WO2012019507A1 - 一种实现固定宽带接入网接入的策略控制方法及系统 - Google Patents

一种实现固定宽带接入网接入的策略控制方法及系统 Download PDF

Info

Publication number
WO2012019507A1
WO2012019507A1 PCT/CN2011/077572 CN2011077572W WO2012019507A1 WO 2012019507 A1 WO2012019507 A1 WO 2012019507A1 CN 2011077572 W CN2011077572 W CN 2011077572W WO 2012019507 A1 WO2012019507 A1 WO 2012019507A1
Authority
WO
WIPO (PCT)
Prior art keywords
fmc
pcrf
qos
access network
bpcf
Prior art date
Application number
PCT/CN2011/077572
Other languages
English (en)
French (fr)
Inventor
周晓云
芮通
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP11816066.2A priority Critical patent/EP2597908B1/en
Priority to US13/814,678 priority patent/US8542587B2/en
Publication of WO2012019507A1 publication Critical patent/WO2012019507A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/24Negotiating SLA [Service Level Agreement]; Negotiating QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0247Traffic management, e.g. flow control or congestion control based on conditions of the access network or the infrastructure network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/50Network service management, e.g. ensuring proper service fulfilment according to agreements
    • H04L41/5041Network service management, e.g. ensuring proper service fulfilment according to agreements characterised by the time relationship between creation and deployment of a service
    • H04L41/5054Automatic deployment of services triggered by the service manager, e.g. service implementation by automatic configuration of network components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M15/00Arrangements for metering, time-control or time indication ; Metering, charging or billing arrangements for voice wireline or wireless communications, e.g. VoIP
    • H04M15/66Policy and charging system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0896Bandwidth or capacity management, i.e. automatically increasing or decreasing capacities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L61/00Network arrangements, protocols or services for addressing or naming
    • H04L61/09Mapping addresses
    • H04L61/10Mapping addresses of different types
    • H04L61/103Mapping addresses of different types across network layers, e.g. resolution of network layer into physical layer addresses or address resolution protocol [ARP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L61/00Network arrangements, protocols or services for addressing or naming
    • H04L61/09Mapping addresses
    • H04L61/25Mapping addresses of the same type
    • H04L61/2503Translation of Internet protocol [IP] addresses
    • H04L61/256NAT traversal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L61/00Network arrangements, protocols or services for addressing or naming
    • H04L61/09Mapping addresses
    • H04L61/25Mapping addresses of the same type
    • H04L61/2503Translation of Internet protocol [IP] addresses
    • H04L61/2592Translation of Internet protocol [IP] addresses using tunnelling or encapsulation

