WO2012019919A1 - Superconducting magnetic bearing - Google Patents

Superconducting magnetic bearing Download PDF

Info

Publication number
WO2012019919A1
WO2012019919A1 PCT/EP2011/062966 EP2011062966W WO2012019919A1 WO 2012019919 A1 WO2012019919 A1 WO 2012019919A1 EP 2011062966 W EP2011062966 W EP 2011062966W WO 2012019919 A1 WO2012019919 A1 WO 2012019919A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
superconducting
magnetic bearing
stator
bearing according
Prior art date
Application number
PCT/EP2011/062966
Other languages
German (de)
French (fr)
Inventor
Stefan GLÜCK
Original Assignee
Schaeffler Technologies Gmbh & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schaeffler Technologies Gmbh & Co. Kg filed Critical Schaeffler Technologies Gmbh & Co. Kg
Publication of WO2012019919A1 publication Critical patent/WO2012019919A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/0408Passive magnetic bearings
    • F16C32/0436Passive magnetic bearings with a conductor on one part movable with respect to a magnetic field, e.g. a body of copper on one part and a permanent magnet on the other part
    • F16C32/0438Passive magnetic bearings with a conductor on one part movable with respect to a magnetic field, e.g. a body of copper on one part and a permanent magnet on the other part with a superconducting body, e.g. a body made of high temperature superconducting material such as YBaCuO

Definitions

  • the present invention relates to a superconducting magnetic bearing for rotatively supporting a machine element.
  • a generic superconducting magnetic bearing comprises a stator and a rotor rotatable relative to the stator, wherein both the stator and the rotor have a superconducting material.
  • the magnetic bearing according to the invention can be used, for example, for the rotary mounting of machine elements of a gas turbine, a large engine or a machine tool.
  • a magnetic bearing in which a first part is mounted magnetically relative to a second part, wherein the second part has a superconducting material of the second kind.
  • the superconducting material contains an anisotropic crystal or a plurality of grains thereof.
  • the first part comprises a configuration of magnets with which the superconductive material interacts.
  • US 7,086,778 B2 shows an arrangement for stirring or mixing liquid media.
  • the arrangement comprises a stirring element to be arranged in the liquid medium, which is magnetically stored by a superconductor located in a cryostat.
  • a superconducting bearing in which a rotor with a body made of a superconducting material is rotatably mounted relative to a coil of a superconducting material.
  • a magnetic bearing with a high-temperature superconductor element is known, in which a stator is rotatably received by a rotor.
  • the rotor comprises a body of a type II superconductor.
  • the stator comprises a coil of a superconducting material.
  • a disadvantage of this solution is that both the stator and the rotor must be cooled, for example, within a single cryostat. Accordingly, a vacuum rotary feedthrough is required, which leads to friction losses.
  • the rotor and the stator can be arranged in separate cryostats, which requires the use of a rotatable cooling, which also leads to friction losses.
  • the object of the present invention is to cool the stator and the rotor of the magnetic bearing without having to accept friction losses.
  • the superconducting magnetic bearing according to the invention serves for the rotational bearing of a machine element, for example for the rotational mounting of a turbine wheel of a gas turbine.
  • the superconducting magnetic bearing initially comprises a stator which has a first superconducting material.
  • the superconducting magnetic bearing further comprises a rotatable relative to the stator rotor having a second superconducting material.
  • the first superconducting material and the second superconducting material may, for example, be embodied as a body of a so-called bulk arrangement and / or as coils.
  • the first superconductive material and the second superconducting material may also be the same.
  • the superconducting magnetic bearing continues to hold a stator and the rotor together enclosing housing for common tempering of the stator and the rotor, so that they can act as superconducting materials.
  • the housing should in particular ensure that the first superconducting material and the second superconducting material each have a temperature which is below the transition temperature of the respective superconducting material. Therefore, the housing preferably acts thermally insulating to allow cooling of the stator and the rotor.
  • the housing is preferably tight and sealed and has no rotary feedthrough or the like. Also, the housing is preferably not rotatable with respect to the machine element to be stored.
  • the superconducting magnetic bearing further comprises a rotatably attachable to the machine element coupling element, which is arranged outside the housing coaxial with the rotor and rotatably coupled to the rotor is magnetically.
  • the coupling element may be formed as an integral part of the machine element to be stored.
  • a wall of the housing is located between the rotor and the coupling element, whereby the magnetic coupling between the coupling element and the rotor is not or only slightly affected.
  • a particular advantage of the superconducting magnetic bearing according to the invention is that on the one hand the use of superconducting materials both for the rotor and for the stator allows the generation of high magnetic forces for mounting the machine element, and on the other hand, no rotary feedthrough or the like is required to to move the moving part from a cooled area to a non-cooled area.
  • the cooling of the rotor and the stator can be done highly effective in the sealed housing.
  • at least one permanent magnet is fixed to the coupling element, which is magnetically coupled to the rotor.
  • the coupling element can be completely formed by the one or more permanent magnets.
  • the magnetic coupling of the one or more permanent magnets to the rotor preferably takes place in that the one or more permanent magnets are magnetically coupled to the second superconducting material of the rotor.
  • the one or more permanent magnets are preferably arranged on an end face of the machine element to be facing the housing.
  • a plurality of the permanent magnets are attached to the coupling element.
  • the number of permanent magnets is equal to four or a multiple of four, wherein the permanent magnets are in a so-called Halbach arrangement.
  • the second superconducting material preferably has crystalline impurities through which the magnetic field of the permanent magnet is passed. Due to the M formulatener-Ochsenfeld effect, the magnetic field is mainly forced into the impurities, which is also called freezing of the magnetic field. As a result, the crystalline impurities are held by the magnetic forces of the permanent magnet, which is also referred to as pinning.
  • the pining leads to a load-proof, rotationally fixed magnetic coupling of the permanent magnet to the second superconducting material.
  • a type II superconductor is suitable as a second superconducting material.
  • the permanent magnet has a cylindrical shape whose axis lies in a rotational axis of the magnetic bearing.
  • a circular base surface of the cylindrical shape of the permanent magnet is parallel and coaxial with a circular base surface of the rotor, wherein between the circular base surface of the cylindrical shape of the permanent magnet th and the circular base of the rotor is a wall of the housing.
  • the permanent magnet preferably has a plurality of magnetic poles which face the rotor. In this way, a large torque for the rotationally fixed coupling of the non-rotatable permanent magnet can be ensured on the rotor.
  • the plurality of magnetic poles are preferably polarized alternately.
  • On the permanent magnet flux guide elements are preferably arranged for conducting the magnetic flux in the direction of the rotor. The flux guide elements serve to align the magnetic flux in the direction of the rotor, so that a high load-proof rotationally fixed coupling of the coupling element can be ensured on the rotor.
  • the magnetic field forming between the permanent magnet and the rotor has a gradient in all spatial directions, which is at least 10 mT / m.
  • the gradients of the magnetic field developing in all spatial directions amount to at least 100 mT / m.
  • the housing is preferably designed as a cryostat or as part of a cryostat.
  • the cryostat is a cooling unit with which very low temperatures can be kept constant.
  • the cryostat preferably comprises a cooling device, which may be arranged in the housing or at a distance from the housing.
  • the second superconducting material of the rotor is preferably a superconducting material of the second kind, more preferably a high-temperature superconductor. In this case, the second superconducting material is preferred. yakt formed as a body of the rotor. Superconducting materials of the second kind are also referred to as type II.
  • the stator is preferably formed by a superconducting gradient coil of the first superconducting material.
  • the stator has a body of the first superconducting material.
  • the first superconducting material is preferably a superconducting material of the second kind, more preferably a high-temperature superconductor. Insofar as both the stator and the rotor have a body of the superconducting material, a so-called double-bulk arrangement is formed.
  • the stator preferably has the shape of a hollow cylinder, while the rotor has the shape of a cylinder.
  • the rotor is arranged coaxially to the stator in the hollow shape of the stator.
  • the housing is preferably formed as a hollow cylinder, through which the stator is positively received.
  • FIG. 1 shows a preferred embodiment of a superconducting magnetic bearing according to the invention in a cross-sectional view.
  • the superconducting magnetic bearing initially comprises a cylindrical rotor 01 made of a type II superconductor.
  • the rotor 01 is arranged coaxially with a hollow-cylindrical stator 02, which likewise consists of a type II superconductor, so that the rotor 01 and the stator 02 form a double Train the bulker assembly.
  • the rotor 01 and / or the stator 02 may comprise one or more coils of a superconductor.
  • the rotor 01 is rotatable about a rotation axis 03 relative to the stator 02.
  • the rotor 01 and the stator 02 are located together in a sealed cryostat 06. With the aid of the cryostat 06, the rotor 01 and the stator 02 are permanently cooled to a temperature which is lower than the transition temperature of the superconducting materials of the rotor 01 and the stator 02. Consequently, the rotor 01 and the stator 02 are in a superconducting state.
  • the cryostat 06 has no mechanical implementation for transmitting a force or torque. Thus, the tightness of the cryostat 06 can be ensured with little effort.
  • the superconducting magnetic bearing further comprises a coupling element 07, which is fastened to a shaft 08 to be supported.
  • the coupling element 07 has the shape of a flat cylinder.
  • the rotor 01, the coupling element 07 and the shaft 08 to be supported are arranged coaxially with one another. They rotate together about the axis of rotation 03 of the magnetic bearing.
  • the coupling element 07 and the thus firmly connected shaft 08 are located completely outside the cryostat 06.
  • the coupling element 07 is made of a permanent magnetic material. Due to the force exerted by the magnetic field of the permanent magnetic material on the rotor 01, the coupling element 07 is rotatably connected to the rotor 01.

