WO2012020161A1 - Uso de nanocompuestos de polímeros sensibles a la humedad para la fabricación de objetos y envases con mayor resistencia a la humedad - Google Patents

Uso de nanocompuestos de polímeros sensibles a la humedad para la fabricación de objetos y envases con mayor resistencia a la humedad Download PDF

Info

Publication number
WO2012020161A1
WO2012020161A1 PCT/ES2011/070588 ES2011070588W WO2012020161A1 WO 2012020161 A1 WO2012020161 A1 WO 2012020161A1 ES 2011070588 W ES2011070588 W ES 2011070588W WO 2012020161 A1 WO2012020161 A1 WO 2012020161A1
Authority
WO
WIPO (PCT)
Prior art keywords
use according
moisture
polymer
package
polymers
Prior art date
Application number
PCT/ES2011/070588
Other languages
English (en)
French (fr)
Inventor
José María LAGARON CABELLO
Eugenia NÚÑEZ CALZADO
Original Assignee
Nanobiomatters Research & Development, S. L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanobiomatters Research & Development, S. L. filed Critical Nanobiomatters Research & Development, S. L.
Publication of WO2012020161A1 publication Critical patent/WO2012020161A1/es

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/306Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl acetate or vinyl alcohol (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/24Adaptations for preventing deterioration or decay of contents; Applications to the container or packaging material of food preservatives, fungicides, pesticides or animal repellants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/104Oxysalt, e.g. carbonate, sulfate, phosphate or nitrate particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/726Permeability to liquids, absorption
    • B32B2307/7265Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/70Food packaging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/80Medical packaging