Definitions

  • the present invention relates to 3GPP and Broadband Forum (BBF) interconnection and interworking, and in particular to a strategy control method and system for implementing fixed broadband access network access.
  • BBF Broadband Forum
  • FIG 1 is a schematic diagram of the composition of an existing EPS system of the 3rd Generation Partnership Project (EPS), which is included in the EPS network architecture of the non-roaming scenario shown in Figure 1.
  • Evolved Universal Terrestrial Radio Access Network E-UTRAN
  • Mobility Management Entity MME
  • S-GW Serving Gateway
  • P-GW Packet Data Network Gateway
  • PDN GW Packet Data Network Gateway
  • HSS Home Subscriber Server
  • PCRF Policy and Charging Rules Function
  • PCRF policy and charging control
  • the PCRF provides network control rules based on service data flows, including traffic data flow detection, Gating Control, Quality of Service (QoS) control, and data flow based charging rules.
  • the PCRF sends its formulated policies and charging rules to the Policy and Charging Enforcement Function (PCEF) for execution.
  • PCEF Policy and Charging Enforcement Function
  • the basis for formulating the policy and charging rules by the PCRF includes: obtaining information related to the service from the AF; obtaining the user policy charging control subscription information from the SPR (Spread Profile Repository); and acquiring the information related to the bearer related network from the PCEF.
  • EPS supports interworking with non-3GPP systems. Interworking between EPS and non-3GPP systems is implemented through the S2a/b/c interface.
  • the P-GW acts as an anchor between 3GPP and non-3GPP systems. As shown in FIG. 1, the non-3GPP system is divided into trusted non-3GPP IP access and untrusted non-3GPP IP access.
  • Trusted non-3GPP IP access can be directly connected to the P-GW through the S2a interface; untrusted non-3GPP IP access requires an evolved packet data gateway (ePDG, Evolved Packet Data Gateway) to be connected to the P-GW, ePDG and P-
  • ePDG evolved packet data gateway
  • ePDG Evolved Packet Data Gateway
  • the interface between the GWs is an S2b interface, and the signaling and data are encrypted and protected by the Internet Protocol Security (IPSec) between the UE and the ePDG.
  • the S2c interface provides user plane-related control and mobility support between the user equipment (UE, User Equipment) and the P-GW.
  • the supported mobility management protocol is dual-stack mobile IPv6 (DSMIPv6, Mobile IPv6 support for Dual stack Hosts and Routers ).
  • the QoS guarantee is implemented by the interaction between the PCRF and the Broadband Policy Control Framework (BPCF) in the BBF access (ie, the fixed broadband access network).
  • BPCF Broadband Policy Control Framework
  • the BPCF For the resource request message of the PCRF, the BPCF performs resource admission control according to the network policy and the subscription information of the fixed broadband access network, or forwards the resource request message to the network element of other fixed broadband access network (such as BNG), and then by other
  • the network element performs resource admission control (that is, entrusts other network elements to perform resource admission control).
  • resource admission control that is, entrusts other network elements to perform resource admission control.
  • the PCRF needs to interact with the BPCF to perform the admission control of the fixed broadband access network.
  • the PCRF provides QoS rules to the BPCF, and the fixed broadband access network performs admission control according to the QoS rules.
  • 2 is a schematic diagram of an architecture of a fixed broadband access network of a UE accessing a 3GPP core network through a fixed broadband access network in the prior art.
  • a fixed broadband access network fixed broadband access network is regarded as an untrustworthy non- 3GPP access.
  • the Broadband Access Accessor (BRAS)/Broadband Network Gateway (BNG) will execute.
  • the BPF that initiates the S9* initiative by the BPF of the BBF interacts with the PCRF of the 3GPP.
  • the PCRF can interact with the BPCF when performing QoS authorization, and the BPCF performs resource admission control or entrusts other network elements of the fixed broadband access network to perform resource admission control.
  • the fixed broadband access network fixed broadband access network does not always be able to perceive UE access, or the fixed broadband access network fixed broadband access network does not support 3GPP based access authentication.
  • the BPCF will not be able to initiate the establishment of an S9* session, and thus cannot implement QoS control for UE access. Summary of the invention
  • the main object of the present invention is to provide a policy control method and system for implementing fixed broadband access network access, which can not detect UE access in a fixed broadband access network fixed broadband access network, or Fixed broadband access network Fixed broadband access network does not support 3GPP-based access authentication. Realize QoS control for UE access, thus providing QoS guarantee for the entire transmission path of data.
  • the FMC PF acts as a separate functional entity or is integrated into the Policy and Charging Rules function PCRF.
  • the trigger message received by the FMC PF from the ePDG is: a gateway control session setup message carrying Internet Internet Protocol security IPSec external tunnel information or a dynamic host configuration protocol DHCP request message carrying IPSec external tunnel information;
  • the IPSec external tunnel information includes a local IP address of the UE received by the ePDG.
  • the requesting the FMC PF to establish a policy control session to the BPCF includes: determining, by the FMC PF, an entry of a fixed broadband access network where a BPCF or a BPCF of the fixed broadband access network currently accessed by the UE is located according to the UE local IP address. And sending an S9* session setup message to the BPCF, where the IPSec external tunnel information is carried in the S9* session setup message.
  • the IPSec external tunnel information includes a source port number.
  • the mobile network that the user requests to access is the public land mobile network PLMN to which the user belongs; and when the user roams, the mobile network that the user requests to access is the PLMN visited by the user. .
  • the request to establish a policy control session and the fixed broadband access network to perform admission control specifically includes: after the FMC PF obtains a PCC rule, a QoS rule, or a QoS request, transmitting, by using the policy control session, the QoS rule or the QoS information.
  • the FMC PF is an independent functional entity; the FMC PF obtains QoS rules or QoS information: the FMC PF obtains a PCC rule or the QoS rule from the PCRF; or the FMC PF obtains the QoS request from the ePDG .
  • the FMC PF is integrated in the PCRF; the FMC PF obtains a PCC rule, a QoS rule, or a QoS request: when the user is not roaming, the PCRF formulates a PCC rule and/or a QoS rule; when the user roams, the user The PCRF acquires a PCC rule or a QoS rule from a PCRF of a PLMN to which the user belongs; or the PCRF acquires a QoS request from the ePDG.
  • the fixed broadband access network performs resource admission control according to the request, including: If the BPCF receives the request to allocate the bandwidth resource GBR, the fixed broadband access network performs resource admission control according to the currently available bandwidth of the contracted fixed line: when the remaining available bandwidth is greater than or equal to the GBR, the fixed broadband access network Accepting the request of the FMC PF of the mobile network that the user currently requests to access, and returning a confirmation message to the FMC PF of the mobile network currently requested by the user, and the fixed broadband access network will be current from the contracted fixed network line.
  • the GBR is deducted from the available bandwidth; when the remaining available bandwidth is less than the GBR, the fixed broadband access network rejects the request of the FMC PF of the mobile network that the user currently requests to access, and moves to the user to request the access currently.
  • the FMC PF of the network returns a reject message, and the message carries the bandwidth that the FMC PF can accept;
  • the BPCF If the BPCF receives the request to release the bandwidth resource GBR, the BPCF directly returns a reception confirmation message, and the fixed broadband access network will add GBR to the currently available bandwidth of the subscription fixed line.
  • the method further includes: the FMC PF performs resource preemption according to the allocation hold priority ARP.
  • a policy control system for implementing access to a fixed broadband access network, including at least ePDG, FMC PF, and BPCF, wherein
  • ePDG configured to send a trigger message to the FMC PF
  • the FMC PF is set in the mobile network that the user currently requests to access, and is used to receive a trigger message from the ePDG, and request the BPCF to establish a policy control session;
  • the BPCF is configured to receive a request from the FMC PF, perform admission control according to quality of service QoS rules or QoS information transmitted through the policy control session, or entrust other fixed broadband access network elements to perform admission control.
  • the FMC PF is specifically configured to obtain a PCC rule, a QoS rule, or a QoS request including a guaranteed bandwidth GBR, and the QoS rule or QoS information is transmitted to the BPCF through the policy control session.
  • the FMC PF is an independent functional entity;
  • the system further includes a PCRF for providing a PCC rule or a QoS rule to the FMC PF; or the ePDG is further configured to provide a QoS request to the FMC PF.
  • the FMC PF is integrated in the PCRF
  • the PCRF is configured to: when the user is not roaming, formulate a PCC rule or a QoS rule; when the user roams, obtain a PCC rule or a QoS rule from a PCRF of a PLMN to which the user belongs;
  • the PCRF is configured to obtain a QoS request from the ePDG.
  • the FMC PF When the FMC PF receives the reject message of the BPCF, the FMC PF is further configured to perform resource preemption according to the ARP.
  • the fixed network mobile convergence policy function (FMC PF) for sensing the UE accessing the fixed broadband access network is set in the mobile network that the user currently requests to access; the FMC PF receives After the trigger message from the ePDG, the BPCF is requested to establish a policy session, and the BPCF performs policy control according to the information of the fixed broadband access network currently accessed by the UE. It can be seen from the implementation of the method of the present invention that when the UE accesses the 3GPP through the fixed broadband access network, the gateway from the ePDG controls the session establishment request message or the DHCP request message through the FMC PF, and triggers the current access of the UE.
  • the gateway from the ePDG controls the session establishment request message or the DHCP request message through the FMC PF, and triggers the current access of the UE.
  • the PCRF of the 3GPP access network initiates a policy session request to the BPCF, so that the fixed broadband access network fails to perceive the UE access, or the fixed broadband, in the architecture of the existing UE accessing the 3GPP core network through the fixed broadband access network.
  • the access network does not support 3GPP-based access authentication, and implements QoS control for UE access, thereby providing QoS guarantee for the entire transmission path of data.
  • Figure 1 is a schematic diagram of an existing EPS composition structure
  • FIG. 2 is a schematic diagram of an architecture of a UE accessing a 3GPP core network through a fixed broadband access network in the prior art
  • FIG. 3 is a flowchart of a method for implementing a policy for implementing a fixed broadband access network according to the present invention
  • 4 is a schematic structural diagram of a policy control system for implementing a fixed broadband access network according to the present invention
  • FIG. 5 is a schematic diagram of a roaming architecture of a home router route for a UE to access a 3GPP core network through an untrusted fixed broadband access network according to the present invention, where ePDG The PMIPv6 protocol is used between the P-GW and the P-GW
  • FIG. 6 is a flow chart of attaching the UE to the 3GPP core network through the untrusted fixed broadband access network based on the architecture shown in FIG. 5;
  • FIG. 7 is a schematic diagram of a roaming architecture of a home route of a UE accessing a 3GPP core network through an untrusted fixed broadband access network according to the present invention, wherein a GTP protocol is used between the ePDG and the P-GW;
  • FIG. 8 is based on FIG. Architecture, an attachment flow diagram of the UE accessing the 3GPP core network through the untrusted fixed broadband access network;
  • FIG. 9 is a schematic diagram of a roaming architecture of a home route of a UE accessing a 3GPP core network through an untrusted fixed broadband access network, where the UE adopts a DSMIPv6 protocol;
  • FIG. 10 is a flow chart of attaching a UE to a 3GPP core network through an untrusted fixed broadband access network based on the architecture shown in FIG. 9;
  • FIG. 11 is a schematic diagram of a local grooming roaming architecture of a UE accessing a 3GPP core network through an untrusted fixed broadband access network, where a GTP or PMIPv6 protocol is used between the ePDG and the P-GW;
  • FIG. 12 is a flow chart of attaching a UE to a 3GPP core network through an untrusted fixed broadband access network based on the architecture shown in FIG. 11;
  • FIG. 13 is a schematic diagram of a local grooming roaming architecture of a UE accessing a 3GPP core network through an untrusted fixed broadband access network, where the UE accesses by using a DSMIPv6 protocol;
  • FIG. 14 is a flow chart of attaching a UE to a 3GPP core network through an untrusted fixed broadband access network based on the architecture shown in FIG. 13;
  • 15 is a non-roaming architecture diagram of a UE accessing a 3GPP core network through an untrusted fixed broadband access network, where a GTP or PMIPv6 protocol is used between the ePDG and the P-GW;
  • 16 is a non-roaming architecture diagram of an inventive UE accessing a 3GPP core network through an untrusted fixed broadband access network, where the UE uses the DSMIPv6 protocol to access; 17 is a flowchart of requesting a BPCF for QoS authorization when a PCRF formulates a policy in a roaming scenario of a home route according to the present invention;
  • FIG. 18 is a flowchart of requesting BPCF for QoS authorization when a PCRF formulates a policy in a localized roaming scenario according to the present invention
  • FIG. 19 is a flowchart of requesting BPCF for QoS authorization when the H-PCRF formulates a policy in the roaming scenario of the home routing in the present invention. detailed description
  • FIG. 3 is a flowchart of a method for implementing a policy for implementing a fixed broadband access network according to the present invention. As shown in FIG. 3, the method includes:
  • Step 300 Set an FMC policy function (PF, Policy Function) in the mobile network that the user currently requests to access.
  • PF Policy Function
  • the FMC PF can be used as a separate functional entity; the FMC PF can also be integrated into the PCRF.
  • the mobile network that the user requests to access is the public land mobile network (PLMN) to which the user belongs; when the user roams, the mobile network that the user requests to access is the PLMN visited by the user.
  • PLMN public land mobile network
  • Step 301 After receiving the trigger message from the ePDG, the FMC PF requests the BPCF to establish a policy control session.
  • the fixed broadband access network system After the UE accesses the fixed broadband access network system, the fixed broadband access network system allocates a local IP address to the UE; subsequently, the UE initiates an Internet Key Exchange Version 2 (IKEv2) tunnel establishment process, and uses the extended authentication protocol ( EAP) for certification.
  • IKEv2 Internet Key Exchange Version 2
  • EAP extended authentication protocol
  • the ePDG further interacts with the AAA server (AAA Server) through the AAA server proxy (AAA Proxy) (the AAA Server can further interact with the HSS) to complete the EAP authentication;
  • the ePDG sends a gateway control session setup message or a DHCP request message to the FMC PF.
  • the gateway control session setup message or the DHCP request message carries the user identifier, the packet data network (PDN) identifier, and the IPSec external tunnel information. Where IPSec is external
  • the tunnel information includes the source address and source port of the IKEv2 signaling sent by the UE received by the ePDG. It should be noted that the IKEv2 signaling may be traversed by the network address translation (NAT), so the source address and source received by the ePDG. The port may be different from the source address and source port when the UE sends.
  • NAT network address translation
  • the source address of the UE obtained by the ePDG (including the case where there is a NAT between the UE and the ePDG and the absence of the NAT) is referred to as a UE local IP address.
  • the UE local IP address can be used for the fixed broadband access network to locate the UE. If there is a NAT, the UE local address and the source port number can be used for the fixed broadband access network to locate the UE. If the NAT is not detected, the IPSec external tunnel information includes only the source IP address.
  • the FMC PF determines the entry point of the fixed broadband access network where the BPCF or BPCF of the fixed broadband access network currently accessed by the UE is located according to the source address (such as the IP address) in the IPSec external tunnel information, and sends an S9* session establishment to the BPCF.
  • the message carries the source IP address and source port number in the IPSec external tunnel information in the S9* session setup message (NAT exists if NAT is detected).
  • Step 302 The fixed broadband access network performs admission control according to quality of service (QoS) rules or QoS information transmitted by the FMC PF through the policy control session.
  • QoS quality of service
  • the fixed broadband access network performs admission control or entrusts other network elements of the fixed broadband access network to perform resource admission control according to QoS rules or QoS information, and available bandwidth resources of the line of the fixed broadband access network currently accessed by the user.
  • the FMC PF senses the trigger message from the ePDG (receives a gateway control session establishment request or a DHCP request message), and triggers
  • the FMC PF of the 3GPP access network currently accessed by the UE initiates a policy session request to the BPCF, so that the fixed broadband access network fails to perceive the UE in the architecture of the existing UE accessing the 3GPP core network through the fixed broadband access network.
  • the access, or fixed broadband access network does not support 3GPP-based access authentication, and implements QoS control for UE access, thereby providing QoS guarantee for the entire transmission path of data.
  • the policy changes such as PCRF (or Home PCRF (H-PCRF) in the case of roaming)
  • PCRF Home PCRF
  • the policy decision is made, and after the FMC PF receives the changed PCC rule, QoS rule or QoS request, the admission control is requested to the BPCF, and the fixed broadband access network performs the request according to the request.
  • Resource admission control ie BPCF or BPCF entrusts other network elements to perform resource admission control).
  • FIG. 4 is a schematic structural diagram of a policy control system for implementing a fixed broadband access network according to the present invention. As shown in FIG. 4, at least ePDG, FMC PF, and BPCF are included, where
  • ePDG used to send a trigger message to the FMC PF.
  • the FMC PF is set in the mobile network that the user is currently requesting to receive, and is used to receive the trigger message from the ePDG, and request the BPCF to establish a policy control session; the FMC PF can be used as a functional entity alone; the FMC PF can also be integrated into the PCRF.
  • the BPCF is configured to receive a request from the FMC PF, perform admission control according to quality of service QoS rules or QoS information transmitted through the policy control session, or entrust other fixed broadband access network elements to perform admission control.
  • the FMC PF is specifically configured to obtain a PCC rule, a QoS rule, or a QoS request including a guaranteed bandwidth GBR, and transmit QoS information to the BPCF through the policy control session.
  • the system of the present invention further includes a PCRF for providing PCC rules or QoS rules to the FMC PF;
  • the ePDG is further configured to provide a QoS request to the FMC PF.
  • the PCRF is configured to: when the user is not roaming, formulate a PCC rule or a QoS rule; when the user roams, acquire a PCC rule or a QoS rule from a PCRF of a PLMN to which the user belongs. ;
  • the PCRF is configured to obtain a QoS request from the ePDG.
  • FIG. 5 is a schematic diagram of a roaming architecture of a home router route of a UE accessing a 3GPP core network through an untrusted fixed broadband access network according to the present invention.
  • a PMIPv6 protocol is used between the ePDG and the P-GW.
  • Figure 5 in addition to adding FMC PF, other network entities and their connection relationships are consistent with the existing ones.
  • FIG. 5 is easily understood by those skilled in the art and will not be described in detail herein.
  • FIG. 6 is a flow chart of attaching a UE to a 3GPP core network through an untrusted fixed broadband access network based on the architecture shown in FIG. 5.
  • an FMC PF is assumed to be set in a V-PCRF.
  • the specific implementation includes the following steps:
