WO2012014453A1 - Lens unit - Google Patents

Lens unit Download PDF

Info

Publication number
WO2012014453A1
WO2012014453A1 PCT/JP2011/004221 JP2011004221W WO2012014453A1 WO 2012014453 A1 WO2012014453 A1 WO 2012014453A1 JP 2011004221 W JP2011004221 W JP 2011004221W WO 2012014453 A1 WO2012014453 A1 WO 2012014453A1
Authority
WO
WIPO (PCT)
Prior art keywords
eye
image
area
adjustment
optical system
Prior art date
Application number
PCT/JP2011/004221
Other languages
French (fr)
Japanese (ja)
Inventor
俊郎 向井
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2012014453A1 publication Critical patent/WO2012014453A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/02Optical objectives with means for varying the magnification by changing, adding, or subtracting a part of the objective, e.g. convertible objective
    • G02B15/10Optical objectives with means for varying the magnification by changing, adding, or subtracting a part of the objective, e.g. convertible objective by adding a part, e.g. close-up attachment
    • G02B15/12Optical objectives with means for varying the magnification by changing, adding, or subtracting a part of the objective, e.g. convertible objective by adding a part, e.g. close-up attachment by adding telescopic attachments
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/56Accessories
    • G03B17/565Optical accessories, e.g. converters for close-up photography, tele-convertors, wide-angle convertors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B35/00Stereoscopic photography
    • G03B35/08Stereoscopic photography by simultaneous recording
    • G03B35/10Stereoscopic photography by simultaneous recording having single camera with stereoscopic-base-defining system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/286Image signal generators having separate monoscopic and stereoscopic modes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0046Movement of one or more optical elements for zooming

Definitions

  • the technology disclosed here relates to a lens unit.
  • Digital cameras such as digital still cameras and digital video cameras are known as imaging devices.
  • the digital camera has an image sensor such as a CCD (Charge-Coupled Device) image sensor or a CMOS (Complementary Metal-Oxide Semiconductor) image sensor.
  • the image sensor converts an optical image formed by the optical system into an image signal.
  • the image data of the subject can be acquired.
  • the stereo image is an image for three-dimensional display, and includes a left-eye image and a right-eye image having parallax.
  • This type of imaging apparatus includes an optical unit having a pair of left and right optical systems (see, for example, Patent Document 1). When this type of optical unit is used, a pair of optical images having parallax is formed in the effective image area of the image sensor. In order to obtain an appropriate stereo image, it is preferable to efficiently arrange a pair of optical images in an effective image area.
  • the subject of this invention is providing the lens unit which can utilize the effective image area
  • the lens unit disclosed herein is a lens unit that forms a first optical image and a second optical image on an imaging device, and includes a first optical system, a second optical system, and a light shielding member.
  • the first optical system is an optical system for forming a first optical image viewed from the first viewpoint, and has a first optical axis.
  • the second optical system is an optical system for forming a second optical image viewed from a second viewpoint different from the first viewpoint, and has a second optical axis.
  • the light shielding member is disposed on the subject side of the first and second optical systems, and has an intermediate light shielding portion disposed between the first and second optical axes.
  • the first optical image formed on the image sensor by the first optical system has a first vignetting area in which the amount of light is reduced by the intermediate light shielding portion.
  • the second optical image formed on the image sensor by the second optical system has a second vignetting area in which the amount of light is reduced by the intermediate light shielding portion. At the time of shooting, at least part of the first vignetting area overlaps with the second vignetting area.
  • the first optical image is arranged such that the peripheral portion of the second optical image does not overlap with the effective area of the first optical image and the peripheral portion of the first optical image does not overlap with the effective area of the second optical image. It is necessary to separate the effective area of the second optical image. Therefore, in order to fit the effective area of the first optical image and the effective area of the second optical image on the image sensor, it is necessary to reduce the first optical image and the second optical image.
  • the first vignetting area and the second vignetting area are formed by the intermediate light shielding portion, and at least a part of the first vignetting area overlaps the second vignetting area at the time of photographing.
  • the effective area of the first optical image and the effective area of the second optical image can be brought close to each other, and the effective area of the first optical image and the effective area of the second optical image can be set relatively large. That is, in this lens unit, the effective image area of the image sensor can be used efficiently.
  • the lens unit disclosed herein can efficiently use the effective image area of the image sensor during three-dimensional imaging.
  • the video camera unit 1 includes a video camera 200 (an example of an imaging device) and a 3D adapter 100 (an example of a lens unit) attached to the video camera 200.
  • the 3D adapter 100 is configured to be detachable from the video camera 200.
  • the video camera 200 has a uniaxial optical system V having an optical axis A0.
  • the 3D adapter 100 has a biaxial optical system having a left eye optical axis AL (an example of the first optical axis or the second optical axis) and a right eye optical axis AR (an example of the first optical axis or the second optical axis). is doing.
  • AL an example of the first optical axis or the second optical axis
  • AR an example of the first optical axis or the second optical axis
  • the 3D adapter 100 is a conversion lens for performing three-dimensional imaging with the video camera 200, and can be attached to the front frame 299 of the video camera 200.
  • the front frame 299 is provided for mounting optical components such as a wide conversion lens and a tele conversion lens.
  • the 3D adapter 100 employs a side-by-side imaging method (also referred to as a side-by-side method) in which two optical images are formed on one imaging device by a pair of left and right optical systems. By attaching the 3D adapter 100 to the video camera 200, the uniaxial optical system V can be switched to a biaxial optical system capable of three-dimensional imaging.
  • the subject side of the video camera unit 1 is forward, the opposite side of the subject of the video camera unit 1 is rearward, and the vertical upper side in the normal posture of the video camera unit 1 (hereinafter also referred to as landscape orientation) is shown.
  • the upper and lower vertical sides are also called the lower.
  • the right side toward the subject is also referred to as right and the left side is also referred to as left.
  • a three-dimensional orthogonal coordinate system is set for the 3D adapter 100 and the video camera 200.
  • the X-axis direction is a direction parallel to the X-axis
  • the Y-axis direction is a direction parallel to the Y-axis
  • the Z-axis direction is a direction parallel to the Z-axis.
  • the Y axis is set parallel to the optical axis A0
  • the left eye optical axis AL and the right eye optical axis AR are substantially parallel to the Y axis.
  • a virtual plane parallel to the left eye optical axis AL and the right eye optical axis AR is used as a reference plane in a state where the left eye optical axis AL and the right eye optical axis AR intersect, the Z-axis direction is orthogonal to the reference plane.
  • a virtual plane including the optical axis A0 and the Z axis of the video camera 200 is referred to as an intermediate reference plane B.
  • the intermediate reference plane B is disposed between the left-eye optical system OL and the right-eye optical system OR, and is defined at the center of the left-eye optical system OL and the right-eye optical system OR.
  • the intermediate reference plane B is disposed substantially parallel to the left eye optical axis AL and the right eye optical axis AR.
  • the intermediate reference plane B is orthogonal to the X-axis direction.
  • the left-eye optical system OL and the right-eye optical system OR are disposed at positions that are substantially symmetrical with respect to the intermediate reference plane B.
  • the intermediate reference plane B is orthogonal to the aforementioned reference plane.
  • the reference plane can also be called a virtual plane parallel to the paper surface of FIG.
  • the video camera 200 includes a video lens unit 201 and a video camera main body 202.
  • the video lens unit 201 and the video camera main body 202 constitute a video camera 200 integrally.
  • the video lens unit 201 is provided to form an optical image of a subject, and has an optical system V and a drive unit 271.
  • the optical system V is a uniaxial optical system having an optical axis A0, and includes a first lens group G1, a second lens group G2, a third lens group G3, and a fourth lens group G4. ing.
  • the first lens group G1 is disposed at a position closest to the subject in the optical system V.
  • the second lens group G2 (an example of a zoom adjustment lens group) is a lens group for zoom adjustment, and is provided so as to be movable along the optical axis A0.
  • the third lens group G3 is a lens group for correcting camera shake.
  • the fourth lens group G4 (an example of a focus lens group) is a lens group for focus adjustment, and is provided so as to be movable along the optical axis A0.
  • (2) Drive unit 271 As shown in FIG.
  • the drive unit 271 is provided to adjust the state of the optical system V, and includes a zoom motor 214, an OIS motor 221, a correction lens position detection sensor 222, a zoom position detection sensor 223, and a focus position.
  • a detection sensor 224 and a focus motor 233 are provided.
  • a zoom motor 214 (an example of a zoom drive unit) drives the second lens group G2 in a direction parallel to the optical axis A0.
  • the focal length of the optical system V can be adjusted by moving the second lens group G2 in a direction parallel to the optical axis A0.
  • the zoom motor 214 is controlled by the camera controller 140.
  • the zoom motor 214 is a stepping motor, but may be other actuators such as a DC motor, a servo motor, and an ultrasonic motor.
  • the OIS motor 221 drives the third lens group G3.
  • the correction lens position detection sensor 222 detects the position of the correction lens included in the third lens group G3.
  • a focus motor 233 (an example of a focus drive unit) drives the fourth lens group G4 in a direction parallel to the optical axis A0. By moving the fourth lens group G4 in a direction parallel to the optical axis A0, the shooting distance (the distance from the video camera 200 to the in-focus subject) can be adjusted.
  • the focus motor 233 is controlled by the lens controller 240.
  • the focus motor 233 is a stepping motor, but may be other actuators such as a DC motor, a servo motor, and an ultrasonic motor.
  • the video camera body 202 includes a CMOS image sensor 110, a camera monitor 120, a display control unit 125, an operation unit 130, a card slot 170, a DRAM 241, an image processing unit 210, a temperature sensor 118, and a shake amount detection sensor. 275 and a camera controller 140. As shown in FIG. 5, these units are connected to a bus 20, and data can be transmitted / received to / from each other via the bus 20.
  • CMOS image sensor 110 As shown in FIG.
  • the CMOS image sensor 110 converts an optical image of a subject (hereinafter also referred to as a subject image) formed by the video lens unit 201 into an image signal.
  • the CMOS image sensor 110 outputs an image signal based on the timing signal generated by the timing generator 212.
  • the image signal generated by the CMOS image sensor 110 is digitized by the image processing unit 210 and converted into image data.
  • Still image data and moving image data can be acquired by the CMOS image sensor 110.
  • the acquired moving image data is also used for displaying a through image.
  • the through image is an image that is not recorded in the memory card 171 in the moving image data.
  • the through image is mainly a moving image, and is displayed on the camera monitor 120 in order to determine the composition of the moving image or the still image.
  • the CMOS image sensor 110 has a light receiving surface 110 a that receives light transmitted through the video lens unit 201.
  • An optical image of the subject is formed on the light receiving surface 110a.
  • the first light receiving surface 110L occupies the left half of the light receiving surface 110a
  • the second light receiving surface 110R occupies the right half of the light receiving surface 110a.
  • the areas of the first light receiving surface 110L and the second light receiving surface 110R are the same.
  • the left-eye optical image QL1 is formed on the first light-receiving surface 110L
  • the right-eye optical image QR1 is formed on the second light-receiving surface 110R.
  • CMOS image sensor 110 is one example of an imaging device for converting into an electrical image signal an optical image of an object.
  • the imaging element is a concept including a photoelectric conversion element such as a CMOS image sensor 110 or a CCD image sensor.
  • Camera monitor 120 A camera monitor 120 shown in FIG. 5 is a liquid crystal display, for example, and displays display image data as an image.
  • the display image data is data for displaying image data subjected to image processing, shooting conditions of the video camera unit 1, operation menus, and the like as images, and is generated by the camera controller 140.
  • the camera monitor 120 can selectively display both moving images and still images. As shown in FIG. 1 or 2, in this embodiment, the camera monitor 120 is disposed on the side surface of the video camera main body 202, but the camera monitor 120 may be disposed anywhere on the video camera main body 202.
  • the camera monitor 120 is an example of a display unit provided in the video camera body 202.
  • the display unit other devices that can display an image, such as an organic EL, an inorganic EL, and a plasma display panel, can be used.
  • (3) Operation unit 130 As shown in FIG. 4, the operation unit 130 includes a recording button 131, a zoom lever 132, and an adjustment mode button 133.
  • the recording button 131 accepts a recording operation by the user.
  • the zoom lever 132 is a lever switch provided on the upper surface of the video camera main body 202 and is used for zoom adjustment.
  • the adjustment mode button 133 is provided to switch the video camera 200 to an adjustment mode for performing various position adjustments of the left and right images during three-dimensional imaging.
  • the operation unit 130 is only required to accept an operation by a user, and may include various types of operation systems such as buttons, levers, dials, and touch panels.
  • the card slot 170 can be loaded with a memory card 171.
  • the card slot 170 controls the memory card 171 based on the control from the camera controller 140.
  • the card slot 170 stores image data in the memory card 171 and outputs image data from the memory card 171.
  • the card slot 170 stores moving image data in the memory card 171 and outputs moving image data from the memory card 171.
  • the memory card 171 can store image data generated by the camera controller 140 through image processing.
  • the memory card 171 can store uncompressed RAW image data and compressed JPEG image data.
  • the memory card 171 can store stereo image data in a multi-picture format (MPF) format.
  • MPF multi-picture format
  • still image data stored in advance can be output from the memory card 171 via the card slot 170.
  • the still image data output from the memory card 171 is processed by the camera controller 140.
  • the camera controller 140 expands still image data acquired from the memory card 171 to generate still image data for display.
  • the memory card 171 can further store moving image data generated by the camera controller 140 through image processing.
  • the memory card 171 is a video compression standard H.264. Video data compressed according to H.264 / AVC can be stored.
  • the moving image data stored in advance can be output from the memory card 171.
  • the moving image data output from the memory card 171 is processed by the camera controller 140.
  • the camera controller 140 performs a decompression process on the moving image data acquired from the memory card 171 to generate display moving image data.
  • Camera controller 140 A camera controller 140 shown in FIG. 4 controls the entire video camera 200.
  • the camera controller 140 is electrically connected to the operation unit 130.
  • An operation signal is input from the operation unit 130 to the camera controller 140.
  • the camera controller 140 uses the DRAM 241 as a work memory during a control operation or an image processing operation described later.
  • the camera controller 140 includes a CPU (Central Processing Unit) 140a, a ROM (Read Only Memory) 140b (an example of an index storage unit), and a RAM (Random Access Memory) 140c.
  • Various functions can be realized by reading the stored program into the CPU 140a.
  • the camera controller 140 realizes the functions of the drive control unit 140d, the metadata generation unit 147, the image file generation unit 148, and the lens detection unit 149 by reading the program stored in the ROM 140b into the CPU 140a. ing.
  • the camera controller 140 has a playback mode, a 2D shooting mode, a 3D shooting mode, and an adjustment mode. As described above, based on the detection result of the lens detection unit 149, the camera controller 140 can automatically switch the operation mode between the two-dimensional imaging mode and the three-dimensional imaging mode. In the two-dimensional shooting mode, a normal two-dimensional image can be taken. On the other hand, in the three-dimensional shooting mode, a stereo image can be shot using the 3D adapter 100. Further, the camera controller 140 can switch the operation mode to the adjustment mode by the adjustment mode button 133. In the adjustment mode, the vertical shift, the vertical position, and the horizontal position of the left-eye optical image QL1 and the right-eye optical image QR1 can be adjusted. Switching to the adjustment mode can be performed using the adjustment mode button 133.
  • the drive control unit 140d controls the zoom motor 214 based on the index data indicating individual differences between products in the two-dimensional imaging mode and the three-dimensional imaging mode.
  • the second lens group G2 is driven to a desired position. Thereby, even if there is an individual difference between products, the second lens group G2 can be arranged at the design reference position, and the deviation of the reference plane distance of the video camera unit 1 can be corrected.
  • the index data is data indicating individual differences of the optical system V, for example, and the index data is calculated for each product at the time of manufacture or shipment.
  • the index data is data that can be converted into, for example, a focal length, and more specifically, the index data may be data indicating a difference between the design value of the focal length and the actual focal length.
  • the index data is stored in the ROM 140b, for example.
  • the metadata generation unit 147 generates metadata including the stereo base and the convergence angle.
  • the stereo base means a distance between the left-eye optical system OL and the right-eye optical system OR.
  • the convergence angle refers to an angle formed by the left eye optical axis AL and the right eye optical axis AR.
  • the stereo base and the convergence angle are used when displaying a stereo image.
  • the convergence point is an intersection of the left eye optical axis AL and the right eye optical axis AR.
  • the shortest distance from the convergence point to the front surface of the 3D adapter 100 is referred to as a reference plane distance.
  • the image file generation unit 148 shown in FIG. 5 combines stereo image data in MPF (Multi Picture Format) format by combining left-eye and right-eye image data compressed by an image compression unit 217 (described later) and metadata. Is generated.
  • the generated image data is transmitted to, for example, the card slot 170 and stored in the memory card 171.
  • the camera controller 140 further includes a lens detection unit 149.
  • the lens detection unit 149 detects that the 3D adapter 100 is attached to the video camera 200.
  • the camera controller 140 switches the operation mode from the two-dimensional imaging mode to the three-dimensional imaging mode.
  • the camera controller 140 switches the operation mode from the 3D shooting mode to the 2D shooting mode. That is, the camera controller 140 can automatically switch the operation mode to the two-dimensional and three-dimensional imaging modes in accordance with the attachment and removal of the 3D adapter 100 from the video camera 200.
  • the image processing unit 210 includes a signal processing unit 215, an image extraction unit 216, a correction processing unit 218, and an image compression unit 217.
  • the signal processing unit 215 digitizes an image signal generated by the CMOS image sensor 110 and generates basic image data of an optical image formed on the CMOS image sensor 110. Specifically, the signal processing unit 215 converts an image signal output from the CMOS image sensor 110 into a digital signal, and performs digital signal processing such as noise removal and contour enhancement on the digital signal.
  • the image data generated by the signal processing unit 215 is temporarily stored in the DRAM 241 as RAW data.
  • the image data generated by the signal processing unit 215 is referred to as basic image data.
  • the image extraction unit 216 extracts left-eye image data and right-eye image data from the basic image data generated by the signal processing unit 215.
  • the left-eye image data corresponds to a part of the left-eye optical image QL1 (see FIG. 6) formed by the left-eye optical system OL.
  • the right-eye image data corresponds to a part of the right-eye optical image QR1 formed by the right-eye optical system OR (see FIG. 6).
  • the image extraction unit 216 Based on the preset first extraction area AL2 and second extraction area AR2, the image extraction unit 216 extracts left-eye image data and right-eye image data from the basic image data stored in the DRAM 241 (FIG. 6). reference).
  • the left-eye image data and right-eye image data extracted by the image extraction unit 216 are temporarily stored in the DRAM 241.
  • the correction processing unit 218 performs correction processing such as distortion correction and shading correction on each of the extracted left-eye image data and right-eye image data. After the correction process, the image data for the left eye and
  • the image compression unit 217 performs compression processing on the corrected left-eye image data and right-eye image data stored in the DRAM 241 based on a command from the camera controller 140. By this compression processing, the data size of the image data becomes smaller than the original data size.
  • a method for compressing image data for example, a JPEG (Joint Photographic Experts Group) method for compressing each frame of image data can be considered.
  • the compressed left-eye image data and right-eye image data are temporarily stored in the DRAM 241.
  • Temperature sensor 118 A temperature sensor 118 (an example of a temperature detection unit) illustrated in FIG. 5 detects the environmental temperature of the video camera 200.
  • the temperature sensor 118 is disposed at a position where the temperature around the optical system V can be detected.
  • the temperature sensor 118 is a thermocouple, but may be another sensor that can detect the environmental temperature of the video camera 200.
  • the temperature detected by the temperature sensor 118 is used by the drive controller 140d of the camera controller 140 to correct the deviation of the
  • the 3D adapter 100 includes an exterior part 101 (an example of a housing).
  • the exterior portion 101 accommodates the left-eye optical system OL and the right-eye optical system OR shown in FIG.
  • the body frame 2, the first adjustment mechanism 3, the second adjustment mechanism 4, the third adjustment mechanism 5, and the operation mechanism 6 are accommodated in the exterior portion 101.
  • the left-eye optical system is an optical system corresponding to the left viewpoint, and specifically, the optical element arranged closest to the subject (front side) is arranged on the left side toward the subject.
  • the right-eye optical system is an optical system corresponding to the right viewpoint, and specifically, the optical element arranged closest to the subject (front side) is arranged on the right side toward the subject.
  • the optical element here means an optical element having positive or negative refractive power, and does not include simple glass (for example, glass 16 described later).
  • the exterior portion 101 (an example of a housing) includes an upper case 11, a lower case 12, a front case 13, a cover 15, and a screw ring unit 17.
  • the lower case 12 is fixed to the upper case 11 with screws.
  • the front case 13 is fixed to the upper case 11 and the lower case 12 with screws.
  • a cover 15 is attached to the upper case 11 so that it can be opened and closed.
  • the upper case 11 has a recess 11a. When the cover 15 is closed, the cover 15 is fitted in the recess 11a. As shown in FIG.
  • the upper case 11 is configured such that the vertical position adjustment dial 57, the relative displacement adjustment dial 61, and the horizontal position adjustment dial 62 of the operation mechanism 6 are exposed when the cover 15 is opened.
  • a vertical position adjustment dial 57, a relative displacement adjustment dial 61, and a horizontal position adjustment dial 62 are disposed in the recess 11a.
  • a cover 15 is attached to the upper case 11 so that it can be opened and closed. When the cover 15 is opened, the vertical position adjustment dial 57, the relative displacement adjustment dial 61, and the horizontal position adjustment dial 62 can be operated.
  • the upper case 11 is mounted on the upper side of the main body frame 2.
  • the upper case 11 supports the main body frame 2 so as to be movable in the Z-axis direction and the X-axis direction.
  • the screw ring unit 17 includes a rear case 17a attached to the upper case 11 and the lower case 12, a screw ring 17b for attaching the 3D adapter 100 to the front frame 299 (see FIG. 2), have.
  • the rear case 17a supports the screw ring 17b in a rotatable manner.
  • the front case 13 is attached to the front side (the side close to the subject) of the main body frame 2.
  • the front case 13 has an opening 13a and a glass 16 attached to the opening 13a.
  • a cap 9 can be attached to the front case 13. The cap 9 is attached to protect the glass 16 or adjust relative displacement.
  • the lower case 12 covers the lower side of the main body frame 2 and is attached to the upper case 11.
  • a gap is secured between the lower case 12 and the main body frame 2 so that the main body frame 2 can move in the Z-axis direction and the X-axis direction inside the exterior portion 101.
  • the exterior portion 101 covers the main body frame 2.
  • the left-eye optical system OL is an example of a left-eye optical image (an example of a first optical image or a second optical image) viewed from the left viewpoint (an example of a first viewpoint or a second viewpoint). ), And includes a left-eye negative lens group G1L, a left-eye positive lens group G2L, and a left-eye prism group G3L.
  • the left-eye optical system OL is a substantially afocal optical system.
  • the focal length of the left-eye optical system OL is preferably 1000 mm or more or ⁇ 1000 mm or less.
  • the left-eye negative lens group G1L (an example of a first adjustment optical system, an example of a first negative lens group or a second negative lens group) has a negative focal length (also referred to as negative refractive power) as a whole.
  • the left-eye negative lens group G1L is disposed closest to the subject (at a position closest to the subject) in the left-eye optical system OL.
  • the first lens L1L has a negative focal length.
  • the second lens L2L has a negative focal length.
  • the third lens L3L has a positive focal length (also referred to as positive refractive power).
  • the fourth lens L4L has a negative focal length and is joined to the third lens L3L.
  • the composite focal length of the left-eye negative lens group G1L is negative.
  • the effective diameter of the left-eye negative lens group G1L is smaller than the effective diameter of the left-eye positive lens group G2L.
  • the left-eye positive lens group G2L (an example of the first positive lens group or the second positive lens group) is a lens group that receives the transmitted light of the left-eye negative lens group G1L, and is opposite to the subject of the left-eye negative lens group G1L. Is arranged.
  • the left eye positive lens group G2L is disposed between the left eye negative lens group G1L and the left eye prism group G3L.
  • the left-eye positive lens group G2L includes a fifth lens L5L, a sixth lens L6L, and a seventh lens L7L.
  • the fifth lens L5L has a positive focal length.
  • the sixth lens L6L has a positive focal length.
  • the seventh lens L7L has a negative focal length and is joined to the sixth lens L6L. Since the transmitted light of the left eye negative lens group G1L diverges, the optically effective area of the entrance surface of the left eye positive lens group G2L is wider than the optically effective area of the exit surface of the left eye negative lens group G1L. For this reason, the effective diameter of the left-eye positive lens group G2L is larger than the effective diameter of the left-eye negative lens group G1L.
  • the left eye positive lens group G2L has a substantially semicircular shape. Specifically, the inside of the left eye positive lens group G2L (right eye optical axis AR side, intermediate reference plane B side) is cut straight (see FIG. 14). Thereby, the left-eye positive lens group G2L and the right-eye positive lens group G2R can be arranged close to each other, and the stereo base can be reduced. Accordingly, it becomes easy to set the convergence angle formed by the left eye optical axis AL and the right eye optical axis AR to an appropriate value.
  • the left eye optical axis AL is defined by the left eye negative lens group G1L and the left eye positive lens group G2L. Specifically, the left eye optical axis AL is defined by a line passing through the principal point of the left eye negative lens group G1L and the principal point of the left eye positive lens group G2L.
  • the left eye optical axis AL and the right eye optical axis AR are arranged so as to be separated from each other as they go from the subject side to the CMOS image sensor 110 side.
  • the left eye prism group G3L is a lens group that receives the transmitted light of the left eye positive lens group G2L, and includes a first front prism P1L and a first rear prism P2L.
  • the first front prism P1L and the first rear prism P2L are refracting wedge prisms.