Definitions

  • the present invention relates to the use of nanocomposite materials based on moisture-sensitive polymers and lamellar nano-clays for the manufacture of containers and materials whose properties of water sorption and gas and vapor barrier present a surprising behavior, which make the sorption of water is reduced with relative humidity and that the barrier effect is increased with relative humidity and that makes them unique and of great interest in packaging applications and in general in applications that require greater moisture resistance.
  • nanocomposites are polymers reinforced with a nanoscopic filling size (that is, of dimensions that are in at least one direction of the order of one nanometer to tens of nanometers).
  • a nanoscopic filling size that is, of dimensions that are in at least one direction of the order of one nanometer to tens of nanometers.
  • the nanocomposites are formed by separating the sheets by different processes that give rise to intercalated or exfoliated structures.
  • exfoliation and intercalation of nanocomposites are described in patents US6384121 B1, WO0069957, US5844032, US6228903B1, US2005 / 0027040A1, WO9304118A1.
  • the polymer chains are inserted between the layers of nano-loads or that they even completely disperse the initial clay sheets between the polymer chains, increasing the mechanical and barrier characteristics.
  • an inorganic component in an organic polymer Through interpenetration, inclusion or dispersion of an inorganic component in an organic polymer, it can be achieved that it has a higher toughness, elasticity, low surface energy, greater hardness, chemical resistance, resistance to radiation and heat as well as the inclusion of functional groups or catalytic
  • the hydrophilic-hydrophobic, covalent or coordination interactions that can be established allow the stabilization of incompatible phases with a high interfacial area.
  • hybrid material is therefore quite broad and ranges from single-phase polymer networks where the hybrid composition refers to the presence of substituents or functional groups of different nature with respect to the main component, to host-receptor or self-assembled superstructures.
  • nanomaterials that can be useful in biomedical and pharmaceutical applications because they are biocompatible and biodegradable, improve the properties of the matrix and be able to design them to control the release of active substances in applications such as packaging active and bioactive that release functional substances in food and in biomedical and pharmaceutical applications.
  • applications such as packaging active and bioactive that release functional substances in food and in biomedical and pharmaceutical applications.
  • WO 2007/074184 an invention is described that provides a new route for manufacturing nanocomposites that gives rise to a final product with improved gas and vapor barrier properties, biodegradable and well antimicrobial. or with controlled release capacity of active or bioactive substances such as antimicrobial agents, antioxidants, ethylene, ethanol, drugs, bioavailable calcium compounds and mixtures thereof. It also allows a stiffening or plasticization of the matrix depending on the formulation and also makes use of substances allowed for food contact and / or substances approved for biomedical and pharmaceutical use, improving this way the quality of the final product and offering new properties and improvements on the prior state of knowledge and solving the problems described in the state of the art.
  • the present invention describes the formulation of nanocomposites of moisture-sensitive polymers such as vinyl polyalcohol (PVOH), ethylene vinyl alcohol copolymers (EVOH), polyamides and biopolymers containing lamellar phyllosilicates such as the kaolinite nanowire, whose particularity is that the improved barrier they present increases as the relative humidity does and therefore have great interest in moisture resistance applications and particularly in high humidity packaging such as during heat sterilization Wet packed products. Additionally, the moisture sensitive polymers reinforced with the nano-clays obtained according to this process have a lower plasticization, that is, a lower reduction in their properties due to the effect of water sorption.
  • PVH vinyl polyalcohol
  • EVOH ethylene vinyl alcohol copolymers
  • biopolymers containing lamellar phyllosilicates such as the kaolinite nanowire
  • sorption in the present invention is meant any adsorption or absorption process.
  • the present invention provides the use of a nanocomposite material formed by moisture-sensitive polymers comprising lamellar phyllosilicates for the manufacture of containers that have barrier properties to increasing gases with moisture and less water sorption and are therefore more resistant against humidity.
  • nanocomposite material is understood in the present invention by materials formed by two or more components distinguishable from each other, where at least one of the components has a dimension of the order of nanometers, these nanocomposite materials possess properties that are obtained from combinations of its components, being superior to that of the materials that form them separately.
  • the present invention relates to the use of a nanocomposite material formed by polymers comprising lamellar phyllosilicates with a particle size between 0.1 and 100 ⁇ , for the manufacture of plastic articles with greater moisture resistance.
  • the laminar phyllosilicate is selected from the list comprising kaolinite, montmorillonite, pyrophyllite, bentonite, smectite, hectorite, sepiolite, saponite, laponite, halloisite, vermiculite, mica, chlorite, Hita and any of their mixtures.
  • the laminar phyllosilicate is kaolinite.
  • the polymers used in the nanocomposite material can be those that are sensitive to moisture, so that their physical properties are improved, fundamentally the barrier properties of said polymers.
  • the polymer is selected from the list comprising vinyl polyalcohol, ethylene vinyl alcohol copolymers and derivatives, polyamides, proteins, polysaccharides, lipids and biopolymers in general and mixtures thereof.
  • the polymer is selected from polyvinyl alcohol (PVOH) and copolymers of ethylene and vinyl alcohol (EVOH).
  • Copolymer in the present invention is understood as a macromolecule composed of two or more different repeating units, called monomers, which can be joined in different ways by means of chemical bonds.
  • the monomers that form the copolymer can be distributed randomly or periodically throughout the macromolecule.
  • the plastic article is a monolayer or multilayer object, more preferably said object is a container, and even more preferably the package is processed either alone or with its contents by sterilization with moist heat.
  • the nanocomposite material used to make the containers and other objects that require moisture resistance are obtained by the procedure described in the international patent application WO2007 / 074184 and in the Spanish patent application P2010030215; by means of said process, materials with gas barrier properties are obtained that increase with the increase in ambient humidity and that have a lower sorption of water at high relative humidity.
  • Said procedure mainly comprises the following steps:
  • the thin laminates are intercalated in aqueous base or with polar solvents that may also contain or not contain suspending or deflocculating agents, with moisture sensitive polymers.
  • the polymers can be PVOH, EVOH and derivatives of the same family, polyamides including aliphatic and aromatic and biopolymers such as peptides, natural or synthetic proteins obtained via chemical or genetic modification of microorganisms or plants, polysaccharides natural or synthetic via chemical or genetic modification of microorganisms or plants, polypeptides, nucleic acids and polymers of synthetic nucleic acids obtained chemically or by genetic modification of microorganisms or plants, natural or synthetic lipids and biodegradable polyesters such as polylactic acid, polylactic acid- glycolic, adipic acid and derivatives and the polydroxyalkanoates, preferably polydroxybutyrate and their copolymers with valeriates and mixtures thereof.