  • Step 601 After the UE accesses the fixed broadband access network system, the fixed broadband access network system allocates a local IP address to the UE.
  • the UE initiates an IKEv2 tunnel establishment process and uses EAP for authentication.
  • the ePDG interacts with the AAA server through the AAA Proxy (the AAA Server further interacts with the HSS) to complete the EAP authentication.
  • Step 602 The ePDG sends a gateway control session setup message to the V-PCRF, where the gateway control session setup message carries the user identifier, the PDN identifier, and the IPSec external tunnel information, where the IPSec external tunnel information includes the IKEv2 sent by the UE received by the ePDG.
  • the source address and source port of the signaling The source address and source port of the signaling.
  • the source address and source port received by the ePDG may be different from the source address and source port when the UE sends the IKEv2 signaling.
  • the source address of the UE obtained by the ePDG (including the presence of NAT between the UE and the ePDG and the absence of NAT) is called the UE local IP address.
  • the UE local IP address can be used to locate the UE in the fixed broadband access network. If there is NAT, the local address and source port number of the UE can be used to locate the UE in the fixed broadband access network. If the NAT is not detected, the IPSec external tunnel information includes only the source IP address.
  • step 602 includes step 602a and step 602b:
  • Step 602a The ePDG sends a gateway control session setup message to the FMC PF, where the gateway control session setup message carries the user identifier, the PDN identifier, and the IPSec external tunnel information.
  • Step 602b The FMC PF sends a gateway control session setup message to the V-PCRF, where the gateway control session setup message carries the user identifier and the PDN identifier.
  • Step 603 The V-PCRF sends an S9 session establishment message to the H-PCRF (or a gateway control session).
  • the message is established.
  • the message carries the user ID and the PDN identifier.
  • Step 604 The H-PCRF interacts with the SPR according to the user identifier and the PDN identifier to obtain user subscription data, and formulates a PCC policy according to the network policy.
  • PCC policies include PCC rules, QoS rules, event triggers, and so on.
  • the H-PCRF carries the QoS rule and the event trigger in the S9 session establishment confirmation message and returns it to the V-PCRF.
  • Step 605 The V-PCRF sends a gateway control session establishment confirmation message to the ePDG, and the QoS rule and the event trigger are carried in the gateway control session establishment confirmation message.
  • step 605 includes step 605a and step 605b:
  • Step 605a The V-PCRF sends a gateway control session establishment confirmation message to the FMC PF, and the QoS rule and the event trigger are carried in the gateway control session establishment confirmation message.
  • Step 605b The FMC PF sends a gateway control session establishment confirmation message to the ePDG, and carries a QoS rule and an event trigger in the gateway control session establishment confirmation message.
  • Step 606 After selecting the P-GW, the ePDG sends a proxy binding update message to the P-GW, where the proxy binding update message carries the user identifier and the PDN identifier.
  • Step 607 The P-GW sends an update P-GW IP address message to the AAA Server, and sends the P-GW address to the AAA server.
  • the AAA Server further interacts with the HSS and saves the P-GW address to the HSS.
  • Step 608 The P-GW allocates an IP address to the UE, and sends an IP-CAN session establishment indication message to the H-PCRF.
  • the IP-CAN session establishment indication message carries the user identifier, the PDN identifier, and the IP address allocated for the UE.
  • Step 609 The H-PCRF associates the S9 session established in step 603 with the IP-CAN session requested in step 609 according to the user identifier and the PDN identifier.
  • the H-PCRF may update the PCC rules and QoS rules established in step 604.
  • the H-PCRF returns an acknowledgement message to the PCEF, carrying the PCC rules.
  • Step 610 The P-GW returns a proxy binding acknowledgement message to the ePDG, and confirms the proxy binding.
  • the information carries the IP address assigned to the UE.
  • Step 611 The proxy binding update is successful, and an IPSec tunnel is established between the UE and the ePDG.
  • Step 612 The ePDG sends the last IKEv2 signaling to the UE, where the IP address of the UE is carried.
  • Step 613 The V-PCRF determines, according to the source IP address in the IPSec external tunnel information, an entry point of the fixed broadband access network where the BPCF or BPCF of the fixed broadband access network currently accessed by the UE is located, and sends the entry to the BPCF.
  • the S9* session setup message carries the source IP address and the source port number (if NAT is detected) and the QoS rule in the IPSec external tunnel information in the S9* session setup message.
  • step 613 is step 613a.
  • Step 613a The FMC PF determines, according to the source IP address in the IPSec external tunnel information, an entry point of the fixed broadband access network where the BPCF or BPCF of the fixed broadband access network currently accessed by the UE is located, and sends an S9* session to the BPCF.
  • the message is established, and the S9* session setup message carries the source IP address and the source port number (if NAT is detected) and the QoS rule in the IPSec external tunnel information.
  • the execution of this step may be triggered only after the FMC PF receives the gateway control session setup message from the ePDG (step 602).
  • the FMC PF senses the access of the UE, and triggers the PCRF of the 3GPP access network currently accessed by the UE to initiate a policy session request to the BPCF, thus implementing QoS control for the UE access, thereby implementing the entire data.
  • the transmission path provides QoS guarantees.
  • this step also implements QoS control for UE access, thereby providing QoS guarantee for the entire transmission path of the data.
  • Step 614 The BPCF further performs resource admission control according to the QoS rule and the access location information of the fixed broadband access network currently accessed by the UE, or entrusts other network elements of the fixed broadband access network to perform resource admission control (ie, performing fixed broadband access network execution). Admission control).
  • Step 615 The BPCF returns an acknowledgement message to the V-PCRF.
  • step 615 is step 615a.
  • Step 615a BPCF returns a confirmation message to the FMC PF.
  • the ePDG sends a DHCP request message to the V-PCRF, where the message carries the user identifier, the PDN identifier, and the IPSec external tunnel information.
  • the ePDG sends a DHCP request message to the FMC PF, where the message carries the user identifier, the PDN identifier, and the IPSec external tunnel information.
  • the FMC PF further sends a DHCP request message to the V-PCRF, where the message carries the user identifier and the PDN identifier.
  • step 605 the V-PCRF sends a DHCP acknowledgement message to the ePDG, where the message carries a QoS rule and an event trigger.
  • step 605a the V-PCRF sends a DHCP acknowledgement message to the FMC PF, which carries the QoS rules and event triggers.
  • step 605b the FMC PF sends a DHCP acknowledgment message to the ePDG, which carries the QoS rules and event triggers.
  • the present invention does not limit the messages and protocol types of interaction between ePDG and V-PCRF or ePDG and FMC PF and FMC PF and V-PCRF.
  • FIG. 7 is a schematic diagram of a roaming architecture of a home route of a UE accessing a 3GPP core network through an untrusted fixed broadband access network according to the present invention.
  • the GTP protocol is adopted between the ePDG and the P-GW.
  • FIG. 7 except for adding the FMC PF, other network entities and their connection relationships are consistent with the existing ones, and FIG. 7 is easily understood by those skilled in the art, and will not be described in detail herein.
  • FIG. 8 is a flowchart of attaching a UE to a 3GPP core network through an untrusted fixed broadband access network based on the architecture shown in FIG. 7.
  • an FMC PF is assumed to be set in a V-PCRF.
  • the specific implementation includes the following steps:
  • Step 801 After the UE accesses the fixed broadband access network system, the fixed broadband access network system allocates a local IP address to the UE.
  • the UE initiates an IKEv2 tunnel establishment process and uses EAP for authentication. Since this embodiment is a roaming scenario, the ePDG interacts with the AAA Server through the AAA Proxy (AAA). Server further interacts with HSS) to complete EAP authentication.
  • AAA Proxy AAA Proxy
  • Step 802 The ePDG sends a gateway control session setup message to the V-PCRF, where the gateway control session setup message carries the user identifier, the PDN identifier, and the IPSec external tunnel information, where the IPSec external tunnel information includes the IKEv2 sent by the UE received by the ePDG.
  • the source address and source port of the signaling The source address and source port of the signaling.
  • the source address and source port received by the ePDG may be different from the source address and source port when the UE sends the IKEv2 signaling.
  • the source address of the UE obtained by the ePDG (including the presence of NAT between the UE and the ePDG and the absence of NAT) is called the UE local IP address.
  • the UE local IP address can be used to locate the UE in the fixed broadband access network. If there is NAT, the local address and source port number of the UE can be used to locate the UE in the fixed broadband access network. If the NAT is not detected, the IPSec external tunnel information includes only the source IP address.
  • step 802 is step 802a.
  • Step 802a The ePDG sends a gateway control session setup message to the FMC PF.
  • the gateway control session setup message carries the user identifier, the PDN identifier, and the IPSec external tunnel information.
  • Step 803 The V-PCRF returns a gateway control session establishment confirmation message to the ePDG. It should be noted that if the FMC PF is an independent network element entity, step 803 is step 803a. Step 803a: The FMC PF returns a gateway control session establishment confirmation message to the ePDG.
  • Step 804 After selecting the P-GW, the ePDG sends a create bearer request message to the P-GW, where the bearer request message carries the user identifier and the PDN identifier.
  • Step 805 The P-GW sends an update P-GW IP address message to the AAA Server, and sends the P-GW address to the AAA server.
  • the AAA Server further interacts with the HSS and saves the P-GW address to the HSS.
  • Step 806 The P-GW allocates an IP address to the UE, and sends an IP-CAN session establishment indication message to the H-PCRF.
  • the IP-CAN session establishment indication message carries the user identifier and the PDN identifier. And the IP address assigned to the UE.
  • Step 807 The H-PCRF interacts with the SPR according to the user identifier and the PDN identifier, obtains the subscription information of the user, and formulates a PCC policy.
  • PCC policies include PCC rules and event triggers.
  • the PCRF returns an acknowledgement message to the PCEF carrying the PCC rules and event triggers.
  • Step 808 The P-GW returns a bearer response message to the ePDG, where the bearer response message carries an IP address assigned to the UE.
  • Step 809 The bearer is successfully created, and an IPSec tunnel is established between the UE and the ePDG.
  • Step 810 The ePDG sends the last IKEv2 signaling to the UE, where the IP address of the UE is carried.
  • Step 811 The V-PCRF determines, according to the source IP address in the IPSec external tunnel information, an entry point of the fixed broadband access network where the BPCF or BPCF of the fixed broadband access network currently accessed by the UE is located, and sends an S9* session to the BPCF.
  • the message is established.
  • the S9* session setup message carries the source IP address and source port number (if NAT is detected) and QoS rules in the IPSec external tunnel information.
  • step 811 is step 811a.
  • Step 811a The FMC PF determines, according to the source IP address in the IPSec external tunnel information, an entry point of the fixed broadband access network where the BPCF or BPCF of the fixed broadband access network currently accessed by the UE is located, and sends an S9* session establishment to the BPCF.
  • the message, in the S9* session setup message, carries the source IP address and the source port number (if NAT is detected) and the QoS rule in the IPSec external tunnel information.
  • the execution of this step may be triggered only after the FMC PF receives the gateway control session setup message from the ePDG (step 802).
  • the FMC PF senses the access of the UE, and triggers the PCRF of the 3GPP access network currently accessed by the UE to initiate a policy session request to the BPCF, thus implementing QoS control for the UE access, thereby implementing the entire data.
  • the transmission path provides QoS guarantees.
  • Step 812 The BPCF further performs resource admission control according to the QoS rule or the QoS information in the QoS rule and the access location information of the fixed broadband access network currently accessed by the UE, or entrusts other network elements of the fixed broadband access network to perform resource admission control. (ie fixed fixed access network implementation admission control).
  • Step 813 The BPCF returns an acknowledgement message to the V-PCRF.
  • step 813 is step 813a.
  • Step 813a BPCF returns a confirmation message to the FMC PF.
  • step 802 the ePDG sends a DHCP request message to the V-PCRF, where the message carries the user identifier, the PDN identifier, and the IPSec external tunnel information.
  • step 802a the ePDG sends a DHCP request message to the FMC PF, where the message carries the user identifier, the PDN identifier, and the IPSec external tunnel information.
  • FIG. 9 is a schematic diagram of a roaming architecture of a home route of a UE accessing a 3GPP core network through an untrusted fixed broadband access network according to the present invention.
  • the UE adopts a DSMIPv6 protocol.
  • FIG. 9 except for adding the FMC PF, other network entities and their connection relationships are consistent with the existing ones, and FIG. 9 is easily understood by those skilled in the art and will not be described in detail herein.
  • FIG. 10 is a flowchart of attaching a UE to a 3GPP core network through an untrusted fixed broadband access network based on the architecture shown in FIG. 9.
  • an FMC PF is set in a V-PCRF.
  • the specific implementation includes the following steps: Step 1001: After the UE accesses the fixed broadband access network system, the fixed broadband access network system allocates a local IP address to the UE. The UE initiates an IKEv2 tunnel establishment process and uses EAP for authentication. The ePDG interacts with the AAA server through the AAA Proxy (the AAA Server further interacts with the HSS) to complete the EAP authentication.
  • Step 1002 The ePDG sends a gateway control session establishment message to the V-PCRF, where the gateway controls
  • the session establishment message carries a user identifier, a PDN identifier, and an IPSec external tunnel information, where the IPSec external tunnel information includes a source address and a source port of the IKEv2 signaling sent by the UE received by the ePDG.
  • the source address and source port received by the ePDG may be different from the source address and source port when the UE sends the IKEv2 signaling.
  • the source address of the UE obtained by the ePDG (including the presence of NAT between the UE and the ePDG and the absence of NAT) is called the UE local IP address.
  • the UE local IP address can be used to locate the UE in the fixed broadband access network. If there is NAT, the local address and source port number of the UE can be used to locate the UE in the fixed broadband access network. If the NAT is not detected, the IPSec external tunnel information includes only the source IP address.
  • step 1002 includes step 1002a and step 1002b:
  • Step 1002a The ePDG sends a gateway control session setup message to the FMC PF, where the gateway control session setup message carries the user identifier, the PDN identifier, and the IPSec external tunnel information.
  • Step 1002b The FMC PF sends a gateway control session setup message to the V-PCRF. The user control identifier and the PDN identifier are carried in the control session establishment message.
  • Step 1003 The V-PCRF sends an S9 session setup message (or a gateway control session setup message) to the H-PCRF, where the message carries the user identifier and the PDN identifier.
  • Step 1004 The H-PCRF interacts with the SPR according to the user identifier and the PDN identifier to obtain user subscription data, and formulates a PCC policy according to the network policy.
  • PCC policies include PCC rules, QoS rules, event triggers, and so on.
  • the H-PCRF carries the QoS rule and the event trigger in the S9 session establishment confirmation message and returns it to the V-PCRF.
  • Step 1005 The V-PCRF sends a gateway control session establishment confirmation message to the ePDG, and carries a QoS rule and an event trigger in the gateway control session establishment confirmation message.
  • step 1005 includes step 1005a and step 1005b: Step 1005a: The V-PCRF sends a gateway control session establishment confirmation message to the FMC PF, where the QoS rule and the event trigger are carried in the gateway control session establishment confirmation message.
  • Step 1005b The FMC PF sends a gateway control session establishment confirmation message to the ePDG, and carries a QoS rule and an event trigger in the gateway control session establishment confirmation message.
  • Step 1006 The ePDG sends the last IKEv2 message to the UE, where the IP address is assigned to the UE, and the IP address is used as the care-of address (CoA) of the UE.
  • CoA care-of address
  • Step 1007 An IPSec tunnel is established between the UE and the ePDG.
  • Step 1008 The UE performs a Bootstraping process.
  • the UE performs a DNS lookup according to the APN to obtain the IP address of the P-GW to which the PDN is to be accessed.
  • the UE uses IKEv2 to establish a security association and uses EAP for authentication.
  • the P-GW communicates with the AAA Server (the AAA Server further interacts with the HSS) to complete the EAP authentication, and the P-GW allocates an IPv6 address or prefix to the UE as the home address (HoA) of the UE.
  • HoA home address
  • Step 1009 The UE sends a DSMIPv6 binding update message to the P-GW.
  • the DSMIPv6 binding update message carries the CoA and the HoA, and the lifetime parameter in the binding message is not zero.
  • the P-GW establishes a binding context.
  • Step 1010 The PCEF in the P-GW sends an IP-CAN session establishment indication message to the H-PCRF, where the IP-CAN session establishment indication message carries the user identifier and the PDN identifier.
  • Step 1011 The H-PCRF associates the S9 session established in step 1003 with the IP-CAN session established in step 1010 according to the user identifier and the PDN identifier.
  • the H-PCRF may update the PCC rules and QoS rules established in step 1004.
  • the PCRF returns a confirmation message to the PCEF carrying the PCC rules.
  • Step 1012 The P-GW returns a binding acknowledgement message to the UE.
  • Step 1013 The V-PCRF determines, according to the source IP address in the IPSec external tunnel information, an entry point of the fixed broadband access network where the BPCF or BPCF of the fixed broadband access network currently accessed by the UE is located, and sends an S9* session to the BPCF. Establish a message and carry IPSec in the S9* session setup message. Source IP address and source port number in the external tunnel information (if NAT is detected) and QoS rules. It should be noted that if the FMC PF is an independent network element entity, step 1013 is step 1013a.
  • Step 1013a The FMC PF determines, according to the source IP address in the IPSec external tunnel information, an entry point of the fixed broadband access network where the BPCF or BPCF of the fixed broadband access network currently accessed by the UE is located, and sends an S9* session to the BPCF.
  • the message is established, and the S9* session setup message carries the source IP address and the source port number (if NAT is detected) and the QoS rule in the IPSec external tunnel information.
  • the execution of this step may be triggered only after the FMC PF receives the gateway control session setup message from the ePDG (step 1002).
  • the FMC PF senses the access of the UE, and triggers the PCRF of the 3GPP access network currently accessed by the UE to initiate a policy session request to the BPCF, thus implementing QoS control for the UE access, thereby implementing the entire data.
  • the transmission path provides QoS guarantees.
  • this step also implements QoS control for UE access, thereby providing QoS guarantee for the entire transmission path of the data.
  • Step 1014 The BPCF further performs resource admission control according to the QoS rule and the access location information of the fixed broadband access network currently accessed by the UE, or entrusts other network elements of the fixed broadband access network to perform resource admission control (ie, performing fixed broadband access network execution). Admission control).
  • Step 1015 The BPCF returns an acknowledgement message to the V-PCRF.
  • step 1015 is step 1015a.
  • Step 1015a BPCF returns a confirmation message to the FMC PF.
  • the ePDG sends a DHCP request message to the V-PCRF, where the message carries the user identifier, the PDN identifier, and the IPSec external tunnel information.
  • the ePDG sends a DHCP request message to the FMC PF, where the message carries the user identifier, the PDN identifier, and the IPSec external tunnel information.