  • the left-eye prism group G3L refracts the transmitted light of the left-eye positive lens group G2L so that the transmitted light of the left-eye positive lens group G2L is introduced into the optical system V (an example of a uniaxial optical system) of the video camera 200.
  • the transmitted light of the left eye positive lens group G2L is refracted inward (so as to approach the intermediate reference plane B) by the left eye prism group G3L.
  • the first front prism P1L refracts the transmitted light of the left-eye positive lens group G2L inward (approaching the intermediate reference plane B).
  • the first rear prism P2L refracts the transmitted light of the first front prism P1L outward (so as to be away from the intermediate reference plane B).
  • the first front prism P1L mainly has a function of refracting the transmitted light of the left-eye positive lens group G2L inward, and the first rear prism P2L mainly has a function of correcting chromatic dispersion due to refraction. is doing.
  • the combined polarization angle of the left eye prism group G3L is, for example, about 1.7 degrees.
  • the left-eye negative lens group G1L is fixed to a first adjustment frame 30 (described later) of the first adjustment mechanism 3, and includes a left-eye positive lens group G2L, a left-eye prism group G3L, and a main body frame. 2 is arranged so as to be movable in the Z-axis direction.
  • the left-eye positive lens group G2L is fixed to an intermediate lens frame 28 (described later).
  • the left eye prism group G3L is fixed to a prism support frame 29 (described later).
  • FIG. 14 the left-eye negative lens group G1L is fixed to a first adjustment frame 30 (described later) of the first adjustment mechanism 3, and includes a left-eye positive lens group G2L, a left-eye prism group G3L, and a main body frame. 2 is arranged so as to be movable in the Z-axis direction.
  • the left-eye positive lens group G2L is fixed to an intermediate lens frame 28 (described later).
  • the deflection angle of the left eye prism group G3L is ⁇ L (an example of ⁇ 11 or ⁇ 22), the outgoing angle of the transmitted light of the left eye prism group G3L is ⁇ 1, and the incident surface of the left eye prism group G3L is the outermost surface.
  • the vertical length from the intersection with the light beam to the left eye optical axis AL is X1
  • the vertical length from the intersection between the exit surface of the left eye prism group G3L and the outermost light beam to the left eye optical axis AL is X12
  • the left eye prism group G3L L1 is the distance from the optical reference plane defined on the incident side to the entrance plane (more specifically, the distance from the convergence point shown in FIG.
  • L12 is the distance to (more specifically, the distance from the convergence point shown in FIG. 7 to the exit surface of the left-eye prism group G3L).
  • the left eye optical axis AL is inclined with respect to the intermediate reference plane B so as to move away from the intermediate reference plane B as it goes to the emission side.
  • the transmitted light of the left eye positive lens group G2L is refracted so as to approach the intermediate reference plane B by the left eye prism group G3L.
  • Right-eye optical system OR As shown in FIG.
  • the optical system OR for the right eye is an optical image for the right eye (an example of the second optical image or the second optical image) viewed from the right viewpoint (an example of the second viewpoint or the second viewpoint). ), And includes a right eye negative lens group G1R, a right eye positive lens group G2R, and a right eye prism group G3R.
  • the right-eye optical system OR is a substantially afocal optical system.
  • the focal length of the right-eye optical system OR is preferably 1000 mm or more or ⁇ 1000 mm or less.
  • the right-eye negative lens group G1R (an example of the second adjustment optical system, an example of the first negative lens group or the second negative lens group) has a negative focal length (also referred to as negative refractive power) as a whole.
  • the right-eye negative lens group G1R is disposed closest to the subject (in the position closest to the subject) in the right-eye optical system OR.
  • the first lens L1R has a negative focal length.
  • the second lens L2R has a negative focal length.
  • the third lens L3R has a positive focal length (also referred to as positive refractive power).
  • the fourth lens L4R has a negative focal length and is joined to the third lens L3R.
  • the composite focal length of the right-eye negative lens group G1R is negative.
  • the effective diameter of the right eye negative lens group G1R is smaller than the effective diameter of the right eye positive lens group G2R.
  • the right-eye positive lens group G2R (an example of the first positive lens group or the second positive lens group) is a lens group that receives the transmitted light of the right-eye negative lens group G1R. Arranged on the side opposite to the subject of the group G1R.
  • the right eye positive lens group G2R is disposed between the right eye negative lens group G1R and the right eye prism group G3R.
  • the right eye positive lens group G2R includes a fifth lens L5R, a sixth lens L6R, and a seventh lens L7R.
  • the fifth lens L5R has a positive focal length.
  • the sixth lens L6R has a positive focal length.
  • the seventh lens L7R has a negative focal length and is joined to the sixth lens L6R.
  • the optical effective area of the entrance surface of the right eye positive lens group G2R is the optical effective area of the exit surface of the right eye negative lens group G1R. Wider than. For this reason, the effective diameter of the right eye positive lens group G2R is larger than the effective diameter of the right eye negative lens group G1R.
  • the right eye positive lens group G2R has a substantially semicircular shape. Specifically, the inside (right eye optical axis AR side, intermediate reference plane B side) of the right eye positive lens group G2R is cut straight (see FIG. 14). As a result, the stereo base can be reduced, and the convergence angle formed by the right eye optical axis AR and the right eye optical axis AR can be reduced. Accordingly, it becomes easy to set the convergence angle formed by the left eye optical axis AL and the right eye optical axis AR to an appropriate value.
  • the right eye optical axis AR is defined by the right eye negative lens group G1R and the right eye positive lens group G2R. Specifically, the right eye optical axis AR is defined by a line passing through the principal point of the right eye negative lens group G1R and the principal point of the right eye positive lens group G2R.
  • the left eye optical axis AL and the right eye optical axis AR are arranged so as to be separated from each other as they go from the subject side to the CMOS image sensor 110 side.
  • the right-eye prism group G3R (an example of the first prism group or the second prism group) is a lens group that receives light transmitted through the right-eye positive lens group G2R, and includes a second front prism P1R and a second rear prism P2R. is doing.
  • the second front prism P1R and the second rear prism P2R are refracting wedge prisms.
  • the right-eye prism group G3R refracts the transmitted light of the right-eye positive lens group G2R so that the transmitted light of the right-eye positive lens group G2R is introduced into the optical system V (an example of a uniaxial optical system) of the video camera 200. .
  • the transmitted light of the right eye positive lens group G2R is refracted inward (approaching the intermediate reference plane B) by the right eye prism group G3R.
  • the second front prism P1R refracts the light transmitted through the right eye positive lens group G2R inward (approaching the intermediate reference plane B).
  • the second rear prism P2R refracts the transmitted light of the second front prism P1R outward (so as to be away from the intermediate reference plane B).
  • the second front prism P1R mainly has a function of refracting the transmitted light of the right eye positive lens group G2R inward
  • the second rear prism P2R mainly has a function of correcting chromatic dispersion due to refraction. is doing.
  • the combined polarization angle of the right eye prism group G3R is, for example, about 1.7 degrees.
  • the right-eye negative lens group G1R is fixed to a second adjustment frame 40 (described later) of the second adjustment mechanism 4, and the right-eye positive lens group G2R, the right-eye prism group G3R, and the main body frame 2 is arranged so as to be movable in the Z-axis direction.
  • the right-eye positive lens group G2R is fixed to an intermediate lens frame 28 (described later).
  • the right eye prism group G3R is fixed to a prism support frame 29 (described later). As shown in FIG.
  • the deflection angle of the right-eye prism group G3R is ⁇ R (an example of ⁇ 11 or ⁇ 22), the outgoing angle of transmitted light of the right-eye prism group G3R is ⁇ 2, and the incident surface of the right-eye prism group G3R is the outermost surface.
  • the vertical length from the intersection with the light beam to the right eye optical axis AR is X2
  • the vertical length from the intersection between the exit surface of the right eye prism group G3R and the outermost light beam to the right eye optical axis AR is X22
  • L2 is the distance from the optical reference surface defined on the incident side to the entrance surface (more specifically, the distance from the convergence point shown in FIG.
  • L22 is the distance to (more specifically, the distance from the convergence point shown in FIG. 7 to the exit surface of the right-eye prism group G3R).
  • the main body frame 2 supports the entire left-eye optical system OL and the entire right-eye optical system OR, and includes the Z-axis direction (first direction) and the X-axis direction (second direction). In the exterior direction 101 so as to be movable relative to the exterior direction 101.
  • the main body frame 2 moves in the Z-axis direction with respect to the exterior part 101
  • the entire left-eye optical system OL and the entire right-eye optical system OR move in the Z-axis direction with respect to the exterior part 101.
  • the main body frame 2 moves in the X-axis direction with respect to the exterior part 101
  • the entire left-eye optical system OL and the entire right-eye optical system OR move in the Z-axis direction with respect to the exterior part 101.
  • the “movement” of the main body frame 2 with respect to the exterior part 101 may include parallel movement, rotational movement, and rotation.
  • the main body frame 2 includes a cylindrical frame 21, a first fixing portion 22L, a second fixing portion 22R, a left eye cylindrical portion 23L, a right eye cylindrical portion 23R, and a pedestal portion 21c.
  • a light shielding panel 27 (see FIG. 15), an intermediate lens frame 28, a prism support frame 29, a front panel 71, and a rear panel 73.
  • the cylindrical frame 21, the first fixing portion 22L, the second fixing portion 22R, the left eye cylindrical portion 23L, the right eye cylindrical portion 23R, and the pedestal portion 21c are integrally formed of resin.
  • the cylindrical frame 21 is disposed in the exterior portion 101 and is connected to the exterior portion 101 by the third adjustment mechanism 5.
  • a left-eye positive lens group G2L and a right-eye positive lens group G2R are arranged in the cylindrical frame 21 .
  • a first fixing portion 22L, a second fixing portion 22R, a left eye cylindrical portion 23L, and a right eye cylindrical portion 23R are arranged on the front side (subject side) of the cylindrical frame 21.
  • a pedestal 21 c is disposed on the upper side of the cylindrical frame 21.
  • a front panel 71 is fixed to the first fixing portion 22L and the second fixing portion 22R.
  • the left eye cylindrical portion 23L is disposed at a position corresponding to the left eye negative lens group G1L.
  • the transmitted light of the left-eye negative lens group G1L passes through the left-eye cylindrical portion 23L and enters the cylindrical frame 21.
  • the right eye cylindrical portion 23R is disposed at a position corresponding to the right eye negative lens group G1R.
  • the transmitted light of the right eye negative lens group G1R enters the cylindrical frame 21 through the right eye cylindrical portion 23R.
  • a second connection plate 52 (described later) of the third adjustment mechanism 5 is fixed to the pedestal portion 21c. As shown in FIG.
  • a left-eye positive lens group G2L and a right-eye positive lens group G2R are fixed to the intermediate lens frame 28.
  • the intermediate lens frame 28 has a flange portion 28a, a first intermediate frame 28L, and a second intermediate frame 28R.
  • the first intermediate frame 28L is a cylindrical portion protruding from the flange portion 28a.
  • the second intermediate frame 28R is a cylindrical portion protruding from the flange portion 28a.
  • the fifth lens L5L and the sixth lens L6L of the left-eye positive lens group G2L are fixed to the first intermediate frame 28L.
  • the fifth lens L5R and the sixth lens L6R of the right eye positive lens group G2R are fixed to the second intermediate frame 28R.
  • the left eye prism group G3L and the right eye prism group G3R are fixed to the prism support frame 29.
  • the prism support frame 29 has an annular support frame main body 29a and a partition plate 29b.
  • the first front prism P1L and the first rear prism P2L are fixed to the support frame main body 29a and the partition plate 29b.
  • the second front prism P1R and the second rear prism P2R are fitted in the support frame main body 29a, and are fixed to the support frame main body 29a and the partition plate 29b.
  • a rear panel 73 is fixed behind the prism support frame 29.
  • the rear panel 73 has a first opening 73L and a second opening 73R.
  • the transmitted light of the left-eye optical system OL passes through the first opening 73L.
  • the light transmitted through the right-eye optical system OR passes through the second opening 73R.
  • the intermediate lens frame 28 and the prism support frame 29 are fixed behind the cylindrical frame 21 with screws. A part of the intermediate lens frame 28 is inserted into the cylindrical frame 21.
  • a light shielding panel 27 is mounted inside the cylindrical frame 21. A space inside the cylindrical frame 21 is partitioned by the light shielding panel 27.
  • the first adjustment mechanism 3 shown in FIG. 22 is a mechanism for adjusting the vertical relative shift between the left-eye optical image QL1 and the right-eye optical image QR1, and is adjusted with respect to the main body frame 2 according to a user operation.
  • the left-eye negative lens group G1L is moved approximately in the Z-axis direction (first direction, second adjustment direction).
  • the first adjustment mechanism 3 includes a first adjustment frame 30, a first rotation shaft 31, an adjustment spring 38, and a first restriction mechanism 37.
  • the first adjustment frame 30 is supported by the main body frame 2 so as to be movable in the Z-axis direction (first direction).
  • the first adjustment frame 30 includes a first adjustment frame main body 36, a first cylindrical portion 35, a first restriction portion 33, and a first guide portion 32.
  • the first adjustment frame main body 36 is a plate-shaped portion.
  • the first cylindrical portion 35 protrudes from the first adjustment frame main body 36 in the Y-axis direction.
  • the left-eye negative lens group G1L is fixed to the first cylindrical portion 35.
  • the first restricting portion 33 is a plate-like portion protruding in the Z-axis direction from the first adjustment frame main body 36 and constitutes a part of the first restricting mechanism 37.
  • the 1st control part 33 has the 1st hole 33a.
  • the first guide portion 32 extends in the Y-axis direction and protrudes from the first adjustment frame main body 36 in the Y-axis direction.
  • the 1st guide part 32 has the 1st guide part main part 32a, the 1st front side support part 32b, and the 1st back side support part 32c.
  • the first guide body 32a has a substantially U-shaped cross section.
  • the first front support part 32b and the first rear support part 32c are arranged in the first guide part main body 32a.
  • the first front support part 32b has a first front support hole 32d.
  • the first rear support part 32c has a first rear support hole 32e.
  • the first rotation shaft 31 (an example of a rotation support shaft) connects the first adjustment frame 30 to the main body frame 2 in a rotatable manner. Specifically, the first rotating shaft 31 is inserted into the first front support hole 32 d and the first rear support hole 32 e of the first guide portion 32 of the first adjustment frame 30. As shown in FIG. 22, when the center line of the first rotation shaft 31 is the first rotation axis R1, the first adjustment frame 30 is rotatably supported by the first rotation shaft 31 about the first rotation axis R1. Yes. Thereby, the left-eye negative lens group G1L is rotatable with respect to the main body frame 2 around the first rotation axis R1.
  • the first adjustment frame main body 36 has a first hooking portion 36a.
  • the first end 38a of the adjustment spring 38 is hooked on the first hook 36a.
  • the end of the first rotating shaft 31 is fixed to the cylindrical frame 21.
  • a first recess 21 b is formed in the cylindrical frame 21.
  • the first recess 21b is a groove extending in the Y-axis direction.
  • the first guide portion 32 of the first adjustment frame 30 is inserted into the first recess 21b.
  • the first washer 34 (see FIG. 28) is sandwiched between the first guide portion 32 and the cylindrical frame 21.
  • the first adjustment frame 30 is pressed in the Y-axis direction by a pressing plate 75.
  • the holding plate 75 includes a fixing portion 75b fixed to the main body frame 2, a first leaf spring portion 75c protruding from the fixing portion 75b, a second leaf spring portion 75a protruding from the fixing portion 75b, have.
  • the first leaf spring portion 75c has a through hole 75d, and the tip of the first rotating shaft 31 is inserted into the through hole 75d.
  • the first leaf spring portion 75c is slightly bent in the Y-axis direction and presses the first guide portion 32 toward the Y-axis direction negative side. Thereby, it can suppress that the 1st adjustment frame 30 moves to a Y-axis direction with respect to the main body frame 2.
  • the second leaf spring portion 75 a extends from the fixed portion 75 b to the Y axis direction negative side, and enters the lower side of the main body frame 2.
  • the second position is set so that the screw portion 57c of the vertical position adjustment dial 57 does not fall off the screw hole of the dial support portion 51c.
  • the leaf spring portion 75a restricts the downward movement of the main body frame 2 with respect to the exterior portion 101. Thereby, it is possible to prevent malfunction due to excessive rotation of the vertical position adjustment dial 57.
  • the 1st recessed part 21b has the aligning part 21g formed in the shape of a mortar.
  • the end portion of the first guide portion 32 has a shape complementary to the alignment portion 21g. Since the end portion of the first guide portion 32 is fitted into the aligning portion 21g, the positions of the first guide portion 32 in the X-axis direction and the Z-axis direction are stabilized. Since the first guide portion 32 is pressed against the aligning portion 21g by the pressing plate 75 (see FIG. 21), the position of the first adjustment frame 30 with respect to the main body frame 2 becomes more stable. As shown in FIG.
  • the first rotation shaft 31 is arranged side by side with the left-eye optical system OL and the right-eye optical system OR in the X-axis direction. More specifically, the left-eye optical system OL is disposed between the right-eye optical system OR and the first rotation shaft 31.
  • the first rotation axis R1 is arranged substantially in line with the left eye optical axis AL and the right eye optical axis AR in the X-axis direction. Since the first rotation shaft 31 is arranged in this way, the left-eye negative lens group G1L moves in the Z-axis direction in general and falls within a range in which the movement amount of the left-eye negative lens group G1L in the X-axis direction can be ignored. be able to.
  • the adjustment spring 38 (an example of an adjustment elastic member) is a tension spring and applies a rotational force around the first rotation shaft 31 to the first adjustment frame 30. Specifically, when viewed from the subject side, the adjustment spring 38 applies an elastic force F11 to the first adjustment frame 30 toward the negative side (downward) in the Z-axis direction. As a result, the adjustment spring 38 applies a counterclockwise rotational force to the first adjustment frame 30.
  • the adjustment spring 38 elastically connects the first adjustment frame 30 and the second adjustment frame 40 (described later).
  • the first end 38 a of the adjustment spring 38 is hooked on the first hook 36 a of the first adjustment frame 30.
  • the second end 38 b of the adjustment spring 38 is hooked on a second hook 46 a (described later) of the second adjustment frame 40.
  • the first front support hole 32d and the first rear support hole 32e are not circular but have a generally triangular shape.
  • the first front support hole 32d has three straight edges 32f, 32g, and 32h.
  • the straight edges 32f, 32g, and 32h each form a part of a triangular side, for example.
  • the straight edges 32 f and 32 g are in contact with the first rotating shaft 31, but the straight edge 32 h is not in contact with the first rotating shaft 31.
  • the first rear support hole 32e has three straight edges 32i, 32j and 32k.
  • the straight edges 32i, 32j, and 32k each form part of a triangular side, for example.
  • the straight edges 32 i and 32 j are in contact with the first rotating shaft 31, but the straight edge 32 k is not in contact with the first rotating shaft 31.
  • the resultant force F ⁇ b> 13 of the elastic force F ⁇ b> 11 by the adjustment spring 38 and the reaction force F ⁇ b> 12 at the first restriction mechanism 37 is applied to the first adjustment frame 30. Accordingly, the straight edges 32 f and 32 g of the first front support hole 32 d are pressed against the first rotating shaft 31 by the resultant force F ⁇ b> 13.
  • the straight edges 32 i and 32 j of the first rear support hole 32 e are pressed against the first rotating shaft 31.
  • the first rotating shaft 31 is positioned in the X-axis direction and the Z-axis direction by the first front support hole 32d and the first rear support hole 32e. Therefore, the second adjustment frame 40 can be prevented from rattling in the X-axis direction and the Z-axis direction with respect to the main body frame 2.
  • the first restriction mechanism 37 (an example of a rotation restriction mechanism) is a mechanism that restricts the rotation of the first adjustment frame 30, and changes the restriction position of the first adjustment frame 30 to change the body frame.
  • the position of the left-eye negative lens group G1L with respect to 2 is adjusted. Specifically, it has a relative displacement adjusting screw 39, a first support plate 66, a second support plate 21e, a first return spring 37a, and a first snap ring 37b.
  • the first support plate 66 has a screw hole 66 a and is fixed to the cylindrical frame 21.
  • the second support plate 21 e has a through hole 21 k and is integrally formed with the cylindrical frame 21.
  • the relative deviation adjusting screw 39 has a joint part 39a and a shaft part 39b.
  • the outer diameter of the joint part 39a is larger than the outer diameter of the shaft part 39b.
  • a joint portion 39a is attached to the end portion of the shaft portion 39b.
  • the joint part 39 a is connected to the second joint shaft 65 of the operation mechanism 6.
  • the joint part 39a and the second joint shaft 65 constitute a universal joint.
  • the shaft portion 39b has a screw portion 39c.
  • the screw portion 39 c is screwed into the screw hole 66 a of the first support plate 66.
  • the shaft portion 39b is inserted into the first hole 33a of the first restricting portion 33 and the through hole of the second support plate 21e.
  • a first snap ring 37ba is attached to the end of the shaft portion 39b.
  • the first return spring 37a is inserted into the shaft portion 39b and is compressed between the second support plate 21e and the first snap ring 37b.
  • the first restriction portion 33 of the first adjustment frame 30 is in contact with the joint portion 39a.
  • the first restricting portion 33 is formed with a pair of sliding protrusions 33b.
  • the pair of sliding protrusions 33b is in contact with the joint portion 39a. Since the first restricting portion 33 is pressed against the joint portion 39 a by the elastic force of the adjusting spring 38, the rotation of the first adjusting frame 30 is restricted by the relative deviation adjusting screw 39.
  • the position of the left eye negative lens group G1L in the Z-axis direction can be adjusted by changing the restriction position in the rotation direction of the first adjustment frame 30 with the relative deviation adjustment screw 39.
  • the pair of sliding protrusions 33b are in contact with the joint portion 39a, the sliding resistance when the relative deviation adjusting screw 39 is rotated can be reduced.
  • the first return spring 37a is provided, it is possible to prevent the first support plate 66 from being completely removed from the screw portion 39c when the user turns the relative deviation adjusting screw 39 too much. Specifically, as shown in FIG. 22, when the first support plate 66 reaches the first side 39X of the screw portion 39c, the screw portion 39c is screwed to the first support plate 66 by the elastic force of the first return spring 37a. The state in contact with the hole 66a is maintained.
  • Second adjustment mechanism 4 The second adjustment mechanism 4 shown in FIG. 22 is a mechanism for adjusting the convergence angle, and the right-eye negative lens group G1R is moved substantially in the X-axis direction (second direction, first adjustment direction) with respect to the main body frame 2. Move.
  • the second adjustment mechanism 4 includes a second adjustment frame 40, a second rotation shaft 41, a focus adjustment screw 48 (see FIG. 34), a focus adjustment spring 44 (see FIG. 34), and a second restriction mechanism 47.
  • the second adjustment frame 40 is supported by the main body frame 2 so as to be movable in the X-axis direction (first direction).
  • the second adjustment frame 40 includes a second adjustment frame main body 46, a second cylindrical part 45, a second restriction part 43, and a second guide part 42.
  • the 2nd adjustment frame main body 46 is a plate-shaped part, and has the 2nd hook part 46a and the protrusion part 46b.
  • An adjustment spring 38 is hooked on the second hook 46a.
  • the protruding portion 46 b protrudes to the Y axis direction positive side (front side, subject side) and is in contact with the focus adjustment screw 48. Since the diameter of the protrusion 46 b is larger than the diameter of the focus adjustment screw 48, the focus adjustment screw 48 continues to contact the protrusion 46 b even if the second adjustment frame 40 rotates with respect to the main body frame 2. In addition, since the tip of the focus adjustment screw 48 is formed in a hemispherical shape, sliding resistance generated between the protruding portion 46b and the focus adjustment screw 48 can be reduced.
  • the second tubular portion 45 protrudes from the second adjustment frame main body 46 in the Y-axis direction.
  • the right-eye negative lens group G1R is fixed to the second cylindrical portion 45.
  • the second restriction portion 43 is a plate-like portion that protrudes from the second adjustment frame main body 46 in the Z-axis direction, and constitutes a part of the second restriction mechanism 47.
  • the second restricting portion 43 has a second hole 43a.
  • the second guide portion 42 extends in the Y-axis direction and protrudes from the second adjustment frame main body 46 in the Y-axis direction.
  • the 2nd guide part 42 has the 2nd guide part main part 42a, the 2nd front side support part 42b, and the 2nd back side support part 42c.
  • the second guide portion main body 42a has a substantially U-shaped cross section.
  • the 2nd front side support part 42b and the 2nd back side support part 42c are arrange
  • the second front support part 42b has a second front support hole 42d.
  • the second rear support part 42c has a second rear support hole 42e.
  • the second end 38 b of the adjustment spring 38 (an example of an adjustment elastic member) is hooked on the second hook 46 a of the second adjustment frame main body 46, A rotational force is applied to the second adjustment frame 40.
  • the adjustment spring 38 applies an elastic force F21 to the second adjustment frame 40 toward the Z axis direction positive side (upper side).
  • the adjustment spring 38 applies a counterclockwise rotational force to the second adjustment frame 40. Since the first end 38 a is hooked on the first adjustment frame 30 and the second end 38 b is hooked on the second adjustment frame 40, the adjustment spring 38 has the first adjustment frame 30 and the second adjustment frame 40. Can be said to be elastically connected. As shown in FIG.
  • the 2nd rotation shaft 41 (an example of an adjustment rotation shaft) has connected the 2nd adjustment frame 40 to the main body frame 2 so that rotation is possible. Specifically, the second rotating shaft 41 is inserted into the second front support hole 42 d and the second rear support hole 42 e of the second guide portion 42 of the second adjustment frame 40.
  • the cylindrical frame 21 has a second recess 21d.
  • the second recess 21d is a groove extending in the Y-axis direction.
  • the second guide portion 42 and the second rotation shaft 41 of the second adjustment frame 40 are inserted into the second recess 21d.
  • the second rotating shaft 41 is supported at both ends.
