WO2012014784A1 - Sensor device - Google Patents

Sensor device Download PDF

Info

Publication number
WO2012014784A1
WO2012014784A1 PCT/JP2011/066606 JP2011066606W WO2012014784A1 WO 2012014784 A1 WO2012014784 A1 WO 2012014784A1 JP 2011066606 W JP2011066606 W JP 2011066606W WO 2012014784 A1 WO2012014784 A1 WO 2012014784A1
Authority
WO
WIPO (PCT)
Prior art keywords
mirror
detection
light
sensor device
laser
Prior art date
Application number
PCT/JP2011/066606
Other languages
French (fr)
Japanese (ja)
Inventor
清彦 河野
宏明 橘
Original Assignee
パナソニック電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック電工株式会社 filed Critical パナソニック電工株式会社
Publication of WO2012014784A1 publication Critical patent/WO2012014784A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V8/00Prospecting or detecting by optical means
    • G01V8/10Detecting, e.g. by using light barriers
    • G01V8/12Detecting, e.g. by using light barriers using one transmitter and one receiver
    • G01V8/14Detecting, e.g. by using light barriers using one transmitter and one receiver using reflectors

Definitions

  • the present invention relates to a sensor device.
  • This object recognition sensor includes a light emitting element 501 that emits a light beam ⁇ , a light beam shaping lens 502, an optical scanner 503 that scans the light beam ⁇ two-dimensionally, a light receiving element 504, and a scanner drive.
  • a circuit 505 and a signal processing unit 506 are provided.
  • the above-described light emitting element 501 is constituted by a semiconductor laser element, a light emitting diode, or the like.
  • the light beam shaping lens 502 is provided for condensing or collimating the light beam ⁇ emitted from the light emitting element 501.
  • the optical scanner 503 includes a vibration plate 511 and a piezoelectric element 512.
  • the vibration plate 511 is formed of a silicon thin plate material.
  • a scanning portion 514 is provided at one end of an axial elastic deformation portion (torsion bar) 513 that resonates in a bending deformation mode and a torsional deformation mode, and vibration is generated at the other end.
  • An input unit 515 is provided.
  • a mirror surface (not shown) is formed by performing mirror processing.
  • a laminated piezoelectric element 512 is bonded to the vibration input unit 515. Therefore, the vibration plate 511 is supported by the piezoelectric element 512 in the vibration input unit 515, and the scan unit 514 is supported by the elastic deformation unit 513.
  • the light receiving element 504 is configured by a photodiode or the like.
  • the scanner driving circuit 505 includes an AC voltage V B (t) having a frequency equal to the resonance frequency in the bending deformation mode of the elastic deformation portion 513 and an AC voltage V T (t) having a frequency equal to the resonance frequency in the torsion deformation mode.
  • V B (t) having a frequency equal to the resonance frequency in the bending deformation mode of the elastic deformation portion 513
  • V T (t) having a frequency equal to the resonance frequency in the torsion deformation mode.
  • the scanning angle of the light beam ⁇ (or the deflection angle of the scanning unit 514) can be known by detecting the voltage V (t) applied to the piezoelectric element 512, the piezoelectric element
  • the voltage values V B (t) and V T (t) applied to 512 are output from the scanner driving circuit 505 to the signal processing unit 506 as scanning angle information (or deflection angle information) 510.
  • the object recognition sensor when the object 508 exists in the scanning region 507 of the light beam ⁇ , the light beam ⁇ emitted from the light emitting element 501 and scanned by the optical scanner 503 is incident on the surface of the object 508 and reflected. The scattered light reflected by the object 508 is received by the light receiving element 504, and the presence of the object 508 is detected.
  • the light reception signal 509 of the light receiving element 504 is input to the signal processing unit 506.
  • the signal processing unit 506 receives the light reception signal 509 from the light receiving element 504, the signal processing unit 506 reads the scanning angle information 510 at that moment, converts it into coordinates, and detects the two-dimensional position of the object 508.
  • Document 1 describes that an object recognition sensor can be used in the fields of a code reader, a human body detection sensor, a two-dimensional photoelectric sensor, and the like.
  • the optical axis of the optical system including the light emitting element 501, the lens 502, and the optical scanner 503 is different from the optical axis of the light receiving element 504. Therefore, the light receiving element 504 is easily affected by disturbance light, and the entire sensor device is increased in size.
  • the present invention has been made in view of the above-described reasons, and an object thereof is to provide a sensor device that is not easily affected by ambient light and can be miniaturized.
  • the sensor device of the present invention includes a detection laser configured to emit detection laser light, an optical mirror configured to reflect the detection laser light toward the detection target space, and the detection target space. And a light detection unit configured to detect the detection laser light reflected on the side.
  • the sensor device further includes a half mirror, which is disposed so as to reflect and transmit a part and the remaining part of the detection laser light incident on the half mirror.
  • the said optical mirror consists of a MEMS device provided with a movable part and the mirror surface provided in this movable part.
  • the optical mirror reflects the detection laser light from the half mirror to the detection target space side by the mirror surface, and the detection laser light reflected from the detection target space side by the mirror surface. It arrange
  • the optical axis between the detection laser and the optical mirror and the optical axis between the optical mirror and the light detection unit are matched between the optical mirror and the half mirror.
  • the sensor device further includes a determination unit configured to determine the presence or absence of an object in the detection target space based on the output of the light detection unit.
  • the half mirror has the detection in which a part of the detection laser light emitted from the detection laser is reflected by the half mirror to the optical mirror and reflected by the detection target space side. It arrange
  • the sensor device includes a display unit disposed in the detection target space, a display laser configured to emit display laser light for performing predetermined display on the display unit, And a dichroic mirror positioned between the detection laser and the half mirror.
  • the dichroic mirror is configured so that the display laser light emitted from the display laser is reflected by the dichroic mirror toward the half mirror and the detection laser light from the detection laser is transmitted through the dichroic mirror. Composed.
  • the sensor device further includes a lens positioned between the half mirror and the light detection unit for condensing the detection laser light on a light receiving surface of the light detection unit. Further, the lens is arranged at a position where an image forming relationship is established with respect to the display unit.
  • the display unit includes a screen that retroreflects both the detection laser beam and the display laser beam.
  • the sensor device further includes a light shielding member that is disposed around an optical path of the detection laser light and the display laser light and blocks stray light.
  • the sensor device includes a housing that houses the detection laser, the half mirror, the optical mirror, the light detection unit, the display laser, the dichroic mirror, the lens, and the light shielding member.
  • the inner surface of the housing is a rough surface that scatters the stray light.
  • the sensor device of the present invention it is difficult to be influenced by disturbance light and can be miniaturized.
  • FIG. 1A is a schematic configuration diagram
  • FIGS. 1B to 1D are operation explanatory diagrams illustrating a sensor device according to an embodiment of the present invention. It is a principal part schematic perspective view of a sensor apparatus same as the above. It is a general
  • the sensor device includes a detection laser 401 configured to emit a detection laser beam LB1, a MEMS mirror 403 configured to reflect the detection laser beam LB1 toward the detection target space 405, and a detection target space. And a light detection unit (light receiving unit) 404 configured to detect (receive light) the detection laser beam LB1 reflected on the 405 side.
  • the sensor device further includes a half mirror (beam splitter) 402, which includes a part (typically half) and a remainder (typically another half) of the detection laser light LB1 incident on the half mirror 402. They are arranged to reflect and transmit, respectively.
  • the half mirror 402 reflects a part of the detection laser beam LB1 emitted from the detection laser 401 to the optical mirror 403 by the half mirror 402 (more specifically, only the half mirror 402), and A part of the detection laser beam LB1 reflected on the detection target space 405 side is disposed so as to pass through the half mirror 402 and enter the light detection unit 404.
  • the MEMS mirror 403 is a MEMS (micro electro mechanical systems) device, which includes a movable part 20 (see FIGS. 3, 4 and 5F) and a mirror surface 21 provided on the movable part 20 (FIG. 3, FIG. 5F).
  • the MEMS mirror 403 reflects the detection laser beam LB1 from the half mirror 402 to the detection target space 405 side by the mirror surface 21, and at least the detection laser beam LB1 reflected from the detection target space 405 side. 21 is arranged so as to be reflected toward the light detection unit 404 side.
  • the MEMS mirror 403 reflects the detection laser beam LB1 reflected by the half mirror 402 to the detection target space 405 side by the mirror surface 21, and also detects an object in the detection target space 405 (shown in FIG. 1).
  • the detection laser beam LB1 reflected by the finger 406 or the display unit 410 described later is arranged to be reflected by the mirror surface 21 (specifically, only by the mirror surface 21) toward the light detection unit 404.
  • the light detection unit 404 is located on the opposite side of the MEMS mirror 403 with the half mirror 402 interposed therebetween. Therefore, the light detection unit 404 detects the detection laser light LB1 reflected by the MEMS mirror 403 after being reflected by the object 406 or the display unit 410 in the detection target space 405.
  • the sensor device optionally further includes a determination unit 408 configured to determine the presence or absence of the object 406 in the detection target space 405 based on the output of the light detection unit 404.
  • the light detection unit 404 detects the detection laser light LB1 transmitted through the half mirror 402.
  • the MEMS mirror 403 constitutes an optical mirror.
  • the sensor device includes an optical axis OA1 between the detection laser 401 and the MEMS mirror 403, an optical axis OA2 between the MEMS mirror 403 and the light detection unit 404, and a gap between the MEMS mirror 403 and the half mirror 402. Are matched.
  • the sensor device includes a display unit 410 disposed in the detection target space 405, a display laser 411 configured to emit display laser light LB2 for performing predetermined display on the display unit 410, A dichroic mirror 412 positioned between the detection laser LB1 and the half mirror 402 is provided.
  • the dichroic mirror 412 reflects the display laser beam LB2 emitted from the display laser 411 to the half mirror 402 side by the dichroic mirror 412, and transmits the detection laser beam LB1 from the detection laser 401 through the dichroic mirror 412. It is optically designed.
  • the half mirror 402 is optically designed to transmit part of the detection laser beam LB1 and reflect the rest. Therefore, the half mirror 402 has a function of reflecting the detection laser beam LB1 emitted from the detection laser 401 to the MEMS mirror 403 side, and is reflected by the object 406 or the display unit 410 in the detection target space 405 and further the MEMS mirror 403.
  • the optical design is such that it has a function of transmitting the detection laser beam LB1 reflected by.
  • the half mirror 402 is optically designed to reflect the display laser beam LB2 from the display laser 411 in a predetermined direction (on the MEMS mirror 403 side).
  • the half mirror 402 is provided with a semi-transmissive layer that reflects part of the detection laser beam LB1 and transmits the remaining part on the MEMS mirror 403 side, and this semi-transmissive layer reflects the display laser beam LB2. It also serves as a wavelength selection layer.
  • the detection laser 401 a first semiconductor laser that emits infrared light is used as the detection laser light LB1.
  • the display laser 411 uses a second semiconductor laser that emits red light as the display laser beam LB2.
  • FIG. 1B indicates the travel path of the detection laser beam LB1 emitted from the detection laser 401 to the detection target space 405, and the solid line arrow in FIG. 1C is reflected by the display unit 410.
  • the traveling path of the detected laser LB1 is shown, and the solid line arrow in FIG. 1D shows the traveling path to the display unit 410 of the display laser beam LB2 emitted from the display laser 411.
  • the display laser 411 can be easily blinked and dimmed by turning on and off the second power supply for supplying power to the display laser 411 and controlling the duty ratio, and the display unit 410 can be controlled in a predetermined manner.
  • a virtual switch 440 as shown in FIG. 9 can be displayed.
  • the half mirror 402 is shared by the optical system for displaying an image on the display unit 410 and the optical system for detecting the object 406, the number of components can be reduced, and the size and weight can be reduced. Can be achieved.
  • the light detection unit 404 is a photodiode having sensitivity to infrared light, and its output changes according to the amount of received light. Therefore, in the sensor device, the reflectance of the reflecting surface on which the detection laser beam LB1 is reflected in the detection target space 405 changes depending on the presence / absence of the object 406 on the optical path of the detection laser beam LB1, so that the light The amount of light received by the detection unit 404 changes.
  • the reflectance of the reflection surface is determined by the display unit 410, but the detection laser beam LB1 light in the detection target space 405
  • the reflectance of the reflecting surface is determined by the object 406, so the amount of light received by the light detection unit 404 changes according to the difference in reflectance of the reflecting surface.
  • the sensor device includes a lens 407 positioned between the half mirror 402 and the light detection unit 404.
  • the lens 407 condenses the detection laser beam LB1 transmitted through the half mirror 402 on the light receiving surface 404a of the light detection unit 404.
  • the lens 407 is a biconvex lens, and is disposed at a position that is in an imaging relationship with the display unit 410.
  • the lens 407 has an imaging surface in the direction of the optical axis of the light detection unit 404.
  • the spot diameter of the detection laser beam LB1 is the minimum spot diameter at the position of the light receiving surface 404a of the light detection unit 404. Therefore, as shown in FIG. 6B, when the object 406 is present on the optical path of the detection laser beam LB1, the position of the imaging plane is shifted in the direction of the optical axis of the light detection unit 404.
  • the image 414 (see FIG. 6C) of the detection laser beam LB1 in the light detection unit 404 spreads (so-called image height changes, in other words, blur occurs without being in focus). It is possible to increase the change in the amount of light received by the light detection unit 404 due to the above. For example, assuming that the diameter of the light receiving surface 404a of the light detection unit 404 is 1 mm, and the image height is 1 mm when the object 406 is not present on the optical path of the detection laser beam LB1 as shown in FIG. Further, if the image height is 2 mm when the object 406 is present on the optical path of the detection laser beam LB1, the amount of light received by the light detection unit 404 is drastically reduced. Therefore, even when the difference between the reflectance of the object 406 and the reflectance of the display unit 410 is relatively small, the change in the amount of received light due to the presence or absence of the object 406 increases.
  • a screen whose reflected light intensity of the detection laser beam LB1 follows Lambert's cosine law that is, a screen on which the display unit 410 Lambert reflects the detection laser beam LB1 is used.
  • the amount of light received by the light detection unit 404 is small, and the change in the amount of light received by the light detection unit 404 due to the presence or absence of the object 406 is small, so the S / N ratio is small.
  • the display unit 410 is preferably composed of a screen that retroreflects the detection laser beam LB1.
  • a so-called retroreflective screen as the screen constituting the display unit 410.
  • the retroreflective screen is a screen that emits reflected light in the same direction as incident light, and has high reflection directivity. Therefore, if a retroreflective screen is used as the display unit 410, the amount of light received by the light detection unit 404 in the absence of the object 406 can be increased, and the change in the amount of light received by the light detection unit 404 depending on the presence or absence of the object 406. Can be increased, and the S / N ratio can be increased. Thereby, in the sensor device, the S / N ratio of the output of the light detection unit 404 can be improved, and the detection accuracy of the object 406 can be improved.
  • a retroreflector used for a retroreflective screen etc.
  • a reflection sheet in which glass beads for refracting light are two-dimensionally arranged, and a reflection in which prism lenses for refracting light are two-dimensionally arranged are used. Sheets and the like are known (for example, see http://www.kokusaku.com/3M.htm for this type of reflective sheet).
  • the MEMS mirror 403 is formed using a SOI (Silicon on ulator Insulator) substrate 100 that is a semiconductor substrate, and the mirror forming substrate 1 in which the mirror surface 21 is provided on the movable portion 20. It has. Further, the MEMS mirror 403 includes a first cover substrate 2 bonded to one surface (first surface) side where the mirror surface 21 is provided in the mirror forming substrate 1. The MEMS mirror 403 includes a second cover substrate 3 bonded to the other surface (second surface) side of the mirror forming substrate 1.
  • SOI Silicon on ulator Insulator
  • the mirror forming substrate 1 is formed by processing the above-described SOI substrate 100 by a bulk micromachining technique or the like.
  • an insulating layer (SiO2 layer) 100c is interposed between a conductive first silicon layer (active layer) 100a and a second silicon layer (silicon substrate) 100b.
  • the thickness of the first silicon layer 100a is set to 30 ⁇ m
  • the thickness of the second silicon layer 100b is set to 400 ⁇ m.
  • these numerical values are examples, and are not particularly limited. Absent.
  • the surface of the first silicon layer 10a which is one surface (first surface) of the SOI substrate 100, is the (100) surface.
  • the mirror forming substrate 1 includes an outer frame portion 10, the above-described movable portion 20 disposed inside the outer frame portion 10, and an outer frame portion 10 disposed so as to sandwich the movable portion 20 inside the outer frame portion 10.
  • a pair of first torsion spring portions 30 and 30 connected to the movable portion 20 are provided. Each of the first torsion spring portions 30 and 30 can be torsionally deformed.
  • the outer frame portion 10 has a frame shape (here, a rectangular frame shape), and each of an outer peripheral shape and an inner peripheral shape is formed in a rectangular shape.
  • the outer peripheral shape of each of the mirror forming substrate 1 and each of the cover substrates 2 and 3 is rectangular, and the outer dimensions of each of the cover substrates 2 and 3 are matched with the outer dimensions of the mirror forming substrate 1. is there.
  • the first cover substrate 2 is formed by using a first glass substrate 200 formed by stacking and joining two glass plates each made of Pyrex (registered trademark) glass in the thickness direction.
  • the second cover substrate 3 is formed using a second glass substrate 300 made of Pyrex (registered trademark) glass or the like. Note that the thicknesses of the first glass substrate 200 and the second glass substrate 300 are set in the range of about 0.5 mm to 1.5 mm, but these numerical values are examples and are not particularly limited. Absent.
  • the outer frame portion 10 of the mirror forming substrate 1 is formed using the first silicon layer 100a, the insulating layer 100c, and the second silicon layer 100b of the SOI substrate 100, respectively.
  • a portion of the outer frame portion 10 formed by the first silicon layer 100 a is joined to the outer peripheral portion of the first cover substrate 2 over the entire periphery.
  • the portion formed by the second silicon layer 100 b is bonded to the outer periphery of the second cover substrate 3 over the entire periphery.
  • the movable portion 20 and the torsion spring portions 30, 30 of the mirror forming substrate 1 are formed using the first silicon layer 100 a of the SOI substrate 100 and are sufficiently thinner than the outer frame portion 10. Yes.
  • the mirror surface 21 provided on the movable unit 20 reflects the detection laser beam LB1 from the detection laser 401 and the display laser beam LB2 from the display laser 411.
  • the reflective film 21a is made of a second metal film (for example, an Al—Si film) formed on a portion formed by the silicon layer 100a.
  • the thickness of the reflective film 21a is set to 500 nm, but this numerical value is an example and is not particularly limited.
  • the direction orthogonal to the juxtaposed direction of the pair of first torsion spring portions 30, 30 in plan view is the x-axis direction (first direction), and the pair of first torsion
  • the parallel arrangement direction of the spring portions 30 and 30 will be described as the y-axis direction (second direction)
  • the direction orthogonal to the x-axis direction and the y-axis direction will be described as the z-axis direction (third direction).
  • a pair of first torsion spring portions 30, 30 are arranged in parallel in the y-axis direction, and the movable portion 20 is a pair of first torsion spring portions 30, 30 with respect to the outer frame portion 10. It can be displaced around 30 (it can be rotated around an axis in the y-axis direction). That is, the pair of first torsion spring portions 30, 30 connects the outer frame portion 10 and the movable portion 20 so that the movable portion 20 can swing with respect to the outer frame portion 10.
  • the movable part 20 disposed inside the outer frame part 10 is connected to the outer frame via two first torsion spring parts 30 and 30 that are continuously and integrally extended in two opposite directions from the movable part 20.
  • the part 10 is supported so as to be swingable.
  • the pair of first torsion spring portions 30 and 30 are formed such that a straight line connecting the center lines along the y-axis direction passes through the center of gravity of the movable portion 20 in plan view.
  • Each of the torsion spring portions 30 and 30 has a thickness dimension (dimension in the z-axis direction) set to 30 ⁇ m and a width dimension (dimension in the x-axis direction) set to 5 ⁇ m, but these numerical values are examples.
  • the inner peripheral shape of the outer frame portion 10 is not limited to a rectangular shape, and may be a circular shape, for example.
  • the mirror forming substrate 1 described above is perpendicular to the direction in which the pair of first torsion spring portions 30 and 30 are connected in the movable portion 20 (the direction in which the pair of first torsion spring portions 30 and 30 are juxtaposed) (that is, Comb-shaped first movable electrodes 22 are formed on both sides in the x-axis direction). Further, the mirror forming substrate 1 includes comb-shaped first fixed electrodes 12 and 12, which are formed on the outer frame portion 10 so as to face (adjacent) the first movable electrodes 22 and 22, respectively. Has been.
  • Each first fixed electrode 12 has a plurality of fixed comb teeth 12b facing (adjacent) to the plurality of movable comb teeth 22b of the first movable electrode 22 facing each other.
  • the first movable electrodes 22 and 22 and the first fixed electrodes 12 and 12 constitute an electrostatic drive type first driving means for driving the movable portion 20 by electrostatic force.
  • the first driving means drives the movable portion 20 by electrostatic force, but is not limited to an electrostatic drive type, and for example, an electromagnetic drive type that drives the movable portion 20 by an electromagnetic force.
  • a piezoelectric drive type in which the movable portion 20 is driven by a piezoelectric element may be used.
  • the first fixed electrode 12 has a comb shape in plan view, and a portion of the outer frame portion 10 formed by the first silicon layer 100a in the frame piece portion along the y-axis direction is comb-shaped.
  • the bone part 12a is comprised.
  • the first fixed electrode 12 has a pair of fixed comb teeth 12b on the surface facing the movable portion 20 in the comb bone portion 12a (inner side surface along the y-axis direction in the outer frame portion 10).
  • the torsion spring portions 30 are arranged in a line along the direction in which the torsion spring portions 30 and 30 are juxtaposed.
  • each fixed comb tooth piece 12b is constituted by a part of the first silicon layer 100a.
  • the first movable electrode 22 is a fixed comb on the side surface (side surface along the y-axis direction in the movable portion 20) of the comb portion 12 a on the comb bone portion 12 a side of the first fixed electrode 12 in the movable portion 20.
  • a large number of movable comb teeth 22b respectively facing the teeth 12b are arranged in the parallel direction.
  • each movable comb-tooth piece 22b is constituted by a part of the first silicon layer 100a.
  • the comb bone portions 12 a and 22 a face each other, and each fixed comb tooth piece 12 b of the first fixed electrode 12 corresponds to the first movable electrode 22.
  • the comb grooves (between adjacent movable comb teeth 22b, 22b) are arranged, and the fixed comb teeth 12b and the movable comb teeth 22b are separated from each other in the y-axis direction. Therefore, in the first driving means, a voltage is applied between the first fixed electrode 12 and the first movable electrode 22, so that the gap between the first fixed electrode 12 and the first movable electrode 22 is applied. An electrostatic force acting in a direction attracting each other is generated.
  • the gap between the fixed comb tooth piece 12b and the movable comb tooth piece 22b in the y-axis direction may be set as appropriate within a range of, for example, about 2 ⁇ m to 5 ⁇ m.
  • the movable part 20 includes a frame-like (here, rectangular frame-like) movable frame part 23 supported by the outer frame part 10 through a pair of first torsion spring parts 30 and 30 in a swingable manner,
  • a mirror part 24 provided inside the movable frame part 23 and provided with a mirror surface 21 and a mirror part 24 arranged inside the movable frame part 23 so as to sandwich the mirror part 24 are connected and twisted. It has a pair of 2nd torsion spring parts 25 and 25 which can be changed.
  • the second torsion springs 25 and 25 are juxtaposed in a direction (x-axis direction) orthogonal to the juxtaposition direction (y-axis direction) of the first torsion springs 30 and 30.
  • the movable portion 20 has a pair of second torsion spring portions 25, 25 arranged in parallel in the x-axis direction
  • the mirror portion 24 is a pair of second torsion spring portions 25 with respect to the movable frame portion 23.
  • 25 (displaceable around the axis in the x-axis direction). That is, the pair of second torsion spring portions 25, 25 connect the movable frame portion 23 and the mirror portion 24 so that the mirror portion 24 can swing with respect to the movable frame portion 23.
  • the mirror part 24 disposed inside the movable frame part 23 is movable frame part via two second torsion spring parts 25, 25 extended continuously and integrally from the mirror part 24 in two opposite directions. 23 is swingably supported.
  • the pair of second torsion spring portions 25 and 25 are formed such that a straight line connecting the center lines along the x-axis direction passes through the center of gravity of the mirror portion 24 in plan view.
  • Each second torsion spring portion 25 has a thickness dimension (dimension in the z-axis direction) set to 30 ⁇ m and a width dimension (dimension in the y-axis direction) set to 30 ⁇ m.
  • these numerical values are only examples. There is no particular limitation.
  • planar view shape of the mirror part 24 and the mirror surface 21 is not restricted to a rectangular shape, For example, a circular shape may be sufficient.
  • the inner peripheral shape of the movable frame portion 23 is not limited to a rectangular shape, and may be a circular shape, for example.
  • the mirror portion 24 is configured to rotate around the axis of the pair of first torsion spring portions 30 and 30 and rotate around the axis of the pair of second torsion spring portions 25 and 25.
  • the MEMS mirror 403 is configured such that the mirror surface 21 of the mirror section 24 is two-dimensionally rotatable, and can scan the detection laser beam LB1 and the display laser beam LB2 two-dimensionally.
  • the movable portion 20 is integrally provided with a frame-shaped (rectangular frame-shaped) support body 29 that supports the movable frame portion 23 on the opposite side of the movable frame portion 23 to the first cover substrate 2 side. The support 29 can be rotated integrally with the movable frame portion 23.
  • the mirror forming substrate 1 is perpendicular to the direction connecting the pair of second torsion spring portions 25, 25 in the mirror portion 24 (ie, the direction in which the pair of second torsion spring portions 25, 25 are juxtaposed) (that is, Comb-shaped second movable electrodes 27, 27 formed on both sides in the y-axis direction) and comb-shaped second fixed electrodes 26, 26 are provided.
  • the second fixed electrodes 26 and 26 are formed on the movable frame portion 23 so as to face (adjacent) the second movable electrodes 27 and 27, respectively.
  • Each of the second fixed electrodes 26 has a plurality of fixed comb teeth pieces 26b that face (adjacent) each of the plurality of movable comb teeth pieces 27b of the second movable electrode 27 facing each other.
  • the second movable electrodes 27, 27 and the second fixed electrodes 26, 26 constitute an electrostatically driven second driving means for driving the mirror portion 24 by electrostatic force.
  • the above-described second fixed electrode 26 has a comb shape in plan view, and the comb bone portion 26a is constituted by a part of the movable frame portion 23.
  • a large number of fixed comb teeth pieces 26b are formed on a surface facing the mirror portion 24 of the comb portion 26a of the second fixed electrode 26 (an inner surface along the x-axis direction of the movable frame portion 23).