  • the polymer that is intercalated is the EVOH or any material of the family thereof with molar contents of ethylene preferably less than 48%, and more preferably less than 29%, they are brought to saturation in aqueous medium or in specific solvents of alcoholic type and mixtures of alcohols and water, more preferably of water and isopropanol in proportions in volume of water greater than 50%.
  • the biopolymers with or without plasticizers, with or without crosslinkers and with or without emulsifiers or surfactants or other types of additives are from the group of synthetic and natural polysaccharides (vegetable or animal) such as cellulose and derivatives, carrageenans and derivatives, alginates, pullulan, dextran, gum arabic and preferably chitosan or any of its natural and synthetic derivatives, more preferably chitosan salts and even more preferably chitosan acetate, and both plant-derived proteins and animals such as corn proteins (zein), gluten derivatives, such as gluten or its gliadin and glutenin fractions and more preferably gelatin, casein and soy proteins and derivatives thereof, as well as natural or synthetic polypeptides preferably of the elastin type obtained by chemical or genetic modification of microorganisms or plants and me zclas of all the above.
  • synthetic and natural polysaccharides such as cellulose and derivatives, carrageenans and derivatives, al
  • the interleaving will be accelerated by the use of temperature, a homogenizer of turbulent regime, ultrasound, pressure or mixture of the above.
  • the result of the previous steps is precipitated by evaporation using drying methodologies such as heating and / or centrifugation processes and / or gravimetric in solution or turbo-dryers and / or atomization; by cooling or by adding a precipitating agent to form a "masterbatch" or what is the same a polymer with additive concentrate, which is crushed to give rise to a particulate product by grinding and / or processed by any methodology of Plastics processing to obtain solid state pellets.
  • the "masterbatch” is used directly to obtain a final product (as described in step 4) through any manufacturing process related to the plastics processing industry such as extrusion, injection, blowing , compression molding, resin transfer molding, calendering, thermal shock, ultrasonic internal mixing, lamination, thermoforming, coextrusion, co-injection and mixing thereof, or used as a dilute additive in the same or another plastic matrix (including biopolymers and biomedical materials cited) in a conventional plastics processing route such as those mentioned above.
  • any manufacturing process related to the plastics processing industry such as extrusion, injection, blowing , compression molding, resin transfer molding, calendering, thermal shock, ultrasonic internal mixing, lamination, thermoforming, coextrusion, co-injection and mixing thereof, or used as a dilute additive in the same or another plastic matrix (including biopolymers and biomedical materials cited) in a conventional plastics processing route such as those mentioned above.
  • any of the previous steps can be added directly, that is, either the thin laminates or the thin laminates intercalated with polymers, in a liquid state, to a matrix consisting of the same or other moisture sensitive polymers.
  • they are added to the polymer matrix during processing using any manufacturing method related to the plastics processing industry such as extrusion, injection, blowing, compression molding, resin transfer molding, calendering, thermal shock, internal mixing ultrasound, coextrusion, coinjection and mixing of these.
  • it is added to an extrusion process, followed by a pelletizing process from which a "masterbatch" is obtained, that is, enriched in the laminar additive, or in the desired final concentration.
  • the polymer can contain all types of additives typically added to plastics to improve its processing or its properties. 4) Finally, articles such as plastic containers are always obtained in which the layer of the nanocomposite (moisture sensitive polymer + laminar additive) is forming part of the constitution of the article either as a monolayer or within a multilayer and which can be obtain by any method of obtaining plastic objects, including monolayer or multilayer extrusion, laminate, blow, blow injection, thermoforming, etc.
  • adhesives are typically used between the layers to coalesce the structures and the outer layers are made of water barrier and heat sealable materials, typically polyolefins such as polypropylenes and ethylene polyterephthalate.
  • Plastic articles and specifically, of the containers obtained from nanocomposites of lamellar clays (phyllosilicates) and polymers, which can be sensitive to moisture, are suitable for separation membranes and for the conservation of various types of products sensitive to the permeation of gases and vapors.
  • These products may be, without limitation, food products of plant or animal origin, drugs and / or active ingredients in solid forms, surgical or biomedical material, personal hygiene products and household use, liquid or suspended, phytosanitary products and agricultural, detergents and cleaning products, reagents and laboratory samples and, in general, any product that requires for its conservation increase its impermeability to gases and vapors in the presence of moisture.
  • These materials are also very suitable for the preservation of products that require sterilization processes under conditions of high humidity and vapor pressure such as during autoclave wet heat sterilization processes. So in a preferred embodiment the packaged products are sterilized by moist heat.
  • moisture-sensitive polymers reduce their properties in the presence of the latter, it is desirable for implementation either in direct exposure to the environment or the product and as a monolayer or as part of multilayers or mixtures in many applications, maintain minimize the loss of properties at high relative humidity. That is why a very important application of these nanocomposites is to be part of new objects or to improve existing ones, which are more resistant to moisture in, for example, engineering applications, in construction, automotive, aerospace, electronics, etc.
  • the nanocomposites of lamellar clays and moisture sensitive polymers are applied generically to obtain plastic objects of moisture sensitive polymers with greater resistance to high relative humidity.
  • the plastic article comprises three layers, and the intermediate layer is formed by the nanocomposite material described above. And in a more preferred embodiment between the layers an adhesive layer known to any person skilled in the art is used.
  • the two outer layers are formed by water-barrier and heat sealable polymers, which in an even more preferred embodiment the polymers are selected from polyolefins, polyesters (including biopolyesters) or any of its combinations, where the polyolefins can be selected from among the families of polypropylenes, and the polyesters can be selected from among ethylene polyterephthalate, polylactic acid or polyhydroxyalkanoates.
  • the modification process consists of a first step in which a 25% aqueous suspension of solids content of the fine kaolinite clay fines is obtained, the D50 of the clay particles being 0.9 microns.
  • the clay suspension was added in a twin screw extruder to a matrix of EVOH29 (29 mol% ethylene).
  • the processing conditions were 230 ° C, 290 rpm and a flow rate of 8kg / h.
  • the final clay content in the masterbatch was 9%.
  • the three-layer films obtained were used for the characterization of the barrier properties and once the intermediate film of EVOH29 was delaminated, it was used to measure the sorption of water at different relative humidity.
  • the transport properties measured in the films of the samples obtained from the "masterbatch” diluted by melt mixing are shown in Table 1.
  • the transmission speed reduction data of Oxygen (OTR) means as well as the average sorption of water at two different relative humidities (RH), that is at 50% and 100% RH, measured in the clay-added samples with respect to the clay-free samples.
  • Table 1 shows a decrease in oxygen permeability with moisture and in the sorption of water with moisture in the nanocomposite and which therefore makes these materials unique in moisture resistance applications.