  • the first end 41 a of the second rotation shaft 41 is fixed to the cylindrical frame 21.
  • the second end 41 b of the second rotating shaft 41 is supported by the front support plate 25.
  • the second end portion 41b has a tapered shape (see FIG. 32).
  • a support hole (not shown) is formed in the front support plate 25.
  • the inner diameter of the support hole is smaller than the outer diameter of the second rotating shaft 41.
  • a tapered portion of the second end portion 41b is inserted into the support hole.
  • the second end 41 b of the second rotating shaft 41 is supported by the front support plate 25.
  • the second adjustment frame 40 is rotatably supported by the second rotation shaft 41 about the second rotation axis R2. Yes.
  • the right eye negative lens group G1R is rotatable about the second rotation axis R2 with respect to the main body frame 2.
  • the second adjustment mechanism 4 also has a function of adjusting the back focus of the right-eye optical system OR. Specifically, as shown in FIG. 34, the second rotating shaft 41 is inserted into the focus adjustment spring 44.
  • the focus adjustment spring 44 is compressed between the second guide portion 42 and the cylindrical frame 21, and presses the second adjustment frame 40 against the focus adjustment screw 48 attached to the front support plate 25.
  • the front support plate 25 is fixed to the front side of the cylindrical frame 21.
  • a focus adjustment screw 48 is screwed into the front panel 71.
  • the focus adjustment screw 48 restricts the movement of the second adjustment frame 40 in the Y-axis direction.
  • the restriction position of the second adjustment frame 40 By changing the restriction position of the second adjustment frame 40, the position of the right eye negative lens group G1R in the Y-axis direction with respect to the main body frame 2 can be adjusted.
  • the focus of the right-eye optical system OR can be adjusted. Therefore, for example, even if the left-eye optical system OL and the right-eye optical system OR are out of focus, the left-eye optical system OL and the right-eye optical system OR are shipped at the time of product shipment by turning the focus adjustment screw 48. Can be focused.
  • the focus adjustment screw 48 is bonded and fixed to the front panel 71, for example, after adjustment at the time of shipment. Note that the user may be able to adjust the focus.
  • the second rotating shaft 41 is arranged side by side with the right-eye optical system OR in the Z-axis direction. More specifically, when viewed from the subject side, the line connecting the left eye optical axis AL and the right eye optical axis AR is orthogonal to the line connecting the right eye optical axis AR and the second rotation axis R2. Since the second rotation shaft 41 is arranged in this manner, the right eye negative lens group G1R moves in the X-axis direction, and the movement amount of the right eye negative lens group G1R in the Z-axis direction is within a negligible range. be able to.
  • the second front support hole 42d and the second rear support hole 42e are not circular but have a generally triangular shape.
  • the second front support hole 42d has three straight edges 42f, 42g, and 42h.
  • the straight edges 42f, 42g, and 42h each form a part of a triangular side, for example.
  • the straight edges 42 f and 42 g are in contact with the second rotating shaft 41, but the straight edge 42 h is not in contact with the second rotating shaft 41.
  • the second rear support hole 42e has three straight edges 42i, 42j and 42k.
  • the straight edges 42i, 42j, and 42k form, for example, part of a triangular side.
  • the straight edges 42 i and 42 j are in contact with the second rotating shaft 41, but the straight edges 42 k are not in contact with the second rotating shaft 41.
  • the resultant force F ⁇ b> 23 of the elastic force F ⁇ b> 21 by the adjustment spring 38 and the reaction force F ⁇ b> 22 by the second restriction mechanism 47 is applied to the second adjustment frame 40. Therefore, the resultant edge F ⁇ b> 23 presses the straight edges 42 f and 42 g of the second front support hole 42 d against the second rotary shaft 41.
  • the straight edges 42 i and 42 j of the second rear support hole 42 e are pressed against the second rotary shaft 41.
  • the second adjustment frame 40 is rotatably supported by the second rotation shaft 41 with less backlash than the second rotation shaft 41.
  • the second restriction mechanism 47 (an example of a positioning mechanism) is a mechanism that restricts the rotation of the second adjustment frame 40, and changes the restriction position of the second adjustment frame 40 to change the body frame 2.
  • the position of the right eye negative lens group G1R with respect to is adjusted.
  • the second regulating mechanism 47 has a convergence angle adjusting screw 49 and a support portion 21f.
  • the support portion 21 f is formed on the cylindrical frame 21.
  • a screw hole 21h is formed in the support portion 21f.
  • the convergence angle adjusting screw 49 has a screw portion 49a and a head portion 49b.
  • the screw portion 49a is inserted into the second hole 43a of the second restricting portion 43, and is screwed into the screw hole 21h of the support portion 21f.
  • the screw part 49 a is inserted into the second hole 43 a of the second restricting part 43.
  • the second regulating portion 43 of the second adjustment frame 40 is in contact with the head 49b. Specifically, a pair of sliding protrusions 43 b are formed on the second restricting portion 43. Since the counter-clockwise rotational force is applied to the second adjustment frame 40 by the adjustment spring 38, the second restricting portion 43 is pressed against the head 49b, and the pair of sliding protrusions 43b are formed on the head 49b. Abut. The rotation of the second adjustment frame 40 is restricted by the convergence angle adjustment screw 49. The position of the right eye negative lens group G1R in the X-axis direction can be adjusted by changing the restriction position in the rotation direction of the second adjustment frame 40 with the convergence angle adjusting screw 49.
  • the third adjustment mechanism 5 shown in FIG. 19 has a vertical direction (vertical direction, pitch direction) and a horizontal direction (horizontal direction, horizontal direction) of the optical image QL1 for the left eye and the optical image QR1 for the right eye with respect to the light receiving surface 110a of the CMOS image sensor 110. This is a mechanism for adjusting the position in the (yaw direction).
  • the third adjustment mechanism 5 By moving the left-eye optical system OL and the right-eye optical system OR with respect to the exterior portion 101, the third adjustment mechanism 5 causes the left-eye optical image QL1 and the right-eye optical image QR1 to move vertically and horizontally. It is possible to adjust.
  • the third adjustment mechanism 5 includes an elastic coupling mechanism 59A, a first movement restriction mechanism 59B, and a second movement restriction mechanism 59C.
  • the elastic coupling mechanism 59A is a mechanism that applies a force to the main body frame 2 in the Z-axis direction (second adjustment direction), and connects the main body frame 2 to the exterior portion 101 so as to be rotatable about the rotation axis R4. ing.
  • the elastic coupling mechanism 59A applies a force to the main body frame 2 on the Z axis direction negative side (lower side).
  • the elastic coupling mechanism 59A applies a force in the X-axis direction (first adjustment direction) to the main body frame 2, and the main body frame is rotatable around a rotation axis R3 (an example of an optical system rotation axis). 2 is connected to the exterior part 101.
  • the elastic coupling mechanism 59A applies a force to the main body frame 2 on the X axis direction negative side.
  • the rotation axis R3 is arranged parallel to the Z axis.
  • the rotation axis R4 is disposed substantially parallel to the X-axis direction and can be defined around the first elastic support portion 51L and the second elastic support portion 51R of the first connection plate 51.
  • the elastic coupling mechanism 59A includes a first coupling plate 51, a second coupling plate 52, a first coupling spring 56, and a second coupling spring 58.
  • the first connection plate 51 elastically connects the main body frame 2 to the exterior part 101 and is fixed to the exterior part 101.
  • the first connecting plate 51 includes a first main body 51a, a first elastic support 51L, a second elastic support 51R, a first support arm 51b, a first contact part 51d, and a dial support 51c.
  • the first elastic support portion 51L protrudes from the first main body portion 51a to the Y axis direction negative side, and is fixed to the exterior portion 101.
  • the second elastic support portion 51R protrudes from the first main body portion 51a to the Y axis direction negative side and is fixed to the exterior portion 101.
  • the first elastic support portion 51L has substantially the same shape as the second elastic support portion 51R.
  • the first elastic support portion 51L includes a first fixing portion 51Lb and a first elastic portion 51La.
  • the first fixing portion 51Lb is fixed to the exterior portion 101. More specifically, the first fixing portion 51Lb is fixed to the upper case 11 via an intermediate plate 11L (see FIG. 10).
  • the first elastic part 51La elastically connects the first fixing part 51Lb and the first main body part 51a.
  • the first elastic portion 51La is compressed in the Z-axis direction by, for example, pressing, and the thickness of the first elastic portion 51La is thinner than the thickness of the first fixing portion 51Lb and the first main body portion 51a. Therefore, the rigidity (more specifically, the rigidity in the Z-axis direction) of the first elastic part 51La is significantly lower than that of the first main body part 51a.
  • the second elastic support portion 51R includes a second fixing portion 51Rb and a second elastic portion 51Ra.
  • the second fixing portion 51Rb is fixed to the exterior portion 101. More specifically, the second fixing portion 51Rb is fixed to the upper case 11 via an intermediate plate 11R (see FIG. 10).
  • the second elastic portion 51Ra elastically connects the second fixing portion 51Rb and the second main body portion 52a. As shown in FIG. 39, the second elastic portion 51Ra is compressed in the Z-axis direction by, for example, pressing, and the thickness of the second elastic portion 51Ra is thinner than the thickness of the second fixing portion 51Rb and the second main body portion 52a. It has become. Therefore, the rigidity (more specifically, the rigidity in the Z-axis direction) of the second elastic part 51Ra is significantly lower than that of the second main body part 52a.
  • the rigidity of the first elastic portion 51La is substantially the same as the rigidity of the second elastic portion 51Ra.
  • the first support arm 51b extends from the first main body 51a.
  • the end of the first connection spring 56 is hooked on the first support arm 51b.
  • the first contact portion 51d is in contact with the horizontal position adjusting screw 53 in the X-axis direction.
  • a hole 51f is formed in the first contact portion 51d, and the shaft portion 53b of the horizontal position adjusting screw 53 is inserted into the hole 51f.
  • the dial support portion 51c has a screw hole 51e, and the screw portion 57c of the vertical position adjustment dial 57 is screwed into the screw hole 51e.
  • the second connection plate 52 is rotatably connected to the first connection plate 51, and is fixed to the pedestal portion 21c of the main body frame 2 (see, for example, FIG. 20).
  • the second connection plate 52 is connected to the first connection plate 51 by a rivet 59c so as to be rotatable about the rotation axis R3.
  • the second connection plate 52 includes a second main body portion 52a, a second support arm 52d, a second contact portion 52b, and a support portion 52c.
  • the second main body 52a is connected to the first connection plate 51 by a rivet 59c so as to be rotatable about the rotation axis R3.
  • the second main body 52 a is fixed to the pedestal 21 c of the main body frame 2. Thereby, the main body frame 2 can be rotated around the rotation axis R ⁇ b> 3 with respect to the exterior portion 101.
  • the second main body 52a has a pair of long holes 52L and 52R.
  • the first connecting plate 51 and the second connecting plate 52 are connected in the Z-axis direction by two rivets 59a and 59b.
  • a rivet 59b is inserted into the long hole 52L, and a rivet 59a is inserted into the long hole 52R.
  • the long holes 52L and 52R prevent the rivets 59a and 59b from interfering with the second connecting plate 52.
  • the end of the first coupling spring 56 is hooked on the second support arm 52d.
  • the first support arm 51b and the second support arm 52d are pulled by the first connecting spring 56 so as to approach each other.
  • a rotational force around the rotation axis R ⁇ b> 3 is applied to the main body frame 2.
  • the second contact portion 52 b is in contact with the second return spring 54.
  • the second return spring 54 is sandwiched between the second snap ring 54a attached to the tip of the shaft portion 53b and the second contact portion 52b.
  • the horizontal return adjusting screw 53 is pulled by the second return spring 54 toward the X axis direction positive side with respect to the second connecting plate 52.
  • FIG. 40 the end of the first coupling spring 56 is hooked on the second support arm 52d.
  • the first support arm 51b and the second support arm 52d are pulled by the first connecting spring 56 so as to approach each other.
  • a rotational force around the rotation axis R ⁇ b> 3 is applied to the main body frame 2.
  • the first movement restricting mechanism 59B is a mechanism that restricts the movement of the main body frame 2 in the Z-axis direction (first direction) relative to the exterior portion 101, and changes the restriction position of the main body frame 2.
  • the position of the main body frame 2 with respect to the exterior part 101 is adjusted.
  • the first movement restriction mechanism 59B includes a vertical position adjustment dial 57 and a snap ring 58a.
  • the vertical position adjustment dial 57 has a dial portion 57a and a shaft portion 57b.
  • the vertical position adjustment dial 57 is attached to the upper case 11. Specifically, the shaft portion 57 b is inserted into the hole 11 d (see FIG. 11) of the upper case 11, and the vertical position adjustment dial 57 is rotatable with respect to the upper case 11.
  • a snap ring 58a is attached to the base of the shaft portion 57b, and the second connecting spring 58 is sandwiched between the snap ring 58a and the upper case 11 in a compressed state. Accordingly, the dial portion 57a is always pressed against the upper case 11, and the position of the vertical position adjustment dial 57 in the Z-axis direction with respect to the upper case 11 is stabilized. Further, the vertical position adjustment dial 57 does not fall off the upper case 11.
  • the screw portion 57c of the shaft portion 57b is screwed into the screw hole 51e of the dial support portion 51c.
  • the dial support portion 51c moves in the Z-axis direction.
  • the vertical position adjustment dial 57 restricts the movement of the main body frame 2 relative to the exterior portion 101 in the Z-axis direction (more specifically, rotation around the rotation axis R4).
  • the restriction position of the main body frame 2 with respect to the exterior portion 101 changes, so that the vertical angle of the main body frame 2 with respect to the exterior portion 101 can be adjusted. As shown in FIG.
  • the second movement restriction mechanism 59C is a mechanism that restricts movement of the main body frame 2 in the X-axis direction (first adjustment direction) relative to the exterior portion 101, and changes the restriction position of the main body frame 2.
  • the second movement restricting mechanism 59C includes a horizontal position adjusting screw 53, a second return spring 54, and a second snap ring 54a.
  • the horizontal position adjusting screw 53 has a joint portion 53a and a shaft portion 53b.
  • the outer diameter of the joint part 53a is larger than the outer diameter of the shaft part 53b.
  • a joint portion 53a is attached to the end portion of the shaft portion 53b.
  • the joint portion 53 a is connected to the second joint shaft 65 of the operation mechanism 6.
  • the joint portion 53a and the second joint shaft 65 constitute a universal joint.
  • the joint portion 53a is in contact with the first contact portion 51d of the first connecting plate 51. As shown in FIG. The joint portion 53a is pressed against the first contact portion 51d by the elastic force of the first connecting spring 56.
  • the shaft portion 53b has a screw portion 53c.
  • the screw part 53c is screwed into the screw hole 52f of the support part 52c.
  • the horizontal position adjusting screw 53 moves in the X-axis direction with respect to the main body frame 2. Since the first contact portion 51 d is pressed against the shaft portion 53 b by the elastic force of the first connection spring 56, the second connection plate 52 rotates relative to the first connection plate 51 when the horizontal position adjusting screw 53 is turned. It rotates around the axis R3.
  • the main body frame 2 rotates about the rotation axis R3 with respect to the exterior portion 101 (see FIG. 19).
  • the position of the main body frame 2 in the X-axis direction with respect to the exterior portion 101 can be adjusted by changing the restriction position in the rotation direction of the second connecting plate 52 with the horizontal position adjusting screw 53. More specifically, the rotational position (posture) of the main body frame 2 with respect to the exterior portion 101 can be adjusted.
  • the second return spring 54 is provided, it is possible to prevent the support portion 52c from completely falling off the screw portion 53c when the user turns the horizontal position adjusting screw 53 too much. Specifically, when the support portion 52c moves to the first side 53X of the screw portion 53c, the elastic force of the second return spring 54 overcomes the elastic force of the first connecting spring 56, whereby the screw portion 53c becomes the support portion 52c. The state in contact with the screw hole is maintained. On the other hand, when the support portion 52c moves to the second side 53Y of the screw portion 53c, the elastic force of the first connecting spring 56 overcomes the elastic force of the second return spring 54, so that the screw portion 53c becomes a screw of the support portion 52c. The state in contact with the hole is maintained.
  • the operation mechanism 6 includes a support frame 63, a relative displacement adjustment dial 61, a horizontal position adjustment dial 62, a first joint shaft 64, and a second joint shaft 65.
  • the support frame 63 is fixed to the upper surface of the main body frame 2.
  • the relative deviation adjustment dial 61 and the horizontal position adjustment dial 62 are rotatably supported by a support frame 63.
  • a part of the relative displacement adjustment dial 61 and a part of the horizontal position adjustment dial 62 are externally provided from the first opening 11b and the second opening 11c (see FIGS. 9 and 11) of the upper case 11. Is exposed.
  • the cover 15 is opened, the user can operate the relative shift adjustment dial 61 and the horizontal position adjustment dial 62.
  • a first joint shaft 64 is inserted into the relative deviation adjustment dial 61.
  • a second joint shaft 65 is inserted into the horizontal position adjustment dial 62.
  • the rotation of the relative deviation adjustment dial 61 is transmitted to the relative deviation adjustment screw 39 via the first joint shaft 64.
  • the rotation of the horizontal position adjustment dial 62 is transmitted to the horizontal position adjustment screw 53 via the second joint shaft 65.
  • FIG. 6 shows an optical image on the CMOS image sensor 110 when viewed from the back side (image side).
  • the left and right positions of the left-eye optical image QL1 and the right-eye optical image QR1 are reversed upside down by the optical system V.
  • the effective image height of the left-eye optical image QL1 is set within a range of 0.3 to 0.7
  • the effective image height of the right-eye optical image QR1 is 0.3 to 0. .7 is set. More specifically, the light beam passing through the center of the optical axis of the left-eye optical system OL falls within the range of 0.3 to 0.7 of the main body maximum image height when the main body maximum image height is 1.0. Reach the corresponding area.
  • a light ray passing through the optical axis center of the optical system OR for the right eye is a region corresponding to a range of 0.3 to 0.7 of the main body maximum image height when the main body maximum image height is 1.0. To reach.
  • the effective image height here is set based on the effective image height at the time of normal shooting (at the time of two-dimensional shooting).
  • the effective image height of the left-eye optical image QL1 during three-dimensional imaging is the distance from the center C0 of the effective image circle of the two-dimensional image to the center CL of the effective image circle of the left-eye optical image QL1. This is a value obtained by dividing DL by the diagonal length D0 from the center C0 of the two-dimensional image.
  • the light beam passing through the optical axis center of the left-eye optical system OL reaches the center CL.
  • the effective image height of the right-eye optical image QR1 at the time of three-dimensional imaging is the distance DR from the center C0 of the effective image circle of the two-dimensional image to the center CR of the effective image circle of the right-eye optical image QR1. It is a value divided by the diagonal length D0 from the center C0 of the two-dimensional image. A light ray passing through the optical axis center of the optical system OR for the right eye reaches the center CR.
  • the left-eye optical image QL1 and the right-eye optical image QR1 can easily fall within the effective image range.
  • the case where the effective image height is both 0.3 is the state shown in FIG. 43
  • the case where both the effective image height is 0.7 is the state shown in FIG.
  • the state shown in FIG. 42 is a case where both effective image heights are 0.435.
  • the left-eye optical image QL1 and the right-eye optical image QR1 are extracted as images.
  • the area that can be done is limited.
  • the peripheral portion of the right-eye optical image QR1 does not overlap with the effective region of the left-eye optical image QR1, and the peripheral portion of the left-eye optical image QL1 overlaps the effective region of the right-eye optical image QR1. Therefore, it is necessary to separate the effective regions of the left-eye optical image QL1 and the right-eye optical image QR1.
  • the left-eye optical image QL1 and the right-eye optical image QR1 are reduced, the resolution of the three-dimensional imaging is lowered.
  • the left-eye optical image QL1 and the right-eye optical image QR1 are efficiently arranged in the effective image area of the CMOS image sensor 110. Therefore, in this 3D adapter 100, a vignetting region is intentionally provided in the left-eye optical image QL1 and the right-eye optical image QR1. Specifically, as shown in FIG.
  • the left-eye optical image QL1 has a left-eye effective image area QL1a and a left-eye vignetting area QL1b in which the amount of light is reduced by the intermediate light-shielding portion 72a. .
  • FIG. 45 shows only the left-eye optical image QL1.
  • the left eye effective image area QL1a is formed by light passing through the first opening 72La, and is adjacent to the left eye vignetting area QL1b.
  • the left-eye effective image area QL1a is used for generating a stereo image. More specifically, as shown in FIGS. 6 and 42, the image data of the first extraction area AL2 is cut out from the image data of the left-eye effective image area QL1a and used to generate a stereo image.
  • the left-eye vignetting area QL1b is an area in which the amount of light is reduced by the intermediate light shielding unit 72a, and is not used for generating a stereo image.
  • the right-eye optical image QR1 has a right-eye effective image area QR1a and a right-eye vignetting area QR1b in which the amount of light is reduced by the intermediate light-shielding portion 72a.
  • FIG. 46 shows only the right-eye optical image QR1.
  • the right eye effective image area QR1a is formed by light passing through the second opening 72Ra, and is adjacent to the right eye vignetting area QR1b.
  • the right eye effective image area QR1a is used for generating a stereo image. More specifically, as shown in FIGS. 6 and 42, the image data of the second extraction area AR2 is cut out from the image data of the right-eye effective image area QR1a and used for generating a stereo image.
  • the right-eye vignetting region QR1b is a region in which the amount of light is reduced by the intermediate light shielding unit 72a and is not used for generating a stereo image.
  • FIG. 47 shows the left-eye optical image QL1 and the right-eye optical image QR1. As shown in FIG. 47, during normal shooting, a part of the left eye vignetting area QL1b overlaps with the right eye vignetting area QR1b.
  • the left eye vignetting area QL1b includes a left eye inner area QL1c formed on the first light receiving surface 110L and a left eye outer area formed on the second light receiving surface 110R. QL1d.
  • the area of the left eye outer area QL1d is smaller than the area of the left eye inner area QL1c. More specifically, the horizontal dimension of the left-eye outer area QL1d is smaller than the horizontal dimension of the left-eye inner area QL1c, and is approximately half the horizontal dimension of the left-eye inner area QL1c in this embodiment. .
  • the right eye vignetting region QR1b has a right eye inner region QR1c formed on the second light receiving surface 110R and a right eye outer region QR1d formed on the first light receiving surface 110L.
  • the area of the right eye outer area QR1d is smaller than the area of the right eye inner area QR1c. More specifically, the horizontal dimension of the right-eye outer area QR1d is smaller than the horizontal dimension of the right-eye inner area QR1c, and in this embodiment, is approximately half the horizontal dimension of the right-eye inner area QR1c.
  • the left-eye vignetting area QL1b and the right-eye vignetting area QR1b are formed by the intermediate light-shielding portion 72a, and a part of the left-eye vignetting area QL1b overlaps the right-eye vignetting area QR1b at the time of shooting.
  • a part of the vignetting area QR1b overlaps with the left-eye vignetting area QL1b.
  • the effective area of the left-eye optical image QL1 and the effective area of the right-eye optical image QR1 can be brought close to each other, and the effective area of the left-eye optical image QL1 and the effective area of the right-eye optical image QR1 are compared. Can be set larger. That is, the effective image area of the CMOS image sensor 110 can be used efficiently.
  • the degree of overlap between the left-eye vignetting area QL1b and the right-eye vignetting area QR1b is mainly adjusted by the width (dimension in the X-axis direction) of the intermediate light shielding portion 72a.
  • the intermediate light-shielding portion 72a has a first edge portion 72L and a second edge portion 72R.
  • the first edge portion 72L forms the end of the left eye vignetting region QL1b, and is arranged in parallel to the Z-axis direction (perpendicular to the reference plane).
  • the second edge 72R forms the end of the right eye vignetting region QR1b, and is arranged in parallel to the Z-axis direction (perpendicular to the reference plane).
  • the light shielding sheet 72 (an example of a light shielding member and an example of a light shielding unit) includes a rectangular first opening 72La through which incident light to the left-eye optical system OL passes and an incident light to the right-eye optical system OR. And a rectangular second opening 72Ra through which light passes.
  • the intermediate light shielding part 72a is formed by a first opening 72La and a second opening 72Ra. Part of the edge of the first opening 72La is formed by the first edge part 72L, and part of the edge of the second opening 72Ra is formed by the second edge part 72R. Since the first edge portion 72L is formed linearly, as shown in FIGS.
  • the first boundary BL between the left-eye effective image area QL1a and the left-eye vignetting area QL1b is substantially a straight line. Yes. Since the second edge 72R is formed linearly, as shown in FIGS. 46 and 47, the second boundary BR between the right-eye effective image area QR1a and the right-eye vignetting area QR1b is substantially a straight line. Yes. Therefore, it becomes easy to ensure the first extraction area AL2 and the second extraction area AR2.
  • the video camera 200 cannot focus on the intermediate light-shielding portion 72a.
  • the video camera 200 is configured to be able to focus on the intermediate light-shielding portion 72a.
  • the adjustment mode button 133 when the adjustment mode button 133 is pressed, the second lens group G2 and the fourth lens group G4 are driven to a predetermined position by the zoom motor 214 and the focus motor 233, respectively. Fine adjustment of focus may be performed by contrast detection type autofocus, or may be performed by a user using a focus adjustment lever (not shown). In this way, it is possible to focus on the intermediate light shielding portion 72a of the light shielding sheet 72.
  • the focal length increases and the image height on the light receiving surface 110a increases overall.
  • the left-eye optical image QL1 is separated from the right-eye optical image QR1 in the horizontal direction, and accordingly, the left-eye vignetting area QL1b is separated from the right-eye vignetting area QR1b in the horizontal direction.
  • a black band E is displayed on the camera monitor 120 between the left-eye optical image QL1 and the right-eye optical image QR1. In this state, the user can easily recognize the vertical shift between the left-eye optical image QL1 and the right-eye optical image QR1, and the first adjustment mechanism 3 can make adjustment.