  • the FMC PF further sends a DHCP request message to the V-PCRF, where the message carries the user identifier and the PDN identifier.
  • step 1005 the V-PCRF sends a DHCP acknowledgement message to the ePDG.
  • the message carries QoS rules and event triggers.
  • step 1005a the V-PCRF sends a DHCP acknowledgement message to the FMC PF, where the message carries a QoS rule and an event trigger.
  • step 1005b the FMC PF sends a DHCP acknowledgment message to the ePDG, which carries the QoS rules and event triggers.
  • FIG. 11 is a schematic diagram of a local grooming roaming architecture of a UE accessing a 3GPP core network through an untrusted fixed broadband access network according to the present invention.
  • a GTP or PMIPv6 protocol is used between the ePDG and the P-GW.
  • FIG. 11 except for the addition of the FMC PF, other network entities and their connection relationships are consistent with the existing ones, and FIG. 11 is easily understood by those skilled in the art and will not be described in detail herein.
  • FIG. 12 is an attaching flowchart of a UE accessing a 3GPP core network through an untrusted fixed broadband access network based on the architecture shown in FIG. 11, and in combination with FIG. 11 and FIG. 12, in this embodiment, an FMC PF is assumed to be set in a V-PCRF.
  • the specific implementation includes the following steps: The specific implementation of the steps 1201 to 1205 is completely consistent with the steps 601 to 605, and details are not described herein again.
  • Step 1206 After selecting the visited P-GW, the ePDG sends a proxy binding update or a session request message to the P-GW, and carries the user identifier and the PDN identifier in the sent message.
  • Step 1207 The P-GW sends an update P-GW IP address message to the AAA Server through the AAA Proxy, and sends the P-GW address to the AAA Server.
  • the AAA Server further interacts with the HSS and saves the P-GW address to the HSS.
  • Step 1208 The P-GW allocates an IP address to the UE, and sends an IP-CAN session establishment indication message to the V-PCRF.
  • the IP-CAN session establishment indication message carries the user identifier, the PDN identifier, and the IP address allocated for the UE.
  • the V-PCRF associates the gateway control session established in step 1202 with the IP-CAN session established in step 1208 based on the user identity, the PDN identity.
  • the V-PCRF associates the message of step 1202 with the message of step 1208.
  • step 1208 includes step 1208a and step 1208b: Step 1208a: The V-PCRF sends an S9 session modification message to the H-PCRF, where the assigned IP address is carried.
  • Step 1208b The H-PCRF may update the PCC rules defined in step 1204 and return to the V-PCRF.
  • Step 1209 The V-PCRF sends an IP-CAN session establishment confirmation message to the PCEF, where
  • the IP-CAN session establishment confirmation message carries the PCC rule.
  • Step 1210 The P-GW returns a proxy binding update message or a session response message to the ePDG.
  • step 1211 to step 1215 is completely the same as that of step 611 to step 615, and details are not described herein again.
  • FIG. 13 is a schematic diagram of a local grooming roaming architecture of a UE accessing a 3GPP core network through an untrusted fixed broadband access network according to the present invention.
  • the UE accesses by using a DSMIPv6 protocol.
  • FIG. 13 except for adding the FMC PF, other network entities and their connection relationships are consistent with the existing ones, and FIG. 13 is easily understood by those skilled in the art, and will not be described in detail herein.
  • Figure 14 is based on the architecture shown in Figure 13, the UE accesses through an untrusted fixed broadband access network.
  • the FMC PF is set in the V-PCRF as a function enhancement of the V-PCRF, and the specific implementation includes the following steps: Step 1401 to Step S1407 The implementation is completely consistent with steps 1001 to 1007, and details are not described herein again.
  • Step 1408 The UE performs a Bootstraping process. UE based on APN
  • the DNS lookup obtains the IP address of the P-GW to which the PDN is to be accessed, and the P-GW is located at the visited place.
  • the UE uses IKEv2 to establish an SA and uses EAP for authentication.
  • the P-GW communicates with the AAA server (the AAA server further interacts with the HSS) to complete the EAP authentication, and the P-GW allocates an IPv6 address or prefix to the UE as the HoA of the UE.
  • Step 1409 The UE sends a DSMIPv6 binding update message to the P-GW, in the DSMIPv6.
  • the binding update message carries CoA and HoA, and the lifetime parameter in the binding message is not zero.
  • the P-GW establishes a binding context.
  • Step 1410 The PCEF in the P-GW sends an IP-CAN session establishment indication message to the V-PCRF, where the IP-CAN session establishment indication message carries the user identifier and the PDN identifier.
  • the V-PCRF associates the gateway control session of step 1402 with the IP-CAN session of step 1410 based on the subscriber identity.
  • the V-PCRF associates the message of step 1402 with the message of step 1410.
  • step 1410 includes step 1410a and step 1410b.
  • Step S1410a The V-PCRF sends an S9 session modification to the H-PCRF, where the IP address is carried.
  • Step S1410b The H-PCRF formulates a PCC rule.
  • the H-PCRF returns the PCC rules to the V-PCRF.
  • steps 1411 to 1415 are completely consistent with steps 1011 to 1015, and will not be described here.
  • FIG. 15 is a non-roaming architecture diagram of a UE accessing a 3GPP core network through an untrusted fixed broadband access network, where a GTP or PMIPv6 protocol is used between the ePDG and the P-GW.
  • a GTP or PMIPv6 protocol is used between the ePDG and the P-GW.
  • FIG. 16 is the invention UE through the untrusted fixed broadband access network.
  • a non-roaming architecture diagram accessing the 3GPP core network, where the UE is accessed using the DSMIPv6 protocol.
  • the attachment process in the architecture as long as the V-PCRF is used as the PCRF in the flow of FIG. 14, all the interaction processes of the V-PCRF and the H-PCRF are omitted, and the specific implementation is easy for those skilled in the art according to the above embodiment. The resulting door is not detailed here.
  • the PCRF or the home PCRF (H-PCRF) in the roaming situation
  • the PCRF receives the service information provided by the AF or the UE initiates Policy decision after resource modification request message, and in FMC PF
  • the BPCF is requested for bandwidth authorization, and the BPCF performs resource admission control according to the request.
  • FIG. 17 is a flowchart of requesting BPCF for admission control when a policy is formulated in a roaming scenario of a home routing (FIG. 5 and FIG. 9 architecture).
  • an FMC PF is set in a V-PCRF.
  • the specific process includes the following steps: Step 1701: After receiving the service information provided by the AF or the resource modification request message initiated by the UE, the H-PCRF performs a policy decision. Policy decisions can include the following three ways:
  • the H-PCRF performs QoS authorization, and formulates PCC rules and corresponding QoS rules.
  • the QoS information of the PCC rule and the QoS rule includes a QoS Class Identifier (QCI), an ARP (Allocation and Retention Priority), a Guaranteed Bit Rate (GBR), and a maximum bandwidth. (MBR, Maximum Bit Rate);
  • the H-PCRF performs QoS authorization, and decides to delete or deactivate the corresponding PCC rule and QoS rule.
  • the QoS information of the PCC rule and the QoS rule to be deleted or deactivated includes QCI, ARP, GBR, and MBR;
  • the H-PCRF performs QoS authorization, and updates the established PCC rules and QoS rules.
  • the QoS information of the PCC rules and QoS rules includes QCI, ARP, GBR, and MBR.
  • Step 1702 The H-PCRF sends an S9 session rule providing message to the V-PCRF.
  • the H-PCRF carries the newly formulated QoS rule information in the S9 session rule providing message;
  • the H-PCRF carries the QoS rule information to be deleted or deactivated in the S9 session rule providing message;
  • the H-PCRF provides a message in the S9 session rule. Carrying updated QoS rule information
  • Step 1703 The V-PCRF sends a QoS Authorization Request message to the BPCF to request the QoS authorization of the BPCF.
  • the V-PCRF carries an indication of requesting allocation of resources and a GBR in the QoS information in the QoS authorization request message, to request the BPCF to allocate the bandwidth resource GBR;
  • the V-PCRF carries the indication of requesting release of the resource and the GBR in the QoS information in the QoS authorization request message, to request the BPCF to release the bandwidth resource GBR;
  • step 1703 includes step 1703a and step 1703b.
  • Step 1703a The V-PCRF sends a gateway control and QoS rule providing message to the FMC PF, and carries the information received by the V-PCRF from the H-PCRF;
  • Step 1703b The FMC PF sends a QoS Authorization Request message to the BPCF, requesting the QoS authorization of the BPCF, and the content is the same as that in step 1703.
  • Step 1704 The BPCF executes the corresponding policy according to the request message of the V-PCRF.
  • the BPCF performs resource admission according to the currently available bandwidth of the contracted fixed line. If the remaining available bandwidth is greater than or equal to GBR, the BPCF receives the V-PCRF request and returns a reception confirmation message to the V-PCRF, and the BPCF will deduct the GBR from the currently available bandwidth of the subscription fixed line; if the remaining available bandwidth is less than the GBR , BPCF rejects the V-PCRF request and returns a reject message to the V-PCRF, and The rejection message carries the bandwidth that the BPCF can accept;
  • the BPCF If the BPCF receives the request to release the bandwidth resource GBR, the BPCF directly returns the reception confirmation message, and the BPCF will increase the GBR in the currently available bandwidth of the contracted fixed line.
  • V-PCRF or FMC PF can provide QoS rules provided by H-PCRF to BPCF.
  • resource admission control the implementation of resource admission control
  • BPCF considers QCI and/or ARP in addition to considering whether the currently available remaining bandwidth can satisfy the requested bandwidth to determine whether to accept or reject the QoS authorization request.
  • the BPCF may further forward the V-PCRF request message to other network elements (e.g., BNG) in the fixed broadband access network, and other networks perform similar policies. Other network element resource acceptance results are fed back to BPCF.
  • BNG network elements
  • Step 1705 The BPCF returns a QoS Authorization Request Acknowledgement message to the V-PCRF, and the QoS Authorization Request Acknowledgement message carries the information determined in step 1704.
  • step 1705 includes step 1705a and step 1705b.
  • Step 1705a The BPCF returns a QoS authorization request acknowledgement message to the FMC PF, and carries the information determined by the S1504.
  • Step 1705b The FMC PF makes a policy decision based on the BPCF return message.
  • step 1705c is performed, and an acceptance indication is carried;
  • the V-PCRF will be based on the QoS information.
  • ARP performs resource preemption, including the following logical judgment:
  • the FMC PF compares the QoS information with other QoS information that the user has QoS authorized by the ARP according to the ARP, and the authorized QoS information of all other users accessed through the same broadband line. If the QoS information cannot preempt the resources of the other QoS information, step 1705c is performed, and the rejection indication is carried. If the QoS information can preempt the resources of the QoS information that the other user has authorized, the FMC PF initiates the authorization of the preempted QoS information. Process (this process can be removed and deactivated by existing ones) Process implementation of QoS rules). In addition, the FMC PF sends a broadband session QoS request message to the BPCF again. After the BPCF allocates the bandwidth, the message is acknowledged. The FMC PF performs step 1705c and carries an acceptance indication.
  • Step 1706 The V-PCRF performs policy decision according to the BPCF return message.
  • step 1707 If the V-PCRF receives an acknowledgement message (including receiving resource allocation and resource release), step 1707 is performed, and an acceptance indication is carried;
  • the V-PCRF performs the following logical judgment according to the ARP of the QoS information: The V-PCRF according to the ARP and the other QoS information that the user has already authorized by the QoS, and the same If the QoS information cannot be used to preempt other resources of the QoS information, step 1707 is performed, and a rejection indication is carried, if the QoS information can preempt other users.
  • the resource of the authorized QoS information the V-PCRF initiates the process of authorizing the preempted QoS information (this process can be implemented by the existing process of deleting and deactivating the QoS rule).
  • the V-PCRF sends a broadband session QoS request message to the BPCF again. After the BPCF allocates the bandwidth, the message is acknowledged.
  • the V-PCRF performs step 1707 and carries an acceptance indication.
  • Step 1707 The V-PCRF returns an S9 session rule to the H-PCRF to provide an acknowledgement message, informing the H-PCRF to request acceptance or rejection.
  • Step 1708 If the indication is received, the H-PCRF sends a policy charging rule providing message to the PCEF, carrying the PCC rule.
  • Step 1709 The PCEF returns an acknowledgement message to the H-PCRF.
  • FIG. 18 is a flowchart of the H-PCRF requesting the BPCF to perform admission control when the policy is formulated in the local grooming roaming scenario (FIG. 11 and FIG. 13 architecture).
  • the FMC PF is assumed to be set in the V-PCRF.
  • Step 1801 The H-PCRF performs policy decision after receiving the service information provided by the AF or the resource modification request message initiated by the UE. Decisions include the following three ways:
  • the H-PCRF performs QoS authorization and formulates PCC rules.
  • the QoS information of the PCC rule includes QCI, ARP, GBR, and MBR;
  • the H-PCRF performs QoS authorization, and determines to delete or deactivate the corresponding PCC rule.
  • the QoS information of the PCC rule to be deleted or deactivated includes QCI, ARP, GBR, and MBR;
  • the H-PCRF performs QoS authorization and updates the established PCC rule.
  • the PCC rules and QoS information of the QoS rules include QCI, ARP, GBR, and MBR.
  • Step 1802 The H-PCRF sends an S9 session rule providing message to the V-PCRF.
  • the H-PCRF carries the newly formulated PCC rule information in the S9 session rule providing message;
  • the H-PCRF carries the information to delete or deactivate the PCC rule in the S9 session rule providing message;
  • the H-PCRF carries the updated PCC rule information in the message
  • Step 1807 If the V-PCRF receives the acceptance indication, the V-PCRF sends a policy charging rule providing message to the PCEF, carrying the PCC rule.
  • Step 1808 The PCEF returns an acknowledgement message to the V-PCRF.
  • Step 1809 The V-PCRF returns an S9 session rule to the H-PCRF to provide an acknowledgement message, informing the H-PCRF to request acceptance or rejection.
  • Step 19 is a flowchart of a home router routing roaming scenario (FIG. 7 architecture), and the H-PCRF requests the BPCF to perform admission control when formulating a policy.
  • the FMC PF is set in the V-PCRF as the V.
  • the function of the PCRF is enhanced.
  • the specific process includes the following steps: Step 1901: The H-PCRF receives the service information provided by the AF or the resource modification initiated by the UE. After requesting a message, make a policy decision.
  • the policy decision may include the following three ways: In the first mode, if the AF provides new service information or the UE initiates a new resource allocation request, the QoS authorization performed by the H-PCRF establishes a PCC rule.
  • the QoS information of the PCC rule includes QCI, ARP, GBR, and MBR;
  • the H-PCRF performs QoS authorization, and determines to delete or deactivate the corresponding PCC rule.
  • the QoS information of the PCC rule to be deleted or deactivated includes QCI, ARP, GBR, and MBR;
  • the H-PCRF performs QoS authorization and updates the established PCC rule.
  • the QoS information of the PCC rule includes QCI, ARP, GBR, and MBR.
  • Step 1902 The H-PCRF sends a policy charging rule providing message to the P-GW, where the PCC rule is carried.
  • Step 1903 The P-GW executes the PCC rule and performs bearer binding.
  • Step 1904 The P-GW sends a create bearer request or an update bearer request or a delete bearer request to the ePDG according to the result of the bearer binding, and carries the QoS information in the message.
  • Step 1905 The ePDG sends a gateway control and a QoS rule request message to the V-PCRF, where the QoS information is carried in the gateway control and the QoS rule request message, where
  • the ePDG If the ePDG receives the request to create a bearer, the ePDG carries an indication of requesting allocation of resources and a GBR in the QoS information in the gateway control and QoS rule request message to request the V-PCRF to allocate the bandwidth resource GBR;
  • the ePDG If the ePDG receives the delete bearer request, the ePDG carries the indication of requesting release of the resource and the GBR in the QoS information in the gateway control and QoS rule request message, to request the V-PCRF to release the bandwidth resource GBR;
  • the ePDG will request the V-PCRF according to the GBR in the updated QoS information and the increment of the allocated GBR. If the updated GBR is reduced, the ePDG is at the gateway control and The GBR carried in the QoS rule request message is GBR. Incremental, and carrying an indication of requesting release of resources; if the updated GBR is increased, the ePDG carries the GBR as a GBR increment in the gateway control and QoS rule request message, and carries an indication of requesting allocation of resources.
  • Step 1906 The V-PCRF sends a QoS authorization request to the BPCF, where the QoS authorization request carries the QoS information obtained in step 1905.
  • Step 1907 The BPCF executes the corresponding policy according to the request message of the V-PCRF.
  • the BPCF performs resource admission control according to the current available bandwidth of the contracted fixed line: if the remaining available bandwidth is greater than or equal to the GBR, the BPCF receives the V-PCRF request and returns to the V-PCRF. Acknowledge the message, and the BPCF will deduct the GBR from the currently available bandwidth of the contracted fixed line; if the remaining available bandwidth is less than the GBR, the BPCF rejects the V-PCRF request and returns a reject message to the V-PCRF, and the message carries the BPCF. Accepted bandwidth;
  • the BPCF If the BPCF receives the request to release the bandwidth resource GBR, the BPCF directly returns the reception confirmation message, and the BPCF will increase the GBR in the currently available bandwidth of the contracted fixed line.
  • the QoS information provided by the ePDG to the V-PCRF or FMC PF may also include QCI
  • BPCF After performing resource admission control (in the implementation of resource admission control), BPCF considers QCI and/or ARP in addition to considering whether the currently available remaining bandwidth can satisfy the requested bandwidth to determine whether to accept or reject the QoS authorization request.
  • Step 1908 The BPCF returns a QoS Authorization Request Acknowledgement message to the V-PCRF, and the QoS Authorization Request Acknowledgement message carries the information determined in step 1907.
  • Step 1909 The V-PCRF makes a policy decision based on the BPCF return message.
  • step 1910 is performed, and the acceptance indication is carried;
  • the V-PCRF performs the following logical judgment according to the ARP of the QoS information:
  • the V-PCRF associates the QoS information with the user according to the ARP. If the QoS information cannot be used to preempt other resources of the QoS information, the step S1910 is performed, and the refusal indication is carried, and the other QoS information that is already authorized by the QoS is compared with the QoS information of all other users that are accessed by the same broadband line.
  • the V-PCRF initiates a process of authorizing the preempted QoS information (the process can be implemented by the existing process of deleting and deactivating the QoS rule).
  • the V-PCRF sends a broadband session QoS request message to the BPCF again. After the BPCF allocates the bandwidth, the message is acknowledged, and the V-PCRF performs step 1910 to carry the acceptance indication.
  • Step 1910 The V-PCRF returns an acknowledgement message to the ePDG, carrying an accept or reject indication. It should be noted that, if the FMC PF is an independent network element entity, steps 1905a to 1910a are performed instead of the above steps 1905 to 1910, and steps 1905a to 1910a are similar to steps 1905 to 1910, except that the method is used. FMC PF can be replaced by V-PCRF.
  • Step 1911 The ePDG returns a response message to the P-GW, carrying an accept or reject message.
  • the PCRF requests the BPCF to perform the admission control process when formulating the policy.
  • V-PCRF is used as the PCRF in the flow of Figure 18, all V-PCRF and H-PCRF are omitted.
  • the interactive process is fine.
  • the protocol and the message type (such as Diameter, Remote Authenticatin Dial In User Service (RADIUS)) of the interaction between the ePDG and the PCRF, the ePDG and the V-PCRF or the ePDG and the FMC PF are not limited.
  • the DHCP protocol and the GPRS Tunneling Protocol (GTP) protocol, etc. the ePDG sends a message to the PCRF, V-PCRF or FMC PF to trigger the PCRF, and the V-PCRF or FMC PF initiates the S9* session establishment with the BPCF. And provide the necessary information.
  • GTP GPRS Tunneling Protocol

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供了一种实现固定宽带接入网接入的策略控制方法及系统,在用户当前请求接入的移动网中设置用于感知UE接入固定宽带接入网的FMCPF;FMCPF接收到来自ePDG的触发消息后,向BPCF请求建立策略会话,而BPCF根据UE当前接入的固定宽带接入网的信息进行策略控制。从本发明方法可见,在UE通过固定宽带接入网接入3GPP时,通过FMCPF对来自ePDG的网关控制会话建立请求消息或DHCP请求消息的感知,触发了UE当前接入的3GPP接入网的PCRF向BPCF发起策略会话请求,这样,对于现有UE通过固定宽带接入网接入3GPP核心网的架构中固定宽带接入网未能感知到UE的接入,或者固定宽带接入网不支持基于3GPP的接入认证的情况,实现了对UE接入的QoS控制,从而对数据的整个传输路径提供了QoS保证。

Description

一种实现固定宽带接入网接入的策略控制方法及系统 技术领域
本发明涉及 3GPP和宽带论坛 (BBF, Broadband Forum )互连互通, 尤指一种实现固定宽带接入网接入的策略控制方法及系统。 背景技术
图 1 为现有第三代合作伙伴计划 (3GPP, 3rd Generation Partnership Project )演进的分组系统( EPS, Evolved Packet System )组成架构示意图, 在图 1所示的非漫游场景的 EPS网络架构中, 包括演进的通用移动通信系 统陆地无线接入网 ( E-UTRAN, Evolved Universal Terrestrial Radio Access Network )、 移动管理单元(MME, Mobility Management Entity )、 服务网关 ( S-GW, Serving Gateway )、分组数据网络网关( P-GW, Packet Data Network Gateway, 也称为 PDN GW)、 归属用户服务器 (HSS , Home Subscriber Server )、 策略和计费规则功能 ( PCRF, Policy and Charging Rules Function ) 实体及其他支撑节点组成。
其中, PCRF是策略和计费控制 (PCC )的核心, 负责策略决策和计费 规则的制定。 PCRF提供了基于业务数据流的网络控制规则, 这些网络控制 包括业务数据流的检测、 门控(Gating Control ),服务质量(QoS , Quality of Service )控制以及基于数据流的计费规则等。 PCRF将其制定的策略和计费 规则发送给策略与计费执行功能 (PCEF )执行, 同时, PCRF还需要保证 这些规则和用户的签约信息一致。 PCRF制定策略和计费规则的依据包括: 从 AF获取与业务相关的信息;从用户签约数据库( SPR, Subscription Profile Repository )获取用户策略计费控制签约信息; 从 PCEF获取与承载相关网 络的信息。 EPS 支持与非 3GPP 系统的互通, EPS 与非 3GPP 系统的互通通过 S2a/b/c接口实现, P-GW作为 3GPP与非 3GPP系统间的锚点。如图 1所示, 其中非 3GPP系统被分为可信任非 3GPP IP接入和不可信任非 3GPP IP接 入。 可信任非 3GPP IP接入可直接通过 S2a接口与 P-GW连接; 不可信任 非 3GPP IP接入需经过演进的分组数据网关 (ePDG, Evolved Packet Data Gateway )与 P-GW相连, ePDG与 P-GW间的接口为 S2b接口, 并且 UE 和 ePDG之间釆用 Internet协议安全性 ( IPSec )对信令和数据进行加密保 护。 S2c接口提供了用户设备( UE, User Equipment )与 P-GW之间的用户 面相关的控制和移动性支持, 其支持的移动性管理协议为支持双栈的移动 IPv6 ( DSMIPv6 , Mobile IPv6 support for dual stack Hosts and Routers )。
目 前, 艮多运营商关注固网移动融合 ( FMC , Fixed Mobile Convergence ), 并针对 3GPP和宽带论坛 ( BBF, Broadband Forum )互连互 通进行研究。对于用户通过 BBF (即固定宽带接入网( Fixed Broadband Access Network )接入移动核心网的场景, 需要对数据的整个传输路径(数据会经 过固网和移动网传输)上的 QoS进行保证。当前技术中,通过 PCRF与 BBF 接入(即固定宽带接入网)中的宽带策略控制架构(BPCF, Broadband Policy Control Framework )进行交互, 实现 QoS保障。 BPCF为固定宽带接入网中 的策略控制架构, 对 PCRF的资源请求消息, BPCF根据固定宽带接入网的 网络策略、 签约信息等进行资源接纳控制或者将资源请求消息转发给其他 固定宽带接入网的网元(如 BNG ), 再由其他网元执行资源接纳控制(即委 托其他网元执行资源接纳控制)。 比如: 当 UE通过无线局域网 (WLAN ) 接入 3GPP核心网时, 为了保证通过一个 WLAN接入线路接入的所有 UE 访问业务的总带宽需求不超过该线路的带宽 (如签约带宽或该线路支持的 最大物理带宽等), PCRF在进行 QoS授权时需要与 BPCF交互, 以便固定 宽带接入网执行资源的接纳控制。 具体实现时, PCRF向 BPCF提供 QoS 规则, 固定宽带接入网根据 QoS规则执行接纳控制。 图 2为现有技术中, UE通过固定宽带接入网固定宽带接入网接入 3GPP 核心网的架构示意图, 如图 2所示, 固定宽带接入网固定宽带接入网作为 不可信任的非 3GPP接入。 在图 2所示的架构中, 当 UE接入固定宽带接入 网固定宽带接入网后, 宽带接入服务器 (BRAS, Broadband Remote Access Server ) /宽带网络网关 (BNG, Broadband Network Gateway )将执行基于 3GPP的接入认证, 同时由 BBF的 BPCF主动发起 S9*的会话与 3GPP的 PCRF进行交互。从而 , PCRF在进行 QoS授权时能够与 BPCF交互 , BPCF 执行资源的接纳控制或委托固定宽带接入网的其他网元执行资源接纳控 制。
然后, 在某些场景中, 固定宽带接入网固定宽带接入网并不总能感知 到 UE的接入,或者固定宽带接入网固定宽带接入网不支持基于 3GPP的接 入认证。 在这种场景下, BPCF将不能主动发起 S9*会话的建立, 从而不能 实现对 UE接入的 QoS控制。 发明内容
有鉴于此, 本发明的主要目的在于提供一种实现固定宽带接入网接入 的策略控制方法及系统, 能够在固定宽带接入网固定宽带接入网未能感知 到 UE的接入,或者固定宽带接入网固定宽带接入网不支持基于 3GPP的接 入认证时。 实现对 UE接入的 QoS控制, 从而对数据的整个传输路径提供 QoS保证。
为达到上述目的, 本发明的技术方案是这样实现的:
一种实现固定宽带接入网接入的策略控制方法, 在用户请求接入的移 动网中设置固网移动融合策略功能 FMC PF; 该方法还包括: FMC PF接收 到来自演进的分组数据网关 ePDG 的触发消息后, 向固定宽带接入网中的 宽带策略控制架构 BPCF请求建立策略控制会话; 所述固定宽带接入网根 据 FMC PF通过所述策略控制会话传送的服务质量 QoS规则或 QoS信息执 行接纳控制。
所述 FMC PF作为独立的功能实体, 或集成在策略和计费规则功能 PCRF中。
所述 FMC PF接收到来自所述 ePDG的所述触发消息为: 携带有因特 网 Internet协议安全性 IPSec外部隧道信息的网关控制会话建立消息或携带 有 IPSec外部隧道信息的动态主机配置协议 DHCP请求消息; 所述 IPSec 外部隧道信息包括 ePDG接收到的所述 UE的本地 IP地址。
所述 FMC PF向 BPCF请求建立策略控制会话包括:所述 FMC PF根据 所述 UE本地 IP地址确定所述 UE当前接入的固定宽带接入网的 BPCF或 BPCF位于的固定宽带接入网的入口点, 并向所述 BPCF发送 S9*会话建立 消息, 在 S9*会话建立消息中携带有所述 IPSec外部隧道信息。
所述 IPSec外部隧道信息包括源端口号。
所述用户非漫游时, 所述用户请求接入的移动网为所述用户归属的公 共陆地移动网络 PLMN; 所述用户漫游时, 所述用户请求接入的移动网为 所述用户拜访的 PLMN。
所述请求建立策略控制会话及固定宽带接入网执行接纳控制具体包 括: 所述 FMC PF获得 PCC规则、 QoS规则或 QoS请求后, 通过所述策 略控制会话向 BPCF传送所述 QoS规则或所述 QoS信息。
所述 FMC PF作为独立的功能实体;所述 FMC PF获得 QoS规则或 QoS 信息为: 所述 FMC PF从 PCRF获得 PCC规则或所述 QoS规则; 或者, 所 述 FMC PF从 ePDG获得所述 QoS请求。
所述 FMC PF集成在 PCRF中; 所述 FMC PF获得 PCC规则、 QoS规 则或 QoS请求为: 所述用户非漫游时,所述 PCRF制定 PCC规则和 /或 QoS 规则;所述用户漫游时,所述 PCRF从用户归属的 PLMN的 PCRF获取 PCC 规则或 QoS规则; 或者, 所述 PCRF从 ePDG获取 QoS请求。
所述固定宽带接入网根据请求进行资源接纳控制包括: 如果所述 BPCF接收到请求分配带宽资源 GBR, 所述固定宽带接入网 根据签约固网线路当前可用带宽情况进行资源接纳控制: 在剩余的可用带 宽大于等于 GBR时, 所述固定宽带接入网接受所述用户当前请求接入的移 动网的 FMC PF的请求, 并向所述用户当前请求接入的移动网的 FMC PF 返回接收确认消息, 同时固定宽带接入网将从签约固网线路当前可用带宽 中扣除 GBR; 在剩余的可用带宽小于 GBR时,所述固定宽带接入网拒绝所 述用户当前请求接入的移动网的 FMC PF的请求, 并向所述用户当前请求 接入的移动网的 FMC PF返回拒绝消息 , 并消息中携带 FMC PF能够接受 的带宽;
如果所述 BPCF接收到请求释放带宽资源 GBR , 则所述 BPCF直接返 回接收确认消息, 同时所述固定宽带接入网将在签约固网线路当前可用带 宽中增加 GBR。
若所述 FMC PF接收到拒绝消息, 该方法还包括: 所述 FMC PF根据 分配保持优先级 ARP执行资源抢占。
一种实现固定宽带接入网接入的策略控制系统, 至少包括 ePDG、 FMC PF和 BPCF, 其中,
ePDG, 用于向 FMC PF发送触发消息;
FMC PF, 设置在用户当前请求接入的移动网中, 用于接收来自 ePDG 的触发消息, 向 BPCF请求建立策略控制会话;
BPCF, 用于接收来自 FMC PF的请求, 根据通过所述策略控制会话传 送的服务质量 QoS规则或 QoS信息执行接纳控制或委托其他固定宽带接入 网网元执行接纳控制。
所述 FMC PF, 具体用于获得包含有保障带宽 GBR的 PCC规则、 QoS 规则或 QoS请求, 通过所述策略控制会话向 BPCF传送所述 QoS规则或 QoS信息。
所述 FMC PF作为独立的功能实体; 该系统还包括 PCRF,用于向所述 FMC PF提供 PCC规则或 QoS规则; 或者, 所述 ePDG, 还用于向所述 FMC PF提供 QoS请求。
所述 FMC PF集成在 PCRF中;
所述 PCRF, 用于在所述用户非漫游时, 制定 PCC规则或 QoS规则; 在所述用户漫游时, 从用户归属的 PLMN的 PCRF获取 PCC规则或 QoS 规则;
或者, 所述 PCRF, 用于从 ePDG获取 QoS请求。
在所述 FMC PF接收到 BPCF的拒绝消息时, 所述 FMC PF, 还用于根 据 ARP执行资源抢占。
从上述本发明提供的技术方案可以看出, 在用户当前请求接入的移动 网中设置用于感知 UE接入固定宽带接入网的固网移动融合策略功能( FMC PF ); FMC PF接收到来自 ePDG的触发消息后, 向 BPCF请求建立策略会 话, 而 BPCF根据 UE当前接入的固定宽带接入网的信息进行策略控制。从 本发明方法的实现可以看出, 在 UE通过固定宽带接入网接入 3GPP时, 通 过 FMC PF对来自 ePDG的网关控制会话建立请求消息或 DHCP请求消息 的感知, 触发了 UE当前接入的 3GPP接入网的 PCRF向 BPCF发起策略会 话请求, 这样, 对于现有 UE通过固定宽带接入网接入 3GPP核心网的架构 中固定宽带接入网未能感知到 UE的接入,或者固定宽带接入网不支持基于 3GPP的接入认证的情况, 实现了对 UE接入的 QoS控制, 从而对数据的整 个传输路径提供了 QoS保证。 附图说明
图 1为现有 EPS组成架构示意图;
图 2为现有技术中 UE通过固定宽带接入网接入 3GPP核心网的架构示 意图;
图 3为本发明实现固定宽带接入网的策略控制方法的流程图; 图 4为本发明实现固定宽带接入网的策略控制系统的组成结构示意图; 图 5为本发明 UE通过不可信任固定宽带接入网接入 3GPP核心网的、 家乡路由的漫游架构示意图, 其中 ePDG与 P-GW之间釆用 PMIPv6协议; 图 6为基于图 5所示的架构, UE通过不可信任固定宽带接入网接入 3GPP核心网的附着流程图;
图 7为本发明 UE通过不可信任固定宽带接入网接入 3GPP核心网的、 家乡路由的漫游架构示意图, 其中 ePDG与 P-GW之间釆用 GTP协议; 图 8为基于图 7所示的架构, UE通过不可信任固定宽带接入网接入 3GPP核心网的附着流程图;
图 9为本发明 UE通过不可信任固定宽带接入网接入 3GPP核心网的、 家乡路由的漫游架构示意图, 其中 UE采用 DSMIPv6协议;
图 10为基于图 9所示的架构, UE通过不可信任固定宽带接入网接入 3GPP核心网的附着流程图;
图 11为本发明 UE通过不可信任固定宽带接入网接入 3GPP核心网的、 本地疏导漫游架构示意图, 其中 ePDG与 P-GW之间釆用 GTP或 PMIPv6 协议;
图 12为基于图 11所示的架构, UE通过不可信任固定宽带接入网接入 3GPP核心网的附着流程图;
图 13为本发明 UE通过不可信任固定宽带接入网接入 3GPP核心网的、 本地疏导漫游架构示意图, 其中 UE采用 DSMIPv6协议接入;
图 14为基于图 13所示的架构, UE通过不可信任固定宽带接入网接入 3GPP核心网的附着流程图;
图 15为本发明 UE通过不可信任固定宽带接入网接入 3GPP核心网的 非漫游架构图, 其中 ePDG与 P-GW之间釆用 GTP或 PMIPv6协议;
图 16为发明 UE通过不可信任固定宽带接入网接入 3GPP核心网的非 漫游架构图, 其中 UE釆用 DSMIPv6协议接入; 图 17 为本发明在家乡路由的漫游场景下, PCRF在制定策略时请求 BPCF进行 QoS授权的流程图;
图 18 为本发明在本地疏导的漫游场景下, PCRF在制定策略时请求 BPCF进行 QoS授权的流程图;
图 19为本发明在家乡路由的漫游场景下, H-PCRF在制定策略时请求 BPCF进行 QoS授权的流程图。 具体实施方式
图 3 为本发明实现固定宽带接入网的策略控制方法的流程图, 如图 3 所示, 包括:
步骤 300: 在用户当前请求接入的移动网中设置 FMC策略功能 (PF, Policy Function ) 。
FMC PF可以单独作为一个独立的功能实体; FMC PF也可以集成在 PCRF中。
在用户非漫游时, 用户请求接入的移动网为用户归属的公共陆地移动 网络( PLMN );在用户漫游时,用户请求接入的移动网为用户拜访的 PLMN。
步骤 301: FMC PF接收到来自 ePDG的触发消息后 , 向 BPCF请求建 立策略控制会话。
在 UE接入固定宽带接入网系统后, 固定宽带接入网系统会为 UE分配本 地 IP地址; 随后, UE发起 Internet密钥交换版本 2 ( IKEv2 ) 隧道建立过程, 并釆用扩展认证协议(EAP )进行认证。 对于漫游场景, 进一步地, ePDG 通过 AAA服务器代理( AAA Proxy )与 AAA服务器 ( AAA Server )交互( AAA Server还可以进一步与 HSS交互) 以完成 EAP认证;
EAP认证通过后, ePDG向 FMC PF发送网关控制会话建立消息或发送 DHCP请求消息, 在网关控制会话建立消息或 DHCP请求消息中携带有用户 标识、 分组数据网络(PDN )标识和 IPSec外部隧道信息。 其中, IPSec外部 隧道信息包括 ePDG接收到的 UE发送的 IKEv2信令的源地址和源端口, 需要 说明的是, 由于 IKEv2信令可能经过了网络地址转换(NAT ) 穿越, 因此, ePDG接收到的源地址和源端口可能与 UE发送时的源地址和源端口不同。为 了便于描述, 本文中 ePDG获得的 UE的源地址 (包括 UE和 ePDG之间存在 NAT和不存在 NAT两种情况), 称为 UE本地 IP地址。 对于 UE和 ePDG之间不 存在 NAT , UE本地 IP地址就可以用于固定宽带接入网定位 UE ,若存在 NAT , 则 UE本地地址和源端口号可以用于固定宽带接入网定位 UE。 其中, 若未检 测到 NAT , 则 IPSec外部隧道信息仅包括源 IP地址;
FMC PF根据 IPSec外部隧道信息中的源地址(如 IP地址)确定 UE当前 接入的固定宽带接入网的 BPCF或 BPCF位于的固定宽带接入网的入口点,并 向 BPCF发送 S9*会话建立消息,在 S9*会话建立消息中携带有 IPSec外部隧道 信息中的源 IP地址和源端口号 (若检测到 NAT即存在 NAT )。
步骤 302: 固定宽带接入网根据 FMC PF通过策略控制会话传送的服务 质量(QoS )规则或 QoS信息执行接纳控制。
固定宽带接入网根据 QoS规则或 QoS信息, 以及当前用户当前接入的 固定宽带接入网的线路的可用带宽资源执行接纳控制或委托固定宽带接入 网的其他网元执行资源接纳控制。
从本发明方法的实现可以看出, 在 UE通过固定宽带接入网接入 3GPP 时, 通过 FMC PF对来自 ePDG的触发消息的感知 (接收到网关控制会话建 立请求或 DHCP请求消息) , 触发了 UE当前接入的 3GPP接入网的 FMC PF 向 BPCF发起策略会话请求, 这样, 对于现有 UE通过固定宽带接入网接入 3GPP核心网的架构中固定宽带接入网未能感知到 UE的接入,或者固定宽带 接入网不支持基于 3GPP的接入认证的情况, 实现了对 UE接入的 QoS控制, 从而对数据的整个传输路径提供了 QoS保证。
在 UE通过固定宽带接入网接入 3GPP核心网后, 当策略发生变化时, 比如 PCRF (或是漫游情况下的家乡 PCRF ( H-PCRF ) ) 收到 AF提供的业 务信息或是 UE发起的资源修改请求消息后进行策略决策, 并在 FMC PF 接收到发生改变的 PCC规则、 QoS规则或 QoS请求后, 向 BPCF请求接纳 控制, 而固定宽带接入网根据请求进行资源接纳控制 (即 BPCF或 BPCF 委托其他网元执行资源接纳控制)。
图 4为本发明实现固定宽带接入网的策略控制系统的组成结构示意图, 如图 4所示, 至少包括 ePDG、 FMC PF和 BPCF, 其中,
ePDG, 用于向 FMC PF发送触发消息。
FMC PF, 设置在用户当前请求接入的移动网中, 用于接收来自 ePDG 的触发消息, 向 BPCF请求建立策略控制会话; FMC PF可以单独作为一个 功能实体; FMC PF也可以集成在 PCRF中。
BPCF, 用于接收来自 FMC PF的请求, 根据通过策略控制会话传送的 服务质量 QoS规则或 QoS信息执行接纳控制或委托其他固定宽带接入网网 元执行接纳控制。
所述 FMC PF, 具体用于获得包含有保障带宽 GBR的 PCC规则、 QoS 规则或 QoS请求, 通过策略控制会话向 BPCF传送 QoS信息。
当 FMC PF作为独立的功能实体时, 本发明系统还包括 PCRF, 用于向 所述 FMC PF提供 PCC规则或 QoS规则;
或者, 所述 ePDG, 还用于向所述 FMC PF提供 QoS请求。
当 FMC PF集成在 PCRF中时,所述 PCRF,用于在所述用户非漫游时, 制定 PCC规则或 QoS规则; 在所述用户漫游时, 从用户归属的 PLMN的 PCRF获取 PCC规则或 QoS规则;
或者, 所述 PCRF, 用于从 ePDG获取 QoS请求。
下面结合实施例对本发明方法进行详细描述。
图 5为本发明 UE通过不可信任固定宽带接入网接入 3GPP核心网的、 家乡路由的漫游架构示意图,图 5中 ePDG与 P-GW之间釆用 PMIPv6协议。 在图 5中, 除了增加 FMC PF外, 其它网络实体及其连接关系与现有一致, 对于本领域技术人员来讲图 5是容易理解的, 这里不再详细描述。
图 6为基于图 5所示的架构, UE通过不可信任固定宽带接入网接入 3GPP核心网的附着流程图, 结合图 5和图 6, 本实施例中假设 FMC PF设 置在 V-PCRF中, 作为 V-PCRF的功能增强, 具体实现包括以下步骤:
步骤 601 : UE接入固定宽带接入网系统后, 固定宽带接入网系统为 UE 分配本地 IP地址。 UE发起 IKEv2隧道建立过程, 并釆用 EAP进行认证。 由于本实施例是漫游场景, ePDG通过 AAA Proxy与 AAA Server交互( AAA Server进一步与 HSS交互) 以完成 EAP认证。
步骤 602: ePDG向 V-PCRF发送网关控制会话建立消息, 在网关控制 会话建立消息中携带有用户标识、 PDN标识和 IPSec外部隧道信息, 其中, IPSec外部隧道信息包括 ePDG接收到的 UE发送的 IKEv2信令的源地址和 源端口。
由于 IKEv2信令可能经过了 NAT穿越, 因此, ePDG接收到的源地址 和源端口可能与 UE发送时的源地址和源端口不同。 为了便于描述, ePDG 获得的 UE的源地址(包括 UE和 ePDG之间存在 NAT和不存在 NAT两种 情况) , 称为 UE本地 IP地址。 对于 UE和 ePDG之间不存在 NAT, UE 本地 IP地址就可以用于固定宽带接入网定位 UE , 若存在 NAT , 则 UE本 地地址和源端口号可以用于固定宽带接入网定位 UE。 其中, 若未检测到 NAT, 则 IPSec外部隧道信息仅包括源 IP地址即可;
需要说明的是, 如果 FMC PF是作为独立的网元实体, 则步骤 602包 括步骤 602a和步骤 602b:
步骤 602a: ePDG向 FMC PF发送网关控制会话建立消息,在网关控制 会话建立消息中携带有用户标识、 PDN标识和 IPSec外部隧道信息;
步骤 602b: FMC PF向 V-PCRF发送网关控制会话建立消息, 在网关 控制会话建立消息中携带有用户标识和 PDN标识。
步骤 603: V-PCRF向 H-PCRF发送 S9会话建立消息 (或网关控制会 话建立消息) , 在该消息中携带用户标识和 PDN标识。
步骤 604: H-PCRF根据用户标识和 PDN标识, 与 SPR交互以获取用 户签约数据, 并根据网络策略制定 PCC策略。 其中, PCC策略包括 PCC 规则、 QoS规则、 事件触发器等。 H-PCRF将其中的 QoS规则、 事件触发 器携带在 S9会话建立确认消息中返回给 V-PCRF。
步骤 605: V-PCRF向 ePDG发送网关控制会话建立确认消息, 在网关 控制会话建立确认消息中携带有 QoS规则和事件触发器。
需要说明的是, 如果 FMC PF是作为独立的网元实体, 则步骤 605包 括步骤 605a和步骤 605b:
步骤 605a: V-PCRF向 FMC PF发送网关控制会话建立确认消息, 在 网关控制会话建立确认消息中携带有 QoS规则和事件触发器;
步骤 605b: FMC PF向 ePDG发送网关控制会话建立确认消息, 在网 关控制会话建立确认消息中携带有 QoS规则和事件触发器。
步骤 606: ePDG选择 P-GW后, 向 P-GW发送代理绑定更新消息, 在 代理绑定更新消息中携带有用户标识和 PDN标识。
步骤 607: P-GW向 AAA Server发送更新 P-GW IP地址消息 ,将 P-GW 的地址发送给 AAA Server, AAA Server进一步与 HSS交互并将 P-GW的 地址保存到 HSS中。
步骤 608: P-GW为 UE分配 IP地址, 向 H-PCRF发送 IP-CAN会话建 立指示消息, 在 IP-CAN会话建立指示消息中携带有用户标识、 PDN标识 和为 UE分配的 IP地址。
步骤 609: H-PCRF根据用户标识和 PDN标识, 将步骤 603建立的 S9 会话与步骤 609请求建立的 IP-CAN会话进行关联。 H-PCRF可能更新步骤 604中制定的 PCC规则和 QoS规则。 H-PCRF向 PCEF返回确认消息, 携 带 PCC规则。
步骤 610: P-GW向 ePDG返回代理绑定确认消息, 在代理绑定确认消 息中携带有为 UE分配的 IP地址。
步骤 611 : 代理绑定更新成功, UE和 ePDG之间建立 IPSec隧道。 步骤 612、 ePDG向 UE发送最后一条 IKEv2信令, 其中携带有 UE的 IP地址。
步骤 613: V-PCRF才艮据 IPSec外部隧道信息中的源 IP地址, 确定 UE 当前接入的固定宽带接入网的 BPCF或 BPCF位于的固定宽带接入网的入口 点, 并向该 BPCF发送 S9*会话建立消息, 在 S9*会话建立消息中携带有 IPSec外部隧道信息中的源 IP地址和源端口号 (若检测到 NAT ) 以及 QoS 规则。
需要说明的是, 如果 FMC PF是作为独立的网元实体, 则步骤 613为 步骤 613a。
步骤 613a: FMC PF根据 IPSec外部隧道信息中的源 IP地址 , 确定 UE 当前接入的固定宽带接入网的 BPCF或 BPCF位于的固定宽带接入网的入口 点, 并向该 BPCF发送 S9*会话建立消息, 在 S9*会话建立消息中中携带有 IPSec外部隧道信息中的源 IP地址和源端口号 (若检测到 NAT ) 以及 QoS 规则。
本步骤的执行只要在 FMC PF接收到来自 ePDG的网关控制会话建立 消息 (步骤 602 )之后触发即可。 通过本步骤, FMC PF感知到了 UE的接 入, 触发了 UE当前接入的 3GPP接入网的 PCRF向 BPCF发起策略会话请 求, 这样, 实现了对 UE接入的 QoS控制, 从而对数据的整个传输路径提 供了 QoS保证。
在固定宽带接入网不支持基于 3GPP的接入认证时,通过本步骤也实现 了对 UE接入的 QoS控制, 从而对数据的整个传输路径提供了 QoS保证。
步骤 614: BPCF根据 QoS规则以及 UE当前接入的固定宽带接入网的 接入位置信息进一步执行资源接纳控制或委托固定宽带接入网其他网元执 行资源接纳控制(即固定宽带接入网执行接纳控制)。 步骤 615 : BPCF向 V-PCRF返回确认消息。
需要说明的是, 如果 FMC PF是作为独立的网元实体, 则步骤 615为 步骤 615a。
步骤 615a: BPCF向 FMC PF返回确认消息。
在其他实施例中 ,在步骤 602中 , ePDG向 V-PCRF发送 DHCP请求消 息, 消息中携带有用户标识、 PDN标识和 IPSec外部隧道信息。 步骤 602a 中, ePDG向 FMC PF发送 DHCP请求消息, 消息中携带有用户标识、 PDN 标识和 IPSec外部隧道信息。 步骤 602b中 FMC PF进一步向 V-PCRF发送 DHCP请求消息, 消息中携带有用户标识和 PDN标识。
相应地, 在步骤 605中, V-PCRF向 ePDG发送 DHCP确认消息, 在 消息中携带有 QoS规则和事件触发器。在步骤 605a中, V-PCRF向 FMC PF 发送 DHCP确认消息,在消息中携带有 QoS规则和事件触发器。在步骤 605b 中, FMC PF向 ePDG发送 DHCP确认消息, 在消息中携带有 QoS规则和 事件触发器。
总之,本发明不限定 ePDG与 V-PCRF或 ePDG与 FMC PF以及 FMC PF 与 V-PCRF之间交互的消息以及协议类型等。
图 7为本发明 UE通过不可信任固定宽带接入网接入 3GPP核心网的、 家乡路由的漫游架构示意图, 图 7中 ePDG与 P-GW之间釆用 GTP协议。 在图 7中, 除了增加 FMC PF外, 其它网络实体及其连接关系与现有一致, 对于本领域技术人员来讲图 7是容易理解的, 这里不再详细描述。
图 8为基于图 7所示的架构, UE通过不可信任固定宽带接入网接入 3GPP核心网的附着流程图, 结合图 7和图 8, 本实施例中假设 FMC PF设 置在 V-PCRF中, 作为 V-PCRF的功能增强, 具体实现包括以下步骤:
步骤 801 : UE接入固定宽带接入网系统后, 固定宽带接入网系统为 UE 分配本地 IP地址。 UE发起 IKEv2隧道建立过程, 并釆用 EAP进行认证。 由于本实施例是漫游场景, ePDG通过 AAA Proxy与 AAA Server交互( AAA Server进一步与 HSS交互) 以完成 EAP认证。
步骤 802: ePDG向 V-PCRF发送网关控制会话建立消息, 在网关控制 会话建立消息中携带有用户标识、 PDN标识和 IPSec外部隧道信息, 其中, IPSec外部隧道信息包括 ePDG接收到的 UE发送的 IKEv2信令的源地址和 源端口。
由于 IKEv2信令可能经过了 NAT穿越, 因此, ePDG接收到的源地址 和源端口可能与 UE发送时的源地址和源端口不同。 为了便于描述, ePDG 获得的 UE的源地址(包括 UE和 ePDG之间存在 NAT和不存在 NAT两种 情况) , 称为 UE本地 IP地址。 对于 UE和 ePDG之间不存在 NAT, UE 本地 IP地址就可以用于固定宽带接入网定位 UE , 若存在 NAT , 则 UE本 地地址和源端口号可以用于固定宽带接入网定位 UE。 其中, 若未检测到 NAT, 则 IPSec外部隧道信息仅包括源 IP地址即可;
需要说明的是, 如果 FMC PF是作为独立的网元实体, 则步骤 802为 步骤 802a,
步骤 802a: ePDG向 FMC PF发送网关控制会话建立消息,在网关控制 会话建立消息中携带有用户标识、 PDN标识和 IPSec外部隧道信息。
步骤 803: V-PCRF向 ePDG返回网关控制会话建立确认消息。 需要说 明的是, 如果 FMC PF是作为独立的网元实体, 则步骤 803为步骤 803a。 步骤 803a: FMC PF向 ePDG返回网关控制会话建立确认消息。
步骤 804: ePDG选择 P-GW后, 向 P-GW发送创建承载请求消息, 在 创建承载请求消息中携带有用户标识和 PDN标识。
步骤 805: P-GW向 AAA Server发送更新 P-GW IP地址消息 ,将 P-GW 的地址发送给 AAA Server, AAA Server进一步与 HSS交互并将 P-GW的 地址保存到 HSS中。
步骤 806: P-GW为 UE分配 IP地址, 向 H-PCRF发送 IP-CAN会话建 立指示消息, 在 IP-CAN会话建立指示消息中携带有用户标识、 PDN标识 和为 UE分配的 IP地址。
步骤 807: H-PCRF根据用户标识和 PDN标识, 与 SPR进行交互, 获 取用户的签约信息, 制定 PCC策略。 PCC策略包括 PCC规则和事件触发 器等。 PCRF向 PCEF返回确认消息, 携带 PCC规则和事件触发器。
步骤 808: P-GW向 ePDG返回创建承载应答消息, 在创建承载应答消 息中携带有为 UE分配的 IP地址。
步骤 809: 创建承载成功, UE和 ePDG之间建立 IPSec隧道。
步骤 810: ePDG向 UE发送最后一条 IKEv2信令, 其中携带有 UE的 IP地址。
步骤 811 : V-PCRF根据 IPSec外部隧道信息中的源 IP地址 , 确定 UE 当前接入的固定宽带接入网的 BPCF或 BPCF位于的固定宽带接入网的入口 点,并向 BPCF发送 S9*会话建立消息,在 S9*会话建立消息中携带有 IPSec 外部隧道信息中的源 IP地址和源端口号(若检测到 NAT ) 以及 QoS规则。
需要说明的是, 如果 FMC PF是作为独立的网元实体, 则步骤 811为 步骤 811a。 步骤 811a: FMC PF根据 IPSec外部隧道信息中的源 IP地址, 确定 UE当前接入的固定宽带接入网的 BPCF或 BPCF位于的固定宽带接入 网的入口点, 并向 BPCF发送 S9 *会话建立消息, 在 S9 *会话建立消息中中 携带有 IPSec外部隧道信息中的源 IP地址和源端口号 (若检测到 NAT ) 以 及 QoS规则。
本步骤的执行只要在 FMC PF接收到来自 ePDG的网关控制会话建立 消息 (步骤 802 )之后触发即可。 通过本步骤, FMC PF感知到了 UE的接 入, 触发了 UE当前接入的 3GPP接入网的 PCRF向 BPCF发起策略会话请 求, 这样, 实现了对 UE接入的 QoS控制, 从而对数据的整个传输路径提 供了 QoS保证。
在固定宽带接入网不支持基于 3GPP的接入认证时,通过本步骤也实现 了对 UE接入的 QoS控制, 从而对数据的整个传输路径提供了 QoS保证。 步骤 812: BPCF根据 QoS规则或 QoS规则中的 QoS信息以及以及 UE 当前接入的固定宽带接入网的接入位置信息进一步执行资源接纳控制或委 托固定宽带接入网其他网元执行资源接纳控制(即固定宽带接入网执行接纳 控制)。
步骤 813: BPCF向 V-PCRF返回确认消息。
需要说明的是, 如果 FMC PF是作为独立的网元实体, 则步骤 813为 步骤 813a。 步骤 813a: BPCF向 FMC PF返回确认消息。
在其他实施例中,在步骤 802中, ePDG向 V-PCRF发送 DHCP请求消 息, 消息中携带有用户标识、 PDN标识和 IPSec外部隧道信息。 步骤 802a 中, ePDG向 FMC PF发送 DHCP请求消息, 消息中携带有用户标识、 PDN 标识和 IPSec外部隧道信息。
相应地, 在步骤 803中, V-PCRF向 ePDG发送 DHCP确认消息。 在 步骤 803a中, FMC PF向 ePDG发送 DHCP确认消息。 图 9为本发明 UE通过不可信任固定宽带接入网接入 3GPP核心网的、 家乡路由的漫游架构示意图, 图 9中 UE采用 DSMIPv6协议。在图 9中, 除了增加 FMC PF外, 其它网络实体及其连接关系与现有一致, 对于本领 域技术人员来讲图 9是容易理解的, 这里不再详细描述。
图 10为基于图 9所示的架构, UE通过不可信任固定宽带接入网接入 3GPP核心网的附着流程图, 结合图 9和图 10, 本实施例中假设 FMC PF 设置在 V-PCRF中, 作为 V-PCRF的功能增强, 具体实现包括以下步骤: 步骤 1001 : UE接入固定宽带接入网系统后, 固定宽带接入网系统为 UE分配本地 IP地址。 UE发起 IKEv2隧道建立过程, 并釆用 EAP进行认 证。 由于本实施例是漫游场景, ePDG通过 AAA Proxy与 AAA Server交互 ( AAA Server进一步与 HSS交互) 以完成 EAP认证。
步骤 1002: ePDG向 V-PCRF发送网关控制会话建立消息, 在网关控 制会话建立消息中携带有用户标识、 PDN标识和 IPSec外部隧道信息, 其 中 , IPSec外部隧道信息包括 ePDG接收到的 UE发送的 IKEv2信令的源地 址和源端口。
由于 IKEv2信令可能经过了 NAT穿越, 因此, ePDG接收到的源地址 和源端口可能与 UE发送时的源地址和源端口不同。 为了便于描述, ePDG 获得的 UE的源地址(包括 UE和 ePDG之间存在 NAT和不存在 NAT两种 情况) , 称为 UE本地 IP地址。 对于 UE和 ePDG之间不存在 NAT, UE 本地 IP地址就可以用于固定宽带接入网定位 UE , 若存在 NAT , 则 UE本 地地址和源端口号可以用于固定宽带接入网定位 UE。 其中, 若未检测到 NAT, 则 IPSec外部隧道信息仅包括源 IP地址即可;
需要说明的是, 如果 FMC PF是作为独立的网元实体, 则步骤 1002包 括步骤 1002a和步骤 1002b:
步骤 1002a: ePDG向 FMC PF发送网关控制会话建立消息, 在网关控 制会话建立消息中携带有用户标识、 PDN标识和 IPSec外部隧道信息; 步骤 1002b: FMC PF向 V-PCRF发送网关控制会话建立消息, 在关控 制会话建立消息中携带有用户标识和 PDN标识。
步骤 1003: V-PCRF向 H-PCRF发送 S9会话建立消息(或网关控制会 话建立消息) , 在该消息中携带用户标识和 PDN标识。
步骤 1004: H-PCRF根据用户标识和 PDN标识, 与 SPR交互以获取用 户签约数据, 并根据网络策略制定 PCC策略。 其中, PCC策略包括 PCC 规则、 QoS规则、 事件触发器等。 H-PCRF将其中的 QoS规则、 事件触发 器携带在 S9会话建立确认消息中返回给 V-PCRF。
步骤 1005: V-PCRF向 ePDG发送网关控制会话建立确认消息, 在网 关控制会话建立确认消息中携带有 QoS规则和事件触发器。
需要说明的是, 如果 FMC PF是作为独立的网元实体, 则步骤 1005包 括步骤 1005a和步骤 1005b: 步骤 1005a: V-PCRF向 FMC PF发送网关控制会话建立确认消息 , 在 网关控制会话建立确认消息中携带有 QoS规则和事件触发器;
步骤 1005b: FMC PF向 ePDG发送网关控制会话建立确认消息, 在网 关控制会话建立确认消息中携带有 QoS规则和事件触发器。
步骤 1006: ePDG向 UE发送最后一条 IKEv2消息, 其中携带有为 UE 分配的一个 IP地址, 该 IP地址作为 UE的转交地址( CoA ) 。
步骤 1007: UE和 ePDG之间建立了 IPSec隧道。
步骤 1008: UE执行自启动 ( Bootstraping ) 流程。 UE根据 APN进行 DNS查找获得所要接入 PDN的 P-GW的 IP地址。 为了保护 UE和 P-GW 之间的 DSMIPv6消息, UE使用 IKEv2建立安全联盟, 并釆用 EAP进行认 证。 P-GW与 AAA Server ( AAA Server进一步与 HSS交互)进行通信以完 成 EAP认证, 同时 P-GW为 UE分配一个 IPv6地址或前缀作为 UE的家乡 地址(HoA ) 。
步骤 1009: UE向 P-GW发送 DSMIPv6绑定更新消息, 在 DSMIPv6 绑定更新消息中携带有 CoA和 HoA,绑定消息中生命期参数不为零。 P-GW 建立绑定上下文。
步骤 1010: P-GW中的 PCEF向 H-PCRF发送 IP-CAN会话建立指示消 息, IP-CAN会话建立指示消息中携带有用户标识、 PDN标识。
步骤 1011 : H-PCRF根据用户标识和 PDN标识, 将步骤 1003建立的 S9会话与步骤 1010请求建立的 IP-CAN会话进行关联。 H-PCRF可能更新 步骤 1004中制定的 PCC规则和 QoS规则。 PCRF向 PCEF返回确认消息 , 其中携带有 PCC规则。
步骤 1012: P-GW向 UE返回绑定确认消息。
步骤 1013: V-PCRF根据 IPSec外部隧道信息中的源 IP地址,确定 UE 当前接入的固定宽带接入网的 BPCF或 BPCF位于的固定宽带接入网的入口 点,并向 BPCF发送 S9*会话建立消息,在 S9*会话建立消息中携带有 IPSec 外部隧道信息中的源 IP地址和源端口号(若检测到 NAT ) 以及 QoS规则。 需要说明的是, 如果 FMC PF是作为独立的网元实体, 则步骤 1013为 步骤 1013a。 步骤 1013a: FMC PF根据 IPSec外部隧道信息中的源 IP地址, 确定 UE当前接入的固定宽带接入网的 BPCF或 BPCF位于的固定宽带接入 网的入口点, 并向该 BPCF发送 S9*会话建立消息, 在 S9*会话建立消息中 携带有 IPSec外部隧道信息中的源 IP地址和源端口号 (若检测到 NAT ) 以 及 QoS规则。
本步骤的执行只要在 FMC PF接收到来自 ePDG的网关控制会话建立 消息 (步骤 1002 )之后触发即可。 通过本步骤, FMC PF感知到了 UE的接 入, 触发了 UE当前接入的 3GPP接入网的 PCRF向 BPCF发起策略会话请 求, 这样, 实现了对 UE接入的 QoS控制, 从而对数据的整个传输路径提 供了 QoS保证。
在固定宽带接入网不支持基于 3GPP的接入认证时,通过本步骤也实现 了对 UE接入的 QoS控制, 从而对数据的整个传输路径提供了 QoS保证。
步骤 1014: BPCF根据 QoS规则以及 UE当前接入的固定宽带接入网 的接入位置信息进一步执行资源接纳控制或委托固定宽带接入网其他网元 执行资源接纳控制(即固定宽带接入网执行接纳控制)。
步骤 1015: BPCF向 V-PCRF返回确认消息。
需要说明的是, 如果 FMC PF是作为独立的网元实体, 则步骤 1015为 步骤 1015a。 步骤 1015a: BPCF向 FMC PF返回确认消息。
在其他实施例中, 在步骤 1002中, ePDG向 V-PCRF发送 DHCP请求 消息,消息中携带有用户标识、 PDN标识和 IPSec外部隧道信息。步骤 1002a 中, ePDG向 FMC PF发送 DHCP请求消息, 消息中携带有用户标识、 PDN 标识和 IPSec外部隧道信息。步骤 1002b中 FMC PF进一步向 V-PCRF发送 DHCP请求消息, 消息中携带有用户标识和 PDN标识。
相应地, 在步骤 1005中 , V-PCRF向 ePDG发送 DHCP确认消息, 在消息中携带有 QoS规则和事件触发器。在步骤 1005a中, V-PCRF向 FMC PF发送 DHCP确认消息, 在消息中携带有 QoS规则和事件触发器。 在步 骤 1005b中, FMC PF向 ePDG发送 DHCP确认消息,在消息中携带有 QoS 规则和事件触发器。
图 11为本发明 UE通过不可信任固定宽带接入网接入 3GPP核心网的、 本地疏导漫游架构示意图,图 11中 ePDG与 P-GW之间釆用 GTP或 PMIPv6 协议。 在图 11中, 除了增加 FMC PF外, 其它网络实体及其连接关系与现 有一致,对于本领域技术人员来讲图 11是容易理解的,这里不再详细描述。
图 12为基于图 11所示的架构, UE通过不可信任固定宽带接入网接入 3GPP核心网的附着流程图, 结合图 11和图 12, 本实施例中假设 FMC PF 设置在 V-PCRF中, 作为 V-PCRF的功能增强, 具体实现包括以下步骤: 步骤 1201~步骤 1205的具体实现与步骤 601~步骤 605完全一致, 这里 不再赘述。
步骤 1206: ePDG选择拜访地 P-GW后, 向 P-GW发送代理绑定更新 或创建会话请求消息, 并在发送的消息中携带用户标识和 PDN标识。
步骤 1207: P-GW通过 AAA Proxy向 AAA Server发送更新 P-GW IP 地址消息 , 将 P-GW的地址发送给 AAA Server, AAA Server进一步与 HSS 交互并将 P-GW的地址保存到 HSS中。
步骤 1208: P-GW为 UE分配 IP地址, 向 V-PCRF发送 IP-CAN会话 建立指示消息, 在 IP-CAN会话建立指示消息中携带有用户标识、 PDN标 识和为 UE分配的 IP地址。 V-PCRF根据用户标识、 PDN标识, 关联步骤 1202建立的网关控制会话与步骤 1208建立的 IP-CAN会话。
在其他实施例中, 若步骤 1202中, ePDG向 PCRF发送的是 DHCP请 求消息, 那么 V-PCRF将步骤 1202的消息与步骤 1208的消息进行关联。
需要说明的是, 如果 FMC PF是作为独立的网元实体, 则步骤 1208包 括步骤 1208a和步骤 1208b: 步骤 1208a: V-PCRF向 H-PCRF发送 S9会话修改消息, 其中携带有 分配的 IP地址。
步骤 1208b: H-PCRF可能更新步骤 1204中制定的 PCC规则, 并返回 给 V-PCRF。
步骤 1209: V-PCRF 向 PCEF发送 IP-CAN会话建立确认消息, 在
IP-CAN会话建立确认消息中携带有 PCC规则。
步骤 1210: P-GW向 ePDG返回代理绑定更新消息或创建会话应答消 息。
步骤 1211~步骤 1215的具体实现与步骤 611~步骤 615完全一致, 这里 不再赘述。
图 13为本发明 UE通过不可信任固定宽带接入网接入 3GPP核心网的、 本地疏导漫游架构示意图, 图 13中 UE采用 DSMIPv6协议接入。 在图 13中, 除了增加 FMC PF外, 其它网络实体及其连接关系与现有一致, 对 于本领域技术人员来讲图 13是容易理解的, 这里不再详细描述。
图 14为基于图 13所示的架构, UE通过不可信任固定宽带接入网接入
3GPP核心网的附着流程图 , 结合图 13和图 14 , 本实施例中假设 FMC PF 设置在 V-PCRF中, 作为 V-PCRF的功能增强, 具体实现包括以下步骤: 步骤 1401~步骤 S1407的具体实现与步骤 1001~步骤 1007完全一致, 这里不再赘述。
步骤 1408: UE执行自启动 ( Bootstraping ) 流程。 UE根据 APN进行
DNS查找获得所要接入 PDN的 P-GW的 IP地址, P-GW位于拜访地。 为 了保护 UE和 P-GW之间的 DSMIPv6消息, UE使用 IKEv2建立安全联盟, 并釆用 EAP进行认证。 P-GW通过 AAA Proxy与 AAA Server ( AAA Server 进一步与 HSS交互)进行通信以完成 EAP认证, 同时 P-GW为 UE分配一 个 IPv6地址或前缀作为 UE的 HoA。
步骤 1409: UE向 P-GW发送 DSMIPv6绑定更新消息, 在 DSMIPv6 绑定更新消息中携带有 CoA和 HoA,绑定消息中生命期参数不为零。 P-GW 建立绑定上下文。
步骤 1410: P-GW中的 PCEF向 V-PCRF发送 IP-CAN会话建立指示消 息, 在 IP-CAN会话建立指示消息中携带有用户标识、 PDN标识。 V-PCRF 根据用户标识,关联步骤 1402的网关控制会话与步骤 1410的 IP-CAN会话。
在其他实施例中, 若步骤 1402中, ePDG向 PCRF发送的是 DHCP请 求消息, 那么 V-PCRF将步骤 1402的消息与步骤 1410的消息进行关联。
需要说明的是, 如果 FMC PF是作为独立的网元实体, 则步骤 1410包 括步骤 1410a和步骤 1410b。
步骤 S1410a: V-PCRF向 H-PCRF发送 S9会话修改, 其中携带有 IP 地址。
步骤 S1410b: H-PCRF制定 PCC规则。 H-PCRF向 V-PCRF返回 PCC 规则。
步骤 1411~步骤 1415的具体实现与步骤 1011~步骤 1015完全一致, 这 里不再赘述。
图 15为本发明 UE通过不可信任固定宽带接入网接入 3GPP核心网的 非漫游架构图, 其中 ePDG与 P-GW之间釆用 GTP或 PMIPv6协议。 对于 该架构下的附着流程, 只要在图 12的流程中将 V-PCRF作为 PCRF , 省略 所有 V-PCRF与 H-PCRF的交互过程即可; 图 16为发明 UE通过不可信任 固定宽带接入网接入 3GPP核心网的非漫游架构图,其中 UE釆用 DSMIPv6 协议接入。 对于该该架构下的附着流程, 只要在图 14的流程中将 V-PCRF 作为 PCRF, 省略所有 V-PCRF与 H-PCRF的交互过程即可, 具体实现是本 领域技术人员根据上述实施例容易得到的门这里不再详述。
在 UE通过固定宽带接入网接入 3GPP核心网后, 当策略发生变化时, 比如 PCRF (或是漫游情况下的家乡 PCRF ( H-PCRF ) ) 收到 AF提供的业 务信息或是 UE发起的资源修改请求消息后进行策略决策, 并在 FMC PF 接收到发生改变的 QoS规则后, 向 BPCF请求带宽授权, 而 BPCF根据请 求进行资源接纳控制。 下面结合实施例进行详细描述。
图 17为本发明在家乡路由的漫游场景下(图 5和图 9架构), H-PCRF 在制定策略时请求 BPCF进行接纳控制的流程图,本实施例中假设 FMC PF 设置在 V-PCRF中, 作为 V-PCRF的功能增强, 具体流程包括以下步骤: 步骤 1701 : H-PCRF收到 AF提供的业务信息或是 UE发起的资源修改 请求消息后, 进行策略决策。 策略决策可以包括以下 3种方式:
第一种方式,如果 AF提供新的业务信息或 UE发起新的资源分配请求, 那么, H-PCRF进行 QoS授权, 制定 PCC规则以及对应的 QoS规则。 该 PCC规则和 QoS规则的 QoS信息中包含服务质量类别标识( QCI, QoS Class Identifier ) 、 分西己保持优先级 ( ARP, Allocation and Retention Priority ) 、 保障带宽 (GBR, Guaranteed Bit Rate )和最大带宽 (MBR, Maximum Bit Rate ) ;
第二种方式, 如果 AF通知业务终止或 UE发起资源释放请求, 那么, H-PCRF进行 QoS授权, 决定删除或去激活对应的 PCC规则和 QoS规则。 该要删除或去激活 PCC规则和 QoS规则的 QoS信息中包含 QCI、 ARP、 GBR和 MBR;
第三种方式,如果 AF修改已提供的业务信息或 UE请求修改已分配的 资源,那么, H-PCRF进行 QoS授权,更新已制定的 PCC规则和 QoS规则。 该 PCC规则和 QoS规则的 QoS信息中包含 QCI、 ARP、 GBR和 MBR。
步骤 1702: H-PCRF向 V-PCRF发送 S9会话规则提供消息。
如果 H-PCRF决策为第一种方式, 则 H-PCRF在 S9会话规则提供消息 中携带新制定 QoS规则信息;
如果 H-PCRF决策为第二种方式, 则 H-PCRF在 S9会话规则提供消息 中携带要删除或去激活 QoS规则信息;
如果 H-PCRF决策为第三种方式, 则 H-PCRF在 S9会话规则提供消息 中携带更新后 QoS规则信息;
步骤 1703: V-PCRF向 BPCF发送 QoS授权请求消息, 请求 BPCF的 QoS授权。
如果 H-PCRF决策为第一种方式, 那么 V-PCRF在 QoS授权请求消息 中携带请求分配资源的指示以及 QoS信息中的 GBR, 以请求 BPCF分配带 宽资源 GBR;
如果 H-PCRF决策为第二种方式, 则 V-PCRF在 QoS授权请求消息中 携带请求释放资源的指示以及 QoS信息中的 GBR, 以请求 BPCF释放带宽 资源 GBR;
如果 H-PCRF决策为第三种方式, 那么 V-PCRF将根据更新的 QoS信 息中的 GBR与已分配 GBR的增量(差值 ) 向 BPCF请求, 如果更新后的 GBR减小了,则 V-PCRF在 QoS授权请求消息中携带的 GBR为 GBR的增 量, 并携带请求释放资源的指示; 如果更新后的 GBR增加了, 则 V-PCRF 在 QoS授权请求消息中携带 GBR为 GBR增量, 并携带请求分配资源的指 示。 需要说明的是, 如果 FMC PF是作为独立的网元实体, 则步骤 1703包 括步骤 1703a和步骤 1703b。
步骤 1703a: V-PCRF向 FMC PF发送网关控制和 QoS规则提供消息, 携带 V-PCRF从 H-PCRF收到的信息;
步骤 1703b: FMC PF向 BPCF发送 QoS授权请求消息, 请求 BPCF的 QoS授权, 内容与步骤 1703中的一致。
步骤 1704: BPCF根据 V-PCRF的请求消息 , 执行相应的策略。
如果 BPCF接收到请求分配带宽资源 GBR, BPCF根据签约固网线路 当前可用带宽情况进行资源接纳。 如果剩余的可用带宽大于等于 GBR, 则 BPCF接收 V-PCRF的请求, 并向 V-PCRF返回接收确认消息, 同时 BPCF 将从签约固网线路当前可用带宽中扣除 GBR; 如果剩余的可用带宽小于 GBR, 则 BPCF拒绝 V-PCRF的请求, 并向 V-PCRF返回拒绝消息, 并在 拒绝消息中携带 BPCF能够接受的带宽;
如果 BPCF接收到请求释放带宽资源 GBR, 则 BPCF直接返回接收确 认消息, 同时 BPCF将在签约固网线路当前可用带宽中增加 GBR。
此外 , V-PCRF或 FMC PF可将 H-PCRF提供的 QoS规则提供给 BPCF。 BPCF在执行资源接纳控制后 (执行资源接纳控制时, 除了考虑目前可用的 剩余带宽是否能够满足请求的带宽外, 还会综合考虑 QCI和 /或 ARP, 以决 定是否接受或拒绝 QoS授权请求。
BPCF可以进一步将 V-PCRF的请求消息转发给固定宽带接入网中的其 他网元(如 BNG ) , 并由其他网元执行类似的策略。 其他网元资源接纳结 果反馈给 BPCF。
步骤 1705: BPCF向 V-PCRF返回 QoS授权请求确认消息 , 在 QoS授 权请求确认消息中携带有步骤 1704中决策的信息。
需要说明的是, 如果 FMC PF是作为独立的网元实体, 则步骤 1705包 括步骤 1705a和步骤 1705b。
步骤 1705a: BPCF向 FMC PF返回 QoS授权请求确认消息 ,携带 S1504 中决策的信息;
步骤 1705b: FMC PF根据 BPCF返回消息进行策略决策。
如果 FMC PF接收到的是接受确认消息 (包括接收资源分配和资源释 放) , 则执行步骤 1705c, 并携带接受指示;
如果 FMC PF接收到的是拒绝消息, 那么 V-PCRF将根据 QoS信息的
ARP执行资源抢占, 包括以下逻辑判断: FMC PF根据 ARP将该 QoS信息 与该用户自身已经 QoS授权的其他 QoS信息, 以及通过同一个宽带线路接 入的所有其他用户的已经授权的 QoS信息进行比较, 如果该 QoS信息无法 抢占其他的 QoS信息的资源, 则执行步骤 1705c, 并携带拒绝指示, 如果 该 QoS信息可以抢占其他用户已经授权的 QoS信息的资源, 则 FMC PF发 起授权被抢占的 QoS 信息的流程 (该流程可以通过现有的删除和去激活 QoS规则的流程实现) 。 此外 FMC PF再次向 BPCF发送宽带会话 QoS请 求消息, BPCF分配带宽后, 确认消息, FMC PF执行步骤 1705c, 并携带 接受指示。
步骤 1706: V-PCRF根据 BPCF返回消息进行策略决策。
如果 V-PCRF接收到的是接受确认消息 (包括接收资源分配和资源释 放) , 则执行步骤 1707, 并携带接受指示;
如果 V-PCRF接收到的是拒绝消息, 那么 V-PCRF将根据 QoS信息的 ARP执行以下逻辑判断: V-PCRF根据 ARP将该 QoS信息与该用户自身已 经 QoS授权的其他 QoS信息, 以及通过同一个宽带线路接入的所有其他用 户的已经授权的 QoS信息进行比较, 如果该 QoS信息无法抢占其他的 QoS 信息的资源, 则执行步骤 1707 , 并携带拒绝指示, 如果该 QoS信息可以抢 占其他用户已经授权的 QoS信息的资源,则 V-PCRF发起授权被抢占的 QoS 信息的流程(该流程可以通过现有的删除和去激活 QoS规则的流程实现 )。 此外 V-PCRF再次向 BPCF发送宽带会话 QoS请求消息, BPCF分配带宽 后, 确认消息, V-PCRF执行步骤 1707 , 并携带接受指示。
步骤 1707: V-PCRF向 H-PCRF返回 S9会话规则提供确认消息, 通知 H-PCRF请求接受或拒绝。
步骤 1708: 若返回的是接受指示, 则 H-PCRF向 PCEF发送策略计费 规则提供消息, 携带 PCC规则。
步骤 1709: PCEF向 H-PCRF返回确认消息。
图 18为本发明在本地疏导的漫游场景下(图 11和图 13架构), H-PCRF 在制定策略时请求 BPCF进行接纳控制的流程图,本实施例中假设 FMC PF 设置在 V-PCRF中, 作为 V-PCRF的功能增强, 具体流程包括以下步骤: 步骤 1801 : H-PCRF收到 AF提供的业务信息或是 UE发起的资源修改 请求消息后进行策略决策。 决策包括以下三种方式:
第一种方式,如果 AF提供新的业务信息或 UE发起新的资源分配请求, 那么, H-PCRF进行的 QoS授权, 制定 PCC规则。 该 PCC规则的 QoS信 息中包含 QCI、 ARP、 GBR和 MBR;
第二种方式, 如果 AF通知业务终止或 UE发起资源释放请求, 那么, H-PCRF进行 QoS授权, 决定删除或去激活对应的 PCC规则。 该要删除或 去激活 PCC规则的 QoS信息中包含 QCI、 ARP、 GBR和 MBR;
第三种方式,如果 AF修改已提供的业务信息或 UE请求修改已分配的 资源, 那么 H-PCRF进行 QoS授权, 更新已制定的 PCC规则。 该 PCC规 则和 QoS规则的 QoS信息中包含 QCI、 ARP、 GBR和 MBR。
步骤 1802: H-PCRF向 V-PCRF发送 S9会话规则提供消息。
如果 H-PCRF决策为第一种方式, 则 H-PCRF在 S9会话规则提供消息 中携带新制定 PCC规则信息;
如果 H-PCRF决策为第二种方式, 则 H-PCRF在 S9会话规则提供消息 中携带要删除或去激活 PCC规则信息;
如果 H-PCRF决策为第三种方式,则 H-PCRF在消息中携带更新后 PCC 规则信息;
步骤 1803~步骤 1806的具体实现与步骤 1703~步骤 1706完全一致, 这 里不再赘述。
步骤 1807: 如果 V-PCRF接收到的是接受指示, 则 V-PCRF向 PCEF 发送策略计费规则提供消息, 携带 PCC规则。
步骤 1808: PCEF向 V-PCRF返回确认消息。
步骤 1809: V-PCRF向 H-PCRF返回 S9会话规则提供确认消息, 通知 H-PCRF请求接受或拒绝。
图 19为本发明在家乡路由的漫游场景下 (图 7架构) , H-PCRF在制 定策略时请求 BPCF进行接纳控制的流程图 , 本实施例中假设 FMC PF设 置在 V-PCRF中, 作为 V-PCRF的功能增强, 具体流程包括以下步骤: 步骤 1901 : H-PCRF收到 AF提供的业务信息或是 UE发起的资源修改 请求消息后, 进行策略决策。 策略决策可以包括以下 3种方式: 第一种方式,如果 AF提供新的业务信息或 UE发起新的资源分配请求, 那么, H-PCRF进行的 QoS授权, 制定 PCC规则。 该 PCC规则的 QoS信 息中包含 QCI、 ARP、 GBR和 MBR;
第二种方式, 如果 AF通知业务终止或 UE发起资源释放请求, 那么, H-PCRF进行 QoS授权, 决定删除或去激活对应的 PCC规则。 该要删除或 去激活 PCC规则的 QoS信息中包含 QCI、 ARP、 GBR和 MBR;
第三种方式,如果 AF修改已提供的业务信息或 UE请求修改已分配的 资源, 那么 H-PCRF进行 QoS授权, 更新已制定的 PCC规则。 该 PCC规 则的 QoS信息中包含 QCI、 ARP、 GBR和 MBR。
步骤 1902: H-PCRF向 P-GW发送策略计费规则提供消息, 其中携带 有 PCC规则。
步骤 1903: P-GW执行 PCC规则, 执行承载绑定。
步骤 1904: P-GW根据承载绑定的结果, 向 ePDG发送创建承载请求 或更新承载请求或删除承载请求, 并在消息中携带 QoS信息。
步骤 1905: ePDG向 V-PCRF发送网关控制和 QoS规则请求消息, 在 网关控制和 QoS规则请求消息中携带 QoS信息, 其中,
如果 ePDG收到的是创建承载请求, 那么, ePDG在网关控制和 QoS 规则请求消息中携带请求分配资源的指示以及 QoS信息中的 GBR, 以请求 V-PCRF分配带宽资源 GBR;
如果 ePDG收到的是删除承载请求, 那么, ePDG在网关控制和 QoS 规则请求消息中携带请求释放资源的指示以及 QoS信息中的 GBR, 以请求 V-PCRF释放带宽资源 GBR;
如果 ePDG收到的是更新承载请求, 那么, ePDG将根据更新的 QoS 信息中的 GBR与已分配 GBR的增量向 V-PCRF请求, 如果更新后的 GBR 减小了, 则 ePDG在网关控制和 QoS规则请求消息中携带的 GBR为 GBR 的增量,并携带请求释放资源的指示;如果更新后的 GBR增加了,则 ePDG 在网关控制和 QoS规则请求消息中携带 GBR为 GBR增量, 并携带请求分 配资源的指示。
步骤 1906: V-PCRF向 BPCF发送 QoS授权请求, 在 QoS授权请求中 携带有步骤 1905中获得的 QoS信息。
步骤 1907: BPCF根据 V-PCRF的请求消息 , 执行相应的策略。
如果 BPCF接收到请求分配带宽资源 GBR, BPCF根据签约固网线路 当前可用带宽情况进行资源接纳控制:如果剩余的可用带宽大于等于 GBR, 则 BPCF接收 V-PCRF的请求,并向 V-PCRF返回接收确认消息,同时 BPCF 将从签约固网线路当前可用带宽中扣除 GBR; 如果剩余的可用带宽小于 GBR, 则 BPCF拒绝 V-PCRF的请求, 并向 V-PCRF返回拒绝消息, 并消 息中携带 BPCF能够接受的带宽;
如果 BPCF接收到请求释放带宽资源 GBR, 则 BPCF直接返回接收确 认消息, 同时 BPCF将在签约固网线路当前可用带宽中增加 GBR。
此外, ePDG向 V-PCRF或 FMC PF提供的 QoS信息还可包括 QCI、
ARP等信息 , V-PCRF或 FMC PF进一步把改信息提供给 BPCF。 BPCF在 执行资源接纳控制后 (执行资源接纳控制时, 除了考虑目前可用的剩余带 宽是否能够满足请求的带宽外, 还会综合考虑 QCI和 /或 ARP, 以决定是否 接受或拒绝 QoS授权请求。
步骤 1908: BPCF向 V-PCRF返回 QoS授权请求确认消息, 在 QoS授 权请求确认消息中携带有步骤 1907中决策的信息。
步骤 1909: V-PCRF根据 BPCF返回消息进行策略决策。
如果 V-PCRF接收到的是接受确认消息 (包括接收资源分配和资源释 放) , 则执行步骤 1910, 携带接受指示;
如果 V-PCRF接收到的是拒绝消息, 那么, V-PCRF将根据 QoS信息 的 ARP执行以下逻辑判断: V-PCRF根据 ARP将该 QoS信息与该用户自 身已经 QoS授权的其他 QoS信息以及通过同一个宽带线路接入的所有其他 用户的已经授权的 QoS信息进行比较, 如果该 QoS信息无法抢占其他的 QoS信息的资源, 则执行步骤 S1910, 携带拒绝指示, 如果该 QoS信息可 以抢占其他用户已经授权的 QoS信息的资源, 则 V-PCRF发起授权被抢占 的 QoS信息的流程 (该流程可以通过现有的删除和去激活 QoS规则的流程 实现) 。 此外, V-PCRF再次向 BPCF发送宽带会话 QoS请求消息, BPCF 分配带宽后, 确认消息, V-PCRF执行步骤 1910, 携带接受指示。
步骤 1910: V-PCRF向 ePDG返回确认消息, 携带接受或拒绝指示。 需要说明的是, 如果 FMC PF是作为独立的网元实体, 将执行步骤 1905a~步骤 1910a以替代上述步骤 1905~步骤 1910,步骤 1905a~步骤 1910a 与步骤 1905~步骤 1910类似,不同之处在于用 FMC PF替换 V-PCRF即可。
步骤 1911 : ePDG向 P-GW返回应答消息, 携带接受或拒绝消息。 对于非漫游场景下 (图 15和图 16 ) , PCRF在制定策略时请求 BPCF 进行接纳控制的流程, 只要在图 18的流程中将 V-PCRF作为 PCRF, 省略 所有 V-PCRF与 H-PCRF的交互过程即可。
在本发明中, 并不限定 ePDG与 PCRF, ePDG与 V-PCRF或 ePDG与 FMC PF之间交互的协议以及消息类型(如 Diameter,远程用户拨号认证协 议 ( Remote Authenticatin Dial In User Service, 简称 RADIUS ) , DHCP协 议和 GPRS隧道协议 ( GPRS Tunnel Protocol, 简称 GTP )协议等, ePDG 向 PCRF, V-PCRF或 FMC PF发送消息的目的是触发 PCRF, V-PCRF或 FMC PF发起与 BPCF的 S9*会话建立并提供必要的信息即可。
以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保 护范围, 凡在本发明的精神和原则之内所作的任何修改、 等同替换和改进 等, 均应包含在本发明的保护范围之内。

Claims

权利要求书
1、 一种实现固定宽带接入网接入的策略控制方法, 其特征在于, 在用 户请求接入的移动网中设置固网移动融合策略功能 FMC PF; 该方法还包 括:
FMC PF接收到来自演进的分组数据网关 ePDG的触发消息后,向固定 宽带接入网中的宽带策略控制架构 BPCF请求建立策略控制会话;
所述固定宽带接入网根据 FMC PF通过所述策略控制会话传送的服务 质量 QoS规则或 QoS信息执行接纳控制。
2、 根据权利要求 1所述的策略控制方法, 其特征在于,
所述 FMC PF作为独立的功能实体, 或集成在策略和计费规则功能
PCRF中。
3、 根据权利要求 1所述的策略控制方法, 其特征在于, 所述 FMC PF 接收到来自所述 ePDG的所述触发消息为:携带有因特网 Internet协议安全 性 IPSec外部隧道信息的网关控制会话建立消息或携带有 IPSec外部隧道信 息的动态主机配置协议 DHCP请求消息;
所述 IPSec外部隧道信息包括 ePDG接收到的所述 UE的本地 IP地址。
4、 根据权利要求 3所述的策略控制方法, 其特征在于, 所述 FMC PF 向 BPCF请求建立策略控制会话包括:
所述 FMC PF根据所述 UE本地 IP地址确定所述 UE当前接入的固定 宽带接入网的 BPCF或 BPCF位于的固定宽带接入网的入口点, 并向所述 BPCF发送 S9*会话建立消息, 在 S9*会话建立消息中携带有所述 IPSec外 部隧道信息。
5、根据权利要求 3或 4所述的策略控制方法,其特征在于, 所述 IPSec 外部隧道信息包括源端口号。
6、 根据权利要求 1所述的策略控制方法, 其特征在于, 所述用户非漫游时, 所述用户请求接入的移动网为所述用户归属的公 共陆地移动网络 PLMN;
所述用户漫游时, 所述用户请求接入的移动网为所述用户拜访的
PLMN。
7、 根据权利要求 1所述的策略控制方法, 其特征在于, 所述请求建立 策略控制会话及固定宽带接入网执行接纳控制具体包括:
所述 FMC PF获得 PCC规则、 QoS规则或 QoS请求后, 通过所述策 略控制会话向 BPCF传送所述 QoS规则或所述 QoS信息。
8、 根据权利要求 7所述的策略控制方法, 其特征在于, 所述 FMC PF 作为独立的功能实体; 所述 FMC PF获得 QoS规则或 QoS信息为: 所述 FMC PF从 ePDG获得所述 QoS请求。
9、 根据权利要求 7所述的策略控制方法, 其特征在于, 所述 FMC PF 集成在 PCRF中; 所述 FMC PF获得 PCC规则、 QoS规则或 QoS请求为: 所述用户非漫游时,所述 PCRF制定 PCC规则和 /或 QoS规则; 所述用 户漫游时 , 所述 PCRF从用户归属的 PLMN的 PCRF获取 PCC规则或 QoS 规则;
或者, 所述 PCRF从 ePDG获取 QoS请求。
10、 根据权利要求 8或 9所述的策略控制方法, 其特征在于, 所述固 定宽带接入网根据请求进行资源接纳控制包括:
如果所述 BPCF接收到请求分配带宽资源 GBR, 所述固定宽带接入网 根据签约固网线路当前可用带宽情况进行资源接纳控制: 在剩余的可用带 宽大于等于 GBR时, 所述固定宽带接入网接受所述用户当前请求接入的移 动网的 FMC PF的请求, 并向所述用户当前请求接入的移动网的 FMC PF 返回接收确认消息, 同时固定宽带接入网将从签约固网线路当前可用带宽 中扣除 GBR; 在剩余的可用带宽小于 GBR时,所述固定宽带接入网拒绝所 述用户当前请求接入的移动网的 FMC PF的请求, 并向所述用户当前请求 接入的移动网的 FMC PF返回拒绝消息 , 并消息中携带 FMC PF能够接受 的带宽;
如果所述 BPCF接收到请求释放带宽资源 GBR , 则所述 BPCF直接返 回接收确认消息, 同时所述固定宽带接入网将在签约固网线路当前可用带 宽中增加 GBR。
11、根据权利要求 10所述的策略控制方法, 其特征在于, 若所述 FMC PF接收到拒绝消息, 该方法还包括:
所述 FMC PF根据分配保持优先级 ARP执行资源抢占。
12、 一种实现固定宽带接入网接入的策略控制系统, 其特征在于, 至 少包括 ePDG、 FMC PF和 BPCF, 其中,
ePDG, 用于向 FMC PF发送触发消息;
FMC PF, 设置在用户当前请求接入的移动网中, 用于接收来自 ePDG 的触发消息, 向 BPCF请求建立策略控制会话;
BPCF, 用于接收来自 FMC PF的请求, 根据通过所述策略控制会话传 送的服务质量 QoS规则或 QoS信息执行接纳控制或委托其他固定宽带接入 网网元执行接纳控制。
13、 根据权利要求 12所述的策略控制系统, 其特征在于,
所述 FMC PF, 具体用于获得包含有保障带宽 GBR的 PCC规则、 QoS 规则或 QoS请求, 通过所述策略控制会话向 BPCF传送所述 QoS规则或 QoS信息。
14、根据权利要求 13所述的策略控制系统,其特征在于,所述 FMC PF 作为独立的功能实体;
该系统还包括 PCRF,用于向所述 FMC PF提供 PCC规则或 QoS规则; 或者, 所述 ePDG, 还用于向所述 FMC PF提供 QoS请求。
15、根据权利要求 12所述的策略控制系统,其特征在于,所述 FMC PF 集成在 PCRF中;
所述 PCRF, 用于在所述用户非漫游时, 制定 PCC规则或 QoS规则; 在所述用户漫游时, 从用户归属的 PLMN的 PCRF获取 PCC规则或 QoS 规则;
或者, 所述 PCRF, 用于从 ePDG获取 QoS请求。
16、根据权利要求 13所述的策略控制系统, 其特征在于, 在所述 FMC PF接收到 BPCF的拒绝消息时 , 所述 FMC PF, 还用于根据 ARP执行资源 抢占。
PCT/CN2011/077572 2010-08-12 2011-07-25 一种实现固定宽带接入网接入的策略控制方法及系统 WO2012019507A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP11816066.2A EP2597908B1 (en) 2010-08-12 2011-07-25 Policy control method and system for a fixed broadband access network
US13/814,678 US8542587B2 (en) 2010-08-12 2011-07-25 Policy control method and system for accessing fixed broadband access network

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010255023.9 2010-08-12
CN201010255023 2010-08-12

Publications (1)

Publication Number Publication Date
WO2012019507A1 true WO2012019507A1 (zh) 2012-02-16

Family

ID=45567357

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/077572 WO2012019507A1 (zh) 2010-08-12 2011-07-25 一种实现固定宽带接入网接入的策略控制方法及系统

Country Status (4)

Country Link
US (1) US8542587B2 (zh)
EP (1) EP2597908B1 (zh)
CN (1) CN102378280B (zh)
WO (1) WO2012019507A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102271405B (zh) * 2010-06-04 2014-09-10 中兴通讯股份有限公司 一种承载资源分配方法及装置
CN103327471B (zh) * 2012-03-20 2016-06-22 电信科学技术研究院 一种接口建立方法及装置
CN103533599A (zh) * 2012-07-03 2014-01-22 中兴通讯股份有限公司 一种固网移动融合场景下的策略控制方法
CN104427006A (zh) * 2013-08-22 2015-03-18 中兴通讯股份有限公司 网络地址的处理方法、装置、系统、wlan及ue
WO2015051536A1 (zh) * 2013-10-11 2015-04-16 华为技术有限公司 信息传输方法和装置
RU2691083C1 (ru) * 2015-08-28 2019-06-10 Хуавэй Текнолоджиз Ко., Лтд. Устройство, способ и система обработки пользовательских данных
US10231250B2 (en) * 2017-03-20 2019-03-12 Qualcomm Incorporated Policy communication via control plane signaling
WO2019101606A1 (en) * 2017-11-24 2019-05-31 Deutsche Telekom Ag Access network with remote access servers
EP3732833B1 (en) * 2017-12-28 2023-02-01 Telefonaktiebolaget LM Ericsson (publ) Enabling broadband roaming services
US11026124B2 (en) * 2018-07-02 2021-06-01 Mediatek Inc. Enhanced handling on 5G QoS operations

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1980409A (zh) * 2005-12-06 2007-06-13 中国移动通信集团公司 通过数据业务管理系统与短信网关交互的方法
CN101512971A (zh) * 2006-08-28 2009-08-19 摩托罗拉公司 基于网际协议多媒体子系统的通信系统中的策略管理方法和装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080049648A1 (en) * 2006-08-28 2008-02-28 Motorola, Inc. Method and apparatus for policy management for an internet protocol multimedia subsystem based wireless communication system
AU2006348737B2 (en) * 2006-09-26 2012-05-10 Telefonaktiebolaget Lm Ericsson (Publ) Policy control architecture comprising an indepent identity provider
CN101163091B (zh) * 2006-10-10 2011-05-11 华为技术有限公司 一种资源接纳控制系统及方法
WO2008141675A1 (en) * 2007-05-22 2008-11-27 Telefonaktiebolaget Lm Ericsson (Publ) Method, apparatuses and computer program for dynamically configuring a proxy call session control function of the ip multimedia subsystem from a policy control rules server
EP2204066B1 (en) * 2007-10-25 2017-06-28 Cisco Technology, Inc. Interworking gateway for mobile nodes
US8942112B2 (en) * 2008-02-15 2015-01-27 Cisco Technology, Inc. System and method for providing selective mobility invocation in a network environment
CN101795244B (zh) * 2009-01-14 2015-07-15 星之家有限责任公司 Ip通信网络或子网络之间的网络互操作性
US8189567B2 (en) * 2009-01-29 2012-05-29 Telefonaktiebolaget L M Ericsson (Publ) Method and nodes for registering a terminal
CN101730142B (zh) * 2009-06-30 2012-09-05 中兴通讯股份有限公司 多分组数据网络连接的建立方法以及装置
JP5576946B2 (ja) * 2010-01-05 2014-08-20 テレフオンアクチーボラゲット エル エム エリクソン(パブル) ゲートウェイセッション確立のための方法及び装置
EP2547046B1 (en) * 2010-04-29 2017-06-07 Huawei Technologies Co., Ltd. Method, apparatus and system for correlating session
US8495713B2 (en) * 2010-05-17 2013-07-23 Telefonaktiebolaget L M Ericsson (Publ) Systems and methods for host authentication
CN102316444B (zh) * 2010-07-06 2016-06-29 中兴通讯股份有限公司 一种对用户设备进行服务质量控制的系统及方法
CN102340866B (zh) * 2010-07-14 2016-04-13 中兴通讯股份有限公司 一种上报固网接入信息的方法及系统
CN102771180A (zh) * 2010-12-03 2012-11-07 华为技术有限公司 不同网络间寻址的实现方法、路由代理网元及系统

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1980409A (zh) * 2005-12-06 2007-06-13 中国移动通信集团公司 通过数据业务管理系统与短信网关交互的方法
CN101512971A (zh) * 2006-08-28 2009-08-19 摩托罗拉公司 基于网际协议多媒体子系统的通信系统中的策略管理方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2597908A4 *

Also Published As

Publication number Publication date
US20130142046A1 (en) 2013-06-06
EP2597908B1 (en) 2019-09-11
EP2597908A4 (en) 2017-08-23
US8542587B2 (en) 2013-09-24
EP2597908A1 (en) 2013-05-29
CN102378280A (zh) 2012-03-14
CN102378280B (zh) 2015-01-28

Similar Documents

Publication Publication Date Title
WO2012019507A1 (zh) 一种实现固定宽带接入网接入的策略控制方法及系统
US8849273B2 (en) Method and system for reporting fixed network access information
US9351325B2 (en) Policy control method and system for converged network
WO2013064070A1 (zh) 一种实现反射QoS机制的方法、系统和PCRF
US9271220B2 (en) Policy control method and system
US20140013383A1 (en) Network node and method to control routing or bypassing of deployed traffic detection function nodes
US9113436B2 (en) Method and system for information transmission
WO2012058998A1 (zh) 漫游场景下支持ip流迁移的策略计费控制方法和系统
US9544832B2 (en) Method, apparatus and system for policy control
WO2010081329A1 (zh) 业务流迁移过程中对网络资源进行控制的方法和系统
WO2011006317A1 (zh) 删除家乡策略和计费规则功能冗余信息的方法及系统
WO2014173340A1 (zh) 一种网间签约授权的计费策略方法及装置
US9609028B2 (en) Method, apparatus and system for establishing session
WO2013020448A1 (zh) 一种信息传输方法、分组数据网关及策略和计费规则功能
WO2014048197A1 (zh) 用户设备选择拜访公共陆地移动网络的方法、系统和设备
WO2012010036A1 (zh) 一种策略控制方法及系统
WO2014048191A1 (zh) 一种选择vplmn的方法、系统及分组数据网络网关
WO2012155774A1 (zh) S9子会话建立方法、系统及pcrf
WO2012146092A1 (zh) 一种ip流迁移的策略控制方法及系统
WO2012126311A1 (zh) 创建和删除Diameter路由代理中绑定信息的方法及系统、H-PCRF
WO2012022221A1 (zh) 一种触发固网移动融合策略协商的方法及系统
WO2013152655A1 (zh) 一种融合网络中的策略控制方法及系统
WO2012022218A1 (zh) 一种建立会话、策略下发的方法和系统
WO2012079443A1 (zh) 一种基站间切换资源控制的方法
WO2013020451A1 (zh) 一种建立会话的方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11816066

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13814678

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011816066

Country of ref document: EP