WO2012016820A2 - Hausgerät zum trocknen von wäschestücken und verfahren zum bestimmen einer mit einem trocknungsgrad der wäschestücke korrelierten messgrösse - Google Patents

Hausgerät zum trocknen von wäschestücken und verfahren zum bestimmen einer mit einem trocknungsgrad der wäschestücke korrelierten messgrösse Download PDF

Info

Publication number
WO2012016820A2
WO2012016820A2 PCT/EP2011/062346 EP2011062346W WO2012016820A2 WO 2012016820 A2 WO2012016820 A2 WO 2012016820A2 EP 2011062346 W EP2011062346 W EP 2011062346W WO 2012016820 A2 WO2012016820 A2 WO 2012016820A2
Authority
WO
WIPO (PCT)
Prior art keywords
laundry
potential
measuring
voltage
domestic appliance
Prior art date
Application number
PCT/EP2011/062346
Other languages
English (en)
French (fr)
Other versions
WO2012016820A3 (de
Inventor
Christian HÖNLE
Horst Valder
Károly ZARUBA
Original Assignee
BSH Bosch und Siemens Hausgeräte GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BSH Bosch und Siemens Hausgeräte GmbH filed Critical BSH Bosch und Siemens Hausgeräte GmbH
Priority to PL11733864T priority Critical patent/PL2601339T3/pl
Priority to CN201180038226.5A priority patent/CN103052745B/zh
Priority to EP11733864.0A priority patent/EP2601339B1/de
Priority to EA201390104A priority patent/EA023640B1/ru
Publication of WO2012016820A2 publication Critical patent/WO2012016820A2/de
Publication of WO2012016820A3 publication Critical patent/WO2012016820A3/de

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F34/00Details of control systems for washing machines, washer-dryers or laundry dryers
    • D06F34/14Arrangements for detecting or measuring specific parameters
    • D06F34/18Condition of the laundry, e.g. nature or weight
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2103/00Parameters monitored or detected for the control of domestic laundry washing machines, washer-dryers or laundry dryers
    • D06F2103/02Characteristics of laundry or load
    • D06F2103/08Humidity
    • D06F2103/10Humidity expressed as capacitance or resistance
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2103/00Parameters monitored or detected for the control of domestic laundry washing machines, washer-dryers or laundry dryers
    • D06F2103/44Current or voltage
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F34/00Details of control systems for washing machines, washer-dryers or laundry dryers
    • D06F34/08Control circuits or arrangements thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F58/00Domestic laundry dryers
    • D06F58/32Control of operations performed in domestic laundry dryers 
    • D06F58/34Control of operations performed in domestic laundry dryers  characterised by the purpose or target of the control
    • D06F58/36Control of operational steps, e.g. for optimisation or improvement of operational steps depending on the condition of the laundry
    • D06F58/38Control of operational steps, e.g. for optimisation or improvement of operational steps depending on the condition of the laundry of drying, e.g. to achieve the target humidity

Definitions

  • the invention relates to a household appliance for drying laundry items.
  • the household appliance comprises a measuring device for determining a measured variable correlated with a degree of drying of the laundry items.
  • the measuring device comprises two measuring electrodes arranged at a distance from each other, which are arranged in the domestic appliance in such a way that they touch the items to be dried during operation of the domestic appliance.
  • the measuring device also comprises a circuit arrangement coupled to the measuring electrodes. The circuit arrangement can bring about a current flow through the measuring electrodes, detect an electrical washing voltage dropping between the measuring electrodes and determine the measured variable as a function of the detected washing voltage.
  • the invention also relates to a method for determining a measured variable correlated with a degree of drying of items of laundry with the aid of a measuring device in a domestic appliance in which the items of laundry are dried.
  • the conductance of the laundry items can be determined, for example, with the aid of a direct current, which flows through the laundry items due to a DC voltage applied to the electrodes. It is disadvantageous that the electrical direct current can force chemical reactions, and galvanic effects can occur. Due to the galvanic effects creates a polarization voltage, which of the Degree of drying of the laundry depends. This polarization voltage generally falsifies the measured value of the Wderstands of the laundry items. A remedy here creates a method as described in EP 0 942 094 B1. The polarization voltage between the measuring electrodes and the laundry items is determined there, and this polarization voltage is taken into account in the determination of the electrical conductance of the laundry items. The polarization voltage is subtracted from the laundry voltage.
  • An inventive household appliance is designed for drying laundry items. It comprises a measuring device which serves for determining a measured variable correlated with a degree of drying of the laundry items.
  • the measuring device comprises two measuring electrodes arranged at a distance from one another. The measuring electrodes can touch the items to be dried during operation of the household appliance.
  • the measuring device also comprises an electronic circuit arrangement, which is coupled to the measuring electrodes.
  • the circuit arrangement is designed to cause a current flow through the measuring electrodes, to detect an electric laundry voltage dropping between the measuring electrodes and to determine the measured variable as a function of the detected laundry voltage.
  • the circuit arrangement is designed such that in Operation of the domestic appliance a direction of the current flow through the measuring electrodes repeatedly - in particular periodically - is changed.
  • an effect is thus achieved in that, unlike in the prior art, an alternating current is conducted through the measuring electrodes rather than a direct current.
  • the current direction is namely repeatedly changed.
  • the direction of the current flow is namely prevented that a polarization voltage between the laundry and the measuring electrodes is formed.
  • the polarization voltage does not have to be determined, and the measured variable no longer needs to be corrected.
  • the current value of the measured variable can be determined.
  • a measured variable is determined, which is correlated with the degree of drying of the laundry.
  • the degree of drying itself-for example a percentage-and / or a conductance of the items of laundry and / or an ohmic resistance of the items of laundry can be determined as the measured variable.
  • Changing the direction of current flow through the measuring electrodes can be done in different ways. For example, this can be done in such a way: an electrical potential is alternately applied to one of the measuring electrodes and a different electrical potential is applied to the respective other measuring electrode. This means that at a certain time at one of the electrodes is a lower potential, while at the other measuring electrode is a higher potential. These potentials can be repeatedly exchanged with each other, whereby the applied voltage across the electrodes is repeatedly reversed polarity. In this way, a rectangular, periodically alternating electrical voltage between the measuring electrodes can be applied with minimal technical effort and a rectangular, periodically alternating current can be generated. By such Approach is also prevented that forms a polarization voltage between the measuring electrodes and the laundry. In this embodiment, namely, the measured variable is measured bipolar and electrically symmetrical, because the voltage applied to the measuring electrodes electrical potentials are repeatedly exchanged or reversed.
  • the direction of current flow through the measuring electrodes can be changed periodically.
  • the circuit arrangement can be designed such that the direction of the current flow is changed at a frequency which lies in a value range from 300 Hz to 500 Hz. This frequency can be for example 400 Hz.
  • the pulse length of the voltage pulses or the current pulses is relatively short, so that the effect of electroplating on the measuring electrodes is reduced to a minimum. It is thus also possible to conduct the conductance measurement relatively quickly, namely in the millisecond range.
  • the measured variable is determined, in particular, as a function of the electrical washing voltage, which drops in the case of a flow of electrical current through the laundry between the two measuring electrodes.
  • the laundry voltage is therefore detected in this embodiment for both directions of the current flow, and the measured variable is determined as a function of two values of the laundry voltage. In this way, the measured variable can be determined even more accurately. In this way, it is possible to reduce the influence of possibly occurring galvanic effects on the determination of the measured value to zero as a whole.
  • the laundry voltage for both directions of the current flow should be equal in magnitude.
  • the circuit arrangement has a voltage divider, which comprises an Ohmic laundry resistance of the items of laundry coupled to the measuring electrodes.
  • the current flow is effected by this voltage divider.
  • the voltage divider may have a first ohmic resistance and a second ohmic resistance.
  • a first of the measuring electrodes can alternately be coupled to a first electrical potential and to a second electrical potential different from the first potential.
  • the second measuring electrode can be alternately coupled to the first and the second electrical potential via the second resistance, in push-pull relation to the first measuring electrode. This means that the second measuring electrode is coupled to the respective other electrical potential than the first measuring electrode.
  • the first measuring electrode can be coupled to the first electrical potential while the second measuring electrode is coupled to the second potential.
  • the first measuring electrode can be coupled to the second potential and the second measuring electrode to the first potential.
  • the ohmic Wderstand of the laundry is connected in series with the first and the second Wderstand, and at this series circuit drops an electrical voltage which is equal to a difference between the first and the second potential.
  • this series circuit drops an electrical voltage which is equal to a difference between the first and the second potential.
  • the first electrical potential is preferably a positive potential.
  • the first potential may be, for example, in a value range of 3 V to 7 V; For example, it can be 5V.
  • the second electrical potential is preferably one with respect to the first Potential lower, positive potential or a reference potential (ground), in particular a potential of 0 V.
  • a positive potential is required for the generation of a rectangular alternating voltage; the circuit arrangement does not have a negative potential - namely a negative potential with respect to the reference potential. It thus eliminates the generation of a negative potential with the associated disadvantages, namely additional components and the associated effort.
  • the circuit arrangement can also have a second voltage divider different from the first voltage divider.
  • the second voltage divider may have a total resistance that is greater in magnitude than the first voltage divider.
  • the circuit arrangement can be designed such that after reaching a predetermined value by the measured variable, the current bypassing the first voltage divider - namely bypassing the Wderlor the first voltage divider - is passed through the second voltage divider.
  • the second voltage divider may include the laundry resistance of the laundry items.
  • the laundry resistance - the current passed through the opposite of the first voltage divider high-impedance second voltage divider, so reduces the tapped at the measuring electrodes partial voltage (laundry voltage).
  • the amplitude of the laundry voltage remains in a certain range of values, and it can be a microcontroller used to evaluate the laundry voltage, which can measure the laundry voltage in a limited range of values.
  • This embodiment also has the advantage that the washing voltage dropping between the measuring electrodes can be measured with an improved resolution and thus with highest accuracy.
  • the second voltage divider can likewise have two ohmic resistances, namely a first heat resistance and a second resistance. After reaching the predetermined value by the measured variable can then be the first measuring electrode on the first resistor of the second voltage divider are alternately coupled to the first potential and the second potential, while the second measuring electrode - in push-pull to the first measuring electrode - can be coupled via the second resistor of the second voltage divider alternately with the first potential and the second potential.
  • the Wderoriented the second voltage divider are preferably greater in magnitude than the resistors of the first voltage divider.
  • the circuit arrangement comprises switching means which serve to change the direction of the current flow.
  • the switching means may, for example, be switched between a first switching state in which they couple the first measuring electrode to the first electrical potential and the second measuring electrode to the second electrical potential, and a second switching state in which they connect the first measuring electrode to the second potential and the first measuring electrode couple the second measuring electrode with the first potential.
  • the first switching state of the switching means the current flow is thus effected in one direction, while in the second switching state of the switching means, the current flows in the other direction.
  • the circuit arrangement may comprise a microcontroller, and the switching means may be integrated in the microcontroller. If the switching means are not integrated in the microcontroller, they must be provided as external switching means. Then, a standardized component - namely the microcontroller - can be used without additional, separate from the microcontroller components - namely, separate transistors and the like - must be used.
  • the circuit thus comes out with a total of a very small number of components and can be constructed correspondingly compact; In particular, thereby valuable space can be saved in the household appliance.
  • the switching means of a microcontroller of the circuit arrangement are separate switching means.
  • the switching means can here, for example Have electrical switch, namely in particular transistors. It is preferable to use bipolar transistors.
  • the switching means may include the following electrical switches:
  • a first switch via which the first measuring electrode can be coupled to the first electrical potential via the first resistor of the first voltage divider, and / or
  • a second switch via which the first measuring electrode via the first Wderstand of the first voltage divider to the second potential, in particular the reference potential, is coupled, and / or
  • a third switch via which the second measuring electrode can be coupled to the first potential via the second resistance of the first voltage divider, and / or
  • a fourth switch via which the second measuring electrode can be coupled to the second potential via the second resistance of the first voltage divider, and / or
  • a fifth switch via which the first measuring electrode can be coupled to the first potential via the first resistance of the second voltage divider, and / or
  • a sixth switch via which the first measuring electrode can be coupled to the second potential via the first resistance of the second voltage divider, and / or
  • a seventh switch via which the second measuring electrode can be coupled to the first potential via the second resistance of the second voltage divider, and / or
  • an eighth switch via which the second measuring electrode can be coupled to the second potential via the second resistance of the second voltage divider.
  • microcontroller is primarily the implementation of the measurement method according to the invention.
  • the microcontroller may optionally also carry out the control of further components of the household appliance and thus use the measured values itself; It is also conceivable that the microcontroller alone is used to operate the circuit arrangement and to carry out the measurement method and dissipates the measurement results obtained to a further microcontroller, which is responsible for controlling the actual drying process using the measurement results. This can be done in particular via corresponding digital interfaces.
  • the two measuring electrodes can be arranged for example in a laundry drum of the household appliance, which is designed to receive the laundry items.
  • one of the measuring electrodes can be formed by the laundry drum itself.
  • the two measuring electrodes are preferably separate from the laundry drum components.
  • the measuring electrodes are preferably attached to the laundry drum in such a way that they are electrically insulated from one another.
  • the laundry drum is electrically short-circuited in a domestic appliance with a protective conductor, that is to say an electrical conductor of a power network, which serves for safety.
  • the electrical coupling may result, for example, via a bearing on which the drum is rotatably mounted.
  • the laundry drum is electrically coupled to the protective conductor, it can be provided in one embodiment that the laundry drum of the domestic appliance is pre-stressed with an electrical potential, which lies in the amount between the first and the second potential.
  • a method which serves for determining a measured variable correlated with a degree of drying of items of laundry in a domestic appliance, namely with the aid of a measuring device through two to each other causes spaced arranged measuring electrodes. An electric laundry voltage dropping between the measuring electrodes is detected, and the measured variable is determined as a function of the detected laundry voltage. A direction of current flow through the measuring electrodes is changed repeatedly.
  • FIG. 1 shows a schematic and highly abstract representation of a domestic appliance according to a first embodiment
  • FIG. 2 in a schematic and highly abstract representation of a domestic appliance according to a second embodiment.
  • FIG. 1 domestic appliance 1 is a clothes dryer in the embodiment.
  • the domestic appliance 1 comprises a laundry drum 2, in which laundry items 3 are accommodated.
  • the laundry items 3 are dried in the household appliance 1.
  • the laundry drum 2 may be stored horizontally in the domestic appliance 1, for example, they can be rotated about a horizontal axis of rotation.
  • the laundry drum 2 may be electrically coupled to a protective conductor PE.
  • the laundry items 3 have an ohmic resistance, which is schematically symbolized in FIG. 1 by an element 4.
  • the laundry resistance 4 is therefore not a component of a circuit, but the electrical resistance of the laundry items 3.
  • Wet laundry items 3 have a low level of heat 4, and the relationship is that the drier the items of laundry 3 are, the greater the laundry resistance 4 is.
  • the laundry resistance 4 is inversely proportional to a conductance of the laundry items. 3
  • a measuring device 5 is provided in the domestic appliance 1, which has two measuring electrodes, namely a first measuring electrode 6, as well as a second measuring electrode 7.
  • the measuring electrodes 6, 7 are attached to the washing drum 2, namely such that they are electrically insulated from each other are.
  • the measuring electrodes 6, 7 are arranged at a distance from each other, for example at two opposite sides of the laundry drum 2.
  • the measuring electrodes 6, 7 may be arranged, for example, on a circumference of the laundry drum 2 along its diameter.
  • the measuring electrodes 6, 7 touch the laundry items 3 during operation of the domestic appliance 1, so that the laundry resistance 4 is coupled to the measuring electrodes 6, 7. It can be said that the laundry resistance 4 is electrically connected between the measuring electrodes 6, 7.
  • the measuring electrodes 6, 7 are electrically coupled to a circuit arrangement 8, which serves for determining the laundry resistance 4 and thus the degree of drying of the laundry items 3.
  • the circuit arrangement 8 includes a microcontroller 9 as a control device.
  • the circuit arrangement 8 also comprises a circuit node 10 to which a positive electrical potential Vi is provided.
  • the potential Vi may be 5 V, for example.
  • At the circuit node 10 thus results in a DC electrical voltage of 5 V, namely with respect to a reference potential 1 1 (ground).
  • the microcontroller 9 is used in the circuit arrangement 8, in the context of the present explanation primarily the implementation of the measuring method to be described below.
  • the microcontroller 9 can also carry out the control of the further components of the domestic appliance 1 and thus use the measured values themselves; It is likewise conceivable for the microcontroller 9 to be used solely for operating the circuit arrangement 8 and for carrying out the measurement method, and to transfer the obtained measurement results to a further microcontroller, not shown in the drawing, which controls the actual drying process using the measurement results. This can be done in particular via corresponding digital interfaces.
  • the circuit arrangement 8 comprises a first voltage divider 12, which has two ohmic resistances, namely a first heat resistance 13 and a second heat resistance 14. Via the first heat resistance 13, the first measuring electrode 6 is coupled to a node 15, at which the potential Vi and Reference potential 11 can be provided. On the other hand, the second measuring electrode 7 is coupled to a node 16 via the second Wderstand 14, where also the potential Vi and the reference potential 1 1 are alternately provided, namely in push-pull to the node 15th
  • the circuit arrangement 8 also comprises a second voltage divider 17, which likewise has two ohmic resistors: a first resistor 18 and a second resistor 19.
  • the first measuring electrode 6 is coupled to a node 20 via the first resistor 18 of the second voltage divider 17.
  • the potential Vi and the reference potential 11 may alternately be provided.
  • the second measuring electrode 7 is coupled via the second Wderstand 19 of the second voltage divider 17 to a node 21.
  • the potential Vi and the reference potential 11 can also be alternately provided, namely in a push-pull manner to the node 20.
  • the first voltage divider 12 thus results in a series connection of the Wderparticularlyn 13, 14 and the laundry resistance 4. Wrd now a between the measuring electrodes 6, 7 falling electric laundry voltage U w detected, so can the Laundry resistance 4 can be determined, and the degree of drying of the laundry items 3 can be determined.
  • the second voltage divider 17 is a series connection of the Wderparticularlyn 18, 19 and the laundry resistance. 4
  • the circuit arrangement 8 also includes switching means 22, by means of which the nodes 15, 16, 20 and 21 with the potential V ! or the reference potential 1 1 can be electrically connected.
  • the switching means 22 comprise a first NPN bipolar transistor 23, whose emitter is connected to the node 15 and whose collector is connected to the circuit node 10.
  • the base of the bipolar transistor 23 is coupled to the microcontroller 9.
  • a second N PN bipolar transistor 24 may couple the node 15 to the reference potential 1 1:
  • the collector of the second bipolar transistor 24 is connected to the node 15 while the emitter is connected to the reference potential 1 1.
  • the base is also coupled to the microcontroller 9.
  • the switching means 22 also comprise a third NPN bipolar transistor 25 whose collector is connected to the circuit node 10 and whose emitter is connected to the node 16.
  • the base of the third bipolar transistor 25 is also coupled to the microcontroller 9.
  • a fourth NPN bipolar transistor 26 may couple node 16 to reference potential 11; the emitter is connected to the reference potential 1 1, while the collector is connected to the node 16.
  • the switching means 22 also comprise a fifth NPN bipolar transistor 27, via which the node 20 can be coupled to the circuit node 10.
  • the emitter of the bipolar transistor 27 is connected to the node 20, and the collector is connected to the circuit node 10.
  • the base is coupled to the microcontroller 9.
  • the node 20 can be coupled to the reference potential 1 1 via a sixth NPN bipolar transistor 28.
  • the emitter of the bipolar transistor 28 is connected to the reference potential 1 1, while its collector is connected to the node 20.
  • the base is coupled to the microcontroller 9.
  • the node 21 can be electrically coupled to the circuit node 10.
  • the bipolar transistor 29 has its collector connected to the circuit node 10 and its emitter connected to the node 21. Its base is coupled to the microcontroller 9.
  • the node 21 can be coupled to the reference potential 11 via an eighth NPN bipolar transistor 30.
  • the collector of the bipolar transistor 30 is connected to the node 21, and the emitter is connected to the reference potential 1 1.
  • the bipolar transistors 23 to 30 are driven by the microcontroller 9.
  • the microcontroller 9 can detect the electrical voltage U w dropping off the items of laundry 3.
  • the first measuring electrode 6 is coupled via an ohmic measuring resistor 31 to a measuring input 32 of the microcontroller 9.
  • the second measuring electrode 7 is coupled via a further ohmic measuring resistor 33 to a second measuring input 34 of the microcontroller 9.
  • a lying between the measuring resistor 31 and the first measuring electrode 6 node 35 is coupled via a capacitor 36 to the reference potential 1 1.
  • a lying between the measuring resistor 31 and the first measuring input 32 node 37 is coupled via a capacitor 38 to the reference potential 1 1.
  • a lying between the second measuring electrode 7 and the measuring resistor 33 node 39 is coupled via a capacitor 40 to the reference potential 1 1; a lying between the measuring resistor 33 and the second measuring input 34 node 41 is coupled via a capacitor 42 to the reference potential 1 1.
  • the microcontroller 9 thus measures the voltages applied to the capacitors 38 and 42 and can thus close back to the laundry voltage U w . More specifically, the microcontroller 9 detects the voltage applied to the nodes 37 and 41 potentials whose difference is a measure of the laundry voltage U w . In dependence on the laundry voltage U w, in turn, the laundry resistance 4 and thus also the degree of drying of the laundry items 3 can be determined, for example with the aid of a stored table.
  • protective elements are provided in the circuit arrangement 8, namely in the form of NPN bipolar transistors 43 to 46.
  • the bipolar transistors 43 to 46 have the task of limiting the electrical potentials occurring at the measuring electrodes 6, 7.
  • the respective bases of the bipolar transistors 43 to 46 are electrically short-circuited to the respective emitter.
  • the collector of the bipolar transistor 43 is connected to the circuit node 10 at which the potential Vi is provided.
  • the emitter of this bipolar transistor 43 is connected to the node 35.
  • the node 35 is also connected to the collector of the bipolar transistor 44, and the emitter of this Bipolar transistor 44 is connected to the reference potential 1 1.
  • the node 39 is connected-symmetrically-to the emitter of the bipolar transistor 45 and to the collector of the bipolar transistor 46.
  • the collector of the bipolar transistor 45 is connected to the circuit node 10, while the emitter of the bipolar transistor 46 is connected to the reference potential 1 1.
  • the microcontroller 9 determines the laundry resistance 4 and thus the degree of drying of the laundry items 3 and thus can calculate the time required for the proper completion of the drying process , The drying process is thus completed when the laundry items 3 are dry.
  • the bipolar transistors 23 to 26 are controlled by the microcontroller 9 in such a way that the positive potential Vi and the reference potential 1 1 are alternately applied to the node 15, while at the node 16 the respective other potential Vi or 1 1 as the node 15 is applied.
  • This polarity reversal occurs, for example, at a frequency of 400 Hz. It therefore flows through the measuring electrodes 6, 7 and thus also through the laundry items 3, a direct current I whose direction is constantly changed. This change of direction occurs due to the periodic reversal of the potentials V ! and 1 1 at nodes 15 and 16. It can be said that the current I is a symmetrical, rectangular current.
  • the microcontroller 9 While the direction of the current flow I is constantly being changed by the measuring electrodes 6, 7, the microcontroller 9 detects the amplitude of the washing voltage U w , namely at the measuring inputs 32, 34. This amplitude of the washing voltage U w can vary slightly, depending on which Direction of the current I flows. This slight change in the amplitude can be attributed to possibly existing galvanic effects within the laundry drum 2. However, the microcontroller 9 detects the amplitude of the laundry voltage U w both for the one direction of the current flow I and for the other direction of the current flow I. These amplitudes, the microcontroller 9 mittein and an average of the amplitudes of the determination of the laundry resistance 4 basis. In this way it is achieved that possibly still existing polarization voltage has no influence whatsoever the accuracy of the determination of the laundry resistance has 4. By such a difference measurement, thus, the degree of drying of the laundry items 3 can be determined with the highest accuracy.
  • the second voltage divider 17 is high-impedance compared to the first voltage divider 12 and has a higher total resistance.
  • the total resistance of the first voltage divider 12 may be, for example, 100 k ⁇ , while the total resistance of the second voltage divider 17 may be 1.2 ⁇ . This means that the Wderions 13, 14 of the first voltage divider 12 may each have a Wderstandswert of 50 kQ, while the Wderions 18, 19 of the second voltage divider 17 may each have a resistance value of 600 kQ.
  • the laundry items 3 are getting drier, and it increases the laundry resistance 4. Also, the amplitude of the laundry voltage U w increases. If only the first voltage divider 12 were used for the entire drying process, then the microcontroller 9 would have to measure the amplitude of the laundry voltage Uw over a relatively large measuring range. To avoid this situation, starting at a certain value of the laundry voltage U w or the laundry resistance 4 is no longer the first voltage divider 12, but instead the second voltage divider 17 is used. If the amplitude of the laundry voltage U w thus reaches the predetermined value, then the bipolar transistors 23 to 26 are no longer actuated, but instead the bipolar transistors 27 to 30. The bipolar transistors 27 to 30 are actuated analogously.
  • the node 20 is alternately - with the mentioned Frequency - with the potential V ! and the reference potential 1 1 applied, and the node 21 with the other potential V ! or 1 1.
  • the measuring electrodes 6, 7 are connected to the high-impedance Wdernotn 18, 19 of the second voltage divider 17, so that also reduces the falling between the measuring electrodes 6, 7 partial voltage.
  • the microcontroller 9 can thus measure the laundry voltage U w with a better resolution, and the measuring range of the microcontroller 9 can be passed through virtually twice.
  • the laundry resistance 4 is thus measured bipolar and symmetrical.
  • the circuit arrangement 8 is namely constructed electrically symmetrical, so that galvanic effects are avoided within the laundry drum 2.
  • the laundry drum 2 is usually electrically coupled to the protective conductor PE, namely, for example, via a bearing.
  • the laundry drum 2 and the PE protective conductor electrically biased, namely with respect to the reference potential 1 1.
  • the laundry drum 2 with a potential be applied, which is in amount by half less than the potential Vi.
  • a voltage divider 47 may be provided, which taps off the potential Vi at the circuit node 10 and divides it by means of heat resistors 48, 49.
  • the laundry drum 2 or the protective conductor PE can be coupled via a Wderstand 50 with a lying between the resistors 48, 49 nodes 51.
  • the resistors 48, 49 and 50 may each have a resistance of 10 k ⁇ .
  • the components of the circuit arrangement 8 can be dimensioned, for example, as follows:
  • Capacitors 36, 40 each 10 pF (can also be omitted),
  • Capacitors 38, 42 each 100 pF
  • Residues 31, 33 in each case 4.7 kQ.
  • the circuit arrangement 8 here includes a microcontroller 9 'in which switching means (22 in FIG. 1) are integrated.
  • the first terminal 52 is coupled via the first resistor 13 of the first voltage divider 12 to the first measuring electrode 6, while the second terminal 53 is coupled via the second Wderstand 14 of the first voltage divider 12 to the second measuring electrode 7. Accordingly, the third terminal 54 is coupled via the first Wderstand 18 of the second voltage divider 17 to the first measuring electrode 6, while the fourth terminal 55 is coupled via the second Wderstand 19 of the second voltage divider 17 to the second measuring electrode 7.
  • the microcontroller 9 ' is also connected to the circuit node 10 (potential Vi).
  • capacitors 38 and 42 now take over the capacitors 38a and 38b and 42a and 42b respectively. These are connected between the respective terminals 52, 54, 53, 55 and the reference potential 1 1.
  • the microcontroller 9 ' is also used in the circuit arrangement 8, in the context of the present explanation, primarily to carry out the measuring method to be described below. With regard to the further use of the measurement results thus obtained in a method for drying the items of laundry 3, the microcontroller 9 'can additionally carry out the control of the other components of the domestic appliance 1 and thus use the measured values themselves; It is also conceivable that the microcontroller 9 'alone serves to operate the circuit arrangement 8 and to carry out the measuring method and dissipates the measurement results obtained to a further microcontroller, not shown in the drawing, which controls the actual drying process using the measurement results. This can be done in particular via corresponding digital interfaces.
  • the microcontroller 9 'at the first connection 52 alternately provides the potential Vi and the reference potential 1 1.
  • the respective other potential is provided at the second connection 53 than at the first connection 52.
  • the third and the fourth connection 54, 55 serve as measuring inputs (compare 32, 34 in FIG. About the terminals 54, 55 so the laundry voltage U w is measured.
  • the laundry voltage U w reaches the predetermined value or the laundry resistance 4 increases, the potentials V ! or 1 1 is no longer provided at the terminals 52, 53, but at the terminals 54, 55.
  • the terminals 52, 53 are used as measuring inputs, at which the laundry voltage U w is measured.
  • the laundry resistance 4 is thus measured bipolar and symmetrical.
  • Four connections 52 to 55 are provided at the microcontroller 9 'which, depending on the measuring range of the laundry voltage U w, are used in pairs as inputs or outputs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Control Of Washing Machine And Dryer (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Detail Structures Of Washing Machines And Dryers (AREA)

Abstract

In einem Hausgerät 1 zum Trocknen von Wäschestücken 3 soll der jeweils augenblickliche Trocknungsgrad der Wäschestücke 3 besonders zuverlässig ermittelt werden. Im Hausgerät 1 ist eine Messeinrichtung 5 bereitgestellt, welche zum Bestimmen einer mit dem Trocknungsgrad der Wäschestücke 3 korrelierten Messgröße 4, Uw, dient. Die Messeinrichtung 5 umfasst zwei zueinander beabstandet angeordnete Messelektroden 6, 7 und eine mit den Messelektroden 6, 7 gekoppelte Schaltungsanordnung 8, die einen Stromfluss I durch die Messelektroden 6, 7 bewirkt, eine zwischen den Messelektroden 6, 7 abfallende elektrische Wäschespannung Uw erfasst und in Abhängigkeit von dieser die Messgröße 4, Uw ermittelt. Es wird eine Richtung des Stromflusses I durch die Messelektroden 6, 7 wiederholt gewechselt. Somit werden galvanische Effekte an den Messelektroden 6, 7 vermieden.

Description

Hausgerät zum Trocknen von Wäschestücken und Verfahren zum Bestimmen einer mit einem Trocknungsgrad der Wäschestücke korrelierten Messgröße
Die Erfindung betrifft ein Hausgerät zum Trocknen von Wäschestücken. Das Hausgerät umfasst eine Messeinrichtung zum Bestimmen einer mit einem Trocknungsgrad der Wäschestücke korrelierten Messgröße. Die Messeinrichtung umfasst zwei zueinander beabstandet angeordnete Messelektroden, welche in dem Hausgerät derart angeordnet sind, dass sie im Betrieb des Hausgeräts die zu trocknenden Wäschestücke berühren. Die Messeinrichtung umfasst auch eine mit den Messelektroden gekoppelte Schaltungsanordnung. Die Schaltungsanordnung kann einen Stromfluss durch die Messelektroden bewirken, eine zwischen den Messelektroden abfallende elektrische Wäschespannung erfassen und in Abhängigkeit von der erfassten Wäschespannung die Messgröße ermitteln. Die Erfindung bezieht sich auch auf ein Verfahren zum Bestimmen einer mit einem Trocknungsgrad von Wäschestücken korrelierten Messgröße mit Hilfe einer Messeinrichtung in einem Hausgerät, in welchem die Wäschestücke getrocknet werden.
Es ist Stand der Technik, den Trocknungsgrad von Wäschestücken in einem Wäschetrockner oder einem Waschtrockner zu ermitteln. Auf diese Weise kann der Trocknungsprozess dann abgeschlossen werden, wenn die Wäschestücke entsprechend einer Vorgabe trocken sind. Vorliegend richtet sich das Interesse insbesondere auf die Messung eines Leitwerts bzw. eines Ohmschen Wderstands der Wäschestücke. Anhand des Leitwerts kann dann auf den Trocknungsgrad der Wäschestücke zurückgeschlossen werden; der Leitwert ist ein Maß für den Trocknungsgrad. Es gilt die Beziehung, dass, je geringer der Leitwert bzw. je größer der Widerstand der Wäschestücke ist, desto trockener die Wäschestücke sind.
Der Leitwert der Wäschestücke kann beispielsweise mit Hilfe eines Gleichstroms ermittelt werden, welcher aufgrund einer an den Elektroden anliegenden Gleichspannung durch die Wäschestücke fließt. Es ist dabei nachteilig, dass der elektrische Gleichstrom chemische Reaktionen erzwingen kann, und es können galvanische Effekte auftreten. Aufgrund der galvanischen Effekte entsteht eine Polarisationsspannung, welche von dem Trocknungsgrad der Wäschestücke abhängt. Diese Polarisationsspannung verfälscht im Allgemeinen den gemessenen Wert des Wderstands der Wäschestücke. Eine Abhilfe schafft hier ein Verfahren, wie es in der Druckschrift EP 0 942 094 B1 beschrieben ist. Es wird dort die Polarisationsspannung zwischen den Messelektroden und den Wäschestücken bestimmt, und diese Polarisationsspannung wird bei der Bestimmung des elektrischen Leitwerts der Wäschestücke berücksichtigt. Die Polarisationsspannung wird von der Wäschespannung subtrahiert. An diesem Stand der Technik wiederum ist der Umstand als nachteilig anzusehen, dass zwischen der Bestimmung des Leitwerts und der Bestimmung der Polarisationsspannung eine Totzeit verstreichen muss, während welcher der Stromfluss durch die Wäschestücke unterbrochen oder zumindest stark verringert wird. Diese Totzeit kann bis zu 10 Sekunden betragen. Eine rasche Bestimmung des Trocknungsgrads der Wäschestücke bzw. die Bestimmung des jeweils augenblicklichen Trocknungsgrades ist somit nicht möglich.
Es ist Aufgabe der vorliegenden Erfindung, einen Weg aufzuzeigen, wie bei einem Hausgerät der eingangs genannten Gattung der jeweils augenblickliche Trocknungsgrad der Wäschestücke ermittelt werden kann, ohne dass das Ergebnis durch eine Polarisationsspannung verfälscht wird.
Diese Aufgabe wird erfindungsgemäß durch ein Hausgerät sowie durch ein Verfahren gelöst, jeweils mit den Merkmalen des entsprechenden unabhängigen Patentanspruchs. Vorteilhafte Ausführungen der Erfindung sind Gegenstände der abhängigen Patentansprüche und der nachfolgenden Beschreibung.
Ein erfindungsgemäßes Hausgerät ist zum Trocknen von Wäschestücken ausgebildet. Es umfasst eine Messeinrichtung, welche zum Bestimmen einer mit einem Trocknungsgrad der Wäschestücke korrelierten Messgröße dient. Die Messeinrichtung umfasst zwei zueinander beabstandet angeordnete Messelektroden. Die Messelektroden können im Betrieb des Hausgeräts die zu trocknenden Wäschestücke berühren. Die Messeinrichtung umfasst auch eine elektronische Schaltungsanordnung, die mit den Messelektroden gekoppelt ist. Die Schaltungsanordnung ist dazu ausgebildet, einen Stromfluss durch die Messelektroden zu bewirken, eine zwischen den Messelektroden abfallende elektrische Wäschespannung zu erfassen und in Abhängigkeit von der erfassten Wäschespannung die Messgröße zu ermitteln. Die Schaltungsanordnung ist derart ausgebildet, dass im Betrieb des Hausgeräts eine Richtung des Stromflusses durch die Messelektroden wiederholt - insbesondere periodisch - gewechselt wird.
Erfindungsgemäß wird ein Effekt somit dadurch erzielt, dass durch die Messelektroden anders als im Stand der Technik quasi ein Wechselstrom geleitet wird, und nicht etwa ein Gleichstrom. Die Stromrichtung wird nämlich wiederholt gewechselt. Auf diesem Wege gelingt es, die Messgröße mit einer hohen Genauigkeit zu bestimmen, ohne dass die Messung der Messgröße durch galvanische Effekte verfälscht wird. Durch das Wechseln der Richtung des Stromflusses wird nämlich verhindert, dass eine Polarisationsspannung zwischen den Wäschestücken und den Messelektroden entsteht. Anders als im Gegenstand gemäß Druckschrift EP 0 942 094 B1 muss somit die Polarisationsspannung nicht ermittelt werden, und die Messgröße braucht nicht mehr korrigiert zu werden. Gegenüber diesem Stand der Technik muss vorliegend nicht darauf gewartet werden, bis eine Totzeit abgelaufen ist, und die Messgröße kann rasch ermittelt werden. Es kann somit der jeweils augenblickliche Wert der Messgröße bestimmt werden.
Also wird mit Hilfe der Messeinrichtung eine Messgröße ermittelt, die mit dem Trocknungsgrad der Wäschestücke korreliert ist. Als Messgröße kann beispielsweise der Trocknungsgrad selbst - etwa ein Prozentsatz - und/oder ein Leitwert der Wäschestücke und/oder ein Ohmscher Widerstand der Wäschestücke bestimmt werden. Ergänzend oder alternativ kann aber auch die an den Wäschestücken abfallende Wäschespannung als Messgröße betrachtet werden.
Das Wechseln der Richtung des Stromflusses durch die Messelektroden kann auf unterschiedliche Art und Weise erfolgen. Zum Beispiel kann dies derart erfolgen: Es wird abwechselnd an einer der Messelektroden ein elektrisches Potential und an der jeweils anderen Messelektrode ein davon unterschiedliches elektrisches Potential angelegt. Dies bedeutet, dass zu einem bestimmten Zeitpunkt an einer der Elektroden ein geringeres Potential liegt, während an der anderen Messelektrode ein höheres Potential liegt. Diese Potentiale können wiederholt gegeneinander ausgetauscht werden, wodurch die über den Elektroden anliegende Spannung entsprechend wiederholt umgepolt wird. Auf diese Weise kann mit geringstem technischen Aufwand eine rechteckförmige, periodisch wechselnde elektrische Spannung zwischen den Messelektroden angelegt und ein rechteckförmiger, periodisch wechselnder Strom erzeugt werden. Durch eine solche Vorgehensweise wird außerdem verhindert, dass sich eine Polarisationsspannung zwischen den Messelektroden und den Wäschestücken bildet. Bei dieser Ausführungsform wird nämlich die Messgröße bipolar und elektrisch symmetrisch gemessen, weil die an den Messelektroden anliegenden elektrischen Potentiale wiederholt umgetauscht bzw. umgepolt werden.
We bereits ausgeführt, kann die Richtung des Stromflusses durch die Messelektroden periodisch gewechselt werden. Beispielsweise kann die Schaltungsanordnung derart ausgebildet sein, dass die Richtung des Stromflusses mit einer Frequenz gewechselt wird, welche in einem Wertebereich von 300 Hz bis 500 Hz liegt. Diese Frequenz kann beispielsweise 400 Hz betragen. Somit ist die Pulslänge der Spannungsimpulse bzw. der Stromimpulse relativ kurz, sodass der Effekt der Galvanisierung an den Messelektroden auf ein Minimum reduziert wird. Es kann somit außerdem die Leitwertmessung relativ schnell - nämlich im Millisekunden-Bereich - durchgeführt werden. In der Schaltungsanordnung wird die Messgröße insbesondere in Abhängigkeit von der elektrischen Wäschespannung ermittelt, welche bei einem Fluss von elektrischem Strom durch die Wäsche zwischen den beiden Messelektroden abfällt. In einer Ausführungsform ist vorgesehen, dass für die Bestimmung der Messgröße zwei verschiedene Werte der Wäschespannung herangezogen werden: einerseits der Wert der Wäschespannung, der sich für die eine Richtung des Stromflusses einstellt, und andererseits der Wert der Wäschespannung, der sich für die andere Richtung des Stromflusses einstellt. Die Wäschespannung wird bei dieser Ausführungsform also für beide Richtungen des Stromflusses erfasst, und die Messgröße wird in Abhängigkeit von zwei Werten der Wäschespannung ermittelt. Auf diese Weise kann die Messgröße noch genauer ermittelt werden. Auf diesem Weg gelingt es nämlich, den Einfluss von gegebenenfalls noch auftretenden galvanischen Effekten auf die Bestimmung der Messgröße insgesamt auf Null zu reduzieren. Idealerweise soll die Wäschespannung für beide Richtungen des Stromflusses betragsmäßig gleich sein. Wrd nun eine Differenz zwischen der Wäschespannung, die sich für die eine Richtung des Stromflusses einstellt, und der Wäschespannung, die sich für die andere Richtung des Stromflusses einstellt, festgestellt, so ist dies ein Zeichen dafür, dass sich zwischen den Messelektroden durch galvanische Effekte parasitäre Elemente - wie parasitäre Spannungsquellen - gebildet haben. Für die Bestimmung der Messgröße kann somit ein Mittelwert aus dem Wert der Wäschespannung, der sich für die eine Richtung des Stromflusses einstellt, und dem Wert der Wäschespannung herangezogen werden, der sich für die andere Richtung des Stromflusses einstellt. Somit kann die Messgröße höchstgenau ermittelt werden.
In einer Ausführungsform weist die Schaltungsanordnung einen Spannungsteiler auf, welcher einen an die Messelektroden gekoppelten Ohmschen Wäschewiderstand der Wäschestücke umfasst. Bei dieser Ausführungsform wird der Stromfluss durch diesen Spannungsteiler bewirkt. Durch Einsatz eines Spannungsteilers kann die an den Wäschestücken abfallende Wäschespannung mit geringstem Aufwand und mit größter Präzision erfasst werden.
Der Spannungsteiler kann einen ersten Ohmschen Widerstand und einen zweiten Ohmschen Wderstand aufweisen. Über den ersten Widerstand kann eine erste der Messelektroden abwechselnd mit einem ersten elektrischen Potential und einem vom ersten Potential unterschiedlichen zweiten elektrischen Potential gekoppelt werden. Über den zweiten Wderstand hingegen kann - im Gegentakt zur ersten Messelektrode - die zweite Messelektrode abwechselnd mit dem ersten und dem zweiten elektrischen Potential gekoppelt werden. Dies bedeutet, dass die zweite Messelektrode mit dem jeweils anderen elektrischen Potential als die erste Messelektrode gekoppelt wird. Zu einem bestimmten Zeitpunkt kann somit die erste Messelektrode mit dem ersten elektrischen Potential gekoppelt sein, während die zweite Messelektrode mit dem zweiten Potential gekoppelt ist. Zu einem nachfolgenden Zeitpunkt kann hingegen die erste Messelektrode mit dem zweiten Potential und die zweite Messelektrode mit dem ersten Potential gekoppelt werden. Bei dieser Ausführungsform ist also der Ohmsche Wderstand der Wäschestücke in Reihe zu dem ersten und dem zweiten Wderstand geschaltet, und an dieser Reihenschaltung fällt eine elektrische Spannung ab, die gleich einer Differenz zwischen dem ersten und dem zweiten Potential ist. Auf diesem Weg gelingt es, einen symmetrischen Stromfluss durch die Messelektroden zu bewirken, dessen Stromstärke gleich für die beiden Richtungen des Stromflusses ist. Gerade dadurch können die galvanischen Effekte verhindert werden.
Das erste elektrische Potential ist bevorzugt ein positives Potential. Das erste Potential kann beispielsweise in einem Wertebereich von 3 V bis 7 V liegen; es kann beispielsweise 5 V betragen. Das zweite elektrische Potential ist bevorzugt ein gegenüber dem ersten Potential geringeres, positives Potential oder ein Bezugspotential (Masse), insbesondere ein Potential von 0 V. Für die Erzeugung einer rechteckförmigen Wechselspannung ist somit lediglich ein positives Potential erforderlich; die Schaltungsanordnung kommt ohne ein negatives Potential aus - nämlich ein negatives Potential bezüglich des Bezugspotentials. Es entfällt somit die Erzeugung eines negativen Potentials mit den damit verbundenen Nachteilen, nämlich zusätzlichen Bauelementen und dem damit verbundenen Aufwand.
Die Schaltungsanordnung kann auch einen vom ersten Spannungsteiler verschiedenen zweiten Spannungsteiler aufweisen. Der zweite Spannungsteiler kann einen gegenüber dem ersten Spannungsteiler betragsmäßig größeren Gesamtwiderstand aufweisen. Die Schaltungsanordnung kann derart ausgebildet sein, dass nach Erreichen eines vorbestimmten Wertes durch die Messgröße der Strom unter Umgehung des ersten Spannungsteilers - nämlich unter Umgehung der Wderstände des ersten Spannungsteilers - durch den zweiten Spannungsteiler geleitet wird. Auch der zweite Spannungsteiler kann den Wäschewiderstand der Wäschestücke umfassen. Durch eine solche Vorgehensweise kann insgesamt ein größerer Messbereich der Messgröße erreicht werden. Dieser Ausführungsform liegt die Tatsache zugrunde, dass der Ohmsche Wderstand der Wäschestücke während des Trocknungsprozesses immer größer wird. Somit wird auch die Amplitude der zwischen den Messelektroden erfassten Wäschespannung größer. Wrd nun nach Erreichen des vorbestimmten Wertes durch die Messgröße - zum Beispiel den Wäschewiderstand - der Strom durch den gegenüber dem ersten Spannungsteiler hochohmigen zweiten Spannungsteiler geleitet, so verringert sich die an den Messelektroden abgegriffene Teilspannung (Wäschespannung). Somit verbleibt die Amplitude der Wäschespannung in einem bestimmten Wertebereich, und es kann ein Mikrocontroller zur Auswertung der Wäschespannung eingesetzt werden, welcher die Wäschespannung in einem begrenzten Wertebereich messen kann. Diese Ausführungsform hat außerdem den Vorteil, dass die zwischen den Messelektroden abfallende Wäschespannung mit einer verbesserten Auflösung und somit mit höchster Genauigkeit gemessen werden kann.
Der zweite Spannungsteiler kann ebenfalls zwei Ohmsche Wderstände aufweisen, nämlich einen ersten Wderstand und einen zweiten Widerstand. Nach Erreichen des vorbestimmten Wertes durch die Messgröße kann dann die erste Messelektrode über den ersten Widerstand des zweiten Spannungsteilers abwechselnd mit dem ersten Potential und dem zweiten Potential gekoppelt werden, während die zweite Messelektrode - im Gegentakt zur ersten Messelektrode - über den zweiten Widerstand des zweiten Spannungsteilers abwechselnd mit dem ersten Potential und dem zweiten Potential gekoppelt werden kann. Die Wderstände des zweiten Spannungsteilers sind bevorzugt betragsmäßig größer als die Widerstände des ersten Spannungsteilers.
Es erweist sich als besonders vorteilhaft, wenn die Schaltungsanordnung Schaltmittel umfasst, die zum Wechseln der Richtung des Stromflusses dienen. Auf diesem Wege gelingt es, die Richtung des Stromflusses durch die Messelektroden ohne viel Aufwand zu wechseln. Die Schaltmittel können beispielsweise zwischen einem ersten Schaltzustand, in welchem sie die erste Messelektrode mit dem ersten elektrischen Potential und die zweite Messelektrode mit dem zweiten elektrischen Potential koppeln, und einem zweiten Schaltzustand geschaltet werden, in welchem sie die erste Messelektrode mit dem zweiten Potential und die zweite Messelektrode mit dem ersten Potential koppeln. Im ersten Schaltzustand der Schaltmittel wird somit der Stromfluss in die eine Richtung bewirkt, während in dem zweiten Schaltzustand der Schaltmittel der Strom in die andere Richtung fließt.
Bezüglich der Schaltmittel sind im Prinzip zwei verschiedene Ausführungsformen vorgesehen:
Die Schaltungsanordnung kann einen Mikrocontroller aufweisen, und die Schaltmittel können in den Mikrocontroller integriert sein. Sind die Schaltmittel nicht in den Mikrocontroller integriert, so müssen sie als externe Schaltmittel vorgesehen sein. Dann kann ein standardisiertes Bauteil - nämlich der Mikrocontroller - eingesetzt werden, ohne dass zusätzliche, vom Mikrocontroller separate Bauelemente - nämlich separate Transistoren und dergleichen - eingesetzt werden müssen. Die Schaltungsanordnung kommt somit insgesamt mit einer sehr geringen Anzahl von Bauteilen aus und kann entsprechend kompakt aufgebaut werden; insbesondere kann dadurch auch wertvoller Bauraum im Hausgerät gespart werden.
In einer alternativen Ausführungsform sind die Schaltmittel von einem Mikrocontroller der Schaltungsanordnung separate Schaltmittel. Die Schaltmittel können hier beispielsweise elektrische Schalter aufweisen, nämlich insbesondere Transistoren. Es werden vorzugsweise Bipolartransistoren eingesetzt. Zum Beispiel können die Schaltmittel folgende elektrische Schalter beinhalten:
einen ersten Schalter, über welchen die erste Messelektrode über den ersten Widerstand des ersten Spannungsteilers mit dem ersten elektrischen Potential koppelbar ist, und/oder
einen zweiten Schalter, über welchen die erste Messelektrode über den ersten Wderstand des ersten Spannungsteilers mit dem zweiten Potential, insbesondere dem Bezugspotential, koppelbar ist, und/oder
einen dritten Schalter, über welchen die zweite Messelektrode über den zweiten Wderstand des ersten Spannungsteilers mit dem ersten Potential koppelbar ist, und/oder
einen vierten Schalter, über welchen die zweite Messelektrode über den zweiten Wderstand des ersten Spannungsteilers mit dem zweiten Potential koppelbar ist, und/oder
einen fünften Schalter, über welchen die erste Messelektrode über den ersten Wderstand des zweiten Spannungsteilers mit dem ersten Potential koppelbar ist, und/oder
einen sechsten Schalter, über welchen die erste Messelektrode über den ersten Wderstand des zweiten Spannungsteilers mit dem zweiten Potential koppelbar ist, und/oder
einen siebenten Schalter, über welchen die zweite Messelektrode über den zweiten Wderstand des zweiten Spannungsteilers mit dem ersten Potential koppelbar ist, und/oder
einen achten Schalter, über welchen die zweite Messelektrode über den zweiten Wderstand des zweiten Spannungsteilers mit dem zweiten Potential koppelbar ist.
Der Einsatz von separaten Schaltmitteln hat den Vorteil, dass kein leistungsstarker Mikrocontroller erforderlich ist; die Schaltungsanordnung kommt mit einem einfachen Mikrocontroller aus, welcher lediglich digitale Steuersignale zur Ansteuerung der Schaltmittel bereitstellen muss.
Ein im Rahmen bevorzugter Ausgestaltungen der Erfindung vorgesehener Mikrocontroller dient in erster Linie der erfindungsgemäßen Durchführung des Messverfahrens. Hinsichtlich der weiteren Verwendung der so gewonnen Messergebnisse in einem Verfahren zum Trocknen von Wäschestücken kann der Mikrocontroller gegebenenfalls auch die Steuerung weiterer Komponenten des Hausgeräts durchführen und somit die Messwerte selbst verwenden; ebenso ist es denkbar, dass der Mikrocontroller allein zum Betreiben der Schaltungsanordnung und zur Durchführung des Messverfahrens dient und die gewonnenen Messergebnisse an einen weiteren Mikrocontroller, dem die Steuerung des eigentlichen Trocknungsprozesses unter Verwendung der Messergebnisse obliegt, abführt. Dies kann insbesondere über entsprechende digitale Schnittstellen erfolgen.
Die beiden Messelektroden können beispielsweise in einer Wäschetrommel des Hausgeräts angeordnet sein, welche zur Aufnahme der Wäschestücke ausgebildet ist.
Prinzipiell kann eine der Messelektroden durch die Wäschetrommel selbst gebildet sein.
Um jedoch einen symmetrischen Stromfluss durch die Messelektroden zu gewährleisten, sind die beiden Messelektroden vorzugsweise von der Wäschetrommel separate Bauteile.
Die Messelektroden sind bevorzugt an der Wäschetrommel derart angebracht, dass sie voneinander elektrisch isoliert sind.
In der Regel ist die Wäschetrommel in einem Hausgerät mit einem Schutzleiter elektrisch kurzgeschlossen, also einem elektrischen Leiter eines Stromnetzes, welcher der Sicherheit dient. Die elektrische Kopplung kann sich beispielsweise über ein Lager ergeben, an welchem die Trommel drehbar gelagert ist. Ist die Wäschetrommel mit dem Schutzleiter elektrisch gekoppelt, so kann in einer Ausführungsform vorgesehen sein, dass die Wäschetrommel des Hausgeräts mit einem elektrischen Potential vorgespannt wird, welches betragsmäßig zwischen dem ersten und dem zweiten Potential liegt. Auf diese Weise wird verhindert, dass ein unsymmetrischer Ableitstrom (auch unter der Bezeichnung„Körperstrom" bekannt) über die Wäschetrommel und den Schutzleiter zur Erde abfließt. Somit hat der Schutzleiter keinen negativen Einfluss auf die Messung der Wäschespannung. Dieses Potential kann gleich einem Mittelwert aus dem ersten und dem zweiten Potential sein. Erfindungsgemäß wird darüber hinaus ein Verfahren bereitgestellt, welches zum Bestimmen einer mit einem Trocknungsgrad von Wäschestücken korrelierten Messgröße in einem Hausgerät dient, nämlich mit Hilfe einer Messeinrichtung. In dem Hausgerät werden die Wäschestücke getrocknet. Es wird ein Stromfluss durch zwei zueinander beabstandet angeordnete Messelektroden bewirkt. Es wird eine zwischen den Messelektroden abfallende elektrische Wäschespannung erfasst, und die Messgröße wird in Abhängigkeit von der erfassten Wäschespannung ermittelt. Es wird eine Richtung des Stromflusses durch die Messelektroden wiederholt gewechselt. Die mit Bezug auf das erfindungsgemäße Hausgerät vorgestellten bevorzugten Ausführungsformen und deren Vorteile gelten entsprechend für das erfindungsgemäße Verfahren und umgekehrt.
Weitere Merkmale der Erfindung ergeben sich aus den Patentansprüchen, den Figuren und der nachfolgenden Beschreibung dieser Figuren. Alle vorstehend in der Beschreibung genannten Merkmale und Merkmalskombinationen sowie die nachfolgend in der Beschreibung der Figuren genannten und/oder in den Figuren alleine gezeigten Merkmale und Merkmalskombinationen sind nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen Kombinationen oder aber in Alleinstellung im Rahmen der Erfindung verwendbar.
Die Erfindung wird nun anhand einzelner bevorzugter Ausführungsbeispiele näher erläutert, wie auch unter Bezugnahme auf die Figuren der beigefügten Zeichnung. Es zeigen:
Fig. 1 in schematischer und höchst abstrakter Darstellung ein Hausgerät gemäß einer ersten Ausführungsform; und
Fig. 2 in schematischer und höchst abstrakter Darstellung ein Hausgerät gemäß einer zweiten Ausführungsform.
In den Figuren sind gleiche und funktionsgleiche Elemente jeweils mit den gleichen Bezugszeichen versehen. Ein in Fig. 1 dargestelltes Hausgerät 1 ist im Ausführungsbeispiel ein Wäschetrockner. Das Hausgerät 1 umfasst eine Wäschetrommel 2, in welche Wäschestücke 3 aufgenommen sind. Die Wäschestücke 3 werden im Hausgerät 1 getrocknet. Die Wäschetrommel 2 kann im Hausgerät 1 beispielsweise horizontal gelagert sein, d.h. sie kann um eine horizontale Drehachse gedreht werden. Die Wäschetrommel 2 kann mit einem Schutzleiter PE elektrisch gekoppelt sein.
Die Wäschestücke 3 weisen einen Ohmschen Widerstand auf, der in Fig. 1 durch ein Element 4 schematisch symbolisiert ist. Der Wäschewiderstand 4 ist also kein Bauelement einer Schaltung, sondern der elektrische Wderstand der Wäschestücke 3. Nasse Wäschestücke 3 weisen einen geringen Wderstand 4 auf, und es gilt die Beziehung, dass, je trockener die Wäschestücke 3 sind, desto größer der Wäschewiderstand 4 ist. Der Wäschewiderstand 4 ist umgekehrt proportional zu einem Leitwert der Wäschestücke 3.
Nun gilt das Interesse der Bestimmung des Wäschewiderstands 4, welcher ein Maß für einen Trocknungsgrad der Wäschestücke 3 darstellt. Zu diesem Zwecke ist im Hausgerät 1 eine Messeinrichtung 5 bereitgestellt, welche zwei Messelektroden aufweist, nämlich eine erste Messelektrode 6, wie auch eine zweite Messelektrode 7. Die Messelektroden 6, 7 sind an der Wäschetrommel 2 angebracht, nämlich derart, dass sie voneinander elektrisch isoliert sind. Die Messelektroden 6, 7 sind beabstandet zueinander angeordnet, beispielsweise an zwei einander gegenüberliegenden Seiten der Wäschetrommel 2. Die Messelektroden 6, 7 können beispielsweise an einem Umfang der Wäschetrommel 2 entlang ihres Durchmessers angeordnet sein. Die Messelektroden 6, 7 berühren im Betrieb des Hausgeräts 1 die Wäschestücke 3, sodass der Wäschewiderstand 4 an die Messelektroden 6, 7 gekoppelt wird. Man kann sagen, dass der Wäschewiderstand 4 elektrisch zwischen die Messelektroden 6, 7 geschaltet ist.
Die Messelektroden 6, 7 sind mit einer Schaltungsanordnung 8 elektrisch gekoppelt, die zum Bestimmen des Wäschewiderstands 4 und somit des Trocknungsgrads der Wäschestücke 3 dient. Die Schaltungsanordnung 8 beinhaltet einen Mikrocontroller 9 als eine Steuereinrichtung. Die Schaltungsanordnung 8 umfasst auch einen Schaltungsknoten 10, an welchem ein positives elektrisches Potential Vi bereitgestellt ist. Das Potential Vi kann beispielsweise 5 V betragen. Am Schaltungsknoten 10 ergibt sich somit eine elektrische Gleichspannung von 5 V, nämlich gegenüber einem Bezugspotential 1 1 (Masse). Der Mikrocontroller 9 dient in der Schaltungsanordnung 8, im Rahmen vorliegender Erläuterung in erster Linie der Durchführung des nachfolgend zu beschreibenden Messverfahrens. Hinsichtlich der weiteren Verwendung der so gewonnen Messergebnisse in einem Verfahren zum Trocknen der Wäschestücke 3 kann der Mikrocontroller 9 auch die Steuerung der weiteren Komponenten des Hausgeräts 1 durchführen und somit die Messwerte selbst verwenden; ebenso ist es denkbar, dass der Mikrocontroller 9 allein zum Betreiben der Schaltungsanordnung 8 und zur Durchführung des Messverfahrens dient und die gewonnenen Messergebnisse an einen in der Zeichnung nicht dargestellten weiteren Mikrocontroller, dem die Steuerung des eigentlichen Trocknungsprozesses unter Verwendung der Messergebnisse obliegt, abführt. Dies kann insbesondere über entsprechende digitale Schnittstellen erfolgen.
Die Schaltungsanordnung 8 umfasst einen ersten Spannungsteiler 12, welcher zwei Ohmsche Wderstände aufweist, nämlich einen ersten Wderstand 13 und einen zweiten Wderstand 14. Über den ersten Wderstand 13 ist die erste Messelektrode 6 mit einem Knoten 15 gekoppelt, an welchem abwechselnd das Potential Vi und das Bezugspotential 11 bereitgestellt werden. Hingegen ist über den zweiten Wderstand 14 die zweite Messelektrode 7 mit einem Knoten 16 gekoppelt, an welchem ebenfalls abwechselnd das Potential Vi und das Bezugspotential 1 1 bereitgestellt werden, nämlich im Gegentakt zum Knoten 15.
Die Schaltungsanordnung 8 umfasst auch einen zweiten Spannungsteiler 17, welcher ebenfalls zwei Ohmsche Wderstände aufweist: einen ersten Widerstand 18 und einen zweiten Widerstand 19. Die erste Messelektrode 6 ist über den ersten Widerstand 18 des zweiten Spannungsteilers 17 mit einem Knoten 20 gekoppelt. An dem Knoten 20 können abwechselnd das Potential Vi und das Bezugspotential 11 bereitgestellt werden. Entsprechend ist die zweite Messelektrode 7 über den zweiten Wderstand 19 des zweiten Spannungsteilers 17 mit einem Knoten 21 gekoppelt. Am Knoten 21 können auch abwechselnd das Potential Vi und das Bezugspotential 11 bereitgestellt werden, nämlich im Gegentakt zum Knoten 20.
Beim ersten Spannungsteiler 12 ergibt sich somit eine Reihenschaltung aus den Wderständen 13, 14 sowie dem Wäschewiderstand 4. Wrd nun eine zwischen den Messelektroden 6, 7 abfallende elektrische Wäschespannung Uw erfasst, so kann der Wäschewiderstand 4 ermittelt werden, und der Trocknungsgrad der Wäschestücke 3 kann bestimmt werden. In Analogie ergibt sich beim zweiten Spannungsteiler 17 eine Reihenschaltung aus den Wderständen 18, 19 sowie dem Wäschewiderstand 4.
Die Schaltungsanordnung 8 beinhaltet auch Schaltmittel 22, mittels denen die Knoten 15, 16, 20 und 21 mit dem Potential V! bzw. dem Bezugspotential 1 1 elektrisch verbunden werden können. Die Schaltmittel 22 umfassen einen ersten NPN-Bipolartransistor 23, dessen Emitter mit dem Knoten 15 und dessen Kollektor mit dem Schaltungsknoten 10 verbunden sind. Die Basis des Bipolartransistors 23 ist mit dem Mikrocontroller 9 gekoppelt. Ein zweiter N PN-Bipolartransistor 24 kann den Knoten 15 mit dem Bezugspotential 1 1 koppeln: Der Kollektor des zweiten Bipolartransistors 24 ist mit dem Knoten 15 verbunden, während der Emitter mit dem Bezugspotential 1 1 verbunden ist. Die Basis ist auch mit dem Mikrocontroller 9 gekoppelt. Die Schaltmittel 22 umfassen auch einen dritten NPN-Bipolartransistor 25, dessen Kollektor mit dem Schaltungsknoten 10 und dessen Emitter mit dem Knoten 16 verbunden sind. Die Basis des dritten Bipolartransistors 25 ist auch mit dem Mikrocontroller 9 gekoppelt. Ein vierter NPN- Bipolartransistor 26 kann den Knoten 16 mit dem Bezugspotential 1 1 koppeln; der Emitter ist mit dem Bezugspotential 1 1 verbunden, während der Kollektor mit dem Knoten 16 verbunden ist. Die Schaltmittel 22 umfassen auch einen fünften NPN-Bipolartransistor 27, über welchen der Knoten 20 mit dem Schaltungsknoten 10 koppelbar ist. Der Emitter des Bipolartransistors 27 ist mit dem Knoten 20 verbunden, und der Kollektor ist mit dem Schaltungsknoten 10 verbunden. Die Basis ist mit dem Mikrocontroller 9 gekoppelt. Der Knoten 20 ist über einen sechsten NPN-Bipolartransistor 28 mit dem Bezugspotential 1 1 koppelbar. Der Emitter des Bipolartransistors 28 ist mit dem Bezugspotential 1 1 verbunden, während sein Kollektor mit dem Knoten 20 verbunden ist. Die Basis ist mit dem Mikrocontroller 9 gekoppelt. Über einen siebten NPN-Bipolartransistor 29 kann der Knoten 21 mit dem Schaltungsknoten 10 elektrisch gekoppelt werden. Der Bipolartransistor 29 ist nämlich mit seinem Kollektor mit dem Schaltungsknoten 10 und mit seinem Emitter mit dem Knoten 21 verbunden. Seine Basis ist mit dem Mikrocontroller 9 gekoppelt. Schließlich kann der Knoten 21 über einen achten NPN-Bipolartransistor 30 mit dem Bezugspotential 1 1 gekoppelt werden. Der Kollektor des Bipolartransistors 30 ist mit dem Knoten 21 verbunden, und der Emitter ist mit dem Bezugspotential 1 1 verbunden.
Die Bipolartransistoren 23 bis 30 werden durch den Mikrocontroller 9 angesteuert. Wie bereits ausgeführt, kann der Mikrocontroller 9 die an den Wäschestücken 3 abfallende elektrische Spannung Uw erfassen. Zu diesem Zwecke ist die erste Messelektrode 6 über einen Ohmschen Messwiderstand 31 mit einem Messeingang 32 des Mikrocontrollers 9 gekoppelt. Entsprechend ist die zweite Messelektrode 7 über einen weiteren Ohmschen Messwiderstand 33 mit einem zweiten Messeingang 34 des Mikrocontrollers 9 gekoppelt. Ein zwischen dem Messwiderstand 31 und der ersten Messelektrode 6 liegender Knoten 35 ist über einen Kondensator 36 mit dem Bezugspotential 1 1 gekoppelt. Darüber hinaus ist ein zwischen dem Messwiderstand 31 und dem ersten Messeingang 32 liegender Knoten 37 über einen Kondensator 38 mit dem Bezugspotential 1 1 gekoppelt. Entsprechend ist ein zwischen der zweiten Messelektrode 7 und dem Messwiderstand 33 liegender Knoten 39 über einen Kondensator 40 mit dem Bezugspotential 1 1 gekoppelt; ein zwischen dem Messwiderstand 33 und dem zweiten Messeingang 34 liegender Knoten 41 ist über einen Kondensator 42 mit dem Bezugspotential 1 1 gekoppelt. Der Mikrocontroller 9 misst also die an den Kondensatoren 38 und 42 anliegenden Spannungen und kann somit auf die Wäschespannung Uw zurück schließen. Genauer gesagt erfasst der Mikrocontroller 9 die an den Knoten 37 und 41 anliegenden Potentiale, deren Differenz ein Maß für die Wäschespannung Uw ist. In Abhängigkeit von der Wäschespannung Uw wiederum kann der Wäschewiderstand 4 und somit auch der Trocknungsgrad der Wäschestücke 3 ermittelt werden, etwa mit Hilfe einer abgelegten Tabelle.
Es sind bei der Schaltungsanordnung 8 darüber hinaus Schutzelemente bereitgestellt, nämlich in Form von NPN-Bipolartransistoren 43 bis 46. Die Bipolartransistoren 43 bis 46 haben dabei die Aufgabe, die an den Messelektroden 6, 7 auftretenden elektrischen Potentiale zu begrenzen. Die jeweiligen Basen der Bipolartransistoren 43 bis 46 sind mit dem jeweiligen Emitter elektrisch kurzgeschlossen. Der Kollektor des Bipolartransistors 43 ist mit dem Schaltungsknoten 10 verbunden, an welchem das Potential Vi bereitgestellt ist. Der Emitter dieses Bipolartransistors 43 ist mit dem Knoten 35 verbunden. Der Knoten 35 ist auch mit dem Kollektor des Bipolartransistors 44 verbunden, und der Emitter dieses Bipolartransistors 44 ist mit dem Bezugspotential 1 1 verbunden. In Analogie dazu ist - symmetrisch - der Knoten 39 mit dem Emitter des Bipolartransistors 45 sowie mit dem Kollektor des Bipolartransistors 46 verbunden. Der Kollektor des Bipolartransistors 45 ist mit dem Schaltungsknoten 10 verbunden, während der Emitter des Bipolartransistors 46 mit dem Bezugspotential 1 1 verbunden ist.
Es wird nun die Funktionsweise der Messeinrichtung 5 im Betrieb des Hausgeräts 1 näher erläutert: Im Betrieb des Hausgeräts 1 ermittelt der Mikrocontroller 9 den Wäschewiderstand 4 und somit den Trocknungsgrad der Wäschestücke 3 und kann somit die Zeit berechnen, die zum ordnungsgemäßen Abschließen des Trocknungsprozesses erforderlich ist. Der Trocknungsprozess wird also dann abgeschlossen, wenn die Wäschestücke 3 trocken sind.
Bei nassen Wäschestücken 3 bzw. bei geringem Wäschewiderstand 4 werden durch den Mikrocontroller 9 die Bipolartransistoren 23 bis 26 derart angesteuert, dass am Knoten 15 abwechselnd das positive Potential Vi und das Bezugspotential 1 1 anliegt, während am Knoten 16 abwechselnd das jeweils andere Potential Vi oder 1 1 als am Knoten 15 anliegt. Diese Umpolung erfolgt beispielsweise mit einer Frequenz von 400 Hz. Es fließt somit durch die Messelektroden 6, 7 und somit auch durch die Wäschestücke 3 ein Gleichstrom I, dessen Richtung ständig gewechselt wird. Dieser Richtungswechsel erfolgt aufgrund der periodischen Umpolung der Potentiale V! und 1 1 an den Knoten 15 und 16. Man kann sagen, dass der Strom I ein symmetrischer, rechteckförmiger Strom ist.
Während die Richtung des Stromflusses I durch die Messelektroden 6, 7 ständig gewechselt wird, erfasst der Mikrocontroller 9 die Amplitude der Wäschespannung Uw, nämlich an den Messeingängen 32, 34. Diese Amplitude der Wäschespannung Uw kann leicht variieren, je nachdem, in welche Richtung der Strom I fließt. Diese leichte Veränderung der Amplitude kann auf gegebenenfalls noch vorhandene galvanische Effekte innerhalb der Wäschetrommel 2 zurückgeführt werden. Der Mikrocontroller 9 erfasst jedoch die Amplitude der Wäschespannung Uw sowohl für die eine Richtung des Stromflusses I als auch für die andere Richtung des Stromflusses I . Diese Amplituden kann der Mikrocontroller 9 mittein und einen Mittelwert der Amplituden der Bestimmung des Wäschewiderstands 4 zugrunde legen. Auf diesem Weg wird erreicht, dass gegebenenfalls noch vorhandene Polarisationsspannung überhaupt keinen Einfluss auf die Genauigkeit der Bestimmung des Wäschewiderstands 4 hat. Durch eine solche Differenz-Messung kann somit der Trocknungsgrad der Wäschestücke 3 mit höchster Genauigkeit bestimmt werden.
Bei nassen Wäschestücken 3 wird also nur der erste Spannungsteiler 12 mit Strom durchflössen, während die Bipolartransistoren 27 bis 30 nicht angesteuert werden und somit der zweite Spannungsteiler 17 nicht bestromt wird. Der zweite Spannungsteiler 17 ist gegenüber dem ersten Spannungsteiler 12 hochohmig und besitzt einen höheren Gesamtwiderstand. Der Gesamtwiderstand des ersten Spannungsteilers 12 kann beispielsweise 100 kQ betragen, während der Gesamtwiderstand des zweiten Spannungsteilers 17 1 ,2 ΜΩ betragen kann. Dies bedeutet, dass die Wderstände 13, 14 des ersten Spannungsteilers 12 jeweils einen Wderstandswert von 50 kQ aufweisen können, während die Wderstände 18, 19 des zweiten Spannungsteilers 17 jeweils einen Widerstandswert von 600 kQ aufweisen können. Während des Trocknungsprozesses werden die Wäschestücke 3 immer trockener, und es erhöht sich der Wäschewiderstand 4. Auch die Amplitude der Wäschespannung Uw steigt an. Würde nun für den gesamten Trocknungsprozess nur der erste Spannungsteiler 12 verwendet werden, so müsste der Mikrocontroller 9 die Amplitude der Wäschespannung Uw über einen relativ großen Messbereich messen. Um diese Situation zu vermeiden, wird ab einem bestimmten Wert der Wäschespannung Uw bzw. des Wäschewiderstands 4 nicht mehr der erste Spannungsteiler 12, sondern stattdessen der zweite Spannungsteiler 17 verwendet. Erreicht die Amplitude der Wäschespannung Uw also den vorbestimmten Wert, so werden die Bipolartransistoren 23 bis 26 nicht mehr angesteuert, sondern stattdessen die Bipolartransistoren 27 bis 30. Die Ansteuerung der Bipolartransistoren 27 bis 30 erfolgt analog: Der Knoten 20 wird abwechselnd - mit der genannten Frequenz - mit dem Potential V! und dem Bezugspotential 1 1 beaufschlagt, und der Knoten 21 mit dem jeweils anderen Potential V! oder 1 1 . Dann sind die Messelektroden 6, 7 mit den hochohmigen Wderständen 18, 19 des zweiten Spannungsteilers 17 verbunden, sodass sich auch die zwischen den Messelektroden 6, 7 abfallende Teilspannung verringert. Der Mikrocontroller 9 kann somit die Wäschespannung Uw mit einer besseren Auflösung messen, und es kann der Messbereich des Mikrocontrollers 9 quasi zweimal durchlaufen werden. Der Wäschewiderstand 4 wird also bipolar und symmetrisch gemessen. Die Schaltungsanordnung 8 ist nämlich elektrisch symmetrisch aufgebaut, sodass galvanische Effekte innerhalb der Wäschetrommel 2 vermieden werden. We bereits ausgeführt, ist die Wäschetrommel 2 in der Regel mit dem Schutzleiter PE elektrisch gekoppelt, nämlich beispielsweise über ein Lager. Um zu vermeiden, dass über die Wäschetrommel 2 und den Schutzleiter PE elektrischer Ableitstrom hin zur Erde fließt, wird im Ausführungsbeispiel die Wäschetrommel 2 bzw. der Schutzleiter PE elektrisch vorgespannt, nämlich gegenüber dem Bezugspotential 1 1. Zum Beispiel kann die Wäschetrommel 2 mit einem Potential beaufschlagt werden, welches betragsmäßig um die Hälfte geringer als das Potential Vi ist. Dazu kann ein Spannungsteiler 47 bereitgestellt sein, welcher am Schaltungsknoten 10 das Potential Vi abgreift und mit Hilfe von Wderständen 48, 49 aufteilt. Die Wäschetrommel 2 bzw. der Schutzleiter PE kann über einen Wderstand 50 mit einem zwischen den Widerständen 48, 49 liegenden Knoten 51 gekoppelt sein. Die Widerstände 48, 49 und 50 können jeweils einen Widerstandswert von 10 kQ aufweisen.
Die Bauelemente der Schaltungsanordnung 8 können beispielsweise wie folgt dimensioniert sein:
- Wderstände 13, 14: jeweils 50 kQ,
Wderstände 18, 19: jeweils 600 kQ,
Kondensatoren 36, 40: jeweils 10 pF (können auch entfallen),
Kondensatoren 38, 42: jeweils 100 pF,
Wderstände 31 , 33: jeweils 4,7 kQ.
In Fig. 2 ist das Hausgerät 1 gemäß einer weiteren Ausführungsform der Erfindung dargestellt. Die Funktionsweise der Messeinrichtung 5 ist im Ausführungsbeispiel gemäß Fig. 2 im Wesentlichen gleich wie im Ausführungsbeispiel gemäß Fig. 1 . Auch der Aufbau der Messeinrichtung 5 ist ähnlich, sodass nachfolgend lediglich auf die Unterschiede näher eingegangen wird: Die Schaltungsanordnung 8 beinhaltet hier einen Mikrocontroller 9', in welchen Schaltmittel (22 in Fig. 1 ) integriert sind. Der Mikrocontroller 9' weist nun vier Anschlüsse auf, nämlich einen ersten Anschluss 52 (entspricht dem Knoten 15 in Fig. 1 ), einen zweiten Anschluss 53 (entspricht dem Knoten 16 in Fig. 1), einen dritten Anschluss 54 (entspricht dem Knoten 20 in Fig. 1 ) sowie einen vierten Anschluss 55 (entspricht dem Knoten 21 in Fig. 1). Der erste Anschluss 52 ist über den ersten Widerstand 13 des ersten Spannungsteilers 12 mit der ersten Messelektrode 6 gekoppelt, während der zweite Anschluss 53 über den zweiten Wderstand 14 des ersten Spannungsteilers 12 mit der zweiten Messelektrode 7 gekoppelt ist. Entsprechend ist der dritte Anschluss 54 über den ersten Wderstand 18 des zweiten Spannungsteilers 17 mit der ersten Messelektrode 6 gekoppelt, während der vierte Anschluss 55 über den zweiten Wderstand 19 des zweiten Spannungsteilers 17 mit der zweiten Messelektrode 7 gekoppelt ist. Der Mikrocontroller 9' ist auch mit dem Schaltungsknoten 10 (Potential Vi) verbunden.
Die Funktion der Kondensatoren 38 und 42 übernehmen nun entsprechend die Kondensatoren 38a und 38b respektive 42a und 42b. Diese sind zwischen den jeweiligen Anschlüssen 52, 54, 53, 55 und dem Bezugspotential 1 1 geschaltet.
Auch der Mikrocontroller 9' dient in der Schaltungsanordnung 8, im Rahmen vorliegender Erläuterung in erster Linie der Durchführung des nachfolgend zu beschreibenden Messverfahrens. Hinsichtlich der weiteren Verwendung der so gewonnen Messergebnisse in einem Verfahren zum Trocknen der Wäschestücke 3 kann auch der Mikrocontroller 9' zusätzlich die Steuerung der weiteren Komponenten des Hausgeräts 1 durchführen und somit die Messwerte selbst verwenden; ebenso ist es denkbar, dass der Mikrocontroller 9' allein zum Betreiben der Schaltungsanordnung 8 und zur Durchführung des Messverfahrens dient und die gewonnenen Messergebnisse an einen in der Zeichnung nicht dargestellten weiteren Mikrocontroller, dem die Steuerung des eigentlichen Trocknungsprozesses unter Verwendung der Messergebnisse obliegt, abführt. Dies kann insbesondere über entsprechende digitale Schnittstellen erfolgen. Bei nassen Wäschestücken 3 (im ersten Messbereich, bevor die Wäschespannung Uw den vorbestimmten Wert erreicht) stellt der Mikrocontroller 9' an dem ersten Anschluss 52 abwechselnd das Potential Vi und das Bezugspotential 1 1 bereit. Am zweiten Anschluss 53 wird dagegen das jeweils andere Potential als am ersten Anschluss 52 bereitgestellt. Bevor die Wäschespannung Uw den vorbestimmten Wert erreicht, dienen der dritte und der vierte Anschluss 54, 55 als Messeingänge (vgl. 32, 34 in Fig. 1 ). Über die Anschlüsse 54, 55 wird also die Wäschespannung Uw gemessen.
Erreicht die Wäschespannung Uw den vorbestimmten Wert bzw. erhöht sich der Wäschewiderstand 4, so werden die Potentiale V! bzw. 1 1 nicht mehr an den Anschlüssen 52, 53 bereitgestellt, sondern an den Anschlüssen 54, 55. Nun werden die Anschlüsse 52, 53 als Messeingänge verwendet, an denen die Wäschespannung Uw gemessen wird. Auch im Ausführungsbeispiel gemäß Fig. 2 wird somit der Wäschewiderstand 4 bipolar und symmetrisch gemessen. Es sind vier Anschlüsse 52 bis 55 beim Mikrocontroller 9' bereitgestellt, die je nach Messbereich der Wäschespannung Uw paarweise als Eingänge oder Ausgänge verwendet werden.
Bezugszeichenliste
1 Hausgerät
2 Wäschetrommel
3 Wäschestücke
4 Wäschewiderstand
5 Messeinrichtung
6 Messelektrode
7 Messelektrode
8 Schaltungsanordnung
9 Mikrocontroller
9' Mikrocontroller
10 Schaltungsknoten
1 1 Bezugspotential
12 Spannungsteiler
13 Wderstand
14 Widerstand
15 Knoten
16 Knoten
17 Spannungsteiler
18 Wderstand
19 Widerstand
20 Knoten
21 Knoten
22 Schaltmittel
23 NPN-Bipolartransistor
24 NPN-Bipolartransistor
25 NPN-Bipolartransistor
26 NPN-Bipolartransistor
27 NPN-Bipolartransistor
28 NPN-Bipolartransistor
29 NPN-Bipolartransistor
30 NPN-Bipolartransistor 31 Messwiderstand
32 Messeingang
33 Messwiderstand
34 Messeingang
35 Knoten
36 Kondensator
37 Knoten
38, 38a, 38b Kondensator
39 Knoten
40 Kondensator
41 Knoten
42, 42a, 42b Kondensator
43 NPN-Bipolartransistor
44 NPN-Bipolartransistor
45 NPN-Bipolartransistor
46 NPN-Bipolartransistor
47 Spannungsteiler
48 Widerstand
49 Widerstand
50 Wderstand
51 Knoten
52 Anschluss
53 Anschluss
54 Anschluss
55 Anschluss
I Stromfluss
PE Schutzleiter
Uw Wäschespannung
Potential

Claims

Patentansprüche
Hausgerät (1) zum Trocknen von Wäschestücken (3), mit einer Messeinrichtung (5) zum Bestimmen einer mit einem Trocknungsgrad der Wäschestücke (3) korrelierten Messgröße (4, Uw), wobei die Messeinrichtung (5) umfasst:
zwei zueinander beabstandet angeordnete Messelektroden (6, 7), die in dem Hausgerät (1) derart angeordnet sind, dass sie im Betrieb des Hausgerätes (1) die zu trocknenden Wäschestücke (3) berühren, und
eine mit den Messelektroden (6, 7) gekoppelte Schaltungsanordnung (8), die dazu ausgebildet ist, einen Stromfluss (I) durch die Messelektroden (6, 7) zu bewirken, eine zwischen den Messelektroden (6, 7) abfallende elektrische Wäschespannung (Uw) zu erfassen und in Abhängigkeit von der erfassten Wäschespannung (Uw) die Messgröße (4, Uw) zu ermitteln,
dadurch gekennzeichnet, dass
die Schaltungsanordnung (8) dazu ausgebildet ist, eine Richtung des Stromflusses (I) durch die Messelektroden (6, 7) wiederholt zu wechseln.
Hausgerät (1) nach Anspruch 1 , dadurch gekennzeichnet, dass die Schaltungsanordnung (8) dazu ausgebildet ist, abwechselnd an einer der Messelektroden (6, 7) ein elektrisches Potential und an der jeweils anderen Messelektrode (6, 7) ein unterschiedliches elektrisches Potential anzulegen.
Hausgerät (1) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Schaltungsanordnung (8) dazu ausgebildet ist, die Richtung des Stromflusses (I) mit einer Frequenz zu wechseln, welche in einem Wertebereich von 300 Hz bis 500 Hz liegt. Hausgerät (1 ) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Schaltungsanordnung (8) zum Ermitteln der Messgröße (4, Uw) sowohl abhängig von der Wäschespannung (Uw), die sich für die eine Richtung des Stromflusses (I) einstellt, als auch abhängig von der Wäschespannung (Uw), die sich für die andere Richtung des Stromflusses (I) einstellt, ausgebildet ist.
Hausgerät (1 ) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Schaltungsanordnung (8) einen Spannungsteiler (12) aufweist, welcher einen an die Messelektroden (6, 7) gekoppelten Wäschewiderstand (4) der Wäschestücke (3) umfasst, und die Schaltungsanordnung (8) dazu ausgebildet ist, den Stromfluss (I) durch den Spannungsteiler (12) zu bewirken.
Hausgerät (1) nach Anspruch 5, dadurch gekennzeichnet, dass der Spannungsteiler (12) einen ersten Ohmschen Widerstand (13), über welchen eine erste der Messelektroden (6) abwechselnd mit einem ersten elektrischen Potential (V!) und einem vom ersten Potential (V- unterschiedlichen zweiten elektrischen Potential (1 1) koppelbar ist, und einen zweiten Ohmschen Wderstand (14) aufweist, über welchen im Gegentakt zur ersten Messelektrode (6) die zweite Messelektrode (7) abwechselnd mit dem ersten und dem zweiten Potential (\ , 1 1 ) koppelbar ist.
Hausgerät (1) nach Anspruch 6, dadurch gekennzeichnet, dass das erste elektrische Potential (Vi) ein positives Potential ist und das zweite elektrische Potential (1 1 ) ein gegenüber dem ersten Potential (1 1) geringeres, positives Potential oder ein Bezugspotential (1 1 ) ist.
8. Hausgerät (1) nach einem der Ansprüche 5 bis 7, dadurch gekennzeichnet, dass die Schaltungsanordnung (8) einen zweiten Spannungsteiler (17) aufweist, welcher einen gegenüber dem ersten Spannungsteiler (12) betragsmäßig größeren Gesamtwiderstand aufweist, und die Schaltungsanordnung (8) dazu ausgebildet ist, nach Erreichen eines vorbestimmten Wertes durch die Messgröße (4, Uw) den Stromfluss (I) unter Umgehung des ersten Spannungsteilers (12) durch den zweiten Spannungsteiler (17) zu bewirken. 9. Hausgerät (1) nach Anspruch 6, dadurch gekennzeichnet, dass der zweite Spannungsteiler (17) einen ersten Ohmschen Wderstand (18) und einen zweiten Ohmschen Wderstand (19) aufweist, und dass nach Erreichen des vorbestimmten Wertes durch die Messgröße (4, Uw) die erste Messelektrode (6) über den ersten Wderstand (18) des zweiten Spannungsteilers (17) abwechselnd mit dem ersten Potential (Vi) und dem zweiten Potential (1 1) koppelbar ist, während die zweite
Messelektrode (7) im Gegentakt zur ersten Messelektrode (6) über den zweiten Wderstand (19) des zweiten Spannungsteilers (17) abwechselnd mit dem ersten Potential (Vi) und dem zweiten Potential (1 1) koppelbar ist. 10. Hausgerät (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Schaltungsanordnung (8) Schaltmittel (22) zum Wechseln der Richtung des Stromflusses (I) aufweist.
1 1. Hausgerät (1) nach Anspruch 10, dadurch gekennzeichnet, dass die Schaltungsanordnung (8) einen Mikrocontroller (9') aufweist und die Schaltmittel
(22) in den Mikrocontroller (9') integriert sind.
12. Hausgerät (1) nach Anspruch 10, dadurch gekennzeichnet, dass die Schaltmittel (22) von einem Mikrocontroller (9) der Schaltungsanordnung (8) separate Schaltmittel (22) sind.
13. Hausgerät (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine erste der Messelektroden (6) abwechselnd mit einem ersten elektrischen Potential und einem vom ersten Potential unterschiedlichen zweiten elektrischen Potential (11) koppelbar ist und die zweite
Messelektrode (7) im Gegentakt zur ersten Messelektrode (6) abwechselnd mit dem ersten und dem zweiten Potential (11 , \ ) koppelbar ist, wobei eine Wäschetrommel (2) des Hausgerätes (1) mit einem elektrischen Potential beaufschlagbar ist, welches betragsmäßig zwischen dem ersten und dem zweiten Potential (11 , Vi) liegt.
H. Verfahren zum Bestimmen einer mit einem Trocknungsgrad von Wäschestücken (3) korrelierten Messgröße (4, Uw) mit Hilfe einer Messeinrichtung (5) in einem Hausgerät (1), in welchem die Wäschestücke (3) getrocknet werden, mit den Schritten:
Bewirken eines Stromflusses (I) durch zwei zueinander beabstandet angeordnete Messelektroden (6, 7), die in dem Hausgerät (1) derart angeordnet sind, dass sie die zu trocknenden Wäschestücke (3) berühren, Erfassen einer zwischen den Messelektroden (6, 7) abfallenden elektrischen Wäschespannung (Uw) und
Ermitteln der Messgröße (4, UW) in Abhängigkeit von der erfassten Wäschespannung (Uw),
dadurch gekennzeichnet, dass
eine Richtung des Stromflusses (I) durch die Messelektroden (6, 7) wiederholt gewechselt wird.
PCT/EP2011/062346 2010-08-04 2011-07-19 Hausgerät zum trocknen von wäschestücken und verfahren zum bestimmen einer mit einem trocknungsgrad der wäschestücke korrelierten messgrösse WO2012016820A2 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PL11733864T PL2601339T3 (pl) 2010-08-04 2011-07-19 Sprzęt gospodarstwa domowego do suszenia rzeczy do prania oraz sposób określania wielkości pomiarowej skorelowanej ze stopniem suszenia rzeczy do prania
CN201180038226.5A CN103052745B (zh) 2010-08-04 2011-07-19 用于干燥洗涤物的家用器具和用于确定与洗涤物干燥度相关的测量参量的方法
EP11733864.0A EP2601339B1 (de) 2010-08-04 2011-07-19 Hausgerät zum trocknen von wäschestücken und verfahren zum bestimmen einer mit einem trocknungsgrad der wäschestücke korrelierten messgrösse
EA201390104A EA023640B1 (ru) 2010-08-04 2011-07-19 Бытовой прибор для сушки белья и способ определения степени сухости белья, подвергаемого сушке в этом приборе

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010038890A DE102010038890A1 (de) 2010-08-04 2010-08-04 Hausgerät zum Trocknen von Wäschestücken und Verfahren zum Bestimmen einer mit einem Trocknungsgrad der Wäschestücke korrelierten Messgröße
DE102010038890.4 2010-08-04

Publications (2)

Publication Number Publication Date
WO2012016820A2 true WO2012016820A2 (de) 2012-02-09
WO2012016820A3 WO2012016820A3 (de) 2012-08-16

Family

ID=44512833

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/062346 WO2012016820A2 (de) 2010-08-04 2011-07-19 Hausgerät zum trocknen von wäschestücken und verfahren zum bestimmen einer mit einem trocknungsgrad der wäschestücke korrelierten messgrösse

Country Status (6)

Country Link
EP (1) EP2601339B1 (de)
CN (1) CN103052745B (de)
DE (1) DE102010038890A1 (de)
EA (1) EA023640B1 (de)
PL (1) PL2601339T3 (de)
WO (1) WO2012016820A2 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2730694A1 (de) 2012-11-13 2014-05-14 BSH Bosch und Siemens Hausgeräte GmbH Verfahren zum Ermitteln zumindest einer Kenngröße von Wäschestücken, sowie entsprechende Wäschepflegemaschine
WO2018024580A1 (en) * 2016-08-05 2018-02-08 Arcelik Anonim Sirketi Electrical household appliance having a moisture sensing circuit
US10676859B2 (en) 2015-10-26 2020-06-09 Electrolux Appliances Aktiebolog Laundry appliance with capacitive laundry drying degree sensing function
US11193228B2 (en) 2016-12-28 2021-12-07 Electrolux Appliances Aktiebolag Laundry appliance comprising a humidity sensor
US11686041B2 (en) 2016-12-28 2023-06-27 Electrolux Appliances Aktiebolag Appliance with reliable information of a drying cycle
US11920272B2 (en) 2018-03-07 2024-03-05 Electrolux Appliances Aktiebolag Appliance with capacitive humidity sensor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012223438A1 (de) 2012-12-17 2014-06-18 BSH Bosch und Siemens Hausgeräte GmbH Haushaltsgerät zum Trocknen von Wäschestücken und Verfahren zum Erfassen einer mit einem Trocknungsgrad von Wäschestücken korrelierten Messgröße
DE102020203522A1 (de) 2020-03-19 2021-09-23 BSH Hausgeräte GmbH Haushalts-PEF-Gargerät und Verfahren zum Betreiben desselben

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0942094B1 (de) 1998-03-13 2002-09-04 BSH Bosch und Siemens Hausgeräte GmbH Verfahren zum Bestimmen des Feuchtigkeitsgehalts von textilen Gütern in einem Wäschetrockner

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE792234A (fr) * 1971-12-03 1973-03-30 Liggett & Myers Inc Procedes et appareils pour determiner la teneur en humidite de tabac
DE2200019C3 (de) * 1972-01-03 1981-01-22 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Feuchtigkeitssteuerung für einen Wäschetrockner
DE3929155A1 (de) * 1989-09-02 1991-03-14 Reemtsma H F & Ph Verfahren und vorrichtung zum bestimmen der fuellfaehigkeit von tabak und der haerte von cigaretten
US5578753A (en) * 1995-05-23 1996-11-26 Micro Weiss Electronics, Inc. Humidity and/or temperature control device
DE19717711A1 (de) * 1997-04-18 1998-10-22 Umsicht Inst Fuer Umwelt Siche Meßzelle und Verfahren zur on-line-Feuchtemessung für Schüttgüter
DE19945520A1 (de) * 1999-09-23 2001-03-29 Diehl Ako Stiftung Gmbh & Co Elektronische Schaltung zur Ermittlung des Trocknungsgrades von Wäsche in einem Wäschetrockner
KR100556806B1 (ko) * 2004-05-13 2006-03-10 엘지전자 주식회사 의류건조기의 건조도 신호처리방법

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0942094B1 (de) 1998-03-13 2002-09-04 BSH Bosch und Siemens Hausgeräte GmbH Verfahren zum Bestimmen des Feuchtigkeitsgehalts von textilen Gütern in einem Wäschetrockner

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2730694A1 (de) 2012-11-13 2014-05-14 BSH Bosch und Siemens Hausgeräte GmbH Verfahren zum Ermitteln zumindest einer Kenngröße von Wäschestücken, sowie entsprechende Wäschepflegemaschine
DE102012220687A1 (de) 2012-11-13 2014-05-15 BSH Bosch und Siemens Hausgeräte GmbH Verfahren zum Ermitteln zumindest einer Kenngröße von Wäschestücken, sowie entsprechende Wäschepflegemaschine
US10676859B2 (en) 2015-10-26 2020-06-09 Electrolux Appliances Aktiebolog Laundry appliance with capacitive laundry drying degree sensing function
US11248334B2 (en) 2015-10-26 2022-02-15 Electrolux Appliances Aktiebolag Laundry appliance with capacitive laundry drying degree sensing function
WO2018024580A1 (en) * 2016-08-05 2018-02-08 Arcelik Anonim Sirketi Electrical household appliance having a moisture sensing circuit
US11193228B2 (en) 2016-12-28 2021-12-07 Electrolux Appliances Aktiebolag Laundry appliance comprising a humidity sensor
US11686041B2 (en) 2016-12-28 2023-06-27 Electrolux Appliances Aktiebolag Appliance with reliable information of a drying cycle
US11920272B2 (en) 2018-03-07 2024-03-05 Electrolux Appliances Aktiebolag Appliance with capacitive humidity sensor

Also Published As

Publication number Publication date
PL2601339T3 (pl) 2014-10-31
EP2601339A2 (de) 2013-06-12
EA023640B1 (ru) 2016-06-30
EA201390104A1 (ru) 2013-07-30
CN103052745A (zh) 2013-04-17
WO2012016820A3 (de) 2012-08-16
DE102010038890A1 (de) 2012-02-09
EP2601339B1 (de) 2014-04-30
CN103052745B (zh) 2015-01-21

Similar Documents

Publication Publication Date Title
EP2601339B1 (de) Hausgerät zum trocknen von wäschestücken und verfahren zum bestimmen einer mit einem trocknungsgrad der wäschestücke korrelierten messgrösse
EP0514839B1 (de) Messschaltung zur Messung einer Kapazität
EP1586164B1 (de) Schaltungsanordnung für einen kapazitiven näherungsschalter
WO2016050406A1 (de) Batteriesystem mit einer zum versorgen eines hochvoltnetzes mit elektrischer energie ausgebildeten batterie und einer messeinrichtung zum messen mindestens eines isolationswiderstandes der batterie
EP3740771B1 (de) Elektrische schaltung zum test primärer interner signale eines asic
DE102012105266A1 (de) Kapazitiver Annäherungssensor für ein Kraftfahrzeug
DE102008039195A1 (de) Verfahren zum Erfassen der Frequenz eines Eingangstaktsignals einer integrierten Schaltung und integrierte Schaltung
DE102008018244B3 (de) Vorrichtung und Verfahren zum Erkennen eines Fehlers in einer Leistungsbrückenschaltung
DE102010021176A1 (de) Anordnung zur Einzelzellenmessung in einem Akkupack und einem Akkupack mit einer solchen Anordnung
EP3186889A1 (de) Kapazitiver sensor, die zugehörige auswerteschaltung und aktor für ein kraftfahrzeug
EP2905901B1 (de) Schaltungsanordnung und Verfahren zur Erfassung einer Kapazität und/oder einer Kapazitätsänderung eines kapazitiven Bauelements
DE102010048677B4 (de) Schaltung und Verfahren zum Messen der Entladezeit eines Kondensators über mindestens einen Messwiderstand
DE102006041226A1 (de) Drucktastschalter
DE102011112011A1 (de) Kapazitätserfassung
EP3224949A1 (de) Verfahren und vorrichtung zum betreiben parallel geschalteter leistungshalbleiterschalter
WO2015197230A1 (de) Verfahren und vorrichtung zur stromsensierung von kleinen strömen
WO2015120935A1 (de) Schaltungsanordnung und verfahren zur strommessung
EP4335033A1 (de) Diagnosefähige schaltungsanordnung, sensorvorrichtung mit einer schaltungsanordnung und verfahren zur diagnose einer schaltungsanordnung und/oder sensorvorrichtung
EP3817172B1 (de) Schutzleiterüberwachungseinrichtung, stromverteilervorrichtung und schutzleiterüberwachungsverfahren
WO2017041977A1 (de) Bestimmung der zwischenkreiskapazität
EP3652860B1 (de) Pegelwandler und ein verfahren zum wandeln von pegelwerten in fahrzeugsteuergeräten
DE102021111734A1 (de) Diagnosefähige Schaltungsanordnung und Verfahren zur Diagnose einer Schaltungsanordnung
DE102015226252B3 (de) Schalterlose kapazitive Hochspannungserfassung
DE4001274C2 (de)
EP2799946B1 (de) Verfahren zur Kompatibilitätsherstellung zwischen einem Feldgerät und einer Diagnoseeinrichtung und Interfacegerät

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180038226.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11733864

Country of ref document: EP

Kind code of ref document: A2

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2011733864

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 201390104

Country of ref document: EA