WO2012017632A1 - Electrode paste for plasma display panel, and method for producing plasma display panel - Google Patents

Electrode paste for plasma display panel, and method for producing plasma display panel Download PDF

Info

Publication number
WO2012017632A1
WO2012017632A1 PCT/JP2011/004310 JP2011004310W WO2012017632A1 WO 2012017632 A1 WO2012017632 A1 WO 2012017632A1 JP 2011004310 W JP2011004310 W JP 2011004310W WO 2012017632 A1 WO2012017632 A1 WO 2012017632A1
Authority
WO
WIPO (PCT)
Prior art keywords
paste
dielectric
solvent
electrode
volume
Prior art date
Application number
PCT/JP2011/004310
Other languages
French (fr)
Japanese (ja)
Inventor
筒井 靖貴
覚 河瀬
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2012017632A1 publication Critical patent/WO2012017632A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/10AC-PDPs with at least one main electrode being out of contact with the plasma
    • H01J11/12AC-PDPs with at least one main electrode being out of contact with the plasma with main electrodes provided on both sides of the discharge space
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • H01J11/22Electrodes, e.g. special shape, material or configuration
    • H01J11/24Sustain electrodes or scan electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2211/00Plasma display panels with alternate current induction of the discharge, e.g. AC-PDPs
    • H01J2211/20Constructional details
    • H01J2211/22Electrodes
    • H01J2211/225Material of electrodes

