conditions. Examples of stringent hybridization conditions include those described above. However, these mutant genes encode proteins having functions equivalent to those of the protein consisting of the amino acid sequence of SEQ ID NO: 4.
  • NUP205 gene means a gene encoding human NUP205 protein.
  • the base sequence of human NUP205 gene and the amino acid sequence of human NUP205 protein are known.
  • the base sequence of human NUP205 gene (SEQ ID NO: 5) and the amino acid sequence of human NUP205 protein (SEQ ID NO: 6) are registered in GenBank (GenBank Accession No. NM_015135).
  • the human NUP205 protein includes not only a protein consisting of the amino acid sequence of SEQ ID NO: 6 but also a variant that can occur in a human individual, and the protein consisting of the sequence of SEQ ID NO: 6 lacks one amino acid or several amino acids.
  • NUP205 gene includes not only a gene consisting of the base sequence of SEQ ID NO: 5 but also mutants that can occur in human individuals. For example, in the gene consisting of the base sequence of SEQ ID NO: 5, Genes with bases deleted, substituted and / or added, which are caused by mutations based on polymorphisms or mutations are included.
  • the “NUP205 gene” is 80% or more, for example, 85% or more, 90% or more, 95% or more, 97% or more, 98% or more, 99% or more with respect to the nucleotide sequence of SEQ ID NO: 5. Variants consisting of nucleotide sequences having 5% or more, 99.7% or more, or 99.9% or more identity are included. The identity of the base sequence can be determined using a known algorithm such as BLAST or FASTA. Furthermore, the “NUP205 gene” includes a variant consisting of a base sequence that hybridizes under stringent conditions to the gene consisting of the base sequence of SEQ ID NO: 5. Examples of stringent hybridization conditions include those described above. However, these mutant genes encode proteins having functions equivalent to those of the protein consisting of the amino acid sequence of SEQ ID NO: 6.
  • the “substance that suppresses gene expression” refers to a substance that suppresses the transcription of mRNA of the target gene, a substance that degrades the transcribed mRNA, or a substance that suppresses the translation of the protein from the mRNA.
  • examples of such substances include siRNA, antisense oligonucleotides or ribozymes, or expression vectors thereof. Among these, siRNA and its expression vector are preferable, and siRNA is particularly preferable.
  • “substances that suppress gene expression” include proteins, peptides, and other small molecules.
  • the target gene is AQR gene, NHP2L1 gene or NUP205 gene.
  • siRNA is an RNA molecule having a double-stranded RNA portion consisting of about 15 to about 40 bases, and cleaves the mRNA of the target gene having a sequence complementary to the antisense strand of the siRNA. And has a function of suppressing the expression of the target gene.
  • the siRNA in the present invention is an antisense comprising a sense RNA strand comprising a sequence homologous to a continuous RNA sequence in the mRNA of the AQR gene, NHP2L1 gene or NUP205 gene, and a sequence complementary to the sense RNA sequence.
  • An RNA comprising a double-stranded RNA portion comprising an RNA strand.
  • the length of the double-stranded RNA portion is about 15 to about 40 bases, preferably 15 to 30 bases, more preferably 15 to 25 bases, still more preferably 18 to 23 bases, and most preferably 19 to 21 bases as a base. It is.
  • the end structure of the sense strand or antisense strand of siRNA is not particularly limited and may be appropriately selected depending on the intended purpose. For example, it may have a blunt end or a protruding end (overhang) It is preferable that the 3 ′ end protrudes.
  • the siRNA having an overhang consisting of several bases, preferably 1 to 3 bases, more preferably 2 bases, at the 3 ′ end of the sense RNA strand and the antisense RNA strand suppresses the expression of the target gene. In many cases, the effect is large, which is preferable.
  • the type of the overhanging base is not particularly limited, and may be either a base constituting RNA or a base constituting DNA.
  • siRNA in which 1 to several nucleotides are deleted, substituted, inserted and / or added in one or both of the sense strand or the antisense strand of the siRNA is also a pharmaceutical composition for treating cancer of the present invention.
  • the 1 to several bases are not particularly limited, but are preferably 1 to 4 bases, more preferably 1 to 3 bases, and most preferably 1 to 2 bases.
  • Such mutations include those in which the number of bases in the overhang portion at the 3 ′ end is 0 to 3, or the base sequence in the overhang portion at the 3 ′ end is changed to another base sequence, or Those in which the length of the sense RNA strand differs from that of the antisense RNA strand by 1 to 3 bases due to insertion, addition or deletion, or in which the base is replaced with another base in the sense strand and / or antisense strand For example, but not limited to. However, it is necessary that the sense strand and the antisense strand can hybridize in these mutant siRNAs, and that these mutant siRNAs have the same ability to suppress gene expression as siRNA having no mutation.
  • the siRNA may be a molecule having a closed structure at one end, for example, an siRNA having a hairpin structure (Short hairpin RNA; shRNA).
  • shRNA is a RNA comprising a sense strand RNA of a specific sequence of a target gene, an antisense strand RNA consisting of a sequence complementary to the sense strand RNA, and a linker sequence connecting both strands. The sense strand portion and the antisense strand portion Hybridize to form a double stranded RNA portion.
  • siRNA does not show a so-called off-target effect in clinical use.
  • the off-target effect refers to the action of suppressing the expression of another gene that is partially homologous to the siRNA used in addition to the target gene.
  • NCBI National Center for Biotechnology Information
  • RNA of the present invention In order to produce the siRNA of the present invention, a known method such as a method using chemical synthesis or a method using a gene recombination technique can be appropriately used.
  • double-stranded RNA can be synthesized by a conventional method based on sequence information.
  • an expression vector incorporating a sense strand sequence or an antisense strand sequence is constructed, and the sense strand RNA or antisense strand RNA generated by transcription after introducing the vector into a host cell. It can also be produced by acquiring each of the above.
  • Desired double-stranded RNA can also be prepared.
  • a part of the nucleic acid constituting the siRNA may be DNA.
  • the siRNA may be a nucleic acid in which all or part of the nucleic acid constituting the siRNA is modified as long as it has the activity of suppressing the expression of the target gene.
  • the modified nucleic acid means a nucleic acid having a structure different from that of a natural nucleic acid, in which a nucleoside (base site, sugar site) and / or internucleoside binding site is modified.
  • modified nucleoside constituting the modified nucleic acid
  • examples of the “modified nucleoside” constituting the modified nucleic acid include an abasic nucleoside; an arabino nucleoside, 2′-deoxyuridine, ⁇ -deoxyribonucleoside, ⁇ -L-deoxyribonucleoside, and other sugars
  • examples include nucleosides having modifications; peptide nucleic acids (PNA), peptide nucleic acids to which phosphate groups are bound (PHONA), locked nucleic acids (LNA), morpholino nucleic acids and the like.
  • nucleoside having a sugar modification examples include substituted pentasaccharides such as 2′-O-methylribose, 2′-deoxy-2′-fluororibose, and 3′-O-methylribose; 1 ′, 2′-deoxyribose Arabinose; substituted arabinose sugars; nucleosides with hexose and alpha-anomeric sugar modifications.
  • These nucleosides may be modified bases with modified base sites. Examples of such modified bases include pyrimidines such as 5-hydroxycytosine, 5-fluorouracil, 4-thiouracil; purines such as 6-methyladenine and 6-thioguanosine; and other heterocyclic bases.
  • modified internucleoside linkage constituting the modified nucleic acid
  • examples of the “modified internucleoside linkage” constituting the modified nucleic acid include, for example, alkyl linker, glyceryl linker, amino linker, poly (ethylene glycol) linkage, methylphosphonate internucleoside linkage; methylphosphonothioate, phosphotriester , Phosphothiotriester, phosphorothioate, phosphorodithioate, triester prodrug, sulfone, sulfonamide, sulfamate, formacetal, N-methylhydroxylamine, carbonate, carbamate, morpholino, boranophosphonate, phosphoramidate, etc.
  • Non-natural internucleoside linkages include, for example, alkyl linker, glyceryl linker, amino linker, poly (ethylene glycol) linkage, methylphosphonate internucleoside linkage; methylphosphonothioate
  • the sequences described in SEQ ID NOs: 7 to 22 in the sequence listing can be preferably used.
  • the nucleotide sequences of these siRNAs are shown in Table 3.
  • uppercase letters indicate the sense RNA sequence and antisense RNA sequence
  • lowercase letters indicate the 3 'terminal overhang sequence.
  • s18725 is a double-stranded siRNA composed of a sense strand shown in SEQ ID NO: 7 and an antisense strand shown in SEQ ID NO: 8, and tt at the 3 ′ end of SEQ ID NO: 7 and 3 of SEQ ID NO: 8 'The terminal ca is an overhang sequence.
  • siRNAs Of these siRNAs, s18725, s18726 and s18727 knock down the AQR gene, s9548 and s9549 knock down the NHP2L1 gene, and s23175, s23176 and s23177 knock down the NUP205 gene. is there.
  • These siRNAs suppress the growth of a wide range of cancer cells including lung cancer, colon cancer, pancreatic cancer, etc., and the degree of inhibition is large, so that the effect of the pharmaceutical composition for treating cancer containing these siRNAs is great. It is.
  • Oligonucleotides complementary to the mRNA of the target gene are called “antisense oligonucleotides”, and the function of the mRNA is suppressed by forming a double strand with the gene (mRNA) targeted by the antisense oligonucleotide.
  • Antisense oligonucleotides are not limited to those that are completely complementary to the target gene (mRNA), but may contain some mismatches as long as they can be stably hybridized with mRNA.
  • Antisense oligonucleotides may be modified. By applying an appropriate modification, the antisense oligonucleotide becomes difficult to be degraded in the living body, and the expression of the target gene can be inhibited more stably.
  • modified oligonucleotides include S-oligo type (phosphorothioate type), C-5 thiazole type, D-oligo type (phosphodiester type), M-oligo type (methyl phosphonate type), peptide nucleic acid
  • modified antisense oligonucleotides such as phosphodiester bond type, C-5 propynyl pyrimidine type, 2-O-propyl ribose, 2′-methoxyethoxy ribose type.
  • the antisense oligonucleotide may be one in which at least a part of the oxygen atom constituting the phosphate group is substituted or modified with a sulfur atom.
  • Such an antisense oligonucleotide is particularly excellent in nuclease resistance and affinity for RNA.
  • Examples of the antisense oligonucleotide in which at least a part of the oxygen atom constituting the phosphate group is substituted or modified with a sulfur atom include oligonucleotides such as S-oligo type.
  • An antisense oligonucleotide (or a derivative thereof) can be synthesized by a conventional method, and can be easily synthesized by, for example, a commercially available DNA synthesizer (for example, Applied Biosystems).
  • Examples of the synthesis method include a solid phase synthesis method using phosphoramidite and a solid phase synthesis method using hydrogen phosphonate.
  • the antisense oligonucleotide of the present invention targets AQR gene, NHP2L1 gene or NUP205 gene.
  • Preferred antisense oligonucleotides of the present invention that target the AQR gene include, but are not limited to, those described in SEQ ID NOs: 23 to 62 (or derivatives thereof).
  • Preferred antisense oligonucleotides of the present invention that target the NHP2L1 gene include, but are not limited to, those described in SEQ ID NOs: 63 to 78 (or derivatives thereof).
  • Preferred antisense oligonucleotides of the present invention that target the NUP205 gene include those described in SEQ ID NOs: 79 to 107 (or derivatives thereof), but are not limited thereto.
  • the antisense oligonucleotide of the present invention may be any one that suppresses the expression of the target gene.
  • One to several, for example, 1, 2 in the nucleotide sequence of any of SEQ ID NOs: 23 to 107 Includes those in which 3 or 4 bases are substituted, added, or deleted.
  • RNA having an enzyme activity that cleaves nucleic acid refers to RNA having an enzyme activity that cleaves nucleic acid. Recently, it has been clarified that oligoDNA having the base sequence of the enzyme active site also has a nucleic acid cleaving activity. In the book, it is used as a concept including DNA as long as it has sequence-specific nucleic acid cleavage activity. Specifically, the ribozyme can specifically cleave mRNA or an initial transcription product encoding a target gene within the coding region (including an intron portion in the case of the initial transcription product). The most versatile ribozyme is self-splicing RNA found in infectious RNA such as viroid and virusoid, and hammerhead type and hairpin type are known.
  • the hammerhead type exhibits enzyme activity at about 40 bases, and several bases at both ends adjacent to the portion having the hammerhead structure (about 10 bases in total) are made complementary to the desired cleavage site of mRNA. By doing so, it is possible to specifically cleave only the target mRNA. Furthermore, when the ribozyme is used in the form of an expression vector containing the DNA encoding the ribozyme, in order to promote the transfer of the transcription product to the cytoplasm, it should be a hybrid ribozyme further linked with a tRNA-modified sequence. (Nucleic Acids Res., 29 (13): 2780-2788 (2001)).
  • the substance that suppresses the expression of the target gene may be a nucleic acid molecule such as siRNA, antisense oligonucleotide or ribozyme, and an expression vector encoding the nucleic acid molecule.
  • the oligonucleotide or polynucleotide encoding the nucleic acid molecule must be operably linked to a promoter capable of exhibiting promoter activity in a mammalian cell to be administered.
  • the promoter to be used is not particularly limited as long as it can function in the mammal to be administered, but for example, polIII promoter (eg, tRNA promoter, U6 promoter, H1 promoter), mammalian promoter (eg, CMV promoter, CAG promoter, SV40 promoter) and the like.
  • the expression vector preferably contains a transcription termination signal, ie a terminator region, downstream of the oligo (poly) nucleotide encoding the nucleic acid molecule.
  • selectable marker genes for selection of transformed cells such as genes that confer resistance to drugs such as tetracycline, ampicillin, kanamycin, hygromycin, phosphinothricin, genes that complement auxotrophic mutations, etc.
  • the basic backbone vector used as the expression vector is not particularly limited, and examples thereof include a plasmid vector and a viral vector.
  • Suitable vectors for administration to mammals such as humans include viral vectors such as retrovirus, adenovirus, adeno-associated virus, herpes virus, vaccinia virus, poxvirus, poliovirus, Sindbis virus, Sendai virus, and the like. .
  • siRNA expression vectors examples include siRNA, antisense oligonucleotide or ribozyme expression vectors. Among them, siRNA expression vectors are preferable.
  • the nucleic acid sequence encoded by the siRNA expression vector of the present invention the first to 19th nucleotide sequences in the respective base sequences described in SEQ ID NOs: 7 to 22 in the sequence listing can be preferably used.
  • the nucleotide sequences of these siRNAs are shown in capital letters in Table 3. These siRNAs suppress the growth of a wide range of cancer cells including lung cancer, colon cancer, pancreatic cancer, etc., and the degree of inhibition is large, so that the effect of the pharmaceutical composition for treating cancer containing these siRNAs is great. It is.
  • a substance that suppresses the expression of AQR gene, NHP2L1 gene or NUP205 gene can be used as an active ingredient of a pharmaceutical composition.
  • the pharmaceutical composition of the present invention can be used as a pharmaceutical composition for cancer treatment by administering the pharmaceutical composition in vivo.
  • a single expression-suppressing substance may be used as an active ingredient, or a plurality of gene expression-suppressing substances may be used as active ingredients.
  • the target genes of the plurality of gene expression inhibitors may be different genes.
  • the expression-suppressing substance of the pharmaceutical composition of the present invention is siRNA
  • one or more siRNA may be used as an active ingredient.
  • the pharmaceutical composition of the present invention may contain siRNA for AQR gene and siRNA for NHP2L1 gene.
  • the type of cancer to be treated by the pharmaceutical composition of the present invention is not particularly limited.
  • the application of the pharmaceutical composition of the present invention is expected for lung cancer, colon cancer and pancreatic cancer.
  • the pharmaceutical composition for cancer treatment of the present invention can be used not only for cancer treatment but also for prevention of recurrence and metastasis after cancer treatment.
  • the pharmaceutical composition of the present invention can employ both oral and parenteral dosage forms. In the case of parenteral administration, it is also possible to administer directly to the tumor site.
  • the pharmaceutical composition of the present invention can be formulated according to a conventional method, and may contain a pharmaceutically acceptable carrier or additive.
  • Such carriers and additives include water, pharmaceutically acceptable organic solvents, collagen, polyvinyl alcohol, polyvinyl pyrrolidone, carboxyvinyl polymer, sodium carboxymethylcellulose, sodium polyacrylate, sodium alginate, water-soluble dextran, carboxymethyl.
  • additives examples include additives.
  • the additive is selected from the above alone or in appropriate combination depending on the dosage form of the pharmaceutical composition of the present invention.
  • the dosage form in the case of oral administration, it can be administered as a tablet, capsule, fine granule, powder, granule, liquid, syrup or the like, or in an appropriate dosage form.
  • pulmonary dosage forms for example, those using a nephriser etc.
  • nasal dosage forms for example, transdermal dosage forms (for example, ointments, creams), injection dosage forms and the like
  • injection dosage form it can be administered systemically or locally by intravenous injection such as infusion, intramuscular injection, intraperitoneal injection, subcutaneous injection or the like.
  • the expression inhibitor is introduced into a phospholipid endoplasmic reticulum such as a liposome.
  • the endoplasmic reticulum can be used as the pharmaceutical composition of the present invention.
  • the dosage of the pharmaceutical composition of the present invention varies depending on age, sex, symptoms, administration route, administration frequency, and dosage form.
  • the administration method is appropriately selected depending on the age and symptoms of the patient.
  • the effective dose is 0.01 ⁇ g to 1000 mg, preferably 0.1 ⁇ g to 100 ⁇ g, per kg body weight.
  • the therapeutic agent is not limited to these doses.
  • the invention in a further aspect, (I) a method for treating cancer, comprising a step of administering a substance that suppresses the expression of AQR gene, NHP2L1 gene or NUP205 gene; (Ii) a substance that suppresses the expression of AQR gene, NHP2L1 gene or NUP205 gene used for cancer treatment, and (iii) expression of AQR gene, NHP2L1 gene or NUP205 gene for the production of a therapeutic agent for cancer.
  • a suppressive substance is as described above.
  • siRNA is used as the “substance that suppresses gene expression”
  • preferred siRNA is as described above.
  • the present invention provides a method for screening for a therapeutic agent for cancer using as an index suppression of expression of AQR gene, NHP2L1 gene or NUP205 gene.
  • test substance to be subjected to the screening method may be any known compound and novel compound, for example, nucleic acid, carbohydrate, lipid, protein, peptide, low molecular organic compound, compound prepared using combinatorial chemistry technology
  • libraries random peptide libraries prepared by solid phase synthesis and phage display methods, or natural components derived from microorganisms, animals and plants, marine organisms, and the like.
  • the screening method of the present invention comprises the following steps (a) to (c): (A) contacting a test substance with a cell capable of measuring the expression of AQR gene, NHP2L1 gene or NUP205 gene; (B) measuring the expression level of the gene in cells contacted with the test substance, and comparing the expression level with the expression level of the gene in control cells not contacted with the test substance; Next, (c) when the expression of the gene in a cell given the test substance is lower than the expression of the gene in a cell not given the test substance, the test substance is selected as a cancer treatment substance Process.
  • step (a) of the above method cells capable of measuring the expression of the AQR gene, NHP2L1 gene or NUP205 gene and the test substance are placed under contact conditions. Contact of the test substance with cells capable of measuring the expression of these genes is performed in a culture medium.
  • a cell capable of measuring the expression of AQR gene, NHP2L1 gene or NUP205 gene is a cell capable of directly or indirectly evaluating the expression level of AQR gene, NHP2L1 gene or NUP205 gene product, for example, transcript or translation product.
  • a cell capable of directly evaluating the expression level of the gene product can be a cell capable of naturally expressing the gene, while a cell capable of indirectly evaluating the expression level of the gene product includes: Examples include cells that allow reporter assay for the gene transcription regulatory region.
  • animal cells such as mice, rats, hamsters, guinea pigs, rabbits, dogs, monkeys or human mammalian cells can be used, and human-derived cells are particularly preferable.
  • a cell enabling a reporter assay for a gene transcription regulatory region is a cell containing a target gene transcription regulatory region and a reporter gene operably linked to the region.
  • the target gene transcription regulatory region and the reporter gene can be inserted into an expression vector.
  • the transcriptional regulatory region of the target gene is not particularly limited as long as it can control the expression of the target gene. For example, a region from the transcription start point to about 2 kbp upstream, or one or more bases in the base sequence of the region Examples include a region consisting of a base sequence deleted, substituted or added and having the ability to control the transcription of the target gene.
  • the reporter gene may be any gene that encodes a detectable protein or an enzyme that produces a detectable substance.
  • the GFP green fluorescent protein
  • GUS ⁇ -glucuronidase
  • LUC luciferase
  • CAT Chloramphenicol acetyltransferase
  • a cell into which a gene transcription regulatory region and a reporter gene operably linked to the region are introduced can be used for quantitative analysis of the expression level of the reporter gene as long as the transcriptional regulatory function of the target gene can be evaluated. As long as it is, it is not particularly limited.
  • the culture medium in which the cell capable of measuring the expression of the AQR gene, NHP2L1 gene or NUP205 gene and the test substance is contacted is appropriately selected depending on the type of the cell used, for example, about 5 to 20%. Examples include minimal essential medium (MEM) containing fetal calf serum, Dulbecco's modified minimal essential medium (DMEM), RPMI 1640 medium, and 199 medium.
  • MEM minimal essential medium
  • DMEM Dulbecco's modified minimal essential medium
  • RPMI 1640 RPMI 1640 medium
  • the culture conditions are also appropriately determined according to the type of cells to be used. For example, the pH of the medium is about 6 to about 8, the culture temperature is usually about 30 to about 40 ° C., and the culture time is About 12 to about 144 hours.
  • step (b) of the above method first, the expression level of the AQR gene, NHP2L1 gene or NUP205 gene in the cell contacted with the test substance is measured.
  • the expression level can be measured by a method known per se in consideration of the type of cells used. For example, when a cell capable of naturally expressing any of the AQR gene, NHP2L1 gene or NUP205 gene is used as a cell capable of measuring the expression of the gene, the expression level is the gene product such as a transcription product or a translation product.
  • the product can be measured by a method known per se.
  • the expression level of the transcription product can be measured by preparing total RNA from cells and performing RT-PCR, Northern blotting, or the like.
  • the expression level of the translation product can be measured by preparing an extract from the cells and using an immunological technique.
  • an immunological method a radioisotope immunoassay (RIA method), an ELISA method (Methods in Enzymol. 70: 419-439 (1980)), a fluorescent antibody method, or the like can be used.
  • a cell capable of performing a reporter assay for the gene transcription regulatory region is used as a cell capable of measuring the expression of the AQR gene, NHP2L1 gene or NUP205 gene
  • the expression level can be measured based on the signal intensity of the reporter.
  • the expression level of the gene in the cell contacted with the test substance is compared with the expression level of the gene in the control cell not contacted with the test substance (step (c) of the above method).
  • the comparison of expression levels is preferably performed based on the presence or absence of a significant difference.
  • the expression level of the gene in the control cell not contacted with the test substance is the expression level measured at the same time, even if it is the expression level measured in advance compared to the measurement of the gene expression level in the cell contacted with the test substance.
  • the expression level is preferably measured simultaneously from the viewpoint of the accuracy and reproducibility of the experiment.
  • the following experiment was conducted for the purpose of finding a gene capable of suppressing the growth of cancer cells by inhibiting the expression.
  • human whole gene siRNA library Human siGENOME siRNA Library-Genome; Thermo Scientific; 21,121 genes
  • a gene that suppresses the proliferation of the same cells by suppressing the expression was screened.
  • As a screening protocol first, 1.25 pmol of the above-mentioned library was dispensed into a 384 well plate (Corning; catalog number 3570).
  • SiRNA against kinesin family member 11 (KIF11) as a positive control on each plate (Thermo Scientific; catalog number M-003317-01-0020), and Non-Targeting siRNA Pool # 2 (NT-2; Thermo Scientific) as a negative control Catalog number D-001206-14-20) was also dispensed in the same amount and used to calculate activity values and assay accuracy. Meanwhile, 5 ⁇ l of Opti-MEM I (Gibco; catalog number 31985) and 0.025 ⁇ l of siRNA introduction reagent RNAiMAX (Invitrogen; catalog number 13778-150) are mixed and held at room temperature for 10 minutes. Was added to aliquoted 384 well plates.
  • the growth inhibition activity of the positive control KIF11 siRNA is 100% and the growth inhibition activity of the negative control NT-2 is 0% for each plate. Inhibitory activity was calculated.
  • a total of 341 genes that can be purchased from Ambion siRNA from 421 genes with growth inhibitory activity of 75% or more and that do not encode proteosome subunits were subjected to secondary evaluation. The reason for excluding genes encoding proteosome subunits is that anti-cancer drugs targeting proteosome are already on the market, but the gene group cannot be a new target for cancer, This is because a large number (26) were included in the 421 gene.
  • the 341 gene was subjected to secondary evaluation using RERF-LC-AI cells in the same manner as described above using 3 sequences of each gene of siRNA (product name Silencer Select) manufactured by Ambion.
  • Ambion KIF11 siRNA siRNA ID s7903; catalog number 4390822
  • Ambion Negative Control # 1 siRNA catalog number 4390844, NC- # 1
  • 0.625 pmol each was used. 42 genes were extracted, assuming that the average of the three sequences of siRNAs was 75% or higher than that of KIF11 siRNA and had reproducibility.
  • a human lung adenocarcinoma-derived cell line A549 was used as a third evaluation, and similarly, a gene showing an average of three sequences of siRNAs exhibiting growth inhibition of 75% or more of KIF11 siRNA was extracted. As a result, 38 genes were identified as important genes for proliferation and survival in both RERF-LC-AI cells and A549 cells.
  • RERF-LC-AI cells and A549 cells were selected from D-MEM (Nacalai Tesque; catalog number 08456-65), 10% Fetal Bovine Serum (MP Biomedicals; catalog number 2916754), penicillin: 5,000 units / ml, streptomycin: 5,000 ⁇ g / ml (Invitrogen; catalog number 15070-063), cultured in a 37 ° C, 5% CO2 environment to extract total RNA did.
  • Sequences are written in the 5 ′ to 3 ′ direction. Lower case letters are 3 ′ overhang nucleotides and DNA.
  • siRNA for the three genes As a result, by introducing siRNA for the three genes, the proliferation of A549 cells and RERF-LC-AI cells was strongly suppressed, and the screening results of Example 1 were reproduced (FIGS. 1 to 3). Regarding NHP2L1 and NUP205, a phenomenon in which there is a difference in action between lung cancer cell A549 and normal lung cell MRC-5 was also reproduced (FIGS. 1 to 3). Moreover, by introducing siRNA for the three genes, not only lung cancer-derived cells but also colon cancer-derived cells HCT116 and pancreatic cancer-derived cells BxPC-3 were proliferated. In addition, knockdown of each gene by siRNA could be confirmed 48 hours after siRNA introduction (FIGS. 4 to 6).
  • Antisense oligonucleotide sequence design Design the base sequence of antisense oligonucleotides for 3 novel cancer target genes.
  • nucleotide sequence information of each gene for example, information registered in GenBank of the National Center for Biological Information (human AQR, NM_014691; human NHP2L1, NM_001003796; human NUP205, NM_015135) can be used.
  • GenBank GenBank of the National Center for Biological Information
  • human AQR human AQR, NM_014691; human NHP2L1, NM_001003796; human NUP205, NM_015135
  • Based on each base sequence for example, 1) the chain length is 13 bases, 2) does not contain a CpG sequence that can be a ligand for TLR9 so as not to show immunostimulatory action, and 3) does not have a higher order structure in the molecule.
  • the selection criteria are not limited to the above as long as a sequence having an expression suppressing effect on the target nucleic acid can be selected.
  • Examples of antisense oligonucleotides for each new target designed according to the above criteria are shown in Table 4.
  • the antisense oligo is not limited to these as long as it has an expression suppressing effect on the target nucleic acid.
  • These antisense oligonucleotides may contain a modified base, and the base may be bound by a bond other than a phosphodiester bond.
  • At least one of the bases indicated in lowercase letters in Table 4 may be LNA (Locked Nucleic Acid), and at least one of the bonds between the bases indicated in uppercase letters may be a phosphorothioate bond.
  • LNA Locked Nucleic Acid
  • Specific examples of such modified antisense oligonucleotides include those in which all the bases shown in lower case letters in Table 4 are LNAs, and the bonds between the bases shown in upper case letters are phosphorothioate bonds. Not.
  • Sequences are written in the 5 ′ to 3 ′ direction.
  • Phosphinate oligonucleotides are prepared using the method described in US Pat. No. 5,508,270.
  • Alkyl phosphonate oligonucleotides are prepared using the method described in US Pat. No. 4,469,863.
  • 3′-deoxy-3′-methylene phosphonate oligonucleotides are prepared using the methods described in US Pat. No. 5,610,289 or US Pat. No. 5,562,050.
  • Phosphoramidite oligonucleotides are prepared using the methods described in US Pat. No. 5,256,775 or US Pat. No. 5,366,878.
  • Alkylphosphonothioate oligonucleotides are prepared using the methods described in WO94 / 17093 or WO94 / 02499.
  • a 3′-deoxy-3′-aminophosphoramidate oligonucleotide is prepared using the method described in US Pat. No. 5,476,925.
  • Phosphotriester oligonucleotides are prepared using the methods described in US Pat. No. 5,032,243.
  • Borano phosphate oligonucleotides are prepared using the methods described in US Pat. No. 5,130,302 or US Pat. No. 5,177,198.
  • an oligonucleotide for example, LNA having a modified nucleoside is prepared.
  • the target nucleic acid expression suppression effect of an antisense oligonucleotide can be evaluated in various cell types if the target nucleic acid is present at a measurable level.
  • the expression suppression effect can be determined by a conventional method using, for example, a quantitative PCR method or Northern blot analysis.
  • A549 which is a human lung adenocarcinoma-derived cell line, will be described, but the cell type is not particularly limited as long as the target nucleic acid is expressed in the cell type to be selected.
  • a culture solution consisting of D-MEM (Nacalai Tesque; catalog number 08456-65) and 10% Fetal Bovine Serum (Sigma; catalog number 13778-150) containing 2000 A549 cells was prepared. Add 80 ⁇ l and incubate for 48 hours in a 37 ° C., 5% CO 2 environment.
  • template samples were prepared using Cell Amp Direct RNA Prep Kit for RT-PCR (Takara Bio Inc .; catalog number 3732), and One Step SYBR PrimeScript RT-PCR Kit II (Takara Bio Inc .; catalog) It is possible to carry out by the quantitative PCR method using the number RR086A).
  • ⁇ -actin is simultaneously measured as a correction gene and corrected.
  • primers for quantitative PCR of each gene products of Takara Bio Inc. (catalog numbers AQR, HA080236; NUP205, HA078518; ⁇ -actin, HA067803) or Qiagen (catalog numbers NHP2L1, QT00027867) can be used.
  • Antisense oligonucleotides that have been confirmed to have an expression inhibition effect on the target nucleic acid are evaluated for an antiproliferation action on cancer cells.
  • the growth inhibitory action can be routinely determined by methods such as actually counting the number of cells, measuring the amount of ATP in the cells, and dehydrogenase activity.
  • examples using A549 cells are provided, but other cell types can be used as long as antisense oligonucleotides can be introduced into the cell types to be selected. Dispense 0.25 pmol of the oligonucleotide into a 384 well plate.
  • Opti-MEM I Gibco; catalog number 31985)
  • RNAiMAX Invitrogen; catalog number 13778-150
  • a culture solution consisting of D-MEM (Nacalai Tesque; catalog number 08456-65) and 10% Fetal Bovine Serum (Sigma; catalog number 13778-150) containing 500 A549 cells was prepared.
  • the present invention can be used in the field of pharmaceuticals, particularly in the field of development and production of anticancer agents.