  • the second torsion spring portions 25 are arranged in a line along the direction in which the second torsion spring portions 25 and 25 are juxtaposed.
  • the second movable electrode 27 is configured by a part of the mirror portion 24, and the side surface of the second fixed electrode 26 on the side of the comb portion 26 a (the side surface along the x-axis direction in the mirror portion 24) A large number of movable comb teeth 27b facing the fixed comb teeth 26b are arranged in the parallel direction.
  • the comb bone portions 26a and 27a are opposed to each other, and each fixed comb tooth piece 26b of the second fixed electrode 26 is
  • the second movable electrode 27 is inserted into a comb groove (between adjacent movable comb teeth 27b), and the fixed comb teeth 26b and the movable comb teeth 27b are separated from each other in the x-axis direction. Therefore, the mirror forming substrate 1 is applied between the second fixed electrode 26 and the second movable electrode 27 by applying a voltage between the second fixed electrode 26 and the second movable electrode 22. Electrostatic forces acting in the direction of attracting each other are generated.
  • the gap between the fixed comb tooth piece 26b and the movable comb tooth piece 27b in the x-axis direction may be set as appropriate within a range of about 2 ⁇ m to 5 ⁇ m, for example.
  • the mirror forming substrate 1 is arranged in parallel at substantially equal intervals on the outer frame portion 10 so that the three pads 13 are arranged in a straight line in a plan view.
  • the first cover substrate 2 is provided with three through holes 202 that expose the pads 13 separately.
  • Each pad 13 has a circular shape in plan view, and is composed of a first metal film (for example, an Al—Si film).
  • the film thickness of each pad 13 is set to 500 nm, but this numerical value is an example and is not particularly limited.
  • the mirror forming substrate 1 is formed with a plurality of (here, three) slits 10 a in the portion formed by the first silicon layer 100 a in the outer frame portion 10, and the first in the movable frame portion 23 of the movable portion 20.
  • a plurality of (here, four) slits 20a are formed in a portion formed by the silicon layer 100a.
  • the plurality of slits 10a of the outer frame portion 10 are formed with a depth reaching the insulating layer 100c.
  • the MEMS mirror 403 according to the present embodiment forms the slits 10a in the outer frame portion 10 by using the slits 10a as trenches and making the shape of each slit 10a in plan view not open to the outer surface side of the outer frame portion 10. While adopting the above structure, it is possible to prevent the bonding property between the outer frame portion 10 and the first cover substrate 2 from being lowered, and the airtightness of the space surrounded by the outer frame portion 10 and the respective cover substrates 2 and 3 Is secured.
  • each slit 20a of the movable frame portion 23 in the movable portion 20 is a trench
  • the above-described support 29 is configured by a part of the insulating layer 100c of the SOI substrate 100 and a part of the second silicon layer 100b. The depth reaches the insulating layer 100c.
  • the MEMS mirror 403 employs a configuration in which the movable frame portion 23 is formed with a plurality of slits 20a, but the movable frame portion 23 and the support 29 are the shafts of the pair of first torsion spring portions 30 and 30. It is possible to rotate integrally around.
  • the support 29 is formed in a frame shape that covers a portion of the movable frame portion 23 excluding each fixed comb tooth piece 26b and each movable comb tooth piece 22b (see FIG. 4).
  • the plurality of trenches 20a of the movable frame portion 23 has the center of gravity of the movable portion 20 including the support 29 centered along the y-axis direction of the pair of first torsion spring portions 30 and 30 in plan view.
  • the shape is designed so that it is located approximately in the middle of the connecting straight line. Therefore, in the MEMS mirror 403 in the present embodiment, the movable portion 20 smoothly swings around the axis of the pair of first torsion spring portions 30 and 30, and the reflected light is appropriately scanned.
  • the thickness of the portion constituted by the second silicon layer 100b in the support 29 is set to the same thickness as the portion constituted by the second silicon layer 100b in the outer frame portion 10. However, it is not limited to the same, and may be thicker or thinner.
  • the first cover substrate 2 uses the first glass substrate 200 as described above, and penetrates in the thickness direction of the first glass substrate 200 to expose each pad 13 over the entire circumference.
  • a through hole 202 is formed.
  • each through hole 202 of the first glass substrate 200 is formed in a tapered shape in which the opening area gradually increases as the distance from the mirror forming substrate 1 increases.
  • Each through-hole 202 is formed by sandblasting.
  • the method of forming each through-hole 202 is not limited to the sand blast method, and a drilling method, an etching method, or the like may be employed.
  • the MEMS mirror 403 has a circular shape in plan view of each pad 13 so that the opening diameter of each through-hole 202 on the first mirror forming substrate 1 side is larger than the diameter of each pad 13. is there.
  • the diameter of each pad 13 is set to 0.5 mm, but is not particularly limited.
  • the planar view shape of each pad 13 is not necessarily a circular shape, and may be a square shape, for example, but in order to reduce the opening diameter of each through hole 202, the circular shape is more preferable than the square shape. preferable.
  • the first cover substrate 2 does not overlap each pad 13, and one pad 13 is provided between the first cover substrate 2 and the outer frame portion 10. There is no intervening part. Therefore, in the MEMS mirror 403, it is possible to prevent the bonding between the first cover substrate 2 and the outer frame portion 10 of the mirror forming substrate 1 from being hindered by each pad 13. As a result, in the MEMS mirror 403, it is possible to prevent the bondability and airtightness from being affected by the thickness of each pad 13, and to reduce the cost by improving the yield without increasing the width dimension of the outer frame portion 10. It is possible to reduce the operational stability and the temporal stability.
  • the airtight space surrounded by the outer frame portion 10 of the mirror forming substrate 1 and each of the cover substrates 2 and 3 is made a vacuum (vacuum atmosphere), so that the movable portion 20 can be reduced while reducing power consumption.
  • the mechanical deflection angle of the mirror unit 24 can be increased. Therefore, in the MEMS mirror 403, the airtight space is evacuated and non-evaporated to an appropriate portion inside the portion of the second cover substrate 3 facing the mirror forming substrate 1 that is bonded to the outer frame portion 10.
  • a mold getter (not shown) is provided.
  • the non-evaporable getter may be formed of, for example, an alloy containing Zr as a main component or an alloy containing Ti as a main component.
  • the airtight space surrounded by the outer frame portion 10, the first cover substrate 2, and the second cover substrate 3 may be an inert gas atmosphere (for example, a dry nitrogen gas atmosphere). Good.
  • the mirror surface 21 can be prevented from being oxidized regardless of whether the airtight space is a vacuum atmosphere or an inert gas atmosphere. It is possible to suppress the change with time of the reflection characteristics.
  • the first glass substrate 200 has a first recess 201 for securing a displacement space of the movable portion 20 on the surface facing the mirror forming substrate 1.
  • the first glass substrate 200 is formed by joining two glass plates as described above. Therefore, the first glass substrate 200 penetrates in a thickness direction in a portion corresponding to the first recess 201 in a glass plate (hereinafter referred to as a first glass plate) disposed on the side close to the mirror forming substrate 1.
  • a glass plate (hereinafter referred to as a second glass plate) that forms the aperture and is disposed on the side far from the mirror-forming substrate 1 has a flat plate shape.
  • the first glass substrate 200 can have a smooth surface on the inner bottom surface of the first recess 201 as compared with the case where the first recess 201 is formed by sandblasting or the like. Diffuse reflection, light diffusion, scattering loss, and the like on the inner bottom surface of 201 can be reduced.
  • the second cover substrate 3 has a second recess 301 for securing a displacement space of the movable portion 20 on the one surface of the second glass substrate 300 on the mirror forming substrate 1 side.
  • the concave portion 301 when the concave portion 301 is formed on the one surface (first surface) of the second glass substrate 300, for example, it may be formed by a sandblast method or the like.
  • the second cover substrate 3 may be formed by joining two glass plates.
  • a glass plate hereinafter referred to as a glass plate disposed on the side close to the mirror forming substrate 1).
  • a glass plate hereinafter referred to as a fourth glass plate) disposed on the side far from the mirror forming substrate 1 while forming an opening portion penetrating in the thickness direction at a portion corresponding to the second recess 301 in the third glass plate). (Referred to as a glass plate) may be flat.
  • the second cover substrate 3 Since the second cover substrate 3 does not need to transmit light, the second cover substrate 3 is not limited to the second glass substrate 300 but can be easily bonded to the mirror forming substrate 1 and is made of a material of the semiconductor substrate (SOI substrate 100).
  • a substrate formed of a material having a small difference in linear expansion coefficient from Si may be used.
  • the substrate may be formed using a silicon substrate.
  • the second recess 301 is formed by a photolithography technique and an etching technique. What is necessary is just to form using.
  • the airtight space surrounded by the outer frame portion 10, the first cover substrate 2 and the second cover substrate 3 is evacuated so that the power consumption can be reduced. Since the mechanical deflection angle of the portion 20 can be increased, the airtight space is evacuated and the getter described above is disposed on the inner bottom surface of the second recess 301.
  • the thicknesses of the first cover substrate 2 and the second cover substrate 3 are set in a range of about 0.5 mm to 1.5 mm, and the first recess 201 and the second recess 301 are formed.
  • the depth is set in the range of 300 ⁇ m to 800 ⁇ m, these numerical values are merely examples, and may be set appropriately according to the amount of displacement of the movable part 20 in the z-axis direction (that is, the rotation of the movable part 20).
  • the depth is not particularly limited as long as the depth does not hinder dynamic movement.
  • Pyrex which is a borosilicate glass
  • Pyrex which is a borosilicate glass
  • a borosilicate glass for example, soda lime glass, non-alkali glass, quartz glass, etc. It may be adopted.
  • FIGS. 5A to 5F show schematic cross sections of a portion corresponding to the cross section AB of FIG.
  • This first silicon oxide film patterning step corresponds to a portion of the first silicon oxide film 111a other than the region where the reflective film 21a is to be formed in the movable portion 20, the first torsion spring portions 30, 30 and the like.
  • the first silicon oxide film 111a is patterned so that a part or the like remains.
  • a metal film for example, Al—Si film having a predetermined film thickness (for example, 500 nm) is formed on the one surface (first surface) side of the SOI substrate 100 by sputtering or vapor deposition. 5C by performing a metal film patterning process for forming each pad 13 and the reflective film 21a by patterning the metal film using a photolithography technique and an etching technique. The structure shown in is obtained.
  • the material and film thickness of each pad 13 and the reflective film 21a are set to be the same, each pad 13 and the reflective film 21a are formed simultaneously.
  • the pad forming process for forming each pad 13 and the reflective film forming process for forming the reflective film 21a may be provided separately.
  • the movable frame portion 23, the mirror portion 24, and the pair of first first layers of the first silicon layer 100a are formed on the one surface (first surface) side of the SOI substrate 100.
  • a first resist layer 130 patterned so as to cover a portion corresponding to the electrode 27 is formed. After that, using the first resist layer 130 as a mask, the first silicon layer 100a is patterned by etching the first silicon layer 100a to a depth (first predetermined depth) reaching the insulating layer 100c. The structure shown in FIG.
  • Etching of the first silicon layer 100a in the first silicon layer patterning step may be performed by a dry etching apparatus capable of highly anisotropic etching, such as an inductively coupled plasma etching apparatus.
  • the insulating layer 100c is used as an etching stopper layer.
  • the first resist layer 130 on the one surface (first surface) side of the SOI substrate 100 is removed. Thereafter, a second resist layer 131 is formed on the entire surface of the SOI substrate 100 on the one surface (first surface) side. Subsequently, on the other surface (second surface) side of the SOI substrate 100, a third resist patterned so as to expose portions of the second silicon layer 100b other than those corresponding to the outer frame portion 10 and the support 29. Layer 132 is formed. Thereafter, by using the third resist layer 132 as a mask, the second silicon layer 100b is patterned by etching the second silicon layer 100b to a depth (second predetermined depth) reaching the insulating layer 100c.
  • Etching of the second silicon layer 100b in the second silicon layer patterning step may be performed by a dry etching apparatus having high anisotropy and capable of vertical deepening, such as an inductively coupled plasma etching apparatus.
  • the insulating layer 100c is used as an etching stopper layer.
  • a mirror forming substrate is formed by performing an insulating layer patterning step of etching unnecessary portions of the insulating layer 100c of the SOI substrate 100 from the other surface (second surface) side of the SOI substrate 100. 1 is formed. Subsequently, the second resist layer 131 and the third resist layer 132 are removed. The silicon oxide film 111b is also removed. Thereafter, by performing a joining step of joining the mirror forming substrate 1 to the first cover substrate 2 and the second cover substrate 3 by anodic bonding or the like, the MEMS mirror 403 having the structure shown in FIG. 5F is obtained.
  • the first bonding process first, a laminated body in which the first cover substrate 2 in which the first concave portion 201 and each through hole 202 are formed on the first glass substrate 200 and the mirror forming substrate 1 are overlapped. Is heated to a predetermined bonding temperature (for example, about 300 ° C. to 400 ° C.) in a vacuum with a predetermined degree of vacuum (for example, 10 Pa or less), between the first silicon layer 100a and the first cover substrate 2.
  • a predetermined bonding temperature for example, about 300 ° C. to 400 ° C.
  • a predetermined degree of vacuum for example, 10 Pa or less
  • a predetermined voltage for example, about 400 V to 800 V
  • a predetermined bonding time for example, about 20 minutes to 60 minutes.
  • anodic bonding between the second silicon layer 100b and the second cover substrate 3 is performed in accordance with the first bonding process described above.
  • the bonding method for bonding the mirror forming substrate 1 and the cover substrates 2 and 3 is not limited to anodic bonding, and may be, for example, a room temperature bonding method.
  • the SOI substrate 100 and the first cover substrate 2 are bonded together, and then the second silicon layer patterning step and the insulating layer patterning step are performed, so that the mirror forming substrate 1 is formed. Then, the mirror forming substrate 1 and the second cover substrate 3 may be bonded.
  • a pulse voltage for driving the movable portion 20 is applied between the first movable electrode 22 and the first fixed electrode 12 facing each other via the pair of pads 13 and 13. Electrostatic force is generated between the first movable electrode 22 and the first fixed electrode 12, and the movable part 20 rotates about the axis in the y-axis direction.
  • an electrostatic force can be periodically generated by applying a pulse voltage having a predetermined drive frequency between the first movable electrode 22 and the first fixed electrode 12.
  • the movable part 20 can be swung.
  • the above-described movable portion 20 is not in a horizontal posture (a posture parallel to the xy plane) and is tilted slightly though it is stationary due to internal stress.
  • the first movable electrode When a pulse voltage is applied between the first fixed electrode 12 and the first fixed electrode 12, a driving force in a direction substantially perpendicular to the movable portion 20 (z-axis direction) is applied to the movable portion 20 even from a stationary state. Rotates while twisting the pair of first torsion springs 30, 30 about the pair of first torsion springs 30, 30.
  • the movable portion 20 is moved between the pair of first torsion spring portions 30 and 30.
  • rotation in the opposite direction is started.
  • the movable part 20 repeats the rotation by the driving force of the first driving means and the restoring force of the pair of first torsion spring parts 30, 30 to rotate the pair of first torsion spring parts 30, 30. Swings as a shaft.
  • the application form and frequency of the drive voltage between the 1st movable electrode 22 and the 1st fixed electrode 12 are not specifically limited,
  • the 1st movable electrode 22 and the 1st fixed electrode 12 are used.
  • the voltage applied between the two may be a sine wave voltage.
  • the MEMS mirror 403 includes, for example, the first fixed electrode 12 and the second movable electrode using the potential of the pad 13a to which the first movable electrode 22 and the second fixed electrode 26 are electrically connected as a reference potential. 27.
  • the movable portion 20 can be rotated about the axis of the pair of first torsion spring portions 30, 30, and the mirror portion 24 can be turned to the pair of second torsion springs.
  • the spring portions 25 and 25 can be rotated around the axis.
  • a pulse voltage for driving the movable portion 20 is interposed between the opposed first fixed electrode 12 and first movable electrode 22 via the pair of pads 13b and 13a.
  • an electrostatic force is generated between the first fixed electrode 12 and the first movable electrode 22, and the movable part 20 rotates about the axis in the y-axis direction.
  • a pulse voltage for driving the mirror portion 24 is applied between the opposed second fixed electrode 26 and the second movable electrode 27 via the pair of pads 13a and 13c.
  • an electrostatic force is generated between the second fixed electrode 26 and the second movable electrode 27, and the mirror portion 24 rotates about the axis in the x-axis direction. Therefore, in the MEMS mirror 403 in this embodiment, an electrostatic force is periodically generated by applying a pulse voltage having a predetermined first driving frequency between the first fixed electrode 12 and the first movable electrode 22.
  • the entire movable part 20 can be swung, and a pulse voltage of a predetermined second driving frequency is applied between the second fixed electrode 26 and the second movable electrode 27. By doing so, an electrostatic force can be periodically generated and the mirror part 24 of the movable part 20 can be swung.
  • the mirror forming substrate 1 is formed on the surface of the portion of the first silicon layer 100a where the reflective film 21a is not formed on the space surrounded by the outer frame portion 10 and the first cover substrate 2.
  • a film 111a (see FIG. 5F) is formed.
  • the vibration system configured by the movable portion 20 and the pair of first torsion spring portions 30 and 30 between the first fixed electrode 12 and the first movable electrode 22 is used.
  • a pulse voltage having a frequency approximately twice the resonance frequency the movable part 20 is driven with a resonance phenomenon, and the mechanical deflection angle (inclination with respect to a horizontal plane parallel to the xy plane) is increased.
  • the mirror unit 24 is driven with a resonance phenomenon, and a mechanical deflection angle (on the surface of the movable frame unit 23 on the first cover substrate 2 side) is driven. (Tilt with respect to parallel plane as reference) increases.
  • the determination unit controls the first laser driving device that drives the detection laser 401, the second laser driving device that drives the display laser 411, and the mirror driving device that drives the MEMS mirror 403. And the like (not shown).
  • the mirror driving device is constituted by a first driving means constituted by the first movable electrode 22 and the first fixed electrode 12, a second movable electrode 27 and a second fixed electrode 26. Second driving means, and a power source for applying the first driving voltage to the first driving means and applying the second driving voltage to the second driving means.
  • the control device detects a mechanical deflection angle of the movable portion 20 relative to the fixed frame portion 10 with a first driving voltage applied from the power source to the first driving means of the MEMS mirror 403. And a second driving voltage applied from the power source to the second driving unit of the MEMS mirror 403 to detect the mechanical deflection angle of the mirror unit 24 with respect to the movable frame unit 23.
  • the second DC bias voltage is superimposed and applied.
  • the movable part 20 is By monitoring the first DC bias voltage between the pair of pads 13b, 13a for driving, the inclination of the movable portion 20 relative to the fixed frame portion 10 can be detected. Further, since a minute voltage change occurs in the second DC bias voltage in accordance with a change in the relative position (mechanical deflection angle) of the mirror unit 24 with respect to the movable frame unit 23, the mirror unit 24 is driven in the control device.
  • the control device can determine the normal direction of the center of the mirror surface 21 based on these inclinations, and the reflection directions (displays) of the detection laser beam LB and the display laser beam LB2 reflected by the mirror surface 21.
  • the scanning position on the portion 410 can be obtained.
  • the control device includes a memory that stores data in which the reflection direction of the MEMS mirror 403 and the drive condition of the display laser 411 are associated with each other in accordance with a predetermined image displayed on the display unit 410.
  • the drive condition of the display laser 411 is changed based on the data stored in the memory.
  • the sensor device installs the display unit 410 near the door 470 on the indoor wall surface 460, and the display unit 410 has an external device (for example, a lighting device, an air conditioner, or a television). It is possible to display an image of a virtual switch (hereinafter referred to as a virtual switch) 440 for ON / OFF control of the image and to detect the presence or absence of the object 406 at an arbitrary position in the detection target space 405. Become.
  • a virtual switch hereinafter referred to as a virtual switch
  • the object 406 is at the position of the virtual first switch element 441 composed of a square image on the left side of the character “ON”, and the character “OFF”.
  • the determination unit can determine when the object 406 is present at the position of the virtual second switch element 442 formed of the left square image. Therefore, in accordance with the determination result of the determination unit, a transmission unit that transmits to the external device a remote control signal for on / off control of a switch inserted between the external device and a power source that supplies power to the external device
  • a transmission unit that transmits to the external device a remote control signal for on / off control of a switch inserted between the external device and a power source that supplies power to the external device
  • an antenna such as an antenna
  • an embedding hole for embedding an embedding type switch which is a kind of embedding type wiring apparatus, can be formed in a construction material such as an indoor wall
  • the virtual switch 440 can be provided by installing the display unit 410 on the wall surface 460 formed of the surface of the construction material without providing the preceding wiring for constructing the wiring device on the back of the wall or the like. In installing the display unit 410 on the construction material, for example, the
  • the sensor device described above includes a housing 420 that houses a detection laser 401, a half mirror 402, a MEMS mirror 403, a light detection unit 404, a display laser 411, a dichroic mirror 412, a lens 407, and the like.
  • a passage portion (not shown) is formed that allows the detection laser light LB1 (see FIG. 1C) reflected by the display portion 410 and the object 406 to travel toward the MEMS mirror 403.
  • This passing portion may be a through hole or may be formed of a material that transmits the detection laser beam LB1 and the display laser beam LB2.
  • a holding member (not shown) that positions and holds the detection laser 401, the half mirror 402, the MEMS mirror 403, the light detection unit 404, the display laser 411, the dichroic mirror 412, the lens 407, and the like. ) Is arranged.
  • a part of the detection laser beam LB1 is scattered by the half mirror 402, the MEMS mirror 403, or the like, or reflected by the inner surface of the housing 420, so that the light receiving surface of the light detection unit 404 is received.
  • stray light that reaches 404a may be generated, and the S / N ratio of the output of the light detection unit 404 may decrease.
  • the sensor device includes a light shielding member 430 disposed around the optical path of the detection laser beam LB1 and the display laser beam LB2 to block stray light.
  • a light shielding member 430 disposed around the optical path of the detection laser beam LB1 and the display laser beam LB2 to block stray light.
  • the light shielding member 430 is formed of a black resin molded product, it is sufficient that the light shielding member 430 can block stray light, and the material and forming method of the light shielding member 430 are not particularly limited. In the illustrated example, six light shielding members 430 are provided, but the number of light shielding members 430 is not particularly limited, and may be one.
  • the inner surface of the housing 420 is preferably a rough surface that scatters stray light. Accordingly, the sensor device can reduce stray light that reaches the light receiving surface 404a of the light detection unit 404.
  • a processing method for making the inner surface of the housing 420 rough for example, there is blast processing.
  • the means for reducing the stray light that enters the inner surface of the housing 420 and reaches the light receiving surface 404a of the light detection unit 404 is not limited to the example in which the inner surface of the housing 420 is a rough surface.
  • the inner surface side of the housing 420 may be painted with a black coating material, or black alumite may be formed.
  • a body 420a (see FIG. 8A) that constitutes a part of the housing 420 is prepared. After the holding member is attached to the body 420a, as shown in FIG. In 420a, a detection laser 401, a half mirror 402, a MEMS mirror 403, a light detection unit 404, a display laser 411, a dichroic mirror 412, a lens 407, and the like are arranged, and the detection laser 401 is driven to detect the light detection unit 404. The optical axis is adjusted so that the output of is maximized (passive alignment is performed). Subsequently, as shown in FIG. 8C, a light shielding member 430 is disposed. Thereafter, a cover (not shown) that forms the housing 420 together with the body 420a may be coupled to the body 420a.
  • the detection laser 401, the half mirror 402 that reflects and transmits the detection laser light LB1 emitted from the detection laser 401, and the detection laser reflected by the half mirror 402 The MEMS mirror 403 that reflects the light LB1 to the detection target space 405 side, and is reflected by the MEMS mirror 403 after being reflected by the object 406 in the detection target space 405 that is located on the opposite side of the MEMS mirror 403 across the half mirror 402.
  • the detection laser beam LB1 and the determination unit that determines the presence or absence of the object 406 in the detection target space 405 based on the output of the light detection unit 404.
  • the detection laser 401 and the MEMS Optical axis OA1 between the mirror 403 and optical axis OA between the MEMS mirror 403 and the light detection unit 404 Preparative, so are matched between the MEMS mirror 403 and the half mirror 402, less affected by ambient light, and makes it possible to downsize.
  • the display unit 410 disposed in the detection target space 405, the display laser 411, the detection laser 401, and the half mirror 402 are positioned and emitted from the display laser 411.
  • the half mirror 402 is for display from the display laser 401. Since the laser beam LB2 is reflected toward the MEMS mirror 403, the half mirror 402 and the MEMS mirror 403 are shared by the optical system for displaying an image on the display unit 410 and the optical system for detecting the object 406.
  • the majority of the optical axes of both optical systems can be aligned on the same axis, and these optical systems have separate optical paths. Compared to the case of the determination, the size and weight can be reduced, and the optical paths of the detection laser beam LB1 and the display laser beam LB2 in the detection target space 405 can be matched with high accuracy. .
  • the sensor device is not limited to the arrangement shown in FIG. 1A, and may be arranged as shown in FIG.
  • the light detection unit 404 detects the detection laser light LB ⁇ b> 1 reflected by the half mirror 402. 10
  • the optical axis OA1 between the detection laser 401 and the MEMS mirror 403 and the optical axis OA2 between the MEMS mirror 403 and the light detection unit 404 are also expressed in the same manner as in the configuration of FIG. 1A.
  • the mirror 403 and the half mirror 402 are matched. In the example of FIG.
  • a part of the detection laser light emitted from the detection laser 401 passes through the half mirror 402 and enters the optical mirror 403, and is reflected on the detection target space 405 side.
  • a part of the detected laser light is arranged to be reflected by the half mirror 402 toward the light detection unit 404.
  • the MEMS mirror 403 reflects the detection laser beam LB1 transmitted through the half mirror 402 to the detection target space 405 side by the mirror surface 21, and also detects the detection laser reflected by the object 406 or the display unit 410 in the detection target space 405. It arrange
  • each of the sensor devices described above includes a display laser 412, a dichroic mirror 412, a display unit 410, and the like, which may be provided as appropriate according to the application of the sensor device.
  • the MEMS mirror 403 constituting the optical mirror does not necessarily need to scan the detection laser beam LB1 two-dimensionally, and the reflection direction may be fixed in a specific direction according to the application of the sensor device.
  • the object 406 is not limited to the finger of a human hand.

