WO2012019433A1 - 一种变相磁极发电装置 - Google Patents

一种变相磁极发电装置 Download PDF

Info

Publication number
WO2012019433A1
WO2012019433A1 PCT/CN2011/001301 CN2011001301W WO2012019433A1 WO 2012019433 A1 WO2012019433 A1 WO 2012019433A1 CN 2011001301 W CN2011001301 W CN 2011001301W WO 2012019433 A1 WO2012019433 A1 WO 2012019433A1
Authority
WO
WIPO (PCT)
Prior art keywords
winding
cage
ring
commutator
shaped
Prior art date
Application number
PCT/CN2011/001301
Other languages
English (en)
French (fr)
Inventor
戴文育
Original Assignee
Dai Wenyu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Wenyu filed Critical Dai Wenyu
Publication of WO2012019433A1 publication Critical patent/WO2012019433A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means
    • H02N11/002Generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K99/00Subject matter not provided for in other groups of this subclass
    • H02K99/10Generators

Definitions

  • the present invention relates to a device for mutually converting electrical energy and mechanical energy, which focuses on a medium for electromagnetic field energy conversion, and is a method and device for applying a variable phase magnetic pole.
  • the present invention is a rectifying motion mode in which magnetic flux is generated in a magnetic pole and a magnetic circuit.
  • the invention relates to an improved phase-change pole power generating device.
  • the object of the present invention is to overcome the above technical problems and provide a process for rapidly improving the performance of a magnetic field energy conversion conversion.
  • the present invention applies a new method, a new structure, a new process, and can also obtain a magnetic field energy transfer and conversion medium.
  • a new technology improved phase-change pole power generation device is to overcome the above technical problems and provide a process for rapidly improving the performance of a magnetic field energy conversion conversion.
  • the excitation coil Selecting the excitation current input to an excitation rectifier converter, after the phase-converted excitation coil magnetic pole, the excitation coil rectifies the magnetic flux to the cage grid core magnetic flux ring, and senses to the main winding, and establishes voltage output and load on the main winding.
  • another main winding rectifying pole changer is used for mechanical rectification motion mode, and the rectification generates a magnetic flux path to return to the excitation coil again.
  • the excitation coil and the main winding simultaneously increase the mutual inductance magnetic flux, so that A device that achieves continuous energy conversion.
  • the cage core magnetic flux ring is characterized in that: the cage core magnetic flux ring comprises a plurality of "mouth” shaped equal square columns arranged in a ring-shaped cage shape, and the four orientations of each square column core are placed two.
  • the group is called the coil winding, and it should be understood that the entire cage core magnetic ring is arranged by a plurality of identical square pillars to form a ring-shaped cage-shaped magnet core, which is connected between each square column, so in each square column The columns in the core, ie adjacent windings, are shared.
  • the magnetic flux path generated in the symmetrical winding is confined in the core, wherein the winding is divided into a main winding and a field winding and The compensation winding, each of the excitation windings and the compensation windings are wound on the same core column, and according to the arrangement of the excitation windings in the mechanical rectification movement mode, the flux linkage transformation can establish a ⁇ chain time-varying mutual inductance flux with the main winding;
  • multiple square columns in the cage core ring can be designed as Always maintain multiple pairs of two electromagnetic torches (conventional motors called torches) symmetrically transforming the magnetic poles to form a continuous uninterrupted flux linkage state, and induce a potential and establish a voltage output in the main winding.
  • the plurality of sets included in the preceding main winding are connected in series, and the series connection method may select a principle of adding each potential of the main winding coils, connecting them into a single-phase winding in series, or connecting three single-phase windings into " ⁇ ". Or a three-phase winding connection of a " ⁇ " type structure, of course, the main winding connection method can be a conventional manner, and does not require any further description.
  • the aforementioned compensation windings are overlap wound on the shared core column field winding, and the compensation winding is wound by a layer of insulating material before being wound.
  • the compensation winding is connected in series with the main winding.
  • the main purpose of the series connection is that when the main winding outputs a voltage load, the main winding must perform the magnetic flux travel at the same time. At this time, the connected compensation winding has a benefit at the same time.
  • the compensation windings are a common series body at the same time, they also benefit from the same, that is, in the N- and S-pole transformation movements of the field windings in the moment of the pole changer, the magnetic induction benefits can also be brought about by the common series in the normal transient.
  • the main winding and the field winding also make some changes in the coil and the magnetic circuit between the windings in the structure of the present invention, and are suitable for various electromagnetic energy conversion applications as needed.
  • polar converters The rectifier configuration and related mechanical rectifying members of the present invention are collectively referred to as "polar converters" in the present invention, and are mainly classified into two types of polar converters: an excitation rectifying pole changer and a main winding rectifying pole changer.
  • the purpose of the polar converter mainly includes: One purpose is to quickly distribute the excitation current in a mechanical rectification motion mode to mutually transform the N, S pole and the excitation coil to generate a ⁇ chain flux, and the other purpose is to establish a time-varying potential.
  • the voltage is again mechanically rectified, the excitation magnetic induction is again increased, and the power output is established in the main winding.
  • the excitation rectifying pole converter When the excitation rectifying pole converter is in the mechanical rectification motion mode, when the excitation winding distributes the magnetic field to generate a potential, the N- and S-polarity transformations can be performed to perform the phase-shifted mechanical rectification, which requires mechanical provision.
  • the field pole converter and the main winding converter are respectively composed of two unit mechanisms, including a common combination of a collector ring and a commutator, and the characteristic is: the field winding is fixed by The wire on the brush rod of the casing is connected with the carbon brush, and is connected to the collector ring and the copper ring installed on the rotating shaft. The collecting ring is connected by wires to the carbon brush on the variable carbon brush holder, and the carbon brush contacts the disk. On the commutator of the body or cylinder, the commutator is fastened in the frame and does not change.
  • the disc body or the center of the cylinder of the commutator is designed as a central through hole, two side by side disc bodies or Cylindrical commutators are a group, arranged separately
  • the commutator segments, the two side-by-side commutator segments are symmetrical, and the variable carbon brush holders and the carbon brushes at both ends are also symmetrical, and the commutator segments are respectively connected to the exciting coils by wires.
  • the collector ring and the variable carbon brush holder are fixed on the same rotating shaft, and one end of the rotating shaft is transverse to the central through-hole axis of the commutator.
  • the commutator and the shaft are not in contact with each other. On the same axis.
  • the respective variable carbon brush holders at both ends of the polar converter include a pair of symmetrical N or S poles or two pairs of symmetrical N and S poles, and the carbon brush is contacted to form a disc body in the stationary mica or On the cylindrical commutator, a reversing piece is arranged on the disc body or the cylinder, and the carbon brush holders at both ends are fastened and arranged on the rotating shaft, and the rotating shaft is connected to the power source.
  • the arrangement of the excitation rectifier converter is composed of two sets of identical side-by-side commutators (two sets of four commutators) and two ends of the carbon brush.
  • the technical problem to be solved is: excitation current
  • there will be an adjacent commutator distance difference that is, there must be a certain distance between the commutator and the commutator in the design (the distance is mica insulator), and the distance is between N
  • Simultaneous contact of the S pole falls at a point or prevents the N and S poles from directly contacting at the same time.
  • slip ring and the commutator should be understood that in the embodiments, including other constituent components may be obtained in the prior art and does not require further technical definition.
  • the excitation rectifier converter and the main winding rectifier converter are divided, and the mechanical configurations of the two commutators are the same, and are designed on the same axis, and the rectification modes are respectively: excitation current Rectification and rectification of the induced potential of the main winding, it can be seen that in this arrangement the field rectifying converter and the main winding rectifying converter can be selectively combined into one body configuration.
  • the power source connection rotating shaft may be selected as a diesel engine, a steam turbine, a hydraulic power, a wind power or the like as an external power, and the power source selection is not the focus of the present invention.
  • the source of the excitation current mainly includes the connection to the excitation generator power supply, the parallel power grid, the battery pack, etc., especially the application of the generator can directly select the DC power connection with the exciter, of course, the selection of the input excitation current It will be apparent to one of ordinary skill in the art that the manner of selection is not an important part of the present invention.
  • the cage core magnetic flux ring may be spliced into a multi-cage joint to form a mesh-shaped grid column in parallel, and the winding parallel connection and the exchange are also included.
  • the connecting member is included, which achieves the same effect or a desired, higher standard electrical energy ratio in the above known structure.
  • the present invention adopts a technical solution, which is a static mode in which the field winding is applied, and a mechanism in which the static excitation winding is disguised as a separate force under the action of a special structure of the cage-shaped magnetic core surrounding group and the converter. Rectifying mode of movement The essence is to use small energy to change the excitation rectification mode, so as to achieve the effect of the traditional motor ⁇ chain flux.
  • the present invention adopts the application of new technology in the structure, from the specific use value and angle. In comparison, the efficiency is far more than the traditional technology, and in the above-mentioned structure, it can be seen that it is quite an electric current transformer.
  • the invention Compared with the conventional generator, the invention has obvious differences in applications such as mechanical energy, process, shape and structure, and can be applied to the most embarrassing method in terms of materials, which not only can improve the life of the generator, but also has a convenient process and structure.
  • the manufacturing cost is relatively low; the focus is on its work efficiency, the mechanical energy used by the external power to drive the pole changer through the field winding and the main winding mechanical rectification motion, the winding coils form the ⁇ chain flux transformation
  • the output of the larger power electric energy ratio the invention does not adopt the rotation mode of the rotor, compared with the conventional generator, the rotation mode of the rotating rotor is adopted, and the time-varying electric potential is generated by the winding magnetic flux of the winding coil, so the conventional generator
  • the rotor winding coil ⁇ chain flux generates a time-varying potential, which requires relative external power.
  • the invention uses a polar converter to mechanically rectify the excitation winding, thereby saving the power source directly needed by the rotor ⁇ chain magnetic field.
  • the invention uses a relatively small power source to drive the polar converter to perform the excitation ratio, which is the generator energy Operation of new breakthroughs.
  • FIG. 1 is a front exploded view showing a phase-change magnetic pole power generating device of the present invention.
  • FIG. 2 is a cross-sectional view showing a phase changer of a phase-change magnetic pole power generation device according to the present invention.
  • FIG. 3 is a view showing an arrangement of a commutator of a phase-change magnetic pole power generation device according to the present invention.
  • FIG. 1 is a main preferred embodiment of the present invention: an excitation current is input to an excitation rectifier converter, and a magnetic field of the excitation coil is transformed by a phase-change, and the excitation coil is magnetically coupled to the cage of the cage.
  • the excitation coil and the main winding increase the mutual inductance magnetic flux to achieve continuous energy conversion.
  • the application method and arrangement of the magnetic conductive material mainly provide a cage core magnetic conducting ring 3, which is characterized in that: the cage core magnetic conducting ring 3 comprises a plurality of "mouth" shaped equal The square columns are arranged in a ring-shaped cage shape. The four orientations of each square column core are two sets of symmetrical coil windings. It should also be understood that the entire cage core magnetic ring 3 is arranged by a plurality of identical square columns to form a circle. The cage cores are connected between each square column, so the columns of adjacent windings are shared in each square pillar core.
  • the cage core magnetic ring 3 can be regarded as a unit in the above, and the cage core magnetic ring 3 according to the present invention is composed of at least one unit, and can also be selected as two units according to requirements.
  • the above composition for example: Simultaneously selecting a cage core magnetic core ring in which three unit cores are not connected, as a main core magnetic flux ring, can be constructed into three single-phase windings and connected into a three-phase winding connection; In terms of selection, it is not an important requirement of the present invention.
  • the flux linkage transformation in the mechanical rectification motion mode, can establish the ⁇ chain time-varying mutual magnetic flux with the main winding 1, which can be understood as a plurality of cage core rings.
  • the main winding 1 and the exciting winding 2 in the square column can be designed to always maintain a plurality of pairs of two electromagnetic torches (conventional motors called torches) symmetrically transforming magnetic poles, forming a circumferential and uninterrupted flux linkage state in the mechanical rectification motion mode, and selecting The induced potential in the main winding 1 establishes a voltage output.
  • the voltage and frequency of the main winding of the generator are kept constant, and the auxiliary capacitors can be connected when the main winding establishes the power output.
  • the structure of the former main winding 1 is: comprising a plurality of grid columns, wherein the main windings 1 are connected in series, and the series connection method can select the principle of adding each potential of the coils of the main winding 1 to be connected in series to form a single-phase winding, or The three single-phase windings are connected in a three-phase winding of a " ⁇ " or " ⁇ " type structure.
  • the connection method of the main winding 1 is optional in a conventional manner and does not require any further description. '
  • the main winding 1 and the field winding 2, including the compensation winding are also subjected to various coil and magnetic circuit changes between the windings in the structure of the present invention, which are suitable for various electromagnetic energy conversion applications.
  • polar converters The rectifier configuration and related mechanical rectifying members of the present invention are collectively referred to as "polar converters" in the present invention, and are mainly classified into two types of polar converters: an excitation rectifying pole changer and a main winding rectifying pole changer.
  • the purpose of the pole changer mainly comprises: one purpose is to quickly distribute the excitation current in a mechanical rectification motion mode to mutually transform the N, S pole and the excitation coil 2 to generate a ⁇ chain flux, and the other purpose is a time varying potential
  • the generated voltage is again subjected to the mechanical rectification motion mode, the excitation magnetic induction is again increased, and the power supply output is established at the main winding 1 at the same time.
  • the excitation rectifying pole converter When the excitation rectifying pole converter is in the mechanical rectification motion mode, when the excitation winding distributes the magnetic field to generate a potential, the N- and S-polarity transformations can be performed to perform the phase-shifted mechanical rectification, which requires mechanical provision.
  • the pole changer shown in FIG. 2 is composed of a two-unit mechanism of a field pole converter and a main winding pole changer in the arrangement of the present invention, which is composed of a collector ring and a commutator.
  • the combination body is characterized in that: the excitation current is connected to the carbon brush through the wire on the fixed brush rod 13, and is connected to the collector ring 11 and the copper ring installed on the rotation axis, and the collector ring 11 is connected to the variable carbon brush through the wire.
  • the carbon brush 4 on the frame 7 and the carbon brush 4 are in contact with the commutator 8 of the disc body or the cylinder.
  • the commutator 8 is fastened to the commutator bracket 18 which is arranged on the leg frame 16 and is fixed.
  • the center of the disk body or cylinder of the directional device 8 is a through hole, and two side-by-side disk bodies or cylindrical commutators are a group, and the commutator segments 5 are respectively arranged, and two side-by-side commutators 8 are arranged.
  • the commutator segments 5 are symmetrical, and the fluctuating carbon brush holder 7 and the carbon brush 4, which are both ends, are also symmetrical, and the commutator segments 5 are respectively connected to the coils of the field winding by wires.
  • collector ring 11 and the variable carbon brush holder 7 are designed to be fixed on the same rotating shaft 6, the end 6 of the rotating shaft is traversed on the central through-hole axis of the commutator 8, of course, the commutator 8 and The rotating shafts 6 are arranged on the same axis without contacting each other. It can be seen that when the rotating shaft 6 is rotated at a constant speed, the collecting ring 11 and the variable carbon brush holder 7 are also rotated at the same time, and the carbon brush holder 7 is changed. The carbon brush 4 is contacted on the commutator 8 which is fixed and does not change. According to the two commutators 8 arranged side by side, the winding coils can be misaligned to distribute the N and S poles.
  • the respective variable carbon brush holders 7 at both ends include a pair of symmetrical N and S poles or two pairs of symmetrical N and S poles, and the carbon brush 4 is in contact.
  • the stationary mica is formed into a disk body or a cylindrical commutator 8 , and the disk body or the cylinder is arranged with a commutator piece 5 which is fastened and arranged on the rotation axis, and the rotating shaft 6 is connected to Power source.
  • the power source connection shaft can be selected as a diesel engine, a steam turbine, a hydraulic power, a wind power, etc. as the external power, and the selection of the power source is not the focus of the present invention.
  • slip ring 11 and the commutator 8 should be understood to include other related constituent components in the embodiment, which may be obtained in the prior art and do not require further technical definition, or other equivalent methods suitable for this application.
  • the polar converter should be understood to be within the scope of this purpose.
  • polar converter According to the above-mentioned polar converter, it is divided into an excitation rectifying pole converter and a main winding rectifying pole converter.
  • the mechanical configurations of the two commutators are the same, and the two sets of polar converters must be synchronized when the mechanical work is rotated.
  • the goal is to maintain the instantaneous full-wave rectification of the field rectification and main winding rectification, which is the most basic requirement of the generator.
  • the rectification modes are rectification of the excitation current rectification and the induced potential of the main winding 1, respectively, and the main winding 1 is rectified while connecting the wires, and the other
  • the collector ring 11 is connected, including at least one pair or three connected to the collector ring 11, and the voltage output is established by fixing the carbon brush and the wire on the brush bar, and it can be seen that the field rectifying converter and the main body are arranged in the arrangement.
  • the winding rectifier converter can be selected to form a unitary arrangement.
  • the source of the excitation current mainly includes connecting to the excitation generator power supply, the parallel power grid, the battery pack, etc., in particular, the application of the generator can directly select the DC power source generated by the adaptation exciter 9 as the excitation current to be connected.
  • the choice of the input field current is obvious to those skilled in the art, and the selection is not an important part of the present invention; the embodiment shown in Figure 1 shows that the exciter shaft 14 of the exciter 9 is connected to the power source.
  • the other end exciter shaft 14 is mounted with a coupling 10, the coupling 10 is connected with the shaft 6 of the pole changer, and the pole changer and the exciter 9 are integrated, and the cage core core 3 is included.
  • a unitary generator device that is composed of a whole.
  • the DC current generated by the exciter 9 is introduced into the excitation rectifying pole changer, and the N, S poles are rapidly distributed by the mechanical rectification motion mode by the excitation rectifying pole converter, and the N and S poles are distributed to each column core column.
  • the exciting coil 2 Arranging the exciting coil 2, and generating a ⁇ chain magnetic flux and establishing a mutual magnetic flux with the main winding 1 through the iron core column, and generating a current, and again connecting the main winding rectifying pole converter through the current generated in the main winding 1, and In the mechanical rectification mode, the mutual inductance flux path is established at the same time and is distributed to the compensation winding.
  • the main winding 1 is inevitably established in the mutual transformation. 1.
  • the DC current is established.
  • the DC-current mechanical rectification motion is periodically interconverted by reconnecting the main winding rectifier converter as described above.
  • N, S pole and change current direction at this time, according to the rotation speed of the shaft 6 of the pole changer and the number of magnetic poles of the exciting coil 2, further
  • the frequency of the alternating current is 50 (60) Hz
  • the current direction is 50 (60) periodic changes per second
  • the number of changes per second is 100 (120) times, and the alternating current is established.
  • the main winding 1 is divided into three output poles, and the three positive poles are respectively connected to one pole of the capacitor, and the other three poles of the three capacitors are combined into one extremely neutral line.
  • the neutral line is equal to the zero line represented in daily life.
  • the capacitor has the function of storing and releasing voltage. The auxiliary use of the capacitor can effectively solve the constant voltage and frequency consistency.
  • a further object of the present invention is to provide an electrical energy and mechanical energy conversion, which is further extended in the arrangement of the above-mentioned arrangement.
  • the cage core magnetic ring In the structural arrangement, the cage core iron magnetic ring can be spliced into a plurality of cages to form a mesh-shaped square column in parallel, and the connecting parts of the winding parallel and the converter are also included, which can be The same effect or a desired, higher standard electrical energy ratio is obtained in the known structure.
  • the cage core magnetic guide ring in the embodiment is further divided into a plurality of equal square columns in the annular ring, that is, the "mouth" shape divided into multiple segments, and the square column four
  • the direction bits are placed in the coil windings, and the windings are arranged symmetrically.
  • a square column there are two pairs of symmetric arrangements in the square.
  • the entire cage core magnetic ring is connected by multiple sets of identical square columns and windings. Because each group is connected, the columns of adjacent windings are shared in each column.
  • the main sign is: The cage core magnetic ring is divided into multiple equal square columns.
  • the entire cage is arranged in an annular ring (the same as the arrangement of the first embodiment), and the cage-shaped arrangement is joined to form a ring-shaped circular ring body, and the integrated cage-shaped ring-shaped circular assembly is formed by
  • An extension of a plurality of cage core magnetic flux rings, and a cage-shaped mesh ring body extendingly connected into a main body; can be understood as: a ring center ring core, a chain medium winding uninterrupted mutual inductance flux, a shape Again and again, the state of the endless cycle.
  • the field winding and the first embodiment can be distinguished.
  • the first embodiment only the field windings are connected and the common columns are shared, which is added in the second embodiment.
  • the windings are connected together, and the main windings are also formed at the same time. Therefore, both the field winding and the main winding have a loop-sharing link. It can be seen that the field winding and the main winding are each in a transient state, and their respective forms are established.
  • the variable energy conversion is a form of variable energy conversion that is constant.
  • connection of the relevant windings and the mechanical rectification of the transposer, and the establishment of the voltage output are an extension based on the first embodiment of the technical solution, which is obvious to a person skilled in the art. of.
  • the present invention has been described with reference to the specific illustrative embodiments, it is not limited to the embodiment, but is limited only by the appended claims. It is to be understood that various modifications and improvements can be made to the embodiments without departing from the scope and spirit of the invention, and the technical solutions obtained by equivalent substitution or equivalent transformations are all present in the present invention.
  • the technical solution obtained on the basis of the present invention relates to a kinetic energy transformer that can be improved, and is converted as a field current based on a direct current current, and the power source of the pole changer is designed to be provided by the motor, and the mechanical rectification motion is periodically interconverted. , S pole and changing current direction, and establishing AC current output, all of which fall within the scope of protection of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Synchronous Machinery (AREA)
  • Dc Machiner (AREA)

Description

一种变相磁极发电装置
技术领域
[00011本发明涉及电能和机械能互相转换的装置, 其重点在于电磁场能量转换的媒介, 是一 种变相磁极应用方法和装置, 本发明是应用在磁极和磁路中产生磁通的整流运动方式情形, 以能达到连续进行能量转换的装置, 特别是, 但不唯一地, 本发明涉及改进的一种变相磁极 发电装置。
背景技术
[0002] 在众多传统发电机技术领域中, 都离不幵转子的旋转矩所产生机械整流磁场来完成发 电过程, 但存在缺点是发电功率越大, 产生磁力就越大, 所需的动力源就越大, 同时包括电 流引起的电阻发热和机械端运动中磨擦发热的损耗, 还包括铁心磁阻和电枢漏电感, 以及在 传统发电机导磁率利用不全面, 漏磁率相对较高等; 因此, 传统发电机就受到了能量转换众 多限制, 这就意味着, 为了获得发电机领域进一步提高利用价值, 就必需跳出传统或现有发 电机众多的限制; 并且, 传统的变压器或发电机都采用是固定规律性技术应用, 很难以进一 步提高效能, 这就需要相对变相应用新技术和新方法来解决存在的瓶颈, 以实现获得更高标 准的发电技术应用, 如何在发电领域进一步提高效能是当前急需要解决能源的问题。
发明内容
[0003] 本发明的目的是克服上述技术问题, 提供一种快速提高效能磁场能变转换应用过程, 本发明应用了新方法、 新构造、 新工艺, 同样可以获得磁场能量传递和转换媒介, 是一种全 新技术改进的变相磁极发电装置。
[0004] 本发明采取了下述技术方案是:
选择励磁电流输入一励磁整流极换器,经过变相转换励磁线圈磁极, 励磁线圈以整流方式互感 磁通至笼形方格柱铁心导磁环, 和感应至主绕组, 并且在主绕组建立电压输出和负载时, 又 经过另一主绕组整流极换器做机械整流运动方式, 整流产生感磁通路径再次重返感应至励磁 线圈, 此时励磁线圈和主绕组同时增加变大互感磁通率, 以能达到连续进行能量转换的装置。
[0005】 正如前述, 笼形铁心导磁环其特征是: 笼形铁心导磁环包括多个 "口"字形相等方格 柱拼排列成环圆圈笼形, 每一个方格柱铁心的四个方位是放置两组相对称线圈绕组, 同样应 该理解为在整个笼形铁心导磁环是由多个相同方格柱拼排列成环圆圈笼形导磁铁心, 在每个 方格柱之间是相连的, 所以在每个方格柱铁心中即相邻绕组的柱是共享的。
[0006] 正如前述, 在笼形铁心导磁环包括线圈绕组的结构布置中可以看出, 对称的绕组中产 生磁通路径都被限制在铁心中, 其中把绕组分为主绕组和励磁绕组及补偿绕组, 每柱励磁绕 组和补偿绕组是绕制在共享同一的铁心柱上,根据励磁绕组的布置在做机械整流运动方式中, 磁链变换可以和主绕组建立匝链时变互感磁通; BP, 笼形铁心环中的多个方格柱可以设计为 始终都保持多对两个电磁炬 (传统电机称为转炬) 对称变换磁极, 形成周而复始不间断磁链 状态, 并且在主绕组中感应电势和建立电压输出。
[0007] 前任所述主绕组包括的多组是串联, 串联方式可选择在主绕组线圈每一组电势相加的 原则, 串联成单相绕组, 或把三个单相绕组连接成 "丫"或 "△"型结构的三相绕组接法, 当然, 所述主绕组连接方法都可以是传统的方式, 并且不需要作任何进一步的描述。
[0008] 为解决主绕组电压负载和增大励磁磁感问题, 在前述的补偿绕组是重叠绕制在共享的 铁心柱励磁绕组上, 补偿绕组绕制之前是通过一层绝缘材料相隔后再绕制的, 补偿绕组并且 与主绕组串联一起, 串联主要目的是在主绕组输出电压负载时, 主绕组必定在铁心柱同时做 磁通行径动作, 此时, 在连接的补偿绕组同时有感受益, 由于补偿绕组同时是共同串联体, 所从也共同受益, 即, 在励磁绕组在极换器瞬间 N、 S极变换运动中, 常态瞬时内也能共亨 串联带来磁感受益。
[0009] 当然, 主绕组和励磁绕组, 包括补偿绕组, 在本发明的结构中各绕组之间还会做一些 线圈和磁路的改变, 根据需要适用于各种电磁能的转换应用。
[0010] 本发明所述整流器构成和相关机械整流构件在本发明中统称为 "极换器", 主要分为 两种极换器: 励磁整流极换器和主绕组整流极换器。
[0011] 极换器目的主要包括: 一目的是把励磁电流做机械整流运动方式快速分配出相互变换 N、 S极与励磁线圈产生匝链磁通, 另一目的是时变电势产生建立的电压再次做机械整流运动 方式, 再次增大励磁磁感, 并且在主绕组建立电源输出。
[0012] 所述励磁整流极换器在做机械整流运动方式时, 励磁绕组分布磁场产生电势时, 可以 做N、 S极极性的变换中进行变相机械式的整流, 这就需要提供机械式整流器, 来对其线圈 绕组通于的电流进行全波整流。
[0013] 所述主绕组整流极换器在做机械整流运动方式时, 产生建立互感磁通路径 (主绕组输 出负载时方可建立), 感磁通路径再次必然重返感应至励磁线圈, 从而再次增大励磁磁感,此 时励磁线圈和主绕组同时增加变大互感磁通率, 可以看出励磁整流极换器和主绕组整流极换 器同时都做机械整流运动方式, 这个条件在特定电磁场能量中变量的转换是非常必要的, 可 以说极换器在本发明中是承上启下核心作用。
[0014] 在本发明布置中所述励磁极换器和主绕组极换器分别两单元机构组成, 包括集电环和 换向器两种共同组合体构成, 其特征是: 励磁绕组通过固定在机壳体刷杆上的导线和碳刷相 连, 又连接于转轴线上安装的集电环和铜环, 集电环由导线连接至变动碳刷架上的碳刷, 碳 刷接触在圆盘体或圆柱体的换向器上, 换向器是紧固在于机架上固定不变动, 换向器的圆盘 体或圆柱体圆心是设计一中心透孔, 两个并排的圆盘体或圆柱体换向器为一组, 分别排列有 换向片, 两个并排的换向器布置换向片是相对称, 同时包括两端的变动碳刷架和碳刷也呈相 对称, 换向片由导线分别连接至励磁线圈。
[0015] 上述中, 集电环和变动碳刷架是固定在同一转轴上, 转轴一端是横穿于换向器的中心 透孔轴线上, 当然, 换向器和轴是不相互接触地排列在同一轴线上。
[0016] 所述极换器两端各自的变动碳刷架包括相对称 N、 S极一对或选择两对相对称 N、 S 极以上, 碳刷是接触在静止云母制作成圆盘体或圆柱体换向器上, 圆盘体或圆柱体上排列有 换向片, 两端变动碳刷架是紧固并排在转轴线上, 转轴并且连接至动力源。
[0017] 所述励磁整流极换器的布置, 同时是由两组相同并排的换向器 (两组为四个换向器) 和两端变动碳刷, 要解决的技术问题是: 励磁电流快速分配时, 会存在相邻的换向片距离差, 即, 在设计中换向片与换向片之间必须有一定的距离间 (此距离间是云母绝缘体), 距离间是 防止 N、 S极同时接触落在一点上或者防止 N、 S极同时直接接触, 由此可以看出距离间即是 换向片之间就存在瞬间的断路, 为了解决瞬间的断路问题, 在上述已知换向器的布置中, 相 应增加一组换向器互相配合, 并且是同一设计在轴线上, 两组换向器的换向片和碳刷分别是 错位排列的, 此时的错位差可解决瞬间断路问题, 可以认为是匝链磁通的基础必要条件, 从 此励磁线圈亦是错位连接, 形成了连续不断的磁链变换和磁通行径。
[0018] 当然, 集电环和换向器应当理解在实施例中, 包括其它构成部件可以在现有的技术中 获得并不需要进一步技术限定。
[0019] 根据上述极换器分为励磁整流极换器和主绕组整流极换器, 两种换向器的机械构造是 相同的, 并且是设计在同一轴线上, 整流方式分别是: 励磁电流整流和主绕组感应电势的整 流, 可以看出在该布置中励磁整流极换器和主绕组整流极换器可以选择组合成一个主体的构 造。
[0020] 所述动力源连接转轴可以选择为柴油机、 汽轮机、 水力、 风力等作为外源动力, 动力 源选择并不是本发明内容的重点。
[0021] 励磁电流的来源, 主要包括连接至励磁发电机电源, 并联电网, 电池组等, 尤其是发 电机的应用可以直接选择配合励磁机的直流电源连接, 当然, 对于输入的励磁电流的选择, 对于普通技术人员来说是显而易见的, 选择方式并不是本发明的重要部分。
[0022] 应当理解, 笼形铁心导磁环在该结构布置中, 可以选择增加笼形铁心导磁环拼接成多 笼形合体, 形成网状形方格柱并联, 同时也包括增加绕组并联和集换器相应的包括连接部件, 这就可以在上述己知的结构中获得同样的效果或一所希望的, 更高标准的电能变比。
[0023] 可以看出本发明采用技术方案, 是由励磁绕组应用静止方式, 通过笼形铁心导磁环绕 组和集换器是特殊构造的作用下, 可以在静止励磁绕组变相为他励的机械整流运动方式, 其 本质是用小的能量付出以改变励磁整流方式, 从而达到和传统电机匝链磁通的效果, 与传统 发电机相对比, 本发明在结构上采用新技术的应用, 从具体的利用价值和角度相比, 所体现 的效率远远超过传统技术, 同时上述所布置的结构中, 还可以看出相当是一种电流的变大器。
[0024】 本发明与传统发电机相比较, 在机械能、 工艺、 形状构造等应用都有明显不同, 在材 料方面能应用到最隹方式, 不仅可以提高发电机寿命, 而且其工艺和构造非常方便进行维修, 同时制造价成本也比较底; 重点是其工作效能, 所采用机械能外源动力带动极换器通过励磁 绕组和主绕组做机械整流运动时,其绕组线圈形成匝链磁通转换变压输出更大功率电能变比; 本发明不采用转子的旋转方式, 相比传统发电机都是采用旋转转子的旋转方式, 通过其绕组 线圈匝链磁通产生时变电势, 所以传统发电机的转子绕组线圈匝链磁通产生时变电势, 都需 要相对的外源动力, 本发明采用极换器做机械整流方式连接励磁绕组, 节省转子匝链磁场在 实际中直接需要的动力源, 本发明采用相对较小动力源驱动极换器来进行励磁变比, 是发电 机能源技术性的新突破。
咐图说明
[0025] 图 1为本发明一种变相磁极发电装置正面剖析例示图。
[0026] 图 2为本发明一种变相磁极发电装置极换器剖析例示图。
[0027] 图 3为本发明一种变相磁极发电装置换向器构造布置例示图。
[0028] 图中标志: 1-主绕组, 2-励磁线圈, 3-铁心导磁环, 4-碳刷, 5-换向片, 6-转轴, 7-变 动碳刷架, 8-换向器, 9-励磁机, 10-联轴器, 11-集电环, 12-碳刷, 13-固定刷杆, 14-励磁机 轴, 15-碳刷弹簧, 16-支脚架, 17-刷架紧件, 18-换向器支架, 19-支承构件, 20-轴承, 21- 弹簧螺件, 22-紧固件。
具体实施方式
[0029] 参照实施例示图 1中, 是本发明主要优选方案一: 励磁电流输入一励磁整流极换器, 经过变相转换励磁线圈磁极, 励磁线圈以整流方式互感磁通至笼形方格柱铁心导磁环, 和感 应至主绕组, 并且在主绕组建立电压输出和负载时, 又经过另一主绕组整流极换器做机械整 流运动方式, 整流产生感磁通路径再次重返感应至励磁线圈, 此时励磁线圈和主绕组同时增 加变大互感磁通率, 以能达到连续进行能量转换的装置。
[0030] 在实施例示图 1中, 导磁材料的应用方法和布置, 主要提供一种笼形铁心导磁环 3, 其特征是: 笼形铁心导磁环 3包括多个 "口"字形相等方格柱拼排列成环圆圈笼形, 每一个 方格柱铁心的四个方位是放置两组相对称线圈绕组, 同样应该理解为在整个笼形铁心导磁环 3是由多个相同方格柱拼排列成环圆圈笼形导磁铁心, 在每个方格柱之间是相连的, 所以在 每个方格柱铁心中即相邻绕组的柱是共享的。 [0031] 应该理解, 在上述中可以把笼形铁心导磁环 3看作为一单元, 在本发明涉及的笼形铁 心导磁环 3至少由一单元组成, 亦可根据需要选择为两个单元以上组成, 例如: 同时选择三 个单元铁心不相连接的笼形铁心导磁环, 来作为一主体铁心导磁环, 可以构建成三个单相绕 组, 连接成三相绕组接法; 当然, 在选择方面并不是本发明重点要求。
[0032] 解决绕组布置方案是: 在笼形铁心导磁环 3包括线圈绕组的结构布置中可以看出, 相 对称的绕组中产生磁通路径都被限制在铁心中, 其中把绕组分为主绕组 1和励磁绕组 2, 和 补偿绕组, 每柱励磁绕组 2和补偿绕组是绕制在方格柱共享每一柱铁心柱上, 方格柱另一对 称是布置主绕组 1,所述方格柱没有共享每一柱铁心柱是布置主绕组 1, 根据励磁绕组 2的布 置在做机械整流运动方式中, 磁链变换可以和主绕组 1建立匝链时变互感磁通, 可以理解为 笼形铁心环中的多个方格柱中主绕组 1和励磁绕组 2可以设计为始终都保持多对两个电磁炬 (传统电机称为转炬)对称变换磁极, 在机械整流运动方式中形成周而复始不间断磁链状态, 并且选择在主绕组 1中感应电势建立电压输出。
[0033] 维持发电机主绕组 1端电压和频率恒定不变, 亦可在主绕组建立电源输出时选择辅助 的电容器相连接。
[0034] 前任所述主绕组 1其结构是: 包括多个方格柱中主绕组 1是串联, 串联方式可选择在 主绕组 1线圈每一组电势相加的原则, 串联成单相绕组, 或把三个单相绕组连接成 "丫"或 "△"型结构的三相绕组, 当然, 所述主绕组 1连接方法是可以选择的都是传统的方式, 并 且不需要作任何进一步的描述。 '
[0035] 解决主绕组 1电压负载时和增大励磁磁感问题: 前述的补偿绕组中, 是重叠绕制在共 享的铁心柱励磁绕组上, 补偿绕组绕制之前是通过一层绝缘材料相隔后再绕制, 补偿绕组并 且与主绕 1组串联一起, 串联主要目的是在主绕组 1输出电压负载时, 主绕组 1必定在铁心 柱同时做磁通行径动作, 此时, 在连接的补偿绕组同时有感受益, 由于补偿绕组同时是共同 串联体, 所从也共同受益; 所述励磁绕组 2在极换器瞬间 N、 S极变换运动中, 常太瞬时内 也能共亨串联带来磁感受益。
[0036] 当然, 主绕组 1和励磁绕组 2, 包括补偿绕组, 在本发明的结构中各绕组之间还会做 一些线圈和磁路的改变, 来适用于各种电磁能的转换应用。
[0037] 本发明所述整流器构成和相关机械整流构件在本发明中统称为 "极换器", 主要分为 两种极换器: 励磁整流极换器和主绕组整流极换器。
[0038] 所述极换器目的主要包括: 一目的是把励磁电流做机械整流运动方式快速分配出相互 变换 N、 S极与励磁线圈 2产生匝链磁通, 另一目的是时变电势产生建立的电压再次做机械 整流运动方式, 再次增大励磁磁感, 并且同时在主绕组 1建立电源输出。 [0039] 所述励磁整流极换器在做机械整流运动方式时, 励磁绕组分布磁场产生电势时, 可以 做N、 S极极性的变换中进行变相机械式的整流, 这就需要提供机械式整流器, 来对其线圈 绕组通于的电流进行全波整流。
[0040] 所述主绕组整流极换器在做机械整流运动方式时, 产生建立互感磁通路径 (主绕组输 出负载时方可建立), 互感磁通路径再次必然重返感应至励磁线圈, 从而再次增大励磁磁感, 此时励磁线圈 2和主绕组 1同时增加变大互感磁通率, 可以看出励磁整流极换器和主绕组整 流极换器同时都做机械整流运动方式, 这个条件在特定电磁场能量中变量的转换是非常必要 的, 可以说励磁极换器和主绕组极换器在本发明中是承上启下核心作用。
[0041] 参照实施例示图 2中所示极换器, 在本发明布置中是由励磁极换器和主绕组极换器分 别两单元机构组成, 是由集电环和换向器两种共同组合体构成, 其特征是: 励磁电流通过固 定刷杆 13上的导线和碳刷相连, 又连接于转轴线上安装的集电环 11和铜环, 集电环 11通过 导线连接至变动碳刷架 7上的碳刷 4, 碳刷 4接触在圆盘体或圆柱体的换向器上 8, 换向器 8 是紧固在于支脚架 16布置的换向器支架 18上固定不变动, 换向器 8的圆盘体或圆柱体圆中 心是透孔, 两个并排的圆盘体或圆柱体换向器为一组, 分别排列有换向片 5, 两个并排的换 向器 8布置换向片 5是相对称, 同时包括两端的变动碳刷架 7和碳刷 4也呈对称, 换向片 5 由导线分别连接至励磁绕组的线圈。
[0042] 根据上述集电环 11和变动碳刷架 7是设计固定在同一转轴 6上,转轴 6—端是横穿于 换向器 8的中心透孔轴线上, 当然, 换向器 8和转轴 6是不相互接触地排列在同一轴线上, 可以看出, 在转轴 6做均速旋转时, 集电环 11和变动碳刷架 7同时也在做均速旋转, 变动碳 刷架 7上的碳刷 4是接触在固定不变动的换向器上 8, 根据上述两个换向器 8并排, 可以错 位连接绕组线圈分配出相互变换 N、 S极。
[0043] 参照实施例示图 3中所示极换器, 两端各自的变动碳刷架 7包括相对称 N、 S极一对 或选择两对相对称 N、 S极以上, 碳刷 4是接触在静止云母制作成圆盘体或圆柱体换向器 8 上, 圆盘体或圆柱体上排列有换向片 5, 变动碳刷架 7是紧固并排在转轴线上, 转轴 6并且 连接至动力源。
[0044】 动力源连接转轴可以选择为柴油机、 汽轮机、 水力、 风力等作为外源动力, 动力源的 选择并不是本发明内容的重点。
【0045】 在本发明励磁整流极换器布置中, 参照实施例示图 2中所示, 同时包括两组并排的换 向器 (两组为四个换向器) 和两端的变动碳刷 4, 要解决的技术问题是: 励磁电流快速分配 时, 会存在相邻的换向片距离差, 并且, 在设计中换向片 5与换向片 5之间必须有一定的距 离间 (此距离间是绝缘体), 距离间是防止 N、 S极同时接触落在一点上或者防止 N、 S极同 时直接接触, 由此可以看出距离间即是换向片 5之间就存在瞬间的断路, 为了解决瞬间的断 路问题, 在上述已知换向器 8的布置中, 相应增加一组换向器 8互相配合, 并且是同一设计 在轴线上, 两组换向器 8的换向片 5和碳刷 4分别是错位排列的, 此时的错位差可解决瞬间 断路问题, 可以认为是匝链磁通的基础必要条件, 从此励磁线圈 2和主绕组线圈 1亦是分别 错位连接, 形成了连续不断的磁链变换和磁通行径。
[0046] 当然,集电环 11和换向器 8应当理解在实施例中包括其它相关构成部件, 可以在现有 的技术中获得并不需要进一步技术限定, 或其它同等方法地适于此应用的极换器, 应当被理 解成是适用于此目的的范围内。
[0047] 根据上述极换器分为励磁整流极换器和主绕组整流极换器, 两种换向器的机械构造是 相同的, 两组极换器在机械做功旋转时必须是同步的, 目的是保持励磁整流和主绕组整流的 瞬时全波整流, 这是发电机最基本的要求。 当然, 在规格和大小视极数比例而定, 并且是设 计在同一轴线上, 整流方式分别是励磁电流整流和主绕组 1感应电势的整流, 主绕组 1整流 的同时连接出导线, 与另一对集电环 11连接, 包括至少一对或三个与集电环 11连接, 并且 通过固定刷杆上的碳刷和导线建立电压输出, 可以看出在该布置中励磁整流极换器和主绕组 整流极换器可以选择组成合为一体的布置。
[0048] 励磁电流的来源, 主要包括连接至励磁发电机电源, 并联电网, 电池组等, 尤其是发 电机的应用可以直接选择适配励磁机 9产生的直流电源作为励磁电流来连接, 所述对于输入 的励磁电流的选择, 对于普通技术人员来说是显而易见的, 选择方式并不是本发明的重要部 分; 实施例示图 1中所示, 励磁机 9的励磁机机轴 14一端是连接动力源, 另一端励磁机轴 14安装有一联轴器 10, 联轴器 10与极换器的轴 6接连, 极换器和励磁机 9形成合并一体, 同时有包括笼形铁心导磁环 3在内, 共同组成的一整体发电机装置。 使用时, 励磁机 9产生 的直流电流导入励磁整流极换器, 通过励磁整流极换器做机械整流运动方式快速分配出相互 变换 N、 S极, 变换 N、 S极分配至每一柱铁心柱布置的励磁线圈 2上, 并且产生匝链磁通又 通过铁心柱与主绕组 1建立互感磁通, 并且产生电流, 又通过在主绕组 1产生的电流再次连 接主绕组整流极换器, 和做机械整流运动方式时, 同时建立互感磁通路径此时又分配至补偿 绕组, 由于直流电流导入励磁整流极换器做机械整流运动互变换 N、 S极时, 必然主绕组 1 是建立在互变换 1、 S极运动形式中, 所以建立感应的还是直流电流, 此时, 可以看出在前 面所述的再次连接主绕组整流极换器, 就可以进一步解决直流电流做机械整流运动周期性互 变换 N、 S极及改变电流方向, 此时可以根据极换器的轴 6旋转速度和励磁线圈 2的磁极数, 做进一步的选配极换器大小规格, 制定交流电的频率为 50 ( 60 )赫, 电流方向每秒钟发生 50 ( 60 ) 个周期性的变化, 每秒改变的次数为 100 ( 120 ) 次, 并且建立交流电流输出; 例如, 采用普遍 "△"型结构的三相绕组接法时, 主绕组 1分为三个输出极为正极, 三个正极同时 分别与电容器一极相连接, 三个电容器另外三极合并成一极为中性线, 中性线等于日常中代 表的零线, 所述电容器具有储存和释放电压的功能, 电容器的辅助使用可以有效解决电压和 频率连贯性恒定不变。
[0049] 方案二: 本发明的再一目的是提供一种电能和机械能转换, 在上述方案一己知的布置 结构中进一步结构布置延伸, 在方案一实施例中应当理解, 笼形铁心导磁环在该结构布置中, 可以选择增加笼形铁心导磁环拼接成多笼形合体, 形成网状形方格柱并联, 同时也包括增加 绕组并联和集换器相应的连接部件, 这就可以在上述己知的结构中获得同样的效果或一所希 望的, 更高标准的电能变比。
[0050] 相比在第一实施方案中, 该实施例中的笼形铁心导磁环包括在环形圈又分为多个相等 方格柱, 即分为多段相等拼排列的 "口"字形, 方格柱四个方向位是放置线圈绕组, 绕组是 对称排列, 在一方格柱中即是四方有两对对称排列, 同样应该理解为在整个笼形铁心导磁环 是由多组相同方格柱和绕组拼排列相连, 由于在每组之间是相连的, 所以在每柱中即相邻绕 组的柱是共享的, 本次实施方案中主要其持征是: 笼形铁心导磁环形圈分为多个相等方格柱, 和整个笼形拼排列成环形圈(与第一实施方案布置结构相同), 增加笼形排列合拼连接成环圆 形圈体, 合拼成一整体的笼形环圆组合体, 即是由多个笼形铁心导磁环的延伸体, 并且延伸 连接成一主体的笼形网状格环圆体; 可以这样理解为: 环中环铁心, 链中链绕组不间断互感 磁通, 形成周而复始, 生生不息循环的状态。
[0051] 在本第二实施布置中励磁绕组和第一实施中可以区分出, 第一实施中只包括励磁绕组 并接是共同的柱, 共享的, 在本次第二实施例中增加是主绕相邻是拼联的, 主绕组同时也形 成是共享的, 所以, 励磁绕组和主绕组都具备循环共享的链接, 可以看出, 励磁绕组和主绕 组各自在瞬态当中, 确立了各自形式的变能转换, 是一种不变应万变的变能转换形式。
[0052] 在本实施例二中相关绕组的连接和极换器做机械整流方式, 和建立电压输出, 是建立 在第一实施技术方案例基础上的延伸, 这对于普通技术人员来说是显而易见的。
10053】 虽然本发明参照具体的说明性的实施例进行了描述, 但其并不限制于该实施例, 而只 被从属权利要求所限制。 可以预期的是本领域技术人员在不偏离本发明的范围和实质的情况 下可对实施例作出各种修改和改进, 凡采用等效替换或等同的变换方式所获得技术方案, 均 落在本发明的保护范围内。 例如, 本发明基础上所获得技术方案又涉及可以改进的动能式变 压器, 以直流电流为基础作为励磁电流进行转换, 极换器的动力源设计为电动机提供, 做机 械整流运动周期性互变换 N、 S极及改变电流方向, 和建立交流电流输出, 此等方案均落在 本发明的保护范围内。

Claims

1. 一种变相磁极发电装置, 该装置包括笼形方格柱铁心导磁环上布置的主绕组为主体, 其特 征是: 笼形铁心导磁环包括在一环形圈分为多个相等方格柱排列相连, 在方格柱四个方向位 置上布置绕组, 绕组分为主绕组和励磁绕组及补偿绕组, 所述励磁绕组是通过导线连接在于 励磁极换器, 所述主绕组又通过导线连接至主绕组极换器, 所述极换器是由集电环和换向器 共同组合体, 所述笼形方格柱铁心导磁环可以选择增加笼形铁心导磁环拼接成多笼形合体, 形成网状形方格柱并联。
2. 根据权利要求 1所述一种变相磁极发电装置, 其特征在于: 笼形铁心导磁环包括多个"口" 字形相等方格柱拼排列成环圆圈笼形, 每一个方格柱铁心的四个方位是放置两组相对称线圈 绕组, 所述整个笼形铁心导磁环是由多个相同方格柱拼排列成环圆圈笼形导磁铁心, 在每个 方格柱之间是相连的, 在每个方格柱铁心中相邻绕组的柱是共享的。
3. 根据权利要求 1所述一种变相磁极发电装置, 其特征在于: 绕组分为主绕组和励磁绕组, 和补偿绕组, 每柱励磁绕组和补偿绕组是绕制在方格柱共享每一柱铁心柱上, 方格柱另一主 绕组是对称布置。
4. 根据权利要求 1所述一种变相磁极发电装置, 其特征在于: 多个方格柱中主绕组是串联, 串联方式可选择在主绕组线圈每一组串联成单相绕组,或把三个单相绕组连接成"丫"或 "△" 型结构的三相绕组接法, 所述主绕组建立电源输出时选择电容器相连接。
5. 根据权利要求 1所述一种变相磁极发电装置, 其特征在于: 补偿绕组重叠绕制在共享的铁 心柱励磁绕组上, 补偿绕组绕制之前是通过绝缘材料相隔后再绕制的, 补偿绕组并且与主绕 组串联在一起。
6. 根据权利要求 1所述一种变相磁极发电装置, 其特征在于: 励磁极换器和主绕组极换器分 别两单元机构组成, 励磁绕组通过固定刷杆上的导线和碳刷相连, 又连接于转轴线上安装的 集电环和铜环, 集电环通过导线连接至变动碳刷架上的碳刷, 碳刷接触在圆盘体或圆柱体的 换向器上, 换向器是紧固在于支脚架布置的换向器支架上固定不变动, 换向器的圆盘体或圆 柱体圆中心是透孔, 两个并排的圆盘体或圆柱体换向器为一组, 分别排列有换向片, 两个并 排的换向器布置换向片是相对称, 同时包括两端的变动碳刷架和碳刷也呈相对称, 换向片通 过导线分别连接至励磁绕组。
7.根据权利要求 1或 6所述一种变相磁极发电装置, 其特征在于: 集电环和变动碳刷架是设 计固定在同一转轴上, 转轴一端是横穿于换向器的中心透孔轴线上, 换向器和转轴是不相互 接触地排列在同一轴线上, 变动碳刷架上的碳刷是接触在固定不变动的换向器上。
8. 根据权利要求 1或 6所述一种变相磁极发电装置, 其特征在于: 所述碳刷是接触在静止云 母制作成圆盘体或圆柱体换向器上, 圆盘体或圆柱体上排列有换向片, 变动碳刷架是紧固并 排在转轴线上, 转轴并且连接至动力源。
9.根据权利要求 1所述一种变相磁极发电装置, 其特征在于: 励磁整流极换器同时包括两组 并排的换向器和两端的变动碳刷, 并且是共同设计在同一轴线上, 两组换向器的换向片和碳 刷分别是错位排列。
10. 根据权利要求 1所述一种变相磁极发电装置, 其特征在于: 所述笼形铁心导磁环或选择 增加笼形铁心导磁环拼接成多笼形合体, 形成网状形方格柱并联, 增加笼形排列合拼连接成 环圆形圈体, 合拼成一整体的笼形环圆组合体, 是由多个笼形铁心导磁环的延伸体, 并且延 伸连接成一主体的笼形网状格环圆体。
PCT/CN2011/001301 2010-08-12 2011-08-08 一种变相磁极发电装置 WO2012019433A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2010102578732A CN101951107A (zh) 2010-08-12 2010-08-12 一种变相磁极应用方法和装置
CN201010257873.2 2010-08-12

Publications (1)

Publication Number Publication Date
WO2012019433A1 true WO2012019433A1 (zh) 2012-02-16

Family

ID=43454493

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/001301 WO2012019433A1 (zh) 2010-08-12 2011-08-08 一种变相磁极发电装置

Country Status (2)

Country Link
CN (1) CN101951107A (zh)
WO (1) WO2012019433A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101951107A (zh) * 2010-08-12 2011-01-19 戴文育 一种变相磁极应用方法和装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1061683A (zh) * 1990-11-23 1992-06-03 张信 无涡流直流电机
CN1196601A (zh) * 1998-04-16 1998-10-21 卜中山 轴向磁路无刷直流电机
CN1688079A (zh) * 2005-04-20 2005-10-26 戴文育 变相极发电机
CN1848625A (zh) * 2006-04-11 2006-10-18 戴文育 变相极永磁发电机
CN101951107A (zh) * 2010-08-12 2011-01-19 戴文育 一种变相磁极应用方法和装置
CN201854169U (zh) * 2010-08-12 2011-06-01 戴文育 一种变相磁极发电装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1061683A (zh) * 1990-11-23 1992-06-03 张信 无涡流直流电机
CN1196601A (zh) * 1998-04-16 1998-10-21 卜中山 轴向磁路无刷直流电机
CN1688079A (zh) * 2005-04-20 2005-10-26 戴文育 变相极发电机
CN1848625A (zh) * 2006-04-11 2006-10-18 戴文育 变相极永磁发电机
CN101951107A (zh) * 2010-08-12 2011-01-19 戴文育 一种变相磁极应用方法和装置
CN201854169U (zh) * 2010-08-12 2011-06-01 戴文育 一种变相磁极发电装置

Also Published As

Publication number Publication date
CN101951107A (zh) 2011-01-19

Similar Documents

Publication Publication Date Title
Almoraya et al. Development of a double-sided consequent pole linear vernier hybrid permanent-magnet machine for wave energy converters
US6326713B1 (en) A.C. electrical machine and method of transducing power between two different systems
RU2450411C1 (ru) Аксиальная двухвходовая бесконтактная электрическая машина-генератор
Lu et al. Comparative investigation of high temperature superconducting linear flux-switching motor and high temperature superconducting linear switched reluctance motor for urban railway transit
Ma et al. Influence of armature windings pole numbers on performances of linear permanent-magnet vernier machines
CN101355285A (zh) 多层组合式直线磁阻发电机及波浪发电装置
Cardoso et al. The new type brushless generator
RU98646U1 (ru) Низкооборотный генератор тока
RU2313885C2 (ru) Электрическая машина (варианты)
WO2012019433A1 (zh) 一种变相磁极发电装置
CN107026559B (zh) 延中心线和垂直中心线磁场生成方法及磁枢电机
Zhang et al. Novel linear generator concepts and topologies for wave energy conversion systems: A review
RU204405U1 (ru) Синхронный генератор
CN101771314A (zh) 双转子(定子)发电机
JP6463277B2 (ja) 電力の伝送
US20140265709A1 (en) Steered Flux Generator
CN202759356U (zh) 一种交流发电机
CN106549545B (zh) 一种六相隔离的永磁电机
CN201238224Y (zh) 稀土永磁发电电焊两用机
CN201854169U (zh) 一种变相磁极发电装置
RU2720353C2 (ru) Способ генерирования напряжения
CN109245473A (zh) 一种三相电机
RU206433U1 (ru) Трехфазный генератор
CN220342113U (zh) 一种直流电机的定子结构
CN216564875U (zh) 一种电动机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11815992

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11815992

Country of ref document: EP

Kind code of ref document: A1