Abstract

The present invention relates to: a human AQR protein; the use of the gene encoding the human NHP2L1 protein or the gene encoding the human NUP205 protein as a target for cancer therapy; an agent for cancer therapy, particularly a pharmaceutical composition for cancer therapy comprising siRNA, in which these genes serve as the target; and a method for screening for agents for cancer therapy in which these genes serve as the target.

Description

癌治療用医薬組成物Pharmaceutical composition for cancer treatment
 本発明は、特定の遺伝子の発現を抑制する物質を含む癌治療用医薬組成物に関する。更に詳しくは、AQR遺伝子、NHP2L1遺伝子又はNUP205遺伝子の発現を抑制する物質を含む癌治療用医薬組成物、及び、前記のいずれかの遺伝子の発現変動に基づく癌治療用物質のスクリーニング方法、に関する。 The present invention relates to a pharmaceutical composition for treating cancer comprising a substance that suppresses the expression of a specific gene. More specifically, the present invention relates to a pharmaceutical composition for cancer treatment containing a substance that suppresses the expression of AQR gene, NHP2L1 gene or NUP205 gene, and a method for screening a substance for cancer treatment based on the expression variation of any of the above genes.
 癌細胞の最も一般的な特徴は、正常細胞に比べて急速かつ制御不能な増殖をすることである。この特徴を利用して、癌領域においては増殖性細胞に対して毒性を持つ薬剤を用いた化学療法が行われている。このような癌細胞の増殖を抑制する薬剤(抗癌剤)の種類としては、シクロフォスファミドなどの核酸合成阻害剤、アクチノマイシンD及びブレオマイシンなどの抗生物質、5-フルオロウラシル及びメソトレキセートなどの代謝拮抗剤、パクリタキセルなどの微小管脱重合阻害薬、並びにイマチニブ及びゲフィチニブなどの分子標的薬などが知られている。しかし、これらの薬剤は、必ずしも癌に対する十分な治療効果が得られず、また使用により薬剤耐性が生じるという問題がある。しかも正常細胞にも作用するため、副作用を伴うこともある。したがって、新たな作用機序の抗癌剤、すなわち、癌細胞に対する増殖抑制作用を有しつつ正常細胞に対する毒性の少ない抗癌剤の開発が望まれていた。 The most common feature of cancer cells is their rapid and uncontrollable growth compared to normal cells. Taking advantage of this feature, chemotherapy using drugs that are toxic to proliferating cells has been performed in the oncology region. The types of drugs (anticancer agents) that suppress the growth of cancer cells include nucleic acid synthesis inhibitors such as cyclophosphamide, antibiotics such as actinomycin D and bleomycin, and antimetabolites such as 5-fluorouracil and methotrexate. In addition, microtubule depolymerization inhibitors such as paclitaxel and molecular target drugs such as imatinib and gefitinib are known. However, these drugs do not necessarily have a sufficient therapeutic effect on cancer, and have a problem that drug resistance is caused by use. In addition, since it acts on normal cells, it may have side effects. Therefore, it has been desired to develop an anticancer agent having a new mechanism of action, that is, an anticancer agent having a growth-inhibiting action against cancer cells and having little toxicity against normal cells.
 癌の治療の標的(ターゲット)となる遺伝子を見出して、癌治療のターゲット遺伝子の発現又は機能を抑制することで癌細胞の増殖を抑制し、癌を治療するアプローチがさかんに研究されている。近年、所望の遺伝子(mRNA)に相補する約21塩基程度のRNAオリゴヌクレオチド鎖及びそのアンチセンスRNAオリゴヌクレオチド鎖からなる二本鎖RNA(small interfering RNA:siRNA)が開発され、哺乳類細胞においても任意の遺伝子の発現を抑制する事が可能となった(非特許文献1:Nature, 411巻、494-498頁、2001年)。現在、siRNA技術は、ライフサイエンスの研究において盛んに利用されており、また、癌を含む種々の疾患治療への応用も期待されている。しかし、癌領域を含めて医薬品として販売されている疾患治療用siRNAはまだ存在しない。 An approach for treating cancer by suppressing the growth of cancer cells by finding a gene that is a target for cancer treatment and suppressing the expression or function of the target gene for cancer treatment has been extensively studied. In recent years, RNA oligonucleotide strands of about 21 bases complementary to the desired gene (mRNA) and double-stranded RNA (small RNA interfering RNA: siRNA) consisting of the antisense RNA oligonucleotide strand have been developed, and can be arbitrarily selected in mammalian cells. It has become possible to suppress the expression of these genes (Non-patent Document 1: Nature, Vol. 411, 494-498, 2001). Currently, siRNA technology is actively used in life science research and is expected to be applied to various diseases including cancer. However, there are no siRNAs for treating diseases that are sold as pharmaceuticals including oncology.
 本発明の目的は、新規な癌治療のターゲット遺伝子、すなわちその発現を抑制することで癌細胞の増殖を抑制し、癌の治療を可能とする遺伝子を見出して、癌の治療用医薬組成物を提供することである。 An object of the present invention is to find a novel cancer treatment target gene, that is, a gene capable of suppressing cancer cell growth by suppressing its expression and enabling the treatment of cancer. Is to provide.
 本発明者等は、肺癌由来細胞株に、ヒトの全遺伝子を網羅するsiRNAライブラリーを遺伝子導入することにより、遺伝子発現の抑制により肺癌由来細胞株の増殖を顕著に抑制する3種の遺伝子(AQR、NHP2L1及びNUP205)を同定した。これらの3種類の遺伝子の1つまたはそれ以上の発現を抑制することにより、癌細胞の増殖を抑制できることを確認し、本発明を完成するに至った。 The present inventors introduced three types of genes that remarkably suppress the growth of lung cancer-derived cell lines by suppressing gene expression by introducing a siRNA library covering all human genes into the lung cancer-derived cell lines. AQR, NHP2L1 and NUP205) were identified. By suppressing the expression of one or more of these three genes, it was confirmed that the growth of cancer cells could be suppressed, and the present invention was completed.
 すなわち、本発明は以下の[1]~[13]を提供する。
[1]AQR遺伝子、NHP2L1遺伝子又はNUP205遺伝子の発現を抑制する物質を含む、癌の治療のための医薬組成物。
[2]遺伝子の発現を抑制する物質が、siRNA、アンチセンスオリゴヌクレオチド若しくはリボザイム又はこれらの発現ベクターである、[1]の医薬組成物。
[3]遺伝子の発現を抑制する物質が、siRNA又はsiRNAの発現ベクターである、[1]又は[2]に記載の医薬組成物。
[4]前記siRNAが、下記の(a)~(i)いずれかに記載のsiRNAからなる群より選択される1種またはそれ以上のsiRNAである、[2]又は[3]に記載の医薬組成物:
 (a)二本鎖RNA部分が、配列番号:7における第1番目から第19番目のヌクレオチド配列および配列番号:8における第1番目から第19番目のヌクレオチド配列からなるsiRNA;
 (b)二本鎖RNA部分が、配列番号:9における第1番目から第19番目のヌクレオチド配列および配列番号:10における第1番目から第19番目のヌクレオチド配列からなるsiRNA;
 (c)二本鎖RNA部分が、配列番号:11のヌクレオチド配列における第1番目から第19番目および配列番号:12における第1番目から第19番目のヌクレオチド配列からなるsiRNA;
 (d)二本鎖RNA部分が、配列番号:13における第1番目から第19番目のヌクレオチド配列および配列番号:14における第1番目から第19番目のヌクレオチド配列からなるsiRNA;
 (e)二本鎖RNA部分が、配列番号:15における第1番目から第19番目のヌクレオチド配列および配列番号:16における第1番目から第19番目のヌクレオチド配列からなるsiRNA;
 (f)二本鎖RNA部分が、配列番号:17における第1番目から第19番目のヌクレオチド配列および配列番号:18における第1番目から第19番目のヌクレオチド配列からなるsiRNA;
 (g)二本鎖RNA部分が、配列番号:19における第1番目から第19番目のヌクレオチド配列および配列番号:20における第1番目から第19番目のヌクレオチド配列からなるsiRNA;
 (h)二本鎖RNA部分が、配列番号:21における第1番目から第19番目のヌクレオチド配列および配列番号:22における第1番目から第19番目のヌクレオチド配列からなるsiRNA;
 (i)二本鎖RNA部分における一方または両方のヌクレオチド配列において1~数個のヌクレオチドが付加、挿入、欠失または置換されている、(a)~(h)のいずれかに記載のsiRNA。
[5]siRNAの一方又は両方の鎖に3’末端のオーバーハングを含む、[4]に記載の医薬組成物。
[6]癌が、肺癌、大腸癌又は膵臓癌のいずれかである、[1]~[5]のいずれかに記載の医薬組成物。
[7]AQR遺伝子、NHP2L1遺伝子又はNUP205遺伝子の発現を抑制する物質を投与する工程を有する、癌を治療する方法。
[8]遺伝子の発現を抑制する物質が、siRNA又はsiRNAの発現ベクターである[7]に記載の方法。
[9]癌の治療に用いられる、AQR遺伝子、NHP2L1遺伝子又はNUP205遺伝子の発現を抑制する物質。
[10]遺伝子の発現を抑制する物質がsiRNA又はsiRNAの発現ベクターである、[9]に記載の物質。
[11]癌の治療剤の製造のための、AQR遺伝子、NHP2L1遺伝子又はNUP205遺伝子の発現を抑制する物質の使用。
[12]遺伝子の発現を抑制する物質がsiRNA又はsiRNAの発現ベクターである、[11]に記載の使用。
[13]下記の工程(a)~(c)を含む、癌の治療用物質をスクリーニングする方法:
(a)AQR遺伝子、NHP2L1遺伝子又はNUP205遺伝子の発現を測定可能な細胞と被験物質とを接触させる工程;
(b)被験物質を接触させた細胞における前記遺伝子の発現量を測定し、該発現量を、被験物質を接触させない対照細胞における前記遺伝子の発現量と比較する工程;
次いで
(c)被験物質を与えられた細胞における前記遺伝子の発現が、被験物質を与えられていない細胞における前記遺伝子の発現よりも低下している場合に、被験物質を癌の治療物質として選択する工程。
That is, the present invention provides the following [1] to [13].
[1] A pharmaceutical composition for treating cancer comprising a substance that suppresses the expression of AQR gene, NHP2L1 gene or NUP205 gene.
[2] The pharmaceutical composition according to [1], wherein the substance that suppresses gene expression is siRNA, an antisense oligonucleotide or a ribozyme, or an expression vector thereof.
[3] The pharmaceutical composition according to [1] or [2], wherein the substance that suppresses gene expression is siRNA or an siRNA expression vector.
[4] The medicament according to [2] or [3], wherein the siRNA is one or more siRNA selected from the group consisting of siRNAs according to any one of (a) to (i) below: Composition:
(A) siRNA in which the double-stranded RNA portion consists of the first to 19th nucleotide sequence in SEQ ID NO: 7 and the first to 19th nucleotide sequence in SEQ ID NO: 8;
(B) siRNA in which the double-stranded RNA portion consists of the first to 19th nucleotide sequence in SEQ ID NO: 9 and the first to 19th nucleotide sequence in SEQ ID NO: 10;
(C) siRNA in which the double-stranded RNA portion comprises the first to the 19th nucleotide sequence in the nucleotide sequence of SEQ ID NO: 11 and the first to the 19th nucleotide sequence in SEQ ID NO: 12;
(D) siRNA in which the double-stranded RNA portion consists of the first to the 19th nucleotide sequence in SEQ ID NO: 13 and the first to the 19th nucleotide sequence in SEQ ID NO: 14;
(E) siRNA in which the double-stranded RNA portion consists of the first to 19th nucleotide sequence in SEQ ID NO: 15 and the first to 19th nucleotide sequence in SEQ ID NO: 16;
(F) siRNA in which the double-stranded RNA portion consists of the first to 19th nucleotide sequence in SEQ ID NO: 17 and the first to 19th nucleotide sequence in SEQ ID NO: 18;
(G) siRNA in which the double-stranded RNA portion consists of the first to 19th nucleotide sequence in SEQ ID NO: 19 and the first to 19th nucleotide sequence in SEQ ID NO: 20;
(H) siRNA in which the double-stranded RNA portion consists of the first to 19th nucleotide sequence in SEQ ID NO: 21 and the first to 19th nucleotide sequence in SEQ ID NO: 22;
(I) The siRNA according to any one of (a) to (h), wherein 1 to several nucleotides are added, inserted, deleted or substituted in one or both nucleotide sequences in the double-stranded RNA portion.
[5] The pharmaceutical composition according to [4], wherein one or both strands of the siRNA contain a 3 ′ terminal overhang.
[6] The pharmaceutical composition according to any one of [1] to [5], wherein the cancer is any of lung cancer, colon cancer and pancreatic cancer.
[7] A method for treating cancer, comprising a step of administering a substance that suppresses expression of an AQR gene, NHP2L1 gene, or NUP205 gene.
[8] The method according to [7], wherein the substance that suppresses gene expression is siRNA or an siRNA expression vector.
[9] A substance that suppresses the expression of an AQR gene, NHP2L1 gene, or NUP205 gene, which is used for cancer treatment.
[10] The substance according to [9], wherein the substance that suppresses gene expression is siRNA or an siRNA expression vector.
[11] Use of a substance that suppresses the expression of AQR gene, NHP2L1 gene or NUP205 gene for the production of a therapeutic agent for cancer.
[12] The use according to [11], wherein the substance that suppresses gene expression is siRNA or an siRNA expression vector.
[13] A method for screening a substance for treating cancer comprising the following steps (a) to (c):
(A) contacting a test substance with a cell capable of measuring the expression of AQR gene, NHP2L1 gene or NUP205 gene;
(B) measuring the expression level of the gene in cells contacted with the test substance, and comparing the expression level with the expression level of the gene in control cells not contacted with the test substance;
Next, (c) when the expression of the gene in a cell given the test substance is lower than the expression of the gene in a cell not given the test substance, the test substance is selected as a cancer treatment substance Process.
 本発明により、AQR、NHP2L1又はNUP205の遺伝子の発現を抑制することで、癌細胞の増殖を抑制する事が可能であり、これらの遺伝子の発現を阻害する物質は癌治療用医薬組成物の有効成分として用いることが出来る。本発明による癌治療用医薬組成物は、特定の遺伝子の発現を特異的に抑制するという新しい作用機序の抗癌剤を提供するものであり、従来の抗癌剤に比べて毒性が少ないことを大きな特徴とする。さらに本発明により、上記遺伝子をターゲットとして用いる、癌の治療用物質をスクリーニングする方法も提供される。 According to the present invention, it is possible to suppress the growth of cancer cells by suppressing the expression of AQR, NHP2L1 or NUP205 gene, and substances that inhibit the expression of these genes are effective for pharmaceutical compositions for cancer treatment. It can be used as a component. The pharmaceutical composition for cancer treatment according to the present invention provides an anticancer agent having a new mechanism of action that specifically suppresses the expression of a specific gene, and is characterized by being less toxic than conventional anticancer agents. To do. Furthermore, the present invention also provides a method for screening a cancer therapeutic substance using the above gene as a target.
図1は、AQR遺伝子に対する3種類のsiRNA(s18725, s18726, s18727)のトランスフェクションによる細胞増殖への影響を示す図である。6種類の細胞株(A549、RERF-LC-AI、HCT116、 BxPC-3、MRC-5、BEAS-2B)ごとに各siRNAの結果が示されている。縦軸は、生細胞数(%)を示す。ネガティブコントロールsiRNA(NC-#1)添加時の生細胞数を100%とした。FIG. 1 is a diagram showing the influence on cell proliferation by transfection of three types of siRNA (s18725, s18726, s18727) for the AQR gene. The results of each siRNA are shown for each of the six cell lines (A549, RERF-LC-AI, HCT116, BxPC-3, MRC-5, BEAS-2B). The vertical axis represents the number of viable cells (%). The number of viable cells when negative control siRNA (NC- # 1) was added was taken as 100%. 図2は、NHP2L1遺伝子に対する2種類のsiRNA(s9548, s9549)のトランスフェクションによる細胞増殖への影響を示す図である。6種類の細胞株(A549、RERF-LC-AI、HCT116、 BxPC-3、MRC-5、BEAS-2B)ごとに各siRNAの結果が示されている。縦軸は、生細胞数(%)を示す。ネガティブコントロールsiRNA(NC-#1)添加時の生細胞数を100%とした。FIG. 2 is a graph showing the effect on cell proliferation by transfection of two types of siRNA (s9548, s9549) for the NHP2L1 gene. The results of each siRNA are shown for each of the six cell lines (A549, RERF-LC-AI, HCT116, BxPC-3, MRC-5, BEAS-2B). The vertical axis represents the number of viable cells (%). The number of viable cells when negative control siRNA (NC- # 1) was added was taken as 100%. 図3は、NUP205遺伝子に対する3種類のsiRNA(s23175, s23176, s23177)のトランスフェクションによる細胞増殖への影響を示す図である。6種類の細胞株(A549、RERF-LC-AI、HCT116、 BxPC-3、MRC-5、BEAS-2B)ごとに各siRNAの結果が示されている。縦軸は、生細胞数(%)を示す。ネガティブコントロールsiRNA(NC-#1)添加時の生細胞数を100%とした。FIG. 3 is a diagram showing the effect on cell proliferation by transfection of three types of siRNA (s23175, s23176, s23177) for the NUP205 gene. The results of each siRNA are shown for each of the six cell lines (A549, RERF-LC-AI, HCT116, BxPC-3, MRC-5, BEAS-2B). The vertical axis represents the number of viable cells (%). The number of viable cells when negative control siRNA (NC- # 1) was added was taken as 100%. 図4は、AQR遺伝子に対する3種類のsiRNA(s18725, s18726, s18727)のトランスフェクションによる標的遺伝子のmRNA発現への影響を示す図である。6種類の細胞株(A549、RERF-LC-AI、HCT116、 BxPC-3、MRC-5、BEAS-2B)株ごとに各siRNAの結果が示されている。縦軸は、標的遺伝子(mRNA)の発現量(%)を示す。ネガティブコントロールsiRNA(NC-#1)添加時の発現量を100%とした。FIG. 4 is a diagram showing the influence of the transfection of three types of siRNA (s18725, RNAs18726, s18727) on the AQR gene on the mRNA expression of the target gene. The results of each siRNA are shown for each of six types of cell lines (A549, RERF-LC-AI, HCT116, BxPC-3, MRC-5, BEAS-2B). The vertical axis shows the expression level (%) of the target gene (mRNA). The expression level when adding negative control siRNA (NC- # 1) was 100%. 図5は、NHP2L1遺伝子に対する2種類のsiRNA(s9548, s9549)のトランスフェクションによる標的遺伝子のmRNA発現への影響を示す図である。6種類の細胞株(A549、RERF-LC-AI、HCT116、 BxPC-3、MRC-5、BEAS-2B)株ごとに各siRNAの結果が示されている。縦軸は、標的遺伝子(mRNA)の発現量(%)を示す。ネガティブコントロールsiRNA(NC-#1)添加時の発現量を100%とした。FIG. 5 is a diagram showing the influence on mRNA expression of a target gene by transfection of two types of siRNA (s9548, s9549) for the NHP2L1 gene. The results of each siRNA are shown for each of six types of cell lines (A549, RERF-LC-AI, HCT116, BxPC-3, MRC-5, BEAS-2B). The vertical axis shows the expression level (%) of the target gene (mRNA). The expression level when adding negative control siRNA (NC- # 1) was 100%. 図6は、NUP205遺伝子に対する3種類のsiRNA(s23175, s23176, s23177)のトランスフェクションによる標的遺伝子のmRNA発現への影響を示す図である。6種類の細胞株(A549、RERF-LC-AI、HCT116、 BxPC-3、MRC-5、BEAS-2B)株ごとに各siRNAの結果が示されている。縦軸は、標的遺伝子(mRNA)の発現量(%)を示す。ネガティブコントロールsiRNA(NC-#1)添加時の発現量を100%とした。FIG. 6 is a diagram showing the influence on mRNA expression of a target gene by transfection of three types of siRNA (s23175, s23176, s23177) for the NUP205 gene. The results of each siRNA are shown for each of six types of cell lines (A549, RERF-LC-AI, HCT116, BxPC-3, MRC-5, BEAS-2B). The vertical axis shows the expression level (%) of the target gene (mRNA). The expression level when adding negative control siRNA (NC- # 1) was 100%.
 本明細書において使用される用語は、特に言及する場合を除いて、当該分野で通常用いる意味で用いられる。 Unless otherwise stated, terms used in the present specification are used in the meaning normally used in this field.
 本発明は、1の態様において、AQR遺伝子、NHP2L1遺伝子又はNUP205遺伝子の発現を抑制する物質を含む、医薬組成物を提供する。かかる医薬組成物は、例えば、癌の治療に用いることができる。 In one aspect, the present invention provides a pharmaceutical composition comprising a substance that suppresses the expression of AQR gene, NHP2L1 gene or NUP205 gene. Such a pharmaceutical composition can be used, for example, for the treatment of cancer.
 本明細書の実施例3に示す通り、AQR遺伝子、NHP2L1遺伝子又はNUP205遺伝子を新規な癌の標的遺伝子として見出した。 As shown in Example 3 of the present specification, the AQR gene, NHP2L1 gene or NUP205 gene was found as a novel target gene for cancer.
 AQRはRNA結合タンパクであり(GeneBank Accession ID: NM_014691)、スプライソソーム複合体の構成因子であることが推測されているが(Gene Ontologyデータベース)、機能の詳細については不明である。ヒトHEK293T細胞においてAQRをsiRNAで発現抑制すると、ヒト免疫不全ウイルスであるHIV-1の同細胞に対する感染効率が低下すると報告されている(Cell、135巻、49-60頁、2008年)。しかし、AQRと癌との関連については知られていない。 AQR is an RNA-binding protein (GeneBank Accession ID: NM_014691) and is presumed to be a component of the spliceosome complex (Gene Ontology database), but the details of the function are unknown. Inhibition of AQR expression with siRNA in human HEK293T cells has been reported to reduce the infection efficiency of human immunodeficiency virus HIV-1 (Cell, 135, 49-60, 2008). However, the relationship between AQR and cancer is not known.
 NHP2L1はスプライソソーム複合体の構成因子であり(GeneBank Accession ID: NM_001003796 ;  Nature、419巻、182-185頁、2002年)、U4核内低分子RNA(snRNA)に結合することで、スプライソソームの会合において重要な役割を果たしている(EMBO Journal、18巻、6119-6133頁、1999年)。しかし、NHP2L1と癌との関連については知られていない。 NHP2L1 is a component of the spliceosome complex (GeneBank Accession ID: NM_001003796; Nature, 419, 182-185, 2002) and binds to U4 small nuclear RNA (snRNA), It plays an important role in the meeting (EMBO Journal, 18, 6119-6133, 1999). However, the relationship between NHP2L1 and cancer is not known.
 NUP205はヌクレオポリンと呼ばれる核膜孔複合体の構成因子の一つであり(GeneBank Accession ID:NM_015135 ;  Molecular biology of the cell、15巻、4261-4277頁、2004年)、核膜孔に局在して細胞質から核へのタンパク質輸送に関与している(Molecular biology of the cell、8巻、2017-2038頁、1997年)。しかし、NUP205の発現が癌細胞の増殖に及ぼす影響については知られていない。 NUP205 is one of the components of the nuclear pore complex called nucleoporin (GeneBank Accession ID: NM_015135; Molecular Biology of the cell, 15, 4261-4277, 2004) and is localized in the nuclear pore It is involved in protein transport from the cytoplasm to the nucleus (Molecular Biology of the cell, Vol. 8, 2017-2038, 1997). However, the effect of NUP205 expression on cancer cell proliferation is not known.
 本明細書において、「AQR遺伝子」とは、ヒトAQRタンパク質をコードする遺伝子を意味する。ヒトAQR遺伝子の塩基配列及びヒトAQRタンパク質のアミノ酸配列は公知であり、例えば、ヒトAQR遺伝子の塩基配列(配列番号1)およびヒトAQRタンパク質アミノ酸配列(配列番号2)がGenBankに登録され(GenBank Accession No. NM_014691)、公表されている。
 本明細書において、ヒトAQRタンパク質は、配列番号2のアミノ酸配列からなるタンパク質のみならず、ヒト個体内で生じ得る変異体も含み、配列番号2の配列からなるタンパク質において1アミノ酸又は数アミノ酸が欠失、置換及び/又は付加されたタンパク質であって多形性や突然変異に基づく変異により生じるもの、が含まれる。ただし、これらの変異体ヒトAQRタンパク質は、配列番号2のアミノ酸配列からなるタンパク質と同等の機能を有するものである。
 本明細書において、「AQR遺伝子」は、配列番号1の塩基配列からなる遺伝子のみならず、ヒト個体内で生じ得る変異体も含み、例えば配列番号1の塩基配列からなる遺伝子において1塩基又は数塩基が欠失、置換及び/又は付加された遺伝子であって、多形性や突然変異に基づく変異により生じるもの、が含まれる。さらに、「AQR遺伝子」は、配列番号1の塩基配列に対して、80%以上、例えば、85%以上、90%以上、95%以上、97%以上、98%以上、99%以上、99.5%以上、99.7%以上または99.9%以上の同一性を有するヌクレオチド配列からなる変異体を含む。塩基配列の同一性は、BLAST、FASTAなどの公知のアルゴリズムを利用して決定できる。さらに、「AQR遺伝子」は、配列番号1の塩基配列からなる遺伝子に対して、ストリンジェントな条件下でハイブリダイゼーションする塩基配列からなる変異体を含む。ストリンジェントなハイブリダイゼーション条件の例としては、例えばハイブリダイズ後の洗浄条件として、通常「1×SSC、0.1%SDS、37℃」程度の条件を挙げることができる。相補鎖はかかる条件で洗浄しても対象とする正鎖とハイブリダイズ状態を維持するものであることが好ましい。特に制限されないが、より厳しいハイブリダイズ条件として「0.5×SSC、0.1%SDS、42℃」程度、さらに厳しいハイブリダイズ条件として「0.1×SSC、0.1%SDS、65℃」程度の洗浄条件を挙げることができる。ハイブリダイゼーションは、Molecular Cloning:A Laboratory Manual,Second Edition(1989)(Cold Spring Harbor Laboratory Press)、Current Protocols in Molecular Biology(1994)(Wiley-Interscience)、DNA Cloning 1:Core Techniques、A Practical Approach,Second Edition(1995)(Oxford University Press)などに記載されている方法に準じて行うことができる。ただし、これらの変異体遺伝子は、配列番号2のアミノ酸配列からなるタンパク質と同等の機能を有するタンパク質をコードするものである。
As used herein, “AQR gene” means a gene encoding a human AQR protein. The base sequence of the human AQR gene and the amino acid sequence of the human AQR protein are known. For example, the base sequence of the human AQR gene (SEQ ID NO: 1) and the human AQR protein amino acid sequence (SEQ ID NO: 2) are registered in GenBank (GenBank Accession No. NM_014691), published.
In this specification, the human AQR protein includes not only a protein consisting of the amino acid sequence of SEQ ID NO: 2 but also a variant that can occur in a human individual, and the protein consisting of the sequence of SEQ ID NO: 2 lacks one amino acid or several amino acids. Proteins that are lost, substituted, and / or added and that are caused by mutations based on polymorphisms or mutations are included. However, these mutant human AQR proteins have functions equivalent to those of the protein consisting of the amino acid sequence of SEQ ID NO: 2.
In the present specification, the “AQR gene” includes not only a gene consisting of the base sequence of SEQ ID NO: 1 but also mutants that can occur in human individuals. For example, in the gene consisting of the base sequence of SEQ ID NO: 1, Genes with bases deleted, substituted and / or added, which are caused by mutations based on polymorphisms or mutations are included. Further, the “AQR gene” is 80% or more, for example, 85% or more, 90% or more, 95% or more, 97% or more, 98% or more, 99% or more with respect to the nucleotide sequence of SEQ ID NO: 1. Variants consisting of nucleotide sequences having 5% or more, 99.7% or more, or 99.9% or more identity are included. The identity of the base sequence can be determined using a known algorithm such as BLAST or FASTA. Furthermore, the “AQR gene” includes a variant consisting of a base sequence that hybridizes to the gene consisting of the base sequence of SEQ ID NO: 1 under stringent conditions. Examples of stringent hybridization conditions include, for example, conditions of about “1 × SSC, 0.1% SDS, 37 ° C.” as washing conditions after hybridization. The complementary strand is preferably one that maintains a hybridized state with the target positive strand even when washed under such conditions. Although there is no particular limitation, the more stringent hybridization conditions are about “0.5 × SSC, 0.1% SDS, 42 ° C.”, and the more severe hybridization conditions are “0.1 × SSC, 0.1% SDS, 65 ° C.”. Can do. Hybridization: Molecular Cloning: A Laboratory Manual, Second Edition (1989) (Cold Spring Harbor Laboratory Press), Current Protocol in Coil in Amplification (Clinic): Current Protocol in Coil, 1994 (W). It can be carried out according to the method described in Edition (1995) (Oxford University Press). However, these mutant genes encode proteins having functions equivalent to those of the protein consisting of the amino acid sequence of SEQ ID NO: 2.
 本明細書において、「NHP2L1遺伝子」とは、ヒトNHP2L1タンパク質をコードする遺伝子を意味する。ヒトNHP2L1遺伝子の塩基配列及びヒトNHP2L1タンパク質のアミノ酸配列は公知であり、例えば、ヒトNHP2L1遺伝子の塩基配列(配列番号3)およびヒトNHP2L1タンパク質アミノ酸配列(配列番号4)がGenBankに登録され(GenBank Accession No. NM_001003796)、公表されている。
 本明細書において、ヒトNHP2L1タンパク質は、配列番号4のアミノ酸配列からなるタンパク質のみならず、ヒト個体内で生じ得る変異体も含み、配列番号4の配列からなるタンパク質において1アミノ酸又は数アミノ酸が欠失、置換及び/又は付加されたタンパク質であって多形性や突然変異に基づく変異により生じるもの、が含まれる。ただし、これらの変異体ヒトNHP2L1タンパク質は、配列番号4のアミノ酸配列からなるタンパク質と同等の機能を有するものである。
 本明細書において、「NHP2L1遺伝子」は、配列番号3の塩基配列からなる遺伝子のみならず、ヒト個体内で生じ得る変異体も含み、例えば配列番号3の塩基配列からなる遺伝子において1塩基又は数塩基が欠失、置換及び/又は付加された遺伝子であって、多形性や突然変異に基づく変異により生じるもの、が含まれる。さらに、「NHP2L1遺伝子」は、配列番号3の塩基配列に対して、80%以上、例えば、85%以上、90%以上、95%以上、97%以上、98%以上、99%以上、99.5%以上、99.7%以上または99.9%以上の同一性を有するヌクレオチド配列からなる変異体を含む。塩基配列の同一性は、BLAST、FASTAなどの公知のアルゴリズムを利用して決定できる。さらに、「NHP2L1遺伝子」は、配列番号3の塩基配列からなる遺伝子に対して、ストリンジェントな条件下でハイブリダイゼーションする塩基配列からなる変異体を含む。ストリンジェントなハイブリダイゼーション条件の例としては上記のものが挙げられる。ただし、これらの変異体遺伝子は、配列番号4のアミノ酸配列からなるタンパク質と同等の機能を有するタンパク質をコードするものである。
In the present specification, “NHP2L1 gene” means a gene encoding human NHP2L1 protein. The base sequence of the human NHP2L1 gene and the amino acid sequence of the human NHP2L1 protein are known. For example, the base sequence of the human NHP2L1 gene (SEQ ID NO: 3) and the human NHP2L1 protein amino acid sequence (SEQ ID NO: 4) are registered in GenBank (GenBank Accession No. NM_001003796).
In this specification, human NHP2L1 protein includes not only a protein consisting of the amino acid sequence of SEQ ID NO: 4 but also a variant that can occur in a human individual, and the protein consisting of the sequence of SEQ ID NO: 4 lacks one amino acid or several amino acids. Proteins that are lost, substituted, and / or added and that are caused by mutations based on polymorphisms or mutations are included. However, these mutant human NHP2L1 proteins have functions equivalent to those of the protein consisting of the amino acid sequence of SEQ ID NO: 4.
In the present specification, the “NHP2L1 gene” includes not only a gene consisting of the base sequence of SEQ ID NO: 3 but also a variant that can occur in a human individual. For example, in the gene consisting of the base sequence of SEQ ID NO: 3, Genes with bases deleted, substituted and / or added, which are caused by mutations based on polymorphisms or mutations are included. Furthermore, the “NHP2L1 gene” is 80% or more, for example, 85% or more, 90% or more, 95% or more, 97% or more, 98% or more, 99% or more, 99. Variants consisting of nucleotide sequences having 5% or more, 99.7% or more, or 99.9% or more identity are included. The identity of the base sequence can be determined using a known algorithm such as BLAST or FASTA. Furthermore, the “NHP2L1 gene” includes a variant consisting of a base sequence that hybridizes to the gene consisting of the base sequence of SEQ ID NO: 3 under stringent conditions. Examples of stringent hybridization conditions include those described above. However, these mutant genes encode proteins having functions equivalent to those of the protein consisting of the amino acid sequence of SEQ ID NO: 4.
 本明細書において、「NUP205遺伝子」とは、ヒトNUP205タンパク質をコードする遺伝子を意味する。ヒトNUP205遺伝子の塩基配列及びヒトNUP205タンパク質のアミノ酸配列は公知であり、例えば、ヒトNUP205遺伝子の塩基配列(配列番号5)およびヒトNUP205タンパク質アミノ酸配列(配列番号6)がGenBankに登録され(GenBank Accession No. NM_015135)、公表されている。
 本明細書において、ヒトNUP205タンパク質は、配列番号6のアミノ酸配列からなるタンパク質のみならず、ヒト個体内で生じ得る変異体も含み、配列番号6の配列からなるタンパク質において1アミノ酸又は数アミノ酸が欠失、置換及び/又は付加されたタンパク質であって多形性や突然変異に基づく変異により生じるもの、が含まれる。ただし、これらの変異体ヒトNUP205タンパク質は、配列番号6のアミノ酸配列からなるタンパク質と同等の機能を有するものである。
 本明細書において、「NUP205遺伝子」は、配列番号5の塩基配列からなる遺伝子のみならず、ヒト個体内で生じ得る変異体も含み、例えば配列番号5の塩基配列からなる遺伝子において1塩基又は数塩基が欠失、置換及び/又は付加された遺伝子であって、多形性や突然変異に基づく変異により生じるもの、が含まれる。さらに、「NUP205遺伝子」は、配列番号5の塩基配列に対して、80%以上、例えば、85%以上、90%以上、95%以上、97%以上、98%以上、99%以上、99.5%以上、99.7%以上または99.9%以上の同一性を有するヌクレオチド配列からなる変異体を含む。塩基配列の同一性は、BLAST、FASTAなどの公知のアルゴリズムを利用して決定できる。さらに、「NUP205遺伝子」は、配列番号5の塩基配列からなる遺伝子に対して、ストリンジェントな条件下でハイブリダイゼーションする塩基配列からなる変異体を含む。ストリンジェントなハイブリダイゼーション条件の例としては上記のものが挙げられる。ただし、これらの変異体遺伝子は、配列番号6のアミノ酸配列からなるタンパク質と同等の機能を有するタンパク質をコードするものである。
In the present specification, “NUP205 gene” means a gene encoding human NUP205 protein. The base sequence of human NUP205 gene and the amino acid sequence of human NUP205 protein are known. For example, the base sequence of human NUP205 gene (SEQ ID NO: 5) and the amino acid sequence of human NUP205 protein (SEQ ID NO: 6) are registered in GenBank (GenBank Accession No. NM_015135).
In this specification, the human NUP205 protein includes not only a protein consisting of the amino acid sequence of SEQ ID NO: 6 but also a variant that can occur in a human individual, and the protein consisting of the sequence of SEQ ID NO: 6 lacks one amino acid or several amino acids. Proteins that are lost, substituted, and / or added and that are caused by mutations based on polymorphisms or mutations are included. However, these mutant human NUP205 proteins have functions equivalent to those of the protein consisting of the amino acid sequence of SEQ ID NO: 6.
In the present specification, the “NUP205 gene” includes not only a gene consisting of the base sequence of SEQ ID NO: 5 but also mutants that can occur in human individuals. For example, in the gene consisting of the base sequence of SEQ ID NO: 5, Genes with bases deleted, substituted and / or added, which are caused by mutations based on polymorphisms or mutations are included. Furthermore, the “NUP205 gene” is 80% or more, for example, 85% or more, 90% or more, 95% or more, 97% or more, 98% or more, 99% or more with respect to the nucleotide sequence of SEQ ID NO: 5. Variants consisting of nucleotide sequences having 5% or more, 99.7% or more, or 99.9% or more identity are included. The identity of the base sequence can be determined using a known algorithm such as BLAST or FASTA. Furthermore, the “NUP205 gene” includes a variant consisting of a base sequence that hybridizes under stringent conditions to the gene consisting of the base sequence of SEQ ID NO: 5. Examples of stringent hybridization conditions include those described above. However, these mutant genes encode proteins having functions equivalent to those of the protein consisting of the amino acid sequence of SEQ ID NO: 6.
 本明細書において、「遺伝子の発現を抑制する物質」とは、標的遺伝子のmRNAの転写を抑制する物質、転写されたmRNAを分解する物質、またはmRNAからのタンパク質の翻訳を抑制する物質であれば特に限定されるものでない。かかる物質として、siRNA、アンチセンスオリゴヌクレオチド若しくはリボザイム又はこれらの発現ベクターなどが例示される。其の中でも、siRNA及びその発現ベクターが好ましく、特にsiRNAが好ましい。「遺伝子の発現を抑制する物質」としては、上記のほか、タンパク質やペプチド、あるいは他の小分子も含まれる。なお、本発明において標的遺伝子は、AQR遺伝子、NHP2L1遺伝子又はNUP205遺伝子である。 In the present specification, the “substance that suppresses gene expression” refers to a substance that suppresses the transcription of mRNA of the target gene, a substance that degrades the transcribed mRNA, or a substance that suppresses the translation of the protein from the mRNA. There is no particular limitation. Examples of such substances include siRNA, antisense oligonucleotides or ribozymes, or expression vectors thereof. Among these, siRNA and its expression vector are preferable, and siRNA is particularly preferable. In addition to the above, “substances that suppress gene expression” include proteins, peptides, and other small molecules. In the present invention, the target gene is AQR gene, NHP2L1 gene or NUP205 gene.
 本明細書において、「siRNA」とは、約15~約40塩基からなる二本鎖RNA部分を有するRNA分子であり、前記siRNAのアンチセンス鎖と相補的な配列をもつ標的遺伝子のmRNAを切断し、標的遺伝子の発現を抑制する機能を有する。詳細には、本発明におけるsiRNAは、AQR遺伝子、NHP2L1遺伝子又はNUP205遺伝子のmRNA中の連続したRNA配列と相同な配列からなるセンスRNA鎖と、該センスRNA配列に相補的な配列からなるアンチセンスRNA鎖とからなる二本鎖RNA部分を含んでなるRNAである。かかるsiRNAおよび後述の変異体siRNAの設計および製造は当業者の技量の範囲内である。 In the present specification, “siRNA” is an RNA molecule having a double-stranded RNA portion consisting of about 15 to about 40 bases, and cleaves the mRNA of the target gene having a sequence complementary to the antisense strand of the siRNA. And has a function of suppressing the expression of the target gene. Specifically, the siRNA in the present invention is an antisense comprising a sense RNA strand comprising a sequence homologous to a continuous RNA sequence in the mRNA of the AQR gene, NHP2L1 gene or NUP205 gene, and a sequence complementary to the sense RNA sequence. An RNA comprising a double-stranded RNA portion comprising an RNA strand. The design and production of such siRNAs and mutant siRNAs described below are within the skill of the artisan.
 二本鎖RNA部分の長さは、塩基として、約15~約40塩基、好ましくは15~30塩基、より好ましくは15~25塩基、更に好ましくは18~23塩基、最も好ましくは19~21塩基である。siRNAのセンス鎖またはアンチセンス鎖の末端構造としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、平滑末端を有するものであってもよいし、突出末端(オーバーハング)を有するものであってもよく、3’末端が突き出したタイプが好ましい。センスRNA鎖およびアンチセンスRNA鎖の3’末端に数個の塩基、好ましくは1~3個の塩基、さらに好ましくは2個の塩基からなるオーバーハングを有するsiRNAは、標的遺伝子の発現を抑制する効果が大きい場合が多く、好ましいものである。オーバーハングの塩基の種類は特に制限はなく、RNAを構成する塩基あるいはDNAを構成する塩基のいずれであってもよい。 The length of the double-stranded RNA portion is about 15 to about 40 bases, preferably 15 to 30 bases, more preferably 15 to 25 bases, still more preferably 18 to 23 bases, and most preferably 19 to 21 bases as a base. It is. The end structure of the sense strand or antisense strand of siRNA is not particularly limited and may be appropriately selected depending on the intended purpose. For example, it may have a blunt end or a protruding end (overhang) It is preferable that the 3 ′ end protrudes. The siRNA having an overhang consisting of several bases, preferably 1 to 3 bases, more preferably 2 bases, at the 3 ′ end of the sense RNA strand and the antisense RNA strand suppresses the expression of the target gene. In many cases, the effect is large, which is preferable. The type of the overhanging base is not particularly limited, and may be either a base constituting RNA or a base constituting DNA.
 さらに、上記siRNAのセンス鎖またはアンチセンス鎖の一方または両方において1~数個までのヌクレオチドが欠失、置換、挿入及び/又は付加されているsiRNAもまた、本発明の癌の治療用医薬組成物に用いることができる。ここで、1~数塩基とは、特に限定されるものではないが、好ましくは1~4塩基、さらに好ましくは1~3塩基、最も好ましくは1~2塩基である。かかる変異の具体例としては、3’末端のオーバーハング部分の塩基数を0~3個としたもの、3’末端のオーバーハング部分の塩基配列を他の塩基配列に変更したもの、あるいは塩基の挿入、付加または欠失により上記センスRNA鎖とアンチセンスRNA鎖の長さが1~3塩基異なるもの、センス鎖および/またはアンチセンス鎖において塩基が別の塩基にて置換されているもの等が挙げられるが、これらに限定されない。ただし、これらの変異体siRNAにおいてセンス鎖とアンチセンス鎖がハイブリダイゼーションしうること、ならびにこれらの変異体siRNAが変異を有しないsiRNAと同等の遺伝子発現抑制能を有することが必要である。 Furthermore, siRNA in which 1 to several nucleotides are deleted, substituted, inserted and / or added in one or both of the sense strand or the antisense strand of the siRNA is also a pharmaceutical composition for treating cancer of the present invention. It can be used for things. Here, the 1 to several bases are not particularly limited, but are preferably 1 to 4 bases, more preferably 1 to 3 bases, and most preferably 1 to 2 bases. Specific examples of such mutations include those in which the number of bases in the overhang portion at the 3 ′ end is 0 to 3, or the base sequence in the overhang portion at the 3 ′ end is changed to another base sequence, or Those in which the length of the sense RNA strand differs from that of the antisense RNA strand by 1 to 3 bases due to insertion, addition or deletion, or in which the base is replaced with another base in the sense strand and / or antisense strand For example, but not limited to. However, it is necessary that the sense strand and the antisense strand can hybridize in these mutant siRNAs, and that these mutant siRNAs have the same ability to suppress gene expression as siRNA having no mutation.
 さらに、該siRNAは、一方の端が閉じた構造の分子、例えば、ヘアピン構造を有するsiRNA(Short hairpin RNA;shRNA)であってもよい。shRNAは、標的遺伝子の特定配列のセンス鎖RNA、該センス鎖RNAに相補的な配列からなるアンチセンス鎖RNA及びその両鎖を繋ぐリンカー配列を含むRNAであり、センス鎖部分とアンチセンス鎖部分がハイブリダイズし、二本鎖RNA部分を形成する。 Furthermore, the siRNA may be a molecule having a closed structure at one end, for example, an siRNA having a hairpin structure (Short hairpin RNA; shRNA). A shRNA is a RNA comprising a sense strand RNA of a specific sequence of a target gene, an antisense strand RNA consisting of a sequence complementary to the sense strand RNA, and a linker sequence connecting both strands. The sense strand portion and the antisense strand portion Hybridize to form a double stranded RNA portion.
 siRNAは、臨床使用の際には、いわゆるoff-target効果を示さないことが望ましい。off-target効果とは、標的遺伝子以外に、使用したsiRNAに部分的にホモロジーのある別の遺伝子の発現を抑制する作用をいう。off-target効果を避けるために、候補siRNAについて、予めDNAマイクロアレイなどを利用して交差反応がないことを確認することが可能である。また、NCBI(National Center for Biotechnology Information)などが提供する公知のデータベースを用いて、標的となる遺伝子以外に候補siRNAの配列と相同性が高い部分を含む遺伝子が存在しないかを確認する事によって、off-target効果を避けることが可能である。 It is desirable that siRNA does not show a so-called off-target effect in clinical use. The off-target effect refers to the action of suppressing the expression of another gene that is partially homologous to the siRNA used in addition to the target gene. In order to avoid the off-target effect, it is possible to confirm in advance that there is no cross-reaction for the candidate siRNA using a DNA microarray or the like. In addition, by using a known database provided by NCBI (National Center for Biotechnology Information), etc., by confirming that there is no gene containing a portion having high homology with the candidate siRNA sequence other than the target gene, It is possible to avoid the off-target effect.
 本発明のsiRNAを作製するには、化学合成による方法及び遺伝子組換え技術を用いる方法等、公知の方法を適宜用いることができる。合成による方法では、配列情報に基づき、常法により二本鎖RNAを合成することができる。また、遺伝子組換え技術を用いる方法では、センス鎖配列やアンチセンス鎖配列を組み込んだ発現ベクターを構築し、該ベクターを宿主細胞に導入後、転写により生成されたセンス鎖RNAやアンチセンス鎖RNAをそれぞれ取得することによって作製することもできる。また、標的遺伝子の特定配列のセンス鎖RNA、該センス鎖RNAに相補的な配列からなるアンチセンス鎖RNA及びその両鎖を繋ぐリンカー配列を含み、ヘアピン構造を形成するshRNAを発現させることにより、所望の二本鎖RNAを作製することもできる。 In order to produce the siRNA of the present invention, a known method such as a method using chemical synthesis or a method using a gene recombination technique can be appropriately used. In the synthesis method, double-stranded RNA can be synthesized by a conventional method based on sequence information. In the method using gene recombination technology, an expression vector incorporating a sense strand sequence or an antisense strand sequence is constructed, and the sense strand RNA or antisense strand RNA generated by transcription after introducing the vector into a host cell. It can also be produced by acquiring each of the above. In addition, by expressing a sense strand RNA of a specific sequence of the target gene, an antisense strand RNA consisting of a sequence complementary to the sense strand RNA, and a linker sequence connecting both strands, and expressing a shRNA that forms a hairpin structure, Desired double-stranded RNA can also be prepared.
 siRNAは、標的遺伝子の発現抑制活性を有する限りにおいては、siRNAを構成する核酸の一部がDNAであっても良い。また、siRNAは、標的遺伝子の発現抑制活性を有する限りにおいては、siRNAを構成する核酸の全体又はその一部が修飾された核酸であってもよい。
 修飾された核酸とは、ヌクレオシド(塩基部位、糖部位)及び/又はヌクレオシド間結合部位に修飾が施されていて、天然の核酸と異なった構造を有するものを意味する。修飾された核酸を構成する「修飾されたヌクレオシド」としては、例えば、無塩基(abasic)ヌクレオシド;アラビノヌクレオシド、2’-デオキシウリジン、α-デオキシリボヌクレオシド、β-L-デオキシリボヌクレオシド、その他の糖修飾を有するヌクレオシド;ペプチド核酸(PNA)、ホスフェート基が結合したペプチド核酸(PHONA)、ロックド核酸(LNA)、モルホリノ核酸等が挙げられる。前記糖修飾を有するヌクレオシドには、2’-O-メチルリボース、2’-デオキシ-2’-フルオロリボース、3’-O-メチルリボース等の置換五単糖;1’,2’-デオキシリボース;アラビノース;置換アラビノース糖;六単糖およびアルファ-アノマーの糖修飾を有するヌクレオシドが含まれる。これらのヌクレオシドは塩基部位が修飾された修飾塩基であってもよい。このような修飾塩基には、例えば、5-ヒドロキシシトシン、5-フルオロウラシル、4-チオウラシル等のピリミジン;6-メチルアデニン、6-チオグアノシン等のプリン;及び他の複素環塩基等が挙げられる。
 修飾された核酸を構成する「修飾されたヌクレオシド間結合」としては、例えば、アルキルリンカー、グリセリルリンカー、アミノリンカー、ポリ(エチレングリコール)結合、メチルホスホネートヌクレオシド間結合;メチルホスホノチオエート、ホスホトリエステル、ホスホチオトリエステル、ホスホロチオエート、ホスホロジチオエート、トリエステルプロドラッグ、スルホン、スルホンアミド、サルファメート、ホルムアセタール、N-メチルヒドロキシルアミン、カルボネート、カルバメート、モルホリノ、ボラノホスホネート、ホスホルアミデートなどの非天然ヌクレオシド間結合が挙げられる。
As long as the siRNA has an activity of suppressing the expression of the target gene, a part of the nucleic acid constituting the siRNA may be DNA. The siRNA may be a nucleic acid in which all or part of the nucleic acid constituting the siRNA is modified as long as it has the activity of suppressing the expression of the target gene.
The modified nucleic acid means a nucleic acid having a structure different from that of a natural nucleic acid, in which a nucleoside (base site, sugar site) and / or internucleoside binding site is modified. Examples of the “modified nucleoside” constituting the modified nucleic acid include an abasic nucleoside; an arabino nucleoside, 2′-deoxyuridine, α-deoxyribonucleoside, β-L-deoxyribonucleoside, and other sugars Examples include nucleosides having modifications; peptide nucleic acids (PNA), peptide nucleic acids to which phosphate groups are bound (PHONA), locked nucleic acids (LNA), morpholino nucleic acids and the like. Examples of the nucleoside having a sugar modification include substituted pentasaccharides such as 2′-O-methylribose, 2′-deoxy-2′-fluororibose, and 3′-O-methylribose; 1 ′, 2′-deoxyribose Arabinose; substituted arabinose sugars; nucleosides with hexose and alpha-anomeric sugar modifications. These nucleosides may be modified bases with modified base sites. Examples of such modified bases include pyrimidines such as 5-hydroxycytosine, 5-fluorouracil, 4-thiouracil; purines such as 6-methyladenine and 6-thioguanosine; and other heterocyclic bases.
Examples of the “modified internucleoside linkage” constituting the modified nucleic acid include, for example, alkyl linker, glyceryl linker, amino linker, poly (ethylene glycol) linkage, methylphosphonate internucleoside linkage; methylphosphonothioate, phosphotriester , Phosphothiotriester, phosphorothioate, phosphorodithioate, triester prodrug, sulfone, sulfonamide, sulfamate, formacetal, N-methylhydroxylamine, carbonate, carbamate, morpholino, boranophosphonate, phosphoramidate, etc. Non-natural internucleoside linkages.
 本発明の二本鎖siRNAに含まれる核酸配列としては、配列表の配列番号7~22に記載の配列を好ましく用いることができる。これらのsiRNAのヌクレオチド配列を表3に示す。表3中、大文字で示されるのはセンスRNA配列およびアンチセンスRNA配列であり、小文字で示されるのは3’末端オーバーハング配列である。例えば、s18725は、配列番号:7に示すセンス鎖と配列番号:8に示すアンチセンス鎖とからなる2本鎖siRNAであり、配列番号:7の3’末端のttおよび配列番号:8の3’末端のcaがオーバーハング配列である。これらのsiRNAのうち、s18725、s18726およびs18727はAQR遺伝子をノックダウンするものであり、s9548およびs9549はNHP2L1遺伝子をノックダウンするものであり、s23175、s23176およびs23177はNUP205遺伝子をノックダウンするものである。これらのsiRNAは、肺癌、大腸癌又は膵臓癌などを含む広範囲の癌細胞の増殖を抑制し、しかも抑制の程度が大きいので、これらのsiRNAを含む癌の治療用医薬組成物の効果は大きいものである。 As the nucleic acid sequence contained in the double-stranded siRNA of the present invention, the sequences described in SEQ ID NOs: 7 to 22 in the sequence listing can be preferably used. The nucleotide sequences of these siRNAs are shown in Table 3. In Table 3, uppercase letters indicate the sense RNA sequence and antisense RNA sequence, and lowercase letters indicate the 3 'terminal overhang sequence. For example, s18725 is a double-stranded siRNA composed of a sense strand shown in SEQ ID NO: 7 and an antisense strand shown in SEQ ID NO: 8, and tt at the 3 ′ end of SEQ ID NO: 7 and 3 of SEQ ID NO: 8 'The terminal ca is an overhang sequence. Of these siRNAs, s18725, s18726 and s18727 knock down the AQR gene, s9548 and s9549 knock down the NHP2L1 gene, and s23175, s23176 and s23177 knock down the NUP205 gene. is there. These siRNAs suppress the growth of a wide range of cancer cells including lung cancer, colon cancer, pancreatic cancer, etc., and the degree of inhibition is large, so that the effect of the pharmaceutical composition for treating cancer containing these siRNAs is great. It is.
 標的遺伝子のmRNA対して相補的なオリゴヌクレオチドを「アンチセンスオリゴヌクレオチド」と呼び、当該アンチセンスオリゴヌクレオチドが標的とする遺伝子(mRNA)と二本鎖を形成することによりmRNAの働きを抑制する。「アンチセンスオリゴヌクレオチド」には、標的となる遺伝子(mRNA)と完全に相補的であるもののみならず、mRNAと安定にハイブリダイズできる限り、多少のミスマッチが存在してもよい。 Oligonucleotides complementary to the mRNA of the target gene are called “antisense oligonucleotides”, and the function of the mRNA is suppressed by forming a double strand with the gene (mRNA) targeted by the antisense oligonucleotide. “Antisense oligonucleotides” are not limited to those that are completely complementary to the target gene (mRNA), but may contain some mismatches as long as they can be stably hybridized with mRNA.
 アンチセンスオリゴヌクレオチドは、修飾されていてもよい。適当な修飾を施すことにより、当該アンチセンスオリゴヌクレオチドは生体内で分解されにくくなり、より安定して標的遺伝子の発現を阻害できるようになる。このような修飾されたオリゴヌクレオチドとしては、S-オリゴ型(ホスホロチオエート型)、C-5チアゾール型、D-オリゴ型(ホスホジエステル型)、M-オリゴ型(メチルフォスフォネイト型)、ペプチド核酸型、リン酸ジエステル結合型、C-5プロピニルピリミジン型、2-O-プロピルリボース、2'-メトキシエトキシリボース型等の修飾型のアンチセンスオリゴヌクレオチドが挙げられる。さらに、アンチセンスオリゴヌクレオチドとしては、リン酸基を構成する酸素原子の少なくとも一部がイオウ原子に置換、修飾されているものでもよい。このようなアンチセンスオリゴヌクレオチドは、ヌクレアーゼ耐性、RNAへの親和性に特に優れている。リン酸基を構成する酸素原子の少なくとも一部がイオウ原子に置換、修飾されたアンチセンスオリゴヌクレオチドとしては、例えば、S-オリゴ型等のオリゴヌクレオチドが挙げられる。
 アンチセンスオリゴヌクレオチド(又はその誘導体)は常法によって合成することができ、例えば、市販のDNA合成装置(例えばAppliedBiosystems社製など)によって容易に合成することができる。合成法はホスホロアミダイトを用いた固相合成法、ハイドロジェンホスホネートを用いた固相合成法などがある。
Antisense oligonucleotides may be modified. By applying an appropriate modification, the antisense oligonucleotide becomes difficult to be degraded in the living body, and the expression of the target gene can be inhibited more stably. Such modified oligonucleotides include S-oligo type (phosphorothioate type), C-5 thiazole type, D-oligo type (phosphodiester type), M-oligo type (methyl phosphonate type), peptide nucleic acid And modified antisense oligonucleotides such as phosphodiester bond type, C-5 propynyl pyrimidine type, 2-O-propyl ribose, 2′-methoxyethoxy ribose type. Furthermore, the antisense oligonucleotide may be one in which at least a part of the oxygen atom constituting the phosphate group is substituted or modified with a sulfur atom. Such an antisense oligonucleotide is particularly excellent in nuclease resistance and affinity for RNA. Examples of the antisense oligonucleotide in which at least a part of the oxygen atom constituting the phosphate group is substituted or modified with a sulfur atom include oligonucleotides such as S-oligo type.
An antisense oligonucleotide (or a derivative thereof) can be synthesized by a conventional method, and can be easily synthesized by, for example, a commercially available DNA synthesizer (for example, Applied Biosystems). Examples of the synthesis method include a solid phase synthesis method using phosphoramidite and a solid phase synthesis method using hydrogen phosphonate.
 本発明のアンチセンスオリゴヌクレオチドは、AQR遺伝子、NHP2L1遺伝子またはNUP205遺伝子を標的とするものである。AQR遺伝子を標的とする本発明の好ましいアンチセンスオリゴヌクレオチドとしては、配列番号:23~62に記載されたもの(又はその誘導体)が例示されるが、これらに限定されない。NHP2L1遺伝子を標的とする本発明の好ましいアンチセンスオリゴヌクレオチドとしては、配列番号:63~78に記載されたもの(又はその誘導体)が例示されるが、これらに限定されない。NUP205遺伝子を標的とする本発明の好ましいアンチセンスオリゴヌクレオチドとしては、配列番号:79~107に記載されたもの(又はその誘導体)が例示されるが、これらに限定されない。また、本発明のアンチセンスオリゴヌクレオチドは、上記標的遺伝子の発現を抑制するものであればよく、配列番号:23~107のいずれかのヌクレオチド配列において1個ないし数個、例えば1個、2個、3個又は4個の塩基が置換、付加、欠失したものを包含する。 The antisense oligonucleotide of the present invention targets AQR gene, NHP2L1 gene or NUP205 gene. Preferred antisense oligonucleotides of the present invention that target the AQR gene include, but are not limited to, those described in SEQ ID NOs: 23 to 62 (or derivatives thereof). Preferred antisense oligonucleotides of the present invention that target the NHP2L1 gene include, but are not limited to, those described in SEQ ID NOs: 63 to 78 (or derivatives thereof). Preferred antisense oligonucleotides of the present invention that target the NUP205 gene include those described in SEQ ID NOs: 79 to 107 (or derivatives thereof), but are not limited thereto. The antisense oligonucleotide of the present invention may be any one that suppresses the expression of the target gene. One to several, for example, 1, 2 in the nucleotide sequence of any of SEQ ID NOs: 23 to 107 Includes those in which 3 or 4 bases are substituted, added, or deleted.
 「リボザイム」とは核酸を切断する酵素活性を有するRNAをいうが、最近では当該酵素活性部位の塩基配列を有するオリゴDNAも同様に核酸切断活性を有することが明らかになっているので、本明細書では配列特異的な核酸切断活性を有する限りDNAをも包含する概念として用いる。具体的には、リボザイムは、標的遺伝子をコードするmRNAまたは初期転写産物を、コード領域の内部(初期転写産物の場合はイントロン部分を含む)で特異的に切断し得る。リボザイムで最も汎用性の高いものとしては、ウイロイドやウイルソイド等の感染性RNAに見られるセルフスプライシングRNAがあり、ハンマーヘッド型やヘアピン型等が知られている。ハンマーヘッド型は約40塩基程度で酵素活性を発揮し、ハンマーヘッド構造をとる部分に隣接する両端の数塩基ずつ(合わせて約10塩基程度)をmRNAの所望の切断部位と相補的な配列にすることにより、標的mRNAのみを特異的に切断することが可能である。さらに、リボザイムを、それをコードするDNAを含む発現ベクターの形態で使用する場合には、転写産物の細胞質への移行を促進するために、tRNAを改変した配列をさらに連結したハイブリッドリボザイムとすることもできる(Nucleic Acids Res., 29(13): 2780-2788 (2001))。 “Ribozyme” refers to RNA having an enzyme activity that cleaves nucleic acid. Recently, it has been clarified that oligoDNA having the base sequence of the enzyme active site also has a nucleic acid cleaving activity. In the book, it is used as a concept including DNA as long as it has sequence-specific nucleic acid cleavage activity. Specifically, the ribozyme can specifically cleave mRNA or an initial transcription product encoding a target gene within the coding region (including an intron portion in the case of the initial transcription product). The most versatile ribozyme is self-splicing RNA found in infectious RNA such as viroid and virusoid, and hammerhead type and hairpin type are known. The hammerhead type exhibits enzyme activity at about 40 bases, and several bases at both ends adjacent to the portion having the hammerhead structure (about 10 bases in total) are made complementary to the desired cleavage site of mRNA. By doing so, it is possible to specifically cleave only the target mRNA. Furthermore, when the ribozyme is used in the form of an expression vector containing the DNA encoding the ribozyme, in order to promote the transfer of the transcription product to the cytoplasm, it should be a hybrid ribozyme further linked with a tRNA-modified sequence. (Nucleic Acids Res., 29 (13): 2780-2788 (2001)).
 標的遺伝子の発現を抑制する物質は、siRNA、アンチセンスオリゴヌクレオチド又はリボザイムなどの核酸分子および、該核酸分子をコードする発現ベクターでもよい。当該発現ベクターは、上記の核酸分子をコードするオリゴヌクレオチドもしくはポリヌクレオチドが、投与対象である哺乳動物の細胞内でプロモーター活性を発揮し得るプロモーターに機能的に連結されていなければならない。使用されるプロモーターは、投与対象である哺乳動物で機能し得るものであれば特に制限はないが、例えば、polIIIプロモーター(例、tRNAプロモーター、U6プロモーター、H1プロモーター)、哺乳動物用プロモーター(例、CMVプロモーター、CAGプロモーター、SV40プロモーター)などが挙げられる。
 発現ベクターは、好ましくは核酸分子をコードするオリゴ(ポリ)ヌクレオチドの下流に転写終結シグナル、すなわちターミネーター領域を含有する。さらに、形質転換細胞選択のための選択マーカー遺伝子(テトラサイクリン、アンピシリン、カナマイシン、ハイグロマイシン、ホスフィノスリシン等の薬剤に対する抵抗性を付与する遺伝子、栄養要求性変異を相補する遺伝子等)をさらに含有することもできる。
 発現ベクターとして使用される基本骨格のベクターは特に制限されないが、例えば、プラスミドベクター、ウイルスベクターが挙げられる。ヒト等の哺乳動物への投与に好適なベクターとしては、レトロウイルス、アデノウイルス、アデノ随伴ウイルス、ヘルペスウイルス、ワクシニアウイルス、ポックスウイルス、ポリオウイルス、シンドビスウイルス、センダイウイルス等のウイルスベクターが挙げられる。
The substance that suppresses the expression of the target gene may be a nucleic acid molecule such as siRNA, antisense oligonucleotide or ribozyme, and an expression vector encoding the nucleic acid molecule. In the expression vector, the oligonucleotide or polynucleotide encoding the nucleic acid molecule must be operably linked to a promoter capable of exhibiting promoter activity in a mammalian cell to be administered. The promoter to be used is not particularly limited as long as it can function in the mammal to be administered, but for example, polIII promoter (eg, tRNA promoter, U6 promoter, H1 promoter), mammalian promoter (eg, CMV promoter, CAG promoter, SV40 promoter) and the like.
The expression vector preferably contains a transcription termination signal, ie a terminator region, downstream of the oligo (poly) nucleotide encoding the nucleic acid molecule. In addition, selectable marker genes for selection of transformed cells (such as genes that confer resistance to drugs such as tetracycline, ampicillin, kanamycin, hygromycin, phosphinothricin, genes that complement auxotrophic mutations, etc.) You can also
The basic backbone vector used as the expression vector is not particularly limited, and examples thereof include a plasmid vector and a viral vector. Suitable vectors for administration to mammals such as humans include viral vectors such as retrovirus, adenovirus, adeno-associated virus, herpes virus, vaccinia virus, poxvirus, poliovirus, Sindbis virus, Sendai virus, and the like. .
 本発明の発現ベクターとしては、siRNA、アンチセンスオリゴヌクレオチド又はリボザイムの発現ベクターが例示されるが、其の中でも、siRNAの発現ベクターが好ましい。
 本発明のsiRNAの発現ベクターがコードする核酸配列としては、配列表の配列番号7~22に記載の各塩基配列における第1番目から第19番目のヌクレオチド配列を好ましく用いることができる。これらのsiRNAのヌクレオチド配列は表3の大文字で示される。これらのsiRNAは、肺癌、大腸癌又は膵臓癌などを含む広範囲の癌細胞の増殖を抑制し、しかも抑制の程度が大きいので、これらのsiRNAを含む癌の治療用医薬組成物の効果は大きいものである。
Examples of the expression vector of the present invention include siRNA, antisense oligonucleotide or ribozyme expression vectors. Among them, siRNA expression vectors are preferable.
As the nucleic acid sequence encoded by the siRNA expression vector of the present invention, the first to 19th nucleotide sequences in the respective base sequences described in SEQ ID NOs: 7 to 22 in the sequence listing can be preferably used. The nucleotide sequences of these siRNAs are shown in capital letters in Table 3. These siRNAs suppress the growth of a wide range of cancer cells including lung cancer, colon cancer, pancreatic cancer, etc., and the degree of inhibition is large, so that the effect of the pharmaceutical composition for treating cancer containing these siRNAs is great. It is.
 本発明において、AQR遺伝子、NHP2L1遺伝子又はNUP205遺伝子の発現を抑制する物質は、医薬組成物の有効成分として使用することができる。本発明の医薬組成物は、当該医薬組成物を生体内に投与することにより、癌治療用医薬組成物として使用することができる。 In the present invention, a substance that suppresses the expression of AQR gene, NHP2L1 gene or NUP205 gene can be used as an active ingredient of a pharmaceutical composition. The pharmaceutical composition of the present invention can be used as a pharmaceutical composition for cancer treatment by administering the pharmaceutical composition in vivo.
 本発明の医薬組成物は、単一の発現抑制物質を有効成分としてもよいし、複数の遺伝子発現抑制物質を有効成分としても良い。上記複数の遺伝子発現抑制物質の標的遺伝子が異なる遺伝子であっても良い。本発明の医薬組成物の発現抑制物質がsiRNAである場合には、1種またはそれ以上のsiRNAを有効成分としてもよい。例えば、本発明の医薬組成物が、AQR遺伝子に対するsiRNAと NHP2L1遺伝子に対するsiRNAとを含んでいても良い。 In the pharmaceutical composition of the present invention, a single expression-suppressing substance may be used as an active ingredient, or a plurality of gene expression-suppressing substances may be used as active ingredients. The target genes of the plurality of gene expression inhibitors may be different genes. When the expression-suppressing substance of the pharmaceutical composition of the present invention is siRNA, one or more siRNA may be used as an active ingredient. For example, the pharmaceutical composition of the present invention may contain siRNA for AQR gene and siRNA for NHP2L1 gene.
 本発明の医薬組成物の治療の対象である癌の種類は、特に限定されることはないが、例えば、膀胱癌、乳癌、結腸癌、大腸癌、腎臓癌、肝臓癌、肺癌、小細胞肺癌、食道癌、胆嚢癌、卵巣癌、膵臓癌、胃癌、子宮頸部癌、甲状腺癌、前立腺癌、扁平上皮癌、皮膚癌、骨癌、リンパ腫、白血病及び脳腫瘍を挙げることができる。なかでも、肺癌、大腸癌、膵臓癌には本発明の医薬組成物の適用が期待される。
 また、本発明の癌の治療のための医薬組成物は、癌の治療だけでなく、癌治療後の再発予防、転移の防止にも使用できる。
The type of cancer to be treated by the pharmaceutical composition of the present invention is not particularly limited. For example, bladder cancer, breast cancer, colon cancer, colon cancer, kidney cancer, liver cancer, lung cancer, small cell lung cancer Esophageal cancer, gallbladder cancer, ovarian cancer, pancreatic cancer, gastric cancer, cervical cancer, thyroid cancer, prostate cancer, squamous cell carcinoma, skin cancer, bone cancer, lymphoma, leukemia and brain tumor. Among these, the application of the pharmaceutical composition of the present invention is expected for lung cancer, colon cancer and pancreatic cancer.
The pharmaceutical composition for cancer treatment of the present invention can be used not only for cancer treatment but also for prevention of recurrence and metastasis after cancer treatment.
 本発明の医薬組成物は、経口投与及び非経口投与のいずれの剤形をも採用することができる。非経口投与の場合は、腫瘍部位に直接投与することも可能である。 The pharmaceutical composition of the present invention can employ both oral and parenteral dosage forms. In the case of parenteral administration, it is also possible to administer directly to the tumor site.
 本発明の医薬組成物は常法にしたがって製剤化することができ、医薬的に許容される担体や添加物を含むものであってもよい。このような担体及び添加物として、水、医薬的に許容される有機溶剤、コラーゲン、ポリビニルアルコール、ポリビニルピロリドン、カルボキシビニルポリマー、カルボキシメチルセルロースナトリウム、ポリアクリル酸ナトリウム、アルギン酸ナトリウム、水溶性デキストラン、カルボキシメチルスターチナトリウム、ペクチン、メチルセルロース、エチルセルロース、キサンタンガム、アラビアゴム、カゼイン、寒天、ポリエチレングリコール、ジグリセリン、グリセリン、プロピレングリコール、ワセリン、パラフィン、ステアリルアルコール、ステアリン酸、ヒト血清アルブミン、マンニトール、ソルビトール、ラクトース、医薬添加物として許容される界面活性剤等が挙げられる。
 添加物は、本発明の医薬組成物の剤形に応じて上記の中から単独で又は適宜組み合わせて選ばれる。剤形としては、経口投与の場合は、錠剤、カプセル剤、細粒剤、粉末剤、顆粒剤、液剤、シロップ剤等として、または適当な剤形により投与が可能である。非経口投与の場合は、経肺剤形(例えばネフライザーなどを用いたもの)、経鼻投与剤形、経皮投与剤形(例えば軟膏、クリーム剤)、注射剤形等が挙げられる。注射剤形の場合は、例えば点滴等の静脈内注射、筋肉内注射、腹腔内注射、皮下注射等により全身又は局部的に投与することができる。
The pharmaceutical composition of the present invention can be formulated according to a conventional method, and may contain a pharmaceutically acceptable carrier or additive. Such carriers and additives include water, pharmaceutically acceptable organic solvents, collagen, polyvinyl alcohol, polyvinyl pyrrolidone, carboxyvinyl polymer, sodium carboxymethylcellulose, sodium polyacrylate, sodium alginate, water-soluble dextran, carboxymethyl. Sodium starch, pectin, methylcellulose, ethylcellulose, xanthan gum, gum arabic, casein, agar, polyethylene glycol, diglycerin, glycerin, propylene glycol, petrolatum, paraffin, stearyl alcohol, stearic acid, human serum albumin, mannitol, sorbitol, lactose, pharmaceutical Examples of acceptable surfactants include additives.
The additive is selected from the above alone or in appropriate combination depending on the dosage form of the pharmaceutical composition of the present invention. As for the dosage form, in the case of oral administration, it can be administered as a tablet, capsule, fine granule, powder, granule, liquid, syrup or the like, or in an appropriate dosage form. In the case of parenteral administration, pulmonary dosage forms (for example, those using a nephriser etc.), nasal dosage forms, transdermal dosage forms (for example, ointments, creams), injection dosage forms and the like can be mentioned. In the case of an injection dosage form, it can be administered systemically or locally by intravenous injection such as infusion, intramuscular injection, intraperitoneal injection, subcutaneous injection or the like.
 標的遺伝子の発現を抑制する物質がsiRNA、アンチセンスオリゴヌクレオチド若しくはリボザイムなどの核酸分子、又は該核酸分子をコードする発現ベクターである場合は、リポソームなどのリン脂質小胞体に当該発現抑制物質を導入し、その小胞体を本発明の医薬組成物とすることも可能である。 When the substance that suppresses the expression of the target gene is a nucleic acid molecule such as siRNA, antisense oligonucleotide, or ribozyme, or an expression vector that encodes the nucleic acid molecule, the expression inhibitor is introduced into a phospholipid endoplasmic reticulum such as a liposome. In addition, the endoplasmic reticulum can be used as the pharmaceutical composition of the present invention.
 本発明の医薬組成物の投与量は、年齢、性別、症状、投与経路、投与回数、剤形によって異なる。投与方法は、患者の年齢、症状により適宜選択する。有効投与量は、一回につき体重1kgあたり0.01μg~1000mg、好ましくは0.1μg~100μgである。但し、上記治療剤はこれらの投与量に制限されるものではない。 The dosage of the pharmaceutical composition of the present invention varies depending on age, sex, symptoms, administration route, administration frequency, and dosage form. The administration method is appropriately selected depending on the age and symptoms of the patient. The effective dose is 0.01 μg to 1000 mg, preferably 0.1 μg to 100 μg, per kg body weight. However, the therapeutic agent is not limited to these doses.
 本発明は、さらなる態様において、
 (i)AQR遺伝子、NHP2L1遺伝子又はNUP205遺伝子の発現を抑制する物質を投与する工程を有する、癌を治療する方法、
 (ii)癌の治療に用いられる、AQR遺伝子、NHP2L1遺伝子又はNUP205遺伝子の発現を抑制する物質、ならびに
 (iii)癌の治療剤の製造のための、AQR遺伝子、NHP2L1遺伝子又はNUP205遺伝子の発現を抑制する物質の使用
を提供する。
 上記「遺伝子の発現を抑制する物質」については、上で説明したとおりである。また、「遺伝子の発現を抑制する物質」として、siRNAが用いられる場合、好ましいsiRNAについては上述したとおりである。
The invention in a further aspect,
(I) a method for treating cancer, comprising a step of administering a substance that suppresses the expression of AQR gene, NHP2L1 gene or NUP205 gene;
(Ii) a substance that suppresses the expression of AQR gene, NHP2L1 gene or NUP205 gene used for cancer treatment, and (iii) expression of AQR gene, NHP2L1 gene or NUP205 gene for the production of a therapeutic agent for cancer. Provide the use of a suppressive substance.
The “substance that suppresses gene expression” is as described above. Further, when siRNA is used as the “substance that suppresses gene expression”, preferred siRNA is as described above.
 本発明は、もう1つの態様において、AQR遺伝子、NHP2L1遺伝子又はNUP205遺伝子の発現を抑制することを指標とする癌の治療剤をスクリーニングする方法を提供する。 In another aspect, the present invention provides a method for screening for a therapeutic agent for cancer using as an index suppression of expression of AQR gene, NHP2L1 gene or NUP205 gene.
 スクリーニング方法に供される被験物質は、いかなる公知化合物および新規化合物であってもよく、例えば、核酸、糖質、脂質、蛋白質、ペプチド、有機低分子化合物、コンビナトリアルケミストリー技術を用いて作製された化合物ライブラリー、固相合成やファージディスプレイ法により作製されたランダムペプチドライブラリー、あるいは微生物、動植物、海洋生物等由来の天然成分等が挙げられる。 The test substance to be subjected to the screening method may be any known compound and novel compound, for example, nucleic acid, carbohydrate, lipid, protein, peptide, low molecular organic compound, compound prepared using combinatorial chemistry technology Examples include libraries, random peptide libraries prepared by solid phase synthesis and phage display methods, or natural components derived from microorganisms, animals and plants, marine organisms, and the like.
 一実施形態では、本発明のスクリーニング方法は、下記の工程(a)~(c)を含む:
(a)AQR遺伝子、NHP2L1遺伝子又はNUP205遺伝子の発現を測定可能な細胞と被験物質とを接触させる工程;
(b)被験物質を接触させた細胞における前記遺伝子の発現量を測定し、該発現量を、被験物質を接触させない対照細胞における前記遺伝子の発現量と比較する工程;
次いで
(c)被験物質を与えられた細胞における前記遺伝子の発現が、被験物質を与えられていない細胞における前記遺伝子の発現よりも低下している場合に、被験物質を癌の治療物質として選択する工程。
In one embodiment, the screening method of the present invention comprises the following steps (a) to (c):
(A) contacting a test substance with a cell capable of measuring the expression of AQR gene, NHP2L1 gene or NUP205 gene;
(B) measuring the expression level of the gene in cells contacted with the test substance, and comparing the expression level with the expression level of the gene in control cells not contacted with the test substance;
Next, (c) when the expression of the gene in a cell given the test substance is lower than the expression of the gene in a cell not given the test substance, the test substance is selected as a cancer treatment substance Process.
 上記方法の工程(a)では、AQR遺伝子、NHP2L1遺伝子又はNUP205遺伝子の発現を測定可能な細胞と被験物質とが接触条件下におかれる。これらの遺伝子の発現を測定可能な細胞に対する被験物質の接触は、培養培地中で行われる。 In step (a) of the above method, cells capable of measuring the expression of the AQR gene, NHP2L1 gene or NUP205 gene and the test substance are placed under contact conditions. Contact of the test substance with cells capable of measuring the expression of these genes is performed in a culture medium.
 AQR遺伝子、NHP2L1遺伝子又はNUP205遺伝子の発現を測定可能な細胞とは、AQR遺伝子、NHP2L1遺伝子又はNUP205遺伝子の産物、例えば、転写産物、翻訳産物の発現レベルを直接的または間接的に評価可能な細胞をいう。該遺伝子の産物の発現レベルを直接的に評価可能な細胞は、該遺伝子を天然で発現可能な細胞であり得、一方、該遺伝子の産物の発現レベルを間接的に評価可能な細胞としては、該遺伝子転写調節領域についてレポーターアッセイを可能とする細胞などが挙げられる。該遺伝子の発現を測定可能な細胞は、動物細胞、例えばマウス、ラット、ハムスター、モルモット、ウサギ、イヌ、サルあるいはヒトの哺乳動物細胞を用いることができ、なかでも、ヒト由来の細胞が望ましい。 A cell capable of measuring the expression of AQR gene, NHP2L1 gene or NUP205 gene is a cell capable of directly or indirectly evaluating the expression level of AQR gene, NHP2L1 gene or NUP205 gene product, for example, transcript or translation product. Say. A cell capable of directly evaluating the expression level of the gene product can be a cell capable of naturally expressing the gene, while a cell capable of indirectly evaluating the expression level of the gene product includes: Examples include cells that allow reporter assay for the gene transcription regulatory region. As the cells capable of measuring the expression of the gene, animal cells such as mice, rats, hamsters, guinea pigs, rabbits, dogs, monkeys or human mammalian cells can be used, and human-derived cells are particularly preferable.
 遺伝子転写調節領域についてレポーターアッセイを可能とする細胞は、標的遺伝子転写調節領域、当該領域に機能可能に連結されたレポーター遺伝子を含む細胞である。標的遺伝子転写調節領域およびレポーター遺伝子は、発現ベクター中に挿入することが出来る。標的遺伝子の転写調節領域は、標的遺伝子の発現を制御し得る領域である限り特に限定されないが、例えば、転写開始点から上流約2kbpまでの領域、あるいは該領域の塩基配列において1以上の塩基が欠失、置換若しくは付加された塩基配列からなり、且つ標的遺伝子の転写を制御する能力を有する領域などが挙げられる。レポーター遺伝子は、検出可能な蛋白質または検出可能な物質を生成する酵素をコードする遺伝子であればよく、例えばGFP(緑色蛍光蛋白質)遺伝子、GUS(β-グルクロニダーゼ)遺伝子、LUC(ルシフェラーゼ)遺伝子、CAT(クロラムフェニコルアセチルトランスフェラーゼ)遺伝子等が挙げられる。 A cell enabling a reporter assay for a gene transcription regulatory region is a cell containing a target gene transcription regulatory region and a reporter gene operably linked to the region. The target gene transcription regulatory region and the reporter gene can be inserted into an expression vector. The transcriptional regulatory region of the target gene is not particularly limited as long as it can control the expression of the target gene. For example, a region from the transcription start point to about 2 kbp upstream, or one or more bases in the base sequence of the region Examples include a region consisting of a base sequence deleted, substituted or added and having the ability to control the transcription of the target gene. The reporter gene may be any gene that encodes a detectable protein or an enzyme that produces a detectable substance. For example, the GFP (green fluorescent protein) gene, GUS (β-glucuronidase) gene, LUC (luciferase) gene, CAT (Chloramphenicol acetyltransferase) gene and the like.
 遺伝子転写調節領域、当該領域に機能可能に連結されたレポーター遺伝子が導入される細胞は、標的となる遺伝子の転写調節機能を評価できる限り、即ち、該レポーター遺伝子の発現量が定量的に解析可能である限り特に限定されない。 A cell into which a gene transcription regulatory region and a reporter gene operably linked to the region are introduced can be used for quantitative analysis of the expression level of the reporter gene as long as the transcriptional regulatory function of the target gene can be evaluated. As long as it is, it is not particularly limited.
 AQR遺伝子、NHP2L1遺伝子又はNUP205遺伝子の発現を測定可能な細胞と被験物質とが接触される培養培地は、用いられる細胞の種類などに応じて適宜選択されるが、例えば、約5~20%のウシ胎仔血清を含む最少必須培地(MEM)、ダルベッコ改変最少必須培地(DMEM)、RPMI1640培地、199培地などである。培養条件もまた、用いられる細胞の種類などに応じて適宜決定されるが、例えば、培地のpHは約6~約8であり、培養温度は通常約30~約40℃であり、培養時間は約12~約144時間である。 The culture medium in which the cell capable of measuring the expression of the AQR gene, NHP2L1 gene or NUP205 gene and the test substance is contacted is appropriately selected depending on the type of the cell used, for example, about 5 to 20%. Examples include minimal essential medium (MEM) containing fetal calf serum, Dulbecco's modified minimal essential medium (DMEM), RPMI 1640 medium, and 199 medium. The culture conditions are also appropriately determined according to the type of cells to be used. For example, the pH of the medium is about 6 to about 8, the culture temperature is usually about 30 to about 40 ° C., and the culture time is About 12 to about 144 hours.
 上記方法の工程(b)では、先ず、被験物質を接触させた細胞におけるAQR遺伝子、NHP2L1遺伝子又はNUP205遺伝子の発現量が測定される。発現量の測定は、用いた細胞の種類などを考慮し、自体公知の方法により行われ得る。例えば、該遺伝子の発現を測定可能な細胞として、AQR遺伝子、NHP2L1遺伝子又はNUP205遺伝子のいずれかを天然で発現可能な細胞を用いた場合、発現量は、遺伝子の産物、例えば、転写産物または翻訳産物を対象として自体公知の方法により測定できる。例えば、転写産物の発現量は、細胞からtotal RNAを調製し、RT-PCR、ノーザンブロッティング等により測定され得る。また、翻訳産物の発現量は、細胞から抽出液を調製し、免疫学的手法により測定され得る。免疫学的手法としては、放射性同位元素免疫測定法(RIA法)、ELISA法(Methods in Enzymol. 70: 419-439 (1980))、蛍光抗体法などが使用できる。一方、AQR遺伝子、NHP2L1遺伝子又はNUP205遺伝子の発現を測定可能な細胞として、遺伝子転写調節領域についてレポーターアッセイを可能とする細胞を用いた場合、発現量は、レポーターのシグナル強度に基づき測定され得る。
 次いで、被験物質を接触させた細胞における該遺伝子の発現量が、被験物質を接触させない対照細胞における遺伝子の発現量と比較される(上記方法の工程(c))。発現量の比較は、好ましくは、有意差の有無に基づいて行なわれる。被験物質を接触させない対照細胞における遺伝子の発現量は、被験物質を接触させた細胞における遺伝子の発現量の測定に対し、事前に測定した発現量であっても、同時に測定した発現量であってもよいが、実験の精度、再現性の観点から同時に測定した発現量であることが好ましい。
In step (b) of the above method, first, the expression level of the AQR gene, NHP2L1 gene or NUP205 gene in the cell contacted with the test substance is measured. The expression level can be measured by a method known per se in consideration of the type of cells used. For example, when a cell capable of naturally expressing any of the AQR gene, NHP2L1 gene or NUP205 gene is used as a cell capable of measuring the expression of the gene, the expression level is the gene product such as a transcription product or a translation product. The product can be measured by a method known per se. For example, the expression level of the transcription product can be measured by preparing total RNA from cells and performing RT-PCR, Northern blotting, or the like. The expression level of the translation product can be measured by preparing an extract from the cells and using an immunological technique. As an immunological method, a radioisotope immunoassay (RIA method), an ELISA method (Methods in Enzymol. 70: 419-439 (1980)), a fluorescent antibody method, or the like can be used. On the other hand, when a cell capable of performing a reporter assay for the gene transcription regulatory region is used as a cell capable of measuring the expression of the AQR gene, NHP2L1 gene or NUP205 gene, the expression level can be measured based on the signal intensity of the reporter.
Next, the expression level of the gene in the cell contacted with the test substance is compared with the expression level of the gene in the control cell not contacted with the test substance (step (c) of the above method). The comparison of expression levels is preferably performed based on the presence or absence of a significant difference. The expression level of the gene in the control cell not contacted with the test substance is the expression level measured at the same time, even if it is the expression level measured in advance compared to the measurement of the gene expression level in the cell contacted with the test substance. However, the expression level is preferably measured simultaneously from the viewpoint of the accuracy and reproducibility of the experiment.
 以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited to these examples.
 発現を阻害することで癌細胞の増殖を抑制可能な遺伝子を見出す目的で、以下の実験を実施した。ヒト肺扁平上皮癌由来の細胞株RERF-LC-AIを対象とし、384ウェルプレートに分注したヒト全遺伝子siRNAライブラリー(Human siGENOME siRNA Library - Genome;Thermo Scientific社;21,121遺伝子)を用いて、発現抑制により同細胞の増殖が抑制される遺伝子をスクリーニングした。スクリーニングのプロトコールは、まず384ウェルプレート(Corning社;カタログ番号3570)に前述のライブラリーを1.25 pmolずつ分注した。各プレートに陽性コントロールとしてkinesin family member 11(KIF11)に対するsiRNA(Thermo Scientific社;カタログ番号M-003317-01-0020)、及び陰性コントロールとしてNon-Targeting siRNA Pool #2(NT-2;Thermo Scientific社;カタログ番号D-001206-14-20)も同量分注し、活性値及びアッセイ精度の算出に用いた。
 一方で、Opti-MEM I(Gibco社;カタログ番号31985)5μlとsiRNA導入試薬であるRNAiMAX(Invitrogen社;カタログ番号13778-150)0.025μlを混合し、室温で10分間保持した後、前述のsiRNAを分注した384ウェルプレートに添加した。室温で20分間インキュベーションした後、D-MEM(ナカライテスク社;カタログ番号08456-65)、10% Fetal Bovine Serum(Sigma社;カタログ番号13778-150)から成り、RERF-LC-AI細胞を500個含む培養液を20μl添加し、37℃、5%CO2環境下で4日間培養した。各ウェルにCellTiter-Glo Luminescent Cell Viability Assay(Promega社;カタログ番号G7571/2/3)の溶液を25μl添加し、発光量をViewluxハイスループットマイクロプレートイメージャー(PerkinElmer社製)を用いて測定した。各ウェルの発光値を基に、プレート毎に陽性コントロールであるKIF11 siRNAの増殖抑制度活性を100%、陰性コントロールNT-2の増殖抑制活性を0%として、ライブラリーの各遺伝子に対するsiRNAの増殖抑制活性を算出した。増殖抑制活性が75%以上の遺伝子421個から、Ambion社siRNAが購入可能で、プロテオソーム・サブユニットをコードする遺伝子ではない計341個を二次評価の対象とした。なお、プロテオソーム・サブユニットをコードする遺伝子を対象外とした理由は、プロテオソームを標的とした抗がん剤が既に市販されているため、当該遺伝子群は癌の新規標的とはなり得ないものの、同421遺伝子の中に多数(26個)含まれていたためである。
The following experiment was conducted for the purpose of finding a gene capable of suppressing the growth of cancer cells by inhibiting the expression. Using human whole gene siRNA library (Human siGENOME siRNA Library-Genome; Thermo Scientific; 21,121 genes) distributed to 384-well plates for cell line RERF-LC-AI derived from human lung squamous cell carcinoma, A gene that suppresses the proliferation of the same cells by suppressing the expression was screened. As a screening protocol, first, 1.25 pmol of the above-mentioned library was dispensed into a 384 well plate (Corning; catalog number 3570). SiRNA against kinesin family member 11 (KIF11) as a positive control on each plate (Thermo Scientific; catalog number M-003317-01-0020), and Non-Targeting siRNA Pool # 2 (NT-2; Thermo Scientific) as a negative control Catalog number D-001206-14-20) was also dispensed in the same amount and used to calculate activity values and assay accuracy.
Meanwhile, 5 μl of Opti-MEM I (Gibco; catalog number 31985) and 0.025 μl of siRNA introduction reagent RNAiMAX (Invitrogen; catalog number 13778-150) are mixed and held at room temperature for 10 minutes. Was added to aliquoted 384 well plates. After incubation at room temperature for 20 minutes, D-MEM (Nacalai Tesque; catalog number 08456-65), 10% Fetal Bovine Serum (Sigma; catalog number 13778-150), 500 RERF-LC-AI cells 20 μl of the culture broth was added and cultured for 4 days in a 37 ° C., 5% CO 2 environment. 25 μl of CellTiter-Glo Luminescent Cell Viability Assay (Promega; Catalog No. G7571 / 2/3) was added to each well, and the amount of luminescence was measured using a Viewlux high-throughput microplate imager (PerkinElmer). Based on the luminescence value of each well, the growth inhibition activity of the positive control KIF11 siRNA is 100% and the growth inhibition activity of the negative control NT-2 is 0% for each plate. Inhibitory activity was calculated. A total of 341 genes that can be purchased from Ambion siRNA from 421 genes with growth inhibitory activity of 75% or more and that do not encode proteosome subunits were subjected to secondary evaluation. The reason for excluding genes encoding proteosome subunits is that anti-cancer drugs targeting proteosome are already on the market, but the gene group cannot be a new target for cancer, This is because a large number (26) were included in the 421 gene.
 上記341遺伝子について、Ambion社のsiRNA(製品名Silencer Select)を各遺伝子3配列ずつ用い、前述と同様な方法によりRERF-LC-AI細胞を用いて二次評価を実施した。なお、陽性コントロールにはAmbion社のKIF11 siRNA(siRNA ID s7903;カタログ番号4390822)、陰性コントロールにはAmbion社のNegative Control #1 siRNA(カタログ番号4390844, NC-#1)を使用し、各siRNAを0.625 pmolずつ用いた。3配列のsiRNAの平均がKIF11 siRNAの75%以上の増殖抑制を示す遺伝子を再現性のあるものとし、42遺伝子を抽出した。
 これら42遺伝子について、三次評価としてヒト肺腺癌由来細胞株A549を用い、同様にして3配列のsiRNAの平均がKIF11 siRNAの75%以上の増殖抑制を示す遺伝子を抽出した。結果、RERF-LC-AI細胞及びA549細胞の両方で増殖・生存に重要な遺伝子として38遺伝子を同定した。
The 341 gene was subjected to secondary evaluation using RERF-LC-AI cells in the same manner as described above using 3 sequences of each gene of siRNA (product name Silencer Select) manufactured by Ambion. Ambion KIF11 siRNA (siRNA ID s7903; catalog number 4390822) was used for positive control, and Ambion Negative Control # 1 siRNA (catalog number 4390844, NC- # 1) was used for negative control. 0.625 pmol each was used. 42 genes were extracted, assuming that the average of the three sequences of siRNAs was 75% or higher than that of KIF11 siRNA and had reproducibility.
For these 42 genes, a human lung adenocarcinoma-derived cell line A549 was used as a third evaluation, and similarly, a gene showing an average of three sequences of siRNAs exhibiting growth inhibition of 75% or more of KIF11 siRNA was extracted. As a result, 38 genes were identified as important genes for proliferation and survival in both RERF-LC-AI cells and A549 cells.
 次に、同38遺伝子からさらに望ましいプロフィールを有する遺伝子を抽出するため以下の高次評価を実施した。まず、正常細胞と癌細胞との間で作用に乖離がある標的分子を見出す目的で、ヒト肺正常繊維芽細胞MRC-5及びヒト正常気管支上皮細胞BEAS-2Bについて、前述の3配列のAmbion社siRNAを用いて同様な実験を行い、各siRNAの増殖抑制活性を算出した。そして、各正常細胞における3配列のsiRNAの平均増殖抑制活性が、A549細胞のそれに比べて30%以上低い遺伝子を抽出し、表1に示す4遺伝子を同定した。これらの遺伝子の発現を抑制しても、正常細胞の増殖に与える影響は小さいことが分かった。なお、RERF-LC-AI細胞と正常細胞2種の間で30%以上の乖離のある遺伝子は見出されなかった。
 一方で、癌細胞で発現が亢進している遺伝子に絞り込むため、RERF-LC-AI細胞及びA549細胞を、D-MEM(ナカライテスク社;カタログ番号08456-65)、10% Fetal Bovine Serum(MP Biomedicals社;カタログ番号2916754)、 ペニシリン : 5,000 単位/ml、ストレプトマイシン : 5,000μg/ml(Invitrogen社;カタログ番号15070-063)を用いて37℃、5%CO2環境下で培養し、全RNAを抽出した。また、クロンテック社より23種類のヒト正常組織(脂肪、骨髄、脳海馬、脳、結腸、胎児脳、胎児肝臓、心臓、腎臓、肝臓、肺、末梢白血球、胎盤、前立腺、骨格筋、小腸、脊髄、脾臓、胃、精巣、胸腺、気管、子宮)を、BioChain社より3種類のヒト正常組織(動脈、静脈、皮膚)の全RNAを購入した。これらの全RNAについてアジレント社のマイクロアレイ(Whole Human Genome Microarray Kit;カタログ番号G4112F)を用いて発現プロファイルデータを取得した。当該データを用い、上記38遺伝子の中でヒト正常組織と比較してRERF-LC-AI細胞及びA549細胞において2倍以上に発現亢進している遺伝子を抽出し、表2に示す5遺伝子を見出した。これらの遺伝子は正常組織に比べて癌細胞での発現が亢進しているため、これらの遺伝子の発現を抑制しても、正常組織に与える影響は小さいと考えられる。
 表1もしくは表2に示す7遺伝子(2遺伝子は表1と表2で重複)について、米国National Center for Biological InformationのPubmedに登録されている文献において、癌もしくは細胞増殖との明確な関連が報告されているか否かを調査した結果、AQR、NHP2L1又はNUP205に関してその関連性は報告されておらず、癌の新規標的分子であることが明らかとなった。
Next, in order to extract genes having a more desirable profile from the 38 genes, the following high-order evaluation was performed. First, for the purpose of finding target molecules that have a difference in action between normal cells and cancer cells, Ambion of the above-mentioned three sequences was used for human lung normal fibroblast MRC-5 and human normal bronchial epithelial cell BEAS-2B. Similar experiments were performed using siRNA, and the growth inhibitory activity of each siRNA was calculated. Then, genes with an average growth inhibitory activity of 3 sequences of siRNA in each normal cell 30% or more lower than that of A549 cells were extracted, and 4 genes shown in Table 1 were identified. It was found that even if the expression of these genes was suppressed, the effect on the proliferation of normal cells was small. In addition, a gene having a divergence of 30% or more between RERF-LC-AI cells and two normal cells was not found.
On the other hand, RERF-LC-AI cells and A549 cells were selected from D-MEM (Nacalai Tesque; catalog number 08456-65), 10% Fetal Bovine Serum (MP Biomedicals; catalog number 2916754), penicillin: 5,000 units / ml, streptomycin: 5,000 μg / ml (Invitrogen; catalog number 15070-063), cultured in a 37 ° C, 5% CO2 environment to extract total RNA did. In addition, 23 types of normal human tissues (fat, bone marrow, brain hippocampus, brain, colon, fetal brain, fetal liver, heart, kidney, liver, lung, peripheral leukocytes, placenta, prostate, skeletal muscle, small intestine, spinal cord from Clontech Spleen, stomach, testis, thymus, trachea, uterus) and 3 types of human normal tissues (arteries, veins, skin) from BioChain. Expression profile data of these total RNAs was obtained using an Agilent microarray (Whole Human Genome Microarray Kit; catalog number G4112F). Using the data, we extracted genes that are more than 2-fold upregulated in RERF-LC-AI cells and A549 cells compared to normal human tissues among the 38 genes above, and found the 5 genes shown in Table 2 It was. Since these genes have increased expression in cancer cells compared to normal tissues, even if the expression of these genes is suppressed, the effect on normal tissues is considered to be small.
Regarding the 7 genes shown in Table 1 or 2 (2 genes are duplicated in Table 1 and Table 2), a clear link to cancer or cell growth is reported in the literature registered in Pubmed of the National Center for Biological Information. As a result of investigating whether or not it has been reported, no association has been reported with respect to AQR, NHP2L1 or NUP205, and it has become clear that this is a novel target molecule for cancer.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 癌新規標的3遺伝子について、siRNAによるノックダウンの確認と増殖抑制の再現性の確認、並びに肺以外の臓器由来の癌細胞に対する効果を調べる目的で以下の実験を実施した。前述のA549、RERF-LC-AI、MRC-5及びBEAS-2Bに加えて、ヒト大腸癌細胞株HCT116及びヒト膵臓癌細胞株BxPC-3を用い、Ambion社のsiRNAを各遺伝子2もしくは3配列ずつ用い(カタログ番号AQR, s18725, s18726, s18727;NUP205, s23175, s23176, s23177;NHP2L1, s9548, s9549)、前述と同様に各遺伝子をノックダウンした際の細胞の生存性を評価した。各siRNAの配列を表3に示す。 The following experiments were conducted with the aim of confirming knockdown by siRNA, reproducibility of growth suppression, and examining the effects on cancer cells derived from organs other than the lung for the three new cancer target genes. In addition to the aforementioned A549, RERF-LC-AI, MRC-5 and BEAS-2B, human colon cancer cell line HCT116 and human pancreatic cancer cell line BxPC-3 were used, and Ambion's siRNA was sequenced in each gene 2 or 3 Each was used (catalog number AQR, s18725, s18726, s18727; NUP205, s23175, s23176, s23177; NHP2L1, s9548, s9549), and the viability of the cells when each gene was knocked down was evaluated as described above. The sequence of each siRNA is shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
配列は5’から3’方向に記載する。
小文字は3’オーバーハング部分のヌクレオチドでありDNAである。
Figure JPOXMLDOC01-appb-T000003
Sequences are written in the 5 ′ to 3 ′ direction.
Lower case letters are 3 ′ overhang nucleotides and DNA.
 ノックダウンの評価については、siRNA導入後48時間の段階で、Cell Amp Direct RNA Prep Kit for RT-PCR(タカラバイオ社;カタログ番号3732)を用いて鋳型サンプルを調製し、One Step SYBR PrimeScript RT-PCR Kit II(タカラバイオ社;カタログ番号RR086A)を用いて定量PCR法により行った。なお、各遺伝子の定量PCR用プライマーはタカラバイオ社(カタログ番号AQR, HA080236;NUP205, HA078518)もしくはキアゲン社(カタログ番号NHP2L1, QT00027867)の製品を使用した。発現量測定においては、同時に補正遺伝子としてβアクチンの測定を行い、補正を行った。その結果、当該3遺伝子に対するsiRNA導入することで、A549細胞及びRERF-LC-AI細胞の増殖が強く抑制され、実施例1のスクリーニング結果が再現された(図1~3)。NHP2L1及びNUP205に関しては、肺癌細胞A549と肺正常細胞MRC-5との間で作用に乖離がある現象も再現された(図1~3)。また、当該3遺伝子に対するsiRNAを導入することにより、肺癌由来細胞のみならず、大腸癌由来細胞HCT116及び膵臓癌由来細胞BxPC-3の増殖も顕著に抑制された。また、siRNA導入48時間後において、siRNAによる各遺伝子のノックダウンを確認することができた(図4~6)。 For the knockdown evaluation, 48 hours after siRNA introduction, template samples were prepared using Cell Amp Direct RNA Prep Kit for RT-PCR (Takara Bio Inc .; catalog number 3732), and One Step SYBR PrimeScript RT- PCR was performed by quantitative PCR using Kit II (Takara Bio Inc .; catalog number RR086A). As primers for quantitative PCR of each gene, products of Takara Bio Inc. (catalog number AQR, HA080236; NUP205, HA078518) or Qiagen (catalog number NHP2L1, QT00027867) were used. In the expression level measurement, β-actin was simultaneously measured as a correction gene and corrected. As a result, by introducing siRNA for the three genes, the proliferation of A549 cells and RERF-LC-AI cells was strongly suppressed, and the screening results of Example 1 were reproduced (FIGS. 1 to 3). Regarding NHP2L1 and NUP205, a phenomenon in which there is a difference in action between lung cancer cell A549 and normal lung cell MRC-5 was also reproduced (FIGS. 1 to 3). Moreover, by introducing siRNA for the three genes, not only lung cancer-derived cells but also colon cancer-derived cells HCT116 and pancreatic cancer-derived cells BxPC-3 were proliferated. In addition, knockdown of each gene by siRNA could be confirmed 48 hours after siRNA introduction (FIGS. 4 to 6).
アンチセンスオリゴヌクレオチドの配列設計
 癌新規標的3遺伝子に対するアンチセンスオリゴヌクレオチドの塩基配列を設計する。各遺伝子の塩基配列情報は、例えば米国National Center for Biological InformationのGenBankに登録されているもの(ヒトAQR, NM_014691; ヒトNHP2L1, NM_001003796; ヒトNUP205, NM_015135)を使用することが可能である。各塩基配列を基に、例えば、1)鎖長は13塩基、2)免疫賦活作用を示さないように、TLR9のリガンドとなりうるCpG配列を含まない、3)分子内で高次構造をとらない、4)他の遺伝子に対して高いホモロジーを示さない、という基準により効果的な配列を選択することが可能である。ただし、標的核酸に対する発現抑制効果を有する配列を選択可能なものであれば、選択基準は上記に限定されるものではない。上記基準により設計した各新規標的に対するアンチセンスオリゴヌクレオチドの例を表4に示すが、標的核酸に対する発現抑制効果を有するものであれば、アンチセンスオリゴはこれらに限定されるものではない。また、これらのアンチセンスオリゴヌクレオチドは修飾塩基を含むものであってもよく、塩基がホスホジエステル結合以外の結合により結合されていてもよい。例えば、表4の小文字で示された塩基の少なくとも1つがLNA(Locked Nucleic Acid)であってもよく、大文字で示された塩基間の結合の少なくとも1つがホスホロチオエート結合であってもよい。かかる修飾アンチセンスオリゴヌクレオチドの具体例としては、表4の小文字で示された塩基がすべてLNAであり、大文字で示された塩基間の結合がホスホロチオエート結合であるものが挙げられるが、これらに限定されない。
Antisense oligonucleotide sequence design Design the base sequence of antisense oligonucleotides for 3 novel cancer target genes. As the nucleotide sequence information of each gene, for example, information registered in GenBank of the National Center for Biological Information (human AQR, NM_014691; human NHP2L1, NM_001003796; human NUP205, NM_015135) can be used. Based on each base sequence, for example, 1) the chain length is 13 bases, 2) does not contain a CpG sequence that can be a ligand for TLR9 so as not to show immunostimulatory action, and 3) does not have a higher order structure in the molecule. 4) It is possible to select an effective sequence on the basis that it does not show high homology to other genes. However, the selection criteria are not limited to the above as long as a sequence having an expression suppressing effect on the target nucleic acid can be selected. Examples of antisense oligonucleotides for each new target designed according to the above criteria are shown in Table 4. However, the antisense oligo is not limited to these as long as it has an expression suppressing effect on the target nucleic acid. These antisense oligonucleotides may contain a modified base, and the base may be bound by a bond other than a phosphodiester bond. For example, at least one of the bases indicated in lowercase letters in Table 4 may be LNA (Locked Nucleic Acid), and at least one of the bonds between the bases indicated in uppercase letters may be a phosphorothioate bond. Specific examples of such modified antisense oligonucleotides include those in which all the bases shown in lower case letters in Table 4 are LNAs, and the bonds between the bases shown in upper case letters are phosphorothioate bonds. Not.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-I000005