Abstract

The invention relates to a superconducting magnetic bearing for rotationally mounting a machine element (08). The superconducting magnetic bearing according to the invention first of all includes a stator (02), which comprises a first superconducting material. The superconducting magnetic bearing further includes a rotor (01), which can be rotated relative to the stator (02) and comprises a second superconducting material. A housing (06) enclosing both the stator (02) and the rotor (01) is used for the joint temperature control of the stator (02) and of the rotor (01) such that same can act as superconducting materials. The housing (06) should in particular ensure that the first superconducting material and the second superconducting material each comprise temperature which is below the transition temperature of the respective superconducting material. According to the invention, the superconducting magnetic bearing further comprises a coupling element (07), which can be attached to the machine element (08) in a rotatably fixed manner, is disposed outside the housing (06) coaxially to the rotor (01) and is magnetically coupled to the rotor (01) in a rotatably fixed manner.

Description

Supraleitendes Magnetlager  Superconducting magnetic bearing
Die vorliegende Erfindung betrifft ein supraleitendes Magnetlager zur rotativen Lagerung eines Maschinenelementes. Ein gattungsgemäßes supraleitendes Magnetlager umfasst einen Stator und einen gegenüber dem Stator rotierbaren Rotor, wobei sowohl der Stator als auch der Rotor ein supraleitendes Material aufweisen. Das erfindungsgemäße Magnetlager kann beispielsweise zur rotativen Lagerung von Maschinenelementen einer Gasturbine, eines Großmotors oder einer Werkzeugmaschine verwendet werden. The present invention relates to a superconducting magnetic bearing for rotatively supporting a machine element. A generic superconducting magnetic bearing comprises a stator and a rotor rotatable relative to the stator, wherein both the stator and the rotor have a superconducting material. The magnetic bearing according to the invention can be used, for example, for the rotary mounting of machine elements of a gas turbine, a large engine or a machine tool.
Aus der WO 00/2231 1 A2 ist ein Magnetlager bekannt, bei welchem ein erstes Teil gegenüber einem zweiten Teil magnetisch gelagert ist, wobei das zweite Teil ein supraleitendes Material der zweiten Art aufweist. Das supraleitende Material enthält einen anisotropen Kristall oder mehrere aus diesem bestehende Körner. Das erste Teil umfasst eine Konfiguration aus Magneten, mit denen das supraleitende Material in Wechselwirkung steht. From WO 00/2231 1 A2 a magnetic bearing is known, in which a first part is mounted magnetically relative to a second part, wherein the second part has a superconducting material of the second kind. The superconducting material contains an anisotropic crystal or a plurality of grains thereof. The first part comprises a configuration of magnets with which the superconductive material interacts.
Aus dem Artikel von Werfel, F. N. et al.:„HTS Magnetic Bearings in Prototype Application", vorveröffentlicht für MT-21 IEEE Transactions on Applied Super- conductivity, April 2010, wird ein Magnetlager gezeigt, bei welchem innerhalb eines Vakuumbehälters ein Hochtemperatursupraleiter angeordnet ist. Ein Drehteller mit einem Permanentmagneten befindet sich außerhalb des Vakuumbehälters und ist mit dem Hochtemperatursupraleiter magnetisch gekoppelt. From the article by Werfel, FN et al.: "HTS Magnetic Bearings in Prototype Application", pre-published for MT-21 IEEE Transactions on Applied Superconductivity, April 2010, a magnetic bearing is shown in which a high temperature superconductor is placed inside a vacuum vessel A turntable with a permanent magnet is located outside the vacuum vessel and is magnetically coupled to the high temperature superconductor.
Die US 7,086,778 B2 zeigt eine Anordnung zum Rühren oder Vermischen von flüssigen Medien. Die Anordnung umfasst ein im flüssigen Medium anzuordnendes Rührelement, welches von einem in einem Kryostaten befindlichen Supraleiter magnetisch gelagert wird. US 7,086,778 B2 shows an arrangement for stirring or mixing liquid media. The arrangement comprises a stirring element to be arranged in the liquid medium, which is magnetically stored by a superconductor located in a cryostat.
Aus der US 5,517,071 ist eine supraleitende Lagerung bekannt, bei welcher ein Rotor mit einem Korpus aus einem supraleitenden Material rotierbar gegenüber einer Spule aus einem supraleitenden Material gelagert ist. Aus der DE 10 2008 028 588 A1 ist ein Magnetlager mit einem Hochtemperatursupraleiterelement bekannt, bei welchem ein Stator von einem Rotor drehbar aufgenommen wird. Der Rotor umfasst einen Korpus aus einem Typ-Il- Supraleiter. Der Stator umfasst eine Spule aus einem supraleitenden Material. Die Verwendung von supraleitenden Materialien sowohl für den Stator als auch für den Rotor ermöglicht die Erzeugung hoher magnetischer Kräfte zur Lagerung des zu lagernden Maschinenelementes. Ein Nachteil dieser Lösung besteht darin, dass sowohl der Stator als auch der Rotor gekühlt werden müssen, beispielsweise innerhalb eines einzigen Kryostaten. Dementsprechend ist eine Vakuum-Drehdurchführung erforderlich, welche zu Reibungsverlusten führt. Alternativ können der Rotor und der Stator in getrennten Kryostaten angeordnet werden, was den Einsatz einer drehbaren Kühlung erforderlich macht, die ebenfalls zu Reibungsverlusten führt. From US 5,517,071 a superconducting bearing is known, in which a rotor with a body made of a superconducting material is rotatably mounted relative to a coil of a superconducting material. From DE 10 2008 028 588 A1, a magnetic bearing with a high-temperature superconductor element is known, in which a stator is rotatably received by a rotor. The rotor comprises a body of a type II superconductor. The stator comprises a coil of a superconducting material. The use of superconducting materials for both the stator and the rotor enables the generation of high magnetic forces for supporting the machine element to be stored. A disadvantage of this solution is that both the stator and the rotor must be cooled, for example, within a single cryostat. Accordingly, a vacuum rotary feedthrough is required, which leads to friction losses. Alternatively, the rotor and the stator can be arranged in separate cryostats, which requires the use of a rotatable cooling, which also leads to friction losses.
