WO2012019499A1 - Bis[-6-oxo-(-3-m-nitrobenzene sulfonyl-succinic acid-1,4-monoester-4-)-]-β-cyclodextrin, preparation process and use thereof - Google Patents

Bis[-6-oxo-(-3-m-nitrobenzene sulfonyl-succinic acid-1,4-monoester-4-)-]-β-cyclodextrin, preparation process and use thereof Download PDF

Info

Publication number
WO2012019499A1
WO2012019499A1 PCT/CN2011/076885 CN2011076885W WO2012019499A1 WO 2012019499 A1 WO2012019499 A1 WO 2012019499A1 CN 2011076885 W CN2011076885 W CN 2011076885W WO 2012019499 A1 WO2012019499 A1 WO 2012019499A1
Authority
WO
WIPO (PCT)
Prior art keywords
ticarcillin
cyclodextrin
bis
chiral
monoester
Prior art date
Application number
PCT/CN2011/076885
Other languages
French (fr)
Chinese (zh)
Inventor
沈静茹
Original Assignee
中南民族大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中南民族大学 filed Critical 中南民族大学
Publication of WO2012019499A1 publication Critical patent/WO2012019499A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/29Chiral phases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0009Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid alpha-D-Glucans, e.g. polydextrose, alternan, glycogen; (alpha-1,4)(alpha-1,6)-D-Glucans; (alpha-1,3)(alpha-1,4)-D-Glucans, e.g. isolichenan or nigeran; (alpha-1,4)-D-Glucans; (alpha-1,3)-D-Glucans, e.g. pseudonigeran; Derivatives thereof
    • C08B37/0012Cyclodextrin [CD], e.g. cycle with 6 units (alpha), with 7 units (beta) and with 8 units (gamma), large-ring cyclodextrin or cycloamylose with 9 units or more; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • C08L5/16Cyclodextrin; Derivatives thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • G01N2030/8809Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample
    • G01N2030/8877Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample optical isomers

Definitions

  • the present invention relates to a chiral selector bis[-6-oxo-(-3-m-nitrophenylsulfonyl-succinic acid-1,4-monoester-4-)-]- ⁇ -cyclodextrin and Preparation methods and uses.
  • chiral drugs refers to the presence of a chiral factor in the molecular structure of a drug.
  • the pharmacological action of the drug is achieved by strict chiral recognition and matching with macromolecules in the body.
  • the amino acids constituting the protein are all L-amino acids, and the monosaccharides constituting the polysaccharide and the nucleic acid are D-monosaccharides.
  • the enantiomer molecules are chiral proteins and enzymes in the body. And receptors are treated with two different molecules. Due to the chiral characteristics of the human body, in many cases, there is a significant difference in the pharmacological activity, metabolic processes, metabolic rate and toxicity of a pair of enantiomers of chiral drugs in terms of absorption, distribution and excretion. There are differences, and mutual transformations may occur between enantiomers.
  • the effective separation and purification of the enantiomers of the chiral drugs can more effectively ensure the safety of medication and improve the level of social medical care, becoming an important task for researchers.
  • the in vitro activities of the two enantiomers of the ⁇ -receptor blocking drug propranolol are 98 times different; L-dopa is a drug for treating Parkinson's disease, and the truly therapeutically active compound is L.
  • - L-dopamine which must be enantiomerically pure L-dopa, is required to be converted into L-dopamine by the specific enzyme in the human body.
  • the dose is wider and the response is smaller at dose setting; more confidence in dose selection.
  • the production of a single enantiomeric chiral drug can save resources, reduce the cost of new drug listings for clinical pharmacology and pharmacokinetic studies, reduce waste emissions, and reduce environmental pollution.
  • the racemic resolution method is a method for separating a racemic compound into a pure enantiomer compound by a chiral selector (chiral auxiliary), and is further divided into a chemical resolution method, an enzyme or a microorganism.
  • Method chromatographic resolution. Among them, the chromatographic resolution method showed superiority.
  • the chiral drug ranolazine was separated and purified by chromatography. The purity of single enantiomer was over 98%.
  • omeprazole The resolution of omeprazole was the highest purity of S-omeprazole to 98.71. %, R-omeprazole has a purity of up to 95.47%.
  • Liquid chromatography is included in the racemic resolution method. Liquid Phase chromatography is considered to be the best method for determining enantiomeric purity and isolating optically pure single enantiomers. It has a wide adaptability and mild operating conditions, and does not cause changes in the configuration of the isolate or destruction of biological activity, and at the same time, two enantiomers with high optical purity can be obtained.
  • ⁇ -cyclodextrin has a good recognition effect on optical isomers.
  • ⁇ -CD derivatization After ⁇ -CD derivatization, a three-dimensional geometric relationship can be constructed near the binding site to form a special chiral site; three-dimensional spatial modification can be performed to expand the cavity or provide a space with a specific geometry to adapt to the guest molecule. Matching; and other action sites that can initiate chiral recognition can also be introduced.
  • the ⁇ -CD chiral stationary phase has been widely used in chiral separation analysis. The main functions of improving enantiomeric separation are: (1) combining a pair of enantiomers of separated solutes to form different structures and properties.
  • ⁇ -CD mainly a C-2, a C-position secondary hydroxyl group, or a complex of a CD modification group and a separated enantiomer to form a different structure and property by hydrogen bonding
  • the tightly packed filling in the cavity and the inclusion of the short-range van der Waals force can improve the separation efficiency and is suitable for many chromatographic separation modes, which is favored by many researchers. For example, Xin Wang et al. used a seven-(6-azido-6-deoxy-2,3-2-0-phenylcarbamoyl) ⁇ -CD bonded chiral stationary phase packed semi-preparative column for separation by high performance liquid chromatography.
  • the ⁇ -blocking drug propranolol was prepared, and the propranolol enantiomer was prepared by batch separation using simulated moving bed chromatography.
  • XinWang et al. used perphenoylated ⁇ -CD bonded silica gel.
  • the stationary phase, three of the four enantiomers of Nadolol were separated by high performance liquid chromatography, and the most active (RSR)-Nadolol in the four enantiomers was completely separated.
  • a high purity target enantiomer (RSR)-Nadolol was isolated from the Nadolol enantiomer by five-zone simulated moving bed chromatography.
  • the object of the present invention is to provide a chiral selector bis[-6-oxo-(-3-m-nitrophenylsulfonyl-succinic acid-1,4-monoester-4-)-]- ⁇ -cyclodextrin And a preparation method and use thereof, as a chiral selector, a ⁇ -cyclodextrin derivative containing two functional groups of m-nitrobenzenesulfonyl (N0 2 C 6 H 5 S0 2 ) and succinate (OOCCHCHCOOH)
  • the chiral selector can be directly coated or bonded to the silica gel beads or the quartz tube wall to prepare a chiral stationary phase.
  • the present invention provides a chiral selector of ⁇ -cyclodextrin, which is a disubstituted ⁇ -cyclodextrin A with maleic anhydride by controlling the reaction conditions.
  • ⁇ -cyclodextrin which is a disubstituted ⁇ -cyclodextrin A with maleic anhydride
  • the reaction conditions After the hydroxyl group hydrogen on the 6-position carbon on the D ring, the m-nitrobenzenesulfonyl group is added to the double bond of the butylene group, and the m-nitrobenzenesulfonyl group is added to the 3-position carbon of the succinic acid. And formed.
  • Its molecular formula is: C 62 H 84 0 49 N 2 S 2 .
  • the present invention also provides a synthesis method for preparing the above ⁇ -cyclodextrin chiral selector, bis[-6-oxo-(-3-m-nitrophenylsulfonyl-succinic acid-1, 4-monoester-4-)-]- ⁇ -cyclodextrin preparation method, ⁇ -cyclodextrin is abbreviated as ⁇ -CD, which is characterized by the following steps: (1), first use 1 mol of nitrobenzene and 1-lOmol chlorosulfonic acid 80-150 ° C heating reaction to obtain m-nitrobenzenesulfonyl chloride; (; 2), and then 2-30 mol maleic anhydride and lmoip-CD, 60-120 ° C heating reaction to obtain a double (6-oxo-butenedioic acid monoester) - ⁇ -CD, abbreviated as P-CD-A 2 ; (3), then lmoip-CD-A 2 and 2-30
  • the ⁇ -cyclodextrin structure compound prepared by the invention can be prepared as a chiral stationary phase by directly coating or bonding on a carrier such as silica gel beads or a quartz tube wall, or can be added as a chiral additive to a mobile phase. Separation, purification and provision of new qualitative and quantitative methods for chiral substances.
  • the chiral selector of the present invention is suitable as a chiral stationary phase for instruments such as high performance liquid chromatography (HPLC), gas chromatography (GC), and high performance capillary electrophoresis (HPCE).
  • HPLC high performance liquid chromatography
  • GC gas chromatography
  • HPCE high performance capillary electrophoresis
  • the prepared stationary phase has strong chiral recognition ability and good stability, and can be separated, analyzed or purified to prepare a single enantiomer by chiral material of analytical and preparative chiral column materials.
  • the present invention has the following effects: 1. Purified D ( + ) - ticarcillin and L (-) - tica can be established from the racemic body of the drug by using a preparative chiral HPLC column. Xilin and (X-phenylethyl alcohol, 1-phenylpropanol two single enantiomers pure. 2. Separation and determination of ticarcillin, (X-phenylethyl alcohol, styrene-acrylic) by analytical chiral HPLC column A new method for the content of single enantiomers of alcohol has been published by the Wuhan Science and Technology Research and Search Center of the Chinese Academy of Sciences. No report has been reported in the literature.
  • the instruments and reagents used in the present invention are:
  • the binding energy of Ols is The double peaks of 538.4eV and 532.25 eV are consistent with oxygen in maleic anhydride; the binding energy of Cls in P-CD-A 2 is 284.6eV and the binding energy of Ols is 531.17eV; P-CD- The binding energy of Cls in M 2 is 284.59 eV, the binding energy of Ols is 530.23 eV, the binding energy of Nls is 399.82 eV, and the binding energy of S2p is 166.6 eV. It is apparent on the P-CD-M 2 XPS spectrum that the XPS bands of N and S are more than P-CD-A 2 , indicating that the group containing the N and S elements has been bonded to P-CD-A 2 . on.
  • reaction materials P-CD, P-CD-A 2 and product P-CD-M 2 were identified by NMR, including: 13 C NMR, 'H NMR and HMBC (1H detection of heteronuclear multi-bond correlation test) ), HSQC (Nuclear single quantum coherent test for 1H detection) (H number is the same as C number).
  • Figure 11 is a 13 C NMR chart of ⁇ -CD, which can be obtained as CI: 101.83 C2: 73.07 C3: 72.06 C4: 81.12 C5: 71.81 C6: 60.28.
  • Figure 12 is a 1 H NMR chart of ⁇ -CD, showing that ⁇ 4.989 is hydrogen on C6 hydroxyl group (-OH), ⁇ 2.148, S3.484-3.591 and S3.771-3.912 are C6 (-CH 2 -) Hydrogen on the methylene group, hydrogen at the C1 position of the 54.680 3 ⁇ 4 CD ring, ⁇ 3.5-4.0 is the hydrogen on the C2, C3, C4, C5, and the 1 H NMR spectrum of Figure 14p-CD-A 2 is shown in Figure 2.12P.
  • Figure 15C-H direct correlation diagram can further show that C6: 30.35 is directly related to ⁇ 2.142, C1 is directly related to hydrogen at ⁇ 4.680, and ⁇ 3.5-4.0 hydrogen is directly related to C2, C3, C4, C5. ⁇ 6.0-6.5 hydrogen directly with C14, C15
  • Figure 16C-H remote correlation diagram shows that hydrogen ⁇ 6.0-6.5 on the double bond is remotely related to CI and remotely related to C5. It is also remotely related to C14 and C15.
  • Figure 17 is a 13 C NMR nuclear magnetic diagram of P-CD-M 2 . Because of the 400 mega NMR, the instrument sensitivity is low, and the chemical shifts of the corresponding 6 C on ⁇ -CD are not obvious, but the benzene ring Ar ( C7- C12) and C13-C16 on the branch are obvious: C12: 134.41, C8: 133.10, C10: 132.42, C7: 130.31, C9, C11: 123.97 long chain C16: 166.41; C13: 150.16; C14: 34.03; C15: 40.34;
  • Figure 18 is a 1H NMR nuclear magnetic diagram of ⁇ -CD-M 2 , combined with a two-dimensional nuclear magnetic direct correlation diagram, that is, HMBC (1H detection of heteronuclear multi-bond correlation test), Figure 19 can be obtained: There are 4 sets of peaks on H on the benzene ring. The H directly related to C7 is ⁇ 8.5, the ⁇ directly related to C9 is ⁇ 8.3, the ⁇ directly related to C11 is ⁇ 8.1, and the H directly related to C10 is ⁇ 7.7. The ⁇ 4.989 on the branched hydroxyl group (- ⁇ ) is still strong, and the direct correlation with ⁇ 2.5 is C14: 34.03; C15: 40.34;
  • C13 and H15 hydrogen on CH; hydrogen on C14 and OH;
  • C7 is remotely related to H9, H10, H11 on the aromatic ring
  • C9 is remotely related to H7 and H11
  • C10 is remotely related to H7
  • C11 is remotely related to H7
  • C8 is remotely related to H10 and H11
  • C12 is remotely related to H10 and H9
  • C13 is remotely related to H7, H9, H10, and H11.
  • P-CD-M 2 was isolated and purified by semi-preparative HPLC, and the product was purified by freeze-drying and characterized by mass spectrometry.
  • Semi-preparative HPLC separation chromatographic conditions stationary phase: C18 semi-preparative column; mobile phase: 5% - 10% acetonitrile - 95% - 90% water; flow rate: 2 ml 'min - column temperature: 30 ° C; detection wavelength: 254 nm ; Sample concentration: 5x lO- 3 mol'L- 1 aqueous solution; injection volume 200 ⁇ 1.
  • Mass spectrometry conditions curtain Gas: 10 ml-rnin 1 ; IonSpray Voltage: 5500V; Ion Source Gas: 110 ml-min" 1 ; Declustering Potential: 70 mv.
  • 1699 is the molecular ion peak, which is P-CD-M 2 ( 1704) after the proton loss the result of.
  • the following is the possible fracture mode of P-CD-M 2. If the two pieces of 258 (with 254.4 fragment ion peak) are broken according to the fracture mode (1), 516 fragments are obtained, and the corresponding 515.1 fragment ion peak is present in the mass spectrum; According to the fracture mode (2), there is no fragment similar to 244 or twice the mass-to-charge ratio 488 in the mass spectrum, so that a reasonable fracture of the aromatic ring group is known.
  • the ⁇ -cyclodextrin derivative prepared by the invention can be directly coated or bonded on a carrier such as silica gel or a quartz tube. On the wall, it is prepared as a chiral stationary phase. It can also be added as a chiral additive to the mobile phase for separation and purification of chiral materials and to provide new qualitative and quantitative methods.
  • the chiral selector of the present invention is suitable as a chiral stationary phase for instruments such as high performance liquid chromatography (HPLC), gas chromatography (GC), and high performance capillary electrophoresis (HPCE).
  • HPLC high performance liquid chromatography
  • GC gas chromatography
  • HPCE high performance capillary electrophoresis
  • the prepared stationary phase has strong chiral recognition ability and good stability, and can be prepared as an analytical and preparative chiral column material for separation, analysis or purification of a single enantiomer.
  • the present invention has the following effects: 1. Purified D ( + ) - ticarcillin and L (-) - tica can be established from the racemic body of the drug by using a preparative chiral HPLC column. A new method of Xilin; can also obtain (X-phenylethanol, 1-phenylpropanol two substances single enantiomer pure. 2, analytical chiral HPLC column can be established to determine the determination of ticarcillin, (X- A new method for the content of single enantiomers of phenylethyl alcohol and 1-phenylpropanol was published by the Wuhan Science and Technology Research and Search Center of the Chinese Academy of Sciences. No report was found in the literature.
  • Figure 1 is an ultraviolet scanning spectrum, a: ⁇ -CD; b: P-CD-A 2 ; c: m-nitrobenzenesulfonyl chloride; d: nitrobenzene; e: P-CD-M 2 . .
  • Figure 2 is a ⁇ -CD infrared scan.
  • Figure 3 is an infrared scan of P-CD-A 2 .
  • Figure 4 is an infrared scan of m-nitrobenzenesulfonyl chloride.
  • Figure 5 is a P-CD-M 2 infrared scan.
  • Figure 6 a shows the X-ray photoelectron spectroscopy of ⁇ -CD (full spectrum, VG Multilab 2000).
  • Figure 6b shows the X-ray photoelectron spectroscopy of maleic anhydride (full spectrum, VG Multilab 2000).
  • Figure 6c shows the X-ray photoelectron spectroscopy of P-CD-A 2 (full spectrum, VG Multilab 2000).
  • Figure 6 d is the X-ray photoelectron spectroscopy of P-CD-M 2 (full spectrum, VG Multilab 2000).
  • Figure 7a shows the ⁇ -CD X-ray photoelectron energy C spectrum (VG Multilab 2000).
  • Figure 7b shows the ⁇ -CD X-ray photoelectron energy spectrum (VG Multilab 2000).
  • Figure 8a shows the X-ray photoelectron energy C spectrum of maleic anhydride (VG Multilab 2000).
  • Figure 8b shows the X-ray photoelectron energy spectrum of maleic anhydride (VG Multilab 2000).
  • Figure 9a shows the P-CD-A 2 X-ray photoelectron energy C spectrum (VG Multilab 2000).
  • Figure 9b shows the P-CD-A 2 X-ray photoelectron spectroscopy (VG Multilab 2000).
  • Figure 10a is a P-CD-M 2 X-ray photoelectron energy C spectrum (VG Multilab 2000).
  • Figure 10b is a P-CD-M 2 X-ray photoelectron energy 0 spectrum (VG Multilab 2000).
  • Figure 10c is a P-CD-M 2 X-ray photoelectron energy N spectrum (VG Multilab 2000).
  • Figure 10d is a P-CD-M 2 X-ray photoelectron energy S spectrum (VG Multilab 2000).
  • Figure 11 is a ⁇ -CD 13 C nuclear magnetic map (AVANCE i NMR D 2 0 400 MH Z ).
  • Figure 12 is a ⁇ -CD 1H nuclear magnetic map (AVANCE i NMR D 2 0 400 MH Z ).
  • Figure 13 is a P-CD-A 2 13 C nuclear magnetic map (AVANCE i NMR D 2 0 400 MH Z ).
  • Figure 14 is a P-CD-A 2 1H nuclear magnetic map (AVANCE i NMR D 2 0 400 MH Z ).
  • Figure 15 is a nuclear magnetic diagram of ⁇ -CD-A 2 HSQC (AVA CE i NMR D 2 0 400MH Z ).
  • Figure 16 is a ⁇ -CD-A 2 HMBC nuclear magnetic map (AVA CE i NMR D 2 0 400 MH Z ).
  • Figure 17 is a P-CD-M 2 13 C nuclear magnetic map (AVA CE i NMR DMSO 400 MH Z ).
  • Figure 18 is a P-CD-M 2 1H nuclear magnetic map (AVANCE i NMR D 2 0 400 MH Z ).
  • Figure 19 is a P-CD-M 2 HSQC nuclear magnetic map (AVANCE i NMR DMSO 400 MH Z ).
  • Figure 20 is a P-CD-M 2 HMBC nuclear magnetic map (AVA CE m NMR DMSO 400 MH Z ).
  • Figure 21 is a P-CD-M 2 mass spectrum.
  • Figure 22a is a scanning electron micrograph of a stationary phase of a silicon bead.
  • Figure 22b is a transmission electron micrograph of the stationary phase of P-CD-M 2 bonded silicon beads A.
  • Figure 22c is a transmission electron microscopy scan of the stationary phase of the silicon bead B.
  • Figure 22d is a transmission electron microscopy scan of the stationary phase of P-CD-M 2 bonded silicon beads B.
  • Figure 23a shows a 5,000x scanning electron micrograph of a silicon bead.
  • Figure 23b shows a 10,000x scanning electron micrograph of silicon beads A.
  • Figure 23c shows a 50000x SEM image of a silicon bead.
  • Figure 23d is a 5000x scan electron micrograph of P-CD-M 2 bonded silicon beads A.
  • Figure 23e is a 10,000-fold scanning electron micrograph of P-CD-M 2 bonded silicon beads A.
  • Figure 23f is a 50000x scanning electron micrograph of P-CD-M 2 bonded silicon beads A.
  • Figure 24a shows a 5,000x scanning electron micrograph of a silicon bead.
  • Figure 24b is a 10,000x scanning electron micrograph of silicon beads B.
  • Figure 24c is a scanning electron micrograph of a silicon bead B50000.
  • Figure 24d is a 5000x scan electron micrograph of P-CD-M 2 bonded silicon beads B.
  • Figure 24e is a 10,000-fold scanning electron micrograph of P-CD-M 2 bonded silicon beads B.
  • Figure 24f is a 50000x scanning electron micrograph of P-CD-M 2 bonded silicon beads B.
  • Figure 25 a is an X-ray photoelectron spectroscopy (full spectrum) of silicon beads A.
  • Figure 25b shows the X-ray photoelectron spectroscopy (full spectrum) of the silicon bead B.
  • Figure 25c is an X-ray photoelectron spectroscopy (full spectrum) diagram of P-CD-M 2 bonded silicon beads A.
  • Figure 25 d is an X-ray photoelectron spectroscopy (full spectrum) diagram of P-CD-M 2 bonded silicon beads B.
  • Figure 26a is a plot of the oxygen spectrum XPS of the silica beads.
  • Figure 26 b is a silicon bead A silicon spectrum XPS map.
  • Figure 27a is a B-oxygen XPS map of the silicon beads.
  • Figure 27b is a XPS map of the silicon bead B silicon spectrum.
  • Figure 28a is a carbon spectrum XPS map of P-CD-M 2 bonded silicon beads A.
  • Figure 28b is a P-CD-M 2 bonded silica bead A oxygen spectrum XPS map.
  • Figure 28c is a P-CD-M 2 bonded silica bead A nitrogen spectrum XPS map.
  • Figure 28 d is an XPS chromatogram of the P-CD-M 2 bonded silica beads A sulfur spectrum.
  • Figure 28 e is a P-CD-M 2 bonded silicon bead A silicon spectrum XPS map.
  • Figure 29a is a carbon spectrum XPS map of P-CD-M 2 bonded silicon beads B.
  • Figure 29b is a B-oxygen XPS pattern of P-CD-M 2 bonded silicon beads.
  • Figure 29c is a P-CD-M 2 bonded silicon bead B nitrogen spectrum XPS map.
  • Figure 29 d is a P-CD-M 2 bonded silica bead B sulfur spectrum XPS map.
  • Figure 29 e is a P-CD-M 2 bonded silicon bead B silicon spectrum XPS map.
  • Figure 30 is a HPLC diagram of the preparation of the single enantiomer of ticarcillin by semi-preparative chromatography.
  • 31 a is the (-) frontal plot of the purity verification of the HPLC cecascilin single enantiomer collection.
  • Figure 31 b is a (+) post-peak plot of the purity verification of the HPLC ticarcillin single enantiomer collection.
  • Figure 32 a shows the purity of the HPLC ticarcillin single enantiomer collection (acetonitrile system).
  • Figure 32 b shows the purity of the HPLC ticarcillin single enantiomer collection (acetonitrile system).
  • Figure 33 a is a linear (-) front peak area-concentration plot for ticarcillin.
  • Figure 33 b is a linear (-) pre-peak peak height-concentration plot for ticarcillin.
  • Figure 33 c is a linear (+) peak area-concentration plot for ticarcillin separation.
  • Figure 33 a is a linear (+) pre-peak peak height-concentration plot for ticarcillin.
  • Figure 34 is a chromatogram of ⁇ -phenylethanol chromatography (mobile phase 99% n-hexane - 1% absolute ethanol).
  • Figure 35 shows (X-phenylethanol chromatogram (column temperature 27 °C).
  • Figure 36 is a chromatogram of 1-phenylpropanol (mobile phase: 99% n-hexane - 1% methanol).
  • Figure 37 is a chromatogram of 1-phenylpropanol (column temperature: 30 ° C).
  • Figure 38a is a chromatogram of the flow rate: l.OmL'min- 1 of 1-phenylpropanol.
  • Figure 38b is a chromatogram of 1-phenylpropanol at a flow rate of 0.05 mL-rnin 1 .
  • Figure 39 is a chromatogram of mandelic acid chromatogram.
  • ⁇ -cyclodextrin is abbreviated as ⁇ -CD, proceed as follows: (1) First, 123.2 g of nitrobenzene and 350.3 g of chlorosulfonic acid are heated at 100 ° C to obtain m-nitrobenzenesulfonyl chloride; then 22.0 g of maleic anhydride and 17.0 gP-CD, heated at 80 °C to give bis(6-oxo-butenedioic acid monoester)- ⁇ -CD, abbreviated as P-CD-A 2 ; (3), then lmoip-CD-A 2 and 20 mol The reaction of m-nitrobenzenesulfonyl chloride at 60 ° C gives bis[-6-oxo-(-3-m-nitrophen
  • Example 1 A new method for HPLC preparation of ticarcillin single enantiomer
  • This example relates to a method for obtaining purified D ( + ) - ticarcillin and L (-) - ticarcillin from the racemate of the drug.
  • Ticarcillin is a semi-synthetic antibiotic known under the chemical name 6-(2-carboxy-2-thiophen-3-ylacetyl)aminopenicillanic acid. It is clinically used as a double sodium salt, C 15 H 14 N 2 Na 2 0 6 S 2 , molecular weight 428.40, white to light yellow powder, soluble Water, aqueous solution pH is 6-8.
  • Ticarcillin is a broad-spectrum, highly effective anti-Pseudomonas aeruginosa penicillin, but not resistant to ⁇ -lactamase, orally absorbed, administered intravenously or intramuscularly.
  • Li Yin-Hua et al. determined plasma and urine ticarcillin by HPLC; Watson Ian D et al. determined plasma clavulanic acid and ticarcillin by HPLC; Rice Patrick 0 [43] used HPLC and optical rotation detection Technical combination method for the determination of ticarcillin; Kelly James ⁇ ⁇ [44] and other ⁇ -cyclodextrin and ion exchange ethyl vinyl benzene / divinyl benzene copolymer, poly (styrene - divinyl Benzene was isolated by HPLC for the isomer of ⁇ -lactam antibiotics including ticarcillin. Hoogmartens J et al.
  • This example provides a novel method for preparing purified D ( + ) - ticarcillin and L (-) - ticarcillin, which uses the ⁇ -CD derivative prepared above: bis [-6-oxy-( -3-m-nitrobenzenesulfonyl-succinic acid-1,4-monoester-4-)-]-P-CD (abbreviation: P-CD-M 2 ) bonded two kinds of silicon beads to construct two
  • P-CD-M 2 bonded two kinds of silicon beads to construct two
  • the HPLC stationary phase was characterized by transmission electron microscopy TEM, scanning electron microscope SEM and X-ray photoelectron spectroscopy XPS, which proved that P-CD-M 2 was successfully bonded to the silicon beads.
  • the specifications are: specific surface 60m 2 _g- volume 0.36cm 3 _g- 30nm (silicon beads A) and specific surface
  • the specifications are 60m 2 -g-capacity 0.36cm 3 -g- 1 , 30nm (silicon beads A) and B P-CD-M 2 bonded silicon beads A by scanning electron microscopy scanning, which is magnified 5000 times, 10000 times, The scan result of 50000 times is shown in Fig. 23a, Fig. 23b, Fig. 23c, Fig. 23d, Fig. 23e, Fig. 23f.
  • the specifications are 380 2 -g l , 0.70 cm 3 -g - 10 nm (silicon beads B ) and P-CD-M 2 bonded silicon beads B for scanning electron microscopy scanning, which are magnified 5000 times, 10000 times, 50000 times.
  • the Ols binding energy in the silicon bead A is 531.48 eV, and the Si2p is 103.58 eV; the Ols binding energy in the silicon bead B is 531.81 eV, and the Si2p is 103.68 eV; P-CD-M 2 bonded silicon bead A
  • the XPS spectrum showed that the Cls binding energy was 284.62 eV, the Ols binding energy was 530.65 eV, the S2p was 153.66 eV, and the Si2p was 102.91 eV.
  • the XPS spectrum of P-CD-M 2 bonded silicon beads B showed that the Cls binding energy was 284.62 eV.
  • the binding energy of Ols is 543.32 eV.
  • the Nls peak is unlabeled because of its small intensity.
  • the binding energy is 400.85 [see Figure 28 (c)], the S2p binding energy is 166.84 eV, and the Si2p is 115.8 eV. It is indicated that P-CD-M 2 is successfully bonded to the surface of the silicon beads A and the silicon beads B.
  • the peak area of S in P-CD-M 2 bonded silicon beads A was 10734.44, and the N peak was not obvious;
  • the peak area of S in P-CD-M 2 bonded silicon beads B was 19,460.42, and the N peak area was 798.65. It is shown that the amount of bonding of the surface-bonded P-CD-M 2 of the silicon bead A is less than the amount of bonding of the P-CD-M 2 on the surface of the silicon bead B. That is, the amount of P-CD-M 2 bonded to P-CD-M 2 on a large, smaller-surface-sized silicon bead is significantly lower than that on a small, larger-surface-sized silicon bead.
  • the flow rate was 1 ml_min - the column temperature was 23 ° C.
  • the wavelength of 230 nm and the injection amount of 5 L gave a series of chromatographic separation results. As can be seen from Table 1, when the methanol ratio was 60%, the two enantiomers reached baseline separation.
  • the methanol (A) -50mmol_L- 1 acid aqueous solution (B) was used as the mobile phase, and the mobile phase was as shown in the table.
  • the flow rate was lmhnin- 1
  • the column temperature was 23 ° C
  • the detection wavelength was 230 nm
  • the injection amount was ⁇ , as shown in Table 3. Show.
  • the volume ratio of methanol in the mobile phase is above 60%, baseline separation is achieved.
  • the acetonitrile (A) -50mmoH 1 acid dihydrogen aqueous solution (B) is used as the mobile phase, and the mobile phase is as shown in Table (AB).
  • the flow rate is lml_min - the column temperature is 23 ° C, the detection wavelength is 230 nm, and the injection volume is ⁇ . 4 data show that ticarcillin reached the baseline separation under the above mobile phase ratio conditions, the acetonitrile volume ratio of the mobile phase, the peak shape change, the peak width changed, the elution intensity became larger, and the separation time was significantly shorter.
  • methanol-acid aqueous solution as the mobile phase can cause salting out; acetonitrile-acid dihydrogen aqueous solution can be used as the mobile phase to select a lower organic solvent concentration. Therefore, the above two mobile phases were selected to prepare a single enantiomer of ticarcillin.
  • the composite peak shape is good, the separation degree is large, and the separation time is short.
  • the ratio of 21% acetonitrile-79% 50mmol_L- 1 acid dihydrogen solution is determined as the preparative chromatographic mobile phase.
  • Chromatographic conditions Column: P-CD-M 2 bonding ratio surface 601 ⁇ , volume 0.36cm 3 'g-30nm, 5 ⁇ silica gel column ( ⁇ 10 mmx 150mm), ticarcillin disodium aqueous solution lOmg'mL- 1
  • the column temperature is 23 ° C
  • the flow rate is Sml 'min - 1
  • the detection wavelength is 230 nm
  • the injection amount is 500 ⁇ .
  • the collected ticarcillin front (9.76 - 11.47 min) and the post-peak ( 12.60 - 15.27 min) collected liquids were verified by analytical HPLC, and the results are shown in Fig. 32.
  • the results showed that the collected ticarcillin front and the back peak were single peaks (the peak in the figure is the water peak).
  • ticarcillin disodium solution (pair, 98%) solution, C (mg-mL- 1 ) are: 0.01, 0.05, 0.1, 0.5, 1, 3, 5, 10, 30, 50, P-CD-M 2 bonded silicon beads A as the stationary phase, column type O4.6mmx250mm, column temperature 23 ° C, 70%
  • the aqueous acid solution is a mobile phase
  • the flow rate is lml'I 1
  • the detection wavelength is 230 nm
  • the injection volume is 20 ⁇ .
  • the linear range of separation of ticarcillin is determined under the chromatographic conditions, respectively, peak area-concentration, peak height-concentration curve, The results are shown in Figure 33.
  • P-CD-M 2 can also be used as a chiral additive.
  • High-performance capillary electrophoresis (HPCE) can be used to separate ticarcillin.
  • the effects of acid pH, chiral additive concentration, separation voltage and liquid concentration on separation are also obtained.
  • the nitroaniline was separated by water-methanol as the mobile phase, and the elution was in a pair--;
  • the normal phase mode of the B column was n-hexane-isopropyl alcohol, n-hexane-ethanol as the mobile phase and the reverse phase mode.
  • the nitroaniline was not separated from the baseline by water-methanol as the mobile phase.
  • the elution in the normal phase mode was a pair, and the elution in the reverse phase mode was a pair. It is indicated that different bonding matrices have different effects on the separation of nitroaniline, and the separation column A is selected for quantitative analysis.
  • nitroaniline 1 ⁇ 0% is 1.25%, m-nitroaniline 1 ⁇ 0% is 0.89%, p-nitroaniline 1 ⁇ 0% is 1.96%, with peak area as parameter, nitroaniline 1 ⁇ 0% is 1.04%, The nitroaniline 1 ⁇ 0% was 1.72%, the p-nitroaniline RSD% was 4.32%, and the spiked yield of the intermediate, m-nitroaniline was simulated: p-nitroaniline up to 96.08% -
  • the chiral material was separated by an empty 150 x 4.6 mm column packed with a silica-coated stationary phase as a filler (hereinafter referred to as column C).
  • column C silica-coated stationary phase as a filler
  • the column temperature was 25 °C, the flow rate was 1 ml/min, and the detection wavelength was 254 nm.
  • the mobile phase was 100% n-hexane, ⁇ -phenylethyl alcohol could not be separated under this condition.
  • the chromatographic separation at the time of chromatography was changed.
  • the injection amount of ⁇ -phenylethanol (1.0x lO- 3 M) was lul.
  • the mobile phase composition was selected to be 99% n-hexane-1% absolute ethanol, the column temperature was changed to 40 ° C at 25 ° C, and the injection amount of ⁇ -phenylethanol ( 1.0 x lO" 3 M) was lul.
  • the resolution of the two enantiomers is the largest under the condition of °C, as shown in Figure 35.
  • Example 5 Separation of the chiral compound 1-phenylpropanol from the bonded HPLC column
  • the chromatographic column (hereinafter referred to as column D) filled with a bonded silica gel stationary phase is used to separate the chiral material by using an empty 250 x 4.6 mm column.
  • column D The effects of different mobile phase composition, mobile phase ratio, column temperature, flow rate and other factors on the separation of 1-phenylpropanol. Chromatographic conditions: detection wavelength 225nm, mobile phase n-hexane-methanol, flow rate
  • 1-phenylpropanol concentration is O. l moLI 1 , the injection volume is 5 ⁇ 1, and the column temperature is 23 °C. Instrument: Hitachi LC-7000. (1-phenylpropanol)
  • the chromatographic conditions were as follows: 99% n-hexane-1% methanol mobile phase, flow rate was 1 ml ⁇ -1 , detection wavelength was 225 nm. Column temperature was 24 °C, 27 °C, 30 °C, 33 °C, 37 °C, respectively. , 40 ° C. Column temperature, the substance of the substance, 1-phenylpropanol Leaving. At 30 ° C, the flow relative to the two corresponding isomers basically reached the baseline separation, that is, more than 99.7% (resolution R-1.5), so the separation was better at 30 ° C. As shown in Figure 37.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

Disclosed in the present invention is bis[-6-oxo-(-3-m-nitrobenzene sulfonyl-succinic acid-1,4-monoester-4-)-]-β-cyclodextrin and a preparation process thereof and its use as a chiral selector in high performance liquid chromatography (HPLC). The bis[-6-oxo-(-3-m-nitrobenzene sulfonyl-succinic acid-1,4-monoester-4-)-]-β-cyclodextrin of the present invention is produced by bis-substituting hydrogen in a hydroxyl group on carbon-6 in the A and D rings of β-cyclodextrin by maleic anhydride, and then adding an m-nitrobenzenesulfonyl group to the double bond of cis-butene, wherein the addition of the m-nitrobenzenesulfonyl group is carried out at carbon-3 of succinic acid. Its molecular formula is C62H84O49N2S2. A preparative chiral HPLC column using this derivate can establish a new process for obtaining purified D(+)-ticarcillin and L(-)-ticarcillin from a pharmaceutical racemic body; it can also produce two single enantiopure products of α-phenylethanol and 1-phenylpropanol; and a new process for separating and determining the content of a single enantiomer of a chiral substance such as ticarcillin, α-phenylethanol, 1-phenylpropanol, etc. can be established by using an analytical chiral HPLC column.

Description

双 [-6-氧 -(-3-间硝基苯磺酰基-丁二酸 -1,4-单酯 -4-)-】-P-环糊精  Bis[-6-oxo-(-3-m-nitrophenylsulfonyl-succinic acid-1,4-monoester-4-)-]-P-cyclodextrin
及制备方法和用途 技术领域  And preparation method and use
本发明涉及一种手性选择剂一双 [-6-氧 -(-3-间硝基苯磺酰基-丁二酸 -1,4-单酯 -4-)-]-β-环糊精及制备方法和用途。  The present invention relates to a chiral selector bis[-6-oxo-(-3-m-nitrophenylsulfonyl-succinic acid-1,4-monoester-4-)-]-β-cyclodextrin and Preparation methods and uses.
背景技术 Background technique
手性药物分离纯化是新药研发的热点之一, 受到广泛关注。 HPLC拆分是制备手性 药物单一对映体的一种有效手段, 在众多的手性固定相中, β-环糊精 (CD)及其衍生物 受到众多科研工作者的青睐。手性药物(chiral drug)是指药物的分子结构中存在手性因 素, 药物的药理作用是通过与体内的大分子之间严格的手性识别和匹配而实现的。 构成 蛋白质的氨基酸都是 L-氨基酸,而组成多糖和核酸的单糖都是 D-单糖,药物的外消旋体 引入体内后,其对映体分子均由体内具有手性的蛋白质、酶和受体以两个不同的分子来处 理。 由于人体的手性特征, 在许多情况下, 手性药物的一对对映体在生物体内的药理活 性、 代谢过程、 代谢速率及毒性等存在显著的差异, 在吸收、 分布和排泄等方面也存在 差异, 而且对映体之间还可能会发生相互转化。  Separation and purification of chiral drugs is one of the hot spots in the development of new drugs, and has received extensive attention. HPLC resolution is an effective means of preparing single enantiomers of chiral drugs. Among the many chiral stationary phases, β-cyclodextrin (CD) and its derivatives are favored by many researchers. A chiral drug refers to the presence of a chiral factor in the molecular structure of a drug. The pharmacological action of the drug is achieved by strict chiral recognition and matching with macromolecules in the body. The amino acids constituting the protein are all L-amino acids, and the monosaccharides constituting the polysaccharide and the nucleic acid are D-monosaccharides. After the racemic body of the drug is introduced into the body, the enantiomer molecules are chiral proteins and enzymes in the body. And receptors are treated with two different molecules. Due to the chiral characteristics of the human body, in many cases, there is a significant difference in the pharmacological activity, metabolic processes, metabolic rate and toxicity of a pair of enantiomers of chiral drugs in terms of absorption, distribution and excretion. There are differences, and mutual transformations may occur between enantiomers.
对手性药物对映体进行有效的分离纯化, 更有效地保证用药安全, 提高社会医疗水 平, 成为科研工作者一项重要的工作。 如 β-受体阻断药物普萘洛尔的两个对映体的体外 活性相差 98倍; L-多巴 (L-dopa)是治疗帕金森病的药物, 真正有治疗活性的化合物是 L- 多巴胺 (L-dopamine), 必须服用对映体纯的左旋体多巴, 才能在人体内被专一性酶催化 转化为 L-多巴胺而起效。 如果服用消旋体的话, 右旋体会聚积在体内, 不会被体内的酶 代谢, 从而可能对人体的健康造成危害。在当今常用的 1327个化学合成药物中, 手性药 物 528个, 其中以单一对映体上市的只有 61个, 大部分仍以外消旋体形式销售。这种情 况,无疑给用药安全造成了潜在的威胁,也给研发单一对映体新药提出了更迫切的要求。 临床服用单一对映体的手性药物可以减少药物使用剂量, 降低病人代谢负担, 提高剂量 的幅度并拓宽用途, 对药物动力学能有更好的控制。在剂量设定时幅度更宽, 反应较小; 在剂量选择时更有信心。 对制药企业而言, 生产单一对映体手性药物可以节省资源, 降 低新药上市进行临床药理学和药物代谢动力学研究的成本, 减少废料排放, 降低对环境 的污染。  The effective separation and purification of the enantiomers of the chiral drugs can more effectively ensure the safety of medication and improve the level of social medical care, becoming an important task for researchers. For example, the in vitro activities of the two enantiomers of the β-receptor blocking drug propranolol are 98 times different; L-dopa is a drug for treating Parkinson's disease, and the truly therapeutically active compound is L. - L-dopamine, which must be enantiomerically pure L-dopa, is required to be converted into L-dopamine by the specific enzyme in the human body. If the racemate is taken, the right-handed body will accumulate in the body and will not be metabolized by the enzymes in the body, which may cause harm to human health. Among the 1327 chemical synthetic drugs commonly used today, there are 528 chiral drugs, of which only 61 are listed as single enantiomers, and most of them are still sold as racemates. This situation undoubtedly poses a potential threat to the safety of medication, and also puts more urgent requirements for the development of a single enantiomeric new drug. Clinical use of a single enantiomeric chiral drug can reduce the dosage of the drug, reduce the metabolic burden of the patient, increase the dose range and broaden the use, and have better control over pharmacokinetics. The dose is wider and the response is smaller at dose setting; more confidence in dose selection. For pharmaceutical companies, the production of a single enantiomeric chiral drug can save resources, reduce the cost of new drug listings for clinical pharmacology and pharmacokinetic studies, reduce waste emissions, and reduce environmental pollution.
得到光学纯的对映体不容易, 获得单一对映体的手性化合物有三种方法: 手性源合 成法、 不对称合成法、 外消旋体拆分法。 外消旋体拆分法是在手性选择剂 (手性助剂) 的作用下将外消旋体化合物拆分为纯对映体化合物的方法, 又分为化学拆分法、 酶或微 生物法、 色谱拆分法。 其中色谱拆分法显示出优越性, 采用色谱法分离纯化手性药物雷 诺嗪, 单一对映体制备纯度达到 98%以上; 奥美拉唑拆分结果为 S-奥美拉唑纯度最高达 到 98.71%, R-奥美拉唑纯度最高为 95.47%。 液相色谱就包含在外消旋体拆分法中。 液 相色谱被认为是测定对映体纯度和分离制备光学纯单一对映体的最好方法。 它适应范围 广, 操作条件温和, 不会发生分离物构型变化或生物活性被破坏等现象, 同时能得到高 光学纯的两种对映异构体。 It is not easy to obtain an optically pure enantiomer. There are three methods for obtaining a chiral compound of a single enantiomer: chiral source synthesis, asymmetric synthesis, and racemic resolution. The racemic resolution method is a method for separating a racemic compound into a pure enantiomer compound by a chiral selector (chiral auxiliary), and is further divided into a chemical resolution method, an enzyme or a microorganism. Method, chromatographic resolution. Among them, the chromatographic resolution method showed superiority. The chiral drug ranolazine was separated and purified by chromatography. The purity of single enantiomer was over 98%. The resolution of omeprazole was the highest purity of S-omeprazole to 98.71. %, R-omeprazole has a purity of up to 95.47%. Liquid chromatography is included in the racemic resolution method. Liquid Phase chromatography is considered to be the best method for determining enantiomeric purity and isolating optically pure single enantiomers. It has a wide adaptability and mild operating conditions, and does not cause changes in the configuration of the isolate or destruction of biological activity, and at the same time, two enantiomers with high optical purity can be obtained.
Cramer等人首先发现了 β 环糊精(CD)对光学异构体有较好的识别作用。 β— CD 衍生化后, 可以在结合位点附近构筑立体几何关系, 形成特殊的手性位点; 进行三维空 间修饰, 扩大结合空腔或者提供有特定几何形状的空间, 以与客体分子有适应的匹配; 而且还可引入其它能起手性识别的作用位点。 β— CD类手性固定相在手性分离分析中得 到了广泛的应用, 改进对映体分离的主要作用是: (1 ) 分别结合被分离溶质的一对对映 体, 形成不同结构和性质的包结物; (2) β— CD的羟基, 主要是 C-2, C-3位仲羟基, 或 CD修饰基团与被分离对映体以氢键形成不同结构、 性质的复合体; (3 ) 空腔内紧密 适度的填充、短程范德华作用力稳定形成的包结物。天然 β— CD经过衍生化能提高分离 效能, 适用于多种色谱分离模式, 受到很多科研工作者的青睐。 如 Xin Wang等用七(6- 叠氮基 -6-脱氧 -2, 3-2-0-苯氨基甲酰) β-CD键合手性固定相填充半制备柱用高效液相色 谱法分离了 β-阻断药物普萘洛尔, 并在此基础上用模拟移动床色谱法批量分离制备了普 萘洛尔对映体; XinWang等以全苯氨甲酰化 β-CD键合硅胶为固定相, 用高效液相色谱 分离了纳多洛尔四个对映体中的三个, 并完全分离了四个对映体中最具活性的 (RSR) - 纳多洛尔, 在此基础上采用五区模拟移动床色谱法在纳多洛尔对映体中分离得到了高纯 度的目标对映体(RSR) -纳多洛尔。 用此类手性选择剂制备手性药物有显著的分离纯化 效果, 但种类还不够多, 还需继续研发适用面更广泛的、 选择性更高的此类手性选择剂 来制备更多的单一对映异构体的手性药物。  Cramer et al. first discovered that β-cyclodextrin (CD) has a good recognition effect on optical isomers. After β-CD derivatization, a three-dimensional geometric relationship can be constructed near the binding site to form a special chiral site; three-dimensional spatial modification can be performed to expand the cavity or provide a space with a specific geometry to adapt to the guest molecule. Matching; and other action sites that can initiate chiral recognition can also be introduced. The β-CD chiral stationary phase has been widely used in chiral separation analysis. The main functions of improving enantiomeric separation are: (1) combining a pair of enantiomers of separated solutes to form different structures and properties. (2) a hydroxyl group of β-CD, mainly a C-2, a C-position secondary hydroxyl group, or a complex of a CD modification group and a separated enantiomer to form a different structure and property by hydrogen bonding; (3) The tightly packed filling in the cavity and the inclusion of the short-range van der Waals force. The derivatization of natural β-CD can improve the separation efficiency and is suitable for many chromatographic separation modes, which is favored by many researchers. For example, Xin Wang et al. used a seven-(6-azido-6-deoxy-2,3-2-0-phenylcarbamoyl) β-CD bonded chiral stationary phase packed semi-preparative column for separation by high performance liquid chromatography. The β-blocking drug propranolol was prepared, and the propranolol enantiomer was prepared by batch separation using simulated moving bed chromatography. XinWang et al. used perphenoylated β-CD bonded silica gel. The stationary phase, three of the four enantiomers of Nadolol were separated by high performance liquid chromatography, and the most active (RSR)-Nadolol in the four enantiomers was completely separated. A high purity target enantiomer (RSR)-Nadolol was isolated from the Nadolol enantiomer by five-zone simulated moving bed chromatography. The preparation of chiral drugs with such chiral selectors has significant separation and purification effects, but the types are not enough. It is necessary to continue to develop more suitable and more selective chiral selectors to prepare more. A single enantiomeric chiral drug.
发明内容 Summary of the invention
本发明的目的在于提供手性选择剂 双 [-6-氧 -(-3-间硝基苯磺酰基-丁二酸 -1,4-单 酯 -4-)-]-β-环糊精及制备方法和用途, 作为手性选择剂其含间硝基苯磺酰基 (N02C6H5S02)和丁二酸酯 (OOCCHCHCOOH)二种功能基团的 β-环糊精衍生物, 这 种手性选择剂可直接涂渍或键合在硅胶珠上或石英管壁上制备成手性固定相。 The object of the present invention is to provide a chiral selector bis[-6-oxo-(-3-m-nitrophenylsulfonyl-succinic acid-1,4-monoester-4-)-]-β-cyclodextrin And a preparation method and use thereof, as a chiral selector, a β-cyclodextrin derivative containing two functional groups of m-nitrobenzenesulfonyl (N0 2 C 6 H 5 S0 2 ) and succinate (OOCCHCHCOOH) The chiral selector can be directly coated or bonded to the silica gel beads or the quartz tube wall to prepare a chiral stationary phase.
为实现本发明的目的, 一方面, 本发明提供了一种 β-环糊精类的手性选择剂, 该手 性选择剂是通过控制反应条件用马来酸酐双取代 β-环糊精 A、 D环上的 6位碳上羟基氢 后, 再用间硝基苯磺酰基加成到顺丁烯的双键上, 且间硝基苯磺酰基加成在丁二酸的 3 位碳上而形成的。 其分子式为: C62H84049N2S2。 最终得到取代度一致的新型 β-CD衍生 物: 双 [-6-氧- ( -3-间硝基苯磺酰基-丁二酸 -1, 4-单酯 -4-) -] -β-CD (简称: P-CD-M2)。 用紫外、 红外、 质谱、 核磁、 XPS等手段进行表征, 对该衍生物结构进行了确认。 双 [-6- 氧 -(-3-间硝基苯磺酰基-丁二酸 -1,4-单酯 -4-)-]-β-环糊精的结构为: . ο/.、·,..、 In order to achieve the object of the present invention, in one aspect, the present invention provides a chiral selector of β-cyclodextrin, which is a disubstituted β-cyclodextrin A with maleic anhydride by controlling the reaction conditions. After the hydroxyl group hydrogen on the 6-position carbon on the D ring, the m-nitrobenzenesulfonyl group is added to the double bond of the butylene group, and the m-nitrobenzenesulfonyl group is added to the 3-position carbon of the succinic acid. And formed. Its molecular formula is: C 62 H 84 0 49 N 2 S 2 . Finally, a novel β-CD derivative with the same degree of substitution is obtained: bis[-6-oxo-(-3-m-nitrophenylsulfonyl-succinic acid-1,4-monoester-4-)-]-β- CD (referred to as: P-CD-M 2 ). The structure of the derivative was confirmed by ultraviolet, infrared, mass spectrometry, nuclear magnetic, XPS and the like. The structure of bis[-6-oxo-(-3-m-nitrophenylsulfonyl-succinic acid-1,4-monoester-4-)-]-β-cyclodextrin is: ο/.,·,..,
0 另一方面, 本发明还提供了制备上述 β-环糊精类手性选择剂的合成方法, 双 [-6-氧 -(-3-间硝基苯磺酰基-丁二酸 -1,4-单酯 -4-)-]-β-环糊精的制备方法, β-环糊精简称为 β-CD, 其特征在于按以下步骤进行: (1)、 先用 lmol硝基苯与 1-lOmol氯磺酸 80-150°C加热反 应得到间硝基苯磺酰氯; (;2)、再用 2-30mol顺丁烯二酸酐和 lmoip-CD, 60-120°C加热反 应得到双(6-氧-丁烯二酸单酯) -β-CD,简称 P-CD-A2; (3)、然后用 lmoip-CD-A2和 2-30mol 间硝基苯磺酰氯 50-120°C加热反应得到双 [-6-氧- ( -3-间硝基苯磺酰基-丁二酸 -1, 4-单酯 -4- ) -] -β-CD, 简称 P-CD-M2; 反应式如下:
Figure imgf000005_0001
On the other hand, the present invention also provides a synthesis method for preparing the above β-cyclodextrin chiral selector, bis[-6-oxo-(-3-m-nitrophenylsulfonyl-succinic acid-1, 4-monoester-4-)-]-β-cyclodextrin preparation method, β-cyclodextrin is abbreviated as β-CD, which is characterized by the following steps: (1), first use 1 mol of nitrobenzene and 1-lOmol chlorosulfonic acid 80-150 ° C heating reaction to obtain m-nitrobenzenesulfonyl chloride; (; 2), and then 2-30 mol maleic anhydride and lmoip-CD, 60-120 ° C heating reaction to obtain a double (6-oxo-butenedioic acid monoester) -β-CD, abbreviated as P-CD-A 2 ; (3), then lmoip-CD-A 2 and 2-30 mol of nitrobenzenesulfonyl chloride 50-120 Heating at °C to obtain bis[-6-oxo-(-3-m-nitrophenylsulfonyl-succinic acid-1,4-monoester-4-)-]-β-CD, abbreviated as P-CD-M 2 ; The reaction formula is as follows:
Figure imgf000005_0001
0  0
β-CD R-CD O-C-CH=CHCOOH).  β-CD R-CD O-C-CH=CHCOOH).
(简称: P-CD-A2)(referred to as: P-CD-A 2 )
Figure imgf000005_0002
Figure imgf000005_0003
(简称: (HXH Ij )
Figure imgf000005_0002
Figure imgf000005_0003
(referred to as: (HXH Ij)
(3)。  (3).
本发明制得的 β-环糊精结构的化合物, 可通过直接涂渍或键合在硅胶珠等载体上或 石英管壁上, 制备成手性固定相, 也可以作为手性添加剂加入流动相中进行手性物质分 离、纯化和提供新的定性定量方法。本发明的手性选择剂适合于高效液相色谱(HPLC)、 气相色谱(GC)、 高效毛细管电泳(HPCE )等仪器作为手性固定相。 所制得的固定相手 性识别能力强, 稳定性好, 可制成分析型和制备型手性柱材料对手性物质进行分离、 分 析或纯化制备单一对映体。  The β-cyclodextrin structure compound prepared by the invention can be prepared as a chiral stationary phase by directly coating or bonding on a carrier such as silica gel beads or a quartz tube wall, or can be added as a chiral additive to a mobile phase. Separation, purification and provision of new qualitative and quantitative methods for chiral substances. The chiral selector of the present invention is suitable as a chiral stationary phase for instruments such as high performance liquid chromatography (HPLC), gas chromatography (GC), and high performance capillary electrophoresis (HPCE). The prepared stationary phase has strong chiral recognition ability and good stability, and can be separated, analyzed or purified to prepare a single enantiomer by chiral material of analytical and preparative chiral column materials.
与现有技术相比, 本发明具有如下效果: 1、 用制备型手性 HPLC柱可建立从药物 的消旋体中得到纯化的 D ( + ) -替卡西林和 L (-) -替卡西林和 (X-苯乙醇、 1-苯丙醇两个 单一对映体纯品。 2、 用分析型手性 HPLC柱可建立分离测定替卡西林、 (X-苯乙醇、 苯丙 醇单一对映体含量的新方法, 经中科院武汉科技查新咨询检索中心出具查新报告显示, 未见文献报道。 Compared with the prior art, the present invention has the following effects: 1. Purified D ( + ) - ticarcillin and L (-) - tica can be established from the racemic body of the drug by using a preparative chiral HPLC column. Xilin and (X-phenylethyl alcohol, 1-phenylpropanol two single enantiomers pure. 2. Separation and determination of ticarcillin, (X-phenylethyl alcohol, styrene-acrylic) by analytical chiral HPLC column A new method for the content of single enantiomers of alcohol has been published by the Wuhan Science and Technology Research and Search Center of the Chinese Academy of Sciences. No report has been reported in the literature.