Figure JPOXMLDOC01-appb-I000006
配列は5’から3’方向に記載する。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-I000005



Figure JPOXMLDOC01-appb-I000006
Sequences are written in the 5 ′ to 3 ′ direction.
アンチセンスオリゴヌクレオチド合成
 ヨウ素による酸化を伴う標準ホスホロアミダイト化学を用いて、自動化DNA合成機(NTS H-8-SE; Nihon Techno Service Co. Ltd.)で、非置換および置換ホスホジエステル(P=O)オリゴヌクレオチドを合成する。
Antisense oligonucleotide synthesis Using standard phosphoramidite chemistry with oxidation by iodine, using an automated DNA synthesizer (NTS H-8-SE; Nihon Techno Service Co. Ltd.) with unsubstituted and substituted phosphodiesters (P = O) Synthesize oligonucleotides.
 標準酸化ビンを、亜リン酸塩結合の段階的硫化(thiation)のためにアセトニトリル中の0.2M溶液の3H-1,2-ベンゾジチオール-3-オン1,1-ジオキサイドで置き変えたこと以外は、ホスホロジエステルオリゴヌクレオチドと同様に、ホスホロチオエート(P=S)を合成する。硫化待機工程を70秒に延長し、その後キャップ付加工程を続ける。CPGカラムからの切断および55℃での濃縮水酸化アンモニウム中での脱保護(18時間)の後、公知のゲルろ過法あるいは逆相HPLC法によりオリゴヌクレオチドを精製する。 Standard bin oxide was replaced with a 0.2M solution of 3H-1,2-benzodithiol-3-one 1,1-dioxide in acetonitrile for phosphite-bonded thiation. Except for this, phosphorothioate (P = S) is synthesized in the same manner as the phosphorodiester oligonucleotide. The sulfurization standby process is extended to 70 seconds, and then the cap addition process is continued. After cleavage from the CPG column and deprotection in concentrated ammonium hydroxide at 55 ° C. (18 hours), the oligonucleotide is purified by known gel filtration or reverse phase HPLC methods.
 米国特許第5508270号明細書に記載の方法を用いて、ホスフィネートオリゴヌクレオチドを調製する。
 米国特許第4469863号明細書に記載の方法を用いて、アルキルホスフォネートオリゴヌクレオチドを調製する。
 米国特許第5610289号明細書または米国特許第5625050号明細書に記載の方法を用いて、3'-デオキシ-3'-メチレンホスホネートオリゴヌクレオチドを調製する。
 米国特許第5256775号明細書または米国特許第5366878号明細書に記載の方法を用いて、ホスホロアミダイトオリゴヌクレオチドを調製する。
 国際公開第94/17093号または国際公開第94/02499号に記載の方法を用いて、アルキルホスホノチオエートオリゴヌクレオチドを調製する。
 米国特許第5476925号明細書に記載の方法を用いて、3'-デオキシ-3'-アミノホスホルアミデートオリゴヌクレオチドを調製する。
 米国特許第5023243号明細書に記載の方法を用いて、ホスホトリエステルオリゴヌクレオチドを調製する。
 米国特許第5130302号明細書または米国特許第5177198号明細書に記載の方法を用いて、ボラノ(Borano)ホスフェートオリゴヌクレオチドを調製する。
Phosphinate oligonucleotides are prepared using the method described in US Pat. No. 5,508,270.
Alkyl phosphonate oligonucleotides are prepared using the method described in US Pat. No. 4,469,863.
3′-deoxy-3′-methylene phosphonate oligonucleotides are prepared using the methods described in US Pat. No. 5,610,289 or US Pat. No. 5,562,050.
Phosphoramidite oligonucleotides are prepared using the methods described in US Pat. No. 5,256,775 or US Pat. No. 5,366,878.
Alkylphosphonothioate oligonucleotides are prepared using the methods described in WO94 / 17093 or WO94 / 02499.
A 3′-deoxy-3′-aminophosphoramidate oligonucleotide is prepared using the method described in US Pat. No. 5,476,925.
Phosphotriester oligonucleotides are prepared using the methods described in US Pat. No. 5,032,243.
Borano phosphate oligonucleotides are prepared using the methods described in US Pat. No. 5,130,302 or US Pat. No. 5,177,198.
 国際公開第2003/010284号に記載の方法を用いて、ヌクレオシドに修飾が入ったオリゴヌクレオチド(例えば、LNA等)を調製する。 Using the method described in International Publication No. 2003/010284, an oligonucleotide (for example, LNA) having a modified nucleoside is prepared.
アンチセンスオリゴヌクレオチドの発現抑制効果の評価
 アンチセンスオリゴヌクレオチドが有する標的核酸の発現抑制効果は、標的核酸が測定可能なレベルで存在するならば様々な細胞タイプにおいて評価することができる。発現抑制効果は、例えば、定量PCR法もしくはノーザンブロット分析を用いて常法よりに決定することができる。以下ではヒト肺腺癌由来細胞株であるA549を用いた実施例を記載するが、選択する細胞タイプにおいて標的核酸が発現しているならば、細胞タイプは特に限定されるものではない。
 96ウェルプレート(Costar社;カタログ番号3628)に、上記で設計・合成したアンチセンスオリゴヌクレオチドを各1.0 pmolずつ分注する。Opti-MEM I(Gibco社;カタログ番号31985)20μlとRNAiMAX(Invitrogen社;カタログ番号13778-150)0.1μlを混合し、室温で10分間保持した後、前述のアンチセンスオリゴヌクレオチドを予め分注した96ウェルプレートに添加する。室温で20分間インキュベーションした後、D-MEM(ナカライテスク社;カタログ番号08456-65)、10% Fetal Bovine Serum(Sigma社;カタログ番号13778-150)から成り、A549細胞を2000個含む培養液を80μl添加し、37℃、5%CO2環境下で48時間培養する。ノックダウンの評価については、Cell Amp Direct RNA Prep Kit for RT-PCR(タカラバイオ社;カタログ番号3732)を用いて鋳型サンプルを調製し、One Step SYBR PrimeScript RT-PCR Kit II(タカラバイオ社;カタログ番号RR086A)を用いて定量PCR法により行うことが可能である。発現量測定においては、同時に補正遺伝子としてβアクチンの測定を行い、補正を行う。なお、各遺伝子の定量PCR用プライマーはタカラバイオ社(カタログ番号AQR, HA080236;NUP205, HA078518;βアクチン, HA067803)もしくはキアゲン社(カタログ番号NHP2L1, QT00027867)の製品を使用することができる。
Evaluation of Antisense Oligonucleotide Expression Suppression Effect The target nucleic acid expression suppression effect of an antisense oligonucleotide can be evaluated in various cell types if the target nucleic acid is present at a measurable level. The expression suppression effect can be determined by a conventional method using, for example, a quantitative PCR method or Northern blot analysis. Hereinafter, examples using A549, which is a human lung adenocarcinoma-derived cell line, will be described, but the cell type is not particularly limited as long as the target nucleic acid is expressed in the cell type to be selected.
Dispense 1.0 pmol each of the antisense oligonucleotides designed and synthesized above into a 96-well plate (Costar; catalog number 3628). 20 μl of Opti-MEM I (Gibco; catalog number 31985) and 0.1 μl of RNAiMAX (Invitrogen; catalog number 13778-150) were mixed and held at room temperature for 10 minutes, and then the above-mentioned antisense oligonucleotide was dispensed in advance. Add to 96 well plate. After incubation at room temperature for 20 minutes, a culture solution consisting of D-MEM (Nacalai Tesque; catalog number 08456-65) and 10% Fetal Bovine Serum (Sigma; catalog number 13778-150) containing 2000 A549 cells was prepared. Add 80 μl and incubate for 48 hours in a 37 ° C., 5% CO 2 environment. For evaluation of knockdown, template samples were prepared using Cell Amp Direct RNA Prep Kit for RT-PCR (Takara Bio Inc .; catalog number 3732), and One Step SYBR PrimeScript RT-PCR Kit II (Takara Bio Inc .; catalog) It is possible to carry out by the quantitative PCR method using the number RR086A). In the expression level measurement, β-actin is simultaneously measured as a correction gene and corrected. As primers for quantitative PCR of each gene, products of Takara Bio Inc. (catalog numbers AQR, HA080236; NUP205, HA078518; β-actin, HA067803) or Qiagen (catalog numbers NHP2L1, QT00027867) can be used.
アンチセンスオリゴヌクレオチドの増殖抑制作用の評価
 標的核酸に対する発現抑制効果を確認できたアンチセンスオリゴヌクレオチドについては、癌細胞に対する増殖抑制作用を評価する。増殖抑制作用は、例えば実際に細胞数を計数する、細胞内のATP量や脱水素酵素活性を測定する、等の方法により日常的に決定することができる。以下、A549細胞を用いた実例を提供するが、選択する細胞タイプに対してアンチセンスオリゴヌクレオチドが導入可能であれば他の細胞タイプも用いることができる。
 384ウェルプレートに該オリゴヌクレオチドを0.25 pmolずつ分注する。Opti-MEM I(Gibco社;カタログ番号31985)5μlとRNAiMAX(Invitrogen社;カタログ番号13778-150)0.025μlを混合し、室温で10分間保持した後、前述のアンチセンスオリゴヌクレオチドを予め分注した384ウェルプレートに添加する。室温で20分間インキュベーションした後、D-MEM(ナカライテスク社;カタログ番号08456-65)、10% Fetal Bovine Serum(Sigma社;カタログ番号13778-150)から成り、A549細胞を500個含む培養液を20μl添加し、37℃、5%CO2環境下で4日間培養する。各ウェルに、ATP含量を測定するための試薬であるCellTiter-Glo Luminescent Cell Viability Assay(Promega社;カタログ番号G7571/2/3)の溶液を25μl添加し、発光量をViewluxハイスループットマイクロプレートイメージャー(PerkinElmer社製)を用いて測定し、これを細胞数を反映した値とする。各ウェルの発光値を基に、各アンチセンスオリゴヌクレオチドの増殖抑制作用を決定する。
Evaluation of Antiproliferation Action of Antisense Oligonucleotide Antisense oligonucleotides that have been confirmed to have an expression inhibition effect on the target nucleic acid are evaluated for an antiproliferation action on cancer cells. The growth inhibitory action can be routinely determined by methods such as actually counting the number of cells, measuring the amount of ATP in the cells, and dehydrogenase activity. Hereinafter, examples using A549 cells are provided, but other cell types can be used as long as antisense oligonucleotides can be introduced into the cell types to be selected.
Dispense 0.25 pmol of the oligonucleotide into a 384 well plate. 5 μl of Opti-MEM I (Gibco; catalog number 31985) and 0.025 μl of RNAiMAX (Invitrogen; catalog number 13778-150) were mixed and held at room temperature for 10 minutes, and then the above-mentioned antisense oligonucleotide was dispensed in advance. Add to 384 well plate. After incubation at room temperature for 20 minutes, a culture solution consisting of D-MEM (Nacalai Tesque; catalog number 08456-65) and 10% Fetal Bovine Serum (Sigma; catalog number 13778-150) containing 500 A549 cells was prepared. Add 20 μl and incubate at 37 ° C in 5% CO2 for 4 days. To each well, 25 μl of CellTiter-Glo Luminescent Cell Viability Assay (Promega; Catalog No. G7571 / 2/3), a reagent for measuring ATP content, was added, and the amount of luminescence was measured by Viewlux high-throughput microplate imager. (PerkinElmer) is used for measurement, and this is a value reflecting the number of cells. Based on the luminescence value of each well, the growth inhibitory action of each antisense oligonucleotide is determined.
 本発明は、医薬品の分野、特に抗癌剤の開発および製造の分野において利用可能である。 The present invention can be used in the field of pharmaceuticals, particularly in the field of development and production of anticancer agents.

Claims (7)

  1.  AQR遺伝子、NHP2L1遺伝子又はNUP205遺伝子の発現を抑制する物質を含む、癌の治療のための医薬組成物。 A pharmaceutical composition for the treatment of cancer comprising a substance that suppresses the expression of AQR gene, NHP2L1 gene or NUP205 gene.
  2.  遺伝子の発現を抑制する物質が、siRNA、アンチセンスオリゴヌクレオチド若しくはリボザイム又はこれらの発現ベクターである、請求項1記載の医薬組成物。 The pharmaceutical composition according to claim 1, wherein the substance that suppresses gene expression is siRNA, antisense oligonucleotide or ribozyme, or an expression vector thereof.
  3.  遺伝子の発現を抑制する物質が、siRNA又はsiRNAの発現ベクターである、請求項1又は2記載の医薬組成物。 The pharmaceutical composition according to claim 1 or 2, wherein the substance that suppresses gene expression is siRNA or an siRNA expression vector.
  4.  前記siRNAが、下記の(a)~(i)いずれかに記載のsiRNAからなる群より選択される1種またはそれ以上のsiRNAである、請求項2又は3記載の医薬組成物:
     (a)二本鎖RNA部分が、配列番号:7における第1番目から第19番目のヌクレオチド配列および配列番号:8における第1番目から第19番目のヌクレオチド配列からなるsiRNA;
     (b)二本鎖RNA部分が、配列番号:9における第1番目から第19番目のヌクレオチド配列および配列番号:10における第1番目から第19番目のヌクレオチド配列からなるsiRNA;
     (c)二本鎖RNA部分が、配列番号:11のヌクレオチド配列における第1番目から第19番目および配列番号:12における第1番目から第19番目のヌクレオチド配列からなるsiRNA;
     (d)二本鎖RNA部分が、配列番号:13における第1番目から第19番目のヌクレオチド配列および配列番号:14における第1番目から第19番目のヌクレオチド配列からなるsiRNA;
     (e)二本鎖RNA部分が、配列番号:15における第1番目から第19番目のヌクレオチド配列および配列番号:16における第1番目から第19番目のヌクレオチド配列からなるsiRNA;
     (f)二本鎖RNA部分が、配列番号:17における第1番目から第19番目のヌクレオチド配列および配列番号:18における第1番目から第19番目のヌクレオチド配列からなる二本鎖を含むsiRNA;
     (g)二本鎖RNA部分が、配列番号:19における第1番目から第19番目のヌクレオチド配列および配列番号:20における第1番目から第19番目のヌクレオチド配列からなるsiRNA;
     (h)二本鎖RNA部分が、配列番号:21における第1番目から第19番目のヌクレオチド配列および配列番号:22における第1番目から第19番目のヌクレオチド配列からなるsiRNA;
     (i)二本鎖RNA部分における一方または両方のヌクレオチド配列において1~数個のヌクレオチドが付加、挿入、欠失または置換されている、(a)~(h)のいずれかに記載のsiRNA。
    The pharmaceutical composition according to claim 2 or 3, wherein the siRNA is one or more siRNA selected from the group consisting of siRNAs according to any one of the following (a) to (i):
    (A) siRNA in which the double-stranded RNA portion consists of the first to 19th nucleotide sequence in SEQ ID NO: 7 and the first to 19th nucleotide sequence in SEQ ID NO: 8;
    (B) siRNA in which the double-stranded RNA portion consists of the first to 19th nucleotide sequence in SEQ ID NO: 9 and the first to 19th nucleotide sequence in SEQ ID NO: 10;
    (C) siRNA in which the double-stranded RNA portion comprises the first to the 19th nucleotide sequence in the nucleotide sequence of SEQ ID NO: 11 and the first to the 19th nucleotide sequence in SEQ ID NO: 12;
    (D) siRNA in which the double-stranded RNA portion consists of the first to the 19th nucleotide sequence in SEQ ID NO: 13 and the first to the 19th nucleotide sequence in SEQ ID NO: 14;
    (E) siRNA in which the double-stranded RNA portion consists of the first to 19th nucleotide sequence in SEQ ID NO: 15 and the first to 19th nucleotide sequence in SEQ ID NO: 16;
    (F) siRNA in which the double-stranded RNA portion comprises a double strand consisting of the first to 19th nucleotide sequence in SEQ ID NO: 17 and the first to 19th nucleotide sequence in SEQ ID NO: 18;
    (G) siRNA in which the double-stranded RNA portion consists of the first to 19th nucleotide sequence in SEQ ID NO: 19 and the first to 19th nucleotide sequence in SEQ ID NO: 20;
    (H) siRNA in which the double-stranded RNA portion consists of the first to 19th nucleotide sequence in SEQ ID NO: 21 and the first to 19th nucleotide sequence in SEQ ID NO: 22;
    (I) The siRNA according to any one of (a) to (h), wherein 1 to several nucleotides are added, inserted, deleted or substituted in one or both nucleotide sequences in the double-stranded RNA portion.
  5.  siRNAの一方又は両方の鎖に3’末端のオーバーハングを含む、請求項4記載の医薬組成物。 The pharmaceutical composition according to claim 4, comprising a 3'-terminal overhang in one or both strands of the siRNA.
  6.  癌が、肺癌、大腸癌又は膵臓癌のいずれかである、請求項1~5のいずれかに記載の医薬組成物。 The pharmaceutical composition according to any one of claims 1 to 5, wherein the cancer is lung cancer, colon cancer or pancreatic cancer.
  7.  下記の工程(a)~(c)を含む、癌の治療用物質をスクリーニングする方法:
    (a)AQR遺伝子、NHP2L1遺伝子又はNUP205遺伝子の発現を測定可能な細胞と被験物質とを接触させる工程;
    (b)被験物質を接触させた細胞における前記遺伝子の発現量を測定し、該発現量を、被験物質を接触させない対照細胞における前記遺伝子の発現量と比較する工程;
    次いで
    (c)被験物質を与えられた細胞における前記遺伝子の発現が、被験物質を与えられていない細胞における前記遺伝子の発現よりも低下している場合に、被験物質を癌の治療物質として選択する工程。
    A method for screening a substance for treating cancer comprising the following steps (a) to (c):
    (A) contacting a test substance with a cell capable of measuring the expression of AQR gene, NHP2L1 gene or NUP205 gene;
    (B) measuring the expression level of the gene in cells contacted with the test substance, and comparing the expression level with the expression level of the gene in control cells not contacted with the test substance;
    Next, (c) when the expression of the gene in a cell given the test substance is lower than the expression of the gene in a cell not given the test substance, the test substance is selected as a cancer treatment substance Process.
PCT/JP2011/068438 2010-08-12 2011-08-12 Pharmaceutical composition for cancer therapy WO2012020839A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010181040 2010-08-12
JP2010-181040 2010-08-12

Publications (1)

Publication Number Publication Date
WO2012020839A1 true WO2012020839A1 (en) 2012-02-16

Family

ID=45567797

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/068438 WO2012020839A1 (en) 2010-08-12 2011-08-12 Pharmaceutical composition for cancer therapy

Country Status (1)

Country Link
WO (1) WO2012020839A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016521556A (en) * 2013-06-07 2016-07-25 ラナ セラピューティクス インコーポレイテッド Compositions and methods for modulating FOXP3 expression

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005017123A2 (en) * 2003-08-14 2005-02-24 Exelixis, Inc. Mptens as modifiers of the pten pathway and methods of use

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005017123A2 (en) * 2003-08-14 2005-02-24 Exelixis, Inc. Mptens as modifiers of the pten pathway and methods of use

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KONIG, R. ET AL.: "Global analysis of host- pathogen interactions that regulate early-stage HIV-1 replication", CELL, vol. 135, no. 1, 2008, pages 49 - 60 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016521556A (en) * 2013-06-07 2016-07-25 ラナ セラピューティクス インコーポレイテッド Compositions and methods for modulating FOXP3 expression

Similar Documents

Publication Publication Date Title
US7964717B2 (en) RNAi probes targeting cancer-related proteins
CN113633656A (en) Pharmaceutical composition for treating cancer comprising microribonucleic acid as active ingredient
AU2020200247A1 (en) Organic compositions to treat KRAS-related diseases
JP6895175B2 (en) Exosome secretion inhibitor
JP2021521796A (en) PCSK9-targeted oligonucleotides for the treatment of hypercholesterolemia and related conditions
JP5812491B2 (en) Tumor treatment
CN100471862C (en) Antisense oligonucleotides that inhibit expression of HIF-1
US20190112603A1 (en) Methods and Compositions for Managing Vascular Conditions Using miR-483 Mimics and HIF1alpha Pathway Inhibitors
WO2012020839A1 (en) Pharmaceutical composition for cancer therapy
JP6436477B2 (en) Pharmaceutical composition for cancer treatment
JP6478416B2 (en) Pharmaceutical composition for the treatment of chronic kidney disease
EP3994145A1 (en) Inhibitors of rna editing and uses thereof
JP2022541212A (en) SiRNA sequences targeting the expression of the human genes JAK1 or JAK3 for therapeutic use
US8486905B2 (en) Use of FLJ25416 gene
WO2011074652A1 (en) Nucleic acid capable of inhibiting expression of hif-2α
JP2010529852A (en) RNAi-mediated knockdown of NuMA for cancer treatment
KR100986465B1 (en) Novel use of OIP5 gene
WO2014024820A1 (en) Pharmaceutical composition for treating new chronic kidney disease and method for screening medicine for new chronic kidney disease
AU2007216630B2 (en) RNAi probes targeting cancer-related proteins
TW202400193A (en) Compositions and methods for inhibiting transmembrane serine protease 6 (tmprss6) expression
WO2021209608A1 (en) Medical methods and medical uses
JP2019033741A (en) Therapeutic method and therapeutic composition for malignant tumor
WO2013154128A1 (en) Novel arteriosclerosis treatment drug composition and method for screening arteriosclerosis treatment drugs
US20100292302A1 (en) Induction of apoptosis and inhibition of cell proliferation through modulation of carnitine palmitoyltransferase 1c activity

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11816501

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11816501

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP