WO2012019952A1 - Echangeur de chaleur comprenant un element chauffant serigraphie - Google Patents

Echangeur de chaleur comprenant un element chauffant serigraphie Download PDF

Info

Publication number
WO2012019952A1
WO2012019952A1 PCT/EP2011/063382 EP2011063382W WO2012019952A1 WO 2012019952 A1 WO2012019952 A1 WO 2012019952A1 EP 2011063382 W EP2011063382 W EP 2011063382W WO 2012019952 A1 WO2012019952 A1 WO 2012019952A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating element
screen
printed
heat exchanger
tube
Prior art date
Application number
PCT/EP2011/063382
Other languages
English (en)
Inventor
Laurent Tellier
Fréderic PIERRON
Original Assignee
Valeo Systemes Thermiques
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Systemes Thermiques filed Critical Valeo Systemes Thermiques
Publication of WO2012019952A1 publication Critical patent/WO2012019952A1/fr

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/22Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible
    • H05B3/26Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor mounted on insulating base
    • H05B3/262Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor mounted on insulating base the insulating base being an insulated metal plate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H3/00Air heaters
    • F24H3/02Air heaters with forced circulation
    • F24H3/04Air heaters with forced circulation the air being in direct contact with the heating medium, e.g. electric heating element
    • F24H3/0405Air heaters with forced circulation the air being in direct contact with the heating medium, e.g. electric heating element using electric energy supply, e.g. the heating medium being a resistive element; Heating by direct contact, i.e. with resistive elements, electrodes and fins being bonded together without additional element in-between
    • F24H3/0429For vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H3/00Air heaters
    • F24H3/02Air heaters with forced circulation
    • F24H3/06Air heaters with forced circulation the air being kept separate from the heating medium, e.g. using forced circulation of air over radiators
    • F24H3/08Air heaters with forced circulation the air being kept separate from the heating medium, e.g. using forced circulation of air over radiators by tubes
    • F24H3/081Air heaters with forced circulation the air being kept separate from the heating medium, e.g. using forced circulation of air over radiators by tubes using electric energy supply
    • F24H3/085The tubes containing an electrically heated intermediate fluid, e.g. water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • B60H2001/2268Constructional features
    • B60H2001/2296Constructional features integration into fluid/air heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H2250/00Electrical heat generating means
    • F24H2250/04Positive or negative temperature coefficients, e.g. PTC, NTC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H3/00Air heaters
    • F24H3/02Air heaters with forced circulation
    • F24H3/04Air heaters with forced circulation the air being in direct contact with the heating medium, e.g. electric heating element
    • F24H3/0405Air heaters with forced circulation the air being in direct contact with the heating medium, e.g. electric heating element using electric energy supply, e.g. the heating medium being a resistive element; Heating by direct contact, i.e. with resistive elements, electrodes and fins being bonded together without additional element in-between
    • F24H3/0429For vehicles
    • F24H3/0435Structures comprising heat spreading elements in the form of fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/126Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/002Heaters using a particular layout for the resistive material or resistive elements
    • H05B2203/003Heaters using a particular layout for the resistive material or resistive elements using serpentine layout
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/013Heaters using resistive films or coatings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/017Manufacturing methods or apparatus for heaters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/022Heaters specially adapted for heating gaseous material
    • H05B2203/023Heaters of the type used for electrically heating the air blown in a vehicle compartment by the vehicle heating system

Definitions

  • the technical field of the present invention is that of heat exchangers between a coolant and an air flow and on which an electric heat source is integrated.
  • Motor vehicles are nowadays commonly equipped with an electric heating radiator whose function is to provide calories to the air flow sent into the cabin of the vehicle by a ventilation, heating and / or air conditioning installation.
  • the heating of this air flow is mainly provided by a conventional radiator through which a heat transfer fluid whose temperature is dependent on the temperature of a combustion engine fitted to the vehicle.
  • a heat transfer fluid whose temperature is dependent on the temperature of a combustion engine fitted to the vehicle.
  • internal combustion engines are becoming more efficient and their temperature rise is becoming more and more slow.
  • the electric heating element generally uses a heating block consisting of a large amount of parts such as heating stones, cooling fins, spacers and holding springs.
  • the heating block thus formed is held in a frame.
  • Such a design involves a large number of parts, assembly operations complex and the intervention of several parts manufacturers. It is therefore understandable that the complexity of design and assembly of such radiators increase the cost of the electric heating function.
  • this type of heating block has at least two negative impacts: a first impact relative to the pressure drop on the air that a te l the heating block causes and a second imact pact congestion and difficulty to install such a block in a ventilation system and heating of a motor vehicle.
  • the object of the present invention is therefore to solve the disadvantages described above mainly by screen-printing an electric heating element on at least one of the component components of the air / heat exchanger heat exchanger.
  • the subject of the invention is therefore a heat exchanger between an air flow and a heat transfer fluid comprising at least one collecting box and a bundle of tubes which channel the coolant and at least one electric heating element, characterized in that the heating element is screen printed on the heat exchanger.
  • the electric heating source is a resistive track secured to one of the walls, faces or surfaces of the exchanger according to a screen printing method.
  • the screen-printed heating element is recognizable in that its layer
  • the heating element is screen printed on the exchanger in surfaces which are exposed to the air flow. The energy released by the heating element is thus distributed directly to the air flow without passing through the coolant, which avoids passing the
  • the heating element is screen-printed on the collector box and / or on at least one of the bundle tubes and / or on at least one heat transfer fluid transport conduit connected to the collector box.
  • the screen printing is used on the zones or flat surfaces of the exchanger where a heat exchange surface is sufficiently extended.
  • the heating element is screen printed on a first face of a support installed in the beam. In such a case, the support does not carry heat transfer fluid, its function being dedicated to receiving and mechanically maintaining the screen-printed heating element, in particular the resistive track,
  • the support comprises a first face and a second face, the first face and the second face each receive a screen-printed heating element. This increases the available heating power from an electrical source.
  • the beam comprises a dissipator or heat exchange fin brazed on a wall of at least one tube, which increases the heat exchange capacity between the exchanger and the air flow.
  • heat exchange fin is soldered to one of the faces of the support.
  • the face or the wall on which the heat exchange fin is brazed also receives the screen-printed heating element. Whether for the tube or for the support, it is thus possible on the same plane to secure the screen-printed resistive track and the heat exchange fin. This effectively drives the calories generated by the serigraphed heating element of the tube or support to the heat exchange fin, and then to the airflow.
  • the heat exchange fin is brazed in areas devoid of screen printed heating elements.
  • these zones are formed by the tube or the support around the resistive track
  • the screen-printed heating element mentioned above takes the form of a resistive track with a thickness of between 0.05 and 0.20 mm.
  • the resistive track is shaped to restore up to 75 Watts per cm 2 .
  • the track follows a crenellated profile.
  • This profile is particularly advantageous because it makes it possible to define zones of the tube or of the support devoid of a screen-printed heating element and against which the dissipator or heat-exchange fin can come to bear in order to be welded to it.
  • the screen-printed heating element is electrically connected to the medium of at least one protrusion on which is screen printed a supply terminal of the screen-printed heating element.
  • one end of the support or the tube takes the form or comprises this protrusion on which is screen printed the power supply terminal of the screen-printed heating element. This protrusion can thus serve as a connection terminal between the heating module
  • an external component which powers it for example a power connector from the vehicle network or a control module which integrates the management of the electrical power as well as the management of the control strategy of the heating module.
  • the invention also covers a method of manufacturing a tube for
  • a heat exchanger between a flow of air and a coolant characterized in that screen printing an electric heating element on at least one of the faces of the tube.
  • the invention relates to a method of manufacturing a header for a heat exchanger between an air flow and a coolant characterized in that screen printing an electric heating element on at least one of the surfaces from the collector box.
  • the method provides that the screen and / or the collector are screen-printed before it passes through a brazing furnace for connection with the other components of the exchanger.
  • a first advantage of the invention lies in the possibility of integrating a new source of electric heating into a radiator or air / heat exchanger without changing the dimensional characteristics of such an exchanger.
  • the electric heating source is thus "transparent" for the housing of the ventilation and heating system of the vehicle, this source having no negative dimensional impact on the heat exchanger received in the installation.
  • Another advantage lies in the thickness / power ratio of the screen-printed heating element which offers the possibility of integrating such a heating element without negatively impacting the pressure drop on the air circulating in the installation while restoring a power of electric heating to meet the comfort criteria desired by the user of the vehicle.
  • FIG 1 is a perspective view of a heat exchanger according to the invention
  • FIG. 2 is a perspective view showing in detail the screen-printed heating element on a tube of the exchanger of FIG. 1,
  • FIG. 3 is a partial schematic view of a variant of a heat exchanger according to the invention.
  • FIG. 4 is a partial schematic view of another variant of a heat exchanger according to the invention.
  • FIG. 5 is a side view of the constituent heating element of the heat exchanger according to the invention.
  • FIG 6 is a side view of the heating element according to another
  • FIG. 1 illustrates an exemplary embodiment of a heat exchanger 1
  • This exchanger comprises a first conduit 2 for supplying a heat transfer fluid 12 connected to a first manifold 3. This The last distributes this fluid carrier 12 in a beam 4 consisting of a plurality of tubes 5 between which are installed heat exchange fins 6.
  • the first manifold 3 is secured by brazing and sealing with a first end of the beam 4.
  • a second manifold 7 is attached to a second end of the beam 4 where it collects the coolant 12 and allows it to exit. of the heat exchanger 1 by a second conduit 8.
  • the heat exchanger 1 is a radiator or heater installed in a housing of a ventilation and heating installation of a motor vehicle and the heat transfer fluid is water added with glycol.
  • the beam 4 has a first face 9 and a second face 10 through which a flow of air 1 1 circulates inside the housing of the installation and which should be heated. This flow of air flows in one direction
  • This bundle 4 comprises several tubes 5, for example flat, and these tubes extend in parallel with each other.
  • the heat exchanger comprises or supports a screen-printed electric heater element 13.
  • the heating element is screen-printed on the first duct 2 which forms the fluid intake duct. in the heat exchanger.
  • the screen-printed heating element 13 takes the form of one or more resistive tracks 14 deposited on the outer wall of the duct 2. The section of the latter being
  • the resistive track 14 is wound around the duct so as to heat the heat transfer fluid 12 entering the heat exchanger 1.
  • a heating element 13 is screen printed on the first manifold referenced 3, this first box
  • the first manifold 3 has a shape rectangular and consists of a manifold 15 having slots in which each tube is threaded.
  • This collector 15 is capped with a cover 16 which has a peripheral edge 17 joined by a bottom 18.
  • the bottom 18 has a flat surface of rectangular shape on which is screen printed the heating element 13.
  • the latter comprises a resistive track 14 which extends on the manifold 3 in a crenellated profile.
  • the heating element can take the form of a solid rectangle that partially or completely covers the bottom surface 18 which ensures maximum heating power.
  • the manifold 3 comprises an outgrowth reported by brazing or directly formed with the cover 16 of the manifold.
  • This protrusion 19 supports at least one end of the resistive track 14 so as to form a connection terminal or power supply 20 of the heating element 1 3. It is therefore understood that the power terminal
  • Electrical 20 is also screen printed on the protrusion 19 because it is the end of the resistive track 14.
  • the protrusion 19 serves to support the two power supply terminals 20 of the screen-printed heating element 13, the extremities of the resistive track 14 being serigraphed on the protrusion 19.
  • the heating element is screen-printed on the bottom 18 of the cover 16, but the invention also covers the case in which, alternatively or in a complementary manner, the heating element 13 is screen printed on the peripheral edge 17 of the cover 16.
  • the screen-printed heating element 1 3 heats the material of the collecting box (aluminum or aluminum alloy) which in turn restores these calories to the coolant 12, which transports these calories to the beam 4 of tubes 5 where the calories are delivered to the flow of air through it.
  • FIG. 1 also illustrates a third embodiment variant of FIG.
  • a heating element is here screen printed on a first face 21 of at least one support 22 installed in the beam 4.
  • This support 22 is of rectangular shape and its length is between 100 and 300 mm, its width is between 15 and 70 mm and its thickness is between 0.5 and 2 mm. It is therefore understood that it is a thin plate and the heating element is received on the large surface or faces of this plate.
  • the support 22 is advantageously thermally conductive in that it drives the calories.
  • the material constituting this support is for example an aluminum or an aluminum alloy.
  • the support 22 is installed in the bundle according to, for example, two ways: it can be installed in place of a tube 5 or it can be installed against a tube 5.
  • the support 22 also comprises an outgrowth 19 which takes the form of an "L" and whose free end opens onto the side of the first manifold 3.
  • This protrusion 19 carries the two silkscreened ends of the resistive track. which forms the heating element, the assembly thus forming one or two supply terminals 20.
  • FIG. 1 A fourth alternative embodiment is illustrated in Figure 1, the latter being alternative or complementary to the previous variants.
  • the heating element 13 is screen-printed on at least one tube constituting the bundle 4. More particularly, the screen-printed heating element is installed on an outer wall of the tube 5.
  • the tube 5 comprises a protrusion 19 which serves as a support for the end of the resistive track 14 for its electrical connection with the external component.
  • This protrusion 19 may come directly from the tube 5, that is to say, manufactured during the forming steps of the tube and from the same material, but it may also
  • the tube 5 comprises two protrusions 19 installed at each end of the same tube 5, that is to say in the vicinity respectively of the first manifold 3 and the second manifold 7.
  • each protrusion 19 receives a single supply terminal 20 under the shape of the end of the resistive track 14 serigraphed on the protrusion 19.
  • the third and fourth variants described above are distinguished from the first or second variant in that the heating element 13 is screen printed on the heat exchanger 1 in surfaces which are exposed to the air flow January 1. Indeed, the heating element 13 screen printed on the support 22 or 10 on the tube 5 is licked by the air flow 1 1 which passes through the beam 4 which ensures a transfer of the calories generated by the screen-printed heating element 1 3 d irectem ent fl ow air, especially through the heat exchange vane 6.
  • FIG. 2 shows implementation details of the fourth variant of FIG.
  • the beam 4 is partially represented in the form of two tubes 5 which channel or transport the coolant 12 and between which is intercalated a heat exchange fin 6. The latter is traversed by the air flow 1 1 to be heated.
  • This heat exchange fin is manufactured in
  • the tube 5 is also made from an aluminum alloy or aluminum alloy fire folded back on itself so as to delimit an internal volume.
  • the tube 5 has two flat and parallel outer walls which each bear the reference 26 and 27. These outer walls 26 and 27 form the surface on which the ridges 24 of a fin exchange thermal 6 come into contact to be brazed.
  • the first outer wall 26 receives the heating element 13 screen-printed. This is
  • the latter takes the form of a resistive track 14 which runs in a crenellated profile on the outer wall 26.
  • This crenellated profile is particularly advantageous because it does not prohibit joining the heat exchange fin 6 by brazing on the outer wall 26 of the tube that already receives the heating element 13.
  • the ridges 24 extend in a direction parallel to the flow 1 1 while the castellated profile also has portions of tracks 14 which extend parallel to the direction of the air flow January 1.
  • zones 28 without a heating element in which the heat-exchange vane can be brazed on the outer wall 26, more specifically by means of the ridges 24.
  • the impact on the air flow 11 is negligible since the track 14 is of a thickness of between 0.05 and 0.20 mm, which is negligible from the point of view of the loss of air. charge on the air.
  • FIG. 3 represents a schematic view of the exemplary embodiment according to the fourth variant. It is shown here two tubes 5 constituting the bundle 4 crossed by the air flow 1 1, the two tubes being connected to one
  • Collector boxes for example the second collector box 7.
  • This figure illustrates two possible embodiments that can be used exclusively on one or more tubes or a combination of these two possibilities depending eg electrical heating requirements with respect to a specific area of the exchanger.
  • the tube referenced 5a comprises a first outer wall 26 and a second outer wall 27 which each receive a heat exchange fin 6 ground idarized by brazing.
  • the first wall 26 also receives the screen-printed heating element 13 while the second outer wall 27 does not support a heating element 13.
  • the tube referenced 5b is illustrated in the second embodiment where a heating element 13 is screen printed on the first outer wall 26 and on the second outer wall 27, the latter also receiving by brazing a heat exchange fin 6.
  • Figure 4 illustrates a beam 4 combining the third and the fourth
  • the bundle 4 includes tubes 5 which serve as a support for the screen-printed heating element 13 and one or more supports 22 interposed between two adjacent tubes 5.
  • the support 22 comprises a first face 29 and a second face 30, the latter being opposite the first face 29 with respect to a central axis passing through the thickness of the support 22.
  • the second face 30 extends in a plane parallel to the plane in which the first face 29 extends.
  • the flow of air is illustrated in FIG. 4 by the element 1 1, the latter illustrating the passage of this flow of air from one side to the other.
  • Another of the support 22 It is thus understood that the direction of the air flow is perpendicular to the plane of FIGS. 3 or 4. The air flow thus licks the first external wall 26 and the second outer wall 27 of the tube 5. and / or the first face 29 and the second face 30 of the support 22.
  • the heating element 1 3 can be installed on one of the two faces (first 29 or second face 30) of the support 22.
  • a heating element 13 is screen printed on each of the first 15 and second faces 29 and 30 of the 22. This heating element 13 thus forms a resistive track that travels on the first face 29 and the second face 30.
  • the thickness of this resistive track is between 0.05 and 0.20 mm.
  • Each of the faces 29 or 30 of the support 22 also receives by brazing a heat exchange fin 6, the latter also being brazed on the tube 5 adjacent to the support 22.
  • Figures 5 and 6 show an embodiment of the heating element 13 applicable to any of the surfaces receiving the heating element 13 mentioned above.
  • the description below is applicable to at least one support 22 and / or to at least one tube 5 and / or to
  • the screen-printed heating element 13 has a crenellated profile.
  • the profile forms a "U" where two branches 31 are joined by a base 32 perpendicular to the branches 31.
  • the castellated profile has rounded corners.
  • base 32 can be
  • the screen-printed heating element 13 may comprise a cutoff zone
  • the latter is also screen printed on the support 22 or on the tube 5 or on the manifold 3, for example at a branch 31 of the screen-printed heating element 13.
  • the cutoff zone 33 has a function of interruption of the current flowing in the heating element in case of overcurrent resulting for example from a short circuit.
  • the cutoff zone 33 is formed by a portion of the resistive track of the screen-printed heating element 13 whose dimensions are reduced relative to the rest of the resistive track. For example, it is a reduction in the thickness or width of the cutoff zone compared to the remainder of the track of the screen-printed heating element 13.
  • this cutoff zone may be made by a material different from the material constituting the remainder of the heating element, this material having a melting point at a given temperature lower than the melting point of the rest of the resistive track. This cutoff zone also avoids a short circuit that could occur
  • the current interruption function is performed by a fuse soldered or brazed on the track of the screen-printed heating element or by a eutectic weld which is part of the track.
  • the invention provides for welding or brazing on the
  • a primary dielectric layer which prevents an electrical short circuit of the screen-printed heating element 13, in particular between its two supply terminals 20. This layer primary dielectric present
  • a total thickness of between 0.07 and 0.150 mm this layer being able to result from a multiplicity of vitrified layers one after the other each with a thickness of between 0.015 and 0.050 mm.
  • This primary dielectric layer finds a particular application in the case where the component of the exchanger which receives the heating element 13 is conductive
  • the heating element 13 is screen printed, it is provided a secondary dielectric layer which covers at least the screen-printed heating element 13 and advantageously the entire surface that receives it. Its thickness is between 0.015 and 0.050 mm and several vitrified layers one after the other can be superimposed to reach a total thickness of between 0.07 and 0.150 mm.
  • a primary dielectric layer is deposited on the surface which receives the screen-printed heating element 13,
  • the primary dielectric layer is vitrified, for example by passing through an oven,
  • the resistive track 14 of the screen-printed heating element 13 is deposited on the face of the support having received the primary dielectric layer, for example by means of a mask delimiting the shape of the track,
  • a secondary dielectric layer is deposited at least on the serigraphed heating element 13 and advantageously on the entire receiving surface of the screen-printed heating element 13, the secondary dielectric layer is vitrified, for example by passing through a furnace.
  • the steps of depositing and vitrifying the dielectric layers and the step of removing the resistive track of the screen-printed heating element 13 may be repeated in order to achieve the required heating power or sufficient dielectric and / or mechanical protection. .
  • the constituent material of the screen-printed heating element 13 contains silver or a combination of silver and palladium and its power can reach 75 watts per cm 2 .
  • the material constituting the screen-printed heating element 13 has PTC properties where a self regulation occurs at the level of the screen-printed heating element between its temperature and the intensity of the current flowing through it.
  • FIG. 5 shows this crenellated profile formed by a plurality of "U's” each joined by a strip, all forming the resistive track 14 of the screen-printed heating element 13.
  • the crenellated profile releases zones 28 devoid of a heating element 13 which are each within the "U” formed by the profile.
  • the ridges 24 of the heat exchange fins 6 extend in a direction parallel to the direction of the air flow 1 1.
  • the zones 28 each form a bearing or contact zone where one or more peaks are o brazed.
  • This organization makes it possible, on the one hand, to weld or braze the heat exchange fin on the surface that already receives the screen-printed heating element without damaging the latter and, on the other hand, to promote the heat transfer between the resistive track 14, the support 22 and / or the tube 5 and the heat exchange fin because the crenellated profile, in particular each
  • Branch 31 of the "U" is immediately adjacent to one or more ridges 24.
  • the peak 24, and possibly the band or strip forming the heat exchange fin is shaped to be positioned in the area 28 delimited by the branches 31 and the base 32 of the "U".
  • the heat exchange fin 6 are brazed.
  • a first screen-printed heating element 13a is shown in solid lines while a second heating element 13b is shown in broken lines as being screen-printed on the opposite face or wall.
  • the two screen-printed heating elements 13a and 13b can be shifted relative to each other.
  • each screen-printed heating element 13a and 13b has its power supply terminals 20.
  • the use of a screen printing method finds particular application with the heat exchanger according to the invention.
  • the invention therefore also covers a method of manufacturing a tube 5 for a heat exchanger 1 between an air flow 1 1 and a heat transfer fluid 12 where, according to a step of this method, the heating element 13 is screen printed on at at least one of the walls of the tubes 5, in particular the first outer wall 26 and / or the second outer wall 27.
  • the invention is directed to a method of manufacturing a manifold 3 for a heat exchanger 1 between an air flow 1 1 and a heat transfer fluid 12 in particular, that, in one step of the method, one screen-printing element electric heater 13 on at least one surface of the
  • collector box 3 especially on the cover 1 6 constituting the collector box.
  • resistive track 14 screen printed and / or the primary and secondary dielectric layers withstand temperatures above 800 ° C. This makes it possible to screen the element or elements
  • At least one constituent component of the exchanger that is at least one duct 2 and / or at least one support 22 and / or at least one tube 5 and / or at least one box 3, before the soldering operation of the heat exchanger 1 since the brazing process is carried out at a temperature of about 600 ° C.
  • This brazing operation is a step in the process which consists of joining and sealing the tubes 5 and the heat exchange fins 6 forming the bundle 4 with the manifold or boxes 3. It is therefore understood that the screen-printed heating element 13 is not damaged by the soldering step of the heat exchanger.
  • the heat exchanger 1 described above is a circulation exchanger
  • a tube is mentioned and this term must be understood in the broad sense, that is to say as a means of channeling the coolant in a heat exchanger.
  • the tube can be manufactured by extrusion, electro-welding or folding and brazing from a strip or by brazing two plates placed vis-à-vis.

Abstract

L'invention concerne un échangeur de chaleur (1) entre un flux d'air (11) et un fluide caloporteur (12) comprenant au moins une boîte collectrice (3) et un faisceau (4) de tubes (5) qui canalisent le fluide caloporteur (12) et au moins un élément chauffant électrique (13), caractérisé en ce que l'élément chauffant (13) est sérigraphié sur l'échangeur de chaleur (1).

Description

ECHANGEUR DE CHALEUR COMPRENANT UN ELEMENT
CHAUFFANT SERIGRAPHIE
Le secteur technique de la présente invention est celui des échangeurs 5 de chaleur entre un fluide caloporteur et un flux d'air et sur lequel une source de chaleur électrique est intégrée.
Les véhicules automobiles sont aujourd'hui couramment équipés d'un radiateur électrique de chauffage dont la fonction est de fournir des calories au flux d'air envoyé dans l'habitacle du véhicule par une installation de ventilation, î o chauffage et/ou climatisation. Le chauffage de ce flux d'air est principalement assuré par un radiateur classique traversé par un fluide caloporteur dont la mise en température est dépendante de la température d'un moteur à combustion équipant le véhicule. Cependant, les moteurs à combustion interne sont de plus en plus efficaces et leur montée en température devient de plus 15 en plus lente.
En parallèle, le confort de l'utilisateur du véhicule impose une montée en température de l'habitacle la plus rapide possible. Cette opposition de contraintes a amené les constructeurs d'installation de ventilation et chauffage à recourir à un radiateur électrique qui permet de chauffer très rapidement le 2 0 flux d'air et ainsi atteindre le niveau de confort souhaité par l'utilisateur du véhicule.
Pour répondre à ces contraintes, il a été recouru à un échangeur de chaleur qui peut être qualifié d'hybride en ce sens que le fluide caloporteur forme une première source de calories à transférer au flux d'air qui circule dans
25 l'installation de ventilation et de chauffage alors qu'un élément de chauffage électrique est une deuxième source de calories à transférer au même flux d'air.
L'élément de chauffage électrique utilise en général un bloc de chauffe constitué d'une grande quantité de pièces telles que des pierres chauffantes, des ailettes de refroidissement, des intercalaires et des ressorts de maintien.
30 Le bloc de chauffe ainsi constitué est maintenu dans un cadre. Une telle conception implique un grand nombre de pièces, des opérations d'assemblage complexes et l'intervention de plusieurs fabricants de pièces. On comprend donc que la complexité de conception et d'assemblage de tels radiateurs grèvent le coût de la fonction chauffage électrique.
Par ailleurs, l'intégration de ce type de bloc de chauffe présente au moins 5 deux impacts négatifs : un premier impact relatif à la perte de charge sur l'air qu' un te l bloc de chauffe provoque et un deuxièm e im pact re latif à l'encombrement et à la difficulté pour installer un tel bloc dans une installation de ventilation et chauffage d'un véhicule automobile.
Il convient donc de trouver une solution pour combiner une source de î o chauffage électrique avec un échangeur air/fluide caloporteur, qui reste de réalisation et d'assemblage simples et dont le coût de fabrication est plus faible que les solutions de l'art antérieur.
Le but de la présente invention est donc de résoudre les inconvénients décrits ci-dessus principalement en sérigraphiant un élément chauffant 15 électrique sur au moins un des composants constitutifs de l'échangeur air/fluide caloporteur.
L'invention a donc pour objet un échangeur de chaleur entre un flux d'air et un fluide caloporteur comprenant au moins une boîte collectrice et un faisceau de tubes qui canalisent le fluide caloporteur et au moins un élément 20 chauffant électrique, caractérisé en ce que l'élément chauffant est sérigraphié sur l'échangeur de chaleur. Un tel échangeur est reconnaissable en ce que la source de chauffage électrique est une piste résistive solidarisée sur une des parois, faces ou surfaces de l'échangeur selon un procédé de sérigraphie. L'élément chauffant sérigraphié est reconnaissable en ce que sa couche
25 supérieure est vitrifiée.
Selon une première caractéristique de l'invention, l'élément chauffant est sérigraphié sur l'échangeur en des surfaces qui sont exposées au flux d'air. L'énergie dégagée par l'élément chauffant est ainsi distribué directement au flux d'air sans passer par le fluide caloporteur, ce qui évite de faire transiter les
30 calories par le fluide caloporteur ce qui peut ralentir la montée en température.
Selon une deuxième caractéristique de l'invention, l'élément chauffant est sérigraphié sur la boîte collectrice et/ou sur au moins un des tubes du faisceau et/ou sur au moins un conduit de transport du fluide caloporteur raccordé à la boite collectrice. La sérigraphie est utilisée sur les zones ou surfaces planes de l'échangeur où une surface d'échange thermique est suffisamment étendue. 5 Selon encore une caractéristique de l'invention, l'élément chauffant est sérigraphié sur une première face d'un support installé dans le faisceau. Dans un tel cas, le support ne transporte pas de fluide caloporteur, sa fonction étant dédiée à recevoir et maintenir mécaniquement l'élément chauffant sérigraphié, notamment la piste résistive,
î o Selon encore une autre caractéristique de l'invention, le support comprend une première face et une seconde face, la prem ière face et la seconde face reçoivent chacune un élément chauffant sérigraphié. On augmente ainsi la puissance de chauffage disponible issue d'une source électrique.
15 Le faisceau comprend un dissipateur ou ailette d'échange thermique brasée sur une paroi d'au moins un tube, ce qui augmente les capacités d'échange thermique entre l'échangeur et le flux d'air.
En complément, l'ailette d'échange thermique est brasée sur l'une des faces du support.
2 0 Avantageusement, la face ou la paroi sur laquelle est brasée l'ailette d'échange thermique reçoit également l'élément chauffant sérigraphié. Que cela soit pour le tube ou pour le support, il est ainsi possible sur un même plan de solidariser la piste résistive sérigraphiée et l'ailette d'échange thermique. Ceci permet de conduire efficacement les calories générées par l'élément 25 chauffant sérigraphié du tube ou support vers l'ailette d'échange thermique, puis vers le flux d'air.
Avantageusement encore, l'ailette d'échange thermique est brasée en des zones dépourvues d'éléments chauffants sérigraphiés. Avantageusement, ces zones sont formées par le tube ou le support autour de la piste résistive
30 formant l'élément chauffant sérigraphié.
L'élément chauffant sérigraphié évoqué ci-dessus prend la forme d'une piste résistive d'épaisseur comprise entre 0,05 et 0,20 mm. Avantageusement, la piste résistive est conformée pour restituer jusqu'à 75 Watts par cm2.
De manière préférentielle, la piste suit un profil crénelé. Ce profil est particulièrement avantageux car il permet de définir des zones du tube ou du 5 support dépourvu d'élément chauffant sérigraphié et contre lesquelles le dissipateur ou ailette d'échange thermique peut venir en appui pour y être soudée.
Selon une prem ière caractéristique de l'invention, l'élément chauffant sérigraphié est raccordé électriquem ent au m oyen d'au m o ins une î o excroissance sur laquelle est sérigraphié une borne d'alimentation de l'élément chauffant sérigraphié. Avantageusement, une extrémité du support ou du tube prend la forme ou comprend cette excroissance sur laquelle est sérigraphiée la borne d'alimentation électrique de l'élément chauffant sérigraphié. Cette excroissance peut ainsi servir de cosse de connexion entre le module chauffant
15 et un composant extérieur qui l'alimente, par exemple un connecteur de puissance en provenance du réseau du véhicule ou un module de commande qui intègre la gestion de la puissance électrique ainsi que la gestion de la stratégie de commande du module chauffant.
L'invention couvre également un procédé de fabrication d'un tube pour
2 0 échangeur de chaleur entre un flux d'air et un fluide caloporteur caractérisé en ce qu'on sérigraphie un élément chauffant électrique sur au moins une des faces du tube.
De m êm e, l' invention vise u n procédé de fabrication d'une boîte collectrice pour échangeur de chaleur entre un flux d'air et un fluide 25 caloporteur caractérisé en ce qu'on sérigraphie un élément chauffant électrique sur au moins une des surfaces de la boîte collectrice.
De manière préférentielle, le procédé prévoit que l'on sérigraphie le tube et/ou la boîte collectrice préalablement à son passage dans un four de brasage pour solidarisation avec les autres composants de l'échangeur.
30 U n tout premier avantage de l'invention réside dans la possibilité d'intégrer une nouvelle source de chauffage électrique dans un radiateur ou échangeur air/fluide caloporteur sans modifier les caractéristiques dimensionnelles d'un tel échangeur. La source de chauffage électrique est ainsi « transparente » pour le boîtier de l'installation de ventilation et chauffage du véhicule, cette source n'ayant pas d'impact dimensionnel négatif sur 5 l'échangeur de chaleur reçu dans l'installation.
Un autre avantage réside dans le rapport épaisseur/puissance de l'élément chauffant sérigraphié qui offre la possibilité d'intégrer un tel élément chauffant sans impacter négativement la perte de charge sur l'air qui circule dans l'installation tout en restituant une puissance de chauffage électrique î o répondant aux critères de confort souhaités par l'utilisateur du véhicule.
D'autres caractéristiques, détails et avantages de l'invention ressortiront plus clairement à la lecture de la description donnée ci-après à titre indicatif en relation avec des dessins dans lesquels :
-la figure 1 est une vue en perspective d'un échangeur de chaleur selon 15 l'invention,
-la figure 2 est une vue en perspective montrant en détail l'élément chauffant sérigraphié sur un tube de l'échangeur de la figure 1 ,
-la figure 3 est une vue schématique partielle d'une variante d'un échangeur de chaleur selon l'invention,
20 -la figure 4 est une vue schématique partielle d'une autre variante d'un échangeur de chaleur selon l'invention,
-la figure 5 est une vue de côté de l'élément chauffant constitutif de l'échangeur de chaleur selon l'invention,
-la figure 6 est une vue de côté de l'élément chauffant selon une autre
25 variante constitutif de l'échangeur selon l'invention.
Il faut noter que les figures exposent l'invention de manière détaillée, lesdites figures peuvent bien entendu servir à mieux définir l'invention le cas échéant.
La figure 1 illustre un exemple de réalisation d'un échangeur de chaleur 1
30 selon l'invention. Cet échangeur comprend un premier conduit 2 d'amenée d'un fluide caloporteur 12 raccordée à une première boîte collectrice 3. Cette dernière distribue ce fluide caioporteur 12 dans un faisceau 4 constitué d'une multiplicité de tubes 5 entre lesquels sont installées des ailettes d'échange thermique 6.
La première boîte collectrice 3 est solidarisée par brasage et de manière 5 étanche avec une prem ière extrém ité du faisceau 4. Une seconde boîte collectrice 7 est fixée à une seconde extrémité du faisceau 4 où elle collecte le fluide caioporteur 12 et lui permet de sortir de l'échangeur de chaleur 1 par un deuxième conduit 8. Dans cet exemple d'application, l'échangeur de chaleur 1 est un radiateur ou aérotherme installé dans un boîtier d'une installation de î o ventilation et chauffage d'un véhicule automobile et le fluide caioporteur est de l'eau additionné de glycol.
Le faisceau 4 présente une première face 9 et une deuxième face 10 traversées par un flux d'air 1 1 qui circule à l'intérieur du boîtier de l'installation et qu'il convient de réchauffer. Ce flux d'air circule ainsi dans une direction
15 sensiblement perpendiculaire au plan dans lequel s'étendent la première face 9 et la deuxième face 10. Ce faisceau 4 comprend plusieurs tubes 5, par exemple plats, et ces tubes s'étendent de manière parallèle les uns par rapport aux autres.
L'échangeur de chaleur selon l'invention comprend ou supporte un 2 0 élément chauffant électrique sérigraphié 13. Selon une première variante de l'invention, l'élément chauffant est sérigraphié sur le premier conduit 2 qui forme le conduit d'admission de fluide caioporteur dans l'échangeur. L'élément chauffant sérigraphié 13 prend la forme d'une ou plusieurs pistes résistives 14 déposées sur la paroi externe du conduit 2. La section de ce dernier étant par
25 exemple circulaire, la piste résistive 14 est enroulée autour du conduit de sorte à chauffer le fluide caioporteur 12 entrant dans l'échangeur de chaleur 1.
Selon une seconde variante de l'invention alternative ou complémentaire à la prem ière variante détaillée ci-dessus, un élément chauffant 13 est sérigraphié sur la première boîte collectrice référencées 3, cette première boîte
30 formant la boîte par laquelle le fluide caioporteur entre dans l'échangeur. Dans cet exemple précis, la première boîte collectrice 3 présente une forme rectangulaire et est composée d'un collecteur 15 présentant des fentes dans lesquelles chaque tube est enfilé. Ce collecteur 15 est coiffé d'un couvercle 16 qui présente un bord périphérique 17 joint par un fond 18. Le fond 18 présente une surface plane de forme rectangulaire sur laquelle est sérigraphié l'élément 5 chauffant 13. Ce dernier comprend une piste résistive 14 qui s'étend sur la boîte collectrice 3 selon un profil crénelé. Alternativement, l'élément chauffant peut prendre la forme d'un rectangle plein qui couvre partiellement ou entièrement la surface du fond 18 ce qui permet de garantir une puissance de chauffage maximum.
î o La boîte collectrice 3 com prend une excroissance 1 9 rapportée par brasage ou directement formée avec le couvercle 16 de la boîte collectrice. Cette excroissance 19 supporte au moins une extrémité de la piste résistive 14 de sorte à former une borne de connexion ou d'alimentation électrique 20 de l'élément chauffant 1 3. On com prend donc que la borne d'alimentation
15 électrique 20 est également sérigraphiée sur l'excroissance 19 car il s'agit de l'extrémité de la piste résistive 14. Dans l'exemple de la figure 1 , l'excroissance 19 sert de support aux deux bornes d'alimentation électrique 20 de l'élément chauffant sérigraph ié 1 3, les extrém ités de la piste résistive 1 4 étant sérigraphiées sur l'excroissance 19.
2 0 Dans cette deuxième variante, l'élément chauffant est sérigraphié sur le fond 18 du couvercle 16 mais l'invention couvre également le cas dans lequel, alternativement ou de manière complémentaire, l'élément chauffant 13 est sérigraphié sur le bord périphérique 17 du couvercle 16.
Comme pour la première variante, l'élément chauffant sérigraphié 1 3 25 chauffe le matériau constitutif de la boîte collectrice (aluminium ou alliage d'aluminium) qui à son tour restitue ces calories au fluide caloporteur 12. Ce dernier transporte ainsi ces calories vers le faisceau 4 de tubes 5 où les calories sont délivrées au flux d'air qui le traverse.
La figure 1 i l lustre aussi une troisième variante de réalisation de
30 l'invention, cette dernière pouvant être exclusive ou complémentaire des autres variantes. Un élément chauffant est ici sérigraphié sur une première face 21 d'au moins un support 22 installé dans le faisceau 4. Ce support 22 est de forme rectangulaire et sa longueur est comprise entre 100 et 300 mm, sa largeur est comprise entre 15 et 70 mm et son épaisseur est comprise entre 0,5 et 2 mm. 5 On comprend donc qu'il s'agit d'une plaque de faible épaisseur et l'élément chauffant est reçu sur la ou les grandes faces de cette plaque. Le support 22 est avantageusement thermoconducteur en ce sens qu'il conduit les calories. Le matériau constituant ce support est par exemple un aluminium ou un alliage d'aluminium.
î o Le support 22 est installé dans le faisceau selon par exemple deux manières : il peut être installé en lieu et place d'un tube 5 ou il peut être installé contre un tube 5.
Le support 22 comprend également une excroissance 19 qui prend la forme d'un « L » et dont l'extrémité libre débouche sur le côté de la première 15 boîte collectrice 3. Cette excroissance 1 9 porte les deux extrém ités sérigraphiées de la piste résistive qui forme l'élément chauffant, l'ensemble formant ainsi une ou deux bornes d'alimentation 20.
Des caractéristiques techniques supplémentaires relatives à cette troisième variante sont données en référence à la figure 4.
2 0 Une quatrième variante de réalisation est illustrée sur la figure 1 , cette dernière étant alternative ou complémentaire des variantes précédentes. L'élément chauffant 13 est sérigraphié sur au moins un tube 5 constitutif du faisceau 4. Plus particulièrement, l'élément chauffant sérigraphié est installé sur une paroi externe du tube 5.
25 De manière sim ilaire à la troisième variante, le tube 5 comprend une excroissance 19 qui sert de support à l'extrémité de la piste résistive 14 pour son raccordement électrique avec le composant externe. Cette excroissance 19 peut être issue directement du tube 5, c'est-à-dire fabriquée pendant les étapes de formage du tube et à partir du même matériau, mais il peut aussi
30 s'agir d'une pièce rapportée, par exemple soudée sur le tube 5.
A titre d'exemple, le tube 5 comporte deux excroissances 19 installées à chaque extrémité d'un même tube 5, c'est-à-dire au voisinage respectivement de la première boîte collectrice 3 et de la seconde boîte collectrice 7. Dans une telle situation, chaque excroissance 19 reçoit une seule borne d'alimentation 20 sous la forme de l'extrémité de la piste résistive 14 sérigraphiée sur 5 l'excroissance 19.
La troisième et la quatrième variante décrites ci-dessus se distinguent de la première ou la deuxième variante en ce que l'élément chauffant 13 est sérigraphié sur l'échangeur de chaleur 1 en des surfaces qui sont exposées au flux d'air 1 1 . En effet, l'élément chauffant 13 sérigraphié sur le support 22 ou î o sur le tube 5 est léché par le flux d'air 1 1 qui traverse le faisceau 4 ce qui garantit un transfert des calories générées par l'élément chauffant sérigraphié 1 3 d irectem ent au fl ux d' a ir, notamment par l'intermédiaire de l'ailette d'échange thermique 6.
La figure 2 montre des détails de réalisation de la quatrième variante de
15 réalisation évoquée ci-dessus.
Le faisceau 4 est partiellement représenté sous la forme de deux tubes 5 qui canalisent ou transportent le fluide caloporteur 12 et entre lesquels est intercalée une ailette d'échange thermique 6. Cette dernière est traversée par le flux d'air 1 1 à chauffer. Cette ailette d'échange thermique est fabriquée à
2 0 partir d'un feuillard d'aluminium ou d'alliage d'aluminium qui est replié plusieurs fois de sorte à former des plats 23 joints par des plis ou crêtes 24. Ces crêtes 24 forment les points contre lesquels les tubes 5 prennent appui.
Le tube 5 est lui aussi fabriqué à partir un feu i llard d'alum inium ou d'alliage d'aluminium replié sur lui-même de sorte à délimiter un volume interne
25 25 dans lequel circule le fluide caloporteur 12. Le tube 5 présente deux parois externes plates et parallèles qui portent chacune la référence 26 et 27. Ces parois externes 26 et 27 forment la surface sur laquelle les crêtes 24 d'une ailette d'échange thermique 6 viennent en contact pour y être brasées.
La première paroi externe 26 reçoit l'élément chauffant 13 sérigraphié. Ce
30 dernier prend la forme d'une piste résistive 14 qui chem ine selon un profil crénelé sur la paroi externe 26. Ce profi l crénelé est particu l ièrement avantageux car il n'interdit pas de solidariser l'ailette d'échange thermique 6 par brasage sur la paroi externe 26 du tube qui reçoit déjà l'élément chauffant 13. En effet, les crêtes 24 s'étendent selon une direction parallèle au flux d'air 1 1 alors que le profil crénelé présente lui aussi des parties de pistes 14 qui 5 s'étendent parallèlement à la direction du flux d'air 1 1 . 11 existe donc entre ces parties de piste 14 des zones 28 dépourvues d'élément chauffant où l'ailette d'échange thermique peut être brasée sur la paroi externe 26, plus spécifiquement au moyen des crêtes 24.
On notera que l'impact sur le flux d'air 1 1 est négligeable puisque la piste î o 14 est d'une épaisseur comprise entre 0,05 et 0,20 mm, ce qui est négligeable du point de vue de la perte de charge sur l'air.
La figure 3 représente une vue schématique de l'exemple de réalisation selon la quatrième variante. Il est montré ici deux tubes 5 constitutifs du faisceau 4 traversé par le flux d'air 1 1 , les deux tubes étant raccordés à l'une
15 des boîtes collectrices, par exemple la seconde boîte collectrice 7.
Cette figure illustre deux possibilités de réalisations qui peuvent être utilisées de manière exclusive sur un ou plusieurs tubes ou selon une combinaison de ces deux possibilités en fonction par exemple des besoins en chauffage électrique par rapport à une zone déterminée de l'échangeur.
2 0 Le tube référencé 5a comprend une première paroi externe 26 et une deuxième paroi externe 27 qui reçoivent chacune une ailette d'échange thermique 6 sol idarisée par brasage. La prem ière paroi 26 reçoit aussi l'élément chauffant sérigraphié 13 alors que la deuxième paroi externe 27 ne supporte pas d'élément chauffant 13.
25 Le tube référencé 5b est i llustré selon la deuxième possibi lité de réalisation où un élément chauffant 13 est sérigraphié sur la première paroi externe 26 et sur la deuxième paroi externe 27, ces dernières recevant également par brasage une ailette d'échange thermique 6.
La figure 4 illustre un faisceau 4 combinant la troisième et la quatrième
30 variante. Autrement dit, le faisceau 4 intègre des tubes 5 qui servent de support à l'élément chauffant sérigraph ié 1 3 et un ou des supports 22 intercalés entre deux tubes 5 adjacents.
Le support 22 comprend une première face 29 et une seconde face 30, cette dernière étant opposée à la première face 29 par rapport à un axe central passant dans l'épaisseur du support 22. De manière préférentielle, la seconde 5 face 30 s'étend dans un plan parallèle au plan dans lequel s'étend la première face 29. Le flux d'air est illustré sur la figure 4 par l'élément 1 1 , ce dernier illustrant le passage de ce flux d'air de part et d'autre du support 22. On comprend ainsi que la direction du flux d'air est perpendiculaire au plan des figures 3 ou 4. Le flux d'air lèche donc la prem ière paroi externe 26 et la î o deuxième paroi externe 27 du tube 5 et/ou la première face 29 et la seconde face 30 du support 22.
L'élément chauffant 1 3 peut être installé sur une des deux faces (première 29 ou seconde face 30) du support 22. Dans cet exemple de réalisation, un élément chauffant 13 est sérigraphié sur chacune des première 15 et seconde faces 29 et 30 du support 22. Cet élément chauffant 13 forme ainsi une piste résistive qui chemine sur la première face 29 et la seconde face 30. L'épaisseur de cette piste résistive est comprise entre 0,05 et 0,20 mm.
Chacune des faces 29 ou 30 du support 22 reçoit également par brasage une ailette d'échange thermique 6, cette dernière étant également brasée sur 2 0 le tube 5 adjacent au support 22.
Les figures 5 et 6 montrent un exemple de réalisation de l'élément chauffant 13 applicable à l'une quelconque des surfaces recevant l'élément chauffant 13 évoquées ci-dessus. Autrement dit, la description ci-dessous est applicable à au moins un support 22 et/ou à au moins un tube 5 et/ou à au
25 moins une première boîte collectrice 3.
L'élément chauffant sérigraphié 13 présente un profil crénelé. Dans cet exemple de réalisation, le profil forme un « U » où deux branches 31 sont jointes par une base 32 perpendiculaire aux branches 31 . Alternativement, le profil crénelé présente des angles arrondis. Autrement dit, la base 32 peut
30 former un arc de cercle qui joint les deux branches 31 .
L'élément chauffant sérigraphié 13 peut comprendre une zone de coupure électrique 33. Cette dernière est également sérigraphiée sur le support 22 ou sur le tube 5 ou sur la boîte collectrice 3, par exemple au niveau d'une branche 31 de l'élément chauffant sérigraphié 13. La zone de coupure 33 présente une fonction d'interruption du courant circulant dans l'élément chauffant en cas de 5 surintensité résultant par exemple d'un court-circuit. En pratique, la zone de coupure 33 est formée par une partie de la piste résistive de l'élément chauffant sérigraphié 13 dont les dimensions sont réduites par rapport au reste de la piste résistive. A titre d'exemple, il s'agit d'une réduction de l'épaisseur ou de la largeur de la zone de coupure comparativement au reste de la piste de î o l'élément chauffant sérigraphié 13. Alternativement, cette zone de coupure peut être réalisée par un matériau différent du matériau constituant le reste de l'élément chauffant, ce matériau présentant un point de fusion à une température donnée inférieure au point de fusion du reste de la piste résistive. Cette zone de coupure évite également un court circuit qui pourrait survenir
15 avec l'environnement extérieur de l'élément chauffant.
Alternativement, la fonction d'interruption du courant est réalisée par un fusible soudé ou brasé sur la piste de l'élément chauffant sérigraphié ou par une soudure eutectique qui fait partie de la piste.
De manière complémentaire, l'invention prévoit de souder ou braser sur la
2 0 piste de l'élément chauffant sérigraphié 10 des composants électroniques.
Entre l'élément chauffant sérigraphié 13 et la paroi ou face qui reçoit cet élément chauffant est prévue une couche diélectrique primaire qui interdit un court-circuit électrique de l'élément chauffant sérigraphié 13, notamment entre ses deux bornes d'alimentation 20. Cette couche diélectrique primaire présente
25 une épaisseur totale comprise entre 0,07 et 0,150 mm, cette couche pouvant résulter d'une multiplicité de couches vitrifiées les unes après les autres chacune d'une épaisseur comprise entre 0,015 et 0,050 mm. Cette couche diélectrique primaire trouve une application particulière dans le cas où le composant de l'échangeur qui reçoit l'élément chauffant 13 est conducteur
30 d'électricité.
Une fois que l'élément chauffant 13 est sérigraphié, il est prévu une couche diélectrique secondaire qui couvre au moins l'élément chauffant sérigraphié 13 et avantageusement toute la surface qui le reçoit. Son épaisseur est comprise entre 0,015 et 0,050 mm et plusieurs couches vitrifiées les unes après les autres peuvent se superposer pour atteindre une épaisseur totale 5 comprise entre 0,07 et 0, 150 mm.
La sérigraphie de l'élément chauffant 13 sur la ou les parois externes du tube 5, sur la ou les faces du support 22, sur la surface de la boîte collectrice 3 ou sur le conduit 2, est pratiquée comme suit :
on dépose une couche diélectrique primaire sur la surface qui î o reçoit l'élément chauffant sérigraphié 13,
on vitrifie la couche diélectrique primaire, par exemple par passage dans un four,
on dépose la piste résistive 14 de l'élément chauffant sérigraphié 13 sur la face du support ayant reçu la couche diélectrique 15 primaire, par exemple à l'aide d'un masque délimitant la forme de la piste,
on solidifie la piste résistive de l'élément chauffant sérigraphié 13, par exemple en la cuisant par passage dans un four,
on dépose une couche diélectrique secondaire au moins sur 2 0 l'élément chauffant sérigraphié 13 et avantageusement sur toute la surface réceptrice de l'élément chauffant sérigraphié 13, on vitrifie la couche diélectrique secondaire, par exemple par passage dans un four.
Les étapes de dépose et vitrification des couches diélectrique ainsi que 25 l'étape de dépose de la piste résistive de l'élément chauffant sérigraphié 13 peuvent être répétées en vue d'atteindre la puissance de chauffage requise ou une protection diélectrique et/ou mécanique suffisante.
Le matériau constitutif de l'élément chauffant sérigraphié 13 contient de l'Argent ou une combinaison d'Argent et de Palladium et sa puissance peut 30 atteindre 75 Watts au cm2. Dans une alternative, le matériau constitutif de l'élément chauffant sérigraphié 13 présente des propriétés CTP où une auto- régulation intervient au niveau de l'élément chauffant sérigraphié entre sa température et l'intensité du courant qui le parcourt.
La figure 5 montre ce profil crénelé formé par une pluralité de « U » joint chacun par une bande, le tout formant la piste résistive 14 de l'élément 5 chauffant sérigraphié 13. Le profil crénelé libère des zones 28 dépourvues d'élément chauffant 13 qui se situent chacune à l'intérieur du « U » formé par le profil. Les crêtes 24 des ailettes d'échange thermique 6 s'étendent dans une direction parallèle à la direction du flux d'air 1 1. Ainsi, les zones 28 forment chacune une zone d'appui ou de contact où une ou plusieurs crêtes sont î o brasées. Cette organisation permet d'une part de souder ou braser l'ailette d'échange thermique sur la surface qui reçoit déjà l'élément chauffant sérigraphié sans endommager ce dernier et d'autre part de favoriser le transfert thermique entre la piste résistive 14, le support 22 et/ou le tube 5 et l'ailette d'échange thermique car le profil crénelé, en particulier chaque
15 branche 31 du « U », est immédiatement adjacent à une ou plusieurs crêtes 24.
On comprend ainsi que la crête 24, et éventuellement la bande ou le feuillard formant l'ailette d'échange thermique, est conformée pour se positionner dans la zone 28 délimitée par les branches 31 et la base 32 du « U ».
La particularité du mode de réalisation montré à la figure 6 réside dans
2 0 la présence de deux é lém ents chauffants 1 3a et 1 3b sérigraph iés respectivement sur la première face 29 et sur la deuxième face 30 du support 22 ou sur la première paroi externe 26 et sur la deuxième paroi externe 27 du tube 5. Ces deux éléments chauffants sérigraphiés 13a et 13b présentent tous deux un profil crénelé pour définir les zones 28 sur lesquelles les crêtes 24 de
25 l'ailette d'échange thermique 6 sont brasées.
Un premier élément chauffant sérigraphié 13a est représenté en trait fort alors qu'un deuxième élément chauffant 13b est illustré en trait interrompu comme étant sérigraphié sur la face ou paroi opposée. Les deux éléments chauffants sérigraphiés 13a et 13b peuvent être décalés l'un par rapport à
30 l'autre de sorte que les branches 31 du profil crénelé en « U » d'un des éléments chauffants sérigraphiés 13b s'étendent dans les zones 28 définies par le profil crénelé de l'autre élément chauffant sérigraphié. Bien entendu, chaque élément chauffant sérigraphié 13a et 13b présente ses bornes d'alimentation électrique 20.
L'utilisation d'un procédé de sérigraphie trouve une application toute 5 particulière avec l'échangeur de chaleur selon l'invention. L'invention couvre donc également un procédé de fabrication d'un tube 5 pour échangeur de chaleur 1 entre un flux d'air 1 1 et un fluide caloporteur 12 où selon une étape de ce procédé, l'élément chauffant 13 est sérigraphié sur au moins une des parois du tubes 5, notamment la première paroi externe 26 et/ou la deuxième î o paroi externe 27.
De même, l'invention vise un procédé de fabrication d'une boîte collectrice 3 pour échangeur de chaleur 1 entre un flux d'air 1 1 et un fluide caloporteur 12 particulier en ce que, selon une étape du procédé, on sérigraphie un élément chauffant électrique 13 sur au moins une surface de la
15 boîte collectrice 3, notamment sur le couvercle 1 6 constitutif de la boîte collectrice.
On notera tout particulièrement que la piste résistive 14 sérigraphié et/ou les couches diélectriques primaire et secondaire résistent à des températures supérieures à 800°C. Ceci permet de sérigraphier le ou les éléments
2 0 chauffants 13 sur au moins un composant constitutif de l'échangeur, c'est-à- dire au moins un conduit 2 et/ou au moins un support 22 et/ou au moins un tube 5 et/ou au moins une boîte collectrice 3, avant l'opération de brasage de l'échangeur de chaleur 1 puisque le procédé de brasage s'effectue à une température d'environ 600°C. Cette opération de brasage est une étape du 25 procédé qui consiste à solidariser et étancher les tubes 5 et les ailettes d'échange thermique 6 formant le faisceau 4 avec la ou les boîtes collectrices 3. On comprend donc que l'élément chauffant sérigraphié 13 n'est pas endommagé par l'étape de brasage de l'échangeur de chaleur.
L'échangeur de chaleur 1 décrit ci-dessus est un échangeur à circulation
30 en « I » où le fluide caloporteur 12 circule de la première boîte collectrice 3 au travers des tubes 5 pour ressortir par la seconde boîte collectrice 7 mais il va soi que l'invention n'est pas limitée à une telle structure. En effet, l'invention couvre également un échangeur de chaleur organisé pour que la circulation de fluide s'effectue en « U », par exemple avec une seule boîte collectrice sur laquelle sont raccordée le premier et le deuxième conduit.
Dans la description ci-dessus, il est évoqué un tube et ce terme doit être compris au sens large, c'est-à-dire comme un moyen de canaliser le fluide caloporteur dans un échangeur de chaleur. Le tube peut donc être fabriqué par extrusion, par électro-soudage ou pliage et brasage à partir d'un feuillard ou par brasage de deux plaques placées en vis-à-vis.

Claims

REVENDICATIONS
1. Echangeur de chaleur (1 ) entre un flux d'air (1 1 ) et un fluide caloporteur (12) comprenant au moins une boîte collectrice (3) et un faisceau (4) de tubes (5) qui canalisent le fluide caloporteur (12) et au moins un élément
5 chauffant électrique (13), caractérisé en ce que l'élément chauffant (13) est sérigraphié sur l'échangeur de chaleur (1 ).
2. Echangeur selon la revendication 1 , dans lequel l'élément chauffant (13) est sérigraphié sur la boîte collectrice (3).
3. Echangeur selon l'une quelconque des revendications 1 à 2, dans î o lequel l'élément chauffant (13) est sérigraphié sur au moins un des tubes (5) du faisceau (4).
4. Echangeur selon l'une quelconque des revendications précédentes, comprenant au moins un conduit (2) raccordé à la boîte collectrice (3) et dans lequel l'élément chauffant (13) est sérigraphié sur le conduit (2).
15 5. Echangeur selon l'une quelconque des revendications précédentes, dans lequel l'élément chauffant (13) est sérigraphié sur une première face (29) d'un support (22) installé dans le faisceau (4).
6. Echangeur selon la revendication 5, dans lequel le support (22) comprend une première face (29) et une seconde face (30), la première face
2 0 (29) et la seconde face (30) reçoivent chacune un élément chauffant sérigraphié (13).
7. Echangeur selon l'une quelconque des revendications 5 ou 6, dans lequel le faisceau (4) comprend une ailette d'échange thermique (6) brasée sur une paroi (26, 27) du tube (5) et/ou sur l'une des faces (29, 30) du support
25 (22), ladite paroi (26, 27) et/ou ladite face (29, 30) recevant également l'élément chauffant sérigraphié (13).
8. Echangeur selon la revendication 7, dans lequel l'ailette d'échange thermique (6) est brasée en des zones (28) dépourvues d'éléments chauffants sérigraphiés (13).
30 9. Echangeur selon l'une quelconque des revendications précédentes, dans lequel l'élément chauffant sérigraphié (13) prend la forme d'une piste résistive (14) d'épaisseur comprise entre 0,05 et 0,20 mm.
10. Echangeur selon la revendication 9, dans lequel la piste suit un profil crénelé.
11. Procédé de fabrication d'un tube (5) pour échangeur de chaleur (1 ) 5 entre un flux d'air (1 1 ) et un fluide caloporteur (12) caractérisé en ce qu'on sérigraphie un élément chauffant électrique (13) sur au moins une des parois externes (26, 27) du tube (5).
12. Procédé de fabrication d'une boîte collectrice (3) pour échangeur de chaleur (1 ) entre un flux d'air (1 1 ) et un fluide caloporteur (12) caractérisé en î o ce qu'on sérigraphie un élément chauffant électrique (13) sur au moins une des surfaces de la boîte collectrice (3).
13. Procédé de fabrication d'un tube (5) ou d'une boîte collectrice (3) selon la revendication 12 ou 1 3, dans lequel l'opération de sérigraphie de l'élément chauffant (13) est réalisée préalablement à une opération de brasage
15 des composants (2, 3, 5, 6, 22) constituant l'échangeur de chaleur (1 ).
PCT/EP2011/063382 2010-08-11 2011-08-03 Echangeur de chaleur comprenant un element chauffant serigraphie WO2012019952A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1003340A FR2963868B1 (fr) 2010-08-11 2010-08-11 Echangeur de chaleur comprenant un element chauffant serigraphie
FR1003340 2010-08-11

Publications (1)

Publication Number Publication Date
WO2012019952A1 true WO2012019952A1 (fr) 2012-02-16

Family

ID=43513862

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/063382 WO2012019952A1 (fr) 2010-08-11 2011-08-03 Echangeur de chaleur comprenant un element chauffant serigraphie

Country Status (2)

Country Link
FR (1) FR2963868B1 (fr)
WO (1) WO2012019952A1 (fr)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014033328A1 (fr) * 2012-09-03 2014-03-06 Denis O'dwyer Système de chauffage
WO2014206951A1 (fr) * 2013-06-28 2014-12-31 Webasto SE Dispositif de chauffage électrique et procédé permettant de produire un dispositif de chauffage électrique
US9518130B2 (en) 2010-03-11 2016-12-13 Merrimack Pharmaceuticals, Inc. Use of ERBB3 inhibitors in the treatment of triple negative and basal-like breast cancers
US9688761B2 (en) 2013-12-27 2017-06-27 Merrimack Pharmaceuticals, Inc. Biomarker profiles for predicting outcomes of cancer therapy with ERBB3 inhibitors and/or chemotherapies
WO2018158286A1 (fr) * 2017-02-28 2018-09-07 Mahle International Gmbh Dispositif de chauffage
US10184006B2 (en) 2015-06-04 2019-01-22 Merrimack Pharmaceuticals, Inc. Biomarkers for predicting outcomes of cancer therapy with ErbB3 inhibitors
EP4075921A1 (fr) * 2021-04-15 2022-10-19 MAHLE International GmbH Échangeur de chaleur à résistance de film à couche épaisse
JP7228858B1 (ja) 2022-01-13 2023-02-27 三菱製鋼株式会社 空気調和装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5557704A (en) * 1990-11-09 1996-09-17 Pifco Limited Heating vessel with chromium-enriched stainless steel substrate promoting adherence of thin film heater thereon
WO1998036664A1 (fr) * 1997-02-20 1998-08-27 Faber Electronics B.V. Element chauffant pour matelas a eau
DE19825561A1 (de) * 1998-06-08 1999-12-09 Valeo Klimatech Gmbh & Co Kg Wärmetauscher mit verrippten Flachrohren, insbesondere Heizungswärmetauscher, Motorkühler, Verflüssiger oder Verdampfer, für Kraftfahrzeuge
US20020127035A1 (en) * 2001-03-12 2002-09-12 Canon Kabushiki Kaisha Heater having metallic substrate and image heating apparatus using heater

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5557704A (en) * 1990-11-09 1996-09-17 Pifco Limited Heating vessel with chromium-enriched stainless steel substrate promoting adherence of thin film heater thereon
WO1998036664A1 (fr) * 1997-02-20 1998-08-27 Faber Electronics B.V. Element chauffant pour matelas a eau
DE19825561A1 (de) * 1998-06-08 1999-12-09 Valeo Klimatech Gmbh & Co Kg Wärmetauscher mit verrippten Flachrohren, insbesondere Heizungswärmetauscher, Motorkühler, Verflüssiger oder Verdampfer, für Kraftfahrzeuge
US20020127035A1 (en) * 2001-03-12 2002-09-12 Canon Kabushiki Kaisha Heater having metallic substrate and image heating apparatus using heater

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9518130B2 (en) 2010-03-11 2016-12-13 Merrimack Pharmaceuticals, Inc. Use of ERBB3 inhibitors in the treatment of triple negative and basal-like breast cancers
WO2014033328A1 (fr) * 2012-09-03 2014-03-06 Denis O'dwyer Système de chauffage
WO2014206951A1 (fr) * 2013-06-28 2014-12-31 Webasto SE Dispositif de chauffage électrique et procédé permettant de produire un dispositif de chauffage électrique
US9688761B2 (en) 2013-12-27 2017-06-27 Merrimack Pharmaceuticals, Inc. Biomarker profiles for predicting outcomes of cancer therapy with ERBB3 inhibitors and/or chemotherapies
US10273304B2 (en) 2013-12-27 2019-04-30 Merrimack Pharmaceuticals, Inc. Biomarker profiles for predicting outcomes of cancer therapy with ERBB3 inhibitors and/or chemotherapies
US10184006B2 (en) 2015-06-04 2019-01-22 Merrimack Pharmaceuticals, Inc. Biomarkers for predicting outcomes of cancer therapy with ErbB3 inhibitors
WO2018158286A1 (fr) * 2017-02-28 2018-09-07 Mahle International Gmbh Dispositif de chauffage
EP4075921A1 (fr) * 2021-04-15 2022-10-19 MAHLE International GmbH Échangeur de chaleur à résistance de film à couche épaisse
JP7228858B1 (ja) 2022-01-13 2023-02-27 三菱製鋼株式会社 空気調和装置
JP2023102971A (ja) * 2022-01-13 2023-07-26 三菱製鋼株式会社 空気調和装置

Also Published As

Publication number Publication date
FR2963868A1 (fr) 2012-02-17
FR2963868B1 (fr) 2012-09-28

Similar Documents

Publication Publication Date Title
WO2012019952A1 (fr) Echangeur de chaleur comprenant un element chauffant serigraphie
EP1632109B1 (fr) Dispositif de chauffage electrique, notamment pour un vehicule automobile
FR2838599A1 (fr) Dispositif de chauffage electrique, notamment pour appareil de chauffage et ou climatisation de vehicule
EP2766669B1 (fr) Module de chauffe isolé pour dispositif de chauffage additionnel
EP2604088B1 (fr) Bloc de chauffe pour radiateur électrique de chauffage
EP2909542B1 (fr) Dissipateur thermique, module chauffant associé et procédé d'assemblage correspondant
FR2793546A1 (fr) Echangeur de chaleur mixte eau/air et electrique
FR2853198A1 (fr) Dispositif de chauffage electrique comprenant un corps chauffant
FR3104687A1 (fr) Dispositif thermique pour véhicule automobile
WO2020002807A1 (fr) Dispositif de ventilation pour vehicule automobile
FR3075333A1 (fr) Echangeur de chaleur pour vehicule
EP2604089B1 (fr) Module chauffant comprenant un element chauffant serigraphie
FR3073609B1 (fr) Canal pour echangeur thermique d'un vehicule automobile
EP3247957A1 (fr) Echangeur de chaleur et dispositif de conditionnement thermique pour véhicule automobile comportant un tel échangeur
FR2996066A1 (fr) Dispositif de controle thermique pour module de batterie de vehicule automobile, procede de fabrication dudit dispositif de controle et module de batterie
FR3075334A1 (fr) Echangeur de chaleur pour vehicule a dispositif de dissipation electriquement chauffant
WO2019115973A1 (fr) Echangeur thermique comprenant des moyens d'égalisation de potentiel électrique
FR2762958A1 (fr) Dispositif de chauffage a elements resistifs a coefficient de temperature positif
WO2003002920A1 (fr) Echangeur de chaleur, notamment pour dispositif de climatisation de vehicule automobile
EP1717525B1 (fr) Dispositif de chauffage pour installation de chauffage, de ventilation et/ou de climatisation d'un habitacle de véhicule automobile
FR3088711A1 (fr) Echangeur de chaleur pour vehicule automobile
FR3088710A1 (fr) Echangeur de chaleur pour vehicule automobile
WO2021116580A1 (fr) Dispositif chauffant électrique pour véhicule automobile
EP2546594A1 (fr) Echangeur de chaleur, notamment pour véhicule automobile, faisant dispositif thermo électrique
WO2013037469A1 (fr) Echangeur thermique et procede de realisation d'un tel echangeur thermique

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11738746

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11738746

Country of ref document: EP

Kind code of ref document: A1