Definitions

  • the technology disclosed herein relates to an electrode paste for a plasma display panel used for a display device or the like and a method for manufacturing the plasma display panel.
  • Silver electrodes for ensuring conductivity are used for bus electrodes constituting display electrodes of a plasma display panel (hereinafter referred to as PDP). Low-melting glass is used for the dielectric layer covering the bus electrode.
  • Patent Document 1 discloses a technique for reducing voids in a dielectric layer by using a screen printing method and a die coating method in combination.
  • Patent Document 2 discloses a technique for forming a dielectric layer by a dry film method.
  • JP 2002-25433 A Japanese Patent Laid-Open No. 2004-63420
  • the electrode paste for PDP comprises 15% by volume to 25% by volume conductive particles, 10% by volume to 25% by volume organic resin, and 10% by volume to 20% by volume monomer.
  • the organic resin includes an acrylic polymer and a cellulose polymer.
  • the electrode paste layer is formed by applying the electrode paste for PDP to the substrate.
  • the electrode paste layer is shaped to form an electrode pattern in which at least the organic resin remains.
  • a dielectric paste layer for covering the electrode pattern is formed by applying a dielectric paste to the substrate.
  • the electrode pattern and the dielectric paste layer are simultaneously fired to form the electrode and the dielectric layer.
  • FIG. 1 is a perspective view showing the structure of the PDP according to the embodiment.
  • FIG. 2 is a schematic view showing a cross section of the front plate according to the embodiment.
  • FIG. 3A is a schematic view illustrating a manufacturing process of the front plate according to the embodiment.
  • FIG. 3B is a schematic view illustrating a manufacturing process of the front plate according to the embodiment.
  • FIG. 3C is a schematic diagram illustrating a manufacturing process of the front plate according to the embodiment.
  • FIG. 3D is a schematic view illustrating a manufacturing process of the front plate according to the embodiment.
  • FIG. 3E is a schematic diagram illustrating a manufacturing process of the front plate according to the embodiment.
  • FIG. 4A is a diagram illustrating a chemical formula of a solvent of the dielectric paste according to the embodiment.
  • FIG. 4A is a diagram illustrating a chemical formula of a solvent of the dielectric paste according to the embodiment.
  • FIG. 4B is a diagram illustrating a chemical formula of a solvent of the dielectric paste according to the embodiment.
  • FIG. 4C is a diagram illustrating a chemical formula of a solvent of the dielectric paste according to the exemplary embodiment.
  • FIG. 4D is a diagram illustrating a chemical formula of a solvent of the dielectric paste according to the embodiment.
  • the PDP 1 of the present embodiment is an AC surface discharge type PDP.
  • a front plate 2 made of a front glass substrate 3 and the like and a back plate 10 made of a back glass substrate 11 and the like are arranged to face each other.
  • the outer peripheral portions of the front plate 2 and the back plate 10 are hermetically sealed with a sealing material made of glass frit or the like.
  • a discharge gas containing xenon (Xe) is sealed in the discharge space 16 inside the sealed PDP 1 at a pressure of 55 kPa to 80 kPa.
  • a pair of strip-shaped display electrodes 6 each composed of the scanning electrodes 4 and the sustaining electrodes 5 and a plurality of light shielding layers 7 are arranged in parallel to each other.
  • the scanning electrode 4 is composed of a black electrode 4a and a white electrode 4b stacked on the black electrode 4a.
  • the sustain electrode 5 includes a black electrode 5a and a white electrode 5b laminated on the black electrode 5a.
  • a dielectric layer 8 that covers the display electrode 6 and the light shielding layer 7 is formed on the front glass substrate 3.
  • the dielectric layer 8 functions as a capacitor.
  • a protective layer 9 made of magnesium oxide (MgO) or the like is formed on the surface of the dielectric layer 8.
  • a plurality of strip-like address electrodes 12 are arranged in parallel to each other in a direction orthogonal to the display electrodes 6. Further, a base dielectric layer 13 that covers the address electrodes 12 is formed. Further, on the base dielectric layer 13 formed between the address electrodes 12, barrier ribs 14 having a predetermined height are formed to divide the discharge space 16. Between the barrier ribs 14, a phosphor layer 15 that emits red light by ultraviolet rays, a phosphor layer 15 that emits blue light, and a phosphor layer 15 that emits green light are sequentially formed.
  • a discharge cell is formed at a position where the display electrode 6 and the address electrode 12 intersect.
  • a discharge cell having a phosphor layer 15 that emits red light, a discharge cell that has a phosphor layer 15 that emits blue light, and a discharge cell that has a phosphor layer 15 that emits green light form a pixel for color display.
  • the dry film method requires a base film for forming a dry film, which not only leads to an increase in cost, but is also undesirable in terms of environmental problems because the base film becomes waste after lamination. Further, in the dry film method, it is difficult to form without a gap because the fluidity at the display electrode interval is poor at the time of formation.
  • a display electrode is formed in a stripe shape by a printing method and a photolithography method, and after a firing process, a dielectric layer is formed.
  • performing each baking step to form the display electrode and the dielectric layer leads to an increase in energy consumption and an increase in cost. Therefore, reduction of the firing process is desired.
  • the dielectric layer 8 is composed of the first glass material 20 and the second glass material 21.
  • the dielectric layer is formed so as to cover the display electrode 6 and the light shielding layer 7.
  • the method for forming the display electrode 6 and the method for forming the dielectric layer 8 will be described in detail later.
  • a protective layer 9 made of magnesium oxide (MgO) or the like is formed on the dielectric layer 8 by a vacuum deposition method or the like. As described above, the front plate 2 is formed.
  • MgO magnesium oxide
  • address electrodes 12 are formed on the back glass substrate 11 by photolithography.
  • an address electrode paste containing silver (Ag) for ensuring conductivity, a glass frit for binding silver, a photosensitive resin, a solvent, and the like is used as the material of the address electrode 12.
  • the address electrode paste is applied on the rear glass substrate 11 with a predetermined thickness by screen printing or the like.
  • the solvent in the address electrode paste is removed by a drying furnace.
  • the address electrode paste is exposed through a photomask having a predetermined pattern.
  • the address electrode paste is developed to form an address electrode pattern.
  • the address electrode pattern is fired at a predetermined temperature in a firing furnace. That is, the photosensitive resin in the address electrode pattern is removed.
  • the glass frit in the address electrode pattern is melted.
  • the molten glass frit is vitrified again after firing.
  • the address electrode 12 is formed by the above process.
  • a sputtering method, a vapor deposition method, or the like can be used.
  • the base dielectric layer 13 is formed.
  • a base dielectric paste containing a dielectric glass frit, a resin, a solvent, and the like is used as a material for the base dielectric layer 13.
  • a base dielectric paste is applied by a screen printing method or the like so as to cover the address electrodes 12 on the rear glass substrate 11 on which the address electrodes 12 are formed with a predetermined thickness.
  • the solvent in the base dielectric paste is removed by a drying furnace.
  • the base dielectric paste is fired at a predetermined temperature in a firing furnace. That is, the resin in the base dielectric paste is removed. Further, the dielectric glass frit is melted. The molten dielectric glass frit is vitrified again after firing.
  • the base dielectric layer 13 is formed.
  • a die coating method, a spin coating method, or the like can be used.
  • a film that becomes the base dielectric layer 13 can be formed by CVD (Chemical Vapor Deposition) method or the like without using the base dielectric paste.
  • the barrier ribs 14 are formed by photolithography.
  • a partition paste containing a filler, a glass frit for binding the filler, a photosensitive resin, a solvent, and the like is used as a material for the partition wall 14.
  • the barrier rib paste is applied on the underlying dielectric layer 13 with a predetermined thickness by a die coating method or the like.
  • the solvent in the partition wall paste is removed by a drying furnace.
  • the barrier rib paste is exposed through a photomask having a predetermined pattern.
  • the barrier rib paste is developed to form a barrier rib pattern.
  • the partition pattern is fired at a predetermined temperature in a firing furnace. That is, the photosensitive resin in the partition pattern is removed.
  • the partition wall 14 is formed by the above process.
  • a sandblast method or the like can be used.
  • the phosphor layer 15 is formed.
  • a phosphor paste containing phosphor particles, a binder, a solvent, and the like is used as the material of the phosphor layer 15.
  • the phosphor paste is applied with a predetermined thickness on the base dielectric layer 13 between the adjacent barrier ribs 14 and the side surfaces of the barrier ribs 14 by a dispensing method or the like.
  • the solvent in the phosphor paste is removed by a drying furnace.
  • the phosphor paste is fired at a predetermined temperature in a firing furnace. That is, the resin in the phosphor paste is removed.
  • the phosphor layer 15 is formed by the above steps.
  • a screen printing method or the like can be used.
  • the back plate 10 is formed.
  • a sealing material (not shown) is formed around the back plate 10 by the dispensing method.
  • a sealing paste containing glass frit, a binder, a solvent, and the like is used.
  • the solvent in the sealing paste is removed by a drying furnace.
  • the front plate 2 and the back plate 10 are arranged to face each other so that the display electrodes 6 and the address electrodes 12 are orthogonal to each other.
  • the periphery of the front plate 2 and the back plate 10 is sealed with glass frit.
  • a discharge gas containing 15 vol% or more and 30 vol% or less of Xe is sealed in the discharge space 16. As described above, the PDP 1 is formed.
  • the display electrode 6 is formed using a material containing a binder component such as an organic resin or a solvent
  • baking is performed to remove the binder component.
  • the dielectric layer 8 is formed using a material containing a binder component such as an organic resin or a solvent
  • firing is performed to remove the binder component.
  • the firing for forming the display electrode 6 and the light shielding layer 7 which are electrodes and the firing for forming the dielectric layer 8 are performed in the same process (hereinafter, simply referred to as simultaneous firing). To do).
  • the electrode paste in the present embodiment includes 15% by volume to 25% by volume of conductive particles, 10% by volume to 25% by volume of an organic resin, and 10% by volume to 20% by volume of a monomer.
  • the organic resin includes an acrylic polymer and a cellulose polymer. Cellulose polymers have a higher viscosity per unit volume than acrylic polymers. Therefore, an electrode paste having a smaller amount of resin can be obtained even with the same viscosity as compared with an electrode paste that has been conventionally composed of only an acrylic polymer.
  • the thickness of the display electrode pattern before firing which is an electrode pattern, can be made smaller than before. Therefore, even if the display electrode pattern is fired simultaneously with the dielectric paste layer, the shrinkage of the display electrode pattern is suppressed. Therefore, it is possible to suppress the formation of a gap between the display electrode 6 and the dielectric layer 8.
  • the organic resin preferably contains 5% by volume to 15% by volume of acrylic polymer and 2% by volume to 10% by volume of cellulose polymer. Furthermore, as an organic resin, it is more preferable that 5 to 15 volume% acrylic polymer and 2 to 6 volume% cellulose polymer are included.
  • the cellulosic polymer can contain at least one selected from ethyl cellulose, hydroxy cellulose, and hydroxypropyl cellulose.
  • the electrode paste contains 1% by volume to 3% by volume of a binder glass that binds the conductive particles to each other, and contains 40% by volume to 60% by volume of a solvent. Moreover, the electrode paste may contain a trace amount photoinitiator.
  • conductive particles highly conductive silver (Ag) particles, copper (Cu) particles, or the like can be used.
  • the organic resin contains 5% by volume to 15% by volume of an acrylic polymer and 2% by volume to 6% by volume of a cellulose polymer.
  • the acrylic polymer can include at least one selected from polybutyl acrylate, polymethacrylate, and the like.
  • the cellulosic polymer can include at least one selected from ethyl cellulose, hydroxy cellulose, and hydroxypropyl cellulose.
  • acrylonitrile acrylonitrile, vinyl acetate, acrylamide, or the like can be used.
  • the photopolymerization initiator is, for example, one that generates a free radical when exposed to light of a predetermined wavelength at a temperature of 185 ° C. or less, although it is thermally inactive.
  • the photopolymerization initiator includes a substituted or unsubstituted polynuclear quinone which is a compound having two intramolecular rings in a conjugated carbocycle.
  • Examples include 9,10-anthraquinone, 2-methylanthraquinone, 2-ethylanthraquinone, 2-t-butylanthraquinone, octamethylanthraquinone, 1,4-naphthoquinone, 9,10-phenanthrenequinone, benzo [a] Anthracene-7,12-dione, 2,3-naphthacene-5,12-dione, 2-methyl-1,4-naphthoquinone, 1,4-dimethylanthraquinone, 2,3-dimethylanthraquinone, 2-phenylanthraquinone, 2 , 3-diphenylanthraquinone, retenquinone, 7,8,9,10-tetrahydronaphthacene-5,12-dione, and 1,2,3,4-tetrahydrobenzo [a] anthracene-7,12-dione
  • the binder glass As the binder glass, at least dibismuth trioxide (Bi 2 O 3 ) as a content in the binder glass is 20 to 50% by weight, diboron trioxide (B 2 O 3 ) is 5 to 35% by weight, oxidized. It contains 10-20% by weight of zinc (ZnO) and 5-20% by weight of barium oxide (BaO). Further, the binder glass may contain molybdenum trioxide (MoO 3 ), tungsten trioxide (WO 3 ), or the like.
  • MoO 3 molybdenum trioxide
  • WO 3 tungsten trioxide
  • Bi 2 O 3 is preferably 20 to 50% by weight from the viewpoint that if the content is too large, the thermal expansion coefficient increases and the softening point decreases. Further, it is more preferably 30 to 45% by weight.
  • the content of B 2 O 3 forming the glass skeleton is preferably 5 to 35% by weight from the viewpoint that if the content is too large, the coefficient of thermal expansion decreases and the softening point increases. Further, it is more preferably 5 to 30% by weight.
  • ZnO is preferably 10 to 20% by weight from the viewpoint that if the content is too large, the coefficient of thermal expansion increases and the transparency is impaired.
  • BaO is preferably 5 to 20% by weight from the viewpoint that if the content is too large, the softening point becomes high.
  • the average particle size of the glass powder is preferably 4.0 ⁇ m or less because it improves the binding property between the electrode and the glass substrate. Further, it is more preferably 1 to 3 ⁇ m. Further, the maximum particle size of the glass powder is preferably 10 ⁇ m or less because the binding force and the linearity of the electrode end are compatible. Further, it is more preferably 5 to 8 ⁇ m.
  • solvent examples include terpenes such as ⁇ -, ⁇ -, and ⁇ -terpineol, ethylene glycol monoalkyl ethers, ethylene glycol dialkyl ethers, diethylene glycol monoalkyl ethers, diethylene glycol dialkyl ethers, ethylene glycol monoalkyl ether acetate.
  • terpenes such as ⁇ -, ⁇ -, and ⁇ -terpineol
  • ethylene glycol monoalkyl ethers examples include ethylene glycol monoalkyl ethers, ethylene glycol dialkyl ethers, diethylene glycol monoalkyl ethers, diethylene glycol dialkyl ethers, ethylene glycol monoalkyl ether acetate.
  • additives such as a dispersant, a plasticizer, a viscosity modifier, an oligomer, a polymer, an ultraviolet absorber, and a sensitizer can be added to the electrode paste.
  • An electrode paste is produced by mixing and dispersing these materials using a dispersing machine such as a three roll, ball mill or sand mill.
  • an electrode paste is applied on the front glass substrate 3 by a screen printing method or the like.
  • the electrode paste applied on the front glass substrate 3 forms an electrode paste layer 32.
  • the film thickness of the electrode paste layer 32 is appropriately set in the range of about 10 to 15 ⁇ m.
  • the electrode paste layer 32 is dried in a temperature range of 100 ° C. to 200 ° C. Specifically, the solvent, moisture, etc. in the electrode paste layer 32 are removed.
  • the film thickness of the electrode paste layer 32 decreases to about 6 to 9 ⁇ m by drying.
  • a drying means an infrared drying furnace, an electric furnace or the like is used.
  • the atmosphere for drying may be air or an inert gas.
  • the electrode paste layer 32 is patterned.
  • the electrode paste layer 32 is irradiated with light through a photomask in which a mask pattern of the display electrode 6 is formed of chromium or the like on a glass plate.
  • the wavelength of light is a wavelength at which the photopolymerization initiator contained in the electrode paste layer 32 reacts. Generally, it is about 250 nm to 450 nm.
  • the region irradiated with light in the electrode paste layer 32 is cured by polymerization of the monomer.
  • the electrode paste layer 32 is developed.
  • an alkali developer corresponding to the electrode paste layer 32 is used. Specifically, a sodium carbonate solution, a potassium hydroxide solution, TMAH (tetramethyl anhydride hydroxide), or the like is used.
  • the developer is sprayed onto the electrode paste layer 32, so that the region irradiated with light remains and the region not irradiated with light is removed. That is, the display electrode pattern 34 before firing (unfired) is formed.
  • water cleaning is performed to remove dirt and the like attached to the front glass substrate 3.
  • binder components such as organic resin remain in the display electrode pattern 34.
  • the thickness of the electrode paste layer 32 in FIGS. 3A, 3B, and 3C is different from the actual product.
  • the display electrode pattern 34 and the dielectric paste layer 40 are fired simultaneously.
  • the unfired display electrode pattern 34 is covered with the dielectric paste layer 40.
  • Many binder components such as organic resin remain in the unfired display electrode pattern 34.
  • the solvent component contained in the dielectric paste dissolves the binder component remaining in the display electrode pattern 34. Therefore, the Ag component contained in the display electrode pattern is mixed into the dielectric paste layer 40.
  • the appearance shape of the display electrode 6 changes greatly, and the sharpness of the image display contour is lost. Furthermore, the dielectric strength characteristics of the dielectric layer 8 are significantly deteriorated.
  • the dielectric layer of the PDP in the present embodiment includes a first glass material and a second glass material for the purpose of effectively reducing the dielectric constant of the dielectric layer, and the dielectric constant is 5 or less.
  • the first glass material includes a plurality of components and has a softening point higher than a firing temperature T (° C.) for forming the dielectric layer. Further, the second glass material has a temperature higher than the T (° C.). Has a low softening point.
  • the first glass material is silicon dioxide (SiO 2 ), diboron trioxide (B 2 O 3 ), alkali metal (potassium oxide (K 2 O), lithium oxide (Li 2 O), sodium oxide ( It is desirable to include at least one of Na 2 O).
  • the abundance ratio of the first glass material in the dielectric layer 8 is desirably 5% by volume to 30% by volume.
  • the first glass material in the dielectric layer is lower than 5% by volume, the effect of lowering the dielectric constant of the entire dielectric layer 8 is reduced, and it becomes difficult to achieve a dielectric constant of 5 or less.
  • the amount of the first glass material is 30% by volume or more, a region where the first glass material is present in the dielectric layer 8 is increased, resulting in a problem that the bonding force as the dielectric layer is weakened.
  • the dielectric layer 8 includes a first glass material 20 and a second glass material 21 to be a glass layer.
  • the first glass material and the second glass material are not in a completely solid solution form. Further, for convenience of explanation, the size and number of the first glass material 20 shown in FIG. 2 are different from actual products.
  • the dielectric glass contained 20% by weight or more of lead oxide in order to lower the softening point.
  • the dielectric glass does not contain lead oxide for environmental consideration. That is, the dielectric layer 8 does not contain lead oxide.
  • the dielectric paste for forming the dielectric layer includes a first glass material powder, a second glass material powder, and binder components such as a vehicle and a solvent.
  • the powder of the first glass material is a glass material whose softening point is higher than the firing temperature T (° C.) of the dielectric layer 8 described later, and the glass material having a plurality of components is pulverized.
  • the glass material powder is a glass material whose softening point is higher than the firing temperature T (° C.) of the dielectric layer 8 described later, and the glass material having a plurality of components is pulverized. The glass material powder.
  • the reason for using the powder glass material obtained by pulverizing the powder of the first glass material will be described.
  • a method for producing a glass powder material there are a melt pulverization method for pulverizing molten glass, and a chemical synthesis method such as a precipitation method and a gel method.
  • the chemical synthesis method is very effective for preparing the above-described SiO 2 filler particles (silica particles) as a powder.
  • a powder containing diboron trioxide (B 2 O 3 ) can be prepared by a chemical synthesis method, but it is difficult to adjust the concentration appropriately.
  • the alkali metal R 2 O
  • melt pulverization method can be prepared by adjusting various compositions and concentrations as desired.
  • the powder of the first glass material which is a glass material having a high softening point and containing a plurality of components, is prepared by the melt pulverization method as described above.
  • the first glass material is silicon dioxide (SiO 2 ), diboron trioxide (B 2 O 3 ), and alkali metals such as potassium oxide (K 2 O), lithium oxide (Li 2 O), and sodium oxide (Na 2 O) is included.
  • the component ratio of the first glass material is adjusted so that the softening point is higher than the firing temperature T (° C.) of the dielectric layer 8.
  • the softening point of the first glass material is 700 ° C. or higher.
  • the dielectric glass material having the exemplified composition components is pulverized by a wet jet mill, a ball mill, or the like so that the average particle size becomes 0.5 ⁇ m to 3.0 ⁇ m. As described above, the powder of the first glass material is produced.
  • Second glass material powder examples include diboron trioxide (B 2 O 3 ), silicon dioxide (SiO 2 ), potassium oxide (K 2 O) which is an oxide of an alkali metal, and lithium oxide (Li 2 O). ) And sodium oxide (Na 2 O).
  • the dielectric glass fine particles may contain zinc oxide (ZnO), magnesium oxide (MgO), calcium oxide (CaO), etc. in addition to the main component.
  • the component ratio of the second glass material is adjusted so that the softening point is lower than the firing temperature T (° C.) of the dielectric layer 8.
  • the softening point of the second glass material is 600 ° C. or less.
  • the dielectric glass material having the exemplified composition components is pulverized by a wet jet mill, a ball mill, or the like so that the average particle size becomes 0.5 ⁇ m to 3.0 ⁇ m. As described above, the powder of the second glass material is produced.
  • a dielectric paste is produced by kneading the dielectric glass material and the binder component. A three roll or the like is used for kneading. The dielectric paste is used for a die coating method or a printing method.
  • the dielectric glass material includes a first glass material and a second glass material.
  • the binder component contains terpineol or butyl carbitol acetate containing 1% to 20% by weight of ethyl cellulose or acrylic resin, and a solvent.
  • dioctyl phthalate, dibutyl phthalate, triphenyl phosphate, tributyl phosphate and the like may be added as a plasticizer.
  • glycerol monooleate, sorbitan sesquioleate, homogenol (product name of Kao Corporation), phosphate ester of alkylallyl group, or the like may be added as a dispersant. This is because the printability of the dielectric paste is improved.
  • the binder component may be combined with a solvent used for pulverizing the first glass material or the second glass material.
  • the solvent for the dielectric paste according to this embodiment will be described.
  • the solvent includes a first solvent and a second solvent.
  • the first solvent is a solvent containing neither a double bond nor an OH group.
  • the second solvent is a terpene solvent.
  • the solvent containing neither a double bond nor an OH group is dihydroterpinyl acetate.
  • the terpene solvent is preferably terpineol, terpinyl acetate, or dihydroterpineol.
  • the unsintered display electrode pattern includes a binder component. For this reason, when a solvent or the like containing a double bond touches the display electrode pattern, the solvent dissolves the binder component.
  • the binder component dissolved in the dielectric paste may form void defects after simultaneous firing. Further, the Ag component contained in the display electrode 6 may be mixed into the dielectric layer 8 in some cases. Therefore, it becomes a factor that significantly reduces the dielectric strength characteristics of the dielectric layer 8.
  • the solvent of the dielectric paste according to the present embodiment has dihydroterpinyl acetate that does not contain a double bond. Therefore, dissolution of the binder component contained in the display electrode pattern is suppressed.
  • the display electrode pattern absorbs moisture by washing with water. Conventionally, a baking process has been performed after the development process and before the application of the dielectric paste. Therefore, the moisture absorbed in the display electrode pattern has evaporated. That is, no moisture remained when applying the dielectric paste. However, in this embodiment, the dielectric paste is applied before firing the display electrode pattern. The inventors have found that when the solvent contained in the dielectric paste contains a lot of OH groups, the moisture absorbed in the display electrode pattern 34 oozes out to the dielectric paste side covering the display electrode pattern 34. I found. The exuded moisture causes cracks and dents in the dielectric layer 8 after firing the dielectric paste, and causes a decrease in the dielectric strength characteristics of the dielectric layer 8.
  • the solvent of the dielectric paste has dihydroterpinyl acetate that does not contain OH groups. For this reason, the above exudation is suppressed.
  • the solvent of the dielectric paste contains dihydroterpinyl acetate at 40% by weight or more based on the total amount of the solvent of the dielectric paste. More desirably, it is 50% by weight or more. Thereby, the effect which suppresses melt
  • terpene solvents examples include ⁇ -pinene (boiling point: 156 ° C), ⁇ -pinene (boiling point: 161 ° C), limonene (boiling point: 177 ° C), terpineol (boiling point: 209 ° C), and terpinyl acetate.
  • ⁇ -pinene bisoiling point: 156 ° C
  • ⁇ -pinene bisoiling point: 161 ° C
  • limonene bisoiling point: 177 ° C
  • terpineol terpining point: 209 ° C
  • terpinyl acetate examples of terpinyl acetate.
  • dihydroterpinyl acetate is poorly soluble in components such as ethyl cellulose or acrylic resin contained in the dielectric paste. That is, the dielectric paste containing dihydroterpinyl acetate has a disadvantage that the dispersibility is poor.
  • the display electrode pattern 34 shrinks during firing. That is, the dielectric paste layer 40 cannot follow the behavior of the display electrode pattern 34. As a result, cracks and the like occur in the dielectric layer 8 after firing. Cracks also cause a significant decrease in the dielectric strength characteristics of the dielectric layer 8.
  • a terpene solvent having an OH group is contained in the dielectric paste solvent in an amount of 1% by weight to 5% by weight with respect to the total amount of the dielectric paste. ing.
  • the content is lower than 1% by weight, the effect of preventing the cracking phenomenon of the dielectric layer cannot be obtained.
  • the content is more than 5% by weight, the effect of suppressing the seepage of moisture from the display electrode pattern 34 is insufficient due to the influence of OH groups.
  • a screen printing method, a die coating method, or the like is used as a method for forming the dielectric layer 8.
  • a dielectric paste is applied on the front glass substrate 3 on which the display electrode pattern 34 is formed so as to cover the display electrode pattern 34.
  • the applied dielectric paste forms a dielectric paste layer 40.
  • the film thickness of the dielectric paste layer 40 is appropriately set in consideration of the rate of shrinkage due to firing.
  • the dielectric paste layer 40 is dried in a temperature range of 100 ° C. to 200 ° C. As shown in FIG. 3E, the film thickness of the dielectric paste layer 40 is reduced by drying.
  • a drying means an infrared drying furnace, an electric furnace or the like is used. Air or an inert gas is used as an atmosphere for drying.
  • the firing temperature is in the temperature range of 450 ° C to 650 ° C. More preferably, the temperature range is 550 ° C to 600 ° C.
  • the firing temperature is set lower than the softening point of the first glass material and higher than the softening point of the second glass material.
  • the luminance of the PDP 1 is improved as the thickness of the dielectric layer 8 is reduced. Further, the discharge voltage of the PDP 1 decreases as the thickness of the dielectric layer 8 decreases. Therefore, it is preferable that the thickness of the dielectric layer 8 is as small as possible within a range where the withstand voltage does not decrease.
  • the film thickness of the dielectric layer 8 is not less than 10 ⁇ m and not more than 30 ⁇ m from both the viewpoint of dielectric strength and the viewpoint of visible light transmittance.
  • the PDP according to the embodiment was produced.
  • the discharge cell is sized to fit a 42-inch class high-definition television.
  • the height of the partition walls is 0.15 mm
  • the distance between the partition walls (cell pitch) is 0.15 mm
  • the distance between the display electrodes is 0.06 mm.
  • a Ne—Xe-based mixed gas having a Xe content of 15% by volume was sealed at 60 kPa.
  • the thickness of the front glass substrate and the back glass substrate is 1.8 mm.
  • the film thickness of the dielectric layer is 20 ⁇ m.
  • electrode pastes having the compositions shown in Table 1 were produced.
  • Sample A includes 21% by volume of silver particles, 10% by volume to 25% by volume of an organic resin, and 10% by volume to 20% by volume of a monomer.
  • the organic resin has an acrylic polymer and a cellulose polymer.
  • the polybutyl acrylate which is an acrylic polymer is 5 volume% or more and 15 volume% or less.
  • Ethyl cellulose, which is a cellulose polymer, is 2% by volume or more and 10% by volume or less.
  • the sample A contains the above-mentioned solvent, monomer, and binder glass.
  • the sample A contains a trace amount photoinitiator.
  • Sample B includes 20% by volume of silver particles, 19% by volume or less of an organic resin, and 24% by volume or less of a monomer.
  • the organic resin has only an acrylic polymer. Polybutyl acrylate was used as the acrylic polymer.
  • the sample B includes the same solvent, monomer, and binder glass as the sample A. Furthermore, the sample B contains a trace amount photoinitiator.
  • the amount of solvent described in Table 2 is a weight fraction with respect to the total amount of solvent.
  • Diethylene glycol monobutyl ether acetate was used as the other solvent in Table 2.
  • a PDP was produced using these electrode pastes and dielectric paste, and simultaneously firing the electrodes and dielectric layers.
  • the parameters of the electrode paste are two levels, sample A and sample B.
  • the parameters of the dielectric paste are 8 levels from Sample 1 to Sample 8. PDPs were produced with all combinations of electrode paste and dielectric paste. That is, 16 types of PDPs were produced.
  • the coating thickness of the electrode paste was adjusted to 12 ⁇ m.
  • the film thickness of the display electrode pattern after drying was 6 ⁇ m when formed from Sample A.
  • the film thickness of the display electrode pattern after drying was 7 ⁇ m when formed from Sample B.
  • the number of dielectric breakdowns is reduced by containing dihydroterpinyl acetate having no double bond or OH group and terpene solvent such as terpineol, terpinyl acetate, or dihydroterpineol. I understand that.
  • dihydroterpinel acetate having no double bond or OH group is 50% by weight or more based on the total solvent, and terpeneol, terpinyl acetate, or dihydroterpineol, which is a terpene solvent, is 1% by weight or more.
  • Sample 1 and Sample 2 of 5% by weight or less, the bleeding phenomenon and the dissolution phenomenon of the binder component such as the display electrode were sufficiently suppressed, and the dispersibility of the dielectric paste was also good.
  • the present embodiment realizes a PDP electrode paste and a PDP manufacturing method capable of significantly reducing production costs while maintaining high quality and high reliability of the PDP.
  • the technology disclosed in the present embodiment realizes a low power consumption PDP and is useful for a large screen display device.