Die Aufgabe der vorliegenden Erfindung besteht ausgehend von dem aus der DE 10 2008 028 588 A1 bekannten supraleitenden Magnetlager darin, den Stator und den Rotor des Magnetlagers zu kühlen, ohne dafür Reibungsverluste in Kauf nehmen zu müssen. The object of the present invention, starting from the superconducting magnetic bearing known from DE 10 2008 028 588 A1, is to cool the stator and the rotor of the magnetic bearing without having to accept friction losses.
Die genannte Aufgabe wird durch ein supraleitendes Magnetlager gemäß dem beigefügten Anspruch 1 gelöst. The above object is achieved by a superconducting magnetic bearing according to the appended claim 1.
Das erfindungsgemäße supraleitende Magnetlager dient zur rotativen Lage- rung eines Maschinenelementes, beispielsweise zur rotativen Lagerung eines Turbinenrades einer Gasturbine. Das supraleitende Magnetlager umfasst zunächst einen Stator, welcher ein erstes supraleitendes Material aufweist. Das supraleitende Magnetlager umfasst weiterhin einen gegenüber dem Stator rotierbaren Rotor, welcher ein zweites supraleitendes Material aufweist. Das ers- te supraleitende Material und das zweite supraleitende Material können beispielsweise als Korpus einer so genannten Bulk-Anordnung und/oder als Spulen ausgebildet sein. Das erste supraleitende Material und das zweite supraleitende Material können auch gleich sein. Das supraleitende Magnetlager um- fasst weiterhin ein den Stator und den Rotor gemeinsam umschließendes Gehäuse zur gemeinsamen Temperierung des Stators und des Rotors, sodass diese als supraleitende Materialien fungieren können. Mit dem Gehäuse soll insbesondere gewährleistet werden, dass das erste supraleitende Material und das zweite supraleitende Material jeweils eine Temperatur aufweisen, welche unterhalb der Sprungtemperatur des jeweiligen supraleitenden Materials liegt. Daher wirkt das Gehäuse bevorzugt thermisch isolierend, um eine Kühlung des Stators und des Rotors zu ermöglichen. Das Gehäuse ist bevorzugt fest und dicht verschlossen und weist keine Drehdurchführung oder dergleichen auf. Auch ist das Gehäuse bevorzugt nicht drehbar in Bezug auf das zu lagernde Maschinenelement. Erfindungsgemäß umfasst das supraleitende Magnetlager weiterhin ein drehfest am Maschinenelement anbringbares Kupplungselement, welches außerhalb des Gehäuses koaxial zum Rotor angeordnet ist und drehfest mit dem Rotor magnetisch gekoppelt ist. Das Kupplungselement kann als integraler Bestandteil des zu lagernden Maschinenelementes ausgebildet sein. Eine Wandung des Gehäuses befindet sich zwischen dem Rotor und dem Kupplungselement, wodurch die magnetische Kopplung zwischen dem Kupplungselement und dem Rotor jedoch nicht oder nur kaum beeinträchtigt wird. Mithilfe des Kupplungselementes ist das Maschinenelement an das Magnetla- ger koppelbar, sodass das Maschinenelement durch das supraleitende Magnetlager rotativ gelagert wird. Wenn sich das Maschinenelement dreht, so drehen sich auch das daran befestigte Kupplungselement und der am Kupplungselement drehfest angekoppelte Rotor, welcher gegenüber dem Stator magnetisch gelagert ist. The superconducting magnetic bearing according to the invention serves for the rotational bearing of a machine element, for example for the rotational mounting of a turbine wheel of a gas turbine. The superconducting magnetic bearing initially comprises a stator which has a first superconducting material. The superconducting magnetic bearing further comprises a rotatable relative to the stator rotor having a second superconducting material. The first superconducting material and the second superconducting material may, for example, be embodied as a body of a so-called bulk arrangement and / or as coils. The first superconductive material and the second superconducting material may also be the same. The superconducting magnetic bearing continues to hold a stator and the rotor together enclosing housing for common tempering of the stator and the rotor, so that they can act as superconducting materials. The housing should in particular ensure that the first superconducting material and the second superconducting material each have a temperature which is below the transition temperature of the respective superconducting material. Therefore, the housing preferably acts thermally insulating to allow cooling of the stator and the rotor. The housing is preferably tight and sealed and has no rotary feedthrough or the like. Also, the housing is preferably not rotatable with respect to the machine element to be stored. According to the invention, the superconducting magnetic bearing further comprises a rotatably attachable to the machine element coupling element, which is arranged outside the housing coaxial with the rotor and rotatably coupled to the rotor is magnetically. The coupling element may be formed as an integral part of the machine element to be stored. A wall of the housing is located between the rotor and the coupling element, whereby the magnetic coupling between the coupling element and the rotor is not or only slightly affected. By means of the coupling element, the machine element can be coupled to the magnetic bearing so that the machine element is rotationally supported by the superconducting magnetic bearing. When the machine element rotates, the attached coupling element and the rotatably coupled to the coupling element rotor, which is magnetically mounted relative to the stator rotate.
Ein besonderer Vorteil des erfindungsgemäßen supraleitenden Magnetlagers besteht darin, dass einerseits die Verwendung von supraleitenden Materialien sowohl für den Rotor als auch für den Stator die Erzeugung hoher magnetischer Kräfte zur Lagerung des Maschinenelementes ermöglicht, und anderer- seits keine Drehdurchführung oder dergleichen erforderlich ist, um ein sich bewegendes Teil aus einem gekühlten Bereich in einen nicht gekühlten Bereich zu überführen. Die Kühlung des Rotors und des Stators kann hocheffektiv in dem verschlossenen Gehäuse erfolgen. Bei einer bevorzugten Ausführungsform des erfindungsgemäßen supraleitenden Magnetlagers ist am Kupplungselement mindestens ein Permanentmagnet befestigt, welcher mit dem Rotor magnetisch gekoppelt ist. Dabei kann das Kupplungselement vollständig durch den einen oder durch die mehreren Permanentmagneten gebildet sein. Die magnetische Kopplung des einen oder der mehreren Permanentmagneten an den Rotor erfolgt bevorzugt dadurch, dass der eine bzw. die mehreren Permanentmagneten mit dem zweiten supraleitenden Material des Rotors magnetisch gekoppelt sind. Der eine oder die mehre- ren Permanentmagneten sind bevorzugt auf einer dem Gehäuse zuzuwendenden Stirnfläche des zu lagernden Maschinenelementes angeordnet. Bevorzugt sind mehrere der Permanentmagneten am Kupplungselement befestigt. Besonders bevorzugt beträgt die Anzahl der Permanentmagneten gleich vier oder ein Mehrfaches von vier, wobei sich die Permanentmagneten in einer so ge- nannten Halbach-Anordnung befinden. A particular advantage of the superconducting magnetic bearing according to the invention is that on the one hand the use of superconducting materials both for the rotor and for the stator allows the generation of high magnetic forces for mounting the machine element, and on the other hand, no rotary feedthrough or the like is required to to move the moving part from a cooled area to a non-cooled area. The cooling of the rotor and the stator can be done highly effective in the sealed housing. In a preferred embodiment of the superconducting magnetic bearing according to the invention at least one permanent magnet is fixed to the coupling element, which is magnetically coupled to the rotor. In this case, the coupling element can be completely formed by the one or more permanent magnets. The magnetic coupling of the one or more permanent magnets to the rotor preferably takes place in that the one or more permanent magnets are magnetically coupled to the second superconducting material of the rotor. The one or more permanent magnets are preferably arranged on an end face of the machine element to be facing the housing. Preferably, a plurality of the permanent magnets are attached to the coupling element. Particularly preferably, the number of permanent magnets is equal to four or a multiple of four, wherein the permanent magnets are in a so-called Halbach arrangement.
Das zweite supraleitende Material weist bevorzugt kristalline Störstellen auf, durch welche das Magnetfeld des Permanentmagneten hindurch geleitet wird. Das Magnetfeld wird aufgrund des Meißner-Ochsenfeld-Effektes vor allem in die Störstellen gedrängt, was auch als Einfrieren des Magnetfeldes bezeichnet wird. Dadurch werden die kristallinen Störstellen durch die Magnetkräfte des Permanentmagneten gehalten, was auch als Pinning bezeichnet wird. Das Pin- ning führt zu einer belastbaren drehfesten magnetischen Kopplung des Permanentmagneten an das zweite supraleitende Material. Als zweites supraleiten- des Material eignet sich insbesondere ein Supraleiter der Typs II. The second superconducting material preferably has crystalline impurities through which the magnetic field of the permanent magnet is passed. Due to the Meißner-Ochsenfeld effect, the magnetic field is mainly forced into the impurities, which is also called freezing of the magnetic field. As a result, the crystalline impurities are held by the magnetic forces of the permanent magnet, which is also referred to as pinning. The pining leads to a load-proof, rotationally fixed magnetic coupling of the permanent magnet to the second superconducting material. As a second superconducting material, in particular, a type II superconductor is suitable.
Bei einer bevorzugten Ausführungsform des erfindungsgemäßen supraleitenden Magnetlagers weist der Permanentmagnet eine Zylinderform auf, deren Achse in einer Rotationsachse des Magnetlagers liegt. Eine kreisförmige Grundfläche der Zylinderform des Permanentmagneten steht einer kreisförmigen Grundfläche des Rotors parallel und koaxial gegenüber, wobei sich zwischen der kreisförmigen Grundfläche der Zylinderform des Permanentmagne- ten und der kreisförmigen Grundfläche des Rotors eine Wandung des Gehäuses befindet. In a preferred embodiment of the superconducting magnetic bearing according to the invention, the permanent magnet has a cylindrical shape whose axis lies in a rotational axis of the magnetic bearing. A circular base surface of the cylindrical shape of the permanent magnet is parallel and coaxial with a circular base surface of the rotor, wherein between the circular base surface of the cylindrical shape of the permanent magnet th and the circular base of the rotor is a wall of the housing.
Der Permanentmagnet weist bevorzugt mehrere magnetische Pole auf, welche dem Rotor gegenüberstehen. Hierdurch kann ein großes Drehmoment zur drehfesten Ankopplung des drehfesten Permanentmagneten am Rotor gewährleistet werden. Hierbei sind die mehreren magnetischen Pole bevorzugt abwechselnd gepolt. An dem Permanentmagneten sind bevorzugt Flussleitelemente zur Leitung des magnetischen Flusses in Richtung des Rotors angeordnet. Die Flussleitelemente dienen dazu, den magnetischen Fluss in Richtung des Rotors auszurichten, sodass eine hoch belastbare drehfeste Ankopplung des Kupplungselementes am Rotor gewährleistet werden kann. The permanent magnet preferably has a plurality of magnetic poles which face the rotor. In this way, a large torque for the rotationally fixed coupling of the non-rotatable permanent magnet can be ensured on the rotor. In this case, the plurality of magnetic poles are preferably polarized alternately. On the permanent magnet flux guide elements are preferably arranged for conducting the magnetic flux in the direction of the rotor. The flux guide elements serve to align the magnetic flux in the direction of the rotor, so that a high load-proof rotationally fixed coupling of the coupling element can be ensured on the rotor.
Bei einer bevorzugten Ausführungsform des erfindungsgemäßen supraleitenden Magnetlagers weist das sich zwischen dem Permanentmagneten und dem Rotor ausbildende Magnetfeld in allen Raumrichtungen einen Gradienten auf, welcher mindestens 10 mT/m beträgt. Hierdurch werden große Kräfte zur Kopplung des Kupplungselementes am Rotor erzeugt. Besonders bevorzugt betragen die Gradienten des sich ausbildenden Magnetfeldes in allen Raumrichtungen mindestens 100 mT/m. In a preferred embodiment of the superconducting magnetic bearing according to the invention, the magnetic field forming between the permanent magnet and the rotor has a gradient in all spatial directions, which is at least 10 mT / m. As a result, large forces are generated for coupling the coupling element on the rotor. Particularly preferably, the gradients of the magnetic field developing in all spatial directions amount to at least 100 mT / m.
Das Gehäuse ist bevorzugt als Kryostat oder als Teil eines Kryostaten ausge- bildet. Bei dem Kryostaten handelt es sich um ein Kühlgerät, mit welchen sehr tiefe Temperaturen konstant eingehalten werden können. Dabei umfasst der Kryostat bevorzugt eine Kühleinrichtung, welche im Gehäuse oder beabstandet zum Gehäuse angeordnet sein kann. Bei dem zweiten supraleitenden Material des Rotors handelt es sich bevorzugt um ein supraleitendes Material zweiter Art, besonders bevorzugt um einen Hochtemperatursupraleiter. Dabei ist das zweite supraleitende Material bevor- zugt als ein Korpus des Rotors ausgebildet. Supraleitende Materialien zweiter Art werden auch als Typ II bezeichnet. The housing is preferably designed as a cryostat or as part of a cryostat. The cryostat is a cooling unit with which very low temperatures can be kept constant. In this case, the cryostat preferably comprises a cooling device, which may be arranged in the housing or at a distance from the housing. The second superconducting material of the rotor is preferably a superconducting material of the second kind, more preferably a high-temperature superconductor. In this case, the second superconducting material is preferred. zugt formed as a body of the rotor. Superconducting materials of the second kind are also referred to as type II.
Der Stator ist bevorzugt durch eine supraleitende Gradientenspule aus dem ersten supraleitenden Material gebildet. Bei einer alternativen bevorzugten Ausführungsform besitzt der Stator einen Korpus aus dem ersten supraleitenden Material. Bei dem ersten supraleitenden Material handelt es sich bevorzugt um ein supraleitendes Material zweiter Art, besonders bevorzugt um einen Hochtemperatursupraleiter. Insofern sowohl der Stator als auch der Rotor ei- nen Korpus aus dem supraleitenden Material besitzen, ist eine so genannte Doppel-Bulk-Anordnung ausgebildet. The stator is preferably formed by a superconducting gradient coil of the first superconducting material. In an alternative preferred embodiment, the stator has a body of the first superconducting material. The first superconducting material is preferably a superconducting material of the second kind, more preferably a high-temperature superconductor. Insofar as both the stator and the rotor have a body of the superconducting material, a so-called double-bulk arrangement is formed.
Der Stator weist bevorzugt die Form eines Hohlzylinders auf, während der Rotor die Form eines Zylinders besitzt. Dabei ist der Rotor koaxial zum Stator in der Hohlform des Stators angeordnet. The stator preferably has the shape of a hollow cylinder, while the rotor has the shape of a cylinder. In this case, the rotor is arranged coaxially to the stator in the hollow shape of the stator.
Das Gehäuse ist bevorzugt hohlzylinderförmig ausgebildet, durch welches der Stator formschlüssig aufgenommen wird. Weitere Vorteile, Einzelheiten und Weiterbildungen der Erfindung ergeben sich aus der nachfolgenden Beschreibung einer bevorzugten Ausführungsform des erfindungsgemäßen Magnetlagers, unter Bezugnahme auf die Zeichnung. The housing is preferably formed as a hollow cylinder, through which the stator is positively received. Further advantages, details and developments of the invention will become apparent from the following description of a preferred embodiment of the magnetic bearing according to the invention, with reference to the drawing.
Die einzige Fig. 1 zeigt eine bevorzugte Ausführungsform eines erfindungsge- mäßen supraleitenden Magnetlagers in einer Querschnittsansicht. Das supraleitende Magnetlager umfasst zunächst einen zylinderförmigen Rotor 01 aus einem Supraleiter des Typs II. Der Rotor 01 ist koaxial zu einem hohlzylinder- förmigen Stator 02 angeordnet, welcher ebenfalls aus einem Supraleiter des Typs II besteht, sodass der Rotor 01 und der Stator 02 eine Doppel-Bulk- Anordnung ausbilden. Alternativ können der Rotor 01 und/oder der Stator 02 eine oder mehrere Spulen aus einem Supraleiter umfassen. Der Rotor 01 ist um eine Rotationsachse 03 gegenüber dem Stator 02 drehbar. Es bildet sich ein Magnetfeld zwischen dem Rotor 01 und dem Stator 02 aus, welches durch Feldlinien 04 angedeutet ist und Kräfte zur rotativen Lagerung des Rotors 01 gegenüber dem Stator 02 bewirkt. Der Rotor 01 und der Stator 02 befinden sich gemeinsam in einem abgeschlossenen Kryostaten 06. Mithilfe des Kry- ostaten 06 werden der Rotor 01 und der Stator 02 permanent auf eine Tempe- ratur abgekühlt, welche niedriger ist als die Sprungtemperatur der supraleitenden Materialien des Rotors 01 und des Stators 02. Folglich befinden sich der Rotor 01 und der Stator 02 in einem supraleitenden Zustand. Der Kryostat 06 weist keine mechanische Durchführung zur Übertragung einer Kraft oder eines Drehmomentes auf. Somit kann die Dichtheit des Kryostaten 06 aufwandsarm gewährleistet werden. The only FIG. 1 shows a preferred embodiment of a superconducting magnetic bearing according to the invention in a cross-sectional view. The superconducting magnetic bearing initially comprises a cylindrical rotor 01 made of a type II superconductor. The rotor 01 is arranged coaxially with a hollow-cylindrical stator 02, which likewise consists of a type II superconductor, so that the rotor 01 and the stator 02 form a double Train the bulker assembly. Alternatively, the rotor 01 and / or the stator 02 may comprise one or more coils of a superconductor. The rotor 01 is rotatable about a rotation axis 03 relative to the stator 02. It forms a magnetic field between the rotor 01 and the stator 02, which by Field lines 04 is indicated and causes forces for rotational support of the rotor 01 relative to the stator 02. The rotor 01 and the stator 02 are located together in a sealed cryostat 06. With the aid of the cryostat 06, the rotor 01 and the stator 02 are permanently cooled to a temperature which is lower than the transition temperature of the superconducting materials of the rotor 01 and the stator 02. Consequently, the rotor 01 and the stator 02 are in a superconducting state. The cryostat 06 has no mechanical implementation for transmitting a force or torque. Thus, the tightness of the cryostat 06 can be ensured with little effort.
Das supraleitende Magnetlager umfasst weiterhin ein Kupplungselement 07, welches an einer zu lagernden Welle 08 befestigt ist. Das Kupplungselement 07 weist die Form eines flachen Zylinders auf. Der Rotor 01 , das Kupplungs- element 07 und die zu lagernde Welle 08 sind koaxial zueinander angeordnet. Sie drehen sich gemeinsam um die Rotationsachse 03 des Magnetlagers. Das Kupplungselement 07 und die damit fest verbundene Welle 08 befinden sich vollständig außerhalb des Kryostaten 06. Das Kupplungselement 07 besteht aus einem permanentmagnetischen Material. Durch die vom Magnetfeld des permanentmagnetischen Materials bewirkte Kraft auf den Rotor 01 ist das Kupplungselement 07 drehfest mit dem Rotor 01 verbunden. Auf einer dem Rotor 01 gegenüberstehenden Grundfläche 09 des Kupplungselementes 07 sind Flussleitelemente 1 1 angeordnet, um das magne- tische Feld des permanentmagnetischen Materials des Kupplungselementes 07 in Richtung des Rotors 01 auszurichten. Dieses Magnetfeld ist durch Feldlinien 12 angedeutet und wird durch kristalline Störstellen im supraleitenden Material des Rotors 01 geleitet, sodass es zum so genannten Pinning kommt. Hierdurch wird eine belastbare drehfeste Verbindung zwischen dem Kupplungselement 07 und dem Rotor 01 ausgebildet. Der Kryostat 06 ist so auszuführen, dass er den Rotor 01 nicht gegenüber dem Kupplungselement 07 magnetisch abschirmt. Das Kupplungselement 07 und die Welle 08 müssen nicht gekühlt werden, sodass keine besonderen Maßnahmen zur Kühlung außerhalb des Kryostaten 06 erforderlich sind. The superconducting magnetic bearing further comprises a coupling element 07, which is fastened to a shaft 08 to be supported. The coupling element 07 has the shape of a flat cylinder. The rotor 01, the coupling element 07 and the shaft 08 to be supported are arranged coaxially with one another. They rotate together about the axis of rotation 03 of the magnetic bearing. The coupling element 07 and the thus firmly connected shaft 08 are located completely outside the cryostat 06. The coupling element 07 is made of a permanent magnetic material. Due to the force exerted by the magnetic field of the permanent magnetic material on the rotor 01, the coupling element 07 is rotatably connected to the rotor 01. On a rotor surface 01 facing base 09 of the coupling element 07 flux guide 1 1 are arranged to align the magnetic field of the permanent magnetic material of the coupling element 07 in the direction of the rotor 01. This magnetic field is indicated by field lines 12 and is guided by crystalline impurities in the superconducting material of the rotor 01, so that it comes to the so-called pinning. As a result, a load-proof rotationally fixed connection between the coupling element 07 and the rotor 01 is formed. The cryostat 06 is to be designed so that it does not shield the rotor 01 against the coupling element 07 magnetically. The coupling element 07 and the shaft 08 need not be cooled, so that no special measures for cooling outside the cryostat 06 are required.
Bezugszeichenliste LIST OF REFERENCE NUMBERS
01 Rotor 01 rotor
02 Stator  02 stator
03 Rotationsachse  03 rotation axis
04 Feldlinien  04 field lines
05  05
06 Kryostat  06 cryostat
07 Kupplungselement 07 coupling element
08 zu lagernde Welle08 to be stored wave
09 kreisförmige Grundfläche 10 09 circular base 10
1 1 Flussleitelemente 1 1 flux guide elements
12 Feldlinien 12 field lines

Claims

Patentansprüche claims
Supraleitendes Magnetlager zur rotativen Lagerung eines Maschinenelementes (08), mit: Superconducting magnetic bearing for rotatively supporting a machine element (08), comprising:
- einem Stator (02), umfassend ein erstes supraleitendes Material;  a stator (02) comprising a first superconducting material;
- einem gegenüber dem Stator (02) rotierbaren Rotor (01 ) umfassend ein zweites supraleitendes Material; und  - A relative to the stator (02) rotatable rotor (01) comprising a second superconducting material; and
- einem den Stator (02) und den Rotor (01 ) umschließenden Gehäuse (06) zur gemeinsamen Temperierung des Stators (02) und des Rotors (01 );  - A the stator (02) and the rotor (01) enclosing the housing (06) for the common temperature of the stator (02) and the rotor (01);
dadurch gekennzeichnet, dass es weiterhin ein drehfest am Maschinenelement (08) anbringbares Kupplungselement (07) umfasst, welches außerhalb des Gehäuses (06) koaxial zum Rotor (01 ) angeordnet ist und drehfest mit dem Rotor (01 ) magnetisch gekoppelt ist.  characterized in that it further comprises a non-rotatably on the machine element (08) attachable coupling element (07), which is arranged outside the housing (06) coaxial with the rotor (01) and rotationally fixed to the rotor (01) is magnetically coupled.
Supraleitendes Magnetlager nach Anspruch 1 , dadurch gekennzeichnet, dass am Kupplungselement ein Permanentmagnet (07) befestigt ist, welcher drehfest mit dem Rotor (01 ) magnetisch gekoppelt ist. Superconducting magnetic bearing according to claim 1, characterized in that on the coupling element, a permanent magnet (07) is fixed, which is rotatably coupled to the rotor (01) magnetically.
Supraleitendes Magnetlager nach Anspruch 2, dadurch gekennzeichnet, dass das zweite supraleitende Material kristalline Störstellen aufweist, durch welche das Magnetfeld des Permanentmagneten (07) geleitet wird. Superconducting magnetic bearing according to claim 2, characterized in that the second superconducting material has crystalline impurities through which the magnetic field of the permanent magnet (07) is passed.
Supraleitendes Magnetlager nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass der Permanentmagnet (07) eine Zylinderform aufweist, deren Achse in einer Rotationsachse (03) des Magnetlagers liegt, wobei eine kreisförmige Grundfläche (09) der Zylinderform einer kreisförmigen Grundfläche des Rotors (01 ) parallel und koaxial gegenübersteht. Superconducting magnetic bearing according to claim 2 or 3, characterized in that the permanent magnet (07) has a cylindrical shape whose axis lies in a rotation axis (03) of the magnetic bearing, wherein a circular base surface (09) of the cylindrical shape of a circular base of the rotor (01) parallel and facing coaxially.
5. Supraleitendes Magnetlager nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, dass an dem Permanentmagneten (07) Flussleitelemente (1 1 ) zur Leitung des magnetischen Flusses (12) in Richtung des Rotors (01 ) angeordnet sind. 5. Superconducting magnetic bearing according to one of claims 2 to 4, characterized in that on the permanent magnet (07) flux guide elements (1 1) for guiding the magnetic flux (12) in the direction of the rotor (01) are arranged.
6. Supraleitendes Magnetlager nach einem der Ansprüche 2 bis 5, dadurch gekennzeichnet, dass das sich zwischen dem Permanentmagneten (07) und dem Rotor (01 ) ausbildende Magnetfeld (12) in allen Raumrichtungen einen Gradienten von mindestens 10 mT/m aufweist. 6. Superconducting magnetic bearing according to one of claims 2 to 5, characterized in that between the permanent magnet (07) and the rotor (01) forming magnetic field (12) has a gradient of at least 10 mT / m in all spatial directions.
7. Supraleitendes Magnetlager nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das Gehäuse durch einen Kryostaten (06) gebildet ist. 7. Superconducting magnetic bearing according to one of claims 1 to 6, characterized in that the housing is formed by a cryostat (06).
8. Supraleitendes Magnetlager nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass das zweite supraleitende Material ein supraleitendes Material zweiter Art ist. 8. Superconducting magnetic bearing according to one of claims 1 to 7, characterized in that the second superconducting material is a superconducting material of the second kind.
9. Supraleitendes Magnetlager nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass der Stator (02) durch eine supraleitende Gradientenspule aus dem ersten supraleitenden Material gebildet ist. 9. Superconducting magnetic bearing according to one of claims 1 to 8, characterized in that the stator (02) is formed by a superconducting gradient coil of the first superconducting material.
10. Supraleitendes Magnetlager nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass der Stator (02) einen Korpus aus dem ersten supra- leitenden Material besitzt. 10. Superconducting magnetic bearing according to one of claims 1 to 8, characterized in that the stator (02) has a body made of the first superconducting material.
PCT/EP2011/062966 2010-08-13 2011-07-28 Superconducting magnetic bearing WO2012019919A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010034258.0 2010-08-13
DE201010034258 DE102010034258A1 (en) 2010-08-13 2010-08-13 Superconducting magnetic bearing

Publications (1)

Publication Number Publication Date
WO2012019919A1 true WO2012019919A1 (en) 2012-02-16

Family

ID=44510931

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/062966 WO2012019919A1 (en) 2010-08-13 2011-07-28 Superconducting magnetic bearing

Country Status (2)

Country Link
DE (1) DE102010034258A1 (en)
WO (1) WO2012019919A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014001528A1 (en) 2014-02-07 2015-08-13 Festo Ag & Co. Kg Axle

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016138915A1 (en) * 2015-03-04 2016-09-09 Festo Ag & Co. Kg Clamping device and use of a clamping device
DE102022116463B4 (en) 2022-07-01 2024-03-21 Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden e.V. (IFW Dresden e.V.) Superconducting bearing arrangement

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0549233A (en) * 1991-08-09 1993-02-26 Koyo Seiko Co Ltd Magnetic joint
JPH07312885A (en) * 1994-05-16 1995-11-28 Mitsubishi Materials Corp Superconducting actuator
US5517071A (en) 1992-10-13 1996-05-14 Cornell Research Foundation, Inc. Superconducting levitating bearing
WO2000022311A2 (en) 1998-10-14 2000-04-20 Ldt Gmbh & Co. Laser-Display-Technologie Kg Magnetic bearing and its use
US7086778B2 (en) 2000-10-09 2006-08-08 Levtech, Inc. System using a levitating, rotating pumping or mixing element and related methods
DE102008028588A1 (en) 2008-06-18 2009-12-24 Schaeffler Kg Magnetic bearings with high-temperature superconducting elements
JP2010081701A (en) * 2008-09-25 2010-04-08 Railway Technical Res Inst Magnetically supporting device and method for designing this magnetically supporting device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0549233A (en) * 1991-08-09 1993-02-26 Koyo Seiko Co Ltd Magnetic joint
US5517071A (en) 1992-10-13 1996-05-14 Cornell Research Foundation, Inc. Superconducting levitating bearing
JPH07312885A (en) * 1994-05-16 1995-11-28 Mitsubishi Materials Corp Superconducting actuator
WO2000022311A2 (en) 1998-10-14 2000-04-20 Ldt Gmbh & Co. Laser-Display-Technologie Kg Magnetic bearing and its use
US7086778B2 (en) 2000-10-09 2006-08-08 Levtech, Inc. System using a levitating, rotating pumping or mixing element and related methods
DE102008028588A1 (en) 2008-06-18 2009-12-24 Schaeffler Kg Magnetic bearings with high-temperature superconducting elements
JP2010081701A (en) * 2008-09-25 2010-04-08 Railway Technical Res Inst Magnetically supporting device and method for designing this magnetically supporting device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WERFEL, F. N. ET AL.: "HTS Magnetic Bearings in Prototype Application", IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, April 2010 (2010-04-01)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014001528A1 (en) 2014-02-07 2015-08-13 Festo Ag & Co. Kg Axle
WO2015117628A1 (en) * 2014-02-07 2015-08-13 Festo Ag & Co. Kg Shaft assembly
CN106133353A (en) * 2014-02-07 2016-11-16 费斯托股份有限两合公司 Shaft device

Also Published As

Publication number Publication date
DE102010034258A1 (en) 2012-02-16

Similar Documents

Publication Publication Date Title
DE102007019766B3 (en) Bearing device with a magnetically rotatably mounted relative to a stator about an axis shaft and a damping device
DE19744763C2 (en) NMR probe head with integrated remote tuning
DE4133001C2 (en) Electrical machine
DE2210995B1 (en) Magnetic device, especially for a flywheel
EP1843454A1 (en) Drive unit and tool holder with such a drive unit
EP2603968B1 (en) Device and method for the damped, non-contact support of a coolant feed line for superconducting machines
WO2012019919A1 (en) Superconducting magnetic bearing
EP1038114A2 (en) Magnetic bearing and its use
DE102016208259A1 (en) Electric machine with double rotor arrangement
DE10063724A1 (en) Machine with a superconducting winding arranged in a winding support and with means for axial expansion compensation of the winding support
DE3015682C2 (en)
EP1927181A1 (en) Machine based on superconducting technology with a baffle screen part
WO2016023568A1 (en) Guide device
DE10358341B4 (en) Device for storing a coolant supply for superconducting machines
EP2089957B1 (en) Reciprocating rotary motor and placement head
DE102016113188A1 (en) Brake system and method for operating a brake system
DE102011003040A1 (en) Synchronous machine, has hollow inner space locating connection piece to outside of stator, and condenser rotated with rotor such that gaseous cooling medium is arrived from space to condenser and returns at walls of cavity again into space
EP2606562B1 (en) Superconducting electrical machine having a connection device for axial expansion compensation of a winding former
EP4226489A1 (en) Wobble transmission having an input shaft and an output shaft
EP1360754A1 (en) Machine with a superconducting winding arranged in a winding carrier and means for holding said winding carrier
DE2856128C3 (en) Coolant connection head for an electrical machine, which contains a rotor which is rotatably mounted about an axis and has a superconducting winding which is to be frozen by a coolant
DE102014001528A1 (en) Axle
DE102021206416A1 (en) flow machine
DE102015218013B4 (en) actuator
WO2012168082A2 (en) Rotor for an electric machine and electric machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11736376

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 11736376

Country of ref document: EP

Kind code of ref document: A1