本发明所用的仪器与试剂分别为:  The instruments and reagents used in the present invention are:
PE labmda Bio35紫外可见分光光度计 (美国)  PE labmda Bio35 UV-Vis Spectrophotometer (USA)
Nicolet NEXUS-470 傅立叶变换红外光谱仪 (美国)  Nicolet NEXUS-470 Fourier Transform Infrared Spectrometer (USA)
Varian rostar 210 高效液相色谱 (美国)  Varian rostar 210 High Performance Liquid Chromatography (USA)
LABCONCO FreeZone冻干机 (美国)  LABCONCO FreeZone Freeze Dryer (USA)
API3200 液相色谱串联质谱仪 (美国)  API3200 Liquid Chromatography Tandem Mass Spectrometer (USA)
Tecnai G2 20S-TWIN透射电子显微镜 (捷克)  Tecnai G2 20S-TWIN Transmission Electron Microscope (Czech Republic)
JSM-6700F 扫描电子显微镜 (日本)  JSM-6700F Scanning Electron Microscope (Japan)
VG Multilab 2000 光电子能谱仪 (美国)  VG Multilab 2000 Photoelectron Spectrometer (USA)
AVANCEIII核磁共振波谱仪 (BRUKER)  AVANCEIII NMR Spectrometer (BRUKER)
β-CD 国药集团化学试剂有限公司  β-CD Sinopharm Chemical Reagent Co., Ltd.
马来酸酐 国药集团化学试剂有限公司  Maleic anhydride Sinopharm Chemical Reagent Co., Ltd.
硝基苯 国药集团化学试剂有限公司  Nitrobenzene Sinopharm Chemical Reagent Co., Ltd.
苯磺酸 上海金山亭新化工试剂厂  Benzenesulfonic acid Shanghai Jinshanting New Chemical Reagent Factory
双 [-6-氧 -(-3-间硝基苯磺酰基-丁二酸 -1,4-单酯 -4-)-】-p-环糊精的表征:  Characterization of bis[-6-oxo-(-3-m-nitrophenylsulfonyl-succinate-1,4-monoester-4-)-]-p-cyclodextrin:
1、 紫外扫描图谱  1, UV scanning spectrum
配制 SxlO^mol -1硝基苯乙醇溶液 (乙醇为参比)、 SxlO^mol -1间硝基苯磺酰氯乙 醇溶液 (乙醇为参比)、 SxlO-Smol'l p-CD水溶液 (水为参比)、 3 l0"5 mol-L ^-CD^ 水溶液 (水为参比)、 3xl0—5mol_L- ^-CD-Mz水溶液 (水为参比) 进行紫外扫描, 因为硝 基苯、 间硝基苯磺酰氯不溶于水, β-CD衍生物不溶于乙醇, 分别选择不同溶液作为溶剂 和参比进行扫描。得到结果如图 1所示。硝基苯在 260nm处的吸收明显比间硝基苯磺酰氯 强; β-CD无明显紫外吸收, P-CD-A2在 200nm到 260nm之间有比较明显的紫外吸收, 表明 顺丁烯二酸酐的双键已经连接到了 β-CD上; P-CD-M2紫外扫描图中, 在 259nm处出现了 比较明显的苯环特征吸收, 不同于 P-CD-A2的紫外吸收峰, 表明带苯环的基团已经键合 到了 P-CD-A2上, 生成了不同于 P-CD-A2的产物。 Prepare SxlO^mol- 1 nitrophenylethanol solution (ethanol as reference), SxlO^mol- 1 nitrobenzenesulfonyl chloride ethanol solution (ethanol as reference), SxlO-Smol'l p-CD aqueous solution (water is reference), 3 l0 "5 mol- L ^ -CD ^ aqueous solution (water as reference), 3xl0- 5 mol_L- -CD-Mz ^ aqueous solution (water as reference) UV scanning as nitrobenzene, m Nitrobenzenesulfonyl chloride is insoluble in water, β-CD derivative is insoluble in ethanol, and different solutions are selected as solvent and reference for scanning. The results are shown in Figure 1. The absorption of nitrobenzene at 260 nm is significantly better than that of nitrobenzene. Strong phenylsulfonyl chloride; β-CD has no obvious UV absorption, P-CD-A 2 has obvious UV absorption between 200nm and 260nm, indicating that the double bond of maleic anhydride has been attached to β-CD; In the P-CD-M 2 UV scan, the characteristic absorption of the benzene ring appeared at 259 nm, which is different from the UV absorption peak of P-CD-A 2 , indicating that the group with a benzene ring has been bonded to P- On CD-A 2 , a product different from P-CD-A 2 was produced.
2、 红外扫描图谱  2, infrared scanning map
对比图 3与图 2,在图 3的 P-CD-A2红外扫描图上明显看到比图 2的 β-CD红外扫描 图多出 1726cm-1的 C=0 ( 8,172601^ )峰;在图 4间硝基苯磺酰氯红外扫描图上可见 3096 cm"1 (w,C-H), 1534 cm"1 1352 cm"1 (w,N02), 1603 cm 、 755 cm"1 (w,苯环); 对比图 5与图 3,在图 5的 P-CD-M2红外扫描图上比图 3的 P-CD-A2红外扫描图多出了 1533 cm-1、 1351 cm 1 (w,N02), 1611 cm 1 , 734 cm 1 (w,苯环) 的峰, 表明间硝基苯磺酰氯已经键 合到了 P-CD-A2上。 Comparing Fig. 3 with Fig. 2, it is apparent that on the P-CD-A 2 infrared scan of Fig. 3, the C=0 (8, 162,601^) peak of 1726 cm- 1 is more than the β-CD infrared scan of Fig. 2. On the infrared scan of nitrobenzenesulfonyl chloride in Figure 4, 3096 cm" 1 (w, CH), 1534 cm" 1 1352 cm" 1 (w, N0 2 ), 1603 cm, 755 cm" 1 (w, Benzene ring); comparing Fig. 5 with Fig. 3, the P-CD-M 2 infrared scan of Fig. 5 is 1533 cm- 1 and 1351 cm1 more than the P-CD-A 2 infrared scan of Fig. 3 ( The peak of w, N0 2 ), 1611 cm 1 , 734 cm 1 (w, benzene ring) indicates that m-nitrobenzenesulfonyl chloride has been bonded to P-CD-A 2 .
3、 X-射线光电子能谱 分别扫描 P-CD、 顺丁烯二酸酐、 P-CD-A2、 P-CD-M2 的 X-射线光电子能谱, 得到 结果如下图所示, 各化合物全谱见图 6a、 图 6b、 图 6c、 图 6d, 各化合物图谱见图 7a、 图 7b、 图 8a、 图 8b、 图 9a、 图 9b、 图 10a、 图 10b、 图 10c、 图 10d。 3. X-ray photoelectron spectroscopy The X-ray photoelectron spectroscopy of P-CD, maleic anhydride, P-CD-A 2 and P-CD-M 2 was scanned separately, and the results are shown in the figure below. The full spectrum of each compound is shown in Fig. 6a and Fig. 6b. Figure 6c, Figure 6d, each compound map is shown in Figure 7a, Figure 7b, Figure 8a, Figure 8b, Figure 9a, Figure 9b, Figure 10a, Figure 10b, Figure 10c, Figure 10d.
由图 6a、 图 6b、 图 6c、 图 6d可见, β-CD中 Cls结合能为 284.64eV, Ols结合能 为 530.33eV; 顺丁烯二酸酐 Cls结合能为 284.59eV, Ols出现了结合能为 538.4eV和 532.25 eV的双峰, 与氧在顺丁烯二酸酐中有两种键型相符; P-CD-A2中 Cls结合能为 284.6eV, Ols结合能为 531.17eV; P-CD-M2中 Cls结合能为 284.59eV, Ols结合能为 530.23eV, Nls结合能为 399.82eV, S2p结合能为 166.6eV。 在 P-CD-M2 XPS谱图上明 显看到比 P-CD-A2多出 N、 S 的 XPS谱带, 说明含有 N、 S元素的基团已经键合到了 P-CD-A2上。 It can be seen from Fig. 6a, Fig. 6b, Fig. 6c and Fig. 6d that the Cls binding energy in β-CD is 284.64 eV, the Ols binding energy is 530.33 eV, and the coupling energy of maleic anhydride Cls is 284.59 eV. The binding energy of Ols is The double peaks of 538.4eV and 532.25 eV are consistent with oxygen in maleic anhydride; the binding energy of Cls in P-CD-A 2 is 284.6eV and the binding energy of Ols is 531.17eV; P-CD- The binding energy of Cls in M 2 is 284.59 eV, the binding energy of Ols is 530.23 eV, the binding energy of Nls is 399.82 eV, and the binding energy of S2p is 166.6 eV. It is apparent on the P-CD-M 2 XPS spectrum that the XPS bands of N and S are more than P-CD-A 2 , indicating that the group containing the N and S elements has been bonded to P-CD-A 2 . on.
4 、 核磁图谱  4, nuclear magnetic spectrum
对反应原料 P-CD、P-CD-A2和产物 P-CD-M2采用核磁共振手段进行结构鉴定,包括: 13C NMR、 'H NMR以及 HMBC ( 1H检测的异核多键相关试验)、 HSQC ( 1H检测的异 核单量子相干试验) (H的编号与 C的编号一致)。 The reaction materials P-CD, P-CD-A 2 and product P-CD-M 2 were identified by NMR, including: 13 C NMR, 'H NMR and HMBC (1H detection of heteronuclear multi-bond correlation test) ), HSQC (Nuclear single quantum coherent test for 1H detection) (H number is the same as C number).
Figure imgf000007_0001
Figure imgf000007_0001
图 11为 β-CD的 13C NMR图, 可以得到 CI : 101.83 C2: 73.07 C3: 72.06 C4: 81.12 C5: 71.81 C6: 60.28。图 12为 β-CD的1 H NMR图,可知 δ4.989为 C6羟基(-OH) 上的氢, δ2.148、 S3.484-3.591和 S3.771-3.912为 C6 (-CH2-) 亚甲基上的氢, 54.680 ¾ CD环 C1位上的氢, δ3.5-4.0为 C2, C3, C4, C5上的氢, 图 14p-CD-A21 H NMR谱 比图 2.12P-CD1H NMR谱 δ4.989 ( -OH上的氢)明显减小, 说明 β-CD中 C6的 -OH键在 P-CD-A2中已形成醚键, 并有新峰 δ6.0-6.5为支链上 C14=C15双键上的氢。 Figure 11 is a 13 C NMR chart of β-CD, which can be obtained as CI: 101.83 C2: 73.07 C3: 72.06 C4: 81.12 C5: 71.81 C6: 60.28. Figure 12 is a 1 H NMR chart of β-CD, showing that δ 4.989 is hydrogen on C6 hydroxyl group (-OH), δ 2.148, S3.484-3.591 and S3.771-3.912 are C6 (-CH 2 -) Hydrogen on the methylene group, hydrogen at the C1 position of the 54.680 3⁄4 CD ring, δ3.5-4.0 is the hydrogen on the C2, C3, C4, C5, and the 1 H NMR spectrum of Figure 14p-CD-A 2 is shown in Figure 2.12P. -CD1H NMR spectrum δ 4.989 (hydrogen on -OH) is significantly reduced, indicating that the -OH bond of C6 in β-CD has formed an ether bond in P-CD-A 2 with a new peak δ6.0-6.5 It is a hydrogen on the C14=C15 double bond on the branch.
图 13为 P-CD-A213C NMR图, 可以得到 C1 : 101.88 C2: 73.15 C3: 72.05 C4: 81.10 C5: 71.83 C6: 60.19 64.20 , -COOH (C16): 169.54, -C=C- (C14, C15 ): 131.28, C=0(C13 ): 166.26,由以上数据可以看出, -C=C -、 C=0以及反应产生后的 -COOH 等基团在图中均有体现, 从 C6与图 Ιΐβ-CD的 C6的比对中可以判断马来酸酐取代反应发 生在 C6位。 Figure 13 is a 13 C NMR chart of P-CD-A 2 which gives C1: 101.88 C2: 73.15 C3: 72.05 C4: 81.10 C5: 71.83 C6: 60.19 64.20, -COOH (C16): 169.54, -C=C- (C14, C15): 131.28, C=0(C13): 166.26. It can be seen from the above data that groups such as -C=C -, C=0 and -COOH after the reaction are produced are shown in the figure. From the alignment of C6 with C6 of Fig. β-CD, it can be judged that the maleic anhydride substitution reaction occurs at the C6 position.
图 15C-H直接相关图可进一步看出 C6: 30.35与 δ2.142直接相关, C1与 δ4.680上的氢 直接相关, δ3.5-4.0的氢与 C2, C3, C4, C5直接相关。 δ6.0-6.5的氢与 C14, C15直接相 关; 图 16C-H远程相关图可看出双键上氢 δ6.0-6.5与 CI是远程相关的, 与 C5也是远程相关 的。 与 C14, C15也是互为远程相关的。 Figure 15C-H direct correlation diagram can further show that C6: 30.35 is directly related to δ2.142, C1 is directly related to hydrogen at δ4.680, and δ3.5-4.0 hydrogen is directly related to C2, C3, C4, C5. Δ6.0-6.5 hydrogen directly with C14, C15 Figure 16C-H remote correlation diagram shows that hydrogen δ6.0-6.5 on the double bond is remotely related to CI and remotely related to C5. It is also remotely related to C14 and C15.
综上所述, 原 -CD-A2) 结构为: In summary, the original -CD-A 2 ) structure is:
Figure imgf000008_0001
Figure imgf000008_0001
图 17为 P-CD- M213C NMR核磁图, 因是 400兆核磁,仪器灵敏度较低,与 β-CD 上对应的 6个 C的化学位移不明显, 但苯环 Ar ( C7-C12)和支链上的 C13-C16很明显: C12: 134.41 , C8: 133.10, C10: 132.42, C7: 130.31 , C9, C11 : 123.97 长链 C16: 166.41; C13 : 150.16; C14: 34.03; C15 : 40.34; Figure 17 is a 13 C NMR nuclear magnetic diagram of P-CD-M 2 . Because of the 400 mega NMR, the instrument sensitivity is low, and the chemical shifts of the corresponding 6 C on β-CD are not obvious, but the benzene ring Ar ( C7- C12) and C13-C16 on the branch are obvious: C12: 134.41, C8: 133.10, C10: 132.42, C7: 130.31, C9, C11: 123.97 long chain C16: 166.41; C13: 150.16; C14: 34.03; C15: 40.34;
图 18为 β-CD- M2的 1H NMR核磁图, 结合二维核磁直接相关图, 即 HMBC ( 1H 检测的异核多键相关试验), 图 19可以得到: 苯环上 H有 4组峰, 与 C7直接相关的 H 为 δ8.5, 与 C9直接相关的 Η是 δ8.3、 与 C11直接相关的 Η是 δ8.1、 与 C10直接相关的 H是 δ7.7。 支链羟基(-ΟΗ)上的 Ηδ4.989依然较强, 与 δ2.5直接相关的是 C14: 34.03; C15 : 40.34; Figure 18 is a 1H NMR nuclear magnetic diagram of β-CD-M 2 , combined with a two-dimensional nuclear magnetic direct correlation diagram, that is, HMBC (1H detection of heteronuclear multi-bond correlation test), Figure 19 can be obtained: There are 4 sets of peaks on H on the benzene ring. The H directly related to C7 is δ8.5, the 直接 directly related to C9 is δ8.3, the 直接 directly related to C11 is δ8.1, and the H directly related to C10 is δ7.7. The Ηδ4.989 on the branched hydroxyl group (-ΟΗ) is still strong, and the direct correlation with δ2.5 is C14: 34.03; C15: 40.34;
由图 20可知: 由于环糊精的椅式结构及取代基团的影响, 环糊精环上的 C1与 Η5、 Η4远程相关, C2与 Η5远程相关。 支链也有一些远程相关的点。 如 C13和 H15、 OH上 的氢; C14与 OH上的氢; 芳环上 C7与 H9、 H10、 H11远程相关, C9与 H7、 H11远程 相关, C10与 H7远程相关, C11与 H7、 H9远程相关, C8与 H10、 H11远程相关, C12 与 H10、 H9远程相关, C13与 H7、 H9、 H10、 H11远程相关。  It can be seen from Fig. 20 that C1 on the cyclodextrin ring is remotely related to Η5 and Η4 due to the chair structure of the cyclodextrin and the influence of the substituent group, and C2 is remotely related to Η5. Branches also have some remote related points. Such as C13 and H15, hydrogen on CH; hydrogen on C14 and OH; C7 is remotely related to H9, H10, H11 on the aromatic ring, C9 is remotely related to H7 and H11, C10 is remotely related to H7, C11 is remotely related to H7, H9 Relatedly, C8 is remotely related to H10 and H11, C12 is remotely related to H10 and H9, and C13 is remotely related to H7, H9, H10, and H11.
5、 质谱表征 5, mass spectrometry
采用半制备 HPLC对 P-CD-M2进行分离纯化, 冷冻干燥后得到纯化产物, 进行质谱 表征。 半制备 HPLC分离色谱条件: 固定相: C18半制备柱; 流动相: 5%— 10%乙腈一 95%— 90%水;流速: 2ml'min- 柱温: 30 °C ;检测波长: 254nm;样品浓度: 5x lO—3mol'L- 1 水溶液; 进样量 200μ1。 质谱实验条件: curtain Gas: 10 ml-rnin 1 ; IonSpray Voltage : 5500V; Ion Source Gas: 110 ml-min"1 ; Declustering Potential: 70 mv 。 P-CD-M 2 was isolated and purified by semi-preparative HPLC, and the product was purified by freeze-drying and characterized by mass spectrometry. Semi-preparative HPLC separation chromatographic conditions: stationary phase: C18 semi-preparative column; mobile phase: 5% - 10% acetonitrile - 95% - 90% water; flow rate: 2 ml 'min - column temperature: 30 ° C; detection wavelength: 254 nm ; Sample concentration: 5x lO- 3 mol'L- 1 aqueous solution; injection volume 200μ1. Mass spectrometry conditions: curtain Gas: 10 ml-rnin 1 ; IonSpray Voltage: 5500V; Ion Source Gas: 110 ml-min"1; Declustering Potential: 70 mv.
由质谱图可以得到如下信息: 1699为分子离子峰, 是 P-CD-M2 ( 1704) 丢失质子后 的结果。 下面为 P-CD-M2可能的断裂方式, 如果按断裂方式(1 )两个 258(有 254.4碎片离 子峰)断裂后得到 516的碎片,质谱图中有相应的 515.1的碎片离子峰;如果按断裂方式(2) 质谱图中没有与 244或两倍质荷比 488相近的碎片, 由此可知, 带芳环基团的合理断裂方 From the mass spectrum, the following information can be obtained: 1699 is the molecular ion peak, which is P-CD-M 2 ( 1704) after the proton loss the result of. The following is the possible fracture mode of P-CD-M 2. If the two pieces of 258 (with 254.4 fragment ion peak) are broken according to the fracture mode (1), 516 fragments are obtained, and the corresponding 515.1 fragment ion peak is present in the mass spectrum; According to the fracture mode (2), there is no fragment similar to 244 or twice the mass-to-charge ratio 488 in the mass spectrum, so that a reasonable fracture of the aromatic ring group is known.
Figure imgf000009_0001
Figure imgf000009_0001
m/z 1704  m/z 1704
下面为 P-CD-M2第三种断裂方式: The following is the third way of breaking P-CD-M 2 :
Figure imgf000010_0001
Figure imgf000010_0001
m/z 1354  m/z 1354
由 P-CD-M2第三种分裂过程可知, 双取代发生在 β-CD 的 1, 4环上, 1354(图中 1354.2), 350 (图中为 348.2, 再丢一个羟基 OH为 333, 图中为 333.8, 这两峰均很强), 在质谱图中都可以找到依据。 若是 1, 3环取代则应有 4个环相连的碎片 673(图中无此 碎片, 也无另一部分 1031的碎片), 若是 1, 2环取代则应有 5个环相连的碎片 836 (图 中无此碎片)。 From the third division process of P-CD-M 2 , the double substitution occurs on the 1,4 ring of β-CD, 1354 (1354.2 in the figure), 350 (348.2 in the figure, and 3% OH). In the figure, it is 333.8, both of which are very strong.) The basis can be found in the mass spectrum. If the 1, 3 ring is substituted, there should be 4 ring-connected fragments 673 (there is no such fragment in the figure, and there is no other part of the 1031 fragment). If the 1, 2 ring is substituted, there should be 5 ring-connected fragments 836 (Fig. There is no such fragment in it).
故结构为 Therefore, the structure is
Figure imgf000010_0002
本发明制得的 β-环糊精衍生物, 可通过直接涂渍或键合在硅胶珠等载体上或石英管 壁上, 制备成手性固定相, 也可以作为手性添加剂加入流动相中进行手性物质分离、 纯 化和提供新的定性定量方法。 本发明的手性选择剂适合于高效液相色谱 (HPLC)、 气相 色谱(GC)、 高效毛细管电泳(HPCE )等仪器作为手性固定相。 所制得的固定相手性识 别能力强, 稳定性好, 可制成分析型和制备型手性柱材料对手性物质进行分离、 分析或 纯化制备单一对映体。
Figure imgf000010_0002
The β-cyclodextrin derivative prepared by the invention can be directly coated or bonded on a carrier such as silica gel or a quartz tube. On the wall, it is prepared as a chiral stationary phase. It can also be added as a chiral additive to the mobile phase for separation and purification of chiral materials and to provide new qualitative and quantitative methods. The chiral selector of the present invention is suitable as a chiral stationary phase for instruments such as high performance liquid chromatography (HPLC), gas chromatography (GC), and high performance capillary electrophoresis (HPCE). The prepared stationary phase has strong chiral recognition ability and good stability, and can be prepared as an analytical and preparative chiral column material for separation, analysis or purification of a single enantiomer.
与现有技术相比, 本发明具有如下效果: 1、 用制备型手性 HPLC柱可建立从药物 的消旋体中得到纯化的 D ( + ) -替卡西林和 L ( -) -替卡西林的新方法; 还可得到 (X-苯乙 醇、 1-苯丙醇两种物质单一对映体的纯品。 2、用分析型手性 HPLC柱可建立分离测定替 卡西林、 (X-苯乙醇、 1-苯丙醇单一对映体含量的新方法, 经中科院武汉科技查新咨询检 索中心出具查新报告显示, 未见文献报道。  Compared with the prior art, the present invention has the following effects: 1. Purified D ( + ) - ticarcillin and L (-) - tica can be established from the racemic body of the drug by using a preparative chiral HPLC column. A new method of Xilin; can also obtain (X-phenylethanol, 1-phenylpropanol two substances single enantiomer pure. 2, analytical chiral HPLC column can be established to determine the determination of ticarcillin, (X- A new method for the content of single enantiomers of phenylethyl alcohol and 1-phenylpropanol was published by the Wuhan Science and Technology Research and Search Center of the Chinese Academy of Sciences. No report was found in the literature.
附图说明 DRAWINGS
图 1 为紫外扫描图谱, a: β-CD; b: P-CD-A2; c: 间硝基苯磺酰氯; d: 硝基苯; e: P-CD-M2。。 Figure 1 is an ultraviolet scanning spectrum, a: β-CD; b: P-CD-A 2 ; c: m-nitrobenzenesulfonyl chloride; d: nitrobenzene; e: P-CD-M 2 . .
图 2为 β-CD红外扫描图。  Figure 2 is a β-CD infrared scan.
图 3为 P-CD-A2红外扫描图。 Figure 3 is an infrared scan of P-CD-A 2 .
图 4为间硝基苯磺酰氯红外扫描图。  Figure 4 is an infrared scan of m-nitrobenzenesulfonyl chloride.
图 5为 P-CD-M2红外扫描图。 Figure 5 is a P-CD-M 2 infrared scan.
图 6 a 为 β-CD 的 X -射线光电子能谱 (全谱, VG Multilab 2000)。  Figure 6 a shows the X-ray photoelectron spectroscopy of β-CD (full spectrum, VG Multilab 2000).
图 6 b 为顺丁烯二酸酐的 X -射线光电子能谱 (全谱, VG Multilab 2000)。  Figure 6b shows the X-ray photoelectron spectroscopy of maleic anhydride (full spectrum, VG Multilab 2000).
图 6 c 为 P-CD-A2 的 X -射线光电子能谱 (全谱, VG Multilab 2000)。 Figure 6c shows the X-ray photoelectron spectroscopy of P-CD-A 2 (full spectrum, VG Multilab 2000).
图 6 d 为 P-CD-M2的 X -射线光电子能谱 (全谱, VG Multilab 2000)。 Figure 6 d is the X-ray photoelectron spectroscopy of P-CD-M 2 (full spectrum, VG Multilab 2000).
图 7a 为 β-CD X -射线光电子能 C谱 (VG Multilab 2000)。  Figure 7a shows the β-CD X-ray photoelectron energy C spectrum (VG Multilab 2000).
图 7 b 为 β-CD X -射线光电子能 0谱 (VG Multilab 2000)。  Figure 7b shows the β-CD X-ray photoelectron energy spectrum (VG Multilab 2000).
图 8a 为顺丁烯二酸酐 X -射线光电子能 C谱 (VG Multilab 2000)。  Figure 8a shows the X-ray photoelectron energy C spectrum of maleic anhydride (VG Multilab 2000).
图 8 b为顺丁烯二酸酐 X -射线光电子能 0谱 (VG Multilab 2000)。  Figure 8b shows the X-ray photoelectron energy spectrum of maleic anhydride (VG Multilab 2000).
图 9a 为 P-CD-A2 X -射线光电子能 C谱 (VG Multilab 2000)。 Figure 9a shows the P-CD-A 2 X-ray photoelectron energy C spectrum (VG Multilab 2000).
图 9b 为 P-CD-A2 X -射线光电子能 0谱 (VG Multilab 2000)。 Figure 9b shows the P-CD-A 2 X-ray photoelectron spectroscopy (VG Multilab 2000).
图 10a 为 P-CD-M2 X -射线光电子能 C谱 (VG Multilab 2000)。 Figure 10a is a P-CD-M 2 X-ray photoelectron energy C spectrum (VG Multilab 2000).
图 10b为 P-CD-M2 X -射线光电子能 0谱 (VG Multilab 2000)。 Figure 10b is a P-CD-M 2 X-ray photoelectron energy 0 spectrum (VG Multilab 2000).
图 10c为 P-CD-M2 X -射线光电子能 N谱 (VG Multilab 2000)。 Figure 10c is a P-CD-M 2 X-ray photoelectron energy N spectrum (VG Multilab 2000).
图 10d为 P-CD-M2 X -射线光电子能 S谱 (VG Multilab 2000)。 Figure 10d is a P-CD-M 2 X-ray photoelectron energy S spectrum (VG Multilab 2000).
图 11为 β-CD 13C核磁图 (AVANCEi NMR D20 400MHZ)。 Figure 11 is a β-CD 13 C nuclear magnetic map (AVANCE i NMR D 2 0 400 MH Z ).
图 12为 β-CD 1H核磁图 (AVANCEi NMR D20 400MHZ)。 Figure 12 is a β-CD 1H nuclear magnetic map (AVANCE i NMR D 2 0 400 MH Z ).
图 13为 P-CD-A2 13C核磁图 ( AVANCE iNMR D20 400MHZ )。 Figure 13 is a P-CD-A 2 13 C nuclear magnetic map (AVANCE i NMR D 2 0 400 MH Z ).
图 14为 P-CD-A2 1H核磁图 ( AVANCE iNMR D20 400MHZ)。 图 15为 β-CD- A2 HSQC核磁图 ( AVA CE iNMR D20 400MHZ )。 图 16为 β-CD- A2 HMBC核磁图 ( AVA CE iNMR D20 400MHZ )。 图 17为 P-CD-M2 13C 核磁图 (AVA CE iNMR DMSO 400MHZ)。 图 18为 P-CD-M2 1H核磁图 (AVANCEi NMR D20 400MHZ)。 Figure 14 is a P-CD-A 2 1H nuclear magnetic map (AVANCE i NMR D 2 0 400 MH Z ). Figure 15 is a nuclear magnetic diagram of β-CD-A 2 HSQC (AVA CE i NMR D 2 0 400MH Z ). Figure 16 is a β-CD-A 2 HMBC nuclear magnetic map (AVA CE i NMR D 2 0 400 MH Z ). Figure 17 is a P-CD-M 2 13 C nuclear magnetic map (AVA CE i NMR DMSO 400 MH Z ). Figure 18 is a P-CD-M 2 1H nuclear magnetic map (AVANCE i NMR D 2 0 400 MH Z ).
图 19为 P-CD-M2 HSQC 核磁图 ( AVANCE iNMR DMSO 400MHZ)。 图 20为 P-CD-M2 HMBC 核磁图 ( AVA CEmNMR DMSO 400MHZ)。 图 21为 P-CD-M2质谱图。 Figure 19 is a P-CD-M 2 HSQC nuclear magnetic map (AVANCE i NMR DMSO 400 MH Z ). Figure 20 is a P-CD-M 2 HMBC nuclear magnetic map (AVA CE m NMR DMSO 400 MH Z ). Figure 21 is a P-CD-M 2 mass spectrum.
图 22 a为硅珠 A固定相透射电镜扫描图。 Figure 22a is a scanning electron micrograph of a stationary phase of a silicon bead.
图 22b为 P-CD-M2键合硅珠 A固定相透射电镜扫描图。 Figure 22b is a transmission electron micrograph of the stationary phase of P-CD-M 2 bonded silicon beads A.
图 22c为硅珠 B固定相透射电镜扫描图。 Figure 22c is a transmission electron microscopy scan of the stationary phase of the silicon bead B.
图 22d为 P-CD-M2键合硅珠 B固定相透射电镜扫描图。 Figure 22d is a transmission electron microscopy scan of the stationary phase of P-CD-M 2 bonded silicon beads B.
图 23a为 硅珠 A5000倍扫描电镜图。 Figure 23a shows a 5,000x scanning electron micrograph of a silicon bead.
图 23b为 硅珠 A10000倍扫描电镜图。 Figure 23b shows a 10,000x scanning electron micrograph of silicon beads A.
图 23c为 硅珠 A50000倍扫描电镜图。 Figure 23c shows a 50000x SEM image of a silicon bead.
图 23d为 P-CD-M2键合硅珠 A 5000倍扫描电镜图。 Figure 23d is a 5000x scan electron micrograph of P-CD-M 2 bonded silicon beads A.
图 23e为 P-CD-M2键合硅珠 A 10000倍扫描电镜图。 Figure 23e is a 10,000-fold scanning electron micrograph of P-CD-M 2 bonded silicon beads A.
图 23f为 P-CD-M2键合硅珠 A 50000倍扫描电镜图。 Figure 23f is a 50000x scanning electron micrograph of P-CD-M 2 bonded silicon beads A.
图 24a为 硅珠 B5000倍扫描电镜图。 Figure 24a shows a 5,000x scanning electron micrograph of a silicon bead.
图 24b为 硅珠 B10000倍扫描电镜图。 Figure 24b is a 10,000x scanning electron micrograph of silicon beads B.
图 24c为 硅珠 B50000倍扫描电镜图。 Figure 24c is a scanning electron micrograph of a silicon bead B50000.
图 24d为 P-CD-M2键合硅珠 B 5000倍扫描电镜图。 Figure 24d is a 5000x scan electron micrograph of P-CD-M 2 bonded silicon beads B.
图 24e为 P-CD-M2键合硅珠 B 10000倍扫描电镜图。 Figure 24e is a 10,000-fold scanning electron micrograph of P-CD-M 2 bonded silicon beads B.
图 24f为 P-CD-M2键合硅珠 B 50000倍扫描电镜图。 Figure 24f is a 50000x scanning electron micrograph of P-CD-M 2 bonded silicon beads B.
图 25 a为硅珠 A的 X -射线光电子能谱 (全谱) 图。 Figure 25 a is an X-ray photoelectron spectroscopy (full spectrum) of silicon beads A.
图 25 b为硅珠 B 的 X -射线光电子能谱 (全谱) 图。 Figure 25b shows the X-ray photoelectron spectroscopy (full spectrum) of the silicon bead B.
图 25 c 为 P-CD-M2键合硅珠 A的 X -射线光电子能谱 (全谱) 图。 图 25 d 为 P-CD-M2键合硅珠 B 的 X -射线光电子能谱 (全谱) 图。 图 26 a为硅珠 A氧谱 XPS图谱图。 Figure 25c is an X-ray photoelectron spectroscopy (full spectrum) diagram of P-CD-M 2 bonded silicon beads A. Figure 25 d is an X-ray photoelectron spectroscopy (full spectrum) diagram of P-CD-M 2 bonded silicon beads B. Figure 26a is a plot of the oxygen spectrum XPS of the silica beads.
图 26 b为硅珠 A硅谱 XPS图谱图。 Figure 26 b is a silicon bead A silicon spectrum XPS map.
图 27a为硅珠 B氧谱 XPS图谱图。 Figure 27a is a B-oxygen XPS map of the silicon beads.
图 27b为硅珠 B硅谱 XPS图谱图。 Figure 27b is a XPS map of the silicon bead B silicon spectrum.
图 28 a为 P-CD-M2键合硅珠 A碳谱 XPS图谱图。 Figure 28a is a carbon spectrum XPS map of P-CD-M 2 bonded silicon beads A.
图 28 b为 P-CD-M2键合硅珠 A氧谱 XPS图谱图。 Figure 28b is a P-CD-M 2 bonded silica bead A oxygen spectrum XPS map.
图 28 c为 P-CD-M2键合硅珠 A氮谱 XPS图谱图。 Figure 28c is a P-CD-M 2 bonded silica bead A nitrogen spectrum XPS map.
图 28 d为 P-CD-M2键合硅珠 A硫谱 XPS图谱图。 图 28 e为 P-CD-M2键合硅珠 A硅谱 XPS图谱图。 Figure 28 d is an XPS chromatogram of the P-CD-M 2 bonded silica beads A sulfur spectrum. Figure 28 e is a P-CD-M 2 bonded silicon bead A silicon spectrum XPS map.
图 29 a为 P-CD-M2键合硅珠 B碳谱 XPS图谱图。 Figure 29a is a carbon spectrum XPS map of P-CD-M 2 bonded silicon beads B.
图 29b为 P-CD-M2键合硅珠 B氧谱 XPS图谱图。 Figure 29b is a B-oxygen XPS pattern of P-CD-M 2 bonded silicon beads.
图 29 c为 P-CD-M2键合硅珠 B氮谱 XPS图谱图。 Figure 29c is a P-CD-M 2 bonded silicon bead B nitrogen spectrum XPS map.
图 29 d为 P-CD-M2键合硅珠 B硫谱 XPS图谱图。 Figure 29 d is a P-CD-M 2 bonded silica bead B sulfur spectrum XPS map.
图 29 e为 P-CD-M2键合硅珠 B硅谱 XPS图谱图。 Figure 29 e is a P-CD-M 2 bonded silicon bead B silicon spectrum XPS map.
图 30 为半制备色谱分离制备替卡西林单一对映体 HPLC图。  Figure 30 is a HPLC diagram of the preparation of the single enantiomer of ticarcillin by semi-preparative chromatography.
31 a为 HPLC替卡西林单一对映体收集液纯度验证的 (-) 前锋图。  31 a is the (-) frontal plot of the purity verification of the HPLC cecascilin single enantiomer collection.
图 31 b为 HPLC替卡西林单一对映体收集液纯度验证的 (+ ) 后峰图。  Figure 31 b is a (+) post-peak plot of the purity verification of the HPLC ticarcillin single enantiomer collection.
图 32 a 为 HPLC替卡西林单一对映体收集液纯度验证 (乙腈体系) 前锋图。  Figure 32 a shows the purity of the HPLC ticarcillin single enantiomer collection (acetonitrile system).
图 32 b 为 HPLC替卡西林单一对映体收集液纯度验证 (乙腈体系) 后锋图。  Figure 32 b shows the purity of the HPLC ticarcillin single enantiomer collection (acetonitrile system).
图 33 a 为替卡西林分离线性的 (-) 前峰面积-浓度曲线图。  Figure 33 a is a linear (-) front peak area-concentration plot for ticarcillin.
图 33 b 为替卡西林分离线性的 (-) 前峰峰高-浓度曲线图。  Figure 33 b is a linear (-) pre-peak peak height-concentration plot for ticarcillin.
图 33 c 为替卡西林分离线性的 (+) 后峰面积-浓度曲线图。  Figure 33 c is a linear (+) peak area-concentration plot for ticarcillin separation.
图 33 a 为替卡西林分离线性的 (+) 前峰峰高-浓度曲线图。  Figure 33 a is a linear (+) pre-peak peak height-concentration plot for ticarcillin.
图 34为 α-苯乙醇色谱分离图 (流动相为 99%正己烷 -1%无水乙醇)。  Figure 34 is a chromatogram of α-phenylethanol chromatography (mobile phase 99% n-hexane - 1% absolute ethanol).
图 35为 (X-苯乙醇色谱分离图 (柱温为 27°C )。  Figure 35 shows (X-phenylethanol chromatogram (column temperature 27 °C).
图 36为 1-苯丙醇色谱分离图 (流动相: 99%正己烷 -1%甲醇)。  Figure 36 is a chromatogram of 1-phenylpropanol (mobile phase: 99% n-hexane - 1% methanol).
图 37为 1-苯丙醇色谱分离图 (柱温: 30°C )。  Figure 37 is a chromatogram of 1-phenylpropanol (column temperature: 30 ° C).
图 38 a为流速: l .OmL'min- 1的 1-苯丙醇色谱分离图 。 Figure 38a is a chromatogram of the flow rate: l.OmL'min- 1 of 1-phenylpropanol.
图 38 b为流速: 0.05 mL-rnin 1的 1-苯丙醇色谱分离图。 Figure 38b is a chromatogram of 1-phenylpropanol at a flow rate of 0.05 mL-rnin 1 .
图 39为扁桃酸色谱分离图。  Figure 39 is a chromatogram of mandelic acid chromatogram.
具体实施方式 detailed description
双 [-6-氧 -(-3-间硝基苯磺酰基-丁二酸- ^4-单酯 -4-)-]-β-环糊精的制备: β-环糊精简称 为 β-CD, 按以下步骤进行: (1)、先用 123.2g硝基苯与 350.3g氯磺酸 100°C加热反应得到间 硝基苯磺酰氯; 、 再用 22.0g顺丁烯二酸酐和 17.0gP-CD, 80°C加热反应得到双 (6-氧- 丁烯二酸单酯) -β-CD, 简称 P-CD-A2 ; (3)、 然后用 lmoip-CD-A2和 20mol间硝基苯磺酰 氯 60°C加热反应得到双 [-6-氧- ( -3-间硝基苯磺酰基-丁二酸 -1, 4-单酯 -4-) -] -β-CD, 简称 P-CD-M2。 将制得的 P-CD-M2用于以下的实施例。 Preparation of bis[- 6 -oxo-(- 3 -m-nitrobenzenesulfonyl-succinic acid-^4-monoester-4-)-]-β-cyclodextrin: β-cyclodextrin is abbreviated as β -CD, proceed as follows: (1) First, 123.2 g of nitrobenzene and 350.3 g of chlorosulfonic acid are heated at 100 ° C to obtain m-nitrobenzenesulfonyl chloride; then 22.0 g of maleic anhydride and 17.0 gP-CD, heated at 80 °C to give bis(6-oxo-butenedioic acid monoester)-β-CD, abbreviated as P-CD-A 2 ; (3), then lmoip-CD-A 2 and 20 mol The reaction of m-nitrobenzenesulfonyl chloride at 60 ° C gives bis[-6-oxo-(-3-m-nitrophenylsulfonyl-succinic acid-1,4-monoester-4-)-]-β-CD , referred to as P-CD-M 2 . The obtained P-CD-M 2 was used in the following examples.
实施例一: 替卡西林单一对映体的 HPLC制备新方法 Example 1: A new method for HPLC preparation of ticarcillin single enantiomer
本实施例涉及从该药物的消旋体中得到纯化的 D ( + ) -替卡西林和 L (-) -替卡西林 的方法。 此药物单一对映体的分离分析测定等工作文献较少, 大多研究工作是以消旋体 的方式在进行, 此实施例具有较大创新性。  This example relates to a method for obtaining purified D ( + ) - ticarcillin and L (-) - ticarcillin from the racemate of the drug. There is less work literature on the separation and analysis of single enantiomers of this drug, and most of the research work is carried out in the form of racemates. This embodiment is quite innovative.
替卡西林是一种半合成抗生素, 化学名为 6- (2-羧基 -2-噻吩 -3-基乙酰)氨基青霉烷 酸, 临床使用为双钠盐, C15H14N2Na206S2,分子量 428.40, 为白色至浅黄色粉末, 易溶于 水, 水溶液 pH值为 6— 8。 替卡西林为广谱、 高效抗铜绿假单孢菌青霉素, 但不耐 β-内 酰胺酶, 口服不吸收, 静注或肌注给药。 主要用于治疗灼伤感染、 脑膜炎、 骨髓炎、 呼 吸道、 尿道感染及术后预防等。 常与 β-内酰胺酶抑制剂克拉维酸 (clavulanic acid) 制成 复方 "泰门汀", 亦做"特美汀"。 其对映体结构如下: (*为手性碳)。 Ticarcillin is a semi-synthetic antibiotic known under the chemical name 6-(2-carboxy-2-thiophen-3-ylacetyl)aminopenicillanic acid. It is clinically used as a double sodium salt, C 15 H 14 N 2 Na 2 0 6 S 2 , molecular weight 428.40, white to light yellow powder, soluble Water, aqueous solution pH is 6-8. Ticarcillin is a broad-spectrum, highly effective anti-Pseudomonas aeruginosa penicillin, but not resistant to β-lactamase, orally absorbed, administered intravenously or intramuscularly. Mainly used for the treatment of burn infection, meningitis, osteomyelitis, respiratory tract, urinary tract infection and postoperative prevention. It is often combined with the β-lactamase inhibitor clavulanic acid to make a compound "Tamantine", also known as "Temetine". Its enantiomeric structure is as follows: (* is a chiral carbon).
Figure imgf000014_0001
Figure imgf000014_0001
替卡西林结构  Ticarcillin structure
Li Yin-Hua等用 HPLC测定了血浆和尿中的替卡西林; Watson Ian D等用 HPLC分 别测定了血浆中的克拉维酸和替卡西林; Rice Patrick 0[43]等用 HPLC和旋光检测技术联 用的方法测定了替卡西林; Kelly James ^¥[44]等分别用 γ-环糊精和离子交换乙基乙烯基苯 /二乙烯基苯共聚物、聚(苯乙烯-二乙烯基苯)做 HPLC固定相对包括替卡西林在内的 β- 内酰胺类抗生素的异构体, 进行了分离研究。 Hoogmartens J等用 HPLC分离了青霉素的 侧链异构体: 苯氧乙基青霉素、 苯氧丙基青霉素、 双氯甲氧青霉素、 羧苄西林、 替卡西 林、 安苄西林、 阿莫西林、和阿度西林; Hendrickx S 等用薄层色谱法分离测定了包括替 卡西林在内的 18种青霉素; Atmesley等用梯度洗脱液相色谱法同时分离测定了血浆中包 括替卡西林在内的 13种抗生素; Haginaka等利用预柱将待测品和 1, 2, 4-三吡咯和氯 化汞进行衍生化反应的方法, 用 HPLC测定了血浆和尿中的羧苄西林、 替卡西林和磺苄 西林; Haginaka Jun等用 HPLC分离荧光检测测定了人血浆和尿中的克拉维酸; Haginaka Jun等用次氯酸钠柱后降解 HPLC法测定了替卡西林; Nakagawa Terumichi等用 HPLC 分别测定了人血浆和尿中的克拉维酸和替卡西林, 进行了药物代谢动力学的研究; Mopper Barry用液相色谱法测定了注射剂型药物中的替卡西林; Tyczkowska等用离子对 色谱法测定了犬和马血浆中的替卡西林; Wright Jennifer C. 等用 LC测定了血浆中的替 卡西林和克拉维酸; Horimoto Shingo等用 HPLC与溴仿做电离加速溶剂的常压化学电 离质谱联用测定了包括替卡西林在内的 8种抗生素和 13种头孢菌素; Pajchel Genowefa 等用胶束电动色谱同时测定了特美汀 (替卡西林和克拉维酸组成的复合抗生素) 中的替 卡西林和克拉维酸; Li Chonghua等用液相色谱法同时测定了兔子血浆和组织体液中的替 卡西林和克拉维酸; Jiang Wenqing等用毛细管胶束电动色谱分离测定了阿莫西林、氨苄 西林、 替卡西林三种青霉素和克拉维酸、 舒巴克坦两种 β-内酰胺酶抑制剂; Ashraf-K orassani M 等用多维液相色谱 /电子喷雾电离质谱分离测定了三种基质中的阿 莫西林、 克拉维酸和替卡西林。 Li Yin-Hua et al. determined plasma and urine ticarcillin by HPLC; Watson Ian D et al. determined plasma clavulanic acid and ticarcillin by HPLC; Rice Patrick 0 [43] used HPLC and optical rotation detection Technical combination method for the determination of ticarcillin; Kelly James ^ ¥ [44] and other γ-cyclodextrin and ion exchange ethyl vinyl benzene / divinyl benzene copolymer, poly (styrene - divinyl Benzene was isolated by HPLC for the isomer of β-lactam antibiotics including ticarcillin. Hoogmartens J et al. separated the side chain isomers of penicillin by HPLC: phenoxyethylpenicillin, phenoxypropylpenicillin, dichloromethanemycin, carbenicillin, ticarcillin, ampicillin, amoxicillin, and Aducillin; Hendrickx S et al. Separated 18 penicillins including ticarcillin by thin-layer chromatography; Atmesley et al. simultaneously separated and determined plasma including ticarcillin by gradient elution liquid chromatography. Antibiotics; Haginaka et al. used a precolumn to derivatize test substances with 1,2,4-tripyrrole and mercuric chloride, and determined the carbobenzylcillin, ticarcillin and sulfonate in plasma and urine by HPLC. Benzilin; Haginaka Jun et al. determined the clavulanic acid in human plasma and urine by HPLC separation; Haginaka Jun et al. determined the ticarcillin by post-column degradative HPLC method; Nakagawa Terumichi et al. determined the human plasma by HPLC. In the urine, clavulanic acid and ticarcillin were studied for pharmacokinetics; Mopper Barry used liquid chromatography to determine ticarcillin in the injectable drug; Tyczkowsk Determination of ticarcillin in canine and horse plasma by ion-pair chromatography; Wright Jennifer C. et al. Determination of ticarcillin and clavulanic acid in plasma by LC; Horimoto Shingo et al. Atmospheric pressure chemical ionization mass spectrometry of solvent was used to determine 8 antibiotics and 13 cephalosporins including ticarcillin; Pajchel Genowefa et al. Simultaneous determination of temacetin and clavulanic acid by micellar electrokinetic chromatography Ticacetin and clavulanic acid in the compound antibiotics; Li Chonghua et al. Simultaneous determination of ticarcillin and clavulanic acid in rabbit plasma and tissue fluid by liquid chromatography; capillary thermoelectrophoresis by Jiang Wenqing et al. Separation of amoxicillin, ampicillin, ticarcillin three penicillins and clavulanic acid, sulbactam two β-lactamase inhibitors; Ashraf-K orassani M and other multi-dimensional liquid chromatography / electron spray ionization mass spectrometry Separation and determination of the three matrices Moxilin, clavulanic acid and ticarcillin.
本实施例提供了一种制备纯化 D ( + ) -替卡西林和 L (-) -替卡西林的新方法, 该方 法用上述制备的 β-CD衍生物:双 [-6-氧 -( -3-间硝基苯磺酰基-丁二酸 -1 , 4-单酯 -4-)-]-P-CD (简称: P-CD-M2 )键合两种规格的硅珠构筑两种 HPLC固定相,用透射电子显微镜 TEM、 扫描电子显微镜 SEM、 X-射线光电子能谱 XPS进行表征, 证明 P-CD-M2成功键合到了 硅珠上。 This example provides a novel method for preparing purified D ( + ) - ticarcillin and L (-) - ticarcillin, which uses the β-CD derivative prepared above: bis [-6-oxy-( -3-m-nitrobenzenesulfonyl-succinic acid-1,4-monoester-4-)-]-P-CD (abbreviation: P-CD-M 2 ) bonded two kinds of silicon beads to construct two The HPLC stationary phase was characterized by transmission electron microscopy TEM, scanning electron microscope SEM and X-ray photoelectron spectroscopy XPS, which proved that P-CD-M 2 was successfully bonded to the silicon beads.
在同种固定相分析柱上采用四种流动相,在合适的配比下替卡西林均达到基线分离, 建立了四种相应对映体的 HPLC拆分方法。在 P-CD-M2键合的固定相制备色谱柱中进行 替卡西林单一对映体制备, 对分段收集液的验证结果表明, 得到了替卡西林对映体的单 一组分, 即 D ( + ) 型和 L (-) 型对映体固体盐。 未见文献报道。 Four mobile phases were used on the same stationary phase analysis column. At the appropriate ratio, ticarcillin reached baseline separation, and HPLC separation methods for four corresponding enantiomers were established. The single enantiomer of ticarcillin was prepared in a P-CD-M 2 bonded stationary phase preparative column. The verification of the fractionated pool showed that the single component of the ticarcillin enantiomer was obtained. D (+) and L (-) type enantiomer solid salts. No literature has been reported.
1 P-CD-M2键合硅胶高效液相色谱固定相的制备与表征 Preparation and Characterization of 1 P-CD-M 2 Bonded Silica High Performance Liquid Chromatography Stationary Phase
1.1 P-CD-M2键合硅胶高效液相色谱固定相的制备 1.1 Preparation of P-CD-M 2 bonded silica gel high performance liquid chromatography stationary phase
双 -[-6_氧 -(-3_间硝基苯磺酰基-丁二酸 -1 ,4-单酯 _4-)-]-β- +  Bis-[-6_oxy-(-3_m-nitrobenzenesulfonyl-succinic acid-1,4-monoester _4-)-]-β- +
Figure imgf000015_0001
Figure imgf000015_0001
1.2 表征  1.2 Characterization
1.2.1硅珠与 P-CD-M2键合相透射电镜扫描结果 1.2.1 Transmission results of silicon beads and P-CD-M 2 bonded phase transmission electron microscopy
分别对规格为: 比表面 60m2_g- 容 0.36cm3_g- 30nm (硅珠 A)和比表面The specifications are: specific surface 60m 2 _g- volume 0.36cm 3 _g- 30nm (silicon beads A) and specific surface
380 m2-g l , 容 0.70cm3'g— 10nm (硅珠 B ) 的两种 5μηι全多 硅珠和两种硅珠 键合 P-CD-M2构筑的固定相进行透射电镜扫描, 结果如图 22a、 图 22b、 图 22c、 图 22d。 Transmission electron microscopy of 380 m 2 -g l , 0.70 cm 3 'g-10 nm (silicon bead B) of two 5μηι full polysilicon beads and two silicon bead bonded P-CD-M 2 fixed phases The results are shown in Figures 22a, 22b, 22c, and 22d.
对比图 22 a、 图 22c硅珠 A和硅珠 B的透射电镜扫描图, 在透射扫描结果中看不到 明显区别; 分别对比图 22 a硅珠A与图22bβ-CD-M2键合硅珠A、图 22c硅珠 B、图 22d (b2)P-CD-M2键合硅珠 B构筑的高效液相色谱固定相可看到, 键合后的硅珠表面明显出 现了不同于硅珠的新物质, 说明有物质键合到硅珠表面。 Comparing Fig. 22 a, Fig. 22c, TEM scan of silicon bead A and silicon bead B, no significant difference is seen in the transmission scan results; comparing Fig. 22 a silicon bead A with Fig. 22b β-CD-M 2 bonded silicon Bead A, Fig. 22c silicon bead B, Fig. 22d (b 2 ) P-CD-M 2 bonded silicon bead B can be seen in the high performance liquid chromatography stationary phase, the surface of the bonded silicon bead is obviously different. A new substance of silicon beads, indicating that a substance is bonded to the surface of the silicon bead.
1.2.2硅珠与 P-CD-M2键合相扫描电镜结果 1.2.2 Scanning electron microscopy results of silicon beads and P-CD-M 2 bonded phase
规格为比表面 60m2-g- 容 0.36cm3-g- 1 , 30nm (硅珠 A) 禾 B P-CD-M2键合 硅珠 A进行扫描电镜扫描, 得到放大 5000倍、 10000倍、 50000倍的扫描结果如图 23a、 图 23b、 图 23c、 图 23d、 图 23e、 图 23f所示。规格为比表面 380 2-g l , 容 0.70cm3-g- 10nm (硅珠 B )和 P-CD-M2键合硅珠 B进行扫描电镜扫描,得到放大 5000倍、 10000 倍、 50000倍的扫描结果如图 24a、 图 24b、 图 24c、 图 24d、 图 24e、 图 24f所示。 分别 进行对 ,硅珠 A,B键合 P-CD-M2后表面明显出现了比较多的不同于纯硅珠 A,B的其它 物质, 直 地说明了 P-CD-M2键合到了硅珠 B上。 The specifications are 60m 2 -g-capacity 0.36cm 3 -g- 1 , 30nm (silicon beads A) and B P-CD-M 2 bonded silicon beads A by scanning electron microscopy scanning, which is magnified 5000 times, 10000 times, The scan result of 50000 times is shown in Fig. 23a, Fig. 23b, Fig. 23c, Fig. 23d, Fig. 23e, Fig. 23f. The specifications are 380 2 -g l , 0.70 cm 3 -g - 10 nm (silicon beads B ) and P-CD-M 2 bonded silicon beads B for scanning electron microscopy scanning, which are magnified 5000 times, 10000 times, 50000 times. The scan results are shown in Figures 24a, 24b, 24c, 24d, 24e, and 24f. Separate After the silicon beads A and B were bonded to the P-CD-M 2 surface, there were obvious other substances different from the pure silicon beads A and B, which directly indicated that the P-CD-M 2 was bonded to the silicon. Bead B.
1.2.3 X-射线光电子能谱 1.2.3 X-ray photoelectron spectroscopy
分别扫描硅珠 A、 硅珠 B、 P-CD-M2键合硅珠 A、 P-CD-M2键合硅珠 B的 X-射线光 电子能谱,得到结果如图 25、图 26、图 27,由图可知,硅珠 A中 Ols结合能为 531.48eV, Si2p为 103.58 eV; 硅珠 B中 Ols结合能为 531.81eV, Si2p为 103.68 eV; P-CD-M2键合 硅珠 A的 XPS图谱显示 Cls结合能为 284.62eV, Ols结合能为 530.65eV, S2p为 153.66 eV, Si2p为 102.91 eV; P-CD-M2键合硅珠 B的 XPS图谱显示 Cls结合能为 284.62eV, Ols结合能为 543.32eV, Nls峰因强度比较小未标识, 结合能为 400.85 [见图 28 (c) ], S2p结合能为 166.84 eV, Si2p为 115.8 eV。说明 P-CD-M2成功键合到了硅珠 A和硅珠 B 的表面。 X-ray photoelectron spectroscopy of silicon beads A, silicon beads B, P-CD-M 2 bonded silicon beads A, and P-CD-M 2 bonded silicon beads B were respectively scanned, and the results are shown in Fig. 25 and Fig. 26. 27, it can be seen from the figure that the Ols binding energy in the silicon bead A is 531.48 eV, and the Si2p is 103.58 eV; the Ols binding energy in the silicon bead B is 531.81 eV, and the Si2p is 103.68 eV; P-CD-M 2 bonded silicon bead A The XPS spectrum showed that the Cls binding energy was 284.62 eV, the Ols binding energy was 530.65 eV, the S2p was 153.66 eV, and the Si2p was 102.91 eV. The XPS spectrum of P-CD-M 2 bonded silicon beads B showed that the Cls binding energy was 284.62 eV. The binding energy of Ols is 543.32 eV. The Nls peak is unlabeled because of its small intensity. The binding energy is 400.85 [see Figure 28 (c)], the S2p binding energy is 166.84 eV, and the Si2p is 115.8 eV. It is indicated that P-CD-M 2 is successfully bonded to the surface of the silicon beads A and the silicon beads B.
对比图 28和图 29中两种硅胶键合 P-CD-M2固定相的光电子能谱,在 P-CD-M2键合 硅珠 A中 S的峰面积为 10734.44, N峰不明显; P-CD-M2键合硅珠 B中 S的峰面积为 19460.42, N峰面积为 798.65。 表明硅珠 A表面键合 P-CD-M2的键合量少于 P-CD-M2 在硅珠 B表面的键合量。 即 P-CD-M2在 大、 比表面小的硅珠上 P-CD-M2的键合量 明显低于在 小、 比表面大的硅珠上的键合量。 Comparing the photoelectron spectroscopy of the two silica-bonded P-CD-M 2 stationary phases in Fig. 28 and Fig. 29, the peak area of S in P-CD-M 2 bonded silicon beads A was 10734.44, and the N peak was not obvious; The peak area of S in P-CD-M 2 bonded silicon beads B was 19,460.42, and the N peak area was 798.65. It is shown that the amount of bonding of the surface-bonded P-CD-M 2 of the silicon bead A is less than the amount of bonding of the P-CD-M 2 on the surface of the silicon bead B. That is, the amount of P-CD-M 2 bonded to P-CD-M 2 on a large, smaller-surface-sized silicon bead is significantly lower than that on a small, larger-surface-sized silicon bead.
3.2 P-CD-M2用做 HPLC固定相制备替卡西林单一对映体 3.2 P-CD-M 2 used as HPLC stationary phase to prepare ticarcillin single enantiomer
色谱条件: 色谱柱: P-CD-M2键合硅珠 A硅胶柱 (Φ4.6 mmx250 mm) , 替卡西林 二钠水溶液 lOmg'mL-1,柱温 23°C, 流速 lml'min ,检测波长 230nm。 Chromatographic conditions: Column: P-CD-M 2 bonded silica beads A silica gel column (Φ4.6 mmx250 mm), ticarcillin disodium aqueous solution lOmg'mL- 1 , column temperature 23 ° C, flow rate lml'min, The detection wavelength was 230 nm.
3.2.1 P-CD-M2用做 HPLC固定相 替卡西林分离条件 3.2.1 P-CD-M 2 used as HPLC stationary phase ticarcillin separation conditions
1、 甲醇 -5mmol_L- 1 酸盐 液为流动相 替卡西林分离情况 1, methanol-5mmol_L- 1 acid solution for mobile phase ticarcillin separation
以甲醇 (A) -Smmol-L"1 酸二氢 Smmol'L 酸氢二 (Ph=7) 水溶液 (B) 为流动相, 流动相配比如表所示, 流速 lml_min- 柱温 23°C, 检测波长 230nm, 进样量 5 L,得到一系 色谱分离结果。 由表 1可知, 当甲醇比例 至 60%上, 两对映体达到基 线分离。 The methanol (A)-Smmol-L" 1 acid dihydrogen Smmol'L acid hydrogen di(Ph=7) aqueous solution (B) was used as the mobile phase, and the mobile phase was mixed as shown in the table. The flow rate was 1 ml_min - the column temperature was 23 ° C. The wavelength of 230 nm and the injection amount of 5 L gave a series of chromatographic separation results. As can be seen from Table 1, when the methanol ratio was 60%, the two enantiomers reached baseline separation.
甲醇 mmol.L-1 酸盐 液为流动相分离替卡西林 Methanol mmol.L- 1 acid solution for mobile phase separation of ticarcillin
A-B tRi/min H/AU Wmin H/AU Rs A-B tRi/min H/AU Wmin H/AU Rs
60% -80% 2.85 0.044 4.48 0.576 1.77 60% -80% 2.85 0.044 4.48 0.576 1.77
80% -20% 3.07 0.043 8.03 0.319 3.65  80% -20% 3.07 0.043 8.03 0.319 3.65
2、 甲醇-三 液( mmol'L-1四正丁基溴化 mmol'L-1 酸氢二 mmol'L-1 酸二 氢 水溶液) 为流动相分离替卡西林 2, methanol - three liquid (mmol 'L- 1 tetra-n-butyl bromide mmol 'L- 1 acid hydrogen two mmol 'L- 1 acid dihydrogen aqueous solution) for mobile phase separation ticarcillin
以甲醇(A) - mmol'L-1四正丁基溴化 (B) mmol'L-1 酸氢二 (C) mmol'L-1 酸二氢 (D)水溶液为流动相, 流动相配比如表所示, 流速 lml_min- 柱温 23°C, 检 测波长 230nm, 进样量 ΙΟμΙ^,从表 2数据可知, 当流动相中甲醇的体积达到 88%时, 达到 基线分离。 Using methanol (A) - mmol 'L - 1 tetra-n-butyl bromide (B) mmol 'L - 1 acid hydrogen di (C) mmol 'L - 1 acid dihydrogen (D) aqueous solution as mobile phase, mobile phase matching As shown in the table, the flow rate lml_min- column temperature 23 ° C, detection wavelength 230 nm, injection volume ΙΟμΙ ^, from the data in Table 2, when the volume of methanol in the mobile phase reaches 88%, reach Baseline separation.
液为流动相分离替卡西林  Liquid phase separation of ticarcillin
A-B-C-D tRi/min H/AU Wmin H/AU Rs  A-B-C-D tRi/min H/AU Wmin H/AU Rs
88%-4%-4%-4% 3.92 0.045 14.45 0.164 1.81  88%-4%-4%-4% 3.92 0.045 14.45 0.164 1.81
3、
Figure imgf000017_0001
酸水溶液为流动相分离替卡西林
3,
Figure imgf000017_0001
Acidic aqueous solution for mobile phase separation of ticarcillin
以甲醇 (A) -50mmol_L- 1 酸水溶液 (B) 为流动相, 流动相配比如表所示, 流速 lmhnin- 1, 柱温 23°C, 检测波长 230nm, 进样量 ΙΟμΙ^,如表 3所示。 当流动相中甲醇体 积比在 60%以上时, 达到基线分离。 The methanol (A) -50mmol_L- 1 acid aqueous solution (B) was used as the mobile phase, and the mobile phase was as shown in the table. The flow rate was lmhnin- 1 , the column temperature was 23 ° C, the detection wavelength was 230 nm, and the injection amount was ΙΟμΙ^, as shown in Table 3. Show. When the volume ratio of methanol in the mobile phase is above 60%, baseline separation is achieved.
表 3 甲醇 -50mmol_L- 1 酸水溶液为流动相分离替卡西林Table 3 methanol--50mmol_L- 1 acid aqueous solution for mobile phase separation of ticarcillin
A-B tRi/min H/AU Wmin H/AU Rs A-B tRi/min H/AU Wmin H/AU Rs
60%-40% 4.72 0.063 10.11 0.476 2.23  60%-40% 4.72 0.063 10.11 0.476 2.23
70%-30% 4.72 0.078 11.79 0.437 2.66  70%-30% 4.72 0.078 11.79 0.437 2.66
80%-20% 5.47 0.076 17.60 0.316 3.64  80%-20% 5.47 0.076 17.60 0.316 3.64
90%- 10% 8.19 0.043 45.31 0.148 5.36  90% - 10% 8.19 0.043 45.31 0.148 5.36
4、 乙腈 -50mmol_L- 1 酸二氢 水溶液为流动相分离替卡西林 4, acetonitrile -50mmol_L - 1 acid dihydrogen aqueous solution for mobile phase separation of ticarcillin
以乙腈(A) -50mmoH 1 酸二氢 水溶液(B)为流动相,流动相配比如表(A-B) 所示, 流速 lml_min- 柱温 23°C, 检测波长 230nm, 进样量 ΙΟμΙ^,由表 4数据可知, 替卡西 林在以上各流动相配比条件下全部达到基线分离, 流动相中乙腈体积比的 力口, 峰 形变 , 峰宽变 , 洗脱强度变大, 分离时间明显 短。 The acetonitrile (A) -50mmoH 1 acid dihydrogen aqueous solution (B) is used as the mobile phase, and the mobile phase is as shown in Table (AB). The flow rate is lml_min - the column temperature is 23 ° C, the detection wavelength is 230 nm, and the injection volume is ΙΟμΙ^. 4 data show that ticarcillin reached the baseline separation under the above mobile phase ratio conditions, the acetonitrile volume ratio of the mobile phase, the peak shape change, the peak width changed, the elution intensity became larger, and the separation time was significantly shorter.
表 4 乙腈 -0.05mol_L- 1 酸二氢 水溶液为流动相分离替卡西林Table 4 acetonitrile-0.05mol_L- 1 acid aqueous dihydrogen solution for mobile phase separation of ticarcillin
A-B tRi/min H/AU Wmin H/AU Rs A-B tRi/min H/AU Wmin H/AU Rs
3%-97% 19.97 0.015 44.00 0.070 1.62  3%-97% 19.97 0.015 44.00 0.070 1.62
12%-88% 11.01 0.029 28.61 0.104 1.64  12%-88% 11.01 0.029 28.61 0.104 1.64
21%-79% 7.81 0.036 22.88 0.165 2.10  21%-79% 7.81 0.036 22.88 0.165 2.10
30%-70% 6.32 0.046 20.16 0.263 2.53  30%-70% 6.32 0.046 20.16 0.263 2.53
39%-61% 4.51 0.055 16.43 0.362 2.95  39%-61% 4.51 0.055 16.43 0.362 2.95
48%-52% 5.01 0.055 18.24 0.471 3.05  48%-52% 5.01 0.055 18.24 0.471 3.05
57%-43% 3.31 0.074 10.93 0.612 4.58  57%-43% 3.31 0.074 10.93 0.612 4.58
3.2.2 用 P-CD-M2半制备 HPLC柱制备替卡西林单一对映体 3.2.2 Preparation of ticarcillin single enantiomer by P-CD-M 2 semi-preparative HPLC column
采用甲醇- 酸水溶液作为流动相可以 盐析现象的发生;乙腈- 酸二氢 水溶液 作为流动相, 可以选择比较低的有机溶剂浓度。 故选择上述两种流动相制备替卡西林单 一对映体。  The use of methanol-acid aqueous solution as the mobile phase can cause salting out; acetonitrile-acid dihydrogen aqueous solution can be used as the mobile phase to select a lower organic solvent concentration. Therefore, the above two mobile phases were selected to prepare a single enantiomer of ticarcillin.
1、 70%甲醇 -30%50mmol_L- 1 酸水溶液流动相制备替卡西林单一对映体 1. 70% methanol-30% 50mmol_L- 1 aqueous solution mobile phase preparation of ticarcillin single enantiomer
综合 分离度和分离时间因素, 确定比例为 70%甲醇 -30%50mmol_L- 1 酸水溶液 作为制备色谱流动相。 色谱条件: 色谱柱: P-CD-M2键合硅珠 A 硅胶柱 (Φ10 mmx 150mm) , 替卡西林二钠水溶液 lOmg'mL- 1,柱温 23°C, 流速 2ml'min- 1,检测波长 230nm,进样量 500μ 。制备分离结果见图 30。分别收集 6.75— 9.20min、 21.31 -28.94min 之间的组分, 处理后测定其旋光性, 21.31— 28.94min之间组分旋光性为 "+", 可知前锋 为 (-) 替卡西林, 后峰为 (+ ) 替卡西林。 Comprehensive separation and separation time factors, determine the ratio of 70% methanol-30% 50mmol_L- 1 acid aqueous solution As a preparative chromatographic mobile phase. Chromatographic conditions: Column: P-CD-M 2 bonded silica beads A silica gel column (Φ10 mmx 150mm), ticarcillin disodium aqueous solution lOmg 'mL- 1 , column temperature 23 ° C, flow rate 2ml 'min- 1 , The detection wavelength was 230 nm, and the injection amount was 500 μ. The separation results are shown in Figure 30. The components between 6.75 - 9.20min and 21.31 -28.94min were collected, and the optical rotation was measured after treatment. The optical rotation of the component was "+" between 21.31 and 28.94min. It can be seen that the front is (-) ticarcillin. The peak is (+) ticarcillin.
对收集的替卡西林前锋(6.75— 9.20min)、 后峰(21.31— 28.94min)收集液用 HPLC 进行验证, 得到结果如图 31,结果表明, 收集到的替卡西林前锋和后峰都是单一峰。  The collected ticarcillin forward (6.75-9.20 min) and the post-peak (21.31-28.94 min) were verified by HPLC, and the results are shown in Fig. 31. The results showed that the collected ticarcillin front and the back peak were both Single peak.
分离后得到的收集液经冷冻干燥后,得到含有 酸盐的替卡西林单一对映体固体盐, 采用 HPLC和 HPCE进行检测。 可知均为单一 HPCE电泳峰或液相色谱峰。  The collected solution obtained after separation was freeze-dried to obtain a single-enantiomer solid salt of ticarcillin containing an acid salt, which was detected by HPLC and HPCE. It can be seen that all are single HPCE electrophoresis peaks or liquid chromatography peaks.
2、 21%乙腈 -79%50mmol - 1 酸二氢 流动相制备替卡西林单一对映体 2. Preparation of ticarcillin single enantiomer by 21% acetonitrile-79% 50 mmol -1 acid dihydrogen mobile phase
综合 峰型较好、 分离度大、 分离时间短等因素, 确定比例为 21%乙腈 -79%50mmol_L- 1 酸二氢 水溶液做为制备色谱流动相。色谱条件: 色谱柱: P-CD-M2 键合比表面 601^·^、 容 0.36cm3'g— 30nm、 5μηι硅胶柱(Φ10 mmx 150mm), 替卡西林二钠水溶液 lOmg'mL-1,柱温 23°C, 流速 Sml'min-1,检测波长 230nm, 进样量 500μΙ^。 对收集的替卡西林前锋 (9.76— 11.47min)、 后峰 ( 12.60— 15.27min) 收集液用 分析型 HPLC进行验证, 得到结果如图 32所示。 结果表明, 收集到的替卡西林前锋和 后峰都是单一峰 (图中 峰为水峰)。 The composite peak shape is good, the separation degree is large, and the separation time is short. The ratio of 21% acetonitrile-79% 50mmol_L- 1 acid dihydrogen solution is determined as the preparative chromatographic mobile phase. Chromatographic conditions: Column: P-CD-M 2 bonding ratio surface 601^·^, volume 0.36cm 3 'g-30nm, 5μηι silica gel column (Φ10 mmx 150mm), ticarcillin disodium aqueous solution lOmg'mL- 1 The column temperature is 23 ° C, the flow rate is Sml 'min - 1 , the detection wavelength is 230 nm, and the injection amount is 500 μΙ. The collected ticarcillin front (9.76 - 11.47 min) and the post-peak ( 12.60 - 15.27 min) collected liquids were verified by analytical HPLC, and the results are shown in Fig. 32. The results showed that the collected ticarcillin front and the back peak were single peaks (the peak in the figure is the water peak).
实施例二手性药物替卡西林单一对映体的含量测定新方法 A new method for determining the content of a single enantiomer of the second-hand drug ticarcillin
1、 用 P-CD-M2HPLC柱测定替卡西林单一对映体组分线性范围 1. Determination of linear range of single enantiomers of ticarcillin by P-CD-M 2 HPLC column
配制不同浓度的替卡西林二钠溶液 (对 品, 98%) 溶液, C (mg-mL-1 ) 分别为: 0.01、 0.05、 0.1、 0.5、 1、 3、 5、 10、 30、 50, 以 P-CD-M2键合硅珠 A为固定相, 柱型 O4.6mmx250mm,柱温 23°C, 70%
Figure imgf000018_0001
酸水溶液为流动相,流速 lml'I 1, 检测波长 230nm, 进样量 20μΙ^, 在此色谱条件下测定替卡西林的分离线性范围, 分别 峰面积-浓度、 峰高-浓度标 曲线, 得到结果如图 33所示, 前峰 (- ) 替卡西林 (tR=4.72min) 峰面积-浓度标 曲线方程为 y=338.00047x, 相关系数 R=0.99984, 峰高- 浓度标 曲线方程为 y=2.73079x,相关系数 R=0.99964;后峰(+)替卡西林(tR=11.79min) 峰面积-浓度标 曲线方程为 y=6230.70769x, 相关系数 R=0.9999, 峰高-浓度标 曲线方 程为 y=22.63206x, 相关系数 R=0.99562。
Prepare different concentrations of ticarcillin disodium solution (pair, 98%) solution, C (mg-mL- 1 ) are: 0.01, 0.05, 0.1, 0.5, 1, 3, 5, 10, 30, 50, P-CD-M 2 bonded silicon beads A as the stationary phase, column type O4.6mmx250mm, column temperature 23 ° C, 70%
Figure imgf000018_0001
The aqueous acid solution is a mobile phase, the flow rate is lml'I 1 , the detection wavelength is 230 nm, and the injection volume is 20 μΙ^. The linear range of separation of ticarcillin is determined under the chromatographic conditions, respectively, peak area-concentration, peak height-concentration curve, The results are shown in Figure 33. The peak (-) ticarcillin (t R = 4.72 min) peak area-concentration curve equation is y=338.00047x, correlation coefficient R=0.99984, peak height-concentration curve equation is y=2.73079x, correlation coefficient R=0.99964; post-peak (+) ticarcillin (t R =11.79min) peak area-concentration curve equation is y=6230.70769x, correlation coefficient R=0.9999, peak height-concentration The curve equation is y=22.63206x, and the correlation coefficient is R=0.99562.
2、 用 P-CD-M2做 HPLC固定相测定替卡西林单一对映体组分精密度 2. Determination of the precision of the single enantiomer component of ticarcillin by using P-CD-M 2 as the HPLC stationary phase
在上述色谱条件下测定 Smg.mL-1替卡西林二钠中两组分精密度, 进样次数 n=8, 分 别以峰面积和峰高为 参数, 得到结果如表 5所示。 The precision of the two components in Smg.mL- 1 ticarcillin disodium was determined under the above chromatographic conditions. The number of injections was n=8, and the peak area and peak height were taken as parameters respectively. The results are shown in Table 5.
精密度 结果为 (-) 替卡西林峰高相对标 差为 3.85%, (-) 替卡西林峰面积 相对标 差为 5.18%; ( + ) 替卡西林峰高相对标 差为 1.58%, ( + ) 替卡西林峰面 积相对标 差为 1.81%。 表 5替卡西林中各组分精密度 The precision results were (-) ticarcillin peak height relative error 3.85%, (-) ticarcillin peak area relative standard deviation was 5.18%; ( + ) ticarcillin peak height relative deviation was 1.58%, ( + ) The relative variation of the area of ticarcillin is 1.81%. Table 5 Precision of each component in ticarcillin
tRl tR2 hi/mv h2/mv Ai/mv*s A2/mv*s tRl tR2 hi/mv h 2 /mv Ai/mv*s A 2 /mv*s
1 4.93 11.41 13.563 125.967 2042.83 29086.54  1 4.93 11.41 13.563 125.967 2042.83 29086.54
2 4.96 11.49 14.429 125.188 2159.36 29320.06  2 4.96 11.49 14.429 125.188 2159.36 29320.06
3 4.93 11.52 14.601 125.789 2340.82 28167.56  3 4.93 11.52 14.601 125.789 2340.82 28167.56
4 4.93 11.44 14.735 129.359 2349.60 28266.45  4 4.93 11.44 14.735 129.359 2349.60 28266.45
5 4.96 11.47 15.046 127.468 2473.23 29468.94  5 4.96 11.47 15.046 127.468 2473.23 29468.94
6 4.93 11.52 15.478 124.240 2412.99 29519.38  6 4.93 11.52 15.478 124.240 2412.99 29519.38
7 4.96 11.49 14.900 123.055 2401.78 28652.11  7 4.96 11.49 14.900 123.055 2401.78 28652.11
8 4.96 11.47 14.377 124.417 2011.53 28988.44  8 4.96 11.47 14.377 124.417 2011.53 28988.44
X 14.641 125.685 2274.02 28933.69  X 14.641 125.685 2274.02 28933.69
SD 0.563 1.987 117.68 523.26 SD 0.563 1.987 117.68 523.26
RSD/% 3.85 1.58 5.18 1.81 RSD/% 3.85 1.58 5.18 1.81
还可以将 P-CD-M2作为手性添加剂, 采用高效毛细管电泳 (HPCE) 分离替卡西林, 了 - 酸 液 pH、 手性添加剂浓度、 分离电压、 液浓度对分离的影响, 得到最 分离条件; 替卡西林二钠浓度在 0.01— lOn^ml L范围内有较好的线性分离, 以峰高为 参数(n=7) , 1 80%为2.41—4.27%, 以峰面积为 参数(n=7) , RSD% 为 3.00%— 5.23%。 P-CD-M 2 can also be used as a chiral additive. High-performance capillary electrophoresis (HPCE) can be used to separate ticarcillin. The effects of acid pH, chiral additive concentration, separation voltage and liquid concentration on separation are also obtained. Conditions; The concentration of ticarcillin disodium has a good linear separation in the range of 0.01-lOn^ml L, with the peak height as the parameter (n=7) and 180% as 2.41-4.27%, with the peak area as the parameter ( n=7) , RSD% is 3.00% - 5.23%.
采用 HPLC 以 P-CD-M2手性固定相法分离分析替卡西林影响因素相对比较少,精密 度测定1^0%为1.81— 5.18; 采用 HPCE以 P-CD-M2手性添加剂法对替卡西林进行分离分 析, 精密度测定 RSD为 2.41%— 5.23%。 The factors affecting the isolation of ticarcillin by P-CD-M 2 chiral stationary phase were relatively low by HPLC. The precision of 1^0% was 1.81-5.18. The HP-based P-CD-M 2 chiral additive method was used. For the separation analysis of ticarcillin, the precision RSD was 2.41% - 5.23%.
实施例三硝基苯胺位 异构体的含量测定新方法 A new method for determining the content of isomers of trinitroaniline
在 P-CD-M2键合比表面 601^·^、 容 0.36cm3'g- 30nm、 5μηι硅珠(A 柱) ; P-CD-M2键合比表面 3801^·^、 容 0.70αη3·^、 10nm、 5μηι硅珠(B 柱) 上 硝基苯胺位 异构体的分离情况。 A柱正相模式下以正己烷一异丙醇、 正己 烷一乙醇为流动相分离硝基苯胺, 合适的流动相配比能使硝基苯胺达到基线分离, 洗脱 顺 为 一间一对, 反相模式下以水一甲醇为流动相分离硝基苯胺, 洗脱顺 为间一对 - ; B柱正相模式下以正己烷一异丙醇、 正己烷一乙醇为流动相和反相模式下以水一 甲醇为流动相均未能使硝基苯胺达到基线分离, 正相模式下洗脱顺 为 一间一对, 反 相模式下洗脱顺 为间一 一对。 表明不同的键合基质对硝基苯胺分离影响不同, 选择 分离效能 的 A柱进行定量分析。 In the P-CD-M 2 bonding ratio surface 601 ^ · ^, capacity 0.36cm 3 'g - 30nm, 5μηι silica beads (A column); P-CD-M 2 bonding ratio surface 3801 ^ · ^, capacity 0.70 Separation of the upper nitroaniline isomers of αη 3 ·^, 10 nm, 5μηι silica beads (B column). In the normal phase of column A, the nitroaniline was separated by n-hexane-isopropanol and n-hexane-ethanol. The appropriate mobile phase ratio can make the nitroaniline reach the baseline separation, and the elution is a pair. In the phase mode, the nitroaniline was separated by water-methanol as the mobile phase, and the elution was in a pair--; the normal phase mode of the B column was n-hexane-isopropyl alcohol, n-hexane-ethanol as the mobile phase and the reverse phase mode. The nitroaniline was not separated from the baseline by water-methanol as the mobile phase. The elution in the normal phase mode was a pair, and the elution in the reverse phase mode was a pair. It is indicated that different bonding matrices have different effects on the separation of nitroaniline, and the separation column A is selected for quantitative analysis.
A柱以 70%正己烷一 30%异丙醇为流动相 、 间、 对硝基苯胺的线性范围为: 硝 基苯胺为 5x 10-6 WO-2 mol-L 1 , 相关系数 R=0.99994; 间硝基苯胺为 5χ 10"6 2χ 10"2 mol-L"1 , 相关系数 R=0.9999; 对硝基苯胺为 5x 10— 5-8xl0— 2 mo L- 相关系数 R=0.99981。 模拟 合样中 、 间、 对硝基苯胺的精密度 (n=8 ) , 以峰高为 参数, 硝基苯胺The linear range of A column with 70% n-hexane to 30% isopropanol as mobile phase, m-p-nitroaniline is: nitroaniline is 5x 10-6 WO- 2 mol-L 1 , correlation coefficient R=0.99994; The m-nitroaniline is 5χ 10" 6 2χ 10" 2 mol-L" 1 , the correlation coefficient is R = 0.9999, and the p-nitroaniline is 5x 10 - 5 - 8x10 - 2 mo L - correlation coefficient R = 0.99981. Simulating the precision of the intermediate, m-nitroaniline (n=8), taking the peak height as the parameter, nitroaniline
1^0%为 1.25%, 间硝基苯胺 1^0%为 0.89%, 对硝基苯胺 1^0%为 1.96%, 以峰面积为 参数, 硝基苯胺 1^0%为 1.04%, 间硝基苯胺 1^0%为 1.72%,对硝基苯胺 RSD% 为 4.32%, 模拟 合样中 、 间、 对硝基苯胺的加标 收率: 对硝基苯胺可达 96.08%—1^0% is 1.25%, m-nitroaniline 1^0% is 0.89%, p-nitroaniline 1^0% is 1.96%, with peak area as parameter, nitroaniline 1^0% is 1.04%, The nitroaniline 1 ^ 0% was 1.72%, the p-nitroaniline RSD% was 4.32%, and the spiked yield of the intermediate, m-nitroaniline was simulated: p-nitroaniline up to 96.08% -
102.45%。 在该色谱条件下 、 间、 对硝基苯胺的检测限, 、 间硝基苯胺的检出限为102.45%. The detection limit of p-nitroaniline under this chromatographic condition, the detection limit of m-nitroaniline is
1.38x l0-8g, 对硝基苯胺的检出限为 1.38x l0—7g。 1.38x l0- 8 g, the detection limit for p-nitroaniline 1.38x l0- 7 g.
实施例四 涂 型 HPLC柱分离手性化合物 α-苯乙醇 Example 4 Coating HPLC separation of chiral compound α-phenylethanol
利用空的 150x4.6mm , 以涂 型硅胶固定相为填料 填的色谱柱(以下简 称柱 C) 来分离手性物质。
Figure imgf000020_0001
(α-苯乙醇)
The chiral material was separated by an empty 150 x 4.6 mm column packed with a silica-coated stationary phase as a filler (hereinafter referred to as column C).
Figure imgf000020_0001
( α -phenylethyl alcohol)
色谱条件对 α-苯乙醇的分离情况  Separation of α-phenylethyl alcohol by chromatographic conditions
1、 改变流动相配比  1. Change the mobile phase ratio
柱温 25 °C, 流速为 lml/min, 检测波长 254nm, 当流动相为 100%正己烷时, α- 苯乙醇在此条件下不能分离。 当加入少量无水乙醇时色谱此时的色谱分离情况有改 , 当流动相为 99%正己烷 -1%无水乙醇, α-苯乙醇(1.0x lO—3M) 的进样量为 lul, 分离如图 34 (仪器: LC-14A): 由图 34可知在此条件下 α-苯乙醇能达到基线分离。 The column temperature was 25 °C, the flow rate was 1 ml/min, and the detection wavelength was 254 nm. When the mobile phase was 100% n-hexane, α-phenylethyl alcohol could not be separated under this condition. When the addition of a small amount of absolute ethanol, the chromatographic separation at the time of chromatography was changed. When the mobile phase was 99% n-hexane-1% absolute ethanol, the injection amount of α-phenylethanol (1.0x lO- 3 M) was lul. , Separation as shown in Figure 34 (instrument: LC-14A): From Figure 34, it can be seen that α-phenylethanol can reach baseline separation under these conditions.
2、 改变温度  2, change the temperature
选择流动相组成为 99%正己烷 -1%无水乙醇, 柱温 25 °C变化到 40°C, α-苯乙醇 ( 1.0x lO"3M) 的进样量为 lul。 可看出 27°C条件下两对映体分离度 R最大, 如图 35所 实施例五、 键合型 HPLC柱的分离手性化合物 1-苯丙醇 The mobile phase composition was selected to be 99% n-hexane-1% absolute ethanol, the column temperature was changed to 40 ° C at 25 ° C, and the injection amount of α-phenylethanol ( 1.0 x lO" 3 M) was lul. The resolution of the two enantiomers is the largest under the condition of °C, as shown in Figure 35. Example 5. Separation of the chiral compound 1-phenylpropanol from the bonded HPLC column
下面用空的 250x4.6mm不 柱, 以键合型硅胶固定相为填料 填的色谱柱(以下 简称柱 D) 来分离手性物质。 分别 不同流动相组成、 流动相的配比、 柱温、 流速等 因素对 1-苯丙醇分离的影响。 色谱条件: 检测波长 225nm, 流动相正己烷-甲醇, 流速 The chromatographic column (hereinafter referred to as column D) filled with a bonded silica gel stationary phase is used to separate the chiral material by using an empty 250 x 4.6 mm column. The effects of different mobile phase composition, mobile phase ratio, column temperature, flow rate and other factors on the separation of 1-phenylpropanol. Chromatographic conditions: detection wavelength 225nm, mobile phase n-hexane-methanol, flow rate
1 , 1-苯丙醇浓度为 O. l moLI 1,进样量为 5μ1,柱温为 23 °C。仪器: 日立 LC-7000。
Figure imgf000020_0002
( 1-苯丙醇)
1 , 1-phenylpropanol concentration is O. l moLI 1 , the injection volume is 5μ1, and the column temperature is 23 °C. Instrument: Hitachi LC-7000.
Figure imgf000020_0002
(1-phenylpropanol)
1、 正己垸与甲醇比例对分离情况影响  1. The effect of the ratio of n-hexane to methanol on the separation
通过 流动相配比 (100%; 99%; 98%; 97%; 96%正己浣) 结果可以看出, 在 99%正己烷 -1%甲醇流动相下 1-苯丙醇分离度可达 2.83。 实现了基线分离。 如图 36。  By the mobile phase ratio (100%; 99%; 98%; 97%; 96% hexamethylene), it can be seen that the 1-phenylpropanol separation can reach 2.83 in the 99% n-hexane-1% methanol mobile phase. A baseline separation was achieved. See Figure 36.
2、 柱温对色谱分离情况影响 2. Effect of column temperature on chromatographic separation
选择色谱条件为: 99%正己烷 -1%甲醇流动相, 流速为 1ml丄-1,检测波长 225nm. 柱 温分别选择 24°C、 27°C、 30°C、 33 °C、 37°C、 40°C。 柱温对手性物质 1-苯丙醇的分 离。 30°C时流动相对两对应异构体基本达到基线分离, 即达 99.7%以上(分离度 R-1.5 ), 故选择在 30°C时分离较好。 如图 37所示。 The chromatographic conditions were as follows: 99% n-hexane-1% methanol mobile phase, flow rate was 1 ml 丄-1 , detection wavelength was 225 nm. Column temperature was 24 °C, 27 °C, 30 °C, 33 °C, 37 °C, respectively. , 40 ° C. Column temperature, the substance of the substance, 1-phenylpropanol Leaving. At 30 ° C, the flow relative to the two corresponding isomers basically reached the baseline separation, that is, more than 99.7% (resolution R-1.5), so the separation was better at 30 ° C. As shown in Figure 37.
3、 流速对色谱分离情况影响  3. Influence of flow rate on chromatographic separation
选择在 99%正己烷 -1%甲醇流动相, 检测波长 225nm. 柱温为 23 °C,改变不同的流速 Select 99% n-hexane -1% methanol mobile phase, detection wavelength 225nm. Column temperature is 23 °C, change different flow rates
(2.0、 1.5、 1.0、 0.7、 0.4、 O.lmL/min)所得结果可知, 流速的减小,保 时间 力口, 两对映异构体保 时间差也越大,这样就能更好地制备、 获取单一对映体组分创造了条 件。 以下是流速为 1.0和 0.05 mL/min的色谱图分别如图 38所示。 (2.0, 1.5, 1.0, 0.7, 0.4, O.lmL/min) The results show that the flow rate is reduced, the time is strong, and the time difference between the two enantiomers is larger, so that it can be better prepared. The conditions for obtaining a single enantiomeric component are created. The following are the chromatograms at flow rates of 1.0 and 0.05 mL/min, respectively, as shown in Figure 38.
实施例 、 键合型 HPLC柱构建反相色谱体系分离手性物质扁桃酸 EXAMPLES, Bonded HPLC Column Construction of Reversed Phase Chromatography System for Separation of Chiral Material Mandelic Acid
作为流动相, 在此条件下扁桃酸有了部分分离。 仪器: 日立
Figure imgf000021_0001
(扁桃酸), 柱温 26°C, 流速 0.5ml/min 流动相 95%甲醇 -5%
As a mobile phase, there is partial separation of mandelic acid under these conditions. Instrument: Hitachi
Figure imgf000021_0001
(mandelic acid), column temperature 26 ° C, flow rate 0.5 ml / min mobile phase 95% methanol - 5%
0.3%TEAApH5.5 液的色谱分离图, 如图 39所示。 Chromatographic separation of 0.3% TEAApH 5.5, as shown in Figure 39.

Claims

权利 要 求 书 Claim
1、 双 [-6-氧 -(-3-间硝基苯磺酰基-丁二酸 -1,4-单酯 -4-)-]-β-环糊精的分子式为 C62H8 1. The molecular formula of bis[-6-oxo-(-3-m-nitrophenylsulfonyl-succinic acid-1,4-monoester-4-)-]-β-cyclodextrin is C 62 H 8
H H  H H
c c\>  c c\>
Figure imgf000022_0001
Figure imgf000022_0001
2、 双 [-6-氧 -(-3-间硝基苯磺酰基-丁二酸 -1,4-单酯 -4-)-]-β-环糊精的制备方法, β-环糊 精简称为 β-CD, 其特征在于按以下步骤进行: (1)、 先用 lmol硝基苯与 1-lOmol氯磺酸2. Preparation method of bis[-6-oxy-(-3-m-nitrophenylsulfonyl-succinic acid-1,4-monoester-4-)-]-β-cyclodextrin, β-cyclodextrin The abbreviation is β-CD, which is characterized by the following steps: (1), first use 1 mol of nitrobenzene and 1-lOmol of chlorosulfonic acid
80-150°C加热反应得到间硝基苯磺酰氯; (2)、 再用 2-30mol顺丁烯二酸酐和 lmoip_CD,Heating at 80-150 ° C to obtain m-nitrobenzenesulfonyl chloride; (2), using 2-30 mol of maleic anhydride and lmoip_CD,
60-120Ό加热反应得到双 (6-氧-丁烯二酸单酯) -β-CD , 简称 p_CD-A2 ; (3)、 然后用 lmolp-CD-A2和 2-30mol间硝基苯磺酰氯 50-120Ό加热反应得到双 [-6-氧- (-3-间硝基苯 磺酰基-丁二酸 -1, 4-单酯 -4-) -] -β-CD, 简称 p-CD-M2 ; 反应式如下:
Figure imgf000022_0002
60-120 Ό heating reaction to obtain bis(6-oxo-butenedioic acid monoester)-β-CD, abbreviated as p_CD-A 2 ; (3), then lmolp-CD-A 2 and 2-30 mol of m-nitrobenzene The sulfonyl chloride 50-120 Ό is heated to obtain bis[-6-oxo-(-3-m-nitrophenylsulfonyl-succinic acid-1,4-monoester-4-)-]-β-CD, abbreviated as p- CD-M 2 ; the reaction formula is as follows:
Figure imgf000022_0002
o  o
i一 CD p-CD- O-C-CH=CHCOOH).  i-CD p-CD- O-C-CH=CHCOOH).
U (简称: P-CD-A2) (2)
Figure imgf000022_0003
(简称:(3"CDH^ )
U (abbreviation: P-CD-A 2 ) ( 2 )
Figure imgf000022_0003
(referred to as: (3"CDH^)
(3)  (3)
3、双 [-6-氧 -(-3-间硝基苯磺酰基-丁二酸 -1,4-单酯 -4-)-]-β-环糊精用于制备高效液相色 谱柱填料, 用于 HPLC分离纯化手性药物替卡西林、 α-苯乙醇或 1 -苯丙醇单一对映体, 建立这些药物的 HPLC含量测定新方法。 3. Bis[-6-oxo-(-3-m-nitrophenylsulfonyl-succinic acid-1,4-monoester-4-)-]-β-cyclodextrin for the preparation of high performance liquid chromatography columns Filler, used for HPLC separation and purification of the chiral drug ticarcillin, α-phenylethanol or 1-phenylpropanol single enantiomer, to establish a new HPLC method for the determination of these drugs.
20  20
替换页 (细则第 26条)  Replacement page (Article 26)
PCT/CN2011/076885 2010-08-12 2011-07-06 Bis[-6-oxo-(-3-m-nitrobenzene sulfonyl-succinic acid-1,4-monoester-4-)-]-β-cyclodextrin, preparation process and use thereof WO2012019499A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010254105.1 2010-08-12
CN 201010254105 CN101985481B (en) 2010-08-12 2010-08-12 Bis[6-oxygen-(-3-m-nitrobenzene sulfonyl-amber acid-1,4 uniester-4)-]-beta-cyclodextrin, preparation method and use

Publications (1)

Publication Number Publication Date
WO2012019499A1 true WO2012019499A1 (en) 2012-02-16

Family

ID=43709881

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/076885 WO2012019499A1 (en) 2010-08-12 2011-07-06 Bis[-6-oxo-(-3-m-nitrobenzene sulfonyl-succinic acid-1,4-monoester-4-)-]-β-cyclodextrin, preparation process and use thereof

Country Status (2)

Country Link
CN (1) CN101985481B (en)
WO (1) WO2012019499A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101985481B (en) * 2010-08-12 2012-10-24 中南民族大学 Bis[6-oxygen-(-3-m-nitrobenzene sulfonyl-amber acid-1,4 uniester-4)-]-beta-cyclodextrin, preparation method and use
CN102219793B (en) * 2011-05-04 2014-04-09 湖南湘药制药有限公司 Method for purifying D (-)-sulbenicillin sodium
CN103965484B (en) * 2014-04-09 2017-02-22 南昌大学 Preparation method and application of omega-diamine derivatization beta-cyclodextrin bonded SBA-15 chiral stationary phase

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101985481A (en) * 2010-08-12 2011-03-16 中南民族大学 Bis[6-oxygen-(-3-m-nitrobenzene sulfonyl-amber acid-1,4 uniester-4)-]-beta-cyclodextrin, preparation method and use

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005533190A (en) * 2002-04-29 2005-11-04 チバ スペシャルティ ケミカルズ ホールディング インコーポレーテッド Aqueous liquid composition of reactive cyclodextrin derivative and finishing process using the composition
CN1232539C (en) * 2002-05-10 2005-12-21 刘云清 Match of organic medicine and beta-cyclodextrin derivative and its preparing process

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101985481A (en) * 2010-08-12 2011-03-16 中南民族大学 Bis[6-oxygen-(-3-m-nitrobenzene sulfonyl-amber acid-1,4 uniester-4)-]-beta-cyclodextrin, preparation method and use

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
WANG, QING ET AL.: "Bis[-6-Oxygen-(3-m-Nitrobenzene Sulfonyl-Succinic Acid-1, 4 Monoester-4-)-]-p-cyclodextrin column HPLC separating nitroaniline isomer", JOURNAL OF SOUTH-CENTRAL UNIVERSITY FOR NATIONALITIES (NATURAL SCIENCE EDITION), vol. 128, no. 1, March 2009 (2009-03-01) *
YANG, XI ET AL.: "Synthesis of Bis[-6-Oxygen-(3-m-Nitrobenzene Sulfonyl-Succinic Acid- 1, 4 Monoester-4-)-]-p-cyclodextrin and simulation of ascorbic acid oxidase", JOURNAL OF SOUTH-CENTRAL UNIVERSITY FOR NATIONALITIES (NATURAL SCIENCE EDITION), vol. 125, no. 4, December 2006 (2006-12-01), pages 29 *
YANG, XI: "Synthesis of Bis[-6-Oxygen-(3-m-Nitrobenzene Sulfonyl-Succinic Acid-1, 4 Monoester-4-)-]-p-cyclodextrin and its application to high performance liquid chromatogram constant phase and photometry", CHINA MASTER THESES FULL-TEXT DATABASE, ENGINEERING SCIENCE AND TECHNOLOGY, vol. 1, no. 3, 15 March 2008 (2008-03-15), pages 7 - 9,19,21-22,39 *

Also Published As

Publication number Publication date
CN101985481A (en) 2011-03-16
CN101985481B (en) 2012-10-24

Similar Documents

Publication Publication Date Title
Padró et al. State-of-the-art and recent developments of immobilized polysaccharide-based chiral stationary phases for enantioseparations by high-performance liquid chromatography (2013–2017)
Li et al. Preparation and evaluation of a novel N-benzyl-phenethylamino-β-cyclodextrin-bonded chiral stationary phase for HPLC
Guo et al. Synthesis, chromatographic evaluation and hydrophilic interaction/reversed-phase mixed-mode behavior of a “Click β-cyclodextrin” stationary phase
Mullett et al. Multidimensional on-line sample preparation of verapamil and its metabolites by a molecularly imprinted polymer coupled to liquid chromatography–mass spectrometry
Wu et al. Graphene quantum dots functionalized β-cyclodextrin and cellulose chiral stationary phases with enhanced enantioseparation performance
Cirilli et al. High-performance liquid chromatography enantioseparation of proton pump inhibitors using the immobilized amylose-based Chiralpak IA chiral stationary phase in normal-phase, polar organic and reversed-phase conditions
WO2012019500A1 (en) Bis-[6-oxo-(2-m-carboxylbenzene sulfonyl-succinic acid 1,4-monoester-4)]-β-cyclodextrin, preparation process and use thereof
Materazzo et al. Effect of the water content on the retention and enantioselectivity of albendazole and fenbendazole sulfoxides using amylose-based chiral stationary phases in organic–aqueous conditions
Franco et al. Enantiomer separation by countercurrent chromatography using cinchona alkaloid derivatives as chiral selectors
Ma et al. Evaluation of an ionic liquid chiral selector based on clindamycin phosphate in capillary electrophoresis
JP5882219B2 (en) Purification method of colistin and purified colistin component
Kacprzak et al. Triazolo-linked cinchona alkaloid carbamate anion exchange-type chiral stationary phases: Synthesis by click chemistry and evaluation
Cirilli et al. The sodium salt of the enantiomers of ricobendazole: preparation, solubility and chiroptical properties
WO2012019499A1 (en) Bis[-6-oxo-(-3-m-nitrobenzene sulfonyl-succinic acid-1,4-monoester-4-)-]-β-cyclodextrin, preparation process and use thereof
CN101095670B (en) Luteolin phospholipid complexes and method for preparing the same and application thereof
Ilisz et al. High-performance liquid chromatographic separation of paclitaxel intermediate phenylisoserine derivatives on macrocyclic glycopeptide and cyclofructan-based chiral stationary phases
Kohout et al. Effect of different immobilization strategies on chiral recognition properties of Cinchona‐based anion exchangers
Péter Direct high-performance liquid chromatographic enantioseparation of apolar β-amino acids on a quinine-derived chiral anion-exchanger stationary phase
Liu et al. Synthesis of chiral functionalized UiO-66-NH 2@ SiO 2 and use of its domain-limiting effect for separating small enantiomers
Rosetti et al. Simultaneous enantio-and diastereo-selective high-performance liquid chromatography separation of paroxetine on an immobilized amylose-based chiral stationary phase under green reversed-phase conditions
Chen et al. Preparation of sulfobutylether-β-cyclodextrin bonded Fe3O4/SiO2 core-shell nanoparticles and its application in enantioselective liquid-liquid extraction
CN106226426A (en) A kind of high performance liquid chromatography splits the method for canagliflozin five-membered ring impurity enantiomer
Xu et al. Preparation of an O-[2-(methacryloyloxy)-ethylcarbamoyl]-10, 11-dihydroquinidine-silica hybrid monolithic column for the enantioseparation of amino acids by nano-liquid chromatography
Chandarana et al. Chiral chromatography and determination of chiral molecules: past, present, and future perspectives
Zhang et al. Stereoselective protein binding studies of 2-(2-hydroxypropanamido) benzoic acid enantiomers in rat, beagle dog and human plasma

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11816058

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11816058

Country of ref document: EP

Kind code of ref document: A1