Landscapes

  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Mechanical Engineering (AREA)
  • Wrappers (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

La presente invención se refiere al uso de materiales nanocompuestos basados en polímeros sensibles a la humedad y nanoarcillas laminares para la fabricación de artículos plásticos y envases cuyas propiedades de sorción de agua y de barrera a gases y vapores presentan un comportamiento sorprendente, que hacen que la sorción de agua se reduzca con la humedad relativa y que el efecto barrera se incremente con la humedad relativa, lo que los hace aptos en aplicaciones de envasado y en general en aplicaciones que requieran de mayor resistencia a la humedad.

Description

USO DE NANOCOMPUESTOS DE POLÍMEROS SENSIBLES A LA HUMEDAD PARA LA FABRICACIÓN DE OBJETOS Y ENVASES CON MAYOR RESISTENCIA A LA HUMEDAD
La presente invención se refiere al uso de materiales nanocompuestos basados en polímeros sensibles a la humedad y nanoarcillas laminares para la fabricación de envases y materiales cuyas propiedades de sorción de agua y de barrera a gases y vapores presentan un comportamiento sorprendente, que hacen que la sorción de agua se reduzca con la humedad relativa y que el efecto barrera se incremente con la humedad relativa y que los hace únicos y de gran interés en aplicaciones de envasado y en general en aplicaciones que requieran de mayor resistencia a la humedad.
Antecedentes de la invención
En los últimos años, se ha invertido un gran esfuerzo en la investigación de los nanomateriales y en particular de los nanocompuestos. Los nanocompuestos son polímeros reforzados con un relleno de tamaño nanoscópico (es decir, de unas dimensiones que son en al menos una dirección del orden de un nanómetro hasta decenas de nanómetros). La dispersión mediante exfoliación e/y intercalación de este tipo de partículas inorgánicas en una matriz polimérica permite conseguir una serie de propiedades nuevas no compartidas por materiales convencionales tales como microcompuestos.
Los nanocompuestos se forman mediante la separación de las láminas por diferentes procesos que dan lugar a estructuras intercaladas o exfoliadas. Los términos exfoliación e intercalación de nanocompuestos aparecen descritos en las patentes US6384121 B1 , WO0069957, US5844032, US6228903B1 , US2005/0027040A1 , WO9304118A1. En estas estructuras se consigue que las cadenas poliméricas se inserten entre las capas de nanocargas o que lleguen incluso a dispersar completamente las láminas de arcilla inicial entre las cadenas de polímero, incrementando las características mecánicas y de barrera. En los últimos años han aparecido desarrollos en la literatura de nanocompuestos de materiales híbridos orgánico-inorgánico enfocados a la síntesis de estos o a una aplicación específica de los mismos (referencias anteriores). Este alto interés deriva de las propiedades únicas de estos compuestos que a menudo están relacionadas con el papel fundamental que juegan las fuerzas interfaciales y la química de superficie conforme disminuye el tamaño de la fase dispersada hasta llegar a escalas nanométricas. Las propiedades mecánicas, adhesivas, cohesivas, eléctricas, ópticas, fotoquímicas, catalíticas y magnéticas de estos materiales híbridos son frecuentemente un resultado de la combinación sinérgica de las propiedades que por separado presentan los constituyentes. Mediante interpenetración, inclusión o dispersión de un componente inorgánico en un polímero orgánico se puede conseguir que éste presente una mayor tenacidad, elasticidad, baja energía superficial, mayor dureza, resistencia química, resistencia a la radiación y al calor así como la inclusión de grupos funcionales o catalíticos. En este tipo de materiales las interacciones hidrofílica-hidrofóbica, covalentes o de coordinación que se puedan establecer permiten la estabilización de fases incompatibles con una elevada área interfacial. En este punto es importante diferenciar entre sistemas huésped-receptor, como por ejemplo las estructuras intercaladas donde cada componente altera la estructura del otro, o por otro lado podemos hablar de auténticos nanocompuestos donde el tamaño de la fase dispersada o nanofiller o nanocargas es tal que cada componente retiene su estructura específica y propiedades aunque con importantes propiedades derivadas del pequeño tamaño y gran interfase.
La definición de un material híbrido es por todo ello bastante amplia y va desde redes poliméricas mono-fase donde la composición híbrida hace referencia a la presencia de sustituyentes o grupos funcionales de distinta naturaleza respecto al componente principal, hasta superestructuras huésped-receptor o autoensambladas.
A pesar de que hay invenciones previas que hacen uso de modificaciones especificas sobre arcillas para generar nanocompuestos como en la patente
US6384121 B1 , incluso mediante rutas por mezclado en fundido, estas proponen modificadores basados principalmente en sales de amonio cuaternarios de las que penden diversos hidrocarburos que en muchos casos no son substancias permitidas para contacto alimentario y que por otro lado no conducen a una buena compatibilidad con muchas familias de polímeros o reaccionan durante el procesado. En los ejemplos en los que los nanocompuestos se han propuesto para incrementar las propiedades barrera las mejoras propuestas no se describen (referencia EP 0 780 340 B1 ). También en general se encuentra que la mayor parte de nanocompuestos se desarrollan para incrementar la rigidez de las matrices, sin embargo en muchos materiales biodegradables es más importante plastificar el material dado que son en general materiales excesivamente rígidos que necesitan de plastificantes en muchas aplicaciones. En general es también de gran interés el poder disponer de nanomateriales que pueden ser de utilidad en aplicaciones biomédicas y farmacéuticas por ser biocompatibles y biodegradables, mejoren las propiedades de la matriz y poder diseñarlos para controlar la liberación de substancias activas en aplicaciones por ejemplo de envasado activo y bioactivas que liberen substancias funcionales en alimentos y en aplicaciones biomédicas y farmacéuticas. Por esta razón, existe una necesidad de encontrar procesos de fabricación de nanocompuestos mejorados que abaraten costes, tiempos de producción de los mismos, que mejoren las propiedades sin perjudicar la calidad del producto final y que permitan optimizar su uso para diversas matrices y aplicaciones.
En una solicitud de patente anterior, WO 2007/074184, se describe una invención que proporciona una nueva ruta de fabricación de nanocompuestos que da lugar a un producto final con las propiedades barrera a gases y vapores mejoradas, con carácter biodegradable y bien con propiedades antimicrobianas o con capacidad de liberación controlada de sustancias activas o bioactivas tales como agentes antimicrobianos, antioxidantes, etileno, etanol, fármacos, compuestos de calcio biodisponibles y mezclas de estos. Asimismo, permite una rigidización o plastificación de la matriz dependiendo de la formulación y además hace uso de sustancias permitidas para el contacto alimentario y/o de sustancias aprobadas para uso biomédico y farmacéutico, mejorando de esta manera la calidad del producto final y ofreciendo nuevas propiedades y mejoras sobre el estado previo de conocimiento y solucionando los problemas descritos en el estado de la técnica.
Descripción de la invención En la presente invención se describe la formulación de nanocompuestos de polímeros sensibles a la humedad tales como el polialcohol de vinilo (PVOH), los copolímeros de etileno y alcohol vinílico (EVOH), las poliamidas y biopolímeros conteniendo filosilicatos laminares tales como la nanoarcilla caolinita, cuya particularidad es que la barrera mejorada que presentan se incrementa a medida que lo hace la humedad relativa y por tanto tienen gran interés en aplicaciones de resistencia a la humedad y particularmente en envasados a alta humedad tales como durante la esterilización con calor húmedo de productos envasados. Adicionalmente, los polímeros sensibles a la humedad reforzados con las nanoarcillas obtenidas según este procedimiento presentan una menor plastificación, o sea una menor reducción en sus propiedades por efecto de sorción de agua.
Por "sorción" en la presente invención se entiende cualquier proceso de adsorción o absorción.
La presente invención proporciona el uso de un material nanocompuesto formado por polímeros sensibles a la humedad que comprenden filosilicatos laminares para la fabricación de envases que poseen propiedades de barrera a gases crecientes con la humedad y menor sorción de agua y por tanto son más resistentes frente a la humedad.
Por "material nanocompuesto" se entiende en la presente invención por materiales formados por dos o más componentes distinguibles entre sí, donde al menos uno de los componentes tiene una dimensión del orden de nanómetros, estos materiales nanocompuestos poseen propiedades que se obtienen de las combinaciones de sus componentes, siendo superiores a la de los materiales que los forman por separado. En un primer aspecto, la presente invención se refiere al uso de un material nanocompuesto formado por polímeros que comprenden filosilicatos laminares con un tamaño de partícula de entre 0,1 y 100 μηπ, para la fabricación de artículos plásticos con mayor resistencia a la humedad. En una realización preferida, el filosilicato laminar se selecciona de la lista que comprende caolinita, montmorillonita, pirofilita, bentonita, esmectita, hectorita, sepiolita, saponita, laponita, halloisita, vermiculita, mica, clorita, ¡Hita y cualquiera de sus mezclas. En una realización más preferida, el filosilicato laminar es caolinita. Los polímeros empleados en el material nanocompuesto pueden ser aquellos que sean sensibles a la humedad, para que de esta forma se vean mejoradas sus propiedades físicas, fundamentalmente las propiedades barreras de dichos polímeros. Por lo que, en otra realización preferida, el polímero se selecciona de la lista que comprende polialcohol de vinilo, los copolímeros de etileno y alcohol vinílico y derivados, poliamidas, proteínas, polisacáridos, lípidos y biopolímeros en general y mezclas de los mismos. En una realización más preferida, el polímero se selecciona entre polialcohol de vinilo (PVOH) y los copolímeros de etileno y alcohol vinílico (EVOH).
Se entiende por "copolímero" en la presente invención a una macromolécula compuesta por dos o más unidades repetitivas distintas, denominadas monómeros, que se pueden unir de diferentes formas por medio de enlaces químicos. Los monómeros que forman el copolímero pueden distribuirse de forma aleatoria o periódica a lo largo de la macromolécula.
Preferiblemente el artículo plástico es un objeto monocapa o multicapa, más preferiblemente dicho objeto es un envase, y aún más preferiblemente el envase se procesa bien sólo o con su conteniendo mediante esterilización con calor húmedo.
El material nanocompuesto que se emplea para fabricar los envases y otros objetos que precisen de resistencia a la humedad se obtienen por el procedimiento descrito en la solicitud de patente internacional WO2007/074184 y en la solicitud de patente española P2010030215; mediante dicho procedimiento se obtienen materiales con unas propiedades de barrera a gases que se incrementan con el aumento de humedad ambiental y que presentan una menor sorción de agua a humedades relativas elevadas. Dicho procedimiento comprende principalmente las siguientes etapas:
1 ) Disminución del tamaño de las partículas laminares mediante acción mecánica y posterior proceso de filtrado en vibrotamiz hasta un intervalo comprendido entre 0,1 a 100 mieras, y según una realización preferida de la presente invención la disminución consigue un tamaño de partícula por debajo de 25 mieras. Posteriormente al proceso de filtrado se elimina la materia orgánica por decantación, recogida de sobrenadante o por reacción química con substancias oxidantes tales como peróxidos, y finalmente se eliminan los óxidos cristalinos y partículas duras no sujetas a modificación bien mediante procesos de centrifugación y/o gravimétricos en disolución o mediante turbo-secadores. Los finos laminares así obtenidos se consideran como el producto de partida de la presente invención.
2) En una etapa posterior los finos laminares se intercalan en base acuosa o con solventes polares que además pueden contener o no agentes suspensionantes o desfloculantes, con los polímeros sensibles a la humedad. Según una realización preferida de la presente invención, los polímeros pueden ser PVOH, EVOH y derivados de la misma familia, poliamidas incluyendo alifáticas y aromáticas y biopolímeros tales como péptidos, proteínas naturales o sintéticas obtenidas vía química o modificación genética de microorganismos o plantas, polisacáridos naturales o sintéticos vía química o modificación genética de microorganismos o plantas, polipéptidos, ácidos nucleicos y polímeros de ácidos nucleicos sintéticos obtenidos vía química o por modificación genética de microorganismos o plantas, lípidos naturales o sintéticos y poliésteres biodegradables tales como el ácido poliláctico, poliláctico- glicólico, ácido adípico y derivados y los polidroxialcanoatos, preferiblemente polidroxibutirato y sus copolímeros con valeriatos y mezclas de estos. Cuando el polímero que se intercala es el EVOH o cualquier material de la familia del mismo con contenidos molares de etileno preferiblemente menores de un 48%, y más preferiblemente menores de 29%, estos mismos se llevan hasta saturación en medio acuoso o en disolventes específicos de tipo alcohólico y mezclas de alcoholes y agua, más preferiblemente de agua e isopropanol en proporciones en volumen de agua mayores de un 50%. Según otra realización preferida de la presente invención, los biopolímeros con o sin plastificantes, con o sin entrecruzantes y con o sin emulsionantes o tensioactivos u otro tipo de aditivos, son del grupo de los polisacáridos sintéticos y naturales (vegetal o animal) tales como celulosa y derivados, carragenatos y derivados, alginatos, pullulan, dextrano, goma arábiga y preferiblemente el quitosano o cualquiera de sus derivados tanto naturales como sintéticos, más preferiblemente las sales de quitosano y aún más preferiblemente el acetato de quitosano, y proteínas tanto derivadas de plantas y animales como proteínas del maíz (zein), los derivados del gluten, tales como gluten o sus fracciones gliadinas y gluteninas y más preferiblemente gelatina, caseína y las proteínas de soja y derivados de estos, así como polipéptidos naturales o sintéticos preferiblemente del tipo elastina obtenidos por vía química o modificación genética de microorganismos o plantas y mezclas de todos los anteriores. En el caso del quitosano el grado de desacetilación será preferiblemente superior al 80% y más preferiblemente superior al 87%.
La intercalación se acelerará mediante el uso de temperatura, un homogenizador de régimen turbulento, ultrasonidos, presión o mezcla de los anteriores.
3) En otra etapa de la presente invención, la resultante de las etapas anteriores, se precipita por evaporación utilizando metodologías de secado tales como calefacción y/o procesos de centrifugación y/o gravimétricos en disolución o turbo-secadores y/o atomización; por enfriamiento o por adición de un agente precipitante para formar un "masterbatch" o lo que es lo mismo un polímero con concentrado de aditivo, el cual se tritura para dar lugar a un producto particulado por molienda y/o se procesa mediante cualquier metodología de procesado de plásticos para obtener granza en estado sólido. En este mismo sentido, se utiliza directamente el "masterbatch" para la obtención de un producto final (tal y como se describe en la etapa 4) mediante cualquier proceso de fabricación relacionado con la industria del procesado de plásticos como la extrusión, inyección, soplado, moldeo por compresión, moldeo por transferencia de resina, calandrado, choque térmico, mezclado interno ultrasonidos, laminación, termoconformado, coextrusión, coinyección y mezcla de estos, o se utiliza como aditivo diluido en la misma o en otra matriz plástica (incluyendo los biopolímeros y materiales biomédicos citados) en una ruta convencional de procesado de plásticos tales como las mencionadas con anterioridad.
Se puede añadir directamente el resultante de cualquiera de las etapas anteriores, esto es bien los finos laminares o bien los finos laminares intercalados con polímeros, en estado líquido a una matriz constituida por los mismos u otros polímeros sensibles a la humedad. En este caso se añaden a la matriz polimérica durante su procesado utilizando cualquier método de fabricación relacionado con la industria del procesado de plásticos como la extrusión, inyección, soplado, moldeo por compresión, moldeo por transferencia de resina, calandrado, choque térmico, mezclado interno ultrasonidos, coextrusión, coinyección y mezcla de estos. Típicamente, se añade a un proceso de extrusión, seguido de un proceso de granceado del cual se obtiene un "masterbatch", o sea un enriquecido en el aditivo laminar, o bien en la concentración final deseada. El polímero puede contener todo tipo de aditivos típicamente añadidos a plásticos para mejorar su procesado o sus propiedades. 4) Finalmente, siempre se obtienen artículos tales como envases plásticos en los que la capa del nanocompuesto (polímero sensible a la humedad + aditivo laminar) se encuentra formando parte de la constitución del artículo bien como monocapa o dentro de una multicapa y que se pueden obtener por cualquier método de obtención de objetos plásticos, incluyendo extrusión monocapa o multicapas, laminado, soplado, inyección soplado, termoconformado, etc. En los multicapas, típicamente se utilizan adhesivos entre las capas para cohesionar la estructuras y las capas externas están hechas de materiales barrera al agua y termosellables, típicamente poliolefinas tales como polipropilenos y politereftalato de etileno.
Los artículos plásticos y en concreto, de los envases obtenidos a partir de nanocompuestos de arcillas laminares (filosilicatos) y polímeros, los cuales pueden ser sensibles a la humedad, son idóneos para membranas de separación y para la conservación de varios tipos de productos sensibles a la permeacion de gases y vapores. Estos productos pueden ser, sin limitarse a, productos alimentarios de origen vegetal o animal, fármacos y/o principios activos en formas sólidas, material quirúrgico o de uso biomédico, productos de higiene personal y de uso doméstico, líquidas o en suspensión, productos fitosanitarios y agrícolas, detergentes y productos de limpieza, reactivos y muestras de laboratorio y, en general, cualquier producto que requiera para su conservación incrementar su impermeabilidad a gases y vapores en presencia de humedad. También estos materiales son muy adecuados para la conservación de productos que requieran de procesos de esterilización en condiciones de humedad elevada y presión de vapor tales como durante procesos de esterilización con calor húmedo en autoclave. Por lo que en una realización preferida los productos envasados están esterilizados por calor húmedo.
Además, dado que los polímeros sensibles a la humedad merman sus propiedades en presencia de ésta, es deseable para su implementación bien en exposición directa al medioambiente o al producto y bien como monocapa o formando parte de multicapas o mezclas en muchas aplicaciones, mantener o minimizar la perdida de propiedades a humedades relativas elevadas. Es por eso una aplicación muy importante de estos nanocompuestos el formar parte de objetos nuevos o que mejore los existentes, que sean más resistentes a la humedad en, por ejemplo, aplicaciones ingenieriles, en construcción, automoción, aeroespaciales, electrónica, etc..
Según el procedimiento descrito en la presente invención, los nanocompuestos de arcillas laminares y polímeros sensibles a la humedad, se aplican de manera genérica para obtener objetos plásticos de polímeros sensibles a la humedad con mayor resistencia a humedades relativas elevadas. En una realización preferida el artículo plástico comprende tres capas, y la capa intermedia está formada por el material nanocompuesto descrito anteriormente. Y en una realización más preferida entre las capas se utiliza una capa adhesiva conocida por cualquier experto en la materia. A su vez, y de forma independiente, en una realización más preferida las dos capas externas están formadas por polímeros barrera al agua y termosellables, los cuales en una realización aún más preferida los polímeros se seleccionan de entre poliolefinas, poliésteres (incluyendo biopoliesteres) o cualquiera de sus combinaciones, donde las poliolefinas se pueden seleccionar de entre las familias de polipropilenos, y los poliésteres se pueden seleccionar de entre politereftalato de etileno, acido polilactico o polihidroxialcanoatos.
A lo largo de la descripción y las reivindicaciones la palabra "comprende" y sus variantes no pretenden excluir otras características técnicas, aditivos, componentes o pasos. Para los expertos en la materia, otros objetos, ventajas y características de la invención se desprenderán en parte de la descripción y en parte de la práctica de la invención. El siguiente ejemplo se proporciona a modo de ilustración, y no se pretende que sea limitativo de la presente invención. Ejemplo
A continuación se ilustrará la invención mediante unos ensayos realizados por los inventores, que pone de manifiesto la especificidad y efectividad del material nanocompuesto para la fabricación de artículos plásticos con mayor resistencia a la humedad.
NANOCOM PUESTOS DE EVOH29 CON ALTA BARRERA A OXÍGENO Y MENOR SORCION DE AGUA A ALTA HUMEDAD
En este ejemplo el proceso de modificación consta de un primer paso en el que se obtiene una suspensión acuosa al 25% de contenido en sólidos de los finos purificados de arcilla caolinita, siendo el D50 de las partículas de arcilla 0,9 mieras.
La suspensión de arcilla fue aditivada en una extrusora de doble husillo a una matriz de EVOH29 (29% molar de etileno). Las condiciones de procesado fueron 230°C, 290 rpm y un caudal de 8kg/h. El contenido final de arcilla en el masterbatch fue del 9%.
A partir del "masterbatch" así obtenido se obtuvieron películas tricapa con capas externas de polipropileno y capa central de EVOH29. El masterbatch de EVOH29/arcilla fue diluido con EVOH29 puro para obtener una concentración final de arcilla en la capa de EVOH del 4%. El espesor de las películas tricapa fue de 50 mieras, siendo la relación de espesores 2/1/2 entre las capas de PP/EVOH29+arcilla/PP.
Las películas tricapa obtenidas se utilizaron para la caracterización de las propiedades barrera y una vez deslaminado el film intermedio de EVOH29 se utilizo para medir la sorción de agua a diferentes humedades relativas.
Las propiedades de transporte medidas en las películas de las muestras obtenidas a partir del "masterbatch" diluido por mezclado en fundido aparecen recogidas en la Tabla 1. Los datos de reducción de velocidad de transmisión de oxígeno (OTR) medios así como la sorción media de agua a dos humedades relativas (RH) distintas, esto es a 50% y 100%RH, medidos en las muestras aditivadas con arcilla con respecto a las muestras sin arcilla.
Figure imgf000013_0001
Tabla 1
La tabla 1 muestra una disminución de la permeabilidad a oxígeno con la humedad y de la sorción de agua con la humedad en el nanocompuesto y que por tanto convierte a estos materiales en únicos en aplicaciones de resistencia a la humedad.

Claims

REIVINDICACIONES
1. Uso de un material nanocompuesto formado por polímeros que comprenden filosilicatos laminares con un tamaño de partícula de entre 0,1 y 100 μηπ, para la fabricación de artículos plásticos con resistencia a la humedad.
2. Uso según la reivindicación 1 donde el filosilicato laminar se selecciona de la lista que comprende caolinita, montmorillonita, pirofilita, bentonita, esmectita, hectorita, sepiolita, saponita, laponita, halloisita, vermiculita, mica, clorita, ¡Hita y mezclas.
3. Uso según la reivindicación 2 donde el filosilicato laminar es caolinita.
4. Uso según cualquiera de las reivindicaciones 1 a 3, donde el polímero se selecciona de la lista que comprende polialcohol de vinilo, los copolímeros de etileno y alcohol vinílico y derivados, poliamidas, proteínas, polisacaridos, lípidos, biopolímeros y mezclas de los mismos.
5. Uso según la reivindicación 4 donde el polímero se selecciona entre polialcohol de vinilo y los copolímeros de etileno y alcohol vinílico.
6. Uso según cualquiera de las reivindicaciones 1 a 5, donde el artículo plástico es un objeto monocapa o multicapa.
7. Uso según la reivindicación 6, donde el objeto monocapa o multicapa es un envase.
8. Uso según la reivindicación 7, donde el envase está esterilizado por calor húmedo.
9. Uso según cualquiera de las reivindicaciones 7 u 8, donde el envase es para la conservación de productos alimentarios.
10. Uso según cualquiera de las reivindicaciones 7 u 8, donde el envase es para el embalaje de fármacos o de material quirúrgico o de uso biomédico.
11. Uso según cualquiera de las reivindicaciones 7 u 8, donde el envase es para la conservación de muestras de laboratorio.
12. Uso según cualquiera de las reivindicaciones 7 u 8, donde el envase es para la conservación de productos de higiene personal o doméstico.
13. Uso según cualquiera de las reivindicaciones 9 a 12, donde el producto envasado está esterilizado por calor húmedo.
14. Uso según cualquiera de las reivindicaciones 1 a 13, donde el artículo plástico comprende tres capas, y la capa intermedia está formada por el material nanocompuesto.
15. Uso según la reivindicación 14, donde entre las capas se utiliza una capa adhesiva.
16. Uso según la reivindicación 14, donde las dos capas externas están formadas por polímeros barrera al agua y termosellables.
17. Uso según la reivindicación 16, donde el polímero se selecciona de entre poliolefinas, poliésteres o cualquiera de sus combinaciones.
18. Uso según la reivindicación 17, donde la poliolefina se selecciona de entre las familias de polipropilenos.
19. Uso según la reivindicación 17, donde el poliéster se selecciona de entre politereftalato de etileno, acido polilactico o polihidroxialcanoatos.
PCT/ES2011/070588 2010-08-11 2011-08-09 Uso de nanocompuestos de polímeros sensibles a la humedad para la fabricación de objetos y envases con mayor resistencia a la humedad WO2012020161A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201031247A ES2374900B1 (es) 2010-08-11 2010-08-11 Uso de nanocompuestos de polimeros sensibles a la humedad para la fabricacion de objetos y envases con mayor resistencia a la humedad.
ESP201031247 2010-08-11

Publications (1)

Publication Number Publication Date
WO2012020161A1 true WO2012020161A1 (es) 2012-02-16

Family

ID=44999790

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2011/070588 WO2012020161A1 (es) 2010-08-11 2011-08-09 Uso de nanocompuestos de polímeros sensibles a la humedad para la fabricación de objetos y envases con mayor resistencia a la humedad

Country Status (2)

Country Link
ES (1) ES2374900B1 (es)
WO (1) WO2012020161A1 (es)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993004118A1 (en) 1991-08-12 1993-03-04 Allied-Signal Inc. Melt process formation of polymer nanocomposite of exfoliated layered material
EP0590263A2 (en) * 1992-07-29 1994-04-06 Sumitomo Chemical Company, Limited Gas barrier resin composition and process for producing the same
US5844032A (en) 1995-06-07 1998-12-01 Amcol International Corporation Intercalates and exfoliates formed with non-EVOH monomers, oligomers and polymers; and EVOH composite materials containing same
WO2000069957A1 (en) 1999-05-13 2000-11-23 Edison Polymer Innovation Corporation General approach to nanocomposite preparation
US6228903B1 (en) 1995-06-07 2001-05-08 Amcol International Corporation Exfoliated layered materials and nanocomposites comprising said exfoliated layered materials having water-insoluble oligomers or polymers adhered thereto
EP0780340B1 (en) 1995-12-22 2002-03-20 Amcol International Corporation Intercalates and exfoliates formed with functional monomeric organic compounds; composite materials containing same and methods of modifying rheology therewith
US6384121B1 (en) 1998-12-07 2002-05-07 Eastman Chemical Company Polymeter/clay nanocomposite comprising a functionalized polymer or oligomer and a process for preparing same
US20050027040A1 (en) 2001-05-31 2005-02-03 Nelson Gordon L. Organic/inorganic nanocomposites obtained by extrusion
WO2006080716A1 (en) * 2004-12-03 2006-08-03 Lg Chem, Ltd. Tube container having barrier property
WO2006080715A1 (en) * 2004-11-19 2006-08-03 Lg Chem, Ltd. Nanocomposite composition having high barrier property
US20070004842A1 (en) * 2003-05-05 2007-01-04 Daniela Tomova Polymer nanocomposite blends
WO2007074184A1 (es) 2005-12-29 2007-07-05 Nanobiomatters, S.L. Procedimiento de fabricacion de materiales nanocompuestos para aplicaciones multisectoriales

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE391083T1 (de) * 1999-06-14 2008-04-15 Evergreen Packaging Internat B Mehrschichtige laminatenstruktur aus harz und papier, enthaltend mindestens eine schincht aus polymer/ton-nanoverbundstoff und damit hergestellte verpackungsmaterialien
US6841211B1 (en) * 2000-05-12 2005-01-11 Pechiney Emballage Flexible Europe Containers having improved barrier and mechanical properties
US20090286090A1 (en) * 2008-05-19 2009-11-19 Ting Yuan-Ping R Enhance performance on current renewable film using functional polymer coatings

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993004118A1 (en) 1991-08-12 1993-03-04 Allied-Signal Inc. Melt process formation of polymer nanocomposite of exfoliated layered material
EP0590263A2 (en) * 1992-07-29 1994-04-06 Sumitomo Chemical Company, Limited Gas barrier resin composition and process for producing the same
US5844032A (en) 1995-06-07 1998-12-01 Amcol International Corporation Intercalates and exfoliates formed with non-EVOH monomers, oligomers and polymers; and EVOH composite materials containing same
US6228903B1 (en) 1995-06-07 2001-05-08 Amcol International Corporation Exfoliated layered materials and nanocomposites comprising said exfoliated layered materials having water-insoluble oligomers or polymers adhered thereto
EP0780340B1 (en) 1995-12-22 2002-03-20 Amcol International Corporation Intercalates and exfoliates formed with functional monomeric organic compounds; composite materials containing same and methods of modifying rheology therewith
US6384121B1 (en) 1998-12-07 2002-05-07 Eastman Chemical Company Polymeter/clay nanocomposite comprising a functionalized polymer or oligomer and a process for preparing same
WO2000069957A1 (en) 1999-05-13 2000-11-23 Edison Polymer Innovation Corporation General approach to nanocomposite preparation
US20050027040A1 (en) 2001-05-31 2005-02-03 Nelson Gordon L. Organic/inorganic nanocomposites obtained by extrusion
US20070004842A1 (en) * 2003-05-05 2007-01-04 Daniela Tomova Polymer nanocomposite blends
WO2006080715A1 (en) * 2004-11-19 2006-08-03 Lg Chem, Ltd. Nanocomposite composition having high barrier property
WO2006080716A1 (en) * 2004-12-03 2006-08-03 Lg Chem, Ltd. Tube container having barrier property
WO2007074184A1 (es) 2005-12-29 2007-07-05 Nanobiomatters, S.L. Procedimiento de fabricacion de materiales nanocompuestos para aplicaciones multisectoriales

Also Published As

Publication number Publication date
ES2374900B1 (es) 2013-01-04
ES2374900A1 (es) 2012-02-23

Similar Documents

Publication Publication Date Title
ES2277563B1 (es) Procedimiento de fabricacion de materiales nanocompuestos para aplicaciones multisectoriales.
Zubair et al. Recent advances in protein derived bionanocomposites for food packaging applications
Rhim et al. Natural biopolymer-based nanocomposite films for packaging applications
Ghanbarzadeh et al. Nanostructured materials utilized in biopolymer-based plastics for food packaging applications
Arora et al. Nanocomposites in food packaging
Tang et al. Recent advances in biopolymers and biopolymer-based nanocomposites for food packaging materials
Dharini et al. Functional properties of clay nanofillers used in the biopolymer-based composite films for active food packaging applications-Review
Kaur et al. Nanobiocomposite films: A “greener alternate” for food packaging
Deshmukh et al. Nano clays and its composites for food packaging applications
Lagaron et al. Thermoplastic nanobiocomposites for rigid and flexible food packaging applications
Deshmukh et al. Natural clay‐based food packaging films
Widiastuti Polylactide nanocomposites for packaging materials: A review
Fatyeyeva et al. Biopolymer/clay nanocomposites as the high barrier packaging material: Recent advances
ES2320617B1 (es) Nuevos materiales nanocompuestos con propiedades de bloqueo de la radiacion electromagnetica infrarroja, ultravioleta y visible y procedimiento para su obtencion.
George et al. An overview of higher barrier packaging using nanoadditives
Anandharamakrishnan et al. Bionanocomposites and their potential applications in food packaging
ES2374900B1 (es) Uso de nanocompuestos de polimeros sensibles a la humedad para la fabricacion de objetos y envases con mayor resistencia a la humedad.
Angellier‐Coussy et al. Protein‐Based Nanocomposites for Food Packaging
Pillai et al. Inorganic‐Organic Hybrid Polymers for Food Packaging
Padua et al. Nanocomposites
Malik et al. Nanostructured Film and Coating Materials: A Novel Approach in Packaging
Ludueña et al. Biodegradable polymer/clay nanocomposites
ES2320618A1 (es) Procedimiento para la fabricacion de envases pasivos con propiedades mejoradas, activos, inteligentes y bioactivos mediante la incorporacion de polimeros obtenidos por tecnicas de electroestirado.
Plackett et al. Nanocomposites for food and beverage packaging
Kny Polymer nanocomposite materials used for food packaging

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11785033

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11785033

Country of ref document: EP

Kind code of ref document: A1