  • Relative misalignment adjustment means adjusting the vertical displacement of the left-eye optical image QL1 and the right-eye optical image QR1. In order to generate an appropriate stereo image, it is preferable to match the vertical positions of the left-eye optical image QL1 and the right-eye optical image QR1 formed on the CMOS image sensor 110 with relatively high accuracy.
  • the relative displacement adjustment dial 61 allows the left-eye optical image QL1 and the right-eye optical image QR1 to be positioned in the vertical direction (more specifically, Specifically, the vertical position of the left eye image and the right eye image is adjusted.
  • the relative shift adjustment is performed by operating the relative shift adjustment dial 61 in the adjustment mode.
  • the adjustment mode button 133 is pressed while the 3D adapter 100 is attached to the video camera 200, the adjustment mode is executed.
  • the adjustment mode not only one of the left-eye image and the right-eye image but also the entire image corresponding to the effective image area of the CMOS image sensor 110 is displayed on the camera monitor 120, and the intermediate light-shielding portion 72 a of the light-shielding sheet 72 is in focus.
  • the left-eye optical image QL1 and the right-eye optical image QR1 move respectively outward in the left-right direction on the display screen of the camera monitor 120. Then, the left-eye optical image QL1 and the right-eye optical image QR1 are separated to the left and right.
  • the left-eye negative lens group G1L rotates about the first rotation axis R1, and as a result, the left-eye negative lens group G1L moves approximately in the Z-axis direction.
  • the vertical position of the left-eye optical image QL1 formed on the CMOS image sensor 110 changes.
  • the left-eye image displayed on the camera monitor 120 moves up and down.
  • the convergence angle is an angle formed by the left eye optical axis AL and the right eye optical axis AR.
  • the convergence angle it is preferable to set the convergence angle to an appropriate angle.
  • the angle of convergence varies from product to product due to individual differences between products.
  • the worker turns the convergence angle adjustment screw 49 while the exterior portion 101 is removed. Since the convergence angle adjusting screw 49 is screwed into the screw hole 21h of the support portion 21f, when the convergence angle adjusting screw 49 is turned, the convergence angle adjusting screw 49 moves in the X-axis direction with respect to the main body frame 2. Since the second restricting portion 43 is pressed against the head 49b by the elastic force of the adjusting spring 38, when the convergence angle adjusting screw 49 moves in the X-axis direction with respect to the main body frame 2, the second adjusting frame 40 is accordingly moved. Rotates around the second rotation axis R2.
  • the right eye negative lens group G1R rotates about the second rotation axis R2, and as a result, the right eye negative lens group G1R moves substantially in the X-axis direction.
  • the horizontal position of the right-eye optical image QR1 formed on the CMOS image sensor 110 changes. In this way, the convergence angle can be adjusted to an appropriate angle.
  • the convergence angle adjusting screw 49 is bonded and fixed to the second restricting portion 43, for example. Note that the user may be able to adjust the convergence angle.
  • the left-eye optical system OL and the right-eye optical system OR are not out of focus. However, the left-eye optical system OL and the right-eye optical system OR may be out of focus due to individual differences in products. Therefore, in the 3D adapter 100, the worker uses the second adjustment mechanism 4 to focus the left-eye optical system OL and the right-eye optical system OR at the time of manufacture or shipment. In the present embodiment, focus adjustment is performed by moving the right-eye negative lens group G1R of the right-eye optical system OR in the Y-axis direction.
  • the focus adjustment screw 48 moves in the Y axis direction with respect to the main body frame 2. Since the second adjustment frame 40 is pressed against the focus adjustment screw 48 by the elastic force of the focus adjustment spring 44, when the focus adjustment screw 48 moves, the second adjustment frame 40 also moves with respect to the main body frame 2 along the Y axis. Move in the direction. As a result, the right eye negative lens group G1R moves in the Y-axis direction with respect to the right eye positive lens group G2R, and the focus of the right eye optical system OR changes. Thus, by turning the focus adjustment screw 48, it is possible to adjust the focus shift between the left-eye optical system OL and the right-eye optical system OR. Once the focus is adjusted, the user does not need to adjust it again. For this reason, after adjustment, the focus adjustment screw 48 is bonded and fixed to the front support plate 25, for example. Note that the user may be able to adjust the focus.
  • the positions of the left-eye optical image QL1 and the right-eye optical image QR1 on the CMOS image sensor 110 are preferably set to appropriate positions.
  • the positions of the left-eye optical image QL1 and the right-eye optical image QR1 may be greatly deviated from the design position due to individual differences between products.
  • the position of the left-eye optical image QL1 and the right-eye optical image QR1 on the CMOS image sensor 110 may be entirely displaced by the above-described relative shift adjustment and convergence angle adjustment.
  • the user can use the third adjustment mechanism 5 to display an image using the third adjustment mechanism 5 in use (or in a state where the effective image area of the CMOS image sensor 110 is displayed on the camera monitor 120 as in the adjustment mode). Adjust the position.
  • the screw portion 57c of the vertical position adjustment dial 57 is screwed into the screw hole of the dial support portion 51c. Therefore, the first elastic support portion 51L and the second elastic support portion 51L
  • the main body frame 2 moves up and down with respect to the exterior portion 101 with the support portion 51R as a fulcrum. More specifically, the main body frame 2 rotates with respect to the exterior portion 101 around the rotation axis R4. At this time, since the first elastic part 51La and the second elastic part 51Ra are thin, a large load does not act on the first elastic support part 51L and the second elastic support part 51R.
  • the left-eye optical system OL and the right-eye optical system OR move in the Z-axis direction with respect to the exterior part 101. More specifically, the postures of the left-eye optical system OL and the right-eye optical system OR change upward or downward with respect to the exterior portion 101. Accordingly, the vertical positions of the left-eye optical image QL1 and the right-eye optical image QR1 in the CMOS image sensor 110 can be adjusted.
  • the 2nd connection plate 52 and the main body frame 2 rotate with respect to the exterior part 101 centering
  • the left-eye optical system OL and the right-eye optical system OR move in the X-axis direction with respect to the exterior portion 101. More specifically, the postures of the left-eye optical system OL and the right-eye optical system OR change rightward or leftward with respect to the exterior portion 101. Thereby, the horizontal positions of the left-eye optical image QL1 and the right-eye optical image QR1 in the CMOS image sensor 110 can be adjusted.
  • Step S1 When the power is turned on while the 3D adapter 100 is attached to the video camera 200, the lens detection unit 149 detects that the 3D adapter 100 is attached, and the camera controller 140 uses the shooting mode of the video camera 200. Is automatically switched to the three-dimensional imaging mode.
  • the lens detection unit 149 detects that the 3D adapter 100 is attached, and the camera controller 140 causes the video camera 200 to be attached.
  • the shooting mode is automatically switched to the three-dimensional shooting mode.
  • the reference plane distance (see FIG. 7) of the 3D adapter 100 deviates from the design value, and the convergence angle also deviates from the design value.
  • the left and right positions of the left-eye optical image QL1 and the right-eye optical image QR1 may deviate from the design position.
  • the left-right positional deviation of the left-eye optical image QL1 and the right-eye optical image QR1 with respect to the design position is a change in the environmental temperature. Can also occur.
  • the left-right positional shift between the left-eye optical image QL1 and the right-eye optical image QR1 is not preferable because it affects the stereoscopic view of the three-dimensional image. Therefore, the video camera 200 has a function of correcting a left-right positional shift between the left-eye optical image QL1 and the right-eye optical image QR1 based on the design position by correcting a reference plane distance shift. . Adjustment of the reference plane distance is performed by moving the second lens group G2, which is a zoom adjustment lens group, in the Y-axis direction by the zoom motor 214.
  • each parameter is read by the drive control unit 140d (step S2).
  • Index data indicating individual differences of the optical system V is read from the ROM 140b into the drive control unit 140d. This index data is measured when the product is shipped and stored in the ROM 140b in advance.
  • the temperature is detected by the temperature sensor 118 (FIG. 4) in order to grasp the environmental temperature (step S3). The detected temperature is temporarily stored in the RAM 140c as temperature information, and is read by the drive control unit 140d as necessary. Further, the zoom motor 214 is controlled by the drive control unit 140d based on the index data and the detected temperature.
  • the target position of the second lens group G2 is calculated by the drive control unit 140d based on the index data and the detected temperature (step S4).
  • Information for example, a calculation formula or a data table
  • the second lens group G2 is driven by the zoom motor 214 to the calculated target position (step S5). Note that the target position of the second lens group G2 may be calculated based only on the index data.
  • the target position of the fourth lens group G4 is calculated by the drive control unit 140d based on the calculated target position of the second lens group G2 (step S6).
  • Information for example, a calculation formula or a data table
  • the fourth lens group G4 is driven by the focus motor 233 to the calculated target position (step S7). In this way, the control as described above is performed in consideration of the occurrence of a left-right misalignment between the left-eye optical image QL1 and the right-eye optical image QR1 due to individual differences in products or changes in environmental temperature.
  • the 3D adapter 100 When the 3D adapter 100 is attached to the video camera 200 and three-dimensional imaging is performed, a more appropriate stereo image can be acquired.
  • three-dimensional imaging for example, when the user presses the recording button 131, imaging of a stereo image is executed. Specifically, as shown in FIG. 50, when the user presses the recording button 131, autofocus is executed by wobbling or the like (step S21), the CMOS image sensor 110 is exposed (step S22), and the CMOS image sensor 110 Image signals (data of all pixels) are sequentially taken into the signal processing unit 215 (step S23).
  • Focus adjustment during three-dimensional imaging is performed using either one of the left-eye optical image QL1 and the right-eye optical image QR1.
  • focus adjustment is performed using the left-eye optical image QL1.
  • the area for calculating the AF evaluation value is set as a part of the left-eye effective image area QL1a of the left-eye optical image QL1.
  • An AF evaluation value is calculated at a predetermined cycle in the set area, and wobbling is executed based on the calculated AF evaluation value.
  • the signal processing unit 215 performs signal processing such as AD conversion on the captured image signal (step S24).
  • the basic image data generated by the signal processing unit 215 is temporarily stored in the DRAM 241.
  • the image extraction unit 216 extracts left-eye image data and right-eye image data from the basic image data (step S25).
  • the sizes and positions of the first and second extraction areas AL2 and AR2 at this time are stored in advance in the ROM 140b.
  • the correction processing unit 218 performs correction processing on the extracted left-eye image data and right-eye image data
  • the image compression unit 217 performs compression processing such as JPEG compression on the left-eye image data and the right-eye image data. This is performed on the image data (steps S26 and S27).
  • the processing from step S23 to step S27 is executed (step S27A).
  • metadata including the stereo base and the convergence angle is generated by the metadata generation unit 147 of the camera controller 140 (step S28).
  • the image file generation unit 148 generates an image file in the MPF format by combining the compressed image data for the left eye and right eye and the metadata (step S29).
  • the generated image file is transmitted to, for example, the card slot 170 and sequentially stored in the memory card 171 (step S30). In the case of moving image shooting, these operations are repeated.
  • the stereo video file obtained in this way is three-dimensionally displayed using information such as the stereo base and the convergence angle, the displayed image can be stereoscopically viewed using dedicated glasses or the like.
  • ⁇ Characteristic ⁇ The characteristics of the 3D adapter 100 described above are summarized below. (1) As shown in FIG. 47, in this 3D adapter 100, the left-eye vignetting area QL1b and the right-eye vignetting area QR1b are formed by the intermediate light-shielding portion 72a, and a part of the left-eye vignetting area QL1b is captured at the time of shooting.
  • the right eye vignetting area QR1b overlaps, and a part of the right eye vignetting area QR1b overlaps with the left eye vignetting area QL1b.
  • the effective area of the left-eye optical image QL1 and the effective area of the right-eye optical image QR1 can be brought close to each other, and the effective area of the left-eye optical image QL1 and the effective area of the right-eye optical image QR1 are compared. Can be set larger. That is, in this 3D adapter 100, the effective image area on the CMOS image sensor 110 can be used efficiently.
  • the area of the left-eye outer area QL1d is smaller than the area of the left-eye inner area QL1c, and the area of the right-eye outer area QR1d is smaller than the area of the right-eye inner area QR1c. . Therefore, as shown in FIG. 47, the right-eye outer area QR1d does not enter the effective area of the left-eye optical image QL1, and the left-eye outer area QL1d does not enter the effective area of the right-eye optical image QR1. .
  • the end of the left eye vignetting area QL1b is formed by the vertical first edge 72L (see FIG.
  • the end of the left eye vignetting area QL1b (more specifically, the left A first boundary BL) between the eye effective image area QL1a and the left eye vignetting area QL1b is linearly formed.
  • the end of the right eye vignetting area QR1b is formed by the vertical second edge 72R (see FIG. 15), so the end of the right eye vignetting area QR1b (more specifically, the right eye A second boundary BR) between the effective image area QR1a and the right eye vignetting area QR1b is linearly formed. Therefore, the left eye vignetting area QL1b side of the left eye effective image area QL1a and the right eye vignetting area QR1b side of the right eye effective image area QR1a can be further effectively used.
  • the light shielding sheet 72 includes a rectangular first opening 72La through which incident light to the left-eye optical system OL passes and a rectangular first opening 72La through which incident light enters the right-eye optical system OR. 2 openings 72Ra.
  • the intermediate light shielding part 72a is formed by a first opening 72La and a second opening 72Ra.
  • the left-eye effective image area QL1a and the right-eye effective image area QR1a can be substantially rectangular, and the effective image area on the CMOS image sensor 110 can be used more efficiently.
  • the present invention is not limited to the above-described embodiments, and various changes and modifications can be made without departing from the scope of the present invention.
  • the video camera 200 can shoot moving images and still images, but the imaging device to which the 3D adapter 100 is attached may be a device that can shoot only moving images or only still images.
  • the lens unit has been described by taking the 3D adapter 100 as an example, but the configuration of the lens unit is not limited to the above-described embodiment.
  • the configurations of the left-eye optical system OL and the right-eye optical system OR and the arrangement of the optical elements are not limited to the above-described embodiments.
  • Each lens group and each prism group described above may be composed of a single optical element or a plurality of optical elements.
  • the 3D adapter 100 includes a mechanism that can adjust the convergence angle, vertical relative deviation, and the like, but may not include some or all of these adjustment mechanisms.
  • the first and second optical systems have been described by taking the left-eye optical system OL and the right-eye optical system OR as an example, but the configurations of the first and second optical systems have been described above. It is not limited to the embodiment.
  • the first and second optical systems may have different configurations from the left-eye optical system OL and the right-eye optical system OR.
  • the left-eye vignetting area QL1b and the right-eye vignetting area QR1b are formed by the intermediate light-shielding portion 72a, and a part of the left-eye vignetting area QL1b (left-eye outer area QL1d) is captured at the time of shooting. Although it overlaps with the right eye vignetting area QR1b, the entire left eye vignetting area QL1b may overlap with the right eye vignetting area QR1b.
  • the area of the left-eye outer area QL1d is smaller than the area of the left-eye inner area QL1c, but may be the same as the area of the left-eye inner area QL1c.
  • the area of the right eye outer region QR1d is smaller than the area of the right eye inner region QR1c, but may be the same as the area of the right eye inner region QR1c.
  • FIG. 51 is a front view of the light shielding sheet 72 viewed from the subject side.
  • a pair of gauges 72e and 72f are provided in the intermediate light-shielding portion 72a.
  • the left-eye vignetting region QL1b and the right-eye vignetting region QR1b Since they are separated from each other left and right, gauges 72e and 72f are displayed on the camera monitor 120 as gauge images 72g and 72h (see FIG. 52).
  • the images of the gauges 72e and 72f are referred to, thereby the left-eye optical image QL1 and the right-eye optical image QR1.
  • the relative deviation can be grasped. Therefore, by aligning the vertical positions of the gauge images 72g and 72h, the vertical relative deviation between the left-eye optical image QL1 and the right-eye optical image QR1 can be adjusted more accurately. The accuracy of the vertical position adjustment of the ophthalmic image can be increased.
  • the gauge images 72g and 72h can also be used for vertical position adjustment in the vertical direction of the left-eye optical image QL1 and the right-eye optical image QR1.
  • the user operates the relative deviation adjustment dial 61 so that the vertical positions of the gauge images 72g and 72h displayed on the camera monitor 120 are the same after the intermediate light-shielding portion 72a is focused.
  • the position of the negative lens group G1L is adjusted.
  • the vertical relative deviation between the left-eye optical image QL1 and the right-eye optical image QR1 can be corrected.
  • the gauge images 72g and 72h are arranged near the first boundary BL and the second boundary BR, respectively. It will be.
  • the gauge image 72g is disposed closer to the right eye optical image QR1 than the first boundary BL, and the gauge image 72h is disposed closer to the left eye optical image QL1 than the second boundary BR. There is also a possibility. Therefore, the gauges 72e and 72f have little influence on the extraction of the left-eye image data and the right-eye image data.
  • the pair of gauges 72e and 72f may have any shape as long as the relative positions of the left-eye optical image QL1 and the right-eye optical image QR1 can be easily understood.
  • the pair of gauges 72e and 72f may have any shape as long as the vertical positions of the left-eye optical image QL1 and the right-eye optical image QR1 can be easily understood.
  • the gauges 72e and 72f may have different shapes.
  • the intermediate light shielding portion 72a and gauges 72e and 72f may be provided on the cap 9 (FIG. 17). (G)
  • the intermediate light-shielding part 72a is composed of one part, but the intermediate light-shielding part 72a may be composed of a plurality of parts (or a plurality of members).
  • the above technology can be applied to a lens unit and an imaging device.
  • Video camera unit Body frame (example of body frame) 3 First adjustment mechanism (an example of a relative deviation adjustment mechanism) 30 First adjustment frame (an example of a relative displacement adjustment frame) 31 1st rotation shaft (an example of a rotation support shaft) 37 First restriction mechanism (an example of a rotation restriction mechanism) 38 Adjustment spring (an example of an adjustment elastic member, an example of a first elastic member, an example of a second elastic member) 4 Second adjustment mechanism (an example of the convergence angle adjustment mechanism) 40 Second adjustment frame (an example of a convergence angle adjustment frame) 41 Second rotating shaft (an example of an adjusting rotating shaft) 47 Second restriction mechanism (an example of a positioning mechanism) 5 Third adjustment mechanism (an example of a body frame adjustment mechanism) 59A Elastic coupling mechanism (an example of an elastic coupling mechanism) 59B first movement restriction mechanism (an example of a first movement restriction mechanism) 59C Second movement restriction mechanism (an example of a second movement restriction mechanism) 6 Operation mechanism 72 Light-shielding sheet (an example of a light-shielding

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Stereoscopic And Panoramic Photography (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
  • Lens Barrels (AREA)
  • Lenses (AREA)
  • Accessories Of Cameras (AREA)
  • Studio Devices (AREA)

Abstract

A 3D adapter (100) is equipped with an optical system for the left eye (OL), an optical system for the right eye (OR), and a light-shielding sheet (72). The light-shielding sheet (72) has an intermediate light-shielding section (72a) positioned between a left eye optical axis (AL) and a right eye optical axis (AR). An optical image for the left eye (QL1), which is formed on a CMOS image sensor (110) by the optical system for the left eye (OL), has a left eye vignette area (QL1b) in which the amount of light is reduced by the light-shielding section (72a). An optical image for the right eye (QR1), which is formed on the CMOS image sensor (110) by the optical system for the right eye (OR), has a right eye vignette area (QR1b) in which the amount of light is reduced by the light-shielding section (72a). When filming, at least part of the left eye vignette area (QL1b) overlaps with the right eye vignette area (QR1b).

Description

レンズユニットLens unit
 ここに開示される技術は、レンズユニットに関する。 The technology disclosed here relates to a lens unit.
 撮像装置としてデジタルスチルカメラやデジタルビデオカメラなどのデジタルカメラが知られている。デジタルカメラは、CCD(Charge Coupled Device)イメージセンサやCMOS(Complementary Metal Oxide Semiconductor)イメージセンサなどの撮像素子を有している。撮像素子は光学系で形成された光学像を画像信号に変換する。こうして、被写体の画像データを取得することができる。 Digital cameras such as digital still cameras and digital video cameras are known as imaging devices. The digital camera has an image sensor such as a CCD (Charge-Coupled Device) image sensor or a CMOS (Complementary Metal-Oxide Semiconductor) image sensor. The image sensor converts an optical image formed by the optical system into an image signal. Thus, the image data of the subject can be acquired.
特開平7-274214号公報JP 7-274214 A
 近年、ステレオ画像を撮影する撮像装置の開発が進められている。ステレオ画像とは、3次元表示用の画像であり、視差を有する左眼用画像および右眼用画像を含んでいる。この種の撮像装置は、左右一対の光学系を有する光学ユニットを備えている(例えば、特許文献1を参照)。
 この種の光学ユニットを用いると、撮像素子の有効画像領域には、視差を有する1対の光学像が形成される。適正なステレオ画像を得るためには、1対の光学像を有効画像領域に効率よく並べるのが好ましい。
 本発明の課題は、3次元撮影時に撮像素子の有効画像領域を効率よく利用できるレンズユニットを提供することにある。
In recent years, development of an imaging apparatus that captures a stereo image has been advanced. The stereo image is an image for three-dimensional display, and includes a left-eye image and a right-eye image having parallax. This type of imaging apparatus includes an optical unit having a pair of left and right optical systems (see, for example, Patent Document 1).
When this type of optical unit is used, a pair of optical images having parallax is formed in the effective image area of the image sensor. In order to obtain an appropriate stereo image, it is preferable to efficiently arrange a pair of optical images in an effective image area.
The subject of this invention is providing the lens unit which can utilize the effective image area | region of an image pick-up element efficiently at the time of three-dimensional imaging | photography.
 ここに開示されるレンズユニットは、撮像素子に第1光学像および第2光学像を形成するレンズユニットであって、第1光学系と、第2光学系と、遮光部材と、を備えている。第1光学系は、第1の視点から見た第1光学像を形成するための光学系であって、第1光軸を有している。第2光学系は、第1の視点とは異なる第2の視点から見た第2光学像を形成するための光学系であって、第2光軸を有している。遮光部材は、第1および第2光学系の被写体側に配置されており、第1および第2光軸の間に配置された中間遮光部を有している。第1光学系により撮像素子上に形成される第1光学像は、中間遮光部により光量が低減される第1ケラレ領域を有している。第2光学系により撮像素子上に形成される第2光学像は、中間遮光部により光量が低減される第2ケラレ領域を有している。撮影時において、第1ケラレ領域の少なくとも一部は、第2ケラレ領域と重なっている。 The lens unit disclosed herein is a lens unit that forms a first optical image and a second optical image on an imaging device, and includes a first optical system, a second optical system, and a light shielding member. . The first optical system is an optical system for forming a first optical image viewed from the first viewpoint, and has a first optical axis. The second optical system is an optical system for forming a second optical image viewed from a second viewpoint different from the first viewpoint, and has a second optical axis. The light shielding member is disposed on the subject side of the first and second optical systems, and has an intermediate light shielding portion disposed between the first and second optical axes. The first optical image formed on the image sensor by the first optical system has a first vignetting area in which the amount of light is reduced by the intermediate light shielding portion. The second optical image formed on the image sensor by the second optical system has a second vignetting area in which the amount of light is reduced by the intermediate light shielding portion. At the time of shooting, at least part of the first vignetting area overlaps with the second vignetting area.
 通常、第1光学像の周辺部および第2光学像の周辺部は中央部に比べて光量が低下するので、第1光学像および第2光学像で画像として抽出できる領域は限られている。さらに、第1光学像の有効領域に第2光学像の周辺部が重ならないように、かつ、第2光学像の有効領域に第1光学像の周辺部が重ならないように、第1光学像および第2光学像の有効領域を離す必要がある。したがって、撮像素子上に第1光学像の有効領域および第2光学像の有効領域を収めるためには、第1光学像および第2光学像を小さくする必要がある。
 このレンズユニットでは、中間遮光部により第1ケラレ領域および第2ケラレ領域が形成されており、撮影時において第1ケラレ領域の少なくとも一部が第2ケラレ領域と重なっている。この結果、第1光学像の周辺部が第2光学像の有効領域と重なるのを防止することができ、さらに第2光学像の周辺部が第1光学像の有効領域と重なるのを防止することができる。これにより、第1光学像の有効領域および第2光学像の有効領域を互いに近づけることができ、第1光学像の有効領域および第2光学像の有効領域を比較的大きく設定することができる。すなわち、このレンズユニットでは、撮像素子の有効画像領域を効率よく用いることができる。
Usually, since the amount of light at the peripheral portion of the first optical image and the peripheral portion of the second optical image is lower than that at the central portion, the area that can be extracted as an image by the first optical image and the second optical image is limited. Further, the first optical image is arranged such that the peripheral portion of the second optical image does not overlap with the effective area of the first optical image and the peripheral portion of the first optical image does not overlap with the effective area of the second optical image. It is necessary to separate the effective area of the second optical image. Therefore, in order to fit the effective area of the first optical image and the effective area of the second optical image on the image sensor, it is necessary to reduce the first optical image and the second optical image.
In this lens unit, the first vignetting area and the second vignetting area are formed by the intermediate light shielding portion, and at least a part of the first vignetting area overlaps the second vignetting area at the time of photographing. As a result, it is possible to prevent the peripheral portion of the first optical image from overlapping the effective area of the second optical image, and further prevent the peripheral portion of the second optical image from overlapping the effective area of the first optical image. be able to. Thereby, the effective area of the first optical image and the effective area of the second optical image can be brought close to each other, and the effective area of the first optical image and the effective area of the second optical image can be set relatively large. That is, in this lens unit, the effective image area of the image sensor can be used efficiently.
 ここに開示されるレンズユニットであれば、3次元撮影時に撮像素子の有効画像領域を効率よく利用できる。 The lens unit disclosed herein can efficiently use the effective image area of the image sensor during three-dimensional imaging.
ビデオカメラユニットの斜視図Perspective view of video camera unit ビデオカメラユニットの分解斜視図Disassembled perspective view of video camera unit ビデオカメラユニットの光学系の構成図Configuration diagram of optical system of video camera unit ビデオカメラの概略構成図Schematic configuration diagram of video camera ビデオカメラのブロック図Block diagram of video camera 有効画像範囲の説明図Illustration of effective image range 輻輳角およびステレオベースの説明図Illustration of convergence angle and stereo base 3Dアダプタの斜視図Perspective view of 3D adapter 3Dアダプタの斜視図Perspective view of 3D adapter 3Dアダプタの部分分解斜視図Partially exploded perspective view of 3D adapter アッパーケースおよびねじリングユニット17の分解斜視図Exploded perspective view of upper case and screw ring unit 17 3Dアダプタの分解斜視図Exploded perspective view of 3D adapter 3Dアダプタの分解斜視図Exploded perspective view of 3D adapter 3Dアダプタの分解斜視図Exploded perspective view of 3D adapter 3Dアダプタの分解斜視図Exploded perspective view of 3D adapter 3Dアダプタの分解斜視図Exploded perspective view of 3D adapter 3Dアダプタおよびキャップの分解斜視図3D adapter and cap exploded perspective view 第1および第2プリズム群の偏光角の説明図Explanatory drawing of the polarization angles of the first and second prism groups 3Dアダプタの斜視図(外装部を取り外した状態)Perspective view of the 3D adapter (with the exterior part removed) 3Dアダプタの分解斜視図(外装部を取り外した状態)3D adapter exploded perspective view (with the exterior part removed) 3Dアダプタの斜視図(外装部およびフロントパネルを取り外した状態)Perspective view of 3D adapter (with the exterior and front panel removed) 3Dアダプタの正面図(外装部およびフロントパネルを取り外した状態)Front view of 3D adapter (with exterior and front panel removed) 本体枠の斜視図Perspective view of body frame 本体枠の分解斜視図Disassembled perspective view of body frame 本体枠の分解斜視図Disassembled perspective view of body frame 中間レンズ枠周辺の分解斜視図Disassembled perspective view around the intermediate lens frame プリズム支持枠周辺の分解斜視図Disassembled perspective view around the prism support frame 第1調整枠周辺の分解斜視図Disassembled perspective view around the first adjustment frame 第1調整枠の斜視図A perspective view of the first adjustment frame 第1前側支持孔および第1後側支持孔の構成図Configuration diagram of first front support hole and first rear support hole 第1規制機構の正面図Front view of the first regulating mechanism 第2調整枠周辺の分解斜視図Disassembled perspective view around the second adjustment frame 第2調整枠の斜視図Perspective view of the second adjustment frame 本体枠の下面図Bottom view of body frame 第2前側支持孔および第2後側支持孔の構成図Configuration diagram of second front support hole and second rear support hole 第2規制機構の正面図Front view of the second restriction mechanism 第3調整機構の分解斜視図Exploded perspective view of third adjustment mechanism 第3調整機構の分解斜視図Exploded perspective view of third adjustment mechanism 第3調整機構の斜視図(下面から見た場合)A perspective view of the third adjustment mechanism (when viewed from the bottom) 第3調整機構の下面図Bottom view of the third adjustment mechanism 操作機構およびその周辺の分解斜視図Exploded perspective view of the operating mechanism and its surroundings 有効画像領域の説明図Illustration of effective image area 有効画像領域の説明図Illustration of effective image area 有効画像領域の説明図Illustration of effective image area 左眼用光学像の構成図Diagram of optical image for left eye 右眼用光学像の構成図Configuration diagram of optical image for right eye 左眼用光学像および右眼用光学像の構成図Configuration diagram of optical image for left eye and optical image for right eye 垂直相対ズレ調整時の左眼用および右眼用光学像の説明図Explanatory drawing of optical images for left eye and right eye during vertical relative displacement adjustment フローチャートflowchart フローチャートflowchart 遮光シートの平面図(他の実施形態)Plan view of light shielding sheet (another embodiment) 垂直相対ズレ調整時の左眼用および右眼用光学像の説明図(他の実施形態)Explanatory drawing of the optical image for left eyes and right eyes at the time of vertical relative deviation adjustment (other embodiment) 通常撮影時における図52に対応する図(他の実施形態)The figure corresponding to FIG. 52 at the time of normal imaging (another embodiment)
 〔ビデオカメラユニットの概要〕
 図1に示すように、ビデオカメラユニット1は、ビデオカメラ200(撮像装置の一例)と、ビデオカメラ200に装着された3Dアダプタ100(レンズユニットの一例)と、を備えている。図2に示すように、3Dアダプタ100はビデオカメラ200に着脱可能に構成されている。ビデオカメラ200は光軸A0を有する1軸光学系Vを有している。一方、3Dアダプタ100は、左眼光軸AL(第1光軸または第2光軸の一例)および右眼光軸AR(第1光軸または第2光軸の一例)を有する2軸光学系を有している。2次元撮影を行う場合は、ビデオカメラ200のみで撮影を行い、3次元撮影を行う場合は、ビデオカメラ200に3Dアダプタ100を装着して撮影を行う。つまり、ビデオカメラ200は2次元撮影にも3次元撮影にも対応している。
[Outline of video camera unit]
As shown in FIG. 1, the video camera unit 1 includes a video camera 200 (an example of an imaging device) and a 3D adapter 100 (an example of a lens unit) attached to the video camera 200. As shown in FIG. 2, the 3D adapter 100 is configured to be detachable from the video camera 200. The video camera 200 has a uniaxial optical system V having an optical axis A0. On the other hand, the 3D adapter 100 has a biaxial optical system having a left eye optical axis AL (an example of the first optical axis or the second optical axis) and a right eye optical axis AR (an example of the first optical axis or the second optical axis). is doing. When performing two-dimensional shooting, the video camera 200 is used for shooting, and when performing three-dimensional shooting, the video camera 200 is mounted with the 3D adapter 100 for shooting. That is, the video camera 200 is compatible with both two-dimensional photography and three-dimensional photography.
 3Dアダプタ100は、ビデオカメラ200により3次元撮影を行うためのコンバージョンレンズであり、ビデオカメラ200の前枠299に装着可能となっている。前枠299は、ワイドコンバージョンレンズやテレコンバージョンレンズなどの光学部品を装着するために設けられている。3Dアダプタ100には、左右1対の光学系により1つの撮像素子上に2つの光学像が形成される並置撮影方式(サイド・バイ・サイド方式ともいう)が採用されている。3Dアダプタ100をビデオカメラ200に装着することで、1軸光学系Vを、3次元撮影が可能な2軸光学系に切り替えることができる。
 なお、説明の便宜のため、ビデオカメラユニット1の被写体側を前、ビデオカメラユニット1の被写体と反対側を後、ビデオカメラユニット1の通常姿勢(以下、横撮り姿勢ともいう)における鉛直上側を上、鉛直下側を下ともいう。ビデオカメラユニット1の通常姿勢において、被写体に向かって右側を右、左側を左ともいう。
The 3D adapter 100 is a conversion lens for performing three-dimensional imaging with the video camera 200, and can be attached to the front frame 299 of the video camera 200. The front frame 299 is provided for mounting optical components such as a wide conversion lens and a tele conversion lens. The 3D adapter 100 employs a side-by-side imaging method (also referred to as a side-by-side method) in which two optical images are formed on one imaging device by a pair of left and right optical systems. By attaching the 3D adapter 100 to the video camera 200, the uniaxial optical system V can be switched to a biaxial optical system capable of three-dimensional imaging.
For convenience of explanation, the subject side of the video camera unit 1 is forward, the opposite side of the subject of the video camera unit 1 is rearward, and the vertical upper side in the normal posture of the video camera unit 1 (hereinafter also referred to as landscape orientation) is shown. The upper and lower vertical sides are also called the lower. In the normal posture of the video camera unit 1, the right side toward the subject is also referred to as right and the left side is also referred to as left.
 また、以下の説明では、3Dアダプタ100およびビデオカメラ200に対して3次元直交座標系を設定する。以下の説明では、X軸方向とはX軸に平行な方向、Y軸方向とはY軸に平行な方向、Z軸方向とはZ軸に平行な方向をいう。図2に示すように、Y軸は光軸A0に平行に設定されているので、左眼光軸ALおよび右眼光軸ARはY軸に概ね平行となっている。また、左眼光軸ALおよび右眼光軸ARが交差している状態で左眼光軸ALおよび右眼光軸ARに平行な仮想面を基準平面とした場合に、Z軸方向は基準平面に直交している。
 さらに、図3に示すように、以下の説明では、ビデオカメラ200の光軸A0およびZ軸を含む仮想面を中間基準面Bと称す。中間基準面Bは、左眼用光学系OLおよび右眼用光学系ORの間に配置されており、左眼用光学系OLおよび右眼用光学系ORの中央に定義される。中間基準面Bは左眼光軸ALおよび右眼光軸ARに概ね平行に配置されている。中間基準面BはX軸方向に直交している。言い換えると、左眼用光学系OLおよび右眼用光学系ORは中間基準面Bに対して概ね左右対称な位置に配置されている。また、中間基準面Bは前述の基準平面と直交している。基準平面は図3の紙面に平行な仮想面ということもできる。
In the following description, a three-dimensional orthogonal coordinate system is set for the 3D adapter 100 and the video camera 200. In the following description, the X-axis direction is a direction parallel to the X-axis, the Y-axis direction is a direction parallel to the Y-axis, and the Z-axis direction is a direction parallel to the Z-axis. As shown in FIG. 2, since the Y axis is set parallel to the optical axis A0, the left eye optical axis AL and the right eye optical axis AR are substantially parallel to the Y axis. Further, when a virtual plane parallel to the left eye optical axis AL and the right eye optical axis AR is used as a reference plane in a state where the left eye optical axis AL and the right eye optical axis AR intersect, the Z-axis direction is orthogonal to the reference plane. Yes.
Further, as shown in FIG. 3, in the following description, a virtual plane including the optical axis A0 and the Z axis of the video camera 200 is referred to as an intermediate reference plane B. The intermediate reference plane B is disposed between the left-eye optical system OL and the right-eye optical system OR, and is defined at the center of the left-eye optical system OL and the right-eye optical system OR. The intermediate reference plane B is disposed substantially parallel to the left eye optical axis AL and the right eye optical axis AR. The intermediate reference plane B is orthogonal to the X-axis direction. In other words, the left-eye optical system OL and the right-eye optical system OR are disposed at positions that are substantially symmetrical with respect to the intermediate reference plane B. The intermediate reference plane B is orthogonal to the aforementioned reference plane. The reference plane can also be called a virtual plane parallel to the paper surface of FIG.
 〔ビデオカメラの構成〕
 図4に示すように、ビデオカメラ200は、ビデオレンズユニット201と、ビデオカメラ本体202と、を有している。本実施形態では、ビデオレンズユニット201およびビデオカメラ本体202は一体でビデオカメラ200を構成している。
 <1:ビデオレンズユニット201の構成>
 図4に示すように、ビデオレンズユニット201は、被写体の光学像を形成するために設けられており、光学系Vおよび駆動ユニット271を有している。
 (1)光学系V
 図3に示すように、光学系Vは、光軸A0を有する1軸光学系であり、第1レンズ群G1、第2レンズ群G2、第3レンズ群G3および第4レンズ群G4を有している。
[Configuration of video camera]
As shown in FIG. 4, the video camera 200 includes a video lens unit 201 and a video camera main body 202. In the present embodiment, the video lens unit 201 and the video camera main body 202 constitute a video camera 200 integrally.
<1: Configuration of Video Lens Unit 201>
As shown in FIG. 4, the video lens unit 201 is provided to form an optical image of a subject, and has an optical system V and a drive unit 271.
(1) Optical system V
As shown in FIG. 3, the optical system V is a uniaxial optical system having an optical axis A0, and includes a first lens group G1, a second lens group G2, a third lens group G3, and a fourth lens group G4. ing.
 第1レンズ群G1は光学系Vにおいて最も被写体に近い位置に配置されている。第2レンズ群G2(ズーム調整レンズ群の一例)は、ズーム調整用のレンズ群であり、光軸A0に沿って移動可能に設けられている。第3レンズ群G3は手振れ補正用のレンズ群である。第4レンズ群G4(フォーカスレンズ群の一例)は、フォーカス調整用のレンズ群であり、光軸A0に沿って移動可能に設けられている。
 (2)駆動ユニット271
 図4に示すように、駆動ユニット271は、光学系Vの状態を調整するために設けられており、ズームモータ214、OISモータ221、補正レンズ位置検出センサ222、ズーム位置検出センサ223、フォーカス位置検出センサ224およびフォーカスモータ233を有している。
The first lens group G1 is disposed at a position closest to the subject in the optical system V. The second lens group G2 (an example of a zoom adjustment lens group) is a lens group for zoom adjustment, and is provided so as to be movable along the optical axis A0. The third lens group G3 is a lens group for correcting camera shake. The fourth lens group G4 (an example of a focus lens group) is a lens group for focus adjustment, and is provided so as to be movable along the optical axis A0.
(2) Drive unit 271
As shown in FIG. 4, the drive unit 271 is provided to adjust the state of the optical system V, and includes a zoom motor 214, an OIS motor 221, a correction lens position detection sensor 222, a zoom position detection sensor 223, and a focus position. A detection sensor 224 and a focus motor 233 are provided.
 ズームモータ214(ズーム駆動部の一例)は第2レンズ群G2を光軸A0に平行な方向に駆動する。第2レンズ群G2を光軸A0に平行な方向に動かすことで、光学系Vの焦点距離を調整することができる。ズームモータ214はカメラコントローラー140により制御される。本実施形態では、ズームモータ214は、ステッピングモータであるが、DCモータ、サーボモータおよび超音波モータなどの他のアクチュエータであってもよい。
 OISモータ221は第3レンズ群G3を駆動する。補正レンズ位置検出センサ222は第3レンズ群G3に含まれる補正レンズの位置を検出する。
 フォーカスモータ233(フォーカス駆動部の一例)は第4レンズ群G4を光軸A0に平行な方向に駆動する。第4レンズ群G4を光軸A0に平行な方向に動かすことで、撮影距離(ビデオカメラ200からピントが合っている被写体までの距離)を調整することができる。フォーカスモータ233はレンズコントローラー240により制御される。本実施形態では、フォーカスモータ233は、ステッピングモータであるが、例えばDCモータ、サーボモータおよび超音波モータなどの他のアクチュエータであってもよい。
A zoom motor 214 (an example of a zoom drive unit) drives the second lens group G2 in a direction parallel to the optical axis A0. The focal length of the optical system V can be adjusted by moving the second lens group G2 in a direction parallel to the optical axis A0. The zoom motor 214 is controlled by the camera controller 140. In the present embodiment, the zoom motor 214 is a stepping motor, but may be other actuators such as a DC motor, a servo motor, and an ultrasonic motor.
The OIS motor 221 drives the third lens group G3. The correction lens position detection sensor 222 detects the position of the correction lens included in the third lens group G3.
A focus motor 233 (an example of a focus drive unit) drives the fourth lens group G4 in a direction parallel to the optical axis A0. By moving the fourth lens group G4 in a direction parallel to the optical axis A0, the shooting distance (the distance from the video camera 200 to the in-focus subject) can be adjusted. The focus motor 233 is controlled by the lens controller 240. In the present embodiment, the focus motor 233 is a stepping motor, but may be other actuators such as a DC motor, a servo motor, and an ultrasonic motor.
 <2:ビデオカメラ本体202の構成>
 図4に示すように、ビデオカメラ本体202は、CMOSイメージセンサ110、カメラモニタ120、表示制御部125、操作部130、カードスロット170、DRAM241、画像処理部210、温度センサ118、振れ量検出センサ275およびカメラコントローラー140を備えている。図5に示すように、これら各部は、バス20に接続されており、バス20を介して互いにデータの送受信が可能となっている。
 (1)CMOSイメージセンサ110
 図4に示すように、CMOSイメージセンサ110(撮像素子の一例)は、ビデオレンズユニット201により形成される被写体の光学像(以下、被写体像ともいう)を画像信号に変換する。CMOSイメージセンサ110はタイミングジェネレータ212で生成されるタイミング信号に基づいて画像信号を出力する。CMOSイメージセンサ110で生成された画像信号は、画像処理部210でデジタル化され画像データに変換される。CMOSイメージセンサ110により静止画データおよび動画データを取得できる。取得された動画データはスルー画像の表示にも用いられる。
<2: Configuration of Video Camera Body 202>
As shown in FIG. 4, the video camera body 202 includes a CMOS image sensor 110, a camera monitor 120, a display control unit 125, an operation unit 130, a card slot 170, a DRAM 241, an image processing unit 210, a temperature sensor 118, and a shake amount detection sensor. 275 and a camera controller 140. As shown in FIG. 5, these units are connected to a bus 20, and data can be transmitted / received to / from each other via the bus 20.
(1) CMOS image sensor 110
As shown in FIG. 4, the CMOS image sensor 110 (an example of an image sensor) converts an optical image of a subject (hereinafter also referred to as a subject image) formed by the video lens unit 201 into an image signal. The CMOS image sensor 110 outputs an image signal based on the timing signal generated by the timing generator 212. The image signal generated by the CMOS image sensor 110 is digitized by the image processing unit 210 and converted into image data. Still image data and moving image data can be acquired by the CMOS image sensor 110. The acquired moving image data is also used for displaying a through image.
 ここで、スルー画像とは、動画データのうちメモリーカード171に記録されない画像である。スルー画像は、主に動画であり、動画または静止画の構図を決めるためにカメラモニタ120に表示される。
 図5に示すように、CMOSイメージセンサ110は、ビデオレンズユニット201を透過した光を受ける受光面110aを有している。受光面110a上には被写体の光学像が形成される。図6に示すように、ビデオカメラ本体202の背面側から見た場合、第1受光面110Lは受光面110aの左半分、第2受光面110Rは受光面110aの右半分を占めている。第1受光面110Lおよび第2受光面110Rの面積は同じである。3Dアダプタ100をビデオカメラ200に装着して撮影を行う場合は、第1受光面110Lには左眼用光学像QL1が形成され、第2受光面110Rには右眼用光学像QR1が形成される。
Here, the through image is an image that is not recorded in the memory card 171 in the moving image data. The through image is mainly a moving image, and is displayed on the camera monitor 120 in order to determine the composition of the moving image or the still image.
As shown in FIG. 5, the CMOS image sensor 110 has a light receiving surface 110 a that receives light transmitted through the video lens unit 201. An optical image of the subject is formed on the light receiving surface 110a. As shown in FIG. 6, when viewed from the back side of the video camera body 202, the first light receiving surface 110L occupies the left half of the light receiving surface 110a, and the second light receiving surface 110R occupies the right half of the light receiving surface 110a. The areas of the first light receiving surface 110L and the second light receiving surface 110R are the same. When shooting with the 3D adapter 100 attached to the video camera 200, the left-eye optical image QL1 is formed on the first light-receiving surface 110L, and the right-eye optical image QR1 is formed on the second light-receiving surface 110R. The
 なお、CMOSイメージセンサ110は被写体の光学像を電気的な画像信号に変換する撮像素子の一例である。撮像素子は、CMOSイメージセンサ110やCCDイメージセンサ等の光電変換素子を含む概念である。
 (2)カメラモニタ120
 図5に示すカメラモニタ120は、例えば液晶ディスプレイであり、表示用画像データを画像として表示する。表示用画像データは、画像処理された画像データや、ビデオカメラユニット1の撮影条件、操作メニュー等を画像として表示するためのデータであり、カメラコントローラー140で生成される。カメラモニタ120は、動画も静止画も選択的に表示可能である。図1または図2に示すように、本実施形態では、カメラモニタ120はビデオカメラ本体202の側面に配置されているが、カメラモニタ120はビデオカメラ本体202のどこに配置されていてもよい。
Incidentally, CMOS image sensor 110 is one example of an imaging device for converting into an electrical image signal an optical image of an object. The imaging element is a concept including a photoelectric conversion element such as a CMOS image sensor 110 or a CCD image sensor.
(2) Camera monitor 120
A camera monitor 120 shown in FIG. 5 is a liquid crystal display, for example, and displays display image data as an image. The display image data is data for displaying image data subjected to image processing, shooting conditions of the video camera unit 1, operation menus, and the like as images, and is generated by the camera controller 140. The camera monitor 120 can selectively display both moving images and still images. As shown in FIG. 1 or 2, in this embodiment, the camera monitor 120 is disposed on the side surface of the video camera main body 202, but the camera monitor 120 may be disposed anywhere on the video camera main body 202.
 なお、カメラモニタ120はビデオカメラ本体202に設けられた表示部の一例である。表示部としては、他にも、有機EL、無機EL、プラズマディスプレイパネル等、画像を表示できる装置を用いることができる。
 (3)操作部130
 図4に示すように、操作部130は、録画ボタン131と、ズームレバー132と、調整モードボタン133と、を有している。録画ボタン131はユーザーによる録画操作を受け付ける。ズームレバー132は、ビデオカメラ本体202の上面に設けられたレバースイッチであり、ズーム調整に用いられる。調整モードボタン133は、3次元撮影時の左右画像の各種位置調整を行う調整モードにビデオカメラ200を切り替えるために設けられている。操作部130は、ユーザーによる操作を受け付けることができればよく、ボタン、レバー、ダイヤル、タッチパネル等、様々なタイプの操作系を含み得る。
The camera monitor 120 is an example of a display unit provided in the video camera body 202. As the display unit, other devices that can display an image, such as an organic EL, an inorganic EL, and a plasma display panel, can be used.
(3) Operation unit 130
As shown in FIG. 4, the operation unit 130 includes a recording button 131, a zoom lever 132, and an adjustment mode button 133. The recording button 131 accepts a recording operation by the user. The zoom lever 132 is a lever switch provided on the upper surface of the video camera main body 202 and is used for zoom adjustment. The adjustment mode button 133 is provided to switch the video camera 200 to an adjustment mode for performing various position adjustments of the left and right images during three-dimensional imaging. The operation unit 130 is only required to accept an operation by a user, and may include various types of operation systems such as buttons, levers, dials, and touch panels.
 (4)カードスロット170
 図4に示すように、カードスロット170は、メモリーカード171を装着可能である。カードスロット170は、カメラコントローラー140からの制御に基づいて、メモリーカード171を制御する。具体的には、カードスロット170は、メモリーカード171に画像データを格納し、メモリーカード171から画像データを出力する。例えば、カードスロット170は、メモリーカード171に動画データを格納し、メモリーカード171から動画データを出力する。
 メモリーカード171は、カメラコントローラー140が画像処理により生成した画像データを格納可能である。例えば、メモリーカード171は、非圧縮のRAW画像データや圧縮されたJPEG画像データを格納できる。さらに、メモリーカード171はマルチピクチャーフォーマット(MPF)形式のステレオ画像データを格納することもできる。
(4) Card slot 170
As shown in FIG. 4, the card slot 170 can be loaded with a memory card 171. The card slot 170 controls the memory card 171 based on the control from the camera controller 140. Specifically, the card slot 170 stores image data in the memory card 171 and outputs image data from the memory card 171. For example, the card slot 170 stores moving image data in the memory card 171 and outputs moving image data from the memory card 171.
The memory card 171 can store image data generated by the camera controller 140 through image processing. For example, the memory card 171 can store uncompressed RAW image data and compressed JPEG image data. Further, the memory card 171 can store stereo image data in a multi-picture format (MPF) format.
 また、カードスロット170を介して、予め内部に格納された静止画データをメモリーカード171から出力できる。メモリーカード171から出力された静止画データは、カメラコントローラー140で画像処理される。例えば、カメラコントローラー140は、メモリーカード171から取得した静止画データに伸張処理を施して表示用静止画データを生成する。
 メモリーカード171は、さらに、カメラコントローラー140が画像処理により生成した動画データを格納可能である。例えば、メモリーカード171は、動画圧縮規格であるH.264/AVCに従って圧縮された動画データを格納できる。カードスロット170を介して、予め内部に格納された動画データをメモリーカード171から出力できる。メモリーカード171から出力された動画データは、カメラコントローラー140で画像処理される。例えば、カメラコントローラー140は、メモリーカード171から取得した動画データに伸張処理を施して表示用動画データを生成する。
In addition, still image data stored in advance can be output from the memory card 171 via the card slot 170. The still image data output from the memory card 171 is processed by the camera controller 140. For example, the camera controller 140 expands still image data acquired from the memory card 171 to generate still image data for display.
The memory card 171 can further store moving image data generated by the camera controller 140 through image processing. For example, the memory card 171 is a video compression standard H.264. Video data compressed according to H.264 / AVC can be stored. Through the card slot 170, the moving image data stored in advance can be output from the memory card 171. The moving image data output from the memory card 171 is processed by the camera controller 140. For example, the camera controller 140 performs a decompression process on the moving image data acquired from the memory card 171 to generate display moving image data.
 (5)カメラコントローラー140
 図4に示すカメラコントローラー140はビデオカメラ200全体を制御する。カメラコントローラー140は操作部130と電気的に接続されている。カメラコントローラー140には操作部130から操作信号が入力される。カメラコントローラー140は、制御動作や後述の画像処理動作の際に、DRAM241をワークメモリとして使用する。
 図5に示すように、カメラコントローラー140は、CPU(Central Processing Unit)140a、ROM(Read Only Memory)140b(指標記憶部の一例)およびRAM(Random Access Memory)140cを有しており、ROM140bに格納されたプログラムがCPU140aに読み込まれることで様々な機能を実現し得る。具体的には、ROM140bに格納されたプログラムがCPU140aに読み込まれることで、カメラコントローラー140は、駆動制御部140d、メタデータ生成部147、画像ファイル生成部148およびレンズ検出部149の機能を実現している。
(5) Camera controller 140
A camera controller 140 shown in FIG. 4 controls the entire video camera 200. The camera controller 140 is electrically connected to the operation unit 130. An operation signal is input from the operation unit 130 to the camera controller 140. The camera controller 140 uses the DRAM 241 as a work memory during a control operation or an image processing operation described later.
As shown in FIG. 5, the camera controller 140 includes a CPU (Central Processing Unit) 140a, a ROM (Read Only Memory) 140b (an example of an index storage unit), and a RAM (Random Access Memory) 140c. Various functions can be realized by reading the stored program into the CPU 140a. Specifically, the camera controller 140 realizes the functions of the drive control unit 140d, the metadata generation unit 147, the image file generation unit 148, and the lens detection unit 149 by reading the program stored in the ROM 140b into the CPU 140a. ing.
 また、カメラコントローラー140は、再生モード、2次元撮影モード、3次元撮影モードおよび調整モードを有している。前述のように、レンズ検出部149の検出結果に基づいて、カメラコントローラー140は動作モードを2次元撮影モードと3次元撮影モードとに自動的に切り替えることができる。2次元撮影モードでは、通常の2次元画像を撮影することができる。一方、3次元撮影モードでは、3Dアダプタ100を用いてステレオ画像を撮影することができる。また、調整モードボタン133によりカメラコントローラー140は動作モードを調整モードに切り替えることができる。調整モードでは、左眼用光学像QL1および右眼用光学像QR1の上下方向の相対ズレ、上下位置および左右位置を調整することができる。調整モードへの切り替えは調整モードボタン133を用いて行うことができる。 In addition, the camera controller 140 has a playback mode, a 2D shooting mode, a 3D shooting mode, and an adjustment mode. As described above, based on the detection result of the lens detection unit 149, the camera controller 140 can automatically switch the operation mode between the two-dimensional imaging mode and the three-dimensional imaging mode. In the two-dimensional shooting mode, a normal two-dimensional image can be taken. On the other hand, in the three-dimensional shooting mode, a stereo image can be shot using the 3D adapter 100. Further, the camera controller 140 can switch the operation mode to the adjustment mode by the adjustment mode button 133. In the adjustment mode, the vertical shift, the vertical position, and the horizontal position of the left-eye optical image QL1 and the right-eye optical image QR1 can be adjusted. Switching to the adjustment mode can be performed using the adjustment mode button 133.
 図5に示すように、駆動制御部140d(駆動制御部の一例)は、2次元撮影モードおよび3次元撮影モードにおいて、製品の個体差を示す指標データに基づいてズームモータ214を制御し、第2レンズ群G2を所望の位置まで駆動する。これにより、製品の個体差が存在しても、第2レンズ群G2を設計基準位置に配置することができ、ビデオカメラユニット1の基準面距離のズレを補正することができる。指標データは、例えば光学系Vの個体差を示すデータであり、製造時あるいは出荷時に製品ごとに指標データの算出が行われる。指標データは、例えば焦点距離に換算することができるデータであり、より具体的には、指標データとしては、焦点距離の設計値と実際の焦点距離との差分を示すデータが考えられる。指標データは例えばROM140bに格納されている。
 メタデータ生成部147はステレオベースおよび輻輳角を含むメタデータを生成する。ここで、図7に示すように、ステレオベースとは、左眼用光学系OLおよび右眼用光学系ORの間の距離をいう。また、輻輳角とは、左眼光軸ALおよび右眼光軸ARのなす角度をいう。ステレオベースおよび輻輳角はステレオ画像を表示する際に用いられる。輻輳点とは、左眼光軸ALおよび右眼光軸ARの交点をいう。さらに、輻輳点から3Dアダプタ100の前面までの最短距離を基準面距離という。
As shown in FIG. 5, the drive control unit 140d (an example of the drive control unit) controls the zoom motor 214 based on the index data indicating individual differences between products in the two-dimensional imaging mode and the three-dimensional imaging mode. The second lens group G2 is driven to a desired position. Thereby, even if there is an individual difference between products, the second lens group G2 can be arranged at the design reference position, and the deviation of the reference plane distance of the video camera unit 1 can be corrected. The index data is data indicating individual differences of the optical system V, for example, and the index data is calculated for each product at the time of manufacture or shipment. The index data is data that can be converted into, for example, a focal length, and more specifically, the index data may be data indicating a difference between the design value of the focal length and the actual focal length. The index data is stored in the ROM 140b, for example.
The metadata generation unit 147 generates metadata including the stereo base and the convergence angle. Here, as shown in FIG. 7, the stereo base means a distance between the left-eye optical system OL and the right-eye optical system OR. Further, the convergence angle refers to an angle formed by the left eye optical axis AL and the right eye optical axis AR. The stereo base and the convergence angle are used when displaying a stereo image. The convergence point is an intersection of the left eye optical axis AL and the right eye optical axis AR. Furthermore, the shortest distance from the convergence point to the front surface of the 3D adapter 100 is referred to as a reference plane distance.
 図5に示す画像ファイル生成部148は、画像圧縮部217(後述)により圧縮された左眼用および右眼用画像データとメタデータとを組み合わせて、MPF(Multi Picture Format)形式のステレオ画像データを生成する。生成された画像データは、例えばカードスロット170に送信されメモリーカード171に保存される。
 図5に示すように、カメラコントローラー140はさらにレンズ検出部149を有している。レンズ検出部149はビデオカメラ200に3Dアダプタ100が装着されたことを検出する。3Dアダプタ100のビデオカメラ200への装着がレンズ検出部149により検出されると、カメラコントローラー140は動作モードを2次元撮影モードから3次元撮影モードに切り換える。3Dアダプタ100のビデオカメラ200からの取り外しがレンズ検出部149により検出されると、カメラコントローラー140は動作モードを3次元撮影モードから2次元撮影モードに切り換える。つまり、カメラコントローラー140は、3Dアダプタ100のビデオカメラ200への装着および取り外しに応じて自動的に動作モードを2次元および3次元撮影モードに切り替えることもできる。
The image file generation unit 148 shown in FIG. 5 combines stereo image data in MPF (Multi Picture Format) format by combining left-eye and right-eye image data compressed by an image compression unit 217 (described later) and metadata. Is generated. The generated image data is transmitted to, for example, the card slot 170 and stored in the memory card 171.
As shown in FIG. 5, the camera controller 140 further includes a lens detection unit 149. The lens detection unit 149 detects that the 3D adapter 100 is attached to the video camera 200. When the lens detection unit 149 detects that the 3D adapter 100 is attached to the video camera 200, the camera controller 140 switches the operation mode from the two-dimensional imaging mode to the three-dimensional imaging mode. When removal of the 3D adapter 100 from the video camera 200 is detected by the lens detection unit 149, the camera controller 140 switches the operation mode from the 3D shooting mode to the 2D shooting mode. That is, the camera controller 140 can automatically switch the operation mode to the two-dimensional and three-dimensional imaging modes in accordance with the attachment and removal of the 3D adapter 100 from the video camera 200.
 (6)画像処理部210
 図5に示すように、画像処理部210は、信号処理部215、画像抽出部216、補正処理部218および画像圧縮部217を有している。
 信号処理部215は、CMOSイメージセンサ110で生成される画像信号をデジタル化してCMOSイメージセンサ110上に結像する光学像の基本画像データを生成する。具体的には、信号処理部215は、CMOSイメージセンサ110から出力される画像信号をデジタル信号に変換し、そのデジタル信号に対してノイズ除去や輪郭強調等のデジタル信号処理を施す。信号処理部215により生成された画像データはRAWデータとしてDRAM241に一時的に記憶される。ここでは、信号処理部215により生成された画像データを基本画像データと呼ぶ。
(6) Image processing unit 210
As illustrated in FIG. 5, the image processing unit 210 includes a signal processing unit 215, an image extraction unit 216, a correction processing unit 218, and an image compression unit 217.
The signal processing unit 215 digitizes an image signal generated by the CMOS image sensor 110 and generates basic image data of an optical image formed on the CMOS image sensor 110. Specifically, the signal processing unit 215 converts an image signal output from the CMOS image sensor 110 into a digital signal, and performs digital signal processing such as noise removal and contour enhancement on the digital signal. The image data generated by the signal processing unit 215 is temporarily stored in the DRAM 241 as RAW data. Here, the image data generated by the signal processing unit 215 is referred to as basic image data.
 画像抽出部216は信号処理部215で生成された基本画像データから左眼用画像データおよび右眼用画像データを抽出する。左眼用画像データは左眼用光学系OLにより形成される左眼用光学像QL1(図6参照)の一部に対応している。右眼用画像データは右眼用光学系OR(図6参照)により形成される右眼用光学像QR1の一部に対応している。予め設定された第1抽出領域AL2および第2抽出領域AR2に基づいて、DRAM241に格納された基本画像データから画像抽出部216は左眼用画像データおよび右眼用画像データを抽出する(図6参照)。画像抽出部216により抽出された左眼用画像データおよび右眼用画像データはDRAM241に一時的に格納される。
 補正処理部218は、抽出した左眼用画像データおよび右眼用画像データのそれぞれに対して歪曲収差補正およびシェーディング補正などの補正処理を行う。補正処理後、左眼用画像データおよび右眼用画像データはDRAM241に一時的に格納される。
The image extraction unit 216 extracts left-eye image data and right-eye image data from the basic image data generated by the signal processing unit 215. The left-eye image data corresponds to a part of the left-eye optical image QL1 (see FIG. 6) formed by the left-eye optical system OL. The right-eye image data corresponds to a part of the right-eye optical image QR1 formed by the right-eye optical system OR (see FIG. 6). Based on the preset first extraction area AL2 and second extraction area AR2, the image extraction unit 216 extracts left-eye image data and right-eye image data from the basic image data stored in the DRAM 241 (FIG. 6). reference). The left-eye image data and right-eye image data extracted by the image extraction unit 216 are temporarily stored in the DRAM 241.
The correction processing unit 218 performs correction processing such as distortion correction and shading correction on each of the extracted left-eye image data and right-eye image data. After the correction process, the image data for the left eye and the image data for the right eye are temporarily stored in the DRAM 241.
 画像圧縮部217はカメラコントローラー140の命令に基づいてDRAM241に記憶された補正後の左眼用および右眼用画像データに圧縮処理を施す。この圧縮処理により、画像データのデータサイズは元のデータサイズよりも小さくなる。画像データの圧縮方法として、例えば1フレームの画像データ毎に圧縮するJPEG(Joint Photographic Experts Group)方式が考えられる。圧縮された左眼用画像データおよび右眼用画像データはDRAM241に一時的に格納される。
 (7)温度センサ118
 図5に示す温度センサ118(温度検出部の一例)はビデオカメラ200の環境温度を検出する。温度センサ118は光学系V周辺の温度を検出できる位置に配置されている。温度センサ118は、熱電対であるが、ビデオカメラ200の環境温度を検出できる他のセンサであってもよい。温度センサ118により検出された温度はカメラコントローラー140の駆動制御部140dで基準面距離のズレの補正に用いられる。
The image compression unit 217 performs compression processing on the corrected left-eye image data and right-eye image data stored in the DRAM 241 based on a command from the camera controller 140. By this compression processing, the data size of the image data becomes smaller than the original data size. As a method for compressing image data, for example, a JPEG (Joint Photographic Experts Group) method for compressing each frame of image data can be considered. The compressed left-eye image data and right-eye image data are temporarily stored in the DRAM 241.
(7) Temperature sensor 118
A temperature sensor 118 (an example of a temperature detection unit) illustrated in FIG. 5 detects the environmental temperature of the video camera 200. The temperature sensor 118 is disposed at a position where the temperature around the optical system V can be detected. The temperature sensor 118 is a thermocouple, but may be another sensor that can detect the environmental temperature of the video camera 200. The temperature detected by the temperature sensor 118 is used by the drive controller 140d of the camera controller 140 to correct the deviation of the reference plane distance.
 〔3Dアダプタの構成〕
 図8に示すように、3Dアダプタ100は外装部101(筐体の一例)を有している。外装部101には、図3に示す左眼用光学系OLおよび右眼用光学系ORが収容されている。さらに、図14に示すように、外装部101には、本体枠2、第1調整機構3、第2調整機構4、第3調整機構5および操作機構6が収容されている。
 ここで、左眼用光学系とは、左側の視点に対応した光学系であり、具体的には、最も被写体側(前側)に配置されている光学素子が被写体に向かって左側に配置されている光学系をいう。同様に、右眼用光学系とは、右側の視点に対応した光学系であり、具体的には、最も被写体側(前側)に配置されている光学素子が被写体に向かって右側に配置されている光学系をいう。
[Configuration of 3D adapter]
As illustrated in FIG. 8, the 3D adapter 100 includes an exterior part 101 (an example of a housing). The exterior portion 101 accommodates the left-eye optical system OL and the right-eye optical system OR shown in FIG. Furthermore, as shown in FIG. 14, the body frame 2, the first adjustment mechanism 3, the second adjustment mechanism 4, the third adjustment mechanism 5, and the operation mechanism 6 are accommodated in the exterior portion 101.
Here, the left-eye optical system is an optical system corresponding to the left viewpoint, and specifically, the optical element arranged closest to the subject (front side) is arranged on the left side toward the subject. An optical system. Similarly, the right-eye optical system is an optical system corresponding to the right viewpoint, and specifically, the optical element arranged closest to the subject (front side) is arranged on the right side toward the subject. An optical system.
 なお、ここでいう光学素子は、正または負の屈折力を持った光学素子をいい、単なるガラス(例えば、後述のガラス16)は含まない。
 (1)外装部101
 図8に示すように、外装部101(筐体の一例)は、アッパーケース11、ロアケース12、フロントケース13、カバー15およびねじリングユニット17を有している。ロアケース12はビスによりアッパーケース11に固定されている。フロントケース13はビスによりアッパーケース11およびロアケース12に固定されている。アッパーケース11にはカバー15が開閉可能に装着されている。アッパーケース11は凹部11aを有している。カバー15が閉状態ではカバー15は凹部11aに嵌り込んでいる。
 図9に示すように、アッパーケース11はカバー15が開いた状態で操作機構6の垂直位置調整ダイヤル57、相対ズレ調整ダイヤル61および水平位置調整ダイヤル62が露出するように構成されている。凹部11a内に垂直位置調整ダイヤル57、相対ズレ調整ダイヤル61および水平位置調整ダイヤル62が配置されている。アッパーケース11にはカバー15が開閉可能に装着されている。カバー15を開くと垂直位置調整ダイヤル57、相対ズレ調整ダイヤル61および水平位置調整ダイヤル62を操作することができる。
The optical element here means an optical element having positive or negative refractive power, and does not include simple glass (for example, glass 16 described later).
(1) Exterior part 101
As shown in FIG. 8, the exterior portion 101 (an example of a housing) includes an upper case 11, a lower case 12, a front case 13, a cover 15, and a screw ring unit 17. The lower case 12 is fixed to the upper case 11 with screws. The front case 13 is fixed to the upper case 11 and the lower case 12 with screws. A cover 15 is attached to the upper case 11 so that it can be opened and closed. The upper case 11 has a recess 11a. When the cover 15 is closed, the cover 15 is fitted in the recess 11a.
As shown in FIG. 9, the upper case 11 is configured such that the vertical position adjustment dial 57, the relative displacement adjustment dial 61, and the horizontal position adjustment dial 62 of the operation mechanism 6 are exposed when the cover 15 is opened. A vertical position adjustment dial 57, a relative displacement adjustment dial 61, and a horizontal position adjustment dial 62 are disposed in the recess 11a. A cover 15 is attached to the upper case 11 so that it can be opened and closed. When the cover 15 is opened, the vertical position adjustment dial 57, the relative displacement adjustment dial 61, and the horizontal position adjustment dial 62 can be operated.
 図10に示すように、アッパーケース11は本体枠2の上側に装着されている。アッパーケース11は本体枠2をZ軸方向およびX軸方向に移動可能に支持している。
 図11に示すように、ねじリングユニット17は、アッパーケース11およびロアケース12に装着されたリアケース17aと、3Dアダプタ100を前枠299(図2参照)に装着するためのねじリング17bと、を有している。リアケース17aはねじリング17bを回転可能に支持している。ねじリング17bをビデオカメラ200の前枠299に接続することで、3Dアダプタ100をビデオカメラ200に装着することができる。
 図12に示すように、フロントケース13は、本体枠2の前側(被写体に近い側)に装着されている。フロントケース13は、開口13aと、開口13aに装着されたガラス16と、を有している。図17に示すように、フロントケース13にはキャップ9を装着することができる。キャップ9はガラス16の保護のため、あるいは相対ズレ調整をするために装着される。
As shown in FIG. 10, the upper case 11 is mounted on the upper side of the main body frame 2. The upper case 11 supports the main body frame 2 so as to be movable in the Z-axis direction and the X-axis direction.
As shown in FIG. 11, the screw ring unit 17 includes a rear case 17a attached to the upper case 11 and the lower case 12, a screw ring 17b for attaching the 3D adapter 100 to the front frame 299 (see FIG. 2), have. The rear case 17a supports the screw ring 17b in a rotatable manner. By connecting the screw ring 17b to the front frame 299 of the video camera 200, the 3D adapter 100 can be attached to the video camera 200.
As shown in FIG. 12, the front case 13 is attached to the front side (the side close to the subject) of the main body frame 2. The front case 13 has an opening 13a and a glass 16 attached to the opening 13a. As shown in FIG. 17, a cap 9 can be attached to the front case 13. The cap 9 is attached to protect the glass 16 or adjust relative displacement.
 図13に示すように、ロアケース12は、本体枠2の下側を覆っており、アッパーケース11に装着されている。外装部101の内部で本体枠2がZ軸方向およびX軸方向に移動可能なように、ロアケース12と本体枠2との間には隙間が確保されている。外装部101は本体枠2をカバーしている。
 (2)左眼用光学系OL
 図3に示すように、左眼用光学系OLは、左側視点(第1の視点または第2の視点の一例)から見た左眼用光学像(第1光学像または第2光学像の一例)を形成するための光学系であり、左眼負レンズ群G1L、左眼正レンズ群G2Lおよび左眼プリズム群G3Lを有している。左眼用光学系OLは略アフォーカル光学系である。例えば、左眼用光学系OLの焦点距離は、1000mm以上あるいは-1000mm以下であることが好ましい。
As shown in FIG. 13, the lower case 12 covers the lower side of the main body frame 2 and is attached to the upper case 11. A gap is secured between the lower case 12 and the main body frame 2 so that the main body frame 2 can move in the Z-axis direction and the X-axis direction inside the exterior portion 101. The exterior portion 101 covers the main body frame 2.
(2) Left eye optical system OL
As shown in FIG. 3, the left-eye optical system OL is an example of a left-eye optical image (an example of a first optical image or a second optical image) viewed from the left viewpoint (an example of a first viewpoint or a second viewpoint). ), And includes a left-eye negative lens group G1L, a left-eye positive lens group G2L, and a left-eye prism group G3L. The left-eye optical system OL is a substantially afocal optical system. For example, the focal length of the left-eye optical system OL is preferably 1000 mm or more or −1000 mm or less.
 左眼負レンズ群G1L(第1調整光学系の一例、第1負レンズ群または第2負レンズ群の一例)は、全体として負の焦点距離(負の屈折力ともいう)を有しており、第1レンズL1L、第2レンズL2L、第3レンズL3Lおよび第4レンズL4Lを有している。左眼負レンズ群G1Lは左眼用光学系OLにおいて最も被写体側に(被写体に最も近い位置に)配置されている。第1レンズL1Lは負の焦点距離を持っている。第2レンズL2Lは負の焦点距離を持っている。第3レンズL3Lは正の焦点距離(正の屈折力ともいう)を持っている。第4レンズL4Lは、負の焦点距離を持っており、第3レンズL3Lに接合されている。左眼負レンズ群G1Lの合成焦点距離は負となっている。左眼負レンズ群G1Lの有効径は左眼正レンズ群G2Lの有効径よりも小さい。
 左眼正レンズ群G2L(第1正レンズ群または第2正レンズ群の一例)は、左眼負レンズ群G1Lの透過光を受けるレンズ群であり、左眼負レンズ群G1Lの被写体と反対側に配置されている。左眼正レンズ群G2Lは左眼負レンズ群G1Lと左眼プリズム群G3Lとの間に配置されている。
The left-eye negative lens group G1L (an example of a first adjustment optical system, an example of a first negative lens group or a second negative lens group) has a negative focal length (also referred to as negative refractive power) as a whole. The first lens L1L, the second lens L2L, the third lens L3L, and the fourth lens L4L. The left-eye negative lens group G1L is disposed closest to the subject (at a position closest to the subject) in the left-eye optical system OL. The first lens L1L has a negative focal length. The second lens L2L has a negative focal length. The third lens L3L has a positive focal length (also referred to as positive refractive power). The fourth lens L4L has a negative focal length and is joined to the third lens L3L. The composite focal length of the left-eye negative lens group G1L is negative. The effective diameter of the left-eye negative lens group G1L is smaller than the effective diameter of the left-eye positive lens group G2L.
The left-eye positive lens group G2L (an example of the first positive lens group or the second positive lens group) is a lens group that receives the transmitted light of the left-eye negative lens group G1L, and is opposite to the subject of the left-eye negative lens group G1L. Is arranged. The left eye positive lens group G2L is disposed between the left eye negative lens group G1L and the left eye prism group G3L.
 左眼正レンズ群G2Lは、第5レンズL5L、第6レンズL6Lおよび第7レンズL7Lを有している。第5レンズL5Lは正の焦点距離を持っている。第6レンズL6Lは正の焦点距離を持っている。第7レンズL7Lは、負の焦点距離を持っており、第6レンズL6Lに接合されている。
 左眼負レンズ群G1Lの透過光は発散するので、左眼正レンズ群G2Lの入射面の光学的有効領域は左眼負レンズ群G1Lの出射面の光学的有効領域よりも広い。このため、左眼正レンズ群G2Lの有効径は左眼負レンズ群G1Lの有効径よりも大きくなっている。また、左眼光軸ALおよび右眼光軸ARを近づけるために、左眼正レンズ群G2Lは概ね半円形状を有している。具体的には、左眼正レンズ群G2Lの内側(右眼光軸AR側、中間基準面B側)は真っ直ぐカットされている(図14参照)。これにより、左眼正レンズ群G2Lと右眼正レンズ群G2Rとを近づけて配置することができ、ステレオベースを小さくすることができる。また、これに伴い、左眼光軸ALおよび右眼光軸ARにより形成される輻輳角を適正な値に設定しやすくなる。
The left-eye positive lens group G2L includes a fifth lens L5L, a sixth lens L6L, and a seventh lens L7L. The fifth lens L5L has a positive focal length. The sixth lens L6L has a positive focal length. The seventh lens L7L has a negative focal length and is joined to the sixth lens L6L.
Since the transmitted light of the left eye negative lens group G1L diverges, the optically effective area of the entrance surface of the left eye positive lens group G2L is wider than the optically effective area of the exit surface of the left eye negative lens group G1L. For this reason, the effective diameter of the left-eye positive lens group G2L is larger than the effective diameter of the left-eye negative lens group G1L. Further, in order to bring the left eye optical axis AL and the right eye optical axis AR closer, the left eye positive lens group G2L has a substantially semicircular shape. Specifically, the inside of the left eye positive lens group G2L (right eye optical axis AR side, intermediate reference plane B side) is cut straight (see FIG. 14). Thereby, the left-eye positive lens group G2L and the right-eye positive lens group G2R can be arranged close to each other, and the stereo base can be reduced. Accordingly, it becomes easy to set the convergence angle formed by the left eye optical axis AL and the right eye optical axis AR to an appropriate value.
 左眼光軸ALは左眼負レンズ群G1Lおよび左眼正レンズ群G2Lにより定義される。具体的には、左眼光軸ALは左眼負レンズ群G1Lの主点と左眼正レンズ群G2Lの主点とを通るラインで定義される。左眼光軸ALおよび右眼光軸ARは被写体側からCMOSイメージセンサ110側へいくにしたがって互いに離れるように配置されている。
 左眼プリズム群G3L(第1プリズム群または第2プリズム群の一例)は、左眼正レンズ群G2Lの透過光を受けるレンズ群であり、第1前側プリズムP1Lおよび第1後側プリズムP2Lを有している。第1前側プリズムP1Lおよび第1後側プリズムP2Lは屈折方式のウェッジプリズムである。左眼プリズム群G3Lは、ビデオカメラ200の光学系V(1軸光学系の一例)に左眼正レンズ群G2Lの透過光が導入されるように左眼正レンズ群G2Lの透過光を屈折させる。具体的には、左眼プリズム群G3Lにより左眼正レンズ群G2Lの透過光は内側へ(中間基準面Bに近づくように)屈折される。第1前側プリズムP1Lは左眼正レンズ群G2Lの透過光を内側へ(中間基準面Bに近づくように)屈折させる。第1後側プリズムP2Lは第1前側プリズムP1Lの透過光を外側へ(中間基準面Bから遠ざかるように)屈折させる。第1前側プリズムP1Lは主に、左眼正レンズ群G2Lの透過光を内側へ屈折させる機能を有しており、第1後側プリズムP2Lは主に、屈折による色分散を補正する機能を有している。左眼プリズム群G3Lの合成偏光角は例えば約1.7度である。
The left eye optical axis AL is defined by the left eye negative lens group G1L and the left eye positive lens group G2L. Specifically, the left eye optical axis AL is defined by a line passing through the principal point of the left eye negative lens group G1L and the principal point of the left eye positive lens group G2L. The left eye optical axis AL and the right eye optical axis AR are arranged so as to be separated from each other as they go from the subject side to the CMOS image sensor 110 side.
The left eye prism group G3L (an example of the first prism group or the second prism group) is a lens group that receives the transmitted light of the left eye positive lens group G2L, and includes a first front prism P1L and a first rear prism P2L. is doing. The first front prism P1L and the first rear prism P2L are refracting wedge prisms. The left-eye prism group G3L refracts the transmitted light of the left-eye positive lens group G2L so that the transmitted light of the left-eye positive lens group G2L is introduced into the optical system V (an example of a uniaxial optical system) of the video camera 200. . Specifically, the transmitted light of the left eye positive lens group G2L is refracted inward (so as to approach the intermediate reference plane B) by the left eye prism group G3L. The first front prism P1L refracts the transmitted light of the left-eye positive lens group G2L inward (approaching the intermediate reference plane B). The first rear prism P2L refracts the transmitted light of the first front prism P1L outward (so as to be away from the intermediate reference plane B). The first front prism P1L mainly has a function of refracting the transmitted light of the left-eye positive lens group G2L inward, and the first rear prism P2L mainly has a function of correcting chromatic dispersion due to refraction. is doing. The combined polarization angle of the left eye prism group G3L is, for example, about 1.7 degrees.
 図14に示すように、左眼負レンズ群G1Lは、第1調整機構3の第1調整枠30(後述)に固定されており、左眼正レンズ群G2L、左眼プリズム群G3Lおよび本体枠2に対して概ねZ軸方向に移動可能に配置されている。図16に示すように、左眼正レンズ群G2Lは、中間レンズ枠28(後述)に固定されている。左眼プリズム群G3Lはプリズム支持枠29(後述)に固定されている。
 図18に示すように、左眼プリズム群G3Lの偏向角をθL(θ11またはθ22の一例)、左眼プリズム群G3Lの透過光の出射角をθ1、左眼プリズム群G3Lの入射面と最外光線との交点から左眼光軸ALまでの垂直長さをX1、左眼プリズム群G3Lの出射面と最外光線との交点から左眼光軸ALまでの垂直長さをX12、左眼プリズム群G3Lの入射側に定義される光学基準面から入射面までの距離(より詳細には、図7に示す輻輳点から左眼プリズム群G3Lの入射面までの距離)をL1、光学基準面から出射面までの距離(より詳細には、図7に示す輻輳点から左眼プリズム群G3Lの出射面までの距離)をL12とした場合、以下の式(1)が成立する。
As shown in FIG. 14, the left-eye negative lens group G1L is fixed to a first adjustment frame 30 (described later) of the first adjustment mechanism 3, and includes a left-eye positive lens group G2L, a left-eye prism group G3L, and a main body frame. 2 is arranged so as to be movable in the Z-axis direction. As shown in FIG. 16, the left-eye positive lens group G2L is fixed to an intermediate lens frame 28 (described later). The left eye prism group G3L is fixed to a prism support frame 29 (described later).
As shown in FIG. 18, the deflection angle of the left eye prism group G3L is θL (an example of θ11 or θ22), the outgoing angle of the transmitted light of the left eye prism group G3L is θ1, and the incident surface of the left eye prism group G3L is the outermost surface. The vertical length from the intersection with the light beam to the left eye optical axis AL is X1, the vertical length from the intersection between the exit surface of the left eye prism group G3L and the outermost light beam to the left eye optical axis AL is X12, and the left eye prism group G3L L1 is the distance from the optical reference plane defined on the incident side to the entrance plane (more specifically, the distance from the convergence point shown in FIG. 7 to the entrance plane of the left-eye prism group G3L), and L1 is the exit plane. The following formula (1) is established, where L12 is the distance to (more specifically, the distance from the convergence point shown in FIG. 7 to the exit surface of the left-eye prism group G3L).
 θL≦{(θ1+arctan(X1/L1))2+(θ1+arctan(X12/L12))20.5≦4×θL  ・・・(1)
 図18に示すように、左眼光軸ALは出射側へいくにしたがって中間基準面Bから遠ざかるように中間基準面Bに対して傾斜している。左眼正レンズ群G2Lの透過光は左眼プリズム群G3Lにより中間基準面Bに近づくように屈折される。
 (3)右眼用光学系OR
 図3に示すように、右眼用光学系ORは、右側視点(第2の視点または第2の視点の一例)から見た右眼用光学像(第2光学像または第2光学像の一例)を形成するための光学系であり、右眼負レンズ群G1R、右眼正レンズ群G2Rおよび右眼プリズム群G3Rを有している。右眼用光学系ORは略アフォーカル光学系である。例えば、右眼用光学系ORの焦点距離は、1000mm以上あるいは-1000mm以下であることが好ましい。
θL ≦ {(θ1 + arctan (X1 / L1)) 2 + (θ1 + arctan (X12 / L12)) 2 } 0.5 ≦ 4 × θL (1)
As shown in FIG. 18, the left eye optical axis AL is inclined with respect to the intermediate reference plane B so as to move away from the intermediate reference plane B as it goes to the emission side. The transmitted light of the left eye positive lens group G2L is refracted so as to approach the intermediate reference plane B by the left eye prism group G3L.
(3) Right-eye optical system OR
As shown in FIG. 3, the optical system OR for the right eye is an optical image for the right eye (an example of the second optical image or the second optical image) viewed from the right viewpoint (an example of the second viewpoint or the second viewpoint). ), And includes a right eye negative lens group G1R, a right eye positive lens group G2R, and a right eye prism group G3R. The right-eye optical system OR is a substantially afocal optical system. For example, the focal length of the right-eye optical system OR is preferably 1000 mm or more or −1000 mm or less.
 右眼負レンズ群G1R(第2調整光学系の一例、第1負レンズ群または第2負レンズ群の一例)は、全体として負の焦点距離(負の屈折力ともいう)を有しており、第1レンズL1R、第2レンズL2R、第3レンズL3Rおよび第4レンズL4Rを有している。右眼負レンズ群G1Rは右眼用光学系ORにおいて最も被写体側に(被写体に最も近い位置に)配置されている。第1レンズL1Rは負の焦点距離を持っている。第2レンズL2Rは負の焦点距離を持っている。第3レンズL3Rは正の焦点距離(正の屈折力ともいう)を持っている。第4レンズL4Rは、負の焦点距離を持っており、第3レンズL3Rに接合されている。右眼負レンズ群G1Rの合成焦点距離は負となっている。右眼負レンズ群G1Rの有効径は右眼正レンズ群G2Rの有効径よりも小さい。
 図3に示すように、右眼正レンズ群G2R(第1正レンズ群または第2正レンズ群の一例)は、右眼負レンズ群G1Rの透過光を受けるレンズ群であり、右眼負レンズ群G1Rの被写体と反対側に配置されている。右眼正レンズ群G2Rは右眼負レンズ群G1Rと右眼プリズム群G3Rとの間に配置されている。
The right-eye negative lens group G1R (an example of the second adjustment optical system, an example of the first negative lens group or the second negative lens group) has a negative focal length (also referred to as negative refractive power) as a whole. The first lens L1R, the second lens L2R, the third lens L3R, and the fourth lens L4R. The right-eye negative lens group G1R is disposed closest to the subject (in the position closest to the subject) in the right-eye optical system OR. The first lens L1R has a negative focal length. The second lens L2R has a negative focal length. The third lens L3R has a positive focal length (also referred to as positive refractive power). The fourth lens L4R has a negative focal length and is joined to the third lens L3R. The composite focal length of the right-eye negative lens group G1R is negative. The effective diameter of the right eye negative lens group G1R is smaller than the effective diameter of the right eye positive lens group G2R.
As shown in FIG. 3, the right-eye positive lens group G2R (an example of the first positive lens group or the second positive lens group) is a lens group that receives the transmitted light of the right-eye negative lens group G1R. Arranged on the side opposite to the subject of the group G1R. The right eye positive lens group G2R is disposed between the right eye negative lens group G1R and the right eye prism group G3R.
 右眼正レンズ群G2Rは、第5レンズL5R、第6レンズL6Rおよび第7レンズL7Rを有している。第5レンズL5Rは正の焦点距離を持っている。第6レンズL6Rは正の焦点距離を持っている。第7レンズL7Rは、負の焦点距離を持っており、第6レンズL6Rに接合されている。
 図3に示すように、右眼負レンズ群G1Rの透過光は発散するので、右眼正レンズ群G2Rの入射面の光学的有効領域は右眼負レンズ群G1Rの出射面の光学的有効領域よりも広い。このため、右眼正レンズ群G2Rの有効径は右眼負レンズ群G1Rの有効径よりも大きくなっている。また、右眼光軸ARおよび右眼光軸ARを近づけるために、右眼正レンズ群G2Rは概ね半円形状を有している。具体的には、右眼正レンズ群G2Rの内側(右眼光軸AR側、中間基準面B側)は真っ直ぐカットされている(図14参照)。これにより、ステレオベースを小さくすることができ、右眼光軸ARおよび右眼光軸ARにより形成される輻輳角を小さくすることができる。また、これに伴い、左眼光軸ALおよび右眼光軸ARにより形成される輻輳角を適正な値に設定しやすくなる。
The right eye positive lens group G2R includes a fifth lens L5R, a sixth lens L6R, and a seventh lens L7R. The fifth lens L5R has a positive focal length. The sixth lens L6R has a positive focal length. The seventh lens L7R has a negative focal length and is joined to the sixth lens L6R.
As shown in FIG. 3, since the transmitted light of the right eye negative lens group G1R diverges, the optical effective area of the entrance surface of the right eye positive lens group G2R is the optical effective area of the exit surface of the right eye negative lens group G1R. Wider than. For this reason, the effective diameter of the right eye positive lens group G2R is larger than the effective diameter of the right eye negative lens group G1R. In order to bring the right eye optical axis AR and the right eye optical axis AR closer, the right eye positive lens group G2R has a substantially semicircular shape. Specifically, the inside (right eye optical axis AR side, intermediate reference plane B side) of the right eye positive lens group G2R is cut straight (see FIG. 14). As a result, the stereo base can be reduced, and the convergence angle formed by the right eye optical axis AR and the right eye optical axis AR can be reduced. Accordingly, it becomes easy to set the convergence angle formed by the left eye optical axis AL and the right eye optical axis AR to an appropriate value.
 図3に示すように、右眼光軸ARは右眼負レンズ群G1Rおよび右眼正レンズ群G2Rにより定義される。具体的には、右眼光軸ARは右眼負レンズ群G1Rの主点と右眼正レンズ群G2Rの主点とを通るラインで定義される。左眼光軸ALおよび右眼光軸ARは被写体側からCMOSイメージセンサ110側へいくにしたがって互いに離れるように配置されている。
 右眼プリズム群G3R(第1プリズム群または第2プリズム群の一例)は、右眼正レンズ群G2Rの透過光を受けるレンズ群であり、第2前側プリズムP1Rおよび第2後側プリズムP2Rを有している。第2前側プリズムP1Rおよび第2後側プリズムP2Rは屈折方式のウェッジプリズムである。右眼プリズム群G3Rは、ビデオカメラ200の光学系V(1軸光学系の一例)に右眼正レンズ群G2Rの透過光が導入されるように右眼正レンズ群G2Rの透過光を屈折させる。具体的には、右眼プリズム群G3Rにより右眼正レンズ群G2Rの透過光は内側へ(中間基準面Bに近づくように)屈折される。第2前側プリズムP1Rは右眼正レンズ群G2Rの透過光を内側へ(中間基準面Bに近づくように)屈折させる。第2後側プリズムP2Rは第2前側プリズムP1Rの透過光を外側へ(中間基準面Bから遠ざかるように)屈折させる。第2前側プリズムP1Rは主に、右眼正レンズ群G2Rの透過光を内側へ屈折させる機能を有しており、第2後側プリズムP2Rは主に、屈折による色分散を補正する機能を有している。右眼プリズム群G3Rの合成偏光角は例えば約1.7度である。
As shown in FIG. 3, the right eye optical axis AR is defined by the right eye negative lens group G1R and the right eye positive lens group G2R. Specifically, the right eye optical axis AR is defined by a line passing through the principal point of the right eye negative lens group G1R and the principal point of the right eye positive lens group G2R. The left eye optical axis AL and the right eye optical axis AR are arranged so as to be separated from each other as they go from the subject side to the CMOS image sensor 110 side.
The right-eye prism group G3R (an example of the first prism group or the second prism group) is a lens group that receives light transmitted through the right-eye positive lens group G2R, and includes a second front prism P1R and a second rear prism P2R. is doing. The second front prism P1R and the second rear prism P2R are refracting wedge prisms. The right-eye prism group G3R refracts the transmitted light of the right-eye positive lens group G2R so that the transmitted light of the right-eye positive lens group G2R is introduced into the optical system V (an example of a uniaxial optical system) of the video camera 200. . Specifically, the transmitted light of the right eye positive lens group G2R is refracted inward (approaching the intermediate reference plane B) by the right eye prism group G3R. The second front prism P1R refracts the light transmitted through the right eye positive lens group G2R inward (approaching the intermediate reference plane B). The second rear prism P2R refracts the transmitted light of the second front prism P1R outward (so as to be away from the intermediate reference plane B). The second front prism P1R mainly has a function of refracting the transmitted light of the right eye positive lens group G2R inward, and the second rear prism P2R mainly has a function of correcting chromatic dispersion due to refraction. is doing. The combined polarization angle of the right eye prism group G3R is, for example, about 1.7 degrees.
 図14に示すように、右眼負レンズ群G1Rは、第2調整機構4の第2調整枠40(後述)に固定されており、右眼正レンズ群G2R、右眼プリズム群G3Rおよび本体枠2に対して概ねZ軸方向に移動可能に配置されている。図16に示すように、右眼正レンズ群G2Rは、中間レンズ枠28(後述)に固定されている。右眼プリズム群G3Rはプリズム支持枠29(後述)に固定されている。
 図18に示すように、右眼プリズム群G3Rの偏向角をθR(θ11またはθ22の一例)、右眼プリズム群G3Rの透過光の出射角をθ2、右眼プリズム群G3Rの入射面と最外光線との交点から右眼光軸ARまでの垂直長さをX2、右眼プリズム群G3Rの出射面と最外光線との交点から右眼光軸ARまでの垂直長さをX22、右眼プリズム群G3Rの入射側に定義される光学基準面から入射面までの距離(より詳細には、図7に示す輻輳点から右眼プリズム群G3Rの入射面までの距離)をL2、光学基準面から出射面までの距離(より詳細には、図7に示す輻輳点から右眼プリズム群G3Rの出射面までの距離)をL22とした場合、以下の式(2)が成立する。
As shown in FIG. 14, the right-eye negative lens group G1R is fixed to a second adjustment frame 40 (described later) of the second adjustment mechanism 4, and the right-eye positive lens group G2R, the right-eye prism group G3R, and the main body frame 2 is arranged so as to be movable in the Z-axis direction. As shown in FIG. 16, the right-eye positive lens group G2R is fixed to an intermediate lens frame 28 (described later). The right eye prism group G3R is fixed to a prism support frame 29 (described later).
As shown in FIG. 18, the deflection angle of the right-eye prism group G3R is θR (an example of θ11 or θ22), the outgoing angle of transmitted light of the right-eye prism group G3R is θ2, and the incident surface of the right-eye prism group G3R is the outermost surface. The vertical length from the intersection with the light beam to the right eye optical axis AR is X2, the vertical length from the intersection between the exit surface of the right eye prism group G3R and the outermost light beam to the right eye optical axis AR is X22, and the right eye prism group G3R. L2 is the distance from the optical reference surface defined on the incident side to the entrance surface (more specifically, the distance from the convergence point shown in FIG. 7 to the entrance surface of the right-eye prism group G3R), and L2 is the exit surface. The following equation (2) is established when L22 is the distance to (more specifically, the distance from the convergence point shown in FIG. 7 to the exit surface of the right-eye prism group G3R).
 θR≦{(θ2+arctan(X2/L2))2+(θ2+arctan(X22/L22))20.5≦4×θR   ・・・(2)
 図18に示すように、右眼光軸ARは出射側へいくにしたがって中間基準面Bから遠ざかるように中間基準面Bに対して傾斜している。右眼正レンズ群G2Rの透過光は右眼プリズム群G3Rにより中間基準面Bに近づくように屈折される。
 (4)本体枠2
 図19に示すように、本体枠2は、左眼用光学系OLの全体および右眼用光学系ORの全体を支持しており、Z軸方向(第1方向)およびX軸方向(第2方向)に外装部101に対して移動可能に外装部101内に配置されている。外装部101に対して本体枠2がZ軸方向に移動すると、左眼用光学系OLの全体および右眼用光学系ORの全体が外装部101に対してZ軸方向に移動する。また、外装部101に対して本体枠2がX軸方向に移動すると、左眼用光学系OLの全体および右眼用光学系ORの全体が外装部101に対してZ軸方向に移動する。ここで、外装部101に対する本体枠2の「移動」には、並行移動、回転移動および回転が含まれ得る。
θR ≦ {(θ2 + arctan (X2 / L2)) 2 + (θ2 + arctan (X22 / L22)) 2 } 0.5 ≦ 4 × θR (2)
As shown in FIG. 18, the right eye optical axis AR is inclined with respect to the intermediate reference plane B so as to move away from the intermediate reference plane B as it goes to the emission side. The transmitted light of the right eye positive lens group G2R is refracted so as to approach the intermediate reference plane B by the right eye prism group G3R.
(4) Body frame 2
As shown in FIG. 19, the main body frame 2 supports the entire left-eye optical system OL and the entire right-eye optical system OR, and includes the Z-axis direction (first direction) and the X-axis direction (second direction). In the exterior direction 101 so as to be movable relative to the exterior direction 101. When the main body frame 2 moves in the Z-axis direction with respect to the exterior part 101, the entire left-eye optical system OL and the entire right-eye optical system OR move in the Z-axis direction with respect to the exterior part 101. Further, when the main body frame 2 moves in the X-axis direction with respect to the exterior part 101, the entire left-eye optical system OL and the entire right-eye optical system OR move in the Z-axis direction with respect to the exterior part 101. Here, the “movement” of the main body frame 2 with respect to the exterior part 101 may include parallel movement, rotational movement, and rotation.
 具体的には図20に示すように、本体枠2は、筒状枠21、第1固定部22L、第2固定部22R、左眼筒状部23L、右眼筒状部23R、台座部21c、遮光パネル27(図15参照)、中間レンズ枠28、プリズム支持枠29、フロントパネル71およびリアパネル73を有している。筒状枠21、第1固定部22L、第2固定部22R、左眼筒状部23L、右眼筒状部23Rおよび台座部21cは樹脂により一体成形されている。
 筒状枠21は、外装部101内に配置されており、第3調整機構5により外装部101に連結されている。筒状枠21内には左眼正レンズ群G2Lおよび右眼正レンズ群G2Rが配置されている。筒状枠21の前側(被写体側)には、第1固定部22L、第2固定部22R、左眼筒状部23Lおよび右眼筒状部23Rが配置されている。筒状枠21の上側には台座部21cが配置されている。
Specifically, as shown in FIG. 20, the main body frame 2 includes a cylindrical frame 21, a first fixing portion 22L, a second fixing portion 22R, a left eye cylindrical portion 23L, a right eye cylindrical portion 23R, and a pedestal portion 21c. A light shielding panel 27 (see FIG. 15), an intermediate lens frame 28, a prism support frame 29, a front panel 71, and a rear panel 73. The cylindrical frame 21, the first fixing portion 22L, the second fixing portion 22R, the left eye cylindrical portion 23L, the right eye cylindrical portion 23R, and the pedestal portion 21c are integrally formed of resin.
The cylindrical frame 21 is disposed in the exterior portion 101 and is connected to the exterior portion 101 by the third adjustment mechanism 5. In the cylindrical frame 21, a left-eye positive lens group G2L and a right-eye positive lens group G2R are arranged. A first fixing portion 22L, a second fixing portion 22R, a left eye cylindrical portion 23L, and a right eye cylindrical portion 23R are arranged on the front side (subject side) of the cylindrical frame 21. A pedestal 21 c is disposed on the upper side of the cylindrical frame 21.
 図20に示すように、第1固定部22Lおよび第2固定部22Rにはフロントパネル71が固定されている。左眼筒状部23Lは左眼負レンズ群G1Lに対応する位置に配置されている。左眼負レンズ群G1Lの透過光は左眼筒状部23Lを通って筒状枠21内に入り込む。右眼筒状部23Rは右眼負レンズ群G1Rに対応する位置に配置されている。右眼負レンズ群G1Rの透過光は右眼筒状部23Rを通って筒状枠21内に入り込む。台座部21cには第3調整機構5の第2連結プレート52(後述)が固定されている。
 図26に示すように、中間レンズ枠28には、左眼正レンズ群G2Lおよび右眼正レンズ群G2Rが固定されている。具体的には、中間レンズ枠28は、フランジ部28a、第1中間枠28Lおよび第2中間枠28Rを有している。第1中間枠28Lはフランジ部28aから突出する筒状の部分である。第2中間枠28Rはフランジ部28aから突出する筒状の部分である。左眼正レンズ群G2Lの第5レンズL5Lおよび第6レンズL6Lは第1中間枠28Lに固定されている。右眼正レンズ群G2Rの第5レンズL5Rおよび第6レンズL6Rは第2中間枠28Rに固定されている。
As shown in FIG. 20, a front panel 71 is fixed to the first fixing portion 22L and the second fixing portion 22R. The left eye cylindrical portion 23L is disposed at a position corresponding to the left eye negative lens group G1L. The transmitted light of the left-eye negative lens group G1L passes through the left-eye cylindrical portion 23L and enters the cylindrical frame 21. The right eye cylindrical portion 23R is disposed at a position corresponding to the right eye negative lens group G1R. The transmitted light of the right eye negative lens group G1R enters the cylindrical frame 21 through the right eye cylindrical portion 23R. A second connection plate 52 (described later) of the third adjustment mechanism 5 is fixed to the pedestal portion 21c.
As shown in FIG. 26, a left-eye positive lens group G2L and a right-eye positive lens group G2R are fixed to the intermediate lens frame 28. Specifically, the intermediate lens frame 28 has a flange portion 28a, a first intermediate frame 28L, and a second intermediate frame 28R. The first intermediate frame 28L is a cylindrical portion protruding from the flange portion 28a. The second intermediate frame 28R is a cylindrical portion protruding from the flange portion 28a. The fifth lens L5L and the sixth lens L6L of the left-eye positive lens group G2L are fixed to the first intermediate frame 28L. The fifth lens L5R and the sixth lens L6R of the right eye positive lens group G2R are fixed to the second intermediate frame 28R.
 図27に示すように、プリズム支持枠29には、左眼プリズム群G3Lおよび右眼プリズム群G3Rが固定されている。具体的には、プリズム支持枠29は、環状の支持枠本体29aと、仕切板29bと、を有している。第1前側プリズムP1Lおよび第1後側プリズムP2Lは支持枠本体29aおよび仕切板29bに固定されている。第2前側プリズムP1Rおよび第2後側プリズムP2Rは、支持枠本体29a内に嵌め込まれており、支持枠本体29aおよび仕切板29bに固定されている。
 プリズム支持枠29の後方にはリアパネル73が固定されている。リアパネル73は第1開口73Lおよび第2開口73Rを有している。左眼用光学系OLの透過光は第1開口73Lを通過する。右眼用光学系ORの透過光は第2開口73Rを通過する。
 図24および図25に示すように、中間レンズ枠28およびプリズム支持枠29はビスにより筒状枠21の後方に固定されている。中間レンズ枠28の一部は筒状枠21内に挿入されている。図25に示すように、筒状枠21の内部には遮光パネル27が装着されている。遮光パネル27により筒状枠21の内部の空間が仕切られている。筒状枠21に中間レンズ枠28およびプリズム支持枠29を固定すると図23のようになる。
As shown in FIG. 27, the left eye prism group G3L and the right eye prism group G3R are fixed to the prism support frame 29. Specifically, the prism support frame 29 has an annular support frame main body 29a and a partition plate 29b. The first front prism P1L and the first rear prism P2L are fixed to the support frame main body 29a and the partition plate 29b. The second front prism P1R and the second rear prism P2R are fitted in the support frame main body 29a, and are fixed to the support frame main body 29a and the partition plate 29b.
A rear panel 73 is fixed behind the prism support frame 29. The rear panel 73 has a first opening 73L and a second opening 73R. The transmitted light of the left-eye optical system OL passes through the first opening 73L. The light transmitted through the right-eye optical system OR passes through the second opening 73R.
As shown in FIGS. 24 and 25, the intermediate lens frame 28 and the prism support frame 29 are fixed behind the cylindrical frame 21 with screws. A part of the intermediate lens frame 28 is inserted into the cylindrical frame 21. As shown in FIG. 25, a light shielding panel 27 is mounted inside the cylindrical frame 21. A space inside the cylindrical frame 21 is partitioned by the light shielding panel 27. When the intermediate lens frame 28 and the prism support frame 29 are fixed to the cylindrical frame 21, FIG. 23 is obtained.
 (5)第1調整機構3
 図22に示す第1調整機構3は、左眼用光学像QL1および右眼用光学像QR1の垂直相対ズレを調整するための機構であって、ユーザーの操作に応じて、本体枠2に対して概ねZ軸方向(第1方向、第2調整方向)に左眼負レンズ群G1Lを移動させる。第1調整機構3は、第1調整枠30、第1回転シャフト31、調整バネ38および第1規制機構37を有している。
 図28に示すように、第1調整枠30は概ねZ軸方向(第1方向)に移動可能に本体枠2により支持されている。第1調整枠30は、第1調整枠本体36、第1筒状部35、第1規制部33および第1案内部32を有している。
 第1調整枠本体36は板状の部分である。第1筒状部35は第1調整枠本体36からY軸方向に突出している。第1筒状部35には左眼負レンズ群G1Lが固定されている。第1規制部33は、第1調整枠本体36からZ軸方向に突出した板状の部分であり、第1規制機構37の一部を構成している。第1規制部33は第1孔33aを有している。
(5) First adjustment mechanism 3
The first adjustment mechanism 3 shown in FIG. 22 is a mechanism for adjusting the vertical relative shift between the left-eye optical image QL1 and the right-eye optical image QR1, and is adjusted with respect to the main body frame 2 according to a user operation. The left-eye negative lens group G1L is moved approximately in the Z-axis direction (first direction, second adjustment direction). The first adjustment mechanism 3 includes a first adjustment frame 30, a first rotation shaft 31, an adjustment spring 38, and a first restriction mechanism 37.
As shown in FIG. 28, the first adjustment frame 30 is supported by the main body frame 2 so as to be movable in the Z-axis direction (first direction). The first adjustment frame 30 includes a first adjustment frame main body 36, a first cylindrical portion 35, a first restriction portion 33, and a first guide portion 32.
The first adjustment frame main body 36 is a plate-shaped portion. The first cylindrical portion 35 protrudes from the first adjustment frame main body 36 in the Y-axis direction. The left-eye negative lens group G1L is fixed to the first cylindrical portion 35. The first restricting portion 33 is a plate-like portion protruding in the Z-axis direction from the first adjustment frame main body 36 and constitutes a part of the first restricting mechanism 37. The 1st control part 33 has the 1st hole 33a.
 第1案内部32は、Y軸方向に細長く延びており、第1調整枠本体36からY軸方向に突出している。第1案内部32は、第1案内部本体32a、第1前側支持部32bおよび第1後側支持部32cを有している。第1案内部本体32aは概ねU字形状の断面を有している。第1前側支持部32bおよび第1後側支持部32cは第1案内部本体32a内に配置されている。第1前側支持部32bは第1前側支持孔32dを有している。第1後側支持部32cは第1後側支持孔32eを有している。
 第1回転シャフト31(回転支持シャフトの一例)は第1調整枠30を回転可能に本体枠2に連結している。具体的には、第1回転シャフト31は第1調整枠30の第1案内部32の第1前側支持孔32dおよび第1後側支持孔32eに挿入されている。図22に示すように、第1回転シャフト31の中心線を第1回転軸線R1とすると、第1調整枠30は第1回転軸線R1を中心に第1回転シャフト31により回転可能に支持されている。これにより、左眼負レンズ群G1Lは本体枠2に対して第1回転軸線R1を中心に回転可能となっている。
The first guide portion 32 extends in the Y-axis direction and protrudes from the first adjustment frame main body 36 in the Y-axis direction. The 1st guide part 32 has the 1st guide part main part 32a, the 1st front side support part 32b, and the 1st back side support part 32c. The first guide body 32a has a substantially U-shaped cross section. The first front support part 32b and the first rear support part 32c are arranged in the first guide part main body 32a. The first front support part 32b has a first front support hole 32d. The first rear support part 32c has a first rear support hole 32e.
The first rotation shaft 31 (an example of a rotation support shaft) connects the first adjustment frame 30 to the main body frame 2 in a rotatable manner. Specifically, the first rotating shaft 31 is inserted into the first front support hole 32 d and the first rear support hole 32 e of the first guide portion 32 of the first adjustment frame 30. As shown in FIG. 22, when the center line of the first rotation shaft 31 is the first rotation axis R1, the first adjustment frame 30 is rotatably supported by the first rotation shaft 31 about the first rotation axis R1. Yes. Thereby, the left-eye negative lens group G1L is rotatable with respect to the main body frame 2 around the first rotation axis R1.
 図29に示すように、第1調整枠本体36は第1引っ掛け部36aを有している。第1引っ掛け部36aには調整バネ38の第1端部38aが引っ掛けられる。
 図23に示すように、第1回転シャフト31の端部は筒状枠21に固定されている。筒状枠21には第1凹部21bが形成されている。第1凹部21bはY軸方向に延びる溝である。第1凹部21bには第1調整枠30の第1案内部32が挿入されている。第1ワッシャ34(図28参照)は第1案内部32と筒状枠21との間に挟み込まれている。
 図21に示すように、第1調整枠30は押さえプレート75によりY軸方向に押さえられている。具体的には、押さえプレート75は、本体枠2に固定された固定部75bと、固定部75bから突出した第1板バネ部75cと、固定部75bから突出した第2板バネ部75aと、を有している。第1板バネ部75cは貫通孔75dを有しており、この貫通孔75dには第1回転シャフト31の先端が挿入されている。第1板バネ部75cはY軸方向に若干たわんでおり、第1案内部32をY軸方向負側に押さえつけている。これにより、第1調整枠30が本体枠2に対してY軸方向に移動するのを抑制することができる。第2板バネ部75aは、固定部75bからY軸方向負側に延びており、本体枠2の下側に入り込んでいる。外装部101に対して本体枠2がZ軸方向負側(下側)に移動する際に、垂直位置調整ダイヤル57のネジ部57cがダイヤル支持部51cのネジ孔から脱落しないように、第2板バネ部75aは外装部101に対する本体枠2の下側への移動を規制している。これにより、垂直位置調整ダイヤル57の回しすぎによる作動不良を防止できる。
As shown in FIG. 29, the first adjustment frame main body 36 has a first hooking portion 36a. The first end 38a of the adjustment spring 38 is hooked on the first hook 36a.
As shown in FIG. 23, the end of the first rotating shaft 31 is fixed to the cylindrical frame 21. A first recess 21 b is formed in the cylindrical frame 21. The first recess 21b is a groove extending in the Y-axis direction. The first guide portion 32 of the first adjustment frame 30 is inserted into the first recess 21b. The first washer 34 (see FIG. 28) is sandwiched between the first guide portion 32 and the cylindrical frame 21.
As shown in FIG. 21, the first adjustment frame 30 is pressed in the Y-axis direction by a pressing plate 75. Specifically, the holding plate 75 includes a fixing portion 75b fixed to the main body frame 2, a first leaf spring portion 75c protruding from the fixing portion 75b, a second leaf spring portion 75a protruding from the fixing portion 75b, have. The first leaf spring portion 75c has a through hole 75d, and the tip of the first rotating shaft 31 is inserted into the through hole 75d. The first leaf spring portion 75c is slightly bent in the Y-axis direction and presses the first guide portion 32 toward the Y-axis direction negative side. Thereby, it can suppress that the 1st adjustment frame 30 moves to a Y-axis direction with respect to the main body frame 2. FIG. The second leaf spring portion 75 a extends from the fixed portion 75 b to the Y axis direction negative side, and enters the lower side of the main body frame 2. When the main body frame 2 moves to the Z-axis direction negative side (lower side) with respect to the exterior portion 101, the second position is set so that the screw portion 57c of the vertical position adjustment dial 57 does not fall off the screw hole of the dial support portion 51c. The leaf spring portion 75a restricts the downward movement of the main body frame 2 with respect to the exterior portion 101. Thereby, it is possible to prevent malfunction due to excessive rotation of the vertical position adjustment dial 57.
 さらに、図23に示すように、第1凹部21bはすり鉢状に形成された調心部21gを有している。また、図示していないが、第1案内部32の端部は調心部21gと相補的な形状を有している。第1案内部32の端部が調心部21gにはめ込まれることで、第1案内部32のX軸方向およびZ軸方向の位置が安定する。押さえプレート75(図21参照)により第1案内部32が調心部21gに押し付けられているので、本体枠2に対する第1調整枠30の位置がより安定する。
 図22に示すように、第1回転シャフト31は左眼用光学系OLおよび右眼用光学系ORとX軸方向に並んで配置されている。より具体的には、左眼用光学系OLは右眼用光学系ORと第1回転シャフト31との間に配置されている。第1回転軸線R1は左眼光軸ALおよび右眼光軸ARとX軸方向に概ね一直線に並んで配置されている。第1回転シャフト31がこのように配置されているので、左眼負レンズ群G1Lは概ねZ軸方向に移動し、左眼負レンズ群G1LのX軸方向の移動量を無視できる範囲内に収めることができる。
Furthermore, as shown in FIG. 23, the 1st recessed part 21b has the aligning part 21g formed in the shape of a mortar. Although not shown, the end portion of the first guide portion 32 has a shape complementary to the alignment portion 21g. Since the end portion of the first guide portion 32 is fitted into the aligning portion 21g, the positions of the first guide portion 32 in the X-axis direction and the Z-axis direction are stabilized. Since the first guide portion 32 is pressed against the aligning portion 21g by the pressing plate 75 (see FIG. 21), the position of the first adjustment frame 30 with respect to the main body frame 2 becomes more stable.
As shown in FIG. 22, the first rotation shaft 31 is arranged side by side with the left-eye optical system OL and the right-eye optical system OR in the X-axis direction. More specifically, the left-eye optical system OL is disposed between the right-eye optical system OR and the first rotation shaft 31. The first rotation axis R1 is arranged substantially in line with the left eye optical axis AL and the right eye optical axis AR in the X-axis direction. Since the first rotation shaft 31 is arranged in this way, the left-eye negative lens group G1L moves in the Z-axis direction in general and falls within a range in which the movement amount of the left-eye negative lens group G1L in the X-axis direction can be ignored. be able to.
 調整バネ38(調整弾性部材の一例)は、引っ張りバネであり、第1回転シャフト31回りの回転力を第1調整枠30に付与している。具体的には、被写体側から見た場合に、調整バネ38は第1調整枠30にZ軸方向負側(下側)への弾性力F11を付与している。その結果、調整バネ38は第1調整枠30に対して反時計回りの回転力を付与している。調整バネ38は、第1調整枠30と第2調整枠40(後述)とを弾性的に連結している。調整バネ38の第1端部38aは第1調整枠30の第1引っ掛け部36aに引っ掛けられている。調整バネ38の第2端部38bは第2調整枠40の第2引っ掛け部46a(後述)に引っ掛けられている。
 ここで、図30に示すように、第1前側支持孔32dおよび第1後側支持孔32eは円形ではなく概ね三角形状を有している。具体的には、第1前側支持孔32dは3つの直線縁32f、32gおよび32hを有している。直線縁32f、32gおよび32hは、例えば三角形の辺の一部をそれぞれ形成している。直線縁32fおよび32gは第1回転シャフト31と接触しているが、直線縁32hは第1回転シャフト31と接触していない。
The adjustment spring 38 (an example of an adjustment elastic member) is a tension spring and applies a rotational force around the first rotation shaft 31 to the first adjustment frame 30. Specifically, when viewed from the subject side, the adjustment spring 38 applies an elastic force F11 to the first adjustment frame 30 toward the negative side (downward) in the Z-axis direction. As a result, the adjustment spring 38 applies a counterclockwise rotational force to the first adjustment frame 30. The adjustment spring 38 elastically connects the first adjustment frame 30 and the second adjustment frame 40 (described later). The first end 38 a of the adjustment spring 38 is hooked on the first hook 36 a of the first adjustment frame 30. The second end 38 b of the adjustment spring 38 is hooked on a second hook 46 a (described later) of the second adjustment frame 40.
Here, as shown in FIG. 30, the first front support hole 32d and the first rear support hole 32e are not circular but have a generally triangular shape. Specifically, the first front support hole 32d has three straight edges 32f, 32g, and 32h. The straight edges 32f, 32g, and 32h each form a part of a triangular side, for example. The straight edges 32 f and 32 g are in contact with the first rotating shaft 31, but the straight edge 32 h is not in contact with the first rotating shaft 31.
 一方、第1後側支持孔32eは3つの直線縁32i、32jおよび32kを有している。直線縁32i、32jおよび32kは、例えば三角形の辺の一部をそれぞれ形成している。直線縁32iおよび32jは第1回転シャフト31と接触しているが、直線縁32kは第1回転シャフト31と接触していない。
 図22に示すように、調整バネ38による弾性力F11と第1規制機構37での反力F12との合力F13が、第1調整枠30にかかっている。したがって、この合力F13により、第1前側支持孔32dの直線縁32fおよび32gが第1回転シャフト31に押し付けられる。それに伴い、第1後側支持孔32eの直線縁32iおよび32jが第1回転シャフト31に押し付けられる。
 このように、第1回転シャフト31は、第1前側支持孔32dおよび第1後側支持孔32eによりX軸方向およびZ軸方向に位置決めされている。したがって、本体枠2に対して第2調整枠40がX軸方向およびZ軸方向にがたつくのを抑制することができる。
On the other hand, the first rear support hole 32e has three straight edges 32i, 32j and 32k. The straight edges 32i, 32j, and 32k each form part of a triangular side, for example. The straight edges 32 i and 32 j are in contact with the first rotating shaft 31, but the straight edge 32 k is not in contact with the first rotating shaft 31.
As shown in FIG. 22, the resultant force F <b> 13 of the elastic force F <b> 11 by the adjustment spring 38 and the reaction force F <b> 12 at the first restriction mechanism 37 is applied to the first adjustment frame 30. Accordingly, the straight edges 32 f and 32 g of the first front support hole 32 d are pressed against the first rotating shaft 31 by the resultant force F <b> 13. Accordingly, the straight edges 32 i and 32 j of the first rear support hole 32 e are pressed against the first rotating shaft 31.
Thus, the first rotating shaft 31 is positioned in the X-axis direction and the Z-axis direction by the first front support hole 32d and the first rear support hole 32e. Therefore, the second adjustment frame 40 can be prevented from rattling in the X-axis direction and the Z-axis direction with respect to the main body frame 2.
 図31に示すように、第1規制機構37(回転規制機構の一例)は、第1調整枠30の回転を規制する機構であって、第1調整枠30の規制位置を変えることで本体枠2に対する左眼負レンズ群G1Lの位置を調整する。具体的には、相対ズレ調整ネジ39、第1支持プレート66、第2支持プレート21e、第1戻しバネ37aおよび第1スナップリング37bを有している。第1支持プレート66は、ネジ孔66aを有しており、筒状枠21に固定されている。第2支持プレート21eは、貫通孔21kを有しており、筒状枠21と一体成形されている。相対ズレ調整ネジ39はジョイント部39aおよびシャフト部39bを有している。ジョイント部39aの外径はシャフト部39bの外径よりも大きい。シャフト部39bの端部にジョイント部39aが装着されている。ジョイント部39aは操作機構6の第2ジョイントシャフト65と連結されている。ジョイント部39aおよび第2ジョイントシャフト65によりユニバーサルジョイントが構成されている。シャフト部39bはネジ部39cを有している。ネジ部39cは第1支持プレート66のネジ孔66aにねじ込まれている。相対ズレ調整ネジ39を回転させると、本体枠2に対して相対ズレ調整ネジ39がX軸方向に移動する。シャフト部39bは第1規制部33の第1孔33aおよび第2支持プレート21eの貫通孔に挿入されている。シャフト部39bの端部には第1スナップリング37baが装着されている。第1戻しバネ37aは、シャフト部39bに挿入されており、第2支持プレート21eおよび第1スナップリング37bの間で圧縮されている。 As shown in FIG. 31, the first restriction mechanism 37 (an example of a rotation restriction mechanism) is a mechanism that restricts the rotation of the first adjustment frame 30, and changes the restriction position of the first adjustment frame 30 to change the body frame. The position of the left-eye negative lens group G1L with respect to 2 is adjusted. Specifically, it has a relative displacement adjusting screw 39, a first support plate 66, a second support plate 21e, a first return spring 37a, and a first snap ring 37b. The first support plate 66 has a screw hole 66 a and is fixed to the cylindrical frame 21. The second support plate 21 e has a through hole 21 k and is integrally formed with the cylindrical frame 21. The relative deviation adjusting screw 39 has a joint part 39a and a shaft part 39b. The outer diameter of the joint part 39a is larger than the outer diameter of the shaft part 39b. A joint portion 39a is attached to the end portion of the shaft portion 39b. The joint part 39 a is connected to the second joint shaft 65 of the operation mechanism 6. The joint part 39a and the second joint shaft 65 constitute a universal joint. The shaft portion 39b has a screw portion 39c. The screw portion 39 c is screwed into the screw hole 66 a of the first support plate 66. When the relative deviation adjusting screw 39 is rotated, the relative deviation adjusting screw 39 moves in the X-axis direction with respect to the main body frame 2. The shaft portion 39b is inserted into the first hole 33a of the first restricting portion 33 and the through hole of the second support plate 21e. A first snap ring 37ba is attached to the end of the shaft portion 39b. The first return spring 37a is inserted into the shaft portion 39b and is compressed between the second support plate 21e and the first snap ring 37b.
 ジョイント部39aには第1調整枠30の第1規制部33が当接している。具体的には、第1規制部33には1対の摺動突起33bが形成されている。1対の摺動突起33bはジョイント部39aと当接している。調整バネ38の弾性力により第1規制部33がジョイント部39aに押し付けられているので、相対ズレ調整ネジ39により第1調整枠30の回転が規制されている。相対ズレ調整ネジ39により第1調整枠30の回転方向の規制位置を変えることで、左眼負レンズ群G1LのZ軸方向の位置を調整することができる。また、1対の摺動突起33bがジョイント部39aと当接しているので、相対ズレ調整ネジ39を回転させる際の摺動抵抗を低減できる。
 また、第1戻しバネ37aを設けているので、ユーザーが相対ズレ調整ネジ39を回しすぎた際に、第1支持プレート66がネジ部39cから完全に脱落してしまうのを防止できる。具体的には図22に示すように、第1支持プレート66がネジ部39cの第1側39Xまで到達した場合、第1戻しバネ37aの弾性力によりネジ部39cが第1支持プレート66のネジ孔66aと接触した状態が維持される。逆に、第1支持プレート66がネジ部39cの第2側39Yまで到達した場合、調整バネ38の弾性力によりネジ部39cが第1支持プレート66のネジ孔66aと接触した状態が維持される。これにより、ユーザーが相対ズレ調整ネジ39を回しすぎても、第1支持プレート66がネジ部39cから完全に脱落してしまうのを防止できる。さらに、ネジ部39cがジョイント部39aと離れて配置されているので、回しすぎによる破損も防止できる。
The first restriction portion 33 of the first adjustment frame 30 is in contact with the joint portion 39a. Specifically, the first restricting portion 33 is formed with a pair of sliding protrusions 33b. The pair of sliding protrusions 33b is in contact with the joint portion 39a. Since the first restricting portion 33 is pressed against the joint portion 39 a by the elastic force of the adjusting spring 38, the rotation of the first adjusting frame 30 is restricted by the relative deviation adjusting screw 39. The position of the left eye negative lens group G1L in the Z-axis direction can be adjusted by changing the restriction position in the rotation direction of the first adjustment frame 30 with the relative deviation adjustment screw 39. Further, since the pair of sliding protrusions 33b are in contact with the joint portion 39a, the sliding resistance when the relative deviation adjusting screw 39 is rotated can be reduced.
Further, since the first return spring 37a is provided, it is possible to prevent the first support plate 66 from being completely removed from the screw portion 39c when the user turns the relative deviation adjusting screw 39 too much. Specifically, as shown in FIG. 22, when the first support plate 66 reaches the first side 39X of the screw portion 39c, the screw portion 39c is screwed to the first support plate 66 by the elastic force of the first return spring 37a. The state in contact with the hole 66a is maintained. Conversely, when the first support plate 66 reaches the second side 39Y of the screw portion 39c, the state in which the screw portion 39c is in contact with the screw hole 66a of the first support plate 66 is maintained by the elastic force of the adjustment spring 38. . Thereby, even if the user turns the relative deviation adjustment screw 39 too much, it is possible to prevent the first support plate 66 from completely falling off the screw portion 39c. Furthermore, since the screw portion 39c is arranged away from the joint portion 39a, damage due to excessive rotation can be prevented.
 (6)第2調整機構4
 図22に示す第2調整機構4は、輻輳角を調整するための機構であり、本体枠2に対して概ねX軸方向(第2方向、第1調整方向)に右眼負レンズ群G1Rを移動させる。第2調整機構4は、第2調整枠40、第2回転シャフト41、フォーカス調整ネジ48(図34参照)、フォーカス調整バネ44(図34参照)および第2規制機構47を有している。
 図32に示すように、第2調整枠40は概ねX軸方向(第1方向)に移動可能に本体枠2により支持されている。第2調整枠40は、第2調整枠本体46、第2筒状部45、第2規制部43および第2案内部42を有している。
 第2調整枠本体46は、板状の部分であり、第2引っ掛け部46aおよび突出部46bを有している。第2引っ掛け部46aには調整バネ38が引っ掛けられている。突出部46bはY軸方向正側(前側、被写体側)に突出しており、フォーカス調整ネジ48と当接している。フォーカス調整ネジ48の径よりも突出部46bの径は大きいので、第2調整枠40が本体枠2に対して回転してもフォーカス調整ネジ48は突出部46bと当接しつづける。また、フォーカス調整ネジ48の先端は半球状に形成されているので、突出部46bとフォーカス調整ネジ48との間に発生する摺動抵抗を低減できる。
(6) Second adjustment mechanism 4
The second adjustment mechanism 4 shown in FIG. 22 is a mechanism for adjusting the convergence angle, and the right-eye negative lens group G1R is moved substantially in the X-axis direction (second direction, first adjustment direction) with respect to the main body frame 2. Move. The second adjustment mechanism 4 includes a second adjustment frame 40, a second rotation shaft 41, a focus adjustment screw 48 (see FIG. 34), a focus adjustment spring 44 (see FIG. 34), and a second restriction mechanism 47.
As shown in FIG. 32, the second adjustment frame 40 is supported by the main body frame 2 so as to be movable in the X-axis direction (first direction). The second adjustment frame 40 includes a second adjustment frame main body 46, a second cylindrical part 45, a second restriction part 43, and a second guide part 42.
The 2nd adjustment frame main body 46 is a plate-shaped part, and has the 2nd hook part 46a and the protrusion part 46b. An adjustment spring 38 is hooked on the second hook 46a. The protruding portion 46 b protrudes to the Y axis direction positive side (front side, subject side) and is in contact with the focus adjustment screw 48. Since the diameter of the protrusion 46 b is larger than the diameter of the focus adjustment screw 48, the focus adjustment screw 48 continues to contact the protrusion 46 b even if the second adjustment frame 40 rotates with respect to the main body frame 2. In addition, since the tip of the focus adjustment screw 48 is formed in a hemispherical shape, sliding resistance generated between the protruding portion 46b and the focus adjustment screw 48 can be reduced.
 第2筒状部45は第2調整枠本体46からY軸方向に突出している。第2筒状部45には右眼負レンズ群G1Rが固定されている。第2規制部43は、第2調整枠本体46からZ軸方向に突出した板状の部分であり、第2規制機構47の一部を構成している。第2規制部43は第2孔43aを有している。
 図33に示すように、第2案内部42は、Y軸方向に細長く延びており、第2調整枠本体46からY軸方向に突出している。第2案内部42は、第2案内部本体42a、第2前側支持部42bおよび第2後側支持部42cを有している。第2案内部本体42aは概ねU字形状の断面を有している。第2前側支持部42bおよび第2後側支持部42cは第2案内部本体42a内に配置されている。第2前側支持部42bは第2前側支持孔42dを有している。第2後側支持部42cは第2後側支持孔42eを有している。
The second tubular portion 45 protrudes from the second adjustment frame main body 46 in the Y-axis direction. The right-eye negative lens group G1R is fixed to the second cylindrical portion 45. The second restriction portion 43 is a plate-like portion that protrudes from the second adjustment frame main body 46 in the Z-axis direction, and constitutes a part of the second restriction mechanism 47. The second restricting portion 43 has a second hole 43a.
As shown in FIG. 33, the second guide portion 42 extends in the Y-axis direction and protrudes from the second adjustment frame main body 46 in the Y-axis direction. The 2nd guide part 42 has the 2nd guide part main part 42a, the 2nd front side support part 42b, and the 2nd back side support part 42c. The second guide portion main body 42a has a substantially U-shaped cross section. The 2nd front side support part 42b and the 2nd back side support part 42c are arrange | positioned in the 2nd guide part main body 42a. The second front support part 42b has a second front support hole 42d. The second rear support part 42c has a second rear support hole 42e.
 図22に示すように、調整バネ38(調整弾性部材の一例)の第2端部38bは、第2調整枠本体46の第2引っ掛け部46aに引っ掛けられており、第2回転シャフト41回りの回転力を第2調整枠40に付与している。具体的には、被写体側から見た場合に、調整バネ38は第2調整枠40にZ軸方向正側(上側)への弾性力F21を付与している。その結果、調整バネ38は第2調整枠40に対して反時計回りの回転力を付与している。第1端部38aが第1調整枠30に引っ掛けられており、第2端部38bが第2調整枠40に引っ掛けられているので、調整バネ38は第1調整枠30と第2調整枠40とを弾性的に連結していると言える。
 図35に示すように、第2回転シャフト41(調整回転シャフトの一例)は第2調整枠40を回転可能に本体枠2に連結している。具体的には、第2回転シャフト41は第2調整枠40の第2案内部42の第2前側支持孔42dおよび第2後側支持孔42eに挿入されている。
As shown in FIG. 22, the second end 38 b of the adjustment spring 38 (an example of an adjustment elastic member) is hooked on the second hook 46 a of the second adjustment frame main body 46, A rotational force is applied to the second adjustment frame 40. Specifically, when viewed from the subject side, the adjustment spring 38 applies an elastic force F21 to the second adjustment frame 40 toward the Z axis direction positive side (upper side). As a result, the adjustment spring 38 applies a counterclockwise rotational force to the second adjustment frame 40. Since the first end 38 a is hooked on the first adjustment frame 30 and the second end 38 b is hooked on the second adjustment frame 40, the adjustment spring 38 has the first adjustment frame 30 and the second adjustment frame 40. Can be said to be elastically connected.
As shown in FIG. 35, the 2nd rotation shaft 41 (an example of an adjustment rotation shaft) has connected the 2nd adjustment frame 40 to the main body frame 2 so that rotation is possible. Specifically, the second rotating shaft 41 is inserted into the second front support hole 42 d and the second rear support hole 42 e of the second guide portion 42 of the second adjustment frame 40.
 図34に示すように、筒状枠21には第2凹部21dが形成されている。第2凹部21dはY軸方向に延びる溝である。第2凹部21dには第2調整枠40の第2案内部42および第2回転シャフト41が挿入されている