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Micromachines (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

This sensor device is so configured as to reflect, by means of an optical mirror, a laser beam for detection to the side of a space to be detected, said laser beam being emitted from a laser device for detection, and to detect, by means of a light detecting unit, the laser beam reflected on the side of the space to be detected. The sensor device includes a half mirror, and the half mirror is disposed such that a part of the laser beam inputted to the half mirror is reflected and the rest is passed through. Between the optical mirror and the half mirror, the optical axis between the laser device and the optical mirror accords with the optical axis between the optical mirror and the light detecting unit.

Description

センサ装置Sensor device
 本発明は、センサ装置に関するものである。 The present invention relates to a sensor device.
 従来から、図11に示す構成の物体認識センサが提案されている(日本国特許出願公開番号6-044398A(以下「文献1」という))。この物体認識センサは、光ビームαを出射する発光素子501と、光ビーム整形用のレンズ502と、光ビームαを2次元的に走査させるための光スキャナ503と、受光素子504と、スキャナ駆動回路505と、信号処理部506とを備えている。 Conventionally, an object recognition sensor having the configuration shown in FIG. 11 has been proposed (Japanese Patent Application Publication No. 6-04398A (hereinafter referred to as “Document 1”)). This object recognition sensor includes a light emitting element 501 that emits a light beam α, a light beam shaping lens 502, an optical scanner 503 that scans the light beam α two-dimensionally, a light receiving element 504, and a scanner drive. A circuit 505 and a signal processing unit 506 are provided.
 上述の発光素子501は、半導体レーザ素子や発光ダイオードなどにより構成されている。また、光ビーム整形用のレンズ502は、発光素子501から出射された光ビームαを集光もしくはコリメート化するために設けられている。 The above-described light emitting element 501 is constituted by a semiconductor laser element, a light emitting diode, or the like. The light beam shaping lens 502 is provided for condensing or collimating the light beam α emitted from the light emitting element 501.
 光スキャナ503は、振動プレート511と、圧電素子512とで構成されている。振動プレート511は、シリコン製の薄板材によって形成されており、曲げ変形モードおよび捩れ変形モードで共振する軸状の弾性変形部(トーションバー)513の一端にスキャン部514を設け、他端に振動入力部515を設けたものである。このスキャン部514の表面には、鏡面加工を施すことによってミラー面(図示せず)が形成されている。また、振動入力部515には、積層型の圧電素子512が接合されている。したがって、振動プレート511は、振動入力部515において圧電素子512に支持されており、スキャン部514は、弾性変形部513によって支持されている。 The optical scanner 503 includes a vibration plate 511 and a piezoelectric element 512. The vibration plate 511 is formed of a silicon thin plate material. A scanning portion 514 is provided at one end of an axial elastic deformation portion (torsion bar) 513 that resonates in a bending deformation mode and a torsional deformation mode, and vibration is generated at the other end. An input unit 515 is provided. On the surface of the scanning unit 514, a mirror surface (not shown) is formed by performing mirror processing. A laminated piezoelectric element 512 is bonded to the vibration input unit 515. Therefore, the vibration plate 511 is supported by the piezoelectric element 512 in the vibration input unit 515, and the scan unit 514 is supported by the elastic deformation unit 513.
 また、受光素子504は、フォトダイオードなどにより構成されている。 Further, the light receiving element 504 is configured by a photodiode or the like.
 また、スキャナ駆動回路505は、弾性変形部513の曲げ変形モードの共振周波数に等しい周波数の交流電圧VB(t)と、捩れ変形モードの共振周波数に等しい周波数の交流電圧VT(t)とを重畳させた電圧V(t)を圧電素子512に印加する。したがって、弾性変形部513は、曲げ変形モードの振動と捩れ変形モードの振動とを同時に行い、スキャン部514を上下左右に回動させる(図11中のθB方向の回動が上下方向の回動、θT方向の回動が左右方向の回動である)。その結果、光スキャナ503は、発光素子501から出射された光ビームαを2次元の走査領域507内で連続的に走査することができる。 Further, the scanner driving circuit 505 includes an AC voltage V B (t) having a frequency equal to the resonance frequency in the bending deformation mode of the elastic deformation portion 513 and an AC voltage V T (t) having a frequency equal to the resonance frequency in the torsion deformation mode. Is applied to the piezoelectric element 512. Therefore, the elastic deformation portion 513, bending twisting and vibration of the deformation mode performs deformation mode vibration at the same time, rotates the scanning unit 514 in the vertical and horizontal (theta B direction rotation in FIG. 11 is a vertical direction times dynamic, theta T direction of rotation is the rotation of the left-right direction). As a result, the optical scanner 503 can continuously scan the light beam α emitted from the light emitting element 501 within the two-dimensional scanning region 507.
 また、上述の物体認識センサでは、圧電素子512への印加電圧V(t)を検出することによって光ビームαの走査角(あるいは、スキャン部514の振れ角)を知ることができるので、圧電素子512への印加電圧値VB(t),VT(t)を走査角情報(あるいは、振れ角情報)510として、スキャナ駆動回路505から信号処理部506へ出力している。 In the object recognition sensor described above, since the scanning angle of the light beam α (or the deflection angle of the scanning unit 514) can be known by detecting the voltage V (t) applied to the piezoelectric element 512, the piezoelectric element The voltage values V B (t) and V T (t) applied to 512 are output from the scanner driving circuit 505 to the signal processing unit 506 as scanning angle information (or deflection angle information) 510.
 また、この物体認識センサでは、光ビームαの走査領域507に物体508が存在すると、発光素子501から出射され光スキャナ503で走査された光ビームαが物体508の表面に入射して反射され、物体508で反射した散乱光が受光素子504に受光され、物体508の存在が検出される。ここで、物体認識センサでは、受光素子504の受光信号509が信号処理部506に入力される。そして、信号処理部506は、受光素子504からの受光信号509を受け取ると、その瞬間の走査角情報510を読み取り、これを座標に変換して物体508の2次元的な位置を検出する。 In this object recognition sensor, when the object 508 exists in the scanning region 507 of the light beam α, the light beam α emitted from the light emitting element 501 and scanned by the optical scanner 503 is incident on the surface of the object 508 and reflected. The scattered light reflected by the object 508 is received by the light receiving element 504, and the presence of the object 508 is detected. Here, in the object recognition sensor, the light reception signal 509 of the light receiving element 504 is input to the signal processing unit 506. When the signal processing unit 506 receives the light reception signal 509 from the light receiving element 504, the signal processing unit 506 reads the scanning angle information 510 at that moment, converts it into coordinates, and detects the two-dimensional position of the object 508.
 なお、文献1には、物体認識センサを、コード読取装置や、人体検出センサ、2次元光電センサなどの分野において使用することができる旨が記載されている。 Note that Document 1 describes that an object recognition sensor can be used in the fields of a code reader, a human body detection sensor, a two-dimensional photoelectric sensor, and the like.
 ところで、図11に示した構成の物体認識センサのようなセンサ装置では、発光素子501とレンズ502と光スキャナ503とで構成される光学系の光軸と、受光素子504の光軸とが異なる(それぞれの独立の光路に存在する)ので、受光素子504が外乱光の影響を受けやすく、センサ装置全体が大型化してしまう。 By the way, in the sensor device such as the object recognition sensor having the configuration shown in FIG. 11, the optical axis of the optical system including the light emitting element 501, the lens 502, and the optical scanner 503 is different from the optical axis of the light receiving element 504. Therefore, the light receiving element 504 is easily affected by disturbance light, and the entire sensor device is increased in size.
 本発明は上記事由に鑑みて為されたものであり、その目的は、外乱光の影響を受けにくく、且つ、小型化が可能なセンサ装置を提供することにある。 The present invention has been made in view of the above-described reasons, and an object thereof is to provide a sensor device that is not easily affected by ambient light and can be miniaturized.
 本発明のセンサ装置は、検知用レーザ光を出射するように構成される検知用レーザと、前記検知用レーザ光を検知対象空間側へ反射させるように構成される光学ミラーと、前記検知対象空間側で反射された前記検知用レーザ光を検出するように構成される光検出部とを備える。センサ装置は、ハーフミラーを更に備え、これは、該ハーフミラーに入射する前記検知用レーザ光の一部および残部をそれぞれ反射および透過するように配置される。前記光学ミラーは、可動部と、この可動部に設けられたミラー面とを備えるMEMSデバイスからなる。また、光学ミラーは、前記ハーフミラーからの前記検知用レーザ光を前記ミラー面で前記検知対象空間側へ反射させ、また前記検知対象空間側で反射された前記検知用レーザ光を前記ミラー面で前記光検出部側に反射するように配置される。前記検知用レーザと前記光学ミラーとの間の光軸と前記光学ミラーと前記光検出部との間の光軸とを、前記光学ミラーと前記ハーフミラーとの間で一致させてある。 The sensor device of the present invention includes a detection laser configured to emit detection laser light, an optical mirror configured to reflect the detection laser light toward the detection target space, and the detection target space. And a light detection unit configured to detect the detection laser light reflected on the side. The sensor device further includes a half mirror, which is disposed so as to reflect and transmit a part and the remaining part of the detection laser light incident on the half mirror. The said optical mirror consists of a MEMS device provided with a movable part and the mirror surface provided in this movable part. The optical mirror reflects the detection laser light from the half mirror to the detection target space side by the mirror surface, and the detection laser light reflected from the detection target space side by the mirror surface. It arrange | positions so that it may reflect in the said photon detection part side. The optical axis between the detection laser and the optical mirror and the optical axis between the optical mirror and the light detection unit are matched between the optical mirror and the half mirror.
 一実施形態において、センサ装置は、前記光検出部の出力に基づいて前記検知対象空間内の物体の有無を判断するように構成される判断部を更に備える。 In one embodiment, the sensor device further includes a determination unit configured to determine the presence or absence of an object in the detection target space based on the output of the light detection unit.
 一実施形態において、前記ハーフミラーは、前記検知用レーザから出射された前記検知用レーザ光の一部が該ハーフミラーで前記光学ミラーへ反射され、また前記検知対象空間側で反射された前記検知用レーザ光の一部が該ハーフミラーを透過して前記光検出部に入射するように配置される。 In one embodiment, the half mirror has the detection in which a part of the detection laser light emitted from the detection laser is reflected by the half mirror to the optical mirror and reflected by the detection target space side. It arrange | positions so that some laser beams may pass through this half mirror and may inject into the said photon detection part.
 一実施形態において、センサ装置は、前記検知対象空間内に配置される表示部と、前記表示部に所定の表示を行うための表示用レーザ光を出射するように構成される表示用レーザと、前記検知用レーザと前記ハーフミラーとの間に位置するダイクロイックミラーとを更に備える。ダイクロイックミラーは、前記表示用レーザから出射された前記表示用レーザ光が該ダイクロイックミラーで前記ハーフミラー側へ反射され且つ前記検知用レーザからの前記検知用レーザ光が該ダイクロイックミラーを透過するように構成される。 In one embodiment, the sensor device includes a display unit disposed in the detection target space, a display laser configured to emit display laser light for performing predetermined display on the display unit, And a dichroic mirror positioned between the detection laser and the half mirror. The dichroic mirror is configured so that the display laser light emitted from the display laser is reflected by the dichroic mirror toward the half mirror and the detection laser light from the detection laser is transmitted through the dichroic mirror. Composed.
 一実施形態において、センサ装置は、前記ハーフミラーと前記光検出部との間に位置し前記検知用レーザ光を前記光検出部の受光面に集光するためのレンズを更に備える。また、前記レンズは、前記表示部に対して結像関係になる位置に配置されてなる。 In one embodiment, the sensor device further includes a lens positioned between the half mirror and the light detection unit for condensing the detection laser light on a light receiving surface of the light detection unit. Further, the lens is arranged at a position where an image forming relationship is established with respect to the display unit.
 一実施形態において、前記表示部は、前記検知用レーザ光と前記表示用レーザ光との両方を再帰反射するスクリーンからなる。 In one embodiment, the display unit includes a screen that retroreflects both the detection laser beam and the display laser beam.
 一実施形態において、センサ装置は、前記検知用レーザ光および前記表示用レーザ光の光路の周辺に配置され迷光を遮る遮光用部材を更に備える。 In one embodiment, the sensor device further includes a light shielding member that is disposed around an optical path of the detection laser light and the display laser light and blocks stray light.
 一実施形態において、センサ装置は、前記検知用レーザ、前記ハーフミラー、前記光学ミラー、前記光検出部、前記表示用レーザ、前記ダイクロイックミラー、前記レンズ、および前記遮光用部材を収納した筐体を更に備える。また、前記筐体の内面が前記迷光を散乱する粗面である。 In one embodiment, the sensor device includes a housing that houses the detection laser, the half mirror, the optical mirror, the light detection unit, the display laser, the dichroic mirror, the lens, and the light shielding member. In addition. The inner surface of the housing is a rough surface that scatters the stray light.
 本発明のセンサ装置においては、外乱光の影響を受けにくく、且つ、小型化が可能となる。 In the sensor device of the present invention, it is difficult to be influenced by disturbance light and can be miniaturized.
 本発明の好ましい実施形態をさらに詳細に記述する。本発明の他の特徴および利点は、以下の詳細な記述および添付図面に関連して一層良く理解されるものである。
本発明の実施形態によるセンサ装置を例示し、図1Aは概略構成図、図1B~1Dは動作説明図である。 同上のセンサ装置の要部概略斜視図である。 同上のセンサ装置における光学ミラーの概略分解斜視図である。 同上のセンサ装置における光学ミラーの概略斜視図である。 同上のセンサ装置における光学ミラーの製造方法を説明するための主要工程断面図である。 図6Aおよび6Bは同上のセンサ装置の動作説明図である。 同上のセンサ装置の要部概略平面図である。 図8A~8Cは同上のセンサ装置の組み立て方法の説明図である。 図9Aおよび9Bは同上のセンサ装置の応用例の説明図である。 同上のセンサ装置の他の構成例を示す概略構成図である。 従来例の物体認識センサの概略構成図である。
Preferred embodiments of the invention are described in further detail. Other features and advantages of the present invention will be better understood with reference to the following detailed description and accompanying drawings.
FIG. 1A is a schematic configuration diagram, and FIGS. 1B to 1D are operation explanatory diagrams illustrating a sensor device according to an embodiment of the present invention. It is a principal part schematic perspective view of a sensor apparatus same as the above. It is a general | schematic disassembled perspective view of the optical mirror in a sensor apparatus same as the above. It is a schematic perspective view of the optical mirror in a sensor apparatus same as the above. It is principal process sectional drawing for demonstrating the manufacturing method of the optical mirror in a sensor apparatus same as the above. 6A and 6B are explanatory views of the operation of the above sensor device. It is a principal part schematic plan view of a sensor apparatus same as the above. 8A to 8C are explanatory views of the assembly method of the sensor device. 9A and 9B are explanatory diagrams of application examples of the sensor device. It is a schematic block diagram which shows the other structural example of a sensor apparatus same as the above. It is a schematic block diagram of the object recognition sensor of a prior art example.
 以下、本実施形態のセンサ装置について図1~8を参照しながら説明する。センサ装置は、検知用レーザ光LB1を出射するように構成される検知用レーザ401と、検知用レーザ光LB1を検知対象空間405側へ反射させるように構成されるMEMSミラー403と、検知対象空間405側で反射された検知用レーザ光LB1を検出(受光)するように構成される光検出部(受光部)404とを備えている。センサ装置は、ハーフミラー(ビームスプリッター)402を更に備え、これは、ハーフミラー402に入射する検知用レーザ光LB1の一部(典型的には半分)および残部(典型的にはもう半分)をそれぞれ反射および透過するように配置される。図1A~1Dでは、ハーフミラー402は、検知用レーザ401から出射された検知用レーザ光LB1の一部がハーフミラー402で(より詳しくはハーフミラー402のみで)光学ミラー403へ反射され、また検知対象空間405側で反射された検知用レーザ光LB1の一部がハーフミラー402を透過して光検出部404に入射するように配置されている。MEMSミラー403は、MEMS(micro electro mechanical systems)デバイスであり、これは、可動部20(図3、図4、図5F参照)と、可動部20に設けられたミラー面21(図3、図5F参照)とを備える。また、MEMSミラー403は、ハーフミラー402からの検知用レーザ光LB1をミラー面21で検知対象空間405側へ反射させ、また検知対象空間405側で反射された検知用レーザ光LB1を少なくともミラー面21で光検出部404側に反射するように配置される。図1A~1Dでは、MEMSミラー403は、ハーフミラー402で反射された検知用レーザ光LB1をミラー面21で検知対象空間405側へ反射させ、また検知対象空間405内の物体(図1に示した例では、指)406または後述の表示部410で反射された検知用レーザ光LB1をミラー面21で(詳しくはミラー面21のみで)光検出部404側に反射するように配置されている。光検出部404は、ハーフミラー402を挟んでMEMSミラー403の反対側に位置する。従って、光検出部404は、検知対象空間405内の物体406または表示部410で反射された後にMEMSミラー403で反射された検知用レーザ光LB1を検出する。センサ装置は、オプションとして、光検出部404の出力に基づいて検知対象空間405内の物体406の有無を判断するように構成される判断部408を更に備えている。ここで、光検出部404は、ハーフミラー402を透過した検知用レーザ光LB1を検出する。なお、本実施形態では、MEMSミラー403が、光学ミラーを構成している。 Hereinafter, the sensor device of the present embodiment will be described with reference to FIGS. The sensor device includes a detection laser 401 configured to emit a detection laser beam LB1, a MEMS mirror 403 configured to reflect the detection laser beam LB1 toward the detection target space 405, and a detection target space. And a light detection unit (light receiving unit) 404 configured to detect (receive light) the detection laser beam LB1 reflected on the 405 side. The sensor device further includes a half mirror (beam splitter) 402, which includes a part (typically half) and a remainder (typically another half) of the detection laser light LB1 incident on the half mirror 402. They are arranged to reflect and transmit, respectively. 1A to 1D, the half mirror 402 reflects a part of the detection laser beam LB1 emitted from the detection laser 401 to the optical mirror 403 by the half mirror 402 (more specifically, only the half mirror 402), and A part of the detection laser beam LB1 reflected on the detection target space 405 side is disposed so as to pass through the half mirror 402 and enter the light detection unit 404. The MEMS mirror 403 is a MEMS (micro electro mechanical systems) device, which includes a movable part 20 (see FIGS. 3, 4 and 5F) and a mirror surface 21 provided on the movable part 20 (FIG. 3, FIG. 5F). The MEMS mirror 403 reflects the detection laser beam LB1 from the half mirror 402 to the detection target space 405 side by the mirror surface 21, and at least the detection laser beam LB1 reflected from the detection target space 405 side. 21 is arranged so as to be reflected toward the light detection unit 404 side. In FIGS. 1A to 1D, the MEMS mirror 403 reflects the detection laser beam LB1 reflected by the half mirror 402 to the detection target space 405 side by the mirror surface 21, and also detects an object in the detection target space 405 (shown in FIG. 1). In this example, the detection laser beam LB1 reflected by the finger 406 or the display unit 410 described later is arranged to be reflected by the mirror surface 21 (specifically, only by the mirror surface 21) toward the light detection unit 404. . The light detection unit 404 is located on the opposite side of the MEMS mirror 403 with the half mirror 402 interposed therebetween. Therefore, the light detection unit 404 detects the detection laser light LB1 reflected by the MEMS mirror 403 after being reflected by the object 406 or the display unit 410 in the detection target space 405. The sensor device optionally further includes a determination unit 408 configured to determine the presence or absence of the object 406 in the detection target space 405 based on the output of the light detection unit 404. Here, the light detection unit 404 detects the detection laser light LB1 transmitted through the half mirror 402. In the present embodiment, the MEMS mirror 403 constitutes an optical mirror.
 ところで、センサ装置は、検知用レーザ401とMEMSミラー403との間の光軸OA1とMEMSミラー403と光検出部404との間の光軸OA2とを、MEMSミラー403とハーフミラー402との間で一致させてある。 By the way, the sensor device includes an optical axis OA1 between the detection laser 401 and the MEMS mirror 403, an optical axis OA2 between the MEMS mirror 403 and the light detection unit 404, and a gap between the MEMS mirror 403 and the half mirror 402. Are matched.
 また、センサ装置は、検知対象空間405内に配置される表示部410と、表示部410に所定の表示を行うための表示用レーザ光LB2を出射するように構成される表示用レーザ411と、検知用レーザLB1とハーフミラー402との間に位置するダイクロイックミラー412とを備えている。このダイクロイックミラー412は、表示用レーザ411から出射された表示用レーザ光LB2がダイクロイックミラー412でハーフミラー402側へ反射され且つ検知用レーザ401からの検知用レーザ光LB1がダイクロイックミラー412透過するように光学設計されている。 The sensor device includes a display unit 410 disposed in the detection target space 405, a display laser 411 configured to emit display laser light LB2 for performing predetermined display on the display unit 410, A dichroic mirror 412 positioned between the detection laser LB1 and the half mirror 402 is provided. The dichroic mirror 412 reflects the display laser beam LB2 emitted from the display laser 411 to the half mirror 402 side by the dichroic mirror 412, and transmits the detection laser beam LB1 from the detection laser 401 through the dichroic mirror 412. It is optically designed.
 また、ハーフミラー402は、検知用レーザ光LB1の一部を透過し残りを反射するように光学設計されている。したがって、ハーフミラー402は、検知用レーザ401から出射された検知用レーザ光LB1をMEMSミラー403側へ反射する機能と、検知対象空間405内の物体406もしくは表示部410で反射され更にMEMSミラー403で反射された検知用レーザ光LB1を透過する機能とを有するように光学設計されている。また、ハーフミラー402は、表示用レーザ411からの表示用レーザ光LB2を所定方向(MEMSミラー403側)へ反射させるように光学設計されている。要するに、ハーフミラー402は、MEMSミラー403側に、検知用レーザ光LB1の一部を反射し残りを透過させる半透過層が設けられており、この半透過層が、表示用レーザ光LB2を反射する波長選択層を兼ねている。 Further, the half mirror 402 is optically designed to transmit part of the detection laser beam LB1 and reflect the rest. Therefore, the half mirror 402 has a function of reflecting the detection laser beam LB1 emitted from the detection laser 401 to the MEMS mirror 403 side, and is reflected by the object 406 or the display unit 410 in the detection target space 405 and further the MEMS mirror 403. The optical design is such that it has a function of transmitting the detection laser beam LB1 reflected by. The half mirror 402 is optically designed to reflect the display laser beam LB2 from the display laser 411 in a predetermined direction (on the MEMS mirror 403 side). In short, the half mirror 402 is provided with a semi-transmissive layer that reflects part of the detection laser beam LB1 and transmits the remaining part on the MEMS mirror 403 side, and this semi-transmissive layer reflects the display laser beam LB2. It also serves as a wavelength selection layer.
 検知用レーザ401には、検知用レーザ光LB1として赤外光を出射する第1の半導体レーザを用いている。また、表示用レーザ411には、表示用レーザ光LB2として、赤色光を出射する第2の半導体レーザを用いている。 As the detection laser 401, a first semiconductor laser that emits infrared light is used as the detection laser light LB1. The display laser 411 uses a second semiconductor laser that emits red light as the display laser beam LB2.
 なお、図1B中の実線の矢印は、検知用レーザ401から出射された検知用レーザ光LB1の検知対象空間405への進行経路を示し、図1C中の実線の矢印は、表示部410で反射された検知用レーザLB1の進行経路を示し、図1D中の実線の矢印は、表示用レーザ411から出射された表示用レーザ光LB2の表示部410までの進行経路を示している。 1B indicates the travel path of the detection laser beam LB1 emitted from the detection laser 401 to the detection target space 405, and the solid line arrow in FIG. 1C is reflected by the display unit 410. The traveling path of the detected laser LB1 is shown, and the solid line arrow in FIG. 1D shows the traveling path to the display unit 410 of the display laser beam LB2 emitted from the display laser 411.
 しかして、センサ装置では、表示用レーザ411へ電力を供給する第2の電源のオンオフやデューティ比制御により、表示用レーザ411の点滅や調光を容易に行うことができ、表示部410に所定の像(例えば、図9に示すような仮想のスイッチ440の像)を表示させることができる。また、センサ装置は、表示部410に像を表示させるための光学系と物体406を検知するための光学系とでハーフミラー402を共用しているので、部品点数を削減でき、小型化および軽量化を図ることができる。 Thus, in the sensor device, the display laser 411 can be easily blinked and dimmed by turning on and off the second power supply for supplying power to the display laser 411 and controlling the duty ratio, and the display unit 410 can be controlled in a predetermined manner. (For example, an image of a virtual switch 440 as shown in FIG. 9) can be displayed. In the sensor device, since the half mirror 402 is shared by the optical system for displaying an image on the display unit 410 and the optical system for detecting the object 406, the number of components can be reduced, and the size and weight can be reduced. Can be achieved.
 また、光検出部404は、赤外光に対して感度を有するフォトダイオードであり、受光光量に応じて出力が変化する。したがって、センサ装置では、検知用レーザ光LB1の光路上の物体406の有無に応じて、検知対象空間405内で検知用レーザ光LB1が反射される反射面の反射率が変化することにより、光検出部404の受光光量が変化する。すなわち、検知対象空間405において検知用レーザ光LB1の光路上に物体406が存在しない場合には、表示部410により反射面の反射率が決まるが、検知対象空間405において検知用レーザ光LB1の光路上に物体406が有る場合には、物体406により反射面の反射率が決まるので、反射面の反射率の差に応じて光検出部404の受光光量が変化する。 The light detection unit 404 is a photodiode having sensitivity to infrared light, and its output changes according to the amount of received light. Therefore, in the sensor device, the reflectance of the reflecting surface on which the detection laser beam LB1 is reflected in the detection target space 405 changes depending on the presence / absence of the object 406 on the optical path of the detection laser beam LB1, so that the light The amount of light received by the detection unit 404 changes. That is, when the object 406 does not exist on the optical path of the detection laser beam LB1 in the detection target space 405, the reflectance of the reflection surface is determined by the display unit 410, but the detection laser beam LB1 light in the detection target space 405 When there is an object 406 on the road, the reflectance of the reflecting surface is determined by the object 406, so the amount of light received by the light detection unit 404 changes according to the difference in reflectance of the reflecting surface.
 また、センサ装置は、ハーフミラー402と光検出部404との間に位置するレンズ407を備えている。ここで、レンズ407は、ハーフミラー402を透過した検知用レーザ光LB1を光検出部404の受光面404aに集光する。 Also, the sensor device includes a lens 407 positioned between the half mirror 402 and the light detection unit 404. Here, the lens 407 condenses the detection laser beam LB1 transmitted through the half mirror 402 on the light receiving surface 404a of the light detection unit 404.
 レンズ407は、両凸レンズであり、表示部410に対して結像関係になる位置に配置されている。要するに、レンズ407は、図6Aに示すように、検知用レーザ光LB1の光路上に物体406が存在しない場合に、光検出部404の光軸の方向において結像面が光検出部404の受光面404aに一致するように配置されており、光検出部404の受光面404aの位置で、検知用レーザ光LB1のスポット径が最小スポット径となる。したがって、図6Bに示すように、検知用レーザ光LB1の光路上に物体406が存在する場合には、光検出部404の光軸の方向において結像面の位置がずれる。その結果、検知用レーザ光LB1の光検出部404での像414(図6C参照)が広がる(いわゆる像高が変化する、言い換えれば、ピントが合わずにぼけが生じる)ので、物体406の有無による光検出部404の受光光量の変化を大きくすることが可能となる。例えば、光検出部404の受光面404aの直径が1mmで、図6Aのように、検知用レーザ光LB1の光路上に物体406が存在しない場合の像高が1mmであるとし、図6Bのように、検知用レーザ光LB1の光路上に物体406が存在した場合の像高が2mmであるとすると、光検出部404での受光光量が激減する。したがって、物体406の反射率と表示部410の反射率の差とが比較的小さい場合でも、物体406の有無による受光光量の変化が大きくなる。 The lens 407 is a biconvex lens, and is disposed at a position that is in an imaging relationship with the display unit 410. In short, as shown in FIG. 6A, when the object 406 is not present on the optical path of the detection laser beam LB1, the lens 407 has an imaging surface in the direction of the optical axis of the light detection unit 404. The spot diameter of the detection laser beam LB1 is the minimum spot diameter at the position of the light receiving surface 404a of the light detection unit 404. Therefore, as shown in FIG. 6B, when the object 406 is present on the optical path of the detection laser beam LB1, the position of the imaging plane is shifted in the direction of the optical axis of the light detection unit 404. As a result, the image 414 (see FIG. 6C) of the detection laser beam LB1 in the light detection unit 404 spreads (so-called image height changes, in other words, blur occurs without being in focus). It is possible to increase the change in the amount of light received by the light detection unit 404 due to the above. For example, assuming that the diameter of the light receiving surface 404a of the light detection unit 404 is 1 mm, and the image height is 1 mm when the object 406 is not present on the optical path of the detection laser beam LB1 as shown in FIG. Further, if the image height is 2 mm when the object 406 is present on the optical path of the detection laser beam LB1, the amount of light received by the light detection unit 404 is drastically reduced. Therefore, even when the difference between the reflectance of the object 406 and the reflectance of the display unit 410 is relatively small, the change in the amount of received light due to the presence or absence of the object 406 increases.
 ところで、表示部410として、検知用レーザ光LB1の反射光の輝度が、ランバートの余弦則(Lambert’s cosine law)に従うスクリーン(つまり、表示部410が検知用レーザ光LB1をランバート反射するスクリーン)を用いた場合には、物体406の存在しない場合の光検出部404の受光光量が小さく、物体406の有無による光検出部404の受光光量の変化が小さいので、S/N比が小さくなる。 By the way, as the display unit 410, a screen whose reflected light intensity of the detection laser beam LB1 follows Lambert's cosine law (that is, a screen on which the display unit 410 Lambert reflects the detection laser beam LB1) is used. In the case where the object 406 is not present, the amount of light received by the light detection unit 404 is small, and the change in the amount of light received by the light detection unit 404 due to the presence or absence of the object 406 is small, so the S / N ratio is small.
 そこで、表示部410は、検知用レーザ光LB1を再帰反射するスクリーンにより構成することが好ましい。要するに、表示部410を構成するスクリーンとしては、いわゆる再帰性反射スクリーンを用いることが好ましい。再帰性反射スクリーンは、入射光と同じ方向に反射光を出射させるスクリーンであり、高い反射指向性を有している。したがって、表示部410として、再帰性反射スクリーンを用いれば、物体406の存在しない場合の光検出部404の受光光量を大きくすることができ、物体406の有無による光検出部404の受光光量の変化を大きくすることが可能となり、S/N比を大きくすることが可能となる。これにより、センサ装置では、光検出部404の出力のS/N比の向上が可能となり、物体406の検知精度の向上を図れる。 Therefore, the display unit 410 is preferably composed of a screen that retroreflects the detection laser beam LB1. In short, it is preferable to use a so-called retroreflective screen as the screen constituting the display unit 410. The retroreflective screen is a screen that emits reflected light in the same direction as incident light, and has high reflection directivity. Therefore, if a retroreflective screen is used as the display unit 410, the amount of light received by the light detection unit 404 in the absence of the object 406 can be increased, and the change in the amount of light received by the light detection unit 404 depending on the presence or absence of the object 406. Can be increased, and the S / N ratio can be increased. Thereby, in the sensor device, the S / N ratio of the output of the light detection unit 404 can be improved, and the detection accuracy of the object 406 can be improved.
 再帰性反射スクリーンなどに用いる再帰性反射体としては、光を屈折させるためのガラスビーズを2次元的に配列した反射シートや、光を屈折させるためのプリズムレンズなどを2次元的に配列した反射シートなどが知られている(なお、この種の反射シートについては、例えば、http://www.kokusaku.com/3M.htm参照)。 As a retroreflector used for a retroreflective screen, etc., a reflection sheet in which glass beads for refracting light are two-dimensionally arranged, and a reflection in which prism lenses for refracting light are two-dimensionally arranged are used. Sheets and the like are known (for example, see http://www.kokusaku.com/3M.htm for this type of reflective sheet).
 MEMSミラー403は、図3、図4および図5Fに示すように、半導体基板であるSOI(Silicon on Insulator)基板100を用いて形成され可動部20にミラー面21が設けられたミラー形成基板1を備えている。また、MEMSミラー403は、ミラー形成基板1においてミラー面21が設けられた一表面(第1面)側に接合された第1のカバー基板2を備えている。また、MEMSミラー403は、ミラー形成基板1の他表面(第2面)側に接合された第2のカバー基板3を備えている。 As shown in FIGS. 3, 4, and 5 F, the MEMS mirror 403 is formed using a SOI (Silicon on ulator Insulator) substrate 100 that is a semiconductor substrate, and the mirror forming substrate 1 in which the mirror surface 21 is provided on the movable portion 20. It has. Further, the MEMS mirror 403 includes a first cover substrate 2 bonded to one surface (first surface) side where the mirror surface 21 is provided in the mirror forming substrate 1. The MEMS mirror 403 includes a second cover substrate 3 bonded to the other surface (second surface) side of the mirror forming substrate 1.
 ミラー形成基板1は、上述のSOI基板100をバルクマイクロマシニング技術などにより加工することによって形成してある。このSOI基板100は、導電性を有する第1のシリコン層(活性層)100aと第2のシリコン層(シリコン基板)100bとの間に絶縁層(SiO2層)100cが介在している。なお、SOI基板100は、第1のシリコン層100aの厚さを30μm、第2のシリコン層100bの厚さを400μmに設定してあるが、これらの数値は一例であり、特に限定するものではない。また、SOI基板100の一表面(第1面)である第1のシリコン層10aの表面は(100)面としてある。 The mirror forming substrate 1 is formed by processing the above-described SOI substrate 100 by a bulk micromachining technique or the like. In this SOI substrate 100, an insulating layer (SiO2 layer) 100c is interposed between a conductive first silicon layer (active layer) 100a and a second silicon layer (silicon substrate) 100b. In the SOI substrate 100, the thickness of the first silicon layer 100a is set to 30 μm, and the thickness of the second silicon layer 100b is set to 400 μm. However, these numerical values are examples, and are not particularly limited. Absent. The surface of the first silicon layer 10a, which is one surface (first surface) of the SOI substrate 100, is the (100) surface.
 ミラー形成基板1は、外側フレーム部10と、外側フレーム部10の内側に配置された上述の可動部20と、外側フレーム部10の内側で可動部20を挟む形で配置され外側フレーム部10と可動部20とを連結した一対の第1の捩りばね部30,30とを有する。各第1の捩りばね部30,30は、捩れ変形が可能となっている。 The mirror forming substrate 1 includes an outer frame portion 10, the above-described movable portion 20 disposed inside the outer frame portion 10, and an outer frame portion 10 disposed so as to sandwich the movable portion 20 inside the outer frame portion 10. A pair of first torsion spring portions 30 and 30 connected to the movable portion 20 are provided. Each of the first torsion spring portions 30 and 30 can be torsionally deformed.
 外側フレーム部10は、枠状(ここでは、矩形枠状)の形状であり、外周形状および内周形状それぞれが矩形状に形成されている。ここにおいて、MEMSミラーは、ミラー形成基板1および各カバー基板2,3それぞれの外周形状が、矩形状であり、各カバー基板2,3の外形寸法を、ミラー形成基板1の外形寸法に合わせてある。 The outer frame portion 10 has a frame shape (here, a rectangular frame shape), and each of an outer peripheral shape and an inner peripheral shape is formed in a rectangular shape. Here, in the MEMS mirror, the outer peripheral shape of each of the mirror forming substrate 1 and each of the cover substrates 2 and 3 is rectangular, and the outer dimensions of each of the cover substrates 2 and 3 are matched with the outer dimensions of the mirror forming substrate 1. is there.
 また、第1のカバー基板2は、それぞれパイレックス(登録商標)ガラスなどからなる2枚のガラス板を厚み方向に重ねて接合することにより形成した第1のガラス基板200を用いて形成してある。また、第2のカバー基板3は、パイレックス(登録商標)ガラスなどからなる第2のガラス基板300を用いて形成してある。なお、第1のガラス基板200および第2のガラス基板300の厚さは、0.5mm~1.5mm程度の範囲で設定してあるが、これらの数値は一例であり、特に限定するものではない。 The first cover substrate 2 is formed by using a first glass substrate 200 formed by stacking and joining two glass plates each made of Pyrex (registered trademark) glass in the thickness direction. . The second cover substrate 3 is formed using a second glass substrate 300 made of Pyrex (registered trademark) glass or the like. Note that the thicknesses of the first glass substrate 200 and the second glass substrate 300 are set in the range of about 0.5 mm to 1.5 mm, but these numerical values are examples and are not particularly limited. Absent.
 ミラー形成基板1の外側フレーム部10は、SOI基板100の第1のシリコン層100a、絶縁層100c、第2のシリコン層100bそれぞれを利用して形成してある。そして、ミラー形成基板1は、外側フレーム部10のうち第1のシリコン層100aにより形成された部位が、第1のカバー基板2の外周部と全周に亘って接合され、外側フレーム部10のうち第2のシリコン層100bにより形成された部位が、第2のカバー基板3の外周部と全周に亘って接合されている。 The outer frame portion 10 of the mirror forming substrate 1 is formed using the first silicon layer 100a, the insulating layer 100c, and the second silicon layer 100b of the SOI substrate 100, respectively. In the mirror forming substrate 1, a portion of the outer frame portion 10 formed by the first silicon layer 100 a is joined to the outer peripheral portion of the first cover substrate 2 over the entire periphery. Of these, the portion formed by the second silicon layer 100 b is bonded to the outer periphery of the second cover substrate 3 over the entire periphery.
 また、ミラー形成基板1の可動部20および各捩りばね部30,30は、SOI基板100の第1のシリコン層100aを用いて形成されており、外側フレーム部10よりも十分に薄肉となっている。また、可動部20に設けられたミラー面21は、検知用レーザ401からの検知用レーザ光LB1および表示用レーザ411からの表示用レーザ光LB2を反射するものであり、可動部20において第1のシリコン層100aにより形成された部位上に形成した第2の金属膜(例えば、Al-Si膜など)からなる反射膜21aの表面により構成されている。なお、本実施形態では、反射膜21aの膜厚を500nmに設定してあるが、この数値は一例であり、特に限定するものではない。 Further, the movable portion 20 and the torsion spring portions 30, 30 of the mirror forming substrate 1 are formed using the first silicon layer 100 a of the SOI substrate 100 and are sufficiently thinner than the outer frame portion 10. Yes. The mirror surface 21 provided on the movable unit 20 reflects the detection laser beam LB1 from the detection laser 401 and the display laser beam LB2 from the display laser 411. The reflective film 21a is made of a second metal film (for example, an Al—Si film) formed on a portion formed by the silicon layer 100a. In the present embodiment, the thickness of the reflective film 21a is set to 500 nm, but this numerical value is an example and is not particularly limited.
 以下では、図3の左側に示すように、平面視において一対の第1の捩りばね部30,30の並設方向に直交する方向をx軸方向(第1方向)、一対の第1の捩りばね部30,30の並設方向をy軸方向(第2方向)、x軸方向およびy軸方向に直交する方向をz軸方向(第3方向)として説明する。 In the following, as shown on the left side of FIG. 3, the direction orthogonal to the juxtaposed direction of the pair of first torsion spring portions 30, 30 in plan view is the x-axis direction (first direction), and the pair of first torsion The parallel arrangement direction of the spring portions 30 and 30 will be described as the y-axis direction (second direction), and the direction orthogonal to the x-axis direction and the y-axis direction will be described as the z-axis direction (third direction).
 ミラー形成基板1は、一対の第1の捩りばね部30,30がy軸方向に並設されており、可動部20が、外側フレーム部10に対して一対の第1の捩りばね部30,30の回りで変位可能となっている(y軸方向の軸回りで回動可能となっている)。つまり、一対の第1の捩りばね部30,30は、外側フレーム部10に対して可動部20が揺動自在となるように外側フレーム部10と可動部20とを連結している。言い換えれば、外側フレーム部10の内側に配置される可動部20は、可動部20から相反する2方向へ連続一体に延長された2つの第1の捩りばね部30,30を介して、外側フレーム部10に揺動自在に支持されている。ここで、一対の第1の捩りばね部30,30は、両者のy軸方向に沿った中心線同士を結ぶ直線が、平面視で可動部20の重心を通るように形成されている。なお、各捩りばね部30,30は、厚み寸法(z軸方向の寸法)を30μm、幅寸法(x軸方向の寸法)を、5μmに設定してあるが、これらの数値は一例であり、特に限定するものではない。また、外側フレーム部10の内周形状も矩形状に限らず、例えば、円形状でもよい。 In the mirror forming substrate 1, a pair of first torsion spring portions 30, 30 are arranged in parallel in the y-axis direction, and the movable portion 20 is a pair of first torsion spring portions 30, 30 with respect to the outer frame portion 10. It can be displaced around 30 (it can be rotated around an axis in the y-axis direction). That is, the pair of first torsion spring portions 30, 30 connects the outer frame portion 10 and the movable portion 20 so that the movable portion 20 can swing with respect to the outer frame portion 10. In other words, the movable part 20 disposed inside the outer frame part 10 is connected to the outer frame via two first torsion spring parts 30 and 30 that are continuously and integrally extended in two opposite directions from the movable part 20. The part 10 is supported so as to be swingable. Here, the pair of first torsion spring portions 30 and 30 are formed such that a straight line connecting the center lines along the y-axis direction passes through the center of gravity of the movable portion 20 in plan view. Each of the torsion spring portions 30 and 30 has a thickness dimension (dimension in the z-axis direction) set to 30 μm and a width dimension (dimension in the x-axis direction) set to 5 μm, but these numerical values are examples. There is no particular limitation. Further, the inner peripheral shape of the outer frame portion 10 is not limited to a rectangular shape, and may be a circular shape, for example.
 上述のミラー形成基板1は、可動部20において一対の第1の捩りばね部30,30を結ぶ方向(一対の第1の捩りばね部30,30の並設方向)に直交する方向(つまり、x軸方向)の両側にそれぞれ形成された櫛形状の第1の可動電極22,22を備えている。さらに、ミラー形成基板1は、櫛形状の第1の固定電極12,12を備え、これらは、それぞれ、第1の可動電極22,22に対向(隣接)するように、外側フレーム部10に形成されている。各第1の固定電極12は、対向する第1の可動電極22の複数の可動櫛歯片22bに対向(隣接)する複数の固定櫛歯片12bを有する。ここにおいて、第1の可動電極22,22と第1の固定電極12,12とで、静電力により可動部20を駆動する静電駆動式の第1の駆動手段を構成している。なお、本実施形態では、第1の駆動手段が、静電力により可動部20を駆動するものであるが、静電駆動式に限らず、例えば、電磁力によって可動部20を駆動する電磁駆動式でもよいし、圧電素子によって可動部20を駆動する圧電駆動式でもよい。 The mirror forming substrate 1 described above is perpendicular to the direction in which the pair of first torsion spring portions 30 and 30 are connected in the movable portion 20 (the direction in which the pair of first torsion spring portions 30 and 30 are juxtaposed) (that is, Comb-shaped first movable electrodes 22 are formed on both sides in the x-axis direction). Further, the mirror forming substrate 1 includes comb-shaped first fixed electrodes 12 and 12, which are formed on the outer frame portion 10 so as to face (adjacent) the first movable electrodes 22 and 22, respectively. Has been. Each first fixed electrode 12 has a plurality of fixed comb teeth 12b facing (adjacent) to the plurality of movable comb teeth 22b of the first movable electrode 22 facing each other. Here, the first movable electrodes 22 and 22 and the first fixed electrodes 12 and 12 constitute an electrostatic drive type first driving means for driving the movable portion 20 by electrostatic force. In the present embodiment, the first driving means drives the movable portion 20 by electrostatic force, but is not limited to an electrostatic drive type, and for example, an electromagnetic drive type that drives the movable portion 20 by an electromagnetic force. Alternatively, a piezoelectric drive type in which the movable portion 20 is driven by a piezoelectric element may be used.
 第1の固定電極12は、平面視形状が櫛形状であり、外側フレーム部10のうちy軸方向に沿った枠片部において第1のシリコン層100aにより形成された部位の一部が、櫛骨部12aを構成している。そして、第1の固定電極12は、櫛骨部12aにおける可動部20との対向面(外側フレーム部10におけるy軸方向に沿った内側面)に、多数の固定櫛歯片12bが一対の第1の捩りばね部30,30の並設方向に沿って列設されている。ここで、各固定櫛歯片12bは、第1のシリコン層100aの一部により構成されている。 The first fixed electrode 12 has a comb shape in plan view, and a portion of the outer frame portion 10 formed by the first silicon layer 100a in the frame piece portion along the y-axis direction is comb-shaped. The bone part 12a is comprised. The first fixed electrode 12 has a pair of fixed comb teeth 12b on the surface facing the movable portion 20 in the comb bone portion 12a (inner side surface along the y-axis direction in the outer frame portion 10). The torsion spring portions 30 are arranged in a line along the direction in which the torsion spring portions 30 and 30 are juxtaposed. Here, each fixed comb tooth piece 12b is constituted by a part of the first silicon layer 100a.
 一方、第1の可動電極22は、可動部20における第1の固定電極12の櫛骨部12a側の櫛骨部22aの側面(可動部20におけるy軸方向に沿った側面)において、固定櫛歯片12bにそれぞれ対向する多数の可動櫛歯片22bが上記並設方向に列設されている。ここで、各可動櫛歯片22bは、第1のシリコン層100aの一部により構成されている。 On the other hand, the first movable electrode 22 is a fixed comb on the side surface (side surface along the y-axis direction in the movable portion 20) of the comb portion 12 a on the comb bone portion 12 a side of the first fixed electrode 12 in the movable portion 20. A large number of movable comb teeth 22b respectively facing the teeth 12b are arranged in the parallel direction. Here, each movable comb-tooth piece 22b is constituted by a part of the first silicon layer 100a.
 第1の固定電極12と第1の可動電極22とは、それぞれの櫛骨部12a,22aが互いに対向し、第1の固定電極12の各固定櫛歯片12bが第1の可動電極22の櫛溝(隣接する可動櫛歯片22b,22b間)に入り組んでおり、固定櫛歯片12bと可動櫛歯片22bとが、y軸方向において互いに離間している。したがって、第1の駆動手段では、第1の固定電極12と第1の可動電極22との間に電圧が印加されることにより、第1の固定電極12と第1の可動電極22との間に互いに引き合う方向に作用する静電力が発生する。なお、y軸方向における固定櫛歯片12bと可動櫛歯片22bとの間の隙間は、例えば、2μm~5μm程度の範囲で適宜設定すればよい。 In the first fixed electrode 12 and the first movable electrode 22, the comb bone portions 12 a and 22 a face each other, and each fixed comb tooth piece 12 b of the first fixed electrode 12 corresponds to the first movable electrode 22. The comb grooves (between adjacent movable comb teeth 22b, 22b) are arranged, and the fixed comb teeth 12b and the movable comb teeth 22b are separated from each other in the y-axis direction. Therefore, in the first driving means, a voltage is applied between the first fixed electrode 12 and the first movable electrode 22, so that the gap between the first fixed electrode 12 and the first movable electrode 22 is applied. An electrostatic force acting in a direction attracting each other is generated. The gap between the fixed comb tooth piece 12b and the movable comb tooth piece 22b in the y-axis direction may be set as appropriate within a range of, for example, about 2 μm to 5 μm.
 ところで、可動部20は、外側フレーム部10に一対の第1の捩りばね部30,30を介して揺動自在に支持された枠状(ここでは、矩形枠状)の可動フレーム部23と、可動フレーム部23の内側に配置されミラー面21が設けられたミラー部24と、可動フレーム部23の内側でミラー部24を挟む形で配置され可動フレーム部23とミラー部24とを連結し捩れ変形が可能な一対の第2の捩りばね部25,25とを有している。 By the way, the movable part 20 includes a frame-like (here, rectangular frame-like) movable frame part 23 supported by the outer frame part 10 through a pair of first torsion spring parts 30 and 30 in a swingable manner, A mirror part 24 provided inside the movable frame part 23 and provided with a mirror surface 21 and a mirror part 24 arranged inside the movable frame part 23 so as to sandwich the mirror part 24 are connected and twisted. It has a pair of 2nd torsion spring parts 25 and 25 which can be changed.
 第2の捩りばね部25,25は、第1の捩りばね部30,30の並設方向(y軸方向)とは直交する方向(x軸方向)に並設されている。要するに、可動部20は、一対の第2の捩りばね部25,25がx軸方向に並設されており、ミラー部24が、可動フレーム部23に対して一対の第2の捩りばね部25,25の回りで変位可能となっている(x軸方向の軸回りで回動可能となっている)。つまり、一対の第2の捩りばね部25,25は、可動フレーム部23に対してミラー部24が揺動自在となるように可動フレーム部23とミラー部24とを連結している。言い換えれば、可動フレーム部23の内側に配置されるミラー部24は、ミラー部24から相反する2方向へ連続一体に延長された2つの第2の捩りばね部25,25を介して可動フレーム部23に揺動自在に支持されている。ここで、一対の第2の捩りばね部25,25は、両者のx軸方向に沿った中心線同士を結ぶ直線が、平面視でミラー部24の重心を通るように形成されている。なお、各第2の捩りばね部25は、厚み寸法(z軸方向の寸法)を30μm、幅寸法(y軸方向の寸法)を、30μmに設定してあるが、これらの数値は一例であり、特に限定するものではない。また、ミラー部24およびミラー面21の平面視形状は、矩形状に限らず、例えば、円形状でもよい。また、可動フレーム部23の内周形状も矩形状に限らず、例えば、円形状でもよい。 The second torsion springs 25 and 25 are juxtaposed in a direction (x-axis direction) orthogonal to the juxtaposition direction (y-axis direction) of the first torsion springs 30 and 30. In short, the movable portion 20 has a pair of second torsion spring portions 25, 25 arranged in parallel in the x-axis direction, and the mirror portion 24 is a pair of second torsion spring portions 25 with respect to the movable frame portion 23. , 25 (displaceable around the axis in the x-axis direction). That is, the pair of second torsion spring portions 25, 25 connect the movable frame portion 23 and the mirror portion 24 so that the mirror portion 24 can swing with respect to the movable frame portion 23. In other words, the mirror part 24 disposed inside the movable frame part 23 is movable frame part via two second torsion spring parts 25, 25 extended continuously and integrally from the mirror part 24 in two opposite directions. 23 is swingably supported. Here, the pair of second torsion spring portions 25 and 25 are formed such that a straight line connecting the center lines along the x-axis direction passes through the center of gravity of the mirror portion 24 in plan view. Each second torsion spring portion 25 has a thickness dimension (dimension in the z-axis direction) set to 30 μm and a width dimension (dimension in the y-axis direction) set to 30 μm. However, these numerical values are only examples. There is no particular limitation. Moreover, the planar view shape of the mirror part 24 and the mirror surface 21 is not restricted to a rectangular shape, For example, a circular shape may be sufficient. Further, the inner peripheral shape of the movable frame portion 23 is not limited to a rectangular shape, and may be a circular shape, for example.
 上述の説明から分かるように、ミラー部24は、一対の第1の捩りばね部30,30の軸回りの回動と、一対の第2の捩りばね部25,25の軸回りの回動とが可能である。要するに、MEMSミラー403は、ミラー部24のミラー面21が、2次元的に回動可能に構成されており、検知用レーザ光LB1および表示用レーザ光LB2を2次元的に走査することができる。ここで、可動部20は、可動フレーム部23における第1のカバー基板2側とは反対側に、可動フレーム部23を支持する枠状(矩形枠状)の支持体29が一体に設けられており、支持体29が可動フレーム部23と一体に回動可能となっている。 As can be seen from the above description, the mirror portion 24 is configured to rotate around the axis of the pair of first torsion spring portions 30 and 30 and rotate around the axis of the pair of second torsion spring portions 25 and 25. Is possible. In short, the MEMS mirror 403 is configured such that the mirror surface 21 of the mirror section 24 is two-dimensionally rotatable, and can scan the detection laser beam LB1 and the display laser beam LB2 two-dimensionally. . Here, the movable portion 20 is integrally provided with a frame-shaped (rectangular frame-shaped) support body 29 that supports the movable frame portion 23 on the opposite side of the movable frame portion 23 to the first cover substrate 2 side. The support 29 can be rotated integrally with the movable frame portion 23.
 また、ミラー形成基板1は、ミラー部24において一対の第2の捩りばね部25,25を結ぶ方向(一対の第2の捩りばね部25,25の並設方向)に直交する方向(つまり、y軸方向)の両側にそれぞれ形成された櫛形状の第2の可動電極27,27と、櫛形状の第2の固定電極26,26とを備えている。第2の固定電極26,26は、それぞれ、第2の可動電極27,27に対向(隣接)するように、可動フレーム部23に形成されている。各第2の固定電極26は、対向する第2の可動電極27の複数の可動櫛歯片27bにそれぞれ対向(隣接)する複数の固定櫛歯片26bを有する。そして、第2の可動電極27,27と第2の固定電極26,26とで、静電力によりミラー部24を駆動する静電駆動式の第2の駆動手段を構成している。 Further, the mirror forming substrate 1 is perpendicular to the direction connecting the pair of second torsion spring portions 25, 25 in the mirror portion 24 (ie, the direction in which the pair of second torsion spring portions 25, 25 are juxtaposed) (that is, Comb-shaped second movable electrodes 27, 27 formed on both sides in the y-axis direction) and comb-shaped second fixed electrodes 26, 26 are provided. The second fixed electrodes 26 and 26 are formed on the movable frame portion 23 so as to face (adjacent) the second movable electrodes 27 and 27, respectively. Each of the second fixed electrodes 26 has a plurality of fixed comb teeth pieces 26b that face (adjacent) each of the plurality of movable comb teeth pieces 27b of the second movable electrode 27 facing each other. The second movable electrodes 27, 27 and the second fixed electrodes 26, 26 constitute an electrostatically driven second driving means for driving the mirror portion 24 by electrostatic force.
 上述の第2の固定電極26は、平面視形状が櫛形状であり、櫛骨部26aが可動フレーム部23の一部により構成されている。そして、第2の固定電極26の櫛骨部26aにおけるミラー部24との対向面(可動フレーム部23におけるx軸方向に沿った内側面)には、多数の固定櫛歯片26bが、一対の第2の捩りばね部25,25の並設方向に沿って列設されている。一方、第2の可動電極27はミラー部24の一部により構成されており、第2の固定電極26の櫛骨部26a側の側面(ミラー部24におけるx軸方向に沿った側面)には、固定櫛歯片26bにそれぞれ対向する多数の可動櫛歯片27bが上記並設方向に列設されている。ここで、櫛形状の第2の固定電極26と櫛形状の第2の可動電極27とは、櫛骨部26a,27aが互いに対向し、第2の固定電極26の各固定櫛歯片26bが第2の可動電極27の櫛溝(隣接する可動櫛歯片27b間)に入り組んでおり、固定櫛歯片26bと可動櫛歯片27bとが、x軸方向において互いに離間している。したがって、ミラー形成基板1は、第2の固定電極26と第2の可動電極22との間に電圧が印加されることにより、第2の固定電極26と第2の可動電極27との間に、互いに引き合う方向に作用する静電力が発生する。なお、x軸方向における固定櫛歯片26bと可動櫛歯片27bとの間の隙間は、例えば、2μm~5μm程度の範囲で適宜設定すればよい。 The above-described second fixed electrode 26 has a comb shape in plan view, and the comb bone portion 26a is constituted by a part of the movable frame portion 23. A large number of fixed comb teeth pieces 26b are formed on a surface facing the mirror portion 24 of the comb portion 26a of the second fixed electrode 26 (an inner surface along the x-axis direction of the movable frame portion 23). The second torsion spring portions 25 are arranged in a line along the direction in which the second torsion spring portions 25 and 25 are juxtaposed. On the other hand, the second movable electrode 27 is configured by a part of the mirror portion 24, and the side surface of the second fixed electrode 26 on the side of the comb portion 26 a (the side surface along the x-axis direction in the mirror portion 24) A large number of movable comb teeth 27b facing the fixed comb teeth 26b are arranged in the parallel direction. Here, in the comb-shaped second fixed electrode 26 and the comb-shaped second movable electrode 27, the comb bone portions 26a and 27a are opposed to each other, and each fixed comb tooth piece 26b of the second fixed electrode 26 is The second movable electrode 27 is inserted into a comb groove (between adjacent movable comb teeth 27b), and the fixed comb teeth 26b and the movable comb teeth 27b are separated from each other in the x-axis direction. Therefore, the mirror forming substrate 1 is applied between the second fixed electrode 26 and the second movable electrode 27 by applying a voltage between the second fixed electrode 26 and the second movable electrode 22. Electrostatic forces acting in the direction of attracting each other are generated. In addition, the gap between the fixed comb tooth piece 26b and the movable comb tooth piece 27b in the x-axis direction may be set as appropriate within a range of about 2 μm to 5 μm, for example.
 また、ミラー形成基板1は、外側フレーム部10に、3つのパッド13が平面視において一直線上に並ぶように略等間隔で並設されている。これに対して、第1のカバー基板2は、各パッド13それぞれを各別に露出させる3つの貫通孔202が貫設されている。各パッド13は、平面視形状が円形状であり、第1の金属膜(例えば、Al-Si膜など)により構成されている。なお、本実施形態では、各パッド13の膜厚を500nmに設定してあるが、この数値は一例であり、特に限定するものではない。 Further, the mirror forming substrate 1 is arranged in parallel at substantially equal intervals on the outer frame portion 10 so that the three pads 13 are arranged in a straight line in a plan view. On the other hand, the first cover substrate 2 is provided with three through holes 202 that expose the pads 13 separately. Each pad 13 has a circular shape in plan view, and is composed of a first metal film (for example, an Al—Si film). In this embodiment, the film thickness of each pad 13 is set to 500 nm, but this numerical value is an example and is not particularly limited.
 ミラー形成基板1は、外側フレーム部10において第1のシリコン層100aにより形成された部位に複数(ここでは、3つ)のスリット10aを形成するとともに、可動部20の可動フレーム部23において第1のシリコン層100aにより形成された部位に複数(ここでは、4つ)のスリット20aを形成してある。これにより、ミラー形成基板1は、3つのパッド13のうち図3における真ん中のパッド13(13b)が第1の固定電極12と電気的に接続されて同電位となり、右側のパッド13(13a)が第1の可動電極22および第2の可動電極26と電気的に接続されて同電位となり、左側のパッド13(13c)がミラー部24の第2の可動電極27と電気的に接続されて同電位となっている。 The mirror forming substrate 1 is formed with a plurality of (here, three) slits 10 a in the portion formed by the first silicon layer 100 a in the outer frame portion 10, and the first in the movable frame portion 23 of the movable portion 20. A plurality of (here, four) slits 20a are formed in a portion formed by the silicon layer 100a. Thereby, in the mirror forming substrate 1, the middle pad 13 (13b) in FIG. 3 among the three pads 13 is electrically connected to the first fixed electrode 12 to have the same potential, and the right pad 13 (13a). Are electrically connected to the first movable electrode 22 and the second movable electrode 26 to have the same potential, and the left pad 13 (13c) is electrically connected to the second movable electrode 27 of the mirror portion 24. The potential is the same.
 ここで、外側フレーム部10の複数のスリット10aは、絶縁層100cに達する深さで形成されている。本実施形態におけるMEMSミラー403は、各スリット10aをトレンチとし、各スリット10aの平面視形状を外側フレーム部10の外側面側に開放されない形状とすることで、外側フレーム部10にスリット10aを形成した構造を採用しながらも、外側フレーム部10と第1のカバー基板2との接合性が低下するのを防止し、外側フレーム部10と各カバー基板2,3とで囲まれる空間の気密性を確保している。 Here, the plurality of slits 10a of the outer frame portion 10 are formed with a depth reaching the insulating layer 100c. The MEMS mirror 403 according to the present embodiment forms the slits 10a in the outer frame portion 10 by using the slits 10a as trenches and making the shape of each slit 10a in plan view not open to the outer surface side of the outer frame portion 10. While adopting the above structure, it is possible to prevent the bonding property between the outer frame portion 10 and the first cover substrate 2 from being lowered, and the airtightness of the space surrounded by the outer frame portion 10 and the respective cover substrates 2 and 3 Is secured.
 また、可動部20における可動フレーム部23の各スリット20aは、トレンチとしてあり、SOI基板100の絶縁層100cの一部と第2のシリコン層100bの一部とで構成される上述の支持体29における絶縁層100cに達する深さに形成してある。要するに、MEMSミラー403では、可動フレーム部23に複数のスリット20aを形成した構成を採用しながらも、可動フレーム部23と支持体29とが、一対の第1の捩りばね部30,30の軸回りで一体に回動可能となっている。ここにおいて、支持体29は、可動フレーム部23のうち各固定櫛歯片26bおよび各可動櫛歯片22bを除く部位を覆う枠状に形成されている(図4参照)。また、可動フレーム部23の複数のトレンチ20aは、支持体29を含めた可動部20の重心が、平面視において一対の第1の捩りばね部30,30のy軸方向に沿った中心線を結ぶ直線の略真ん中に位置するように形状を設計してある。しかして、本実施形態におけるMEMSミラー403では、可動部20が一対の第1の捩りばね部30,30の軸回りでスムーズに揺動し、反射光の走査が適正に行われる。なお、本実施形態では、支持体29において第2のシリコン層100bにより構成される部位の厚さを、外側フレーム部10において第2のシリコン層100bにより構成される部位と同じ厚さに設定してあるが、同じに限らず、厚くしてもよいし薄くしてもよい。 In addition, each slit 20a of the movable frame portion 23 in the movable portion 20 is a trench, and the above-described support 29 is configured by a part of the insulating layer 100c of the SOI substrate 100 and a part of the second silicon layer 100b. The depth reaches the insulating layer 100c. In short, the MEMS mirror 403 employs a configuration in which the movable frame portion 23 is formed with a plurality of slits 20a, but the movable frame portion 23 and the support 29 are the shafts of the pair of first torsion spring portions 30 and 30. It is possible to rotate integrally around. Here, the support 29 is formed in a frame shape that covers a portion of the movable frame portion 23 excluding each fixed comb tooth piece 26b and each movable comb tooth piece 22b (see FIG. 4). In addition, the plurality of trenches 20a of the movable frame portion 23 has the center of gravity of the movable portion 20 including the support 29 centered along the y-axis direction of the pair of first torsion spring portions 30 and 30 in plan view. The shape is designed so that it is located approximately in the middle of the connecting straight line. Therefore, in the MEMS mirror 403 in the present embodiment, the movable portion 20 smoothly swings around the axis of the pair of first torsion spring portions 30 and 30, and the reflected light is appropriately scanned. In the present embodiment, the thickness of the portion constituted by the second silicon layer 100b in the support 29 is set to the same thickness as the portion constituted by the second silicon layer 100b in the outer frame portion 10. However, it is not limited to the same, and may be thicker or thinner.
 第1のカバー基板2は、上述のように第1のガラス基板200を用いており、第1のガラス基板200の厚み方向に貫通して各パッド13それぞれを全周に亘って露出させる3つの貫通孔202が形成されている。ここにおいて、第1のガラス基板200の各貫通孔202は、ミラー形成基板1から離れるにつれて開口面積が徐々に大きくなるテーパ状に形成されている。各貫通孔202は、サンドブラスト法により形成してある。各貫通孔202の形成方法は、サンドブラスト法に限定するものではなく、ドリル加工法やエッチング法などを採用してもよい。 The first cover substrate 2 uses the first glass substrate 200 as described above, and penetrates in the thickness direction of the first glass substrate 200 to expose each pad 13 over the entire circumference. A through hole 202 is formed. Here, each through hole 202 of the first glass substrate 200 is formed in a tapered shape in which the opening area gradually increases as the distance from the mirror forming substrate 1 increases. Each through-hole 202 is formed by sandblasting. The method of forming each through-hole 202 is not limited to the sand blast method, and a drilling method, an etching method, or the like may be employed.
 また、MEMSミラー403は、各パッド13の平面視形状を円形状としてあり、各貫通孔202の第1のミラー形成基板1側での開口径が各パッド13の直径よりも大きくなるようにしてある。各パッド13の直径は、0.5mmに設定してあるが、特に限定するものではない。また、各パッド13の平面視形状は、必ずしも円形状である必要はなく、例えば、正方形状としてもよいが、各貫通孔202の開口径を小さくするうえでは円形状の方が正方形状よりも好ましい。 The MEMS mirror 403 has a circular shape in plan view of each pad 13 so that the opening diameter of each through-hole 202 on the first mirror forming substrate 1 side is larger than the diameter of each pad 13. is there. The diameter of each pad 13 is set to 0.5 mm, but is not particularly limited. Further, the planar view shape of each pad 13 is not necessarily a circular shape, and may be a square shape, for example, but in order to reduce the opening diameter of each through hole 202, the circular shape is more preferable than the square shape. preferable.
 ところで、各パッド13の一部が厚み方向において第1のカバー基板2に重なる場合には、各パッド13の厚みの影響で接合性や気密性が損なわれて製造時の歩留まり低下や、動作安定性の低下、経時安定性の低下の原因となる懸念がある。したがって、このような場合には、外側フレーム部10の幅寸法(外側フレーム部10の外側面と内側面との距離)を増大させる必要が生じて、MEMSミラー403の小型化が制限されてしまうことが考えられる。 By the way, when a part of each pad 13 overlaps with the first cover substrate 2 in the thickness direction, the bondability and airtightness are impaired by the influence of the thickness of each pad 13, and the yield during manufacture is reduced and the operation is stable. There is concern that it may cause a decrease in stability and stability over time. Therefore, in such a case, it is necessary to increase the width dimension of the outer frame portion 10 (the distance between the outer surface and the inner surface of the outer frame portion 10), and the size reduction of the MEMS mirror 403 is limited. It is possible.
 これに対して、本実施形態におけるMEMSミラー403では、第1のカバー基板2が各パッド13と重なることがなく、第1のカバー基板2と外側フレーム部10との間に各パッド13の一部が介在することもない。したがって、MEMSミラー403では、第1のカバー基板2とミラー形成基板1の外側フレーム部10との接合が各パッド13により妨げられるのを防止することができる。その結果、MEMSミラー403では、各パッド13の厚みの影響で接合性や気密性が損なわれるのを防止することができ、外側フレーム部10の幅寸法を増大させずに歩留まりの向上による低コスト化を図れるとともに、動作安定性の低下、経時安定性の低下を抑制することが可能となる。 On the other hand, in the MEMS mirror 403 in the present embodiment, the first cover substrate 2 does not overlap each pad 13, and one pad 13 is provided between the first cover substrate 2 and the outer frame portion 10. There is no intervening part. Therefore, in the MEMS mirror 403, it is possible to prevent the bonding between the first cover substrate 2 and the outer frame portion 10 of the mirror forming substrate 1 from being hindered by each pad 13. As a result, in the MEMS mirror 403, it is possible to prevent the bondability and airtightness from being affected by the thickness of each pad 13, and to reduce the cost by improving the yield without increasing the width dimension of the outer frame portion 10. It is possible to reduce the operational stability and the temporal stability.
 また、MEMSミラー403では、ミラー形成基板1の外側フレーム部10と各カバー基板2,3とで囲まれる気密空間を真空(真空雰囲気)とすることで、低消費電力化を図りつつ可動部20およびミラー部24の機械振れ角を大きくすることが可能となる。そこで、MEMSミラー403では、上記気密空間を真空とするとともに、第2のカバー基板3におけるミラー形成基板1との対向面において外側フレーム部10に接合される部位よりも内側の適宜部位に非蒸発型のゲッタ(図示せず)を設けてある。なお、非蒸発型のゲッタは、例えば、Zrを主成分とする合金やTiを主成分とする合金などにより形成すればよい。また、MEMSミラー403では、外側フレーム部10と第1のカバー基板2と第2のカバー基板3とで囲まれた上記気密空間を、不活性ガス雰囲気(例えば、ドライ窒素ガス雰囲気など)としてもよい。上述のMEMSミラー403では、上記気密空間を真空雰囲気と不活性ガス雰囲気とのいずれにしても、ミラー面21の酸化を防止できるから、ミラー面21の材料の選択肢が多くなるとともに、ミラー面21の反射特性の経時変化を抑制することができる。 In the MEMS mirror 403, the airtight space surrounded by the outer frame portion 10 of the mirror forming substrate 1 and each of the cover substrates 2 and 3 is made a vacuum (vacuum atmosphere), so that the movable portion 20 can be reduced while reducing power consumption. In addition, the mechanical deflection angle of the mirror unit 24 can be increased. Therefore, in the MEMS mirror 403, the airtight space is evacuated and non-evaporated to an appropriate portion inside the portion of the second cover substrate 3 facing the mirror forming substrate 1 that is bonded to the outer frame portion 10. A mold getter (not shown) is provided. The non-evaporable getter may be formed of, for example, an alloy containing Zr as a main component or an alloy containing Ti as a main component. In the MEMS mirror 403, the airtight space surrounded by the outer frame portion 10, the first cover substrate 2, and the second cover substrate 3 may be an inert gas atmosphere (for example, a dry nitrogen gas atmosphere). Good. In the MEMS mirror 403 described above, the mirror surface 21 can be prevented from being oxidized regardless of whether the airtight space is a vacuum atmosphere or an inert gas atmosphere. It is possible to suppress the change with time of the reflection characteristics.
 第1のガラス基板200は、ミラー形成基板1との対向面に、可動部20の変位空間を確保するための第1の凹部201を有している。ここで、第1のガラス基板200は、上述のように2枚のガラス板を接合して形成されている。そこで、第1のガラス基板200は、ミラー形成基板1に近い側に配置するガラス板(以下、第1のガラス板と称する)において第1の凹部201に対応する部位に、厚み方向に貫通する開孔部を形成し、ミラー形成基板1から遠い側に配置するガラス板(以下、第2のガラス板と称する)を平板状としてある。したがって、第1のガラス基板200は、サンドブラスト加工などにより第1の凹部201が形成されたものに比べて、第1の凹部201の内底面を滑らかな表面とすることができ、第1の凹部201の内底面での拡散反射、光拡散、散乱損失などを低減できる。 The first glass substrate 200 has a first recess 201 for securing a displacement space of the movable portion 20 on the surface facing the mirror forming substrate 1. Here, the first glass substrate 200 is formed by joining two glass plates as described above. Therefore, the first glass substrate 200 penetrates in a thickness direction in a portion corresponding to the first recess 201 in a glass plate (hereinafter referred to as a first glass plate) disposed on the side close to the mirror forming substrate 1. A glass plate (hereinafter referred to as a second glass plate) that forms the aperture and is disposed on the side far from the mirror-forming substrate 1 has a flat plate shape. Therefore, the first glass substrate 200 can have a smooth surface on the inner bottom surface of the first recess 201 as compared with the case where the first recess 201 is formed by sandblasting or the like. Diffuse reflection, light diffusion, scattering loss, and the like on the inner bottom surface of 201 can be reduced.
 また、第2のカバー基板3は、第2のガラス基板300におけるミラー形成基板1側の上記一表面に、可動部20の変位空間を確保するための第2の凹部301を形成してある。 Further, the second cover substrate 3 has a second recess 301 for securing a displacement space of the movable portion 20 on the one surface of the second glass substrate 300 on the mirror forming substrate 1 side.
 ここにおいて、第2のガラス基板300の上記一表面(第1面)に凹部301を形成する場合は、例えば、サンドブラスト法などにより形成すればよい。また、第2のカバー基板3についても、第1のカバー基板2と同様、2枚のガラス板を接合して形成してもよく、ミラー形成基板1に近い側に配置するガラス板(以下、第3のガラス板と称する)において第2の凹部301に対応する部位に厚み方向に貫通する開孔部を形成するとともに、ミラー形成基板1から遠い側に配置するガラス板(以下、第4のガラス板と称する)を平板状としてもよい。なお、第2のカバー基板3は、光を透過させる必要がないので、第2のガラス基板300に限らず、ミラー形成基板1との接合が容易で且つ半導体基板(SOI基板100)の材料であるSiとの線膨張率差が小さな材料により形成された基板であればよく、例えば、シリコン基板を用いて形成してもよく、この場合の第2の凹部301は、フォトリソグラフィ技術およびエッチング技術を利用して形成すればよい。 Here, when the concave portion 301 is formed on the one surface (first surface) of the second glass substrate 300, for example, it may be formed by a sandblast method or the like. Similarly to the first cover substrate 2, the second cover substrate 3 may be formed by joining two glass plates. A glass plate (hereinafter referred to as a glass plate disposed on the side close to the mirror forming substrate 1). A glass plate (hereinafter referred to as a fourth glass plate) disposed on the side far from the mirror forming substrate 1 while forming an opening portion penetrating in the thickness direction at a portion corresponding to the second recess 301 in the third glass plate). (Referred to as a glass plate) may be flat. Since the second cover substrate 3 does not need to transmit light, the second cover substrate 3 is not limited to the second glass substrate 300 but can be easily bonded to the mirror forming substrate 1 and is made of a material of the semiconductor substrate (SOI substrate 100). A substrate formed of a material having a small difference in linear expansion coefficient from Si may be used. For example, the substrate may be formed using a silicon substrate. In this case, the second recess 301 is formed by a photolithography technique and an etching technique. What is necessary is just to form using.
 また、本実施形態におけるMEMSミラー403では、外側フレーム部10と第1のカバー基板2と第2のカバー基板3とで囲まれる気密空間を真空とすることで、低消費電力化を図りつつ可動部20の機械振れ角を大きくすることが可能となるので、上記気密空間を真空とするとともに、第2の凹部301の内底面に、上述のゲッタを配置してある。 Further, in the MEMS mirror 403 according to the present embodiment, the airtight space surrounded by the outer frame portion 10, the first cover substrate 2 and the second cover substrate 3 is evacuated so that the power consumption can be reduced. Since the mechanical deflection angle of the portion 20 can be increased, the airtight space is evacuated and the getter described above is disposed on the inner bottom surface of the second recess 301.
 なお、本実施形態では、第1のカバー基板2および第2のカバー基板3の厚さを0.5mm~1.5mm程度の範囲で設定し、第1の凹部201および第2の凹部301の深さを300μm~800μmの範囲で設定してあるが、これらの数値は一例であり、可動部20のz軸方向への変位量に応じて適宜設定すればよく(つまり、可動部20の回動運動を妨げない深さであればよく)、特に限定するものではない。 In the present embodiment, the thicknesses of the first cover substrate 2 and the second cover substrate 3 are set in a range of about 0.5 mm to 1.5 mm, and the first recess 201 and the second recess 301 are formed. Although the depth is set in the range of 300 μm to 800 μm, these numerical values are merely examples, and may be set appropriately according to the amount of displacement of the movable part 20 in the z-axis direction (that is, the rotation of the movable part 20). The depth is not particularly limited as long as the depth does not hinder dynamic movement.
 各ガラス基板200,300のガラス材料としては、硼珪酸ガラスであるパイレックス(登録商標)を採用しているが、硼珪酸ガラスに限らず、例えば、ソーダライムガラス、無アルカリガラス、石英ガラスなどを採用してもよい。 Pyrex (registered trademark), which is a borosilicate glass, is adopted as the glass material of each glass substrate 200, 300, but is not limited to a borosilicate glass, for example, soda lime glass, non-alkali glass, quartz glass, etc. It may be adopted.
 以下、MEMSミラー403の製造方法について図5を参照しながら説明するが、図5A~5Fは図3のA-B断面に対応する部分の概略断面を示している。 Hereinafter, a method of manufacturing the MEMS mirror 403 will be described with reference to FIG. 5. FIGS. 5A to 5F show schematic cross sections of a portion corresponding to the cross section AB of FIG.
 まず、半導体基板であるSOI基板100の上記一表面(第1面)側および上記他表面(第2面)側それぞれに熱酸化法などによりシリコン酸化膜111a,111bを形成する酸化膜形成工程を行うことによって、図5Aに示す構造を得る。 First, an oxide film forming step of forming silicon oxide films 111a and 111b on the one surface (first surface) side and the other surface (second surface) side of the SOI substrate 100, which is a semiconductor substrate, by thermal oxidation or the like. By doing so, the structure shown in FIG. 5A is obtained.
 その後、フォトリソグラフィ技術およびエッチング技術を利用してSOI基板100の上記一表面(第1面)側のシリコン酸化膜(以下、第1のシリコン酸化膜と称する)111aをパターニングする第1のシリコン酸化膜パターニング工程を行うことによって、図5Bに示す構造を得る。この第1のシリコン酸化膜パターニング工程では、第1のシリコン酸化膜111aのうち、可動部20における反射膜21aの形成予定領域以外の部分、並びに第1の捩りばね部30,30などに対応する部位などが残るように、第1のシリコン酸化膜111aをパターニングする。 Thereafter, a first silicon oxide patterning the silicon oxide film (hereinafter referred to as the first silicon oxide film) 111a on the one surface (first surface) side of the SOI substrate 100 using photolithography technology and etching technology. By performing the film patterning step, the structure shown in FIG. 5B is obtained. This first silicon oxide film patterning step corresponds to a portion of the first silicon oxide film 111a other than the region where the reflective film 21a is to be formed in the movable portion 20, the first torsion spring portions 30, 30 and the like. The first silicon oxide film 111a is patterned so that a part or the like remains.
 第1のシリコン酸化膜パターニング工程の後、SOI基板100の上記一表面(第1面)側に所定膜厚(例えば、500nm)の金属膜(例えば、Al-Si膜)をスパッタ法や蒸着法などにより成膜する金属膜形成工程を行い、フォトリソグラフィ技術およびエッチング技術を利用して金属膜をパターニングすることにより各パッド13および反射膜21aを形成する金属膜パターニング工程を行うことによって、図5Cに示す構造を得る。なお、本実施形態では、各パッド13と反射膜21aとの材料および膜厚を同じに設定してあるので、各パッド13と反射膜21aとを同時に形成しているが、各パッド13と反射膜21aとの材料や膜厚が相違する場合には、各パッド13を形成するパッド形成工程と反射膜21aを形成する反射膜形成工程とを別々に設ければよい。 After the first silicon oxide film patterning step, a metal film (for example, Al—Si film) having a predetermined film thickness (for example, 500 nm) is formed on the one surface (first surface) side of the SOI substrate 100 by sputtering or vapor deposition. 5C by performing a metal film patterning process for forming each pad 13 and the reflective film 21a by patterning the metal film using a photolithography technique and an etching technique. The structure shown in is obtained. In this embodiment, since the material and film thickness of each pad 13 and the reflective film 21a are set to be the same, each pad 13 and the reflective film 21a are formed simultaneously. When the material and film thickness of the film 21a are different, the pad forming process for forming each pad 13 and the reflective film forming process for forming the reflective film 21a may be provided separately.
 上述の各パッド13および反射膜21aを形成した後、SOI基板100の上記一表面(第1面)側で、第1のシリコン層100aのうち可動フレーム部23、ミラー部24、一対の第1の捩りばね部30,30、一対の第2の捩りばね部25,25、外側フレーム部10、第1の固定電極12、第2の可動電極22、第2の固定電極26、第2の可動電極27に対応する部位を覆うようにパターニングされた第1のレジスト層130を形成する。その後、第1のレジスト層130をマスクとして、第1のシリコン層100aを絶縁層100cに達する深さ(第1の所定深さ)までエッチングすることにより第1のシリコン層100aをパターニングする第1のシリコン層パターニング工程(表面側パターニング工程)を行うことによって、図5Dに示す構造を得る。第1のシリコン層パターニング工程での第1のシリコン層100aのエッチングは、誘導結合プラズマ型のエッチング装置などのように、異方性の高いエッチングが可能なドライエッチング装置により行えばよい。また、第1のシリコン層パターニング工程では、絶縁層100cをエッチングストッパ層として利用している。 After forming each of the pads 13 and the reflective film 21a, the movable frame portion 23, the mirror portion 24, and the pair of first first layers of the first silicon layer 100a are formed on the one surface (first surface) side of the SOI substrate 100. Torsion spring portions 30, 30, a pair of second torsion spring portions 25, 25, outer frame portion 10, first fixed electrode 12, second movable electrode 22, second fixed electrode 26, second movable. A first resist layer 130 patterned so as to cover a portion corresponding to the electrode 27 is formed. After that, using the first resist layer 130 as a mask, the first silicon layer 100a is patterned by etching the first silicon layer 100a to a depth (first predetermined depth) reaching the insulating layer 100c. The structure shown in FIG. 5D is obtained by performing the silicon layer patterning step (surface side patterning step). Etching of the first silicon layer 100a in the first silicon layer patterning step may be performed by a dry etching apparatus capable of highly anisotropic etching, such as an inductively coupled plasma etching apparatus. In the first silicon layer patterning step, the insulating layer 100c is used as an etching stopper layer.
 上述の第1のシリコン層パターニング工程の後、SOI基板100の上記一表面(第1面)側の第1のレジスト層130を除去する。その後、SOI基板100の上記一表面(第1面)側の全面に第2のレジスト層131を形成する。続いて、SOI基板100の他表面(第2面)側で、第2のシリコン層100bのうち外側フレーム部10、支持体29に対応する部位以外を露出させるようにパターニングされた第3のレジスト層132を形成する。その後、第3のレジスト層132をマスクとして、第2のシリコン層100bを絶縁層100cに達する深さ(第2の所定深さ)までエッチングすることにより第2のシリコン層100bをパターニングする第2のシリコン層パターニング工程を行うことによって、図5Eに示す構造を得る。第2のシリコン層パターニング工程での第2のシリコン層100bのエッチングは、誘導結合プラズマ型のエッチング装置などのように、異方性が高く垂直深堀が可能なドライエッチング装置により行えばよい。また、第2のシリコン層パターニング工程では、絶縁層100cをエッチングストッパ層として利用している。 After the above-described first silicon layer patterning step, the first resist layer 130 on the one surface (first surface) side of the SOI substrate 100 is removed. Thereafter, a second resist layer 131 is formed on the entire surface of the SOI substrate 100 on the one surface (first surface) side. Subsequently, on the other surface (second surface) side of the SOI substrate 100, a third resist patterned so as to expose portions of the second silicon layer 100b other than those corresponding to the outer frame portion 10 and the support 29. Layer 132 is formed. Thereafter, by using the third resist layer 132 as a mask, the second silicon layer 100b is patterned by etching the second silicon layer 100b to a depth (second predetermined depth) reaching the insulating layer 100c. By performing the silicon layer patterning step, the structure shown in FIG. 5E is obtained. Etching of the second silicon layer 100b in the second silicon layer patterning step may be performed by a dry etching apparatus having high anisotropy and capable of vertical deepening, such as an inductively coupled plasma etching apparatus. In the second silicon layer patterning step, the insulating layer 100c is used as an etching stopper layer.
 上述の第2のシリコン層パターニング工程の後、SOI基板100の絶縁層100cの不要部分をSOI基板100の上記他表面(第2面)側からエッチングする絶縁層パターニング工程を行うことでミラー形成基板1を形成する。続いて、第2のレジスト層131および第3のレジスト層132を除去する。また、シリコン酸化膜111bも除去する。その後、ミラー形成基板1と、第1のカバー基板2および第2のカバー基板3とを陽極接合などにより接合する接合工程を行うことによって、図5Fに示す構造のMEMSミラー403を得る。 After the second silicon layer patterning step, a mirror forming substrate is formed by performing an insulating layer patterning step of etching unnecessary portions of the insulating layer 100c of the SOI substrate 100 from the other surface (second surface) side of the SOI substrate 100. 1 is formed. Subsequently, the second resist layer 131 and the third resist layer 132 are removed. The silicon oxide film 111b is also removed. Thereafter, by performing a joining step of joining the mirror forming substrate 1 to the first cover substrate 2 and the second cover substrate 3 by anodic bonding or the like, the MEMS mirror 403 having the structure shown in FIG. 5F is obtained.
 上述の接合工程では、ミラー形成基板1のミラー面21を保護する観点から、第1のカバー基板2とミラー形成基板1とを接合する第1の接合過程を行ってから、ミラー形成基板1と第2のカバー基板3とを接合する第2の接合過程を行うことが好ましい。ここで、第1の接合過程では、先ず、第1のガラス基板200に第1の凹部201や各貫通孔202などを形成した第1のカバー基板2とミラー形成基板1とを重ねた積層体を、所定真空度(例えば、10Pa以下)の真空中で所定の接合温度(例えば、300℃~400℃程度)に加熱した状態で、第1のシリコン層100aと第1のカバー基板2との間に第1のカバー基板2側を低電位側として所定電圧(例えば、400V~800V程度)を印加し、この状態を所定の接合時間(例えば、20分~60分程度)だけ保持すればよい。また、第2の接合過程では、上述の第1の接合過程に準じて、第2のシリコン層100bと第2のカバー基板3との陽極接合を行う。なお、ミラー形成基板1と各カバー基板2,3を接合する接合方法は、陽極接合に限らず、例えば、常温接合法などでもよい。また、第1のシリコン層パターニング工程の後に、SOI基板100と第1のカバー基板2とを接合し、その後、第2のシリコン層パターニング工程、絶縁層パターニング工程を行うことでミラー形成基板1を形成し、その後、ミラー形成基板1と第2のカバー基板3とを接合するようにしてもよい。 In the above-described bonding process, from the viewpoint of protecting the mirror surface 21 of the mirror forming substrate 1, after performing the first bonding process of bonding the first cover substrate 2 and the mirror forming substrate 1, It is preferable to perform a second joining process for joining the second cover substrate 3. Here, in the first bonding process, first, a laminated body in which the first cover substrate 2 in which the first concave portion 201 and each through hole 202 are formed on the first glass substrate 200 and the mirror forming substrate 1 are overlapped. Is heated to a predetermined bonding temperature (for example, about 300 ° C. to 400 ° C.) in a vacuum with a predetermined degree of vacuum (for example, 10 Pa or less), between the first silicon layer 100a and the first cover substrate 2. A predetermined voltage (for example, about 400 V to 800 V) is applied between the first cover substrate 2 side and the low potential side, and this state is maintained for a predetermined bonding time (for example, about 20 minutes to 60 minutes). . In the second bonding process, anodic bonding between the second silicon layer 100b and the second cover substrate 3 is performed in accordance with the first bonding process described above. Note that the bonding method for bonding the mirror forming substrate 1 and the cover substrates 2 and 3 is not limited to anodic bonding, and may be, for example, a room temperature bonding method. In addition, after the first silicon layer patterning step, the SOI substrate 100 and the first cover substrate 2 are bonded together, and then the second silicon layer patterning step and the insulating layer patterning step are performed, so that the mirror forming substrate 1 is formed. Then, the mirror forming substrate 1 and the second cover substrate 3 may be bonded.
 次に、MEMSミラー403の動作について説明する。 Next, the operation of the MEMS mirror 403 will be described.
 MEMSミラー403では、互いに対向する第1の可動電極22と第1の固定電極12との間に、可動部20を駆動するためのパルス電圧を一対のパッド13,13を介して印加することにより、第1の可動電極22と第1の固定電極12との間に静電力が発生し、可動部20がy軸方向の軸回りで回動する。しかして、MEMSミラー403では、第1の可動電極22と第1の固定電極12との間に所定の駆動周波数のパルス電圧を印加することにより、周期的に静電力を発生させることができ、可動部20を揺動させることができる。 In the MEMS mirror 403, a pulse voltage for driving the movable portion 20 is applied between the first movable electrode 22 and the first fixed electrode 12 facing each other via the pair of pads 13 and 13. Electrostatic force is generated between the first movable electrode 22 and the first fixed electrode 12, and the movable part 20 rotates about the axis in the y-axis direction. Thus, in the MEMS mirror 403, an electrostatic force can be periodically generated by applying a pulse voltage having a predetermined drive frequency between the first movable electrode 22 and the first fixed electrode 12. The movable part 20 can be swung.
 ここで、上述の可動部20は、内部応力に起因して、静止状態でも水平姿勢(xy平面に平行な姿勢)ではなく、きわめて僅かであるが傾いているので、例えば、第1の可動電極22と第1の固定電極12との間にパルス電圧が印加されると、静止状態からであっても、可動部20に略垂直な方向(z軸方向)の駆動力が加わり、可動部20が一対の第1の捩りばね部30,30を回動軸として当該一対の第1の捩りばね部30,30を捩りながら回動する。そして、第1の可動電極22と第1の固定電極12との間の駆動力を、可動櫛歯片22bと固定櫛歯片12bとが完全に重なりあうような姿勢となったときに解除すると、可動部20は、慣性力により、一対の第1の捩りばね部30,30を捩りながら回動し続ける。そして、可動部20の回動方向への慣性力と、一対の第1の捩りばね部30,30の復元力とが等しくなったとき、当該回動方向への可動部20の回動が停止する。このとき、第1の可動電極22と第1の固定電極12との間に再びパルス電圧が印加されて静電力が発生すると、可動部20は、一対の第1の捩りばね部30,30の復元力と第1の駆動手段の駆動力とにより、それまでとは逆の方向への回動を開始する。可動部20は、第1の駆動手段の駆動力と一対の第1の捩りばね部30,30の復元力とによる回動を繰り返して、一対の第1の捩りばね部30,30を回動軸として揺動する。 Here, the above-described movable portion 20 is not in a horizontal posture (a posture parallel to the xy plane) and is tilted slightly though it is stationary due to internal stress. For example, the first movable electrode When a pulse voltage is applied between the first fixed electrode 12 and the first fixed electrode 12, a driving force in a direction substantially perpendicular to the movable portion 20 (z-axis direction) is applied to the movable portion 20 even from a stationary state. Rotates while twisting the pair of first torsion springs 30, 30 about the pair of first torsion springs 30, 30. Then, when the driving force between the first movable electrode 22 and the first fixed electrode 12 is released when the movable comb tooth piece 22b and the fixed comb tooth piece 12b are in a posture that completely overlaps, The movable portion 20 continues to rotate while twisting the pair of first torsion spring portions 30 and 30 by inertial force. Then, when the inertial force in the rotation direction of the movable portion 20 and the restoring force of the pair of first torsion spring portions 30 and 30 become equal, the rotation of the movable portion 20 in the rotation direction stops. To do. At this time, when a pulse voltage is applied again between the first movable electrode 22 and the first fixed electrode 12 to generate an electrostatic force, the movable portion 20 is moved between the pair of first torsion spring portions 30 and 30. By the restoring force and the driving force of the first driving means, rotation in the opposite direction is started. The movable part 20 repeats the rotation by the driving force of the first driving means and the restoring force of the pair of first torsion spring parts 30, 30 to rotate the pair of first torsion spring parts 30, 30. Swings as a shaft.
 なお、第1の可動電極22と第1の固定電極12との間への駆動電圧の印加形態や周波数は特に限定するものではなく、例えば、第1の可動電極22と第1の固定電極12との間に印加する電圧を正弦波電圧としてもよい。 In addition, the application form and frequency of the drive voltage between the 1st movable electrode 22 and the 1st fixed electrode 12 are not specifically limited, For example, the 1st movable electrode 22 and the 1st fixed electrode 12 are used. The voltage applied between the two may be a sine wave voltage.
 ところで、MEMSミラー403は、例えば、第1の可動電極22および第2の固定電極26が電気的に接続されたパッド13aの電位を基準電位として、第1の固定電極12および第2の可動電極27それぞれの電位を周期的に変化させることにより、可動部20を一対の第1の捩りばね部30,30の軸回りで回動させることができるとともに、ミラー部24を一対の第2の捩りばね部25,25の軸回りで回動させることができる。要するに、本実施形態におけるMEMSミラー403では、対向する第1の固定電極12と第1の可動電極22との間に、可動部20を駆動するためのパルス電圧を一対のパッド13b,13aを介して印加することにより、第1の固定電極12と第1の可動電極22との間に静電力が発生し、可動部20がy軸方向の軸回りで回動する。また、このMEMSミラー403では、対向する第2の固定電極26と第2の可動電極27との間に、ミラー部24を駆動するためのパルス電圧を一対のパッド13a,13cを介して印加することにより、第2の固定電極26と第2の可動電極27との間に静電力が発生し、ミラー部24がx軸方向の軸回りで回動する。しかして、本実施形態におけるMEMSミラー403では、第1の固定電極12と第1の可動電極22との間に所定の第1の駆動周波数のパルス電圧を印加することにより、周期的に静電力を発生させることができ、可動部20全体を揺動させることができ、さらに、第2の固定電極26と第2の可動電極27との間に所定の第2の駆動周波数のパルス電圧を印加することにより、周期的に静電力を発生させることができ、可動部20のミラー部24を揺動させることができる。なお、ミラー形成基板1は、外側フレーム部10と第1のカバー基板2とで囲まれた空間側において、第1のシリコン層100aの反射膜21aが形成されていない部位の表面に、シリコン酸化膜111a(図5F参照)が形成されている。 By the way, the MEMS mirror 403 includes, for example, the first fixed electrode 12 and the second movable electrode using the potential of the pad 13a to which the first movable electrode 22 and the second fixed electrode 26 are electrically connected as a reference potential. 27. By periodically changing the respective potentials, the movable portion 20 can be rotated about the axis of the pair of first torsion spring portions 30, 30, and the mirror portion 24 can be turned to the pair of second torsion springs. The spring portions 25 and 25 can be rotated around the axis. In short, in the MEMS mirror 403 in the present embodiment, a pulse voltage for driving the movable portion 20 is interposed between the opposed first fixed electrode 12 and first movable electrode 22 via the pair of pads 13b and 13a. As a result, an electrostatic force is generated between the first fixed electrode 12 and the first movable electrode 22, and the movable part 20 rotates about the axis in the y-axis direction. In the MEMS mirror 403, a pulse voltage for driving the mirror portion 24 is applied between the opposed second fixed electrode 26 and the second movable electrode 27 via the pair of pads 13a and 13c. As a result, an electrostatic force is generated between the second fixed electrode 26 and the second movable electrode 27, and the mirror portion 24 rotates about the axis in the x-axis direction. Therefore, in the MEMS mirror 403 in this embodiment, an electrostatic force is periodically generated by applying a pulse voltage having a predetermined first driving frequency between the first fixed electrode 12 and the first movable electrode 22. Can be generated, the entire movable part 20 can be swung, and a pulse voltage of a predetermined second driving frequency is applied between the second fixed electrode 26 and the second movable electrode 27. By doing so, an electrostatic force can be periodically generated and the mirror part 24 of the movable part 20 can be swung. The mirror forming substrate 1 is formed on the surface of the portion of the first silicon layer 100a where the reflective film 21a is not formed on the space surrounded by the outer frame portion 10 and the first cover substrate 2. A film 111a (see FIG. 5F) is formed.
 本実施形態におけるMEMSミラー403では、第1の固定電極12と第1の可動電極22との間に、可動部20と一対の第1の捩りばね部30,30とにより構成される振動系の共振周波数の略2倍の周波数のパルス電圧を印加することにより、可動部20が共振現象を伴って駆動され、機械振れ角(xy平面に平行な水平面を基準としたときの傾き)が大きくなる。また、本実施形態におけるMEMSミラー403では、第2の固定電極26と第2の可動電極27との間に、ミラー部24と一対の第2の捩りばね部25,25とにより構成される振動系の共振周波数の略2倍の周波数のパルス電圧を印加することにより、ミラー部24が共振現象を伴って駆動され、機械振れ角(可動フレーム部23における第1のカバー基板2側の表面に平行な面を基準としたときの傾き)が大きくなる。 In the MEMS mirror 403 according to the present embodiment, the vibration system configured by the movable portion 20 and the pair of first torsion spring portions 30 and 30 between the first fixed electrode 12 and the first movable electrode 22 is used. By applying a pulse voltage having a frequency approximately twice the resonance frequency, the movable part 20 is driven with a resonance phenomenon, and the mechanical deflection angle (inclination with respect to a horizontal plane parallel to the xy plane) is increased. . Further, in the MEMS mirror 403 in the present embodiment, the vibration constituted by the mirror portion 24 and the pair of second torsion spring portions 25 and 25 between the second fixed electrode 26 and the second movable electrode 27. By applying a pulse voltage having a frequency approximately twice the resonance frequency of the system, the mirror unit 24 is driven with a resonance phenomenon, and a mechanical deflection angle (on the surface of the movable frame unit 23 on the first cover substrate 2 side) is driven. (Tilt with respect to parallel plane as reference) increases.
 ところで、上記判断部は、検知用レーザ401を駆動する第1のレーザ駆動装置、表示用レーザ411を駆動する第2のレーザ駆動装置、およびMEMSミラー403を駆動するミラー駆動装置を制御するマイクロコンピュータなどからなる制御装置(図示せず)に設けてある。ここにおいて、ミラー駆動装置は、第1の可動電極22と第1の固定電極12とで構成される第1の駆動手段と、第2の可動電極27と第2の固定電極26とで構成される第2の駆動手段と、第1の駆動手段に第1の駆動電圧を印加し且つ第2の駆動手段に第2の駆動電圧を印加する電源とで構成されている。 By the way, the determination unit controls the first laser driving device that drives the detection laser 401, the second laser driving device that drives the display laser 411, and the mirror driving device that drives the MEMS mirror 403. And the like (not shown). Here, the mirror driving device is constituted by a first driving means constituted by the first movable electrode 22 and the first fixed electrode 12, a second movable electrode 27 and a second fixed electrode 26. Second driving means, and a power source for applying the first driving voltage to the first driving means and applying the second driving voltage to the second driving means.
 上記制御装置は、ミラー駆動装置において、電源からMEMSミラー403の第1の駆動手段に印加する第1の駆動電圧に、固定フレーム部10に対する可動部20の機械振れ角を検知するための第1の直流バイアス電圧を重畳して印加させるとともに、電源からMEMSミラー403の第2の駆動手段に印加する第2の駆動電圧に、可動フレーム部23に対するミラー部24の機械振れ角を検知するための第2の直流バイアス電圧を重畳して印加させるようにしている。 In the mirror driving device, the control device detects a mechanical deflection angle of the movable portion 20 relative to the fixed frame portion 10 with a first driving voltage applied from the power source to the first driving means of the MEMS mirror 403. And a second driving voltage applied from the power source to the second driving unit of the MEMS mirror 403 to detect the mechanical deflection angle of the mirror unit 24 with respect to the movable frame unit 23. The second DC bias voltage is superimposed and applied.
 ここで、固定フレーム部10に対する可動部20の相対的な位置(機械振れ角)の変化に応じて第1の直流バイアス電圧に微小な電圧変化が生じるから、上記制御装置において、可動部20を駆動するための一対のパッド13b,13a間の第1の直流バイアス電圧を監視することにより、固定フレーム部10に対する可動部20の傾きを検知することができる。また、可動フレーム部23に対するミラー部24の相対的な位置(機械振れ角)の変化に応じて第2の直流バイアス電圧に微小な電圧変化が生じるから、上記制御装置において、ミラー部24を駆動するための一対のパッド13a,13c間の第2の直流バイアス電圧を監視することにより、可動フレーム部23に対するミラー部24の傾きを検知することができる。上記制御装置は、これらの傾きに基づいてミラー面21の中心の法線方向を求めることができ、当該ミラー面21により反射される検知用レーザ光LBおよび表示用レーザ光LB2の反射方向(表示部410上の走査位置)を求めることができる。なお、上記制御装置は、表示部410に表示させる所定の像に応じて、MEMSミラー403の反射方向と表示用レーザ411の駆動条件とを1対1で対応付けたデータを記憶したメモリを備えており、当該メモリに記憶された上記データに基づいて表示用レーザ411の駆動条件を変化させる。 Here, since a minute voltage change occurs in the first DC bias voltage in accordance with a change in the relative position (mechanical deflection angle) of the movable part 20 with respect to the fixed frame part 10, the movable part 20 is By monitoring the first DC bias voltage between the pair of pads 13b, 13a for driving, the inclination of the movable portion 20 relative to the fixed frame portion 10 can be detected. Further, since a minute voltage change occurs in the second DC bias voltage in accordance with a change in the relative position (mechanical deflection angle) of the mirror unit 24 with respect to the movable frame unit 23, the mirror unit 24 is driven in the control device. By monitoring the second DC bias voltage between the pair of pads 13a and 13c for the purpose, the inclination of the mirror part 24 relative to the movable frame part 23 can be detected. The control device can determine the normal direction of the center of the mirror surface 21 based on these inclinations, and the reflection directions (displays) of the detection laser beam LB and the display laser beam LB2 reflected by the mirror surface 21. The scanning position on the portion 410 can be obtained. Note that the control device includes a memory that stores data in which the reflection direction of the MEMS mirror 403 and the drive condition of the display laser 411 are associated with each other in accordance with a predetermined image displayed on the display unit 410. The drive condition of the display laser 411 is changed based on the data stored in the memory.
 したがって、センサ装置は、例えば、図9に示すように、屋内の壁面460においてドア470の近くに表示部410を設置し、表示部410に、外部機器(例えば、照明器具、エアコン、テレビなど)をオンオフ制御するための仮想のスイッチ(以下、バーチャルスイッチと称する)440の像を表示させることができるとともに、検知対象空間405内の任意の位置での物体406の有無を検知することが可能となる。図9の例では、バーチャルスイッチ440の像において、“ON”の文字の左側の四角形の像からなる仮想の第1のスイッチ要素441の位置に物体406が有る場合と、“OFF”の文字の左側の四角形の像からなる仮想の第2のスイッチ要素442の位置に物体406が有る場合とを、上記判断部において判別することが可能となる。したがって、上記判断部の判別結果に応じて、外部機器と当該外部機器へ電力を供給する電源との間に挿入されているスイッチをオンオフ制御するためのリモートコントロール信号を外部機器へ送信する送信部(アンテナなど)を設けておけば、屋内の壁などの造営材に埋込型の配線器具の一種である埋込型のスイッチなどを埋め込むための埋込穴を形成したり、埋込型の配線器具を施工するための先行配線を壁裏などに設けたりすることなく、表示部410を造営材の表面からなる壁面460に設置することによりバーチャルスイッチ440を設けることが可能となる。なお、表示部410を造営材に設置するにあたっては、例えば、予め裏面側に設けられた感圧性の接着剤などにより造営材に貼り付ければよい。 Therefore, for example, as shown in FIG. 9, the sensor device installs the display unit 410 near the door 470 on the indoor wall surface 460, and the display unit 410 has an external device (for example, a lighting device, an air conditioner, or a television). It is possible to display an image of a virtual switch (hereinafter referred to as a virtual switch) 440 for ON / OFF control of the image and to detect the presence or absence of the object 406 at an arbitrary position in the detection target space 405. Become. In the example of FIG. 9, in the image of the virtual switch 440, there is a case where the object 406 is at the position of the virtual first switch element 441 composed of a square image on the left side of the character “ON”, and the character “OFF”. The determination unit can determine when the object 406 is present at the position of the virtual second switch element 442 formed of the left square image. Therefore, in accordance with the determination result of the determination unit, a transmission unit that transmits to the external device a remote control signal for on / off control of a switch inserted between the external device and a power source that supplies power to the external device If an antenna (such as an antenna) is provided, an embedding hole for embedding an embedding type switch, which is a kind of embedding type wiring apparatus, can be formed in a construction material such as an indoor wall, The virtual switch 440 can be provided by installing the display unit 410 on the wall surface 460 formed of the surface of the construction material without providing the preceding wiring for constructing the wiring device on the back of the wall or the like. In installing the display unit 410 on the construction material, for example, the display unit 410 may be attached to the construction material with a pressure-sensitive adhesive or the like previously provided on the back surface side.
 上述のセンサ装置は、図7に示すように、検知用レーザ401、ハーフミラー402、MEMSミラー403、光検出部404、表示用レーザ411、ダイクロイックミラー412、レンズ407などを収納する筐体420を備えている。なお、筐体420内には、MEMSミラー403で反射され検知対象空間405側へ向う検知用レーザ光LB1(図1B参照)および表示用レーザ光LB2(図1D参照)、並びに、検知対象空間405内の表示部410や物体406で反射されMEMSミラー403へ向う検知用レーザ光LB1(図1C参照)、を通過させる通過部(図示せず)が形成されている。この通過部は、貫通孔でもよいし、検知用レーザ光LB1および表示用レーザ光LB2を透過する材料により形成されたものでもよい。また、筐体420内には、検知用レーザ401、ハーフミラー402、MEMSミラー403、光検出部404、表示用レーザ411、ダイクロイックミラー412、レンズ407などを位置決めして保持する保持部材(図示せず)が配置されている。 As shown in FIG. 7, the sensor device described above includes a housing 420 that houses a detection laser 401, a half mirror 402, a MEMS mirror 403, a light detection unit 404, a display laser 411, a dichroic mirror 412, a lens 407, and the like. I have. In the housing 420, the detection laser beam LB1 (see FIG. 1B) and the display laser beam LB2 (see FIG. 1D) reflected by the MEMS mirror 403 toward the detection target space 405 side, and the detection target space 405 A passage portion (not shown) is formed that allows the detection laser light LB1 (see FIG. 1C) reflected by the display portion 410 and the object 406 to travel toward the MEMS mirror 403. This passing portion may be a through hole or may be formed of a material that transmits the detection laser beam LB1 and the display laser beam LB2. In the housing 420, a holding member (not shown) that positions and holds the detection laser 401, the half mirror 402, the MEMS mirror 403, the light detection unit 404, the display laser 411, the dichroic mirror 412, the lens 407, and the like. ) Is arranged.
 ところで、上述のセンサ装置では、検知用レーザ光LB1の一部が、ハーフミラー402やMEMSミラー403などで散乱されたり、筐体420の内面で反射されたりして、光検出部404の受光面404aに到達する迷光となってしまい、光検出部404の出力のS/N比が低下してしまう懸念がある。 By the way, in the sensor device described above, a part of the detection laser beam LB1 is scattered by the half mirror 402, the MEMS mirror 403, or the like, or reflected by the inner surface of the housing 420, so that the light receiving surface of the light detection unit 404 is received. There is a concern that stray light that reaches 404a may be generated, and the S / N ratio of the output of the light detection unit 404 may decrease.
 そこで、センサ装置は、検知用レーザ光LB1および表示用レーザ光LB2の光路の周辺に配置され迷光を遮る遮光用部材430を備えることが好ましい。センサ装置では、遮光用部材430を設けることにより、光検出部404に到達する迷光を低減でき、光検出部404の出力のS/N比の向上を図れる。遮光用部材430は、黒色の樹脂の成形品により構成してあるが、迷光を遮ることができればよく、遮光用部材430の材料や形成方法は特に限定するものではない。なお、図示例では、6個の遮光用部材430を設けてあるが、遮光用部材430の数は特に限定するものではなく、1個でもよい。 Therefore, it is preferable that the sensor device includes a light shielding member 430 disposed around the optical path of the detection laser beam LB1 and the display laser beam LB2 to block stray light. In the sensor device, by providing the light blocking member 430, stray light reaching the light detection unit 404 can be reduced, and the S / N ratio of the output of the light detection unit 404 can be improved. Although the light shielding member 430 is formed of a black resin molded product, it is sufficient that the light shielding member 430 can block stray light, and the material and forming method of the light shielding member 430 are not particularly limited. In the illustrated example, six light shielding members 430 are provided, but the number of light shielding members 430 is not particularly limited, and may be one.
 また、センサ装置は、筐体420の内面が、迷光を散乱する粗面となっていることが好ましい。これにより、センサ装置は、光検出部404の受光面404aに到達する迷光を低減することが可能となる。筐体420の内面を粗面とする加工方法としては、例えば、ブラスト加工などがある。また、筐体420の内面に入射して光検出部404の受光面404aに到達する迷光を低減する手段は、筐体420の内面を粗面とする例に限らない。例えば、筐体420の材料が金属の場合には、筐体420の内面側を黒色の塗装材料により塗装してもよいし、黒色のアルマイトを形成してもよい。 In the sensor device, the inner surface of the housing 420 is preferably a rough surface that scatters stray light. Accordingly, the sensor device can reduce stray light that reaches the light receiving surface 404a of the light detection unit 404. As a processing method for making the inner surface of the housing 420 rough, for example, there is blast processing. The means for reducing the stray light that enters the inner surface of the housing 420 and reaches the light receiving surface 404a of the light detection unit 404 is not limited to the example in which the inner surface of the housing 420 is a rough surface. For example, when the material of the housing 420 is metal, the inner surface side of the housing 420 may be painted with a black coating material, or black alumite may be formed.
 上述のセンサ装置の組み立てにあたっては、まず、筐体420の一部を構成するボディ420a(図8A参照)を用意し、ボディ420aに上記保持部材を取り付けてから、図8Bに示すように、ボディ420a内に、検知用レーザ401、ハーフミラー402、MEMSミラー403、光検出部404、表示用レーザ411、ダイクロイックミラー412、レンズ407などを配置し、検知用レーザ401を駆動して光検出部404の出力が最大となるように光軸を調整する(パッシブアライメントを行う)。続いて、図8Cに示すように、遮光用部材430を配置する。その後、ボディ420aとともに筐体420を構成するカバー(図示せず)をボディ420aに結合すればよい。 In assembling the sensor device described above, first, a body 420a (see FIG. 8A) that constitutes a part of the housing 420 is prepared. After the holding member is attached to the body 420a, as shown in FIG. In 420a, a detection laser 401, a half mirror 402, a MEMS mirror 403, a light detection unit 404, a display laser 411, a dichroic mirror 412, a lens 407, and the like are arranged, and the detection laser 401 is driven to detect the light detection unit 404. The optical axis is adjusted so that the output of is maximized (passive alignment is performed). Subsequently, as shown in FIG. 8C, a light shielding member 430 is disposed. Thereafter, a cover (not shown) that forms the housing 420 together with the body 420a may be coupled to the body 420a.
 以上説明した本実施形態のセンサ装置では、検知用レーザ401と、検知用レーザ401から出射された検知用レーザ光LB1を反射および透過するハーフミラー402と、ハーフミラー402で反射された検知用レーザ光LB1を検知対象空間405側へ反射させるMEMSミラー403と、ハーフミラー402を挟んでMEMSミラー403の反対側に位置し検知対象空間405内の物体406で反射された後にMEMSミラー403で反射された検知用レーザ光LB1を検出する光検出部404と、光検出部404の出力に基づいて検知対象空間405内の物体406の有無を判断する上記判断部とを備え、検知用レーザ401とMEMSミラー403との間の光軸OA1とMEMSミラー403と光検出部404との間の光軸OA2とを、MEMSミラー403とハーフミラー402との間で一致させてあるので、外乱光の影響を受けにくく、且つ、小型化が可能となる。 In the sensor device of the present embodiment described above, the detection laser 401, the half mirror 402 that reflects and transmits the detection laser light LB1 emitted from the detection laser 401, and the detection laser reflected by the half mirror 402 The MEMS mirror 403 that reflects the light LB1 to the detection target space 405 side, and is reflected by the MEMS mirror 403 after being reflected by the object 406 in the detection target space 405 that is located on the opposite side of the MEMS mirror 403 across the half mirror 402. The detection laser beam LB1 and the determination unit that determines the presence or absence of the object 406 in the detection target space 405 based on the output of the light detection unit 404. The detection laser 401 and the MEMS Optical axis OA1 between the mirror 403 and optical axis OA between the MEMS mirror 403 and the light detection unit 404 Preparative, so are matched between the MEMS mirror 403 and the half mirror 402, less affected by ambient light, and makes it possible to downsize.
 また、本実施形態のセンサ装置では、検知対象空間405内に配置される表示部410と、表示用レーザ411と、検知用レーザ401とハーフミラー402との間に位置し表示用レーザ411から出射された表示用レーザ光LB2をハーフミラー402側へ反射させ且つ検知用レーザ401からの検知用レーザ光LB1を透過させるダイクロイックミラー412とを備え、ハーフミラー402が、表示用レーザ401からの表示用レーザ光LB2をMEMSミラー403側へ反射させるので、表示部410に像を表示させるための光学系と物体406を検知するための光学系とでハーフミラー402およびMEMSミラー403を共用しているので、両光学系の光軸の大部分を同軸上に揃えることができ、これらの光学系で別々の光路を設定する場合に比べて、小型化および軽量化を図ることができるとともに、検知対象空間405内での検知用レーザ光LB1と表示用レーザ光LB2との光路を精度良く一致させることが可能となる。 In the sensor device of this embodiment, the display unit 410 disposed in the detection target space 405, the display laser 411, the detection laser 401, and the half mirror 402 are positioned and emitted from the display laser 411. A dichroic mirror 412 that reflects the display laser beam LB 2 that has been transmitted to the half mirror 402 side and transmits the detection laser beam LB 1 from the detection laser 401. The half mirror 402 is for display from the display laser 401. Since the laser beam LB2 is reflected toward the MEMS mirror 403, the half mirror 402 and the MEMS mirror 403 are shared by the optical system for displaying an image on the display unit 410 and the optical system for detecting the object 406. The majority of the optical axes of both optical systems can be aligned on the same axis, and these optical systems have separate optical paths. Compared to the case of the determination, the size and weight can be reduced, and the optical paths of the detection laser beam LB1 and the display laser beam LB2 in the detection target space 405 can be matched with high accuracy. .
 ところで、センサ装置は、図1Aの構成の配置に限らず、例えば、図10に示す構成の配置でもよい。ここで、光検出部404は、ハーフミラー402で反射された検知用レーザ光LB1を検出する。この図10の構成においても、図1Aの構成と同様、検知用レーザ401とMEMSミラー403との間の光軸OA1とMEMSミラー403と光検出部404との間の光軸OA2とを、MEMSミラー403とハーフミラー402との間で一致させてある。図10の例では、ハーフミラー402は、検知用レーザ401から出射された検知用レーザ光の一部がハーフミラー402を透過して光学ミラー403に入射し、また検知対象空間405側で反射された検知用レーザ光の一部がハーフミラー402で光検出部404側へ反射されるように配置されている。MEMSミラー403は、ハーフミラー402を透過した検知用レーザ光LB1をミラー面21で検知対象空間405側へ反射させ、また検知対象空間405内の物体406または表示部410で反射された検知用レーザ光をそれ自身のミラー面21とハーフミラー402で光検出部404側に反射するように配置されている。 By the way, the sensor device is not limited to the arrangement shown in FIG. 1A, and may be arranged as shown in FIG. Here, the light detection unit 404 detects the detection laser light LB <b> 1 reflected by the half mirror 402. 10, the optical axis OA1 between the detection laser 401 and the MEMS mirror 403 and the optical axis OA2 between the MEMS mirror 403 and the light detection unit 404 are also expressed in the same manner as in the configuration of FIG. 1A. The mirror 403 and the half mirror 402 are matched. In the example of FIG. 10, in the half mirror 402, a part of the detection laser light emitted from the detection laser 401 passes through the half mirror 402 and enters the optical mirror 403, and is reflected on the detection target space 405 side. A part of the detected laser light is arranged to be reflected by the half mirror 402 toward the light detection unit 404. The MEMS mirror 403 reflects the detection laser beam LB1 transmitted through the half mirror 402 to the detection target space 405 side by the mirror surface 21, and also detects the detection laser reflected by the object 406 or the display unit 410 in the detection target space 405. It arrange | positions so that light may be reflected in the optical detection part 404 side with the mirror surface 21 and the half mirror 402 of its own.
 また、上述の各センサ装置では、表示用レーザ412、ダイクロイックミラー412、表示部410などを備えているが、これらは、センサ装置の用途に応じて適宜設ければよい。また、光学ミラーを構成するMEMSミラー403については、検知用レーザ光LB1を必ずしも2次元的に走査する必要はなく、センサ装置の用途に応じて反射方向を特定の一方向に固定してもよい。また、物体406は、人の手の指に限るものではない。 In addition, each of the sensor devices described above includes a display laser 412, a dichroic mirror 412, a display unit 410, and the like, which may be provided as appropriate according to the application of the sensor device. Further, the MEMS mirror 403 constituting the optical mirror does not necessarily need to scan the detection laser beam LB1 two-dimensionally, and the reflection direction may be fixed in a specific direction according to the application of the sensor device. . The object 406 is not limited to the finger of a human hand.
 本発明を幾つかの好ましい実施形態について記述したが、この発明の本来の精神および範囲、即ち請求の範囲を逸脱することなく、当業者によって様々な修正および変形が可能である。 While the invention has been described in terms of several preferred embodiments, various modifications and variations can be made by those skilled in the art without departing from the true spirit and scope of the invention, ie, the claims.

Claims (9)

  1.  検知用レーザ光を出射するように構成される検知用レーザと、
     前記検知用レーザ光を検知対象空間側へ反射させるように構成される光学ミラーと、
     前記検知対象空間側で反射された前記検知用レーザ光を検出するように構成される光検出部と
     を備えるセンサ装置であって、
     前記センサ装置は、ハーフミラーを更に備え、これは、該ハーフミラーに入射する前記検知用レーザ光の一部および残部をそれぞれ反射および透過するように配置され、
     前記光学ミラーは、可動部と、この可動部に設けられたミラー面とを備えるMEMSデバイスからなり、前記ハーフミラーからの前記検知用レーザ光を前記ミラー面で前記検知対象空間側へ反射させ、また前記検知対象空間側で反射された前記検知用レーザ光を前記ミラー面で前記光検出部側に反射するように配置され、
     前記検知用レーザと前記光学ミラーとの間の光軸と前記光学ミラーと前記光検出部との間の光軸とを、前記光学ミラーと前記ハーフミラーとの間で一致させてある
     ことを特徴とするセンサ装置。
    A detection laser configured to emit detection laser light;
    An optical mirror configured to reflect the detection laser beam toward the detection target space; and
    A sensor device comprising: a light detection unit configured to detect the detection laser light reflected on the detection target space side,
    The sensor device further includes a half mirror, which is arranged to reflect and transmit a part and the remaining part of the detection laser light incident on the half mirror, respectively.
    The optical mirror is composed of a MEMS device including a movable part and a mirror surface provided on the movable part, and reflects the detection laser light from the half mirror to the detection target space side on the mirror surface, Further, the detection laser beam reflected on the detection target space side is arranged so as to be reflected on the mirror surface to the light detection unit side,
    The optical axis between the detection laser and the optical mirror and the optical axis between the optical mirror and the light detection unit are matched between the optical mirror and the half mirror. Sensor device.
  2.  前記光検出部の出力に基づいて前記検知対象空間内の物体の有無を判断するように構成される判断部を更に備えることを特徴とする請求項1記載のセンサ装置。 The sensor device according to claim 1, further comprising a determination unit configured to determine the presence or absence of an object in the detection target space based on an output of the light detection unit.
  3.  前記ハーフミラーは、前記検知用レーザから出射された前記検知用レーザ光の一部が該ハーフミラーで前記光学ミラーへ反射され、また前記検知対象空間側で反射された前記検知用レーザ光の一部が該ハーフミラーを透過して前記光検出部に入射するように配置されることを特徴とする請求項1記載のセンサ装置。 The half mirror is a part of the detection laser light reflected from the detection target space side by reflecting a part of the detection laser light emitted from the detection laser to the optical mirror by the half mirror. The sensor device according to claim 1, wherein a part is disposed so as to pass through the half mirror and enter the light detection part.
  4.  前記検知対象空間内に配置される表示部と、
     前記表示部に所定の表示を行うための表示用レーザ光を出射するように構成される表示用レーザと、
     前記検知用レーザと前記ハーフミラーとの間に位置するダイクロイックミラーと
     を更に備え、
     前記ダイクロイックミラーは、前記表示用レーザから出射された前記表示用レーザ光が該ダイクロイックミラーで前記ハーフミラー側へ反射され且つ前記検知用レーザからの前記検知用レーザ光が該ダイクロイックミラーを透過するように構成される
     ことを特徴とする請求項1記載のセンサ装置。
    A display unit disposed in the detection target space;
    A display laser configured to emit display laser light for performing predetermined display on the display unit;
    A dichroic mirror positioned between the detection laser and the half mirror;
    The dichroic mirror is configured such that the display laser light emitted from the display laser is reflected by the dichroic mirror toward the half mirror, and the detection laser light from the detection laser passes through the dichroic mirror. The sensor device according to claim 1, wherein the sensor device is configured as follows.
  5.  前記ハーフミラーと前記光検出部との間に位置し前記検知用レーザ光を前記光検出部の受光面に集光するためのレンズを更に備え、
     前記レンズは、前記表示部に対して結像関係になる位置に配置されてなる
     ことを特徴とする請求項4記載のセンサ装置。
    A lens for condensing the laser beam for detection on the light receiving surface of the light detection unit located between the half mirror and the light detection unit;
    The sensor device according to claim 4, wherein the lens is disposed at a position that is in an imaging relationship with the display unit.
  6.  前記表示部は、前記検知用レーザ光と前記表示用レーザ光との両方を再帰反射するスクリーンからなることを特徴とする請求項4記載のセンサ装置。 5. The sensor device according to claim 4, wherein the display unit includes a screen that retroreflects both the detection laser beam and the display laser beam.
  7.  前記表示部は、前記検知用レーザ光と前記表示用レーザ光との両方を再帰反射するスクリーンからなることを特徴とする請求項5記載のセンサ装置。 6. The sensor device according to claim 5, wherein the display unit includes a screen that retroreflects both the detection laser beam and the display laser beam.
  8.  前記検知用レーザ光および前記表示用レーザ光の光路の周辺に配置され迷光を遮るための遮光用部材を更に備えることを特徴とする請求項4ないし請求項7のいずれか1項に記載のセンサ装置。 The sensor according to any one of claims 4 to 7, further comprising a light blocking member disposed around an optical path of the detection laser beam and the display laser beam to block stray light. apparatus.
  9.  前記検知用レーザ、前記ハーフミラー、前記光学ミラー、前記光検出部、前記表示用レーザ、前記ダイクロイックミラー、前記レンズ、および前記遮光用部材を収納した筐体を更に備え、
     前記筐体の内面が前記迷光を散乱する粗面である
     ことを特徴とする請求項8記載のセンサ装置。
    A housing housing the detection laser, the half mirror, the optical mirror, the light detection unit, the display laser, the dichroic mirror, the lens, and the light shielding member;
    The sensor device according to claim 8, wherein an inner surface of the housing is a rough surface that scatters the stray light.
PCT/JP2011/066606 2010-07-26 2011-07-21 Sensor device WO2012014784A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-167520 2010-07-26
JP2010167520A JP2012026935A (en) 2010-07-26 2010-07-26 Sensor apparatus

Publications (1)

Publication Number Publication Date
WO2012014784A1 true WO2012014784A1 (en) 2012-02-02

Family

ID=45529996

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/066606 WO2012014784A1 (en) 2010-07-26 2011-07-21 Sensor device

Country Status (3)

Country Link
JP (1) JP2012026935A (en)
TW (1) TW201210308A (en)
WO (1) WO2012014784A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106148889B (en) * 2014-11-21 2019-10-18 三星显示有限公司 Deposition fabrication mask device and deposition mask manufacture method using the device
US9695522B2 (en) 2014-11-21 2017-07-04 Samsung Display Co., Ltd. Deposition mask, method of manufacturing deposition mask, and method of manufacturing display apparatus
TWI571341B (en) * 2014-12-04 2017-02-21 Metal Ind Res And Dev Centre An auto focus system and method that can focus on beam sensitivity
CN114895456A (en) 2017-07-06 2022-08-12 浜松光子学株式会社 Optical device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09185778A (en) * 1995-12-29 1997-07-15 S K S Kk Area sensor
JP2000338259A (en) * 1999-05-28 2000-12-08 Natl Inst Of Industrial Safety Ministry Of Labour Regression reflection type safety and normality- verifying device
JP2009270954A (en) * 2008-05-08 2009-11-19 Nikon Vision Co Ltd Range finder
JP2010134420A (en) * 2008-11-07 2010-06-17 Seiko Epson Corp Light scanning device and image forming device
JP2010151958A (en) * 2008-12-24 2010-07-08 Toyota Central R&D Labs Inc Optical scanning apparatus and laser radar device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09185778A (en) * 1995-12-29 1997-07-15 S K S Kk Area sensor
JP2000338259A (en) * 1999-05-28 2000-12-08 Natl Inst Of Industrial Safety Ministry Of Labour Regression reflection type safety and normality- verifying device
JP2009270954A (en) * 2008-05-08 2009-11-19 Nikon Vision Co Ltd Range finder
JP2010134420A (en) * 2008-11-07 2010-06-17 Seiko Epson Corp Light scanning device and image forming device
JP2010151958A (en) * 2008-12-24 2010-07-08 Toyota Central R&D Labs Inc Optical scanning apparatus and laser radar device

Also Published As

Publication number Publication date
JP2012026935A (en) 2012-02-09
TW201210308A (en) 2012-03-01

Similar Documents

Publication Publication Date Title
JP5452197B2 (en) MEMS optical scanner
WO2013136759A1 (en) Optical reflecting element and actuator
JP5909850B2 (en) Wavelength variable interference filter, optical module, and optical analyzer
JP6201484B2 (en) Optical filter device, optical module, electronic apparatus, and MEMS device
JP6933401B2 (en) MEMS scanning module for optical scanner
TWI411064B (en) Microelectromechanical system
US9778549B2 (en) Optical element
WO2012014784A1 (en) Sensor device
JP5673049B2 (en) Wavelength variable interference filter, optical module, and optical analyzer
US7701584B2 (en) Light path circuit apparatus and ring laser gyro
CN113009684B (en) Microelectromechanical device with impact-resistant tiltable structure
Senger et al. A bi-axial vacuum-packaged piezoelectric MEMS mirror for smart headlights
JP2012150353A (en) Wavelength variable interference filter, optical module, and optical analysis device
JP2011112803A (en) Mems optical scanner
JP2011112807A (en) Mems optical scanner and method of manufacturing the same
JP2011227224A (en) Optical filter device, optical filter module, and analysis apparatus
US20070153351A1 (en) Micro optical scanner capable of measuring operating frequency of micro mirror
JP2011112806A (en) Mems optical scanner and method of manufacturing the same
JP2012027336A (en) Sensor device
JP2010286589A (en) Optical deflector and image display device using the same
JP2012027337A (en) Mems optical scanner
JP2010060689A (en) Optical reflection element unit
WO2023053840A1 (en) Optical scanning device
JP2012027338A (en) Light beam scanner and sensor device using the same
JP2012026936A (en) Sensor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11812375

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11812375

Country of ref document: EP

Kind code of ref document: A1