Abstract

A method for producing a plasma display panel provides 15 vol. % to 25 vol. % conductive particles, 10 vol. % to 25 vol. % organic resin, and 10 vol. % to 20 vol. % monomers. By applying an electrode paste containing acrylic polymers and cellulose polymers to the front glass substrate, the organic resin forms an electrode paste layer. Next, by shaping the electrode paste layer, an electrode pattern is formed in which at least the organic resin remains. Next, by applying a dielectric paste to the front glass substrate, a dielectric paste film that covers the electrode pattern is formed. Next, by simultaneously firing the electrode pattern and the dielectric paste, a display electrode and a dielectric layer are formed.

Description

プラズマディスプレイパネル用電極ペーストおよびプラズマディスプレイパネルの製造方法Electrode paste for plasma display panel and method for manufacturing plasma display panel
 ここに開示された技術は、表示デバイスなどに用いられるプラズマディスプレイパネル用の電極ペーストおよびプラズマディスプレイパネルの製造方法に関する。 The technology disclosed herein relates to an electrode paste for a plasma display panel used for a display device or the like and a method for manufacturing the plasma display panel.
 プラズマディスプレイパネル(以下、PDPと称する)の表示電極を構成するバス電極には、導電性を確保するための銀電極が用いられている。バス電極を覆う誘電体層には、低融点ガラスが用いられている。 Silver electrodes for ensuring conductivity are used for bus electrodes constituting display electrodes of a plasma display panel (hereinafter referred to as PDP). Low-melting glass is used for the dielectric layer covering the bus electrode.
 例えば、特許文献1にはスクリーン印刷法とダイコート法を併用することにより、誘電体層の空隙を低減させる技術が開示されている。例えば、特許文献2にはドライフィルム法によって誘電体層を形成する技術が開示されている。 For example, Patent Document 1 discloses a technique for reducing voids in a dielectric layer by using a screen printing method and a die coating method in combination. For example, Patent Document 2 discloses a technique for forming a dielectric layer by a dry film method.
特開2002-25433号公報JP 2002-25433 A 特開2004-63420号公報Japanese Patent Laid-Open No. 2004-63420
 PDP用電極ペーストは、15体積%以上25体積%以下の導電性粒子と、10体積%以上25体積%以下の有機樹脂と、10体積%以上20体積%以下のモノマーと、を備える。有機樹脂は、アクリル系ポリマーおよびセルロース系ポリマーを含む。 The electrode paste for PDP comprises 15% by volume to 25% by volume conductive particles, 10% by volume to 25% by volume organic resin, and 10% by volume to 20% by volume monomer. The organic resin includes an acrylic polymer and a cellulose polymer.
 PDPの製造方法は、基板に上記のPDP用電極ペーストを塗布することにより、電極ペースト層を形成する。次に電極ペースト層を形状加工することにより、少なくとも有機樹脂が残存した電極パターンを形成する。次に基板に誘電体ペーストを塗布することにより、電極パターンを被覆する誘電体ペースト層を形成する。次に電極パターンと誘電体ペースト層とを同時に焼成することにより、電極と誘電体層とを形成する。 In the PDP manufacturing method, the electrode paste layer is formed by applying the electrode paste for PDP to the substrate. Next, the electrode paste layer is shaped to form an electrode pattern in which at least the organic resin remains. Next, a dielectric paste layer for covering the electrode pattern is formed by applying a dielectric paste to the substrate. Next, the electrode pattern and the dielectric paste layer are simultaneously fired to form the electrode and the dielectric layer.
図1は実施の形態にかかるPDPの構造を示す斜視図である。FIG. 1 is a perspective view showing the structure of the PDP according to the embodiment. 図2は実施の形態にかかる前面板の断面を示す概略図である。FIG. 2 is a schematic view showing a cross section of the front plate according to the embodiment. 図3Aは実施の形態にかかる前面板の製造過程を示す概略図である。FIG. 3A is a schematic view illustrating a manufacturing process of the front plate according to the embodiment. 図3Bは実施の形態にかかる前面板の製造過程を示す概略図である。FIG. 3B is a schematic view illustrating a manufacturing process of the front plate according to the embodiment. 図3Cは実施の形態にかかる前面板の製造過程を示す概略図である。FIG. 3C is a schematic diagram illustrating a manufacturing process of the front plate according to the embodiment. 図3Dは実施の形態にかかる前面板の製造過程を示す概略図である。FIG. 3D is a schematic view illustrating a manufacturing process of the front plate according to the embodiment. 図3Eは実施の形態にかかる前面板の製造過程を示す概略図である。FIG. 3E is a schematic diagram illustrating a manufacturing process of the front plate according to the embodiment. 図4Aは実施の形態にかかる誘電体ペーストの溶剤の化学式を示す図である。FIG. 4A is a diagram illustrating a chemical formula of a solvent of the dielectric paste according to the embodiment. 図4Bは実施の形態にかかる誘電体ペーストの溶剤の化学式を示す図である。FIG. 4B is a diagram illustrating a chemical formula of a solvent of the dielectric paste according to the embodiment. 図4Cは実施の形態にかかる誘電体ペーストの溶剤の化学式を示す図である。FIG. 4C is a diagram illustrating a chemical formula of a solvent of the dielectric paste according to the exemplary embodiment. 図4Dは実施の形態にかかる誘電体ペーストの溶剤の化学式を示す図である。FIG. 4D is a diagram illustrating a chemical formula of a solvent of the dielectric paste according to the embodiment.
 [1.PDP1の構成]
 本実施の形態のPDP1は、交流面放電型PDPである。図1に示すように、PDP1は前面ガラス基板3などよりなる前面板2と、背面ガラス基板11などよりなる背面板10とが対向して配置される。前面板2と背面板10の外周部がガラスフリットなどからなる封着材によって気密封着されている。封着されたPDP1内部の放電空間16には、キセノン(Xe)を含む放電ガスが55kPa~80kPaの圧力で封入される。
[1. Configuration of PDP1]
The PDP 1 of the present embodiment is an AC surface discharge type PDP. As shown in FIG. 1, in the PDP 1, a front plate 2 made of a front glass substrate 3 and the like and a back plate 10 made of a back glass substrate 11 and the like are arranged to face each other. The outer peripheral portions of the front plate 2 and the back plate 10 are hermetically sealed with a sealing material made of glass frit or the like. A discharge gas containing xenon (Xe) is sealed in the discharge space 16 inside the sealed PDP 1 at a pressure of 55 kPa to 80 kPa.
 前面ガラス基板3上には、走査電極4および維持電極5よりなる一対の帯状の表示電極6と遮光層7が互いに平行にそれぞれ複数列配置される。走査電極4は、黒色電極4aと、黒色電極4a上に積層された白色電極4bとから構成されている。維持電極5は、黒色電極5aと、黒色電極5a上に積層された白色電極5bとから構成されている。さらに、前面ガラス基板3上には、表示電極6と遮光層7とを被覆する誘電体層8が形成されている。誘電体層8は、コンデンサとして機能する。さらに、誘電体層8の表面に酸化マグネシウム(MgO)などからなる保護層9が形成されている。 On the front glass substrate 3, a pair of strip-shaped display electrodes 6 each composed of the scanning electrodes 4 and the sustaining electrodes 5 and a plurality of light shielding layers 7 are arranged in parallel to each other. The scanning electrode 4 is composed of a black electrode 4a and a white electrode 4b stacked on the black electrode 4a. The sustain electrode 5 includes a black electrode 5a and a white electrode 5b laminated on the black electrode 5a. Furthermore, a dielectric layer 8 that covers the display electrode 6 and the light shielding layer 7 is formed on the front glass substrate 3. The dielectric layer 8 functions as a capacitor. Further, a protective layer 9 made of magnesium oxide (MgO) or the like is formed on the surface of the dielectric layer 8.
 背面ガラス基板11上には、表示電極6と直交する方向に、複数の帯状のアドレス電極12が互いに平行に配置される。さらに、アドレス電極12を被覆する下地誘電体層13が形成されている。さらに、アドレス電極12の間に形成された下地誘電体層13上には放電空間16を区切る所定の高さの隔壁14が形成されている。隔壁14の間には、紫外線によって赤色に発光する蛍光体層15と、青色に発光する蛍光体層15および緑色に発光する蛍光体層15が順番に形成される。 On the rear glass substrate 11, a plurality of strip-like address electrodes 12 are arranged in parallel to each other in a direction orthogonal to the display electrodes 6. Further, a base dielectric layer 13 that covers the address electrodes 12 is formed. Further, on the base dielectric layer 13 formed between the address electrodes 12, barrier ribs 14 having a predetermined height are formed to divide the discharge space 16. Between the barrier ribs 14, a phosphor layer 15 that emits red light by ultraviolet rays, a phosphor layer 15 that emits blue light, and a phosphor layer 15 that emits green light are sequentially formed.
 表示電極6とアドレス電極12とが交差する位置に放電セルが形成される。赤色に発光する蛍光体層15を有する放電セルと、青色に発光する蛍光体層15を有する放電セルと、緑色に発光する蛍光体層15を有する放電セルとによりカラー表示をする画素が形成される。 A discharge cell is formed at a position where the display electrode 6 and the address electrode 12 intersect. A discharge cell having a phosphor layer 15 that emits red light, a discharge cell that has a phosphor layer 15 that emits blue light, and a discharge cell that has a phosphor layer 15 that emits green light form a pixel for color display. The
 [2.PDP1の製造方法]
 [2-1.前面板2の製造方法]
 図2に示すように、前面ガラス基板3上に、走査電極4および維持電極5が形成される。表示電極6は、走査電極4および維持電極5を有する。走査電極4および維持電極5は、導電性を確保するための銀(Ag)を含む。
[2. Manufacturing method of PDP1]
[2-1. Manufacturing method of front plate 2]
As shown in FIG. 2, scan electrode 4 and sustain electrode 5 are formed on front glass substrate 3. The display electrode 6 has a scan electrode 4 and a sustain electrode 5. Scan electrode 4 and sustain electrode 5 contain silver (Ag) for ensuring conductivity.
 ところで、従来用いられていた複数回にわたって誘電体を形成する方法では、多くの生産設備が必要になる。さらに、製造時のエネルギー消費が増大するなどによってコストアップにつながり、安価で高性能なPDPを提供することが困難となる。またドライフィルム法ではドライフィルムを形成するためのベースフィルムが必要となるため、その分のコストアップに繋がるだけでなくベースフィルムはラミネート後廃棄物となるため環境問題という点でも望ましくない。さらにドライフィルム法では形成時に表示電極間隔での流動性が乏しいため空隙などなく形成することが困難である。 By the way, many production facilities are required in the conventional method of forming a dielectric material multiple times. Furthermore, the increase in energy consumption during production leads to an increase in cost, making it difficult to provide an inexpensive and high-performance PDP. In addition, the dry film method requires a base film for forming a dry film, which not only leads to an increase in cost, but is also undesirable in terms of environmental problems because the base film becomes waste after lamination. Further, in the dry film method, it is difficult to form without a gap because the fluidity at the display electrode interval is poor at the time of formation.
 従来のPDPの前面板の製造方法は表示電極を印刷法およびフォトリソグラフィ法によりストライプ状に形状を作成して、焼成工程を経てから、誘電体層の形成を行っていた。しかしながら、表示電極と誘電体層を形成するために、それぞれ焼成工程を行うことは、エネルギー消費の増大やコストアップにつながる。よって、焼成工程の削減が望まれている。 In the conventional method of manufacturing a front panel of a PDP, a display electrode is formed in a stripe shape by a printing method and a photolithography method, and after a firing process, a dielectric layer is formed. However, performing each baking step to form the display electrode and the dielectric layer leads to an increase in energy consumption and an increase in cost. Therefore, reduction of the firing process is desired.
 本実施の形態にかかる誘電体層8は、第1ガラス材料20と第2ガラス材料21とからなる。誘電体層は、表示電極6および遮光層7を被覆するように形成される。なお、表示電極6の形成方法および誘電体層8の形成方法は後に詳しく述べられる。 The dielectric layer 8 according to the present embodiment is composed of the first glass material 20 and the second glass material 21. The dielectric layer is formed so as to cover the display electrode 6 and the light shielding layer 7. The method for forming the display electrode 6 and the method for forming the dielectric layer 8 will be described in detail later.
 次に、誘電体層8上に酸化マグネシウム(MgO)などからなる保護層9が真空蒸着法などにより形成される。以上のように、前面板2が形成される。 Next, a protective layer 9 made of magnesium oxide (MgO) or the like is formed on the dielectric layer 8 by a vacuum deposition method or the like. As described above, the front plate 2 is formed.
 [2-2.背面板10の製造方法]
 図1に示すように、背面ガラス基板11上に、アドレス電極12、下地誘電体層13、隔壁14および蛍光体層15が形成される。
[2-2. Manufacturing method of back plate 10]
As shown in FIG. 1, an address electrode 12, a base dielectric layer 13, a partition wall 14, and a phosphor layer 15 are formed on a back glass substrate 11.
 まず、フォトリソグラフィ法によって、背面ガラス基板11上に、アドレス電極12が形成される。アドレス電極12の材料には、導電性を確保するための銀(Ag)と銀を結着させるためのガラスフリットと感光性樹脂と溶剤などを含むアドレス電極ペーストが用いられる。まず、スクリーン印刷法などによって、アドレス電極ペーストが所定の厚みで背面ガラス基板11上に塗布される。次に、乾燥炉によって、アドレス電極ペースト中の溶剤が除去される。次に、所定のパターンのフォトマスクを介して、アドレス電極ペーストが露光される。次に、アドレス電極ペーストが現像され、アドレス電極パターンが形成される。最後に、焼成炉によって、アドレス電極パターンが所定の温度で焼成される。つまり、アドレス電極パターン中の感光性樹脂が除去される。また、アドレス電極パターン中のガラスフリットが溶融する。溶融したガラスフリットは、焼成後に再びガラス化する。以上の工程によって、アドレス電極12が形成される。ここで、アドレス電極ペーストをスクリーン印刷する方法以外にも、スパッタ法、蒸着法などを用いることができる。 First, address electrodes 12 are formed on the back glass substrate 11 by photolithography. As the material of the address electrode 12, an address electrode paste containing silver (Ag) for ensuring conductivity, a glass frit for binding silver, a photosensitive resin, a solvent, and the like is used. First, the address electrode paste is applied on the rear glass substrate 11 with a predetermined thickness by screen printing or the like. Next, the solvent in the address electrode paste is removed by a drying furnace. Next, the address electrode paste is exposed through a photomask having a predetermined pattern. Next, the address electrode paste is developed to form an address electrode pattern. Finally, the address electrode pattern is fired at a predetermined temperature in a firing furnace. That is, the photosensitive resin in the address electrode pattern is removed. Further, the glass frit in the address electrode pattern is melted. The molten glass frit is vitrified again after firing. The address electrode 12 is formed by the above process. Here, besides the method of screen printing the address electrode paste, a sputtering method, a vapor deposition method, or the like can be used.
 次に、下地誘電体層13が形成される。下地誘電体層13の材料には、誘電体ガラスフリットと樹脂と溶剤などを含む下地誘電体ペーストが用いられる。まず、スクリーン印刷法などによって、下地誘電体ペーストが所定の厚みでアドレス電極12が形成された背面ガラス基板11上にアドレス電極12を覆うように塗布される。次に、乾燥炉によって、下地誘電体ペースト中の溶剤が除去される。最後に、焼成炉によって、下地誘電体ペーストが所定の温度で焼成される。つまり、下地誘電体ペースト中の樹脂が除去される。また、誘電体ガラスフリットが溶融する。溶融した誘電体ガラスフリットは、焼成後に再びガラス化する。以上の工程によって、下地誘電体層13が形成される。ここで、下地誘電体ペーストをスクリーン印刷する方法以外にも、ダイコート法、スピンコート法などを用いることができる。また、下地誘電体ペーストを用いずに、CVD(Chemical Vapor Deposition)法などによって、下地誘電体層13となる膜を形成することもできる。 Next, the base dielectric layer 13 is formed. As a material for the base dielectric layer 13, a base dielectric paste containing a dielectric glass frit, a resin, a solvent, and the like is used. First, a base dielectric paste is applied by a screen printing method or the like so as to cover the address electrodes 12 on the rear glass substrate 11 on which the address electrodes 12 are formed with a predetermined thickness. Next, the solvent in the base dielectric paste is removed by a drying furnace. Finally, the base dielectric paste is fired at a predetermined temperature in a firing furnace. That is, the resin in the base dielectric paste is removed. Further, the dielectric glass frit is melted. The molten dielectric glass frit is vitrified again after firing. Through the above steps, the base dielectric layer 13 is formed. Here, other than the method of screen printing the base dielectric paste, a die coating method, a spin coating method, or the like can be used. Further, a film that becomes the base dielectric layer 13 can be formed by CVD (Chemical Vapor Deposition) method or the like without using the base dielectric paste.
 次に、フォトリソグラフィ法によって、隔壁14が形成される。隔壁14の材料には、フィラーと、フィラーを結着させるためのガラスフリットと、感光性樹脂と、溶剤などを含む隔壁ペーストが用いられる。まず、ダイコート法などによって、隔壁ペーストが所定の厚みで下地誘電体層13上に塗布される。次に、乾燥炉によって、隔壁ペースト中の溶剤が除去される。次に、所定のパターンのフォトマスクを介して、隔壁ペーストが露光される。次に、隔壁ペーストが現像され、隔壁パターンが形成される。最後に、焼成炉によって、隔壁パターンが所定の温度で焼成される。つまり、隔壁パターン中の感光性樹脂が除去される。また、隔壁パターン中のガラスフリットが溶融する。溶融したガラスフリットは、焼成後に再びガラス化する。以上の工程によって、隔壁14が形成される。ここで、フォトリソグラフィ法以外にも、サンドブラスト法などを用いることができる。 Next, the barrier ribs 14 are formed by photolithography. As a material for the partition wall 14, a partition paste containing a filler, a glass frit for binding the filler, a photosensitive resin, a solvent, and the like is used. First, the barrier rib paste is applied on the underlying dielectric layer 13 with a predetermined thickness by a die coating method or the like. Next, the solvent in the partition wall paste is removed by a drying furnace. Next, the barrier rib paste is exposed through a photomask having a predetermined pattern. Next, the barrier rib paste is developed to form a barrier rib pattern. Finally, the partition pattern is fired at a predetermined temperature in a firing furnace. That is, the photosensitive resin in the partition pattern is removed. Further, the glass frit in the partition wall pattern is melted. The molten glass frit is vitrified again after firing. The partition wall 14 is formed by the above process. Here, in addition to the photolithography method, a sandblast method or the like can be used.
 次に、蛍光体層15が形成される。蛍光体層15の材料には、蛍光体粒子とバインダと溶剤などとを含む蛍光体ペーストが用いられる。まず、ディスペンス法などによって、蛍光体ペーストが、隣接する隔壁14間の下地誘電体層13上および隔壁14の側面に、所定の厚みで塗布される。次に、乾燥炉によって、蛍光体ペースト中の溶剤が除去される。最後に、焼成炉によって、蛍光体ペーストが所定の温度で焼成される。つまり、蛍光体ペースト中の樹脂が除去される。以上の工程によって、蛍光体層15が形成される。ここで、ディスペンス法以外にも、スクリーン印刷法などを用いることができる。 Next, the phosphor layer 15 is formed. As the material of the phosphor layer 15, a phosphor paste containing phosphor particles, a binder, a solvent, and the like is used. First, the phosphor paste is applied with a predetermined thickness on the base dielectric layer 13 between the adjacent barrier ribs 14 and the side surfaces of the barrier ribs 14 by a dispensing method or the like. Next, the solvent in the phosphor paste is removed by a drying furnace. Finally, the phosphor paste is fired at a predetermined temperature in a firing furnace. That is, the resin in the phosphor paste is removed. The phosphor layer 15 is formed by the above steps. Here, in addition to the dispensing method, a screen printing method or the like can be used.
 以上の工程により、背面板10が形成される。 Through the above steps, the back plate 10 is formed.
 [2-3.前面板2と背面板10との組立方法]
 まず、ディスペンス法によって、背面板10の周囲に封着材(図示せず)が形成される。封着材(図示せず)の材料には、ガラスフリットとバインダと溶剤などを含む封着ペーストが用いられる。次に乾燥炉によって、封着ペースト中の溶剤が除去される。次に、表示電極6とアドレス電極12とが直交するように、前面板2と背面板10とが対向配置される。次に、前面板2と背面板10の周囲がガラスフリットで封着される。最後に、放電空間16にXeを15体積%以上30体積%以下含む放電ガスが封入される。以上のように、PDP1が形成される。
[2-3. Assembly method of front plate 2 and rear plate 10]
First, a sealing material (not shown) is formed around the back plate 10 by the dispensing method. As a material for the sealing material (not shown), a sealing paste containing glass frit, a binder, a solvent, and the like is used. Next, the solvent in the sealing paste is removed by a drying furnace. Next, the front plate 2 and the back plate 10 are arranged to face each other so that the display electrodes 6 and the address electrodes 12 are orthogonal to each other. Next, the periphery of the front plate 2 and the back plate 10 is sealed with glass frit. Finally, a discharge gas containing 15 vol% or more and 30 vol% or less of Xe is sealed in the discharge space 16. As described above, the PDP 1 is formed.
 [3.表示電極6の詳細]
 [3-1.PDP用電極ペーストの組成]
 有機樹脂、溶剤などのバインダ成分を含む材料を用いて表示電極6を形成する場合、バインダ成分を除去するために、焼成が行われる。また、有機樹脂、溶剤などのバインダ成分を含む材料を用いて誘電体層8を形成する場合、バインダ成分を除去するために、焼成が行われる。本実施の形態においては、電極である表示電極6および遮光層7を形成するための焼成と、誘電体層8を形成するための焼成は、同一の工程で行われる(以下、単に同時焼成とする)。
[3. Details of Display Electrode 6]
[3-1. Composition of electrode paste for PDP]
When the display electrode 6 is formed using a material containing a binder component such as an organic resin or a solvent, baking is performed to remove the binder component. Further, when the dielectric layer 8 is formed using a material containing a binder component such as an organic resin or a solvent, firing is performed to remove the binder component. In the present embodiment, the firing for forming the display electrode 6 and the light shielding layer 7 which are electrodes and the firing for forming the dielectric layer 8 are performed in the same process (hereinafter, simply referred to as simultaneous firing). To do).
 しかしながら従来技術において、単純に表示電極の焼成工程を省き、同時焼成を行うと、表示電極と誘電体ペーストの収縮率が異なるなどの理由のために、表示電極と誘電体層との間に空隙が形成されてしまう。その結果、放電セルとしての容量が変化し、放電が不安定になる。さらには誘電体層の絶縁耐圧特性が著しく低下してしまうこととなる。 However, in the prior art, if the firing process of the display electrode is simply omitted and simultaneous firing is performed, there is a gap between the display electrode and the dielectric layer due to the difference in shrinkage between the display electrode and the dielectric paste. Will be formed. As a result, the capacity of the discharge cell changes and the discharge becomes unstable. Furthermore, the dielectric strength characteristics of the dielectric layer will be significantly degraded.
 そこで、本実施の形態では、従来とは異なるPDP用電極ペースト(以下、電極ペーストと称する)を開発することによって、同時焼成を行ったとしても、上記の不具合が抑制できるようにしている。 Therefore, in the present embodiment, by developing a PDP electrode paste (hereinafter referred to as an electrode paste) different from the conventional one, the above-described problems can be suppressed even if simultaneous firing is performed.
 本実施の形態における電極ペーストは、15体積%以上25体積%以下の導電性粒子と、10体積%以上25体積%以下の有機樹脂と、10体積%以上20体積%以下のモノマーと、を備える。有機樹脂は、アクリル系ポリマーおよびセルロース系ポリマーを含む。セルロース系ポリマーは、アクリル系ポリマーよりも単位体積あたりの粘度が高い。よって、従来アクリル系ポリマーのみで構成されていた電極ペーストと比較して、同粘度でもより少ない樹脂量の電極ペーストが得られる。つまり、本実施の形態においては、電極パターンである焼成前の表示電極パターンの厚みを、従来よりも小さくできる。よって、表示電極パターンを誘電体ペースト層と同時に焼成したとしても、表示電極パターンの収縮が抑制される。したがって、表示電極6と誘電体層8との間に空隙が形成されることを抑制できる。 The electrode paste in the present embodiment includes 15% by volume to 25% by volume of conductive particles, 10% by volume to 25% by volume of an organic resin, and 10% by volume to 20% by volume of a monomer. . The organic resin includes an acrylic polymer and a cellulose polymer. Cellulose polymers have a higher viscosity per unit volume than acrylic polymers. Therefore, an electrode paste having a smaller amount of resin can be obtained even with the same viscosity as compared with an electrode paste that has been conventionally composed of only an acrylic polymer. In other words, in the present embodiment, the thickness of the display electrode pattern before firing, which is an electrode pattern, can be made smaller than before. Therefore, even if the display electrode pattern is fired simultaneously with the dielectric paste layer, the shrinkage of the display electrode pattern is suppressed. Therefore, it is possible to suppress the formation of a gap between the display electrode 6 and the dielectric layer 8.
 なお、有機樹脂としては、5体積%以上15体積%以下のアクリル系ポリマーと、2体積%以上10体積%以下のセルロース系ポリマーを含むことが、好ましい。さらに、有機樹脂としては、5体積%以上15体積%以下のアクリル系ポリマーと、2体積%以上6体積%以下のセルロース系ポリマーを含むことが、より好ましい。 The organic resin preferably contains 5% by volume to 15% by volume of acrylic polymer and 2% by volume to 10% by volume of cellulose polymer. Furthermore, as an organic resin, it is more preferable that 5 to 15 volume% acrylic polymer and 2 to 6 volume% cellulose polymer are included.
 セルロース系ポリマーは、エチルセルロース、ヒドロキシセルロース、ヒドロキシプロピルセルロースから選択される少なくとも1種を含むことができる。 The cellulosic polymer can contain at least one selected from ethyl cellulose, hydroxy cellulose, and hydroxypropyl cellulose.
 さらに、電極ペーストは、導電性粒子同士を結着させる結着ガラスを1体積%以上3体積%以下含み、溶剤を40体積%以上60体積%以下含む。また、電極ペーストは、微量の光重合開始剤を含んでもよい。 Furthermore, the electrode paste contains 1% by volume to 3% by volume of a binder glass that binds the conductive particles to each other, and contains 40% by volume to 60% by volume of a solvent. Moreover, the electrode paste may contain a trace amount photoinitiator.
 導電性粒子としては、導電性が高い銀(Ag)粒子、銅(Cu)粒子などを用いることができる。 As the conductive particles, highly conductive silver (Ag) particles, copper (Cu) particles, or the like can be used.
 有機樹脂としては、5体積%以上15体積%以下のアクリル系ポリマーと、2体積%以上6体積%以下のセルロース系ポリマーを含むと、より好ましい。アクリル系ポリマーとしては、ポリブチルアクリレート、ポリメタクリレートなどから選択される少なくとも1種を含むことができる。セルロース系ポリマーは、エチルセルロース、ヒドロキシセルロース、ヒドロキシプロピルセルロースから選択される少なくとも1種を含むことができる。 It is more preferable that the organic resin contains 5% by volume to 15% by volume of an acrylic polymer and 2% by volume to 6% by volume of a cellulose polymer. The acrylic polymer can include at least one selected from polybutyl acrylate, polymethacrylate, and the like. The cellulosic polymer can include at least one selected from ethyl cellulose, hydroxy cellulose, and hydroxypropyl cellulose.
 モノマーとしてはアクリロニトリル、ビニルアセテート、アクリルアミドなどを用いることができる。 As the monomer, acrylonitrile, vinyl acetate, acrylamide, or the like can be used.
 光重合開始剤としては、例えば、熱的に不活性であるが185℃以下の温度で所定の波長の光に露光された場合にフリーラジカルを生成するものである。光重合開始剤は、共役炭素環中に2つの分子内環を有する化合物である置換または非置換多核性キノンを含む。例としては、9,10-アントラキノン、2-メチルアントラキノン、2-エチルアントラキノン、2-t-ブチルアントラキノン、オクタメチルアントラキノン、1,4-ナフトキノン、9,10-フェンタントレンキノン、ベンゾ[a]アントラセン-7,12-ジオン、2,3-ナフタセン-5,12-ジオン、2-メチル-1,4-ナフトキノン、1,4-ジメチルアントラキノン、2,3-ジメチルアントラキノン、2-フェニルアントラキノン、2,3-ジフェニルアントラキノン、レテンキノン、7,8,9,10-テトラヒドロナフタセン-5,12-ジオン、および1,2,3,4-テトラヒドロベンゾ[a]アントラセン-7,12-ジオンが挙げられる。 The photopolymerization initiator is, for example, one that generates a free radical when exposed to light of a predetermined wavelength at a temperature of 185 ° C. or less, although it is thermally inactive. The photopolymerization initiator includes a substituted or unsubstituted polynuclear quinone which is a compound having two intramolecular rings in a conjugated carbocycle. Examples include 9,10-anthraquinone, 2-methylanthraquinone, 2-ethylanthraquinone, 2-t-butylanthraquinone, octamethylanthraquinone, 1,4-naphthoquinone, 9,10-phenanthrenequinone, benzo [a] Anthracene-7,12-dione, 2,3-naphthacene-5,12-dione, 2-methyl-1,4-naphthoquinone, 1,4-dimethylanthraquinone, 2,3-dimethylanthraquinone, 2-phenylanthraquinone, 2 , 3-diphenylanthraquinone, retenquinone, 7,8,9,10-tetrahydronaphthacene-5,12-dione, and 1,2,3,4-tetrahydrobenzo [a] anthracene-7,12-dione .
 結着ガラスとしては、少なくとも三酸化二ビスマス(Bi23)を結着ガラス中の含有量として20~50重量%、三酸化二硼素(B23)を5~35重量%、酸化亜鉛(ZnO)を10~20重量%、酸化バリウム(BaO)を5~20重量%含む。さらに、結着ガラスは三酸化モリブデン(MoO)、三酸化タングステン(WO)などを含んでもよい。 As the binder glass, at least dibismuth trioxide (Bi 2 O 3 ) as a content in the binder glass is 20 to 50% by weight, diboron trioxide (B 2 O 3 ) is 5 to 35% by weight, oxidized. It contains 10-20% by weight of zinc (ZnO) and 5-20% by weight of barium oxide (BaO). Further, the binder glass may contain molybdenum trioxide (MoO 3 ), tungsten trioxide (WO 3 ), or the like.
 Bi23は、含有量が多すぎると熱膨張係数が増大し軟化点が低下するという観点から、20~50重量%であるのが好ましい。さらには、30~45重量%であるのがより好ましい。ガラス骨格を形成するB23は、含有量が多すぎると熱膨張係数が低下し軟化点が高くなるという観点から、5~35重量%であるのが好ましい。さらには、5~30重量%であるのがより好ましい。 Bi 2 O 3 is preferably 20 to 50% by weight from the viewpoint that if the content is too large, the thermal expansion coefficient increases and the softening point decreases. Further, it is more preferably 30 to 45% by weight. The content of B 2 O 3 forming the glass skeleton is preferably 5 to 35% by weight from the viewpoint that if the content is too large, the coefficient of thermal expansion decreases and the softening point increases. Further, it is more preferably 5 to 30% by weight.
 ZnOは、含有量が多すぎると熱膨張係数が増大し透明性を損なうという観点から、10~20重量%であるのが好ましい。 ZnO is preferably 10 to 20% by weight from the viewpoint that if the content is too large, the coefficient of thermal expansion increases and the transparency is impaired.
 BaOは、含有量が多すぎると軟化点が高くなるという観点から、5~20重量%であるのが好ましい。 BaO is preferably 5 to 20% by weight from the viewpoint that if the content is too large, the softening point becomes high.
 ガラス粉末の平均粒径は、電極とガラス基板との結着性を向上させるという理由から、4.0μm以下であるのが好ましい。さらには、1~3μmであるのがより好ましい。また、前記ガラス粉末の最大粒径は、結着力と電極端部の直線性とを両立するという理由から、10μm以下であるのが好ましい。さらには、5~8μmであるのがより好ましい。 The average particle size of the glass powder is preferably 4.0 μm or less because it improves the binding property between the electrode and the glass substrate. Further, it is more preferably 1 to 3 μm. Further, the maximum particle size of the glass powder is preferably 10 μm or less because the binding force and the linearity of the electrode end are compatible. Further, it is more preferably 5 to 8 μm.
 溶剤としては、例えば、α-、β-、γ-テルピネオールなどのテルペン類、エチレングリコールモノアルキルエーテル類、エチレングリコールジアルキルエーテル類、ジエチレングリコールモノアルキルエーテル類、ジエチレングリコールジアルキルエーテル類、エチレングリコールモノアルキルエーテルアセテート類、エチレングリコールジアルキルエーテルアセテート類、ジエチレングリコールモノアルキルエーテルアセテート類、ジエチレングリコールジアルキルエーテルアセテート類、プロピレングリコールモノアルキルエーテル類、プロピレングリコールジアルキルエーテル類、プロピレングリコールモノアルキルエーテルアセテート類、プロピレングリコールジアルキルエーテルアセテート類、メタノール、エタノール、イソプロパノール、1-ブタノールなどのアルコール類などが挙げられ、これらをそれぞれ単独で、または2種類以上を混合して用いることができる。 Examples of the solvent include terpenes such as α-, β-, and γ-terpineol, ethylene glycol monoalkyl ethers, ethylene glycol dialkyl ethers, diethylene glycol monoalkyl ethers, diethylene glycol dialkyl ethers, ethylene glycol monoalkyl ether acetate. , Ethylene glycol dialkyl ether acetates, diethylene glycol monoalkyl ether acetates, diethylene glycol dialkyl ether acetates, propylene glycol monoalkyl ethers, propylene glycol dialkyl ethers, propylene glycol monoalkyl ether acetates, propylene glycol dialkyl ether acetates, Methanol, ethanol, iso Propanol, 1-butanol include such alcohols such as may be used by mixing them each alone or two or more types.
 さらに電極ペーストには、分散剤、可塑剤、粘度調整剤、オリゴマー、ポリマー、紫外線吸収剤、増感剤などの添加剤を添加することもできる。 Furthermore, additives such as a dispersant, a plasticizer, a viscosity modifier, an oligomer, a polymer, an ultraviolet absorber, and a sensitizer can be added to the electrode paste.
 これらの材料を三本ロール、ボールミルまたはサンドミルなどの分散機を用いて混合および分散させることによって電極ペーストが作製される。 An electrode paste is produced by mixing and dispersing these materials using a dispersing machine such as a three roll, ball mill or sand mill.
 [3-2.表示電極パターンの形成方法]
 まず、図3Aに示すように、スクリーン印刷法などによって、前面ガラス基板3上に電極ペーストが塗布される。前面ガラス基板3上に塗布された電極ペーストは、電極ペースト層32を形成する。電極ペースト層32の膜厚は、10~15μm程度の範囲で適宜設定される。次に、100℃から200℃の温度範囲で電極ペースト層32が乾燥される。具体的には、電極ペースト層32中の溶剤、水分などが除去される。図3Bに示すように、乾燥によって、電極ペースト層32の膜厚は、6~9μm程度まで減少する。乾燥手段としては、赤外線乾燥炉、電気炉などが用いられる。乾燥における雰囲気は、大気でも不活性ガスでもかまわない。
[3-2. Method of forming display electrode pattern]
First, as shown in FIG. 3A, an electrode paste is applied on the front glass substrate 3 by a screen printing method or the like. The electrode paste applied on the front glass substrate 3 forms an electrode paste layer 32. The film thickness of the electrode paste layer 32 is appropriately set in the range of about 10 to 15 μm. Next, the electrode paste layer 32 is dried in a temperature range of 100 ° C. to 200 ° C. Specifically, the solvent, moisture, etc. in the electrode paste layer 32 are removed. As shown in FIG. 3B, the film thickness of the electrode paste layer 32 decreases to about 6 to 9 μm by drying. As a drying means, an infrared drying furnace, an electric furnace or the like is used. The atmosphere for drying may be air or an inert gas.
 次に、電極ペースト層32がパターニングされる。まず、ガラス板にクロムなどで表示電極6のマスクパターンが形成されたフォトマスクを介して、電極ペースト層32に光が照射される。光の波長は、電極ペースト層32に含まれている光重合開始剤が反応する波長である。一般的には、250nmから450nm程度である。電極ペースト層32における光が照射された領域は、モノマーが重合することによって、硬化する。 Next, the electrode paste layer 32 is patterned. First, the electrode paste layer 32 is irradiated with light through a photomask in which a mask pattern of the display electrode 6 is formed of chromium or the like on a glass plate. The wavelength of light is a wavelength at which the photopolymerization initiator contained in the electrode paste layer 32 reacts. Generally, it is about 250 nm to 450 nm. The region irradiated with light in the electrode paste layer 32 is cured by polymerization of the monomer.
 次に、電極ペースト層32が現像される。現像液は、電極ペースト層32に対応したアルカリ現像液が用いられる。具体的には、炭酸ナトリウム溶液、水酸化カリウム溶液、TMAH(tetramethyl annmonium hydroxide)などが用いられる。図3Cに示すように、電極ペースト層32に現像液が噴射されることにより、光が照射された領域が残存し、光が照射されなかった領域が除去される。つまり、焼成前(未焼成)の表示電極パターン34が形成される。最後に水洗浄が行われ、前面ガラス基板3に付着した汚れなどが除去される。ここで、表示電極パターン34は、有機樹脂などのバインダ成分が残留している。なお、説明の便宜のため、図3A、図3Bおよび図3Cにおける電極ペースト層32の厚みは、実際の製品とは異なる。 Next, the electrode paste layer 32 is developed. As the developer, an alkali developer corresponding to the electrode paste layer 32 is used. Specifically, a sodium carbonate solution, a potassium hydroxide solution, TMAH (tetramethyl anhydride hydroxide), or the like is used. As shown in FIG. 3C, the developer is sprayed onto the electrode paste layer 32, so that the region irradiated with light remains and the region not irradiated with light is removed. That is, the display electrode pattern 34 before firing (unfired) is formed. Finally, water cleaning is performed to remove dirt and the like attached to the front glass substrate 3. Here, binder components such as organic resin remain in the display electrode pattern 34. For convenience of explanation, the thickness of the electrode paste layer 32 in FIGS. 3A, 3B, and 3C is different from the actual product.
 [4.誘電体層8の詳細]
 本実施の形態では先に述べたように、表示電極パターン34と誘電体ペースト層40とが同時焼成される。しかしながら従来技術において、単純に表示電極パターン34の焼成工程を省き、同時焼成を行うと、未焼成の表示電極パターン34を誘電体ペースト層40で覆うことになる。未焼成の表示電極パターン34には、有機樹脂などのバインダ成分が多く残存している。表示電極パターン34の上に誘電体ペーストを塗布すると、誘電体ペーストに含まれる溶剤成分が表示電極パターン34に残存しているバインダ成分を溶解してしまう。よって、表示電極パターンに含まれるAg成分が誘電体ペースト層40に混入してしまう。その結果、焼成後に、表示電極6の外観形状が大きく変化し、画像表示輪郭のシャープさが失われてしまう。さらには誘電体層8の絶縁耐圧特性は著しく低下してしまうこととなる。
[4. Details of Dielectric Layer 8]
In the present embodiment, as described above, the display electrode pattern 34 and the dielectric paste layer 40 are fired simultaneously. However, in the prior art, when the firing process of the display electrode pattern 34 is simply omitted and simultaneous firing is performed, the unfired display electrode pattern 34 is covered with the dielectric paste layer 40. Many binder components such as organic resin remain in the unfired display electrode pattern 34. When the dielectric paste is applied on the display electrode pattern 34, the solvent component contained in the dielectric paste dissolves the binder component remaining in the display electrode pattern 34. Therefore, the Ag component contained in the display electrode pattern is mixed into the dielectric paste layer 40. As a result, after firing, the appearance shape of the display electrode 6 changes greatly, and the sharpness of the image display contour is lost. Furthermore, the dielectric strength characteristics of the dielectric layer 8 are significantly deteriorated.
 そこで、本実施の形態では、従来とは異なる誘電体ペーストを開発することによって、同時焼成を行ったとしても、上記の不具合が生じないようにしている。 Therefore, in the present embodiment, by developing a dielectric paste different from the conventional one, the above-mentioned problems are prevented from occurring even if simultaneous firing is performed.
 なお、本実施の形態におけるPDPの誘電体層は、効果的に誘電体層の誘電率を下げることを目的として、第1ガラス材料と第2ガラス材料とを含み、誘電率が5以下であって、第1ガラス材料は、複数の成分を含み、かつ誘電体層を形成する焼成温度T(℃)よりも高い軟化点を有し、さらに第2ガラス材料は、このT(℃)よりも低い軟化点を有する。ここで、第1ガラス材料は、二酸化珪素(SiO2)、三酸化二硼素(B23)および、アルカリ金属(酸化カリウム(K2O)や酸化リチウム(Li2O)や酸化ナトリウム(Na2O)の少なくとも1種以上)を含むことが望ましい。 The dielectric layer of the PDP in the present embodiment includes a first glass material and a second glass material for the purpose of effectively reducing the dielectric constant of the dielectric layer, and the dielectric constant is 5 or less. The first glass material includes a plurality of components and has a softening point higher than a firing temperature T (° C.) for forming the dielectric layer. Further, the second glass material has a temperature higher than the T (° C.). Has a low softening point. Here, the first glass material is silicon dioxide (SiO 2 ), diboron trioxide (B 2 O 3 ), alkali metal (potassium oxide (K 2 O), lithium oxide (Li 2 O), sodium oxide ( It is desirable to include at least one of Na 2 O).
 また、誘電体層8中の第1ガラス材料の存在比率は、5体積%~30体積%が望ましい。誘電体層中の第1ガラス材料が5体積%より低くなると、誘電体層8全体の誘電率を低くする効果が小さくなり、誘電率5以下を達成することが難しくなる。一方、第1ガラス材料が30体積%以上となると、誘電体層8中に第1ガラス材料が存在する領域が多くなり、誘電体層としての結合力が弱くなってしまう弊害が生じる。 Also, the abundance ratio of the first glass material in the dielectric layer 8 is desirably 5% by volume to 30% by volume. When the first glass material in the dielectric layer is lower than 5% by volume, the effect of lowering the dielectric constant of the entire dielectric layer 8 is reduced, and it becomes difficult to achieve a dielectric constant of 5 or less. On the other hand, when the amount of the first glass material is 30% by volume or more, a region where the first glass material is present in the dielectric layer 8 is increased, resulting in a problem that the bonding force as the dielectric layer is weakened.
 図2に示すように、誘電体層8は、第1ガラス材料20とガラス層となる第2ガラス材料21とを含む。後述するように、第1ガラス材料の軟化点は、誘電体層8を形成する焼成温度よりも高いため、第1ガラス材料と第2ガラス材料とが完全に固溶した形態とはならない。また、説明の便宜のため、図2に示される第1ガラス材料20の大きさおよび数は、実際の製品とは異なる。 As shown in FIG. 2, the dielectric layer 8 includes a first glass material 20 and a second glass material 21 to be a glass layer. As will be described later, since the softening point of the first glass material is higher than the firing temperature at which the dielectric layer 8 is formed, the first glass material and the second glass material are not in a completely solid solution form. Further, for convenience of explanation, the size and number of the first glass material 20 shown in FIG. 2 are different from actual products.
 なお、従来では誘電体ガラスに軟化点を低くするため20重量%以上の酸化鉛を含有していた。しかし、本実施の形態においては、環境への配慮のため、誘電体ガラスは、酸化鉛を含有しない。すなわち誘電体層8は酸化鉛を含有しない。 In addition, conventionally, the dielectric glass contained 20% by weight or more of lead oxide in order to lower the softening point. However, in this embodiment, the dielectric glass does not contain lead oxide for environmental consideration. That is, the dielectric layer 8 does not contain lead oxide.
 [4-1.誘電体ペーストの製造]
 誘電体層を形成するための誘電体ペーストは、第1ガラス材料の粉末と、第2ガラス材料の粉末と、ビヒクル、溶剤などのバインダ成分から構成される。
[4-1. Production of dielectric paste]
The dielectric paste for forming the dielectric layer includes a first glass material powder, a second glass material powder, and binder components such as a vehicle and a solvent.
 [4-1-1.第1ガラス材料の粉末]
 本実施の形態では、第1ガラス材料の粉末は、軟化点が後述する誘電体層8の焼成温度T(℃)よりも高いガラス材料であって、複数の成分を有するガラス材料を、粉砕し、ガラス材料粉末としている。
[4-1-1. First glass material powder]
In the present embodiment, the powder of the first glass material is a glass material whose softening point is higher than the firing temperature T (° C.) of the dielectric layer 8 described later, and the glass material having a plurality of components is pulverized. The glass material powder.
 ここで、第1ガラス材料の粉末をこのような粉砕した粉末ガラス材料を用いる理由について述べる。ガラス粉末材料を作成する方法としては、溶融したガラスを粉砕する溶融粉砕法と、沈殿法やゲル法といった化学合成法がある。化学合成法は、先に述べたSiOフィラー粒子(シリカ粒子)を粉末として作成するには非常に有効である。しかしながら化学合成法では、所望の組成・濃度を調整して、作成することは非常に困難である。 Here, the reason for using the powder glass material obtained by pulverizing the powder of the first glass material will be described. As a method for producing a glass powder material, there are a melt pulverization method for pulverizing molten glass, and a chemical synthesis method such as a precipitation method and a gel method. The chemical synthesis method is very effective for preparing the above-described SiO 2 filler particles (silica particles) as a powder. However, in the chemical synthesis method, it is very difficult to prepare by adjusting the desired composition and concentration.
 例えば、化学合成法によって、三酸化二硼素(B)を含む粉末を作成することは可能であるが濃度を適宜調整することは困難である。また、アルカリ金属(RO)については、添加したシリカ粒子を作成すること自体が非常に困難である。 For example, a powder containing diboron trioxide (B 2 O 3 ) can be prepared by a chemical synthesis method, but it is difficult to adjust the concentration appropriately. As for the alkali metal (R 2 O), it is very difficult itself to create the added silica particles.
 一方、溶融粉砕法であれば様々な組成、濃度を所望に調整し作成することが可能である。 On the other hand, the melt pulverization method can be prepared by adjusting various compositions and concentrations as desired.
 そこで、本実施の形態では、上記のように溶融粉砕法によって、複数の成分を含んだ高軟化点のガラス材料である第1ガラス材料の粉末を作成している。 Therefore, in the present embodiment, the powder of the first glass material, which is a glass material having a high softening point and containing a plurality of components, is prepared by the melt pulverization method as described above.
 第1ガラス材料は、二酸化珪素(SiO)、三酸化二硼素(B)および、アルカリ金属である、酸化カリウム(KO)や酸化リチウム(LiO)や酸化ナトリウム(NaO)の少なくとも1種以上を含んでいる。 The first glass material is silicon dioxide (SiO 2 ), diboron trioxide (B 2 O 3 ), and alkali metals such as potassium oxide (K 2 O), lithium oxide (Li 2 O), and sodium oxide (Na 2 O) is included.
 また、これら以外にも、酸化亜鉛(ZnO)、酸化マグネシウム(MgO)、酸化カルシウム(CaO)、などを含んでもよい。第1ガラス材料の成分比は、軟化点が誘電体層8の焼成温度T(℃)よりも高くなるように調整される。本実施の形態では、第1ガラス材料の軟化点は700℃以上である。 Besides these, zinc oxide (ZnO), magnesium oxide (MgO), calcium oxide (CaO), and the like may also be included. The component ratio of the first glass material is adjusted so that the softening point is higher than the firing temperature T (° C.) of the dielectric layer 8. In the present embodiment, the softening point of the first glass material is 700 ° C. or higher.
 次に、例示された組成成分の誘電体ガラス材料が、湿式ジェットミルやボールミルなどにより平均粒径が0.5μm~3.0μmとなるように粉砕される。以上のように、第1ガラス材料の粉末が作成される。 Next, the dielectric glass material having the exemplified composition components is pulverized by a wet jet mill, a ball mill, or the like so that the average particle size becomes 0.5 μm to 3.0 μm. As described above, the powder of the first glass material is produced.
 [4-1-2.第2ガラス材料の粉末]
 第2ガラス材料の粉末は、一例として、三酸化二硼素(B23)と二酸化珪素(SiO2)とアルカリ金属の酸化物である酸化カリウム(K2O)や酸化リチウム(Li2O)や酸化ナトリウム(Na2O)などを含む。
[4-1-2. Second glass material powder]
Examples of the powder of the second glass material include diboron trioxide (B 2 O 3 ), silicon dioxide (SiO 2 ), potassium oxide (K 2 O) which is an oxide of an alkali metal, and lithium oxide (Li 2 O). ) And sodium oxide (Na 2 O).
 また先に述べたように、誘電体ガラス微粒子は主成分以外に、酸化亜鉛(ZnO)、酸化マグネシウム(MgO)、酸化カルシウム(CaO)、などを含んでもよい。第2ガラス材料の成分比は、軟化点が誘電体層8の焼成温度T(℃)よりも低くなるように調整する。本実施の形態では、第2ガラス材料の軟化点は600℃以下である。 Also, as described above, the dielectric glass fine particles may contain zinc oxide (ZnO), magnesium oxide (MgO), calcium oxide (CaO), etc. in addition to the main component. The component ratio of the second glass material is adjusted so that the softening point is lower than the firing temperature T (° C.) of the dielectric layer 8. In the present embodiment, the softening point of the second glass material is 600 ° C. or less.
 次に、例示された組成成分の誘電体ガラス材料が、湿式ジェットミルやボールミルなどにより平均粒径が0.5μm~3.0μmとなるように粉砕される。以上のように、第2ガラス材料の粉末が作成される。 Next, the dielectric glass material having the exemplified composition components is pulverized by a wet jet mill, a ball mill, or the like so that the average particle size becomes 0.5 μm to 3.0 μm. As described above, the powder of the second glass material is produced.
 [4-1-3.誘電体ペースト]
 誘電体ガラス材料およびバインダ成分が混練されることにより、誘電体ペーストが作製される。混練には、三本ロールなどが用いられる。誘電体ペーストは、ダイコート法あるいは印刷法に用いられる。誘電体ガラス材料は、第1ガラス材料と、第2ガラス材料とを含む。
[4-1-3. Dielectric paste]
A dielectric paste is produced by kneading the dielectric glass material and the binder component. A three roll or the like is used for kneading. The dielectric paste is used for a die coating method or a printing method. The dielectric glass material includes a first glass material and a second glass material.
 バインダ成分は、エチルセルロースあるいはアクリル樹脂1重量%~20重量%を含むターピネオールあるいはブチルカルビトールアセテートと、溶剤を含む。誘電体ペーストには、可塑剤としてフタル酸ジオクチル、フタル酸ジブチル、リン酸トリフェニル、リン酸トリブチルなどが添加されてもよい。誘電体ペーストには、分散剤としてグリセロールモノオレート、ソルビタンセスキオレヘート、ホモゲノール(Kaoコーポレーション社製品名)、アルキルアリル基のリン酸エステルなどが添加されてもよい。誘電体ペーストの印刷性が向上するからである。なお、バインダ成分は第1ガラス材料または第2ガラス材料の粉砕に用いられる溶媒と合わせてもよい。 The binder component contains terpineol or butyl carbitol acetate containing 1% to 20% by weight of ethyl cellulose or acrylic resin, and a solvent. To the dielectric paste, dioctyl phthalate, dibutyl phthalate, triphenyl phosphate, tributyl phosphate and the like may be added as a plasticizer. To the dielectric paste, glycerol monooleate, sorbitan sesquioleate, homogenol (product name of Kao Corporation), phosphate ester of alkylallyl group, or the like may be added as a dispersant. This is because the printability of the dielectric paste is improved. The binder component may be combined with a solvent used for pulverizing the first glass material or the second glass material.
 本実施の形態にかかる誘電体ペーストの溶剤について説明される。溶剤は、第1の溶剤と第2の溶剤とを含む。第1の溶剤は、二重結合またはOH基のいずれもが含まれない溶剤である。第2の溶剤は、テルペン系の溶剤である。例えば、二重結合またはOH基のいずれもが含まれない溶剤としてはジヒドロターピニルアセテートであることが望ましい。そして、テルペン系溶剤としては、ターピネオール、ターピニルアセテート、またはジヒドロターピネオールが望ましい。これらの化学式は、図4A、図4B、図4C、図4Dに示される。 The solvent for the dielectric paste according to this embodiment will be described. The solvent includes a first solvent and a second solvent. The first solvent is a solvent containing neither a double bond nor an OH group. The second solvent is a terpene solvent. For example, it is desirable that the solvent containing neither a double bond nor an OH group is dihydroterpinyl acetate. The terpene solvent is preferably terpineol, terpinyl acetate, or dihydroterpineol. These chemical formulas are shown in FIGS. 4A, 4B, 4C, and 4D.
 これらの溶剤が選択される理由が、説明される。まず、二重結合が含まれない理由が説明される。未焼成の表示電極パターンはバインダ成分を含んだ状態である。このため、二重結合を含む溶剤などが表示電極パターンに触れると、溶剤がバインダ成分を溶解してしまう。 The reason why these solvents are selected will be explained. First, the reason why a double bond is not included will be explained. The unsintered display electrode pattern includes a binder component. For this reason, when a solvent or the like containing a double bond touches the display electrode pattern, the solvent dissolves the binder component.
 そして、誘電体ペーストに溶解したバインダ成分は、同時焼成後に空隙欠陥を形成する場合がある。さらに、表示電極6に含まれるAg成分を誘電体層8に混入させる原因となる場合がある。よって、誘電体層8の絶縁耐圧特性を著しく低下させる要因となる。 The binder component dissolved in the dielectric paste may form void defects after simultaneous firing. Further, the Ag component contained in the display electrode 6 may be mixed into the dielectric layer 8 in some cases. Therefore, it becomes a factor that significantly reduces the dielectric strength characteristics of the dielectric layer 8.
 このため本実施の形態にかかる誘電体ペーストの溶剤は、二重結合が含まれないジヒドロターピニルアセテートを有する。よって、表示電極パターンに含まれるバインダ成分の溶解が抑制される。 For this reason, the solvent of the dielectric paste according to the present embodiment has dihydroterpinyl acetate that does not contain a double bond. Therefore, dissolution of the binder component contained in the display electrode pattern is suppressed.
 次に、OH基が含まれない理由が説明される。上述のような表示電極パターンが形成された場合、水洗浄がなされる。 Next, the reason why the OH group is not included will be explained. When the display electrode pattern as described above is formed, water cleaning is performed.
 水洗浄によって、表示電極パターンは水分を吸収してしまう。従来は現像工程後で、誘電体ペースト塗布前に焼成工程が行われていた。よって、表示電極パターンに吸収された水分は、蒸発していた。つまり、水分は、誘電体ペーストを塗布する際には残留していなかった。しかしながら本実施の形態では表示電極パターンを焼成する前に誘電体ペーストが塗布される。発明者らは、誘電体ペーストに含まれる溶剤にOH基が多く含まれていると、表示電極パターン34に吸収された水分が、表示電極パターン34を覆う誘電体ペースト側に染み出てくることを見出した。染み出した水分は、誘電体ペーストの焼成後には誘電体層8のひび割れや凹みの原因となり、誘電体層8の絶縁耐圧特性を低下させる要因となる。 The display electrode pattern absorbs moisture by washing with water. Conventionally, a baking process has been performed after the development process and before the application of the dielectric paste. Therefore, the moisture absorbed in the display electrode pattern has evaporated. That is, no moisture remained when applying the dielectric paste. However, in this embodiment, the dielectric paste is applied before firing the display electrode pattern. The inventors have found that when the solvent contained in the dielectric paste contains a lot of OH groups, the moisture absorbed in the display electrode pattern 34 oozes out to the dielectric paste side covering the display electrode pattern 34. I found. The exuded moisture causes cracks and dents in the dielectric layer 8 after firing the dielectric paste, and causes a decrease in the dielectric strength characteristics of the dielectric layer 8.
 これに対し、本実施の形態では、誘電体ペーストの溶剤にOH基を含まないジヒドロターピニルアセテートを有する。このため上記のような染み出しが抑制される。 In contrast, in the present embodiment, the solvent of the dielectric paste has dihydroterpinyl acetate that does not contain OH groups. For this reason, the above exudation is suppressed.
 以上の二つの理由から、本実施の形態では誘電体ペーストの溶剤に、ジヒドロターピニルアセテートを誘電体ペーストの全溶剤量に対して40重量%以上含有している。さらに望ましくは、50重量%以上である。これにより、表示電極パターンに含まれるバインダ成分の溶解を抑制する効果が得られる。 For the above two reasons, in this embodiment, the solvent of the dielectric paste contains dihydroterpinyl acetate at 40% by weight or more based on the total amount of the solvent of the dielectric paste. More desirably, it is 50% by weight or more. Thereby, the effect which suppresses melt | dissolution of the binder component contained in a display electrode pattern is acquired.
 テルペン系の溶剤が用いられる理由が説明される。テルペン系の溶剤とは、一例として、α-ピネン(沸点:156℃)、β-ピネン(沸点:161℃)、リモネン(沸点:177℃)、ターピネオール(沸点:209℃)、ターピニルアセテート(沸点:220℃)、ジヒドロターピネオール(沸点:207℃)、ジヒドロターピニルアセテート(沸点:220℃)などである。 The reason why terpene solvents are used is explained. Examples of terpene solvents include α-pinene (boiling point: 156 ° C), β-pinene (boiling point: 161 ° C), limonene (boiling point: 177 ° C), terpineol (boiling point: 209 ° C), and terpinyl acetate. (Boiling point: 220 ° C.), dihydroterpineol (boiling point: 207 ° C.), dihydroterpinyl acetate (boiling point: 220 ° C.), and the like.
 上述のように、表示電極パターン34のバインダ成分の溶解や水分の染み出し現象を抑制するためにジヒドロターピニルアセテートを含むことが非常に効果的である。一方、ジヒドロターピニルアセテートは誘電体ペーストに含まれるエチルセルロースあるいはアクリル樹脂といった成分に対して溶解性が乏しい。つまり、ジヒドロターピニルアセテートを含んだ誘電体ペーストは、分散性が劣るという欠点がある。 As described above, it is very effective to contain dihydroterpinyl acetate in order to suppress the dissolution of the binder component of the display electrode pattern 34 and the phenomenon of moisture exudation. On the other hand, dihydroterpinyl acetate is poorly soluble in components such as ethyl cellulose or acrylic resin contained in the dielectric paste. That is, the dielectric paste containing dihydroterpinyl acetate has a disadvantage that the dispersibility is poor.
 誘電体ペーストの分散性が劣る場合、特に未焼成の表示電極パターン34と誘電体ペースト層40とを同時焼成すると、焼成時に表示電極パターン34が収縮する。つまり、表示電極パターン34の挙動に誘電体ペースト層40が追随できなくなる。その結果、焼成後の誘電体層8にひび割れなどが発生してしまう。ひび割れもまた誘電体層8の絶縁耐圧特性を著しく低下させる要因となる。 When the dispersibility of the dielectric paste is inferior, especially when the unfired display electrode pattern 34 and the dielectric paste layer 40 are fired simultaneously, the display electrode pattern 34 shrinks during firing. That is, the dielectric paste layer 40 cannot follow the behavior of the display electrode pattern 34. As a result, cracks and the like occur in the dielectric layer 8 after firing. Cracks also cause a significant decrease in the dielectric strength characteristics of the dielectric layer 8.
 そこで、このような欠点を補うため、本実施の形態では誘電体ペーストの溶剤にOH基を有するテルペン系溶剤を、誘電体ペーストの全溶剤量に対して1重量%以上5%重量以下含有している。含有量が1重量%より低い場合、誘電体層のひび割れ現象を防止する効果が得られない。含有量が5重量%より多い場合、OH基の影響により、表示電極パターン34から水分の染み出しを抑制する効果が不十分になる。 Therefore, in order to make up for such drawbacks, in the present embodiment, a terpene solvent having an OH group is contained in the dielectric paste solvent in an amount of 1% by weight to 5% by weight with respect to the total amount of the dielectric paste. ing. When the content is lower than 1% by weight, the effect of preventing the cracking phenomenon of the dielectric layer cannot be obtained. When the content is more than 5% by weight, the effect of suppressing the seepage of moisture from the display electrode pattern 34 is insufficient due to the influence of OH groups.
 [4-2.誘電体層8の形成方法]
 誘電体層8を形成する方法として、スクリーン印刷法やダイコート法などが用いられる。まず、図3Dに示すように、表示電極パターン34が形成された前面ガラス基板3上に、表示電極パターン34を覆うように誘電体ペーストが塗布される。塗布された誘電体ペーストは、誘電体ペースト層40を形成する。誘電体ペースト層40の膜厚は、焼成によって収縮する割合が考慮された上で、適宜設定される。
[4-2. Method for Forming Dielectric Layer 8]
As a method for forming the dielectric layer 8, a screen printing method, a die coating method, or the like is used. First, as shown in FIG. 3D, a dielectric paste is applied on the front glass substrate 3 on which the display electrode pattern 34 is formed so as to cover the display electrode pattern 34. The applied dielectric paste forms a dielectric paste layer 40. The film thickness of the dielectric paste layer 40 is appropriately set in consideration of the rate of shrinkage due to firing.
 次に、100℃から200℃の温度範囲で誘電体ペースト層40が乾燥される。図3Eに示すように、乾燥によって、誘電体ペースト層40の膜厚が減少する。乾燥手段としては、赤外線乾燥炉、電気炉などが用いられる。乾燥における雰囲気は、大気または不活性ガスが用いられる。 Next, the dielectric paste layer 40 is dried in a temperature range of 100 ° C. to 200 ° C. As shown in FIG. 3E, the film thickness of the dielectric paste layer 40 is reduced by drying. As a drying means, an infrared drying furnace, an electric furnace or the like is used. Air or an inert gas is used as an atmosphere for drying.
 次に、表示電極パターン34と誘電体ペースト層40が同時焼成される。焼成温度は、450℃から650℃の温度範囲である。より好ましくは550℃から600℃の温度範囲である。ここで本実施の形態では、焼成温度は、第1ガラス材料の軟化点より低く、かつ第2ガラス材料の軟化点より高く設定される。これにより、表示電極6、遮光層7と、第1ガラス材料20と第2ガラス材料21とからなる誘電体層8と、が形成される。 Next, the display electrode pattern 34 and the dielectric paste layer 40 are fired simultaneously. The firing temperature is in the temperature range of 450 ° C to 650 ° C. More preferably, the temperature range is 550 ° C to 600 ° C. Here, in the present embodiment, the firing temperature is set lower than the softening point of the first glass material and higher than the softening point of the second glass material. Thereby, the display electrode 6, the light shielding layer 7, and the dielectric layer 8 made of the first glass material 20 and the second glass material 21 are formed.
 なお、誘電体層8の膜厚が小さいほどPDP1の輝度が向上する。また、誘電体層8の膜厚が小さいほどPDP1の放電電圧が低減する。よって、絶縁耐圧が低下しない範囲で、できるだけ誘電体層8の膜厚が小さいことが好ましい。絶縁耐圧の観点と、可視光透過率の観点との両方から、本実施の形態では、一例として、誘電体層8の膜厚は10μm以上30μm以下である。 Note that the luminance of the PDP 1 is improved as the thickness of the dielectric layer 8 is reduced. Further, the discharge voltage of the PDP 1 decreases as the thickness of the dielectric layer 8 decreases. Therefore, it is preferable that the thickness of the dielectric layer 8 is as small as possible within a range where the withstand voltage does not decrease. In the present embodiment, as an example, the film thickness of the dielectric layer 8 is not less than 10 μm and not more than 30 μm from both the viewpoint of dielectric strength and the viewpoint of visible light transmittance.
 [5.実施例]
 実施の形態にかかるPDPが作製された。放電セルは、42インチクラスのハイビジョンテレビに適合するサイズである。隔壁の高さは、0.15mm、隔壁の間隔(セルピッチ)は、0.15mm、表示電極の電極間距離は、0.06mmである。Xeの含有量が15体積%のNe-Xe系の混合ガスが60kPaで封入された。前面ガラス基板および背面ガラス基板の厚みは1.8mmである。誘電体層の膜厚は20μmである。
[5. Example]
The PDP according to the embodiment was produced. The discharge cell is sized to fit a 42-inch class high-definition television. The height of the partition walls is 0.15 mm, the distance between the partition walls (cell pitch) is 0.15 mm, and the distance between the display electrodes is 0.06 mm. A Ne—Xe-based mixed gas having a Xe content of 15% by volume was sealed at 60 kPa. The thickness of the front glass substrate and the back glass substrate is 1.8 mm. The film thickness of the dielectric layer is 20 μm.
 実施例においては、表1に示す組成の電極ペーストが作製された。 In the examples, electrode pastes having the compositions shown in Table 1 were produced.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、試料Aは、21体積%の銀粒子と、10体積%以上25体積%以下の有機樹脂と、10体積%以上20体積%以下のモノマーと、を備える。有機樹脂は、アクリル系ポリマーとセルロース系ポリマーを有する。アクリル系ポリマーであるポリブチルアクリレートが5体積%以上15体積%以下である。セルロース系ポリマーであるエチルセルロースが2体積%以上10体積%以下である。さらに、試料Aは、前述の溶剤、モノマーおよび結着ガラスを含む。さらに、試料Aは微量の光重合開始剤を含む。 As shown in Table 1, Sample A includes 21% by volume of silver particles, 10% by volume to 25% by volume of an organic resin, and 10% by volume to 20% by volume of a monomer. The organic resin has an acrylic polymer and a cellulose polymer. The polybutyl acrylate which is an acrylic polymer is 5 volume% or more and 15 volume% or less. Ethyl cellulose, which is a cellulose polymer, is 2% by volume or more and 10% by volume or less. Furthermore, the sample A contains the above-mentioned solvent, monomer, and binder glass. Furthermore, the sample A contains a trace amount photoinitiator.
 試料Bは、20体積%の銀粒子と、19体積%以下の有機樹脂と、24体積%以下のモノマーと、を備える。有機樹脂は、アクリル系ポリマーのみを有する。アクリル系ポリマーとしては、ポリブチルアクリレートが用いられた。さらに、試料Bは、試料Aと同じ溶剤、モノマーおよび結着ガラスを含む。さらに、試料Bは微量の光重合開始剤を含む。 Sample B includes 20% by volume of silver particles, 19% by volume or less of an organic resin, and 24% by volume or less of a monomer. The organic resin has only an acrylic polymer. Polybutyl acrylate was used as the acrylic polymer. Further, the sample B includes the same solvent, monomer, and binder glass as the sample A. Furthermore, the sample B contains a trace amount photoinitiator.
 実施例においては、表2に示す組成の誘電体ペーストが作製された。 In the examples, a dielectric paste having the composition shown in Table 2 was produced.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に記載してある溶剤量は全溶剤量に対する重量分率である。表2におけるその他の溶剤としては、ジエチレングリコールモノブチルエーテルアセテートが用いられた。 The amount of solvent described in Table 2 is a weight fraction with respect to the total amount of solvent. Diethylene glycol monobutyl ether acetate was used as the other solvent in Table 2.
 これらの電極ペーストと、誘電体ペーストを用い、かつ、電極と誘電体層を同時焼成したPDPが作製された。電極ペーストのパラメータは、試料Aと試料Bの2水準である。誘電体ペーストのパラメータは、試料1から試料8までの8水準である。電極ペーストと誘電体ペーストについて全ての組合せでPDPが作製された。つまり、16種類のPDPが作製された。 A PDP was produced using these electrode pastes and dielectric paste, and simultaneously firing the electrodes and dielectric layers. The parameters of the electrode paste are two levels, sample A and sample B. The parameters of the dielectric paste are 8 levels from Sample 1 to Sample 8. PDPs were produced with all combinations of electrode paste and dielectric paste. That is, 16 types of PDPs were produced.
 電極ペーストの塗布膜厚は、12μmになるように調整された。乾燥後の表示電極パターンの膜厚は、試料Aから形成した場合は、6μmであった。一方、乾燥後の表示電極パターンの膜厚は、試料Bから形成した場合は、7μmであった。 The coating thickness of the electrode paste was adjusted to 12 μm. The film thickness of the display electrode pattern after drying was 6 μm when formed from Sample A. On the other hand, the film thickness of the display electrode pattern after drying was 7 μm when formed from Sample B.
 電極ペーストとして試料Bを用いたPDPは、全て表示電極と誘電体層との間に空隙が確認された。すなわち、試料Bを用いたPDPでは良品が得られなかった。試料Bから形成した表示電極パターンの膜厚は相対的に厚く、同時焼成時に誘電体ペースト層より収縮したためである。 In all PDPs using Sample B as the electrode paste, voids were observed between the display electrode and the dielectric layer. That is, a non-defective product was not obtained with the PDP using the sample B. This is because the film thickness of the display electrode pattern formed from Sample B is relatively thick and contracts from the dielectric paste layer during simultaneous firing.
 一方、電極ペーストとして試料Aを用いたPDPは、全て表示電極と誘電体層との間に空隙がなかった。試料Aから形成した表示電極パターンの膜厚は、試料Bから形成した表示電極パターンの膜厚より薄い。つまり、表示電極パターンの収縮が試料Bから形成した表示電極パターンの収縮よりも抑制されたためである。 On the other hand, all the PDPs using Sample A as the electrode paste had no gap between the display electrode and the dielectric layer. The film thickness of the display electrode pattern formed from the sample A is thinner than the film thickness of the display electrode pattern formed from the sample B. In other words, this is because the shrinkage of the display electrode pattern is suppressed more than the shrinkage of the display electrode pattern formed from the sample B.
 電極ペーストとして試料Aを用い、誘電体ペーストとして試料1から試料8を用いたPDPの特性を比較するために、誘電体層の絶縁耐圧特性を評価した。絶縁耐圧特性の評価はアドレス電極と維持電極間に500Vの電圧がかかるようにして、その際の絶縁破壊した個数を計測した。この結果が表2に示される。誘電体ペーストの分散性の状況、染み出し現象の有無、表示電極などのバインダ成分の溶解の有無、についても評価された。 In order to compare the characteristics of PDPs using Sample A as the electrode paste and Samples 1 to 8 as the dielectric paste, the dielectric strength characteristics of the dielectric layers were evaluated. In order to evaluate the dielectric strength characteristics, a voltage of 500 V was applied between the address electrode and the sustain electrode, and the number of dielectric breakdowns at that time was measured. The results are shown in Table 2. The dispersibility of the dielectric paste, the presence or absence of the bleeding phenomenon, and the presence or absence of dissolution of binder components such as display electrodes were also evaluated.
 表2に示すように、二重結合またはOH基を有しないジヒドロターピニルアセテートと、テルペン系溶剤であるターピネオール、ターピニルアセテート、またはジヒドロターピネオールを含有することによって、絶縁破壊数は減少することがわかる。 As shown in Table 2, the number of dielectric breakdowns is reduced by containing dihydroterpinyl acetate having no double bond or OH group and terpene solvent such as terpineol, terpinyl acetate, or dihydroterpineol. I understand that.
 特に、二重結合またはOH基を有しないジヒドロターピニルアセテートを全溶剤に対して50重量%以上としており、かつテルペン系溶剤であるターピネオール、ターピニルアセテート、またはジヒドロターピネオールを1重量%以上5重量%以下としている試料1、試料2では、染み出し現象、表示電極等のバインダ成分の溶解現象も十分に抑制されており、誘電体ペーストの分散性の状況も良好であった。 Particularly, dihydroterpinel acetate having no double bond or OH group is 50% by weight or more based on the total solvent, and terpeneol, terpinyl acetate, or dihydroterpineol, which is a terpene solvent, is 1% by weight or more. In Sample 1 and Sample 2 of 5% by weight or less, the bleeding phenomenon and the dissolution phenomenon of the binder component such as the display electrode were sufficiently suppressed, and the dispersibility of the dielectric paste was also good.
 以上のように、本実施の形態では、PDPの高品質、高信頼性を保持しつつ、生産コストを大幅に削減することを可能にするPDP用電極ペースト、およびPDPの製造方法を実現する。 As described above, the present embodiment realizes a PDP electrode paste and a PDP manufacturing method capable of significantly reducing production costs while maintaining high quality and high reliability of the PDP.
 以上のように本実施の形態に開示された技術は、低消費電力のPDPを実現して、大画面の表示デバイスなどに有用である。 As described above, the technology disclosed in the present embodiment realizes a low power consumption PDP and is useful for a large screen display device.
 1  PDP
 2  前面板
 3  前面ガラス基板
 4  走査電極
 4a,5a  黒色電極
 4b,5b  白色電極
 5  維持電極
 6  表示電極
 7  ブラックストライプ(遮光層)
 8  誘電体層
 9  保護層
 10  背面板
 11  背面ガラス基板
 12  アドレス電極
 13  下地誘電体層
 14  隔壁
 15  蛍光体層
 16  放電空間
 20  第1ガラス材料
 21  第2ガラス材料
 32  電極ペースト層
 34  表示電極パターン
 40  誘電体ペースト層
1 PDP
2 Front plate 3 Front glass substrate 4 Scan electrode 4a, 5a Black electrode 4b, 5b White electrode 5 Maintenance electrode 6 Display electrode 7 Black stripe (light shielding layer)
DESCRIPTION OF SYMBOLS 8 Dielectric layer 9 Protective layer 10 Back plate 11 Back glass substrate 12 Address electrode 13 Base dielectric layer 14 Partition 15 Phosphor layer 16 Discharge space 20 First glass material 21 Second glass material 32 Electrode paste layer 34 Display electrode pattern 40 Dielectric paste layer

Claims (8)

  1. 15体積%以上25体積%以下の導電性粒子と、
    10体積%以上25体積%以下の有機樹脂と、
    10体積%以上20体積%以下のモノマーと、を備え、
     前記有機樹脂は、アクリル系ポリマーおよびセルロース系ポリマーを含む、
    プラズマディスプレイパネル用電極ペースト。
    15% by volume or more and 25% by volume or less of conductive particles;
    10% to 25% by volume of organic resin;
    10 volume% or more and 20 volume% or less of monomer,
    The organic resin includes an acrylic polymer and a cellulose polymer,
    Electrode paste for plasma display panels.
  2. 前記有機樹脂は、5体積%以上15体積%以下のアクリル系ポリマーと、2体積%以上10体積%以下のセルロース系ポリマーを含む請求項1に記載のプラズマディスプレイパネル用電極ペースト。 2. The electrode paste for a plasma display panel according to claim 1, wherein the organic resin contains 5% by volume to 15% by volume of an acrylic polymer and 2% by volume to 10% by volume of a cellulose polymer.
  3. 前記有機樹脂は、5体積%以上15体積%以下のアクリル系ポリマーと、2体積%以上6体積%以下のセルロース系ポリマーを含む請求項1に記載のプラズマディスプレイパネル用電極ペースト。 2. The electrode paste for a plasma display panel according to claim 1, wherein the organic resin includes 5% by volume to 15% by volume of an acrylic polymer and 2% by volume to 6% by volume of a cellulose polymer.
  4. 前記セルロース系ポリマーは、エチルセルロース、ヒドロキシセルロース、ヒドロキシプロピルセルロースから選択される少なくとも1種を含む、
    請求項1に記載のプラズマディスプレイパネル用電極ペースト。
    The cellulosic polymer includes at least one selected from ethyl cellulose, hydroxy cellulose, and hydroxypropyl cellulose.
    The electrode paste for plasma display panels of Claim 1.
  5. 基板に請求項1に記載のプラズマディスプレイパネル用電極ペーストを塗布することにより、電極ペースト層を形成し、
    次に前記電極ペースト層を形状加工することにより、少なくとも有機樹脂が残存した電極パターンを形成し、
    次に前記基板に誘電体ペーストを塗布することにより、前記電極パターンを被覆する誘電体ペースト層を形成し、
    次に前記電極パターンと前記誘電体ペースト層とを同時に焼成することにより、電極と誘電体層とを形成する、
    プラズマディスプレイパネルの製造方法。
    An electrode paste layer is formed by applying the electrode paste for a plasma display panel according to claim 1 to a substrate,
    Next, by shaping the electrode paste layer, an electrode pattern in which at least the organic resin remains is formed,
    Next, a dielectric paste layer that covers the electrode pattern is formed by applying a dielectric paste to the substrate,
    Next, the electrode pattern and the dielectric paste layer are simultaneously fired to form an electrode and a dielectric layer.
    A method for manufacturing a plasma display panel.
  6. 前記誘電体ペーストは、誘電体ガラスと、溶剤と、を備え、
    前記溶剤は、第1の溶剤と第2の溶剤とを含み、
     前記第1の溶剤は、二重結合および水酸基のいずれも有さず、
     前記第2の溶剤は、テルペン系の溶剤を含む、
    請求項5に記載のプラズマディスプレイパネルの製造方法。
    The dielectric paste comprises a dielectric glass and a solvent,
    The solvent includes a first solvent and a second solvent,
    The first solvent has neither a double bond nor a hydroxyl group,
    The second solvent includes a terpene solvent.
    The manufacturing method of the plasma display panel of Claim 5.
  7. 前記第1の溶剤は、前記誘電体ペーストの全溶剤量に対して40重量%以上99重量%以下の含有量であり、
    前記第2の溶剤は、前記誘電体ペーストの全溶剤量に対して1重量%以上5重量%以下の含有量である、
    請求項6に記載のプラズマディスプレイパネルの製造方法。
    The first solvent has a content of 40 wt% or more and 99 wt% or less with respect to the total amount of the solvent of the dielectric paste,
    The second solvent has a content of 1 wt% or more and 5 wt% or less with respect to the total amount of the solvent of the dielectric paste.
    The manufacturing method of the plasma display panel of Claim 6.
  8. 前記第1の溶剤は、ジヒドロターピニルアセテートであり、
    前記第2の溶剤は、ターピネオール、ターピニルアセテート、ジヒドロターピネオールから選択される少なくとも1種を含む、
    請求項7に記載のプラズマディスプレイパネルの製造方法。
    The first solvent is dihydroterpinyl acetate;
    The second solvent includes at least one selected from terpineol, terpinyl acetate, and dihydroterpineol.
    The manufacturing method of the plasma display panel of Claim 7.
PCT/JP2011/004310 2010-08-04 2011-07-29 Electrode paste for plasma display panel, and method for producing plasma display panel WO2012017632A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2010175015 2010-08-04
JP2010-175015 2010-08-04
JP2010287287 2010-12-24
JP2010-287287 2010-12-24
JP2011044646 2011-03-02
JP2011-044646 2011-03-02

Publications (1)

Publication Number Publication Date
WO2012017632A1 true WO2012017632A1 (en) 2012-02-09

Family

ID=45559154

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/004310 WO2012017632A1 (en) 2010-08-04 2011-07-29 Electrode paste for plasma display panel, and method for producing plasma display panel

Country Status (1)

Country Link
WO (1) WO2012017632A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS608372A (en) * 1983-06-29 1985-01-17 Mitsui Toatsu Chem Inc Paste for forming conductive material
JPH06251618A (en) * 1993-02-23 1994-09-09 Ngk Insulators Ltd Metallized paste for concurrent baking
JP2003016928A (en) * 2001-07-05 2003-01-17 Matsushita Electric Ind Co Ltd Plasma display panel and its manufacturing method
JP2003059336A (en) * 2001-08-09 2003-02-28 Sumitomo Rubber Ind Ltd Conductive paste and forming method for conductive pattern using it
JP2008050594A (en) * 2006-07-26 2008-03-06 Sekisui Chem Co Ltd Binder resin composition
WO2008149748A1 (en) * 2007-05-30 2008-12-11 Hitachi Chemical Company, Ltd. Composition containing inorganic particle, method for formation of inorganic layer, and plasma display panel
JP2009013354A (en) * 2007-07-06 2009-01-22 Tokyo Ohka Kogyo Co Ltd Paste composition and plasma display
JP2010009778A (en) * 2008-06-24 2010-01-14 Taiyo Ink Mfg Ltd Photosensitive conductive paste and manufacturing method of electrode pattern using this

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS608372A (en) * 1983-06-29 1985-01-17 Mitsui Toatsu Chem Inc Paste for forming conductive material
JPH06251618A (en) * 1993-02-23 1994-09-09 Ngk Insulators Ltd Metallized paste for concurrent baking
JP2003016928A (en) * 2001-07-05 2003-01-17 Matsushita Electric Ind Co Ltd Plasma display panel and its manufacturing method
JP2003059336A (en) * 2001-08-09 2003-02-28 Sumitomo Rubber Ind Ltd Conductive paste and forming method for conductive pattern using it
JP2008050594A (en) * 2006-07-26 2008-03-06 Sekisui Chem Co Ltd Binder resin composition
WO2008149748A1 (en) * 2007-05-30 2008-12-11 Hitachi Chemical Company, Ltd. Composition containing inorganic particle, method for formation of inorganic layer, and plasma display panel
JP2009013354A (en) * 2007-07-06 2009-01-22 Tokyo Ohka Kogyo Co Ltd Paste composition and plasma display
JP2010009778A (en) * 2008-06-24 2010-01-14 Taiyo Ink Mfg Ltd Photosensitive conductive paste and manufacturing method of electrode pattern using this

Similar Documents

Publication Publication Date Title
WO2007040120A1 (en) Plasma display panel
WO2007040178A1 (en) Plasma display panel
JP2007012620A (en) Paste composition
EP1990821A1 (en) Plasma display panel
JP2007128859A (en) Plasma display panel
JP4411940B2 (en) Inorganic material paste, plasma display member and plasma display
WO2012017632A1 (en) Electrode paste for plasma display panel, and method for producing plasma display panel
JP5245223B2 (en) Plasma display panel
WO2012120776A1 (en) Plasma display panel and method of manufacturing same
JP4942711B2 (en) Methods and materials for fabricating bus electrodes for plasma display panels
JP4663776B2 (en) Plasma display panel and manufacturing method thereof
KR101024480B1 (en) Plasma display panel, method for manufacturing the plasma display panel, and paste for display electrode for the plasma display panel
JP2002367518A (en) Plasma display panel and its electrode
JP2010218942A (en) Manufacturing method of plasma display panel
JP2007234282A (en) Plasma display panel and method for fabrication thereof
WO2012017630A1 (en) Plasma display panel and manufacturing method therefor
WO2013080504A1 (en) Plasma display panel and method of manufacturing same
WO2013021590A1 (en) Dielectric paste and plasma display panel
JP2011249200A (en) Method of manufacturing plasma display panel
JP2013131361A (en) Plasma display panel
JP2013131362A (en) Plasma display panel
JP2013125726A (en) Plasma display panel
JP2013115025A (en) Plasma display panel, and method of manufacturing the same
JP2009283162A (en) Plasma display panel, method of manufacturing the same, and dielectric paste
JP2013080580A (en) Dielectric paste for plasma display panel, and plasma display panel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11814269

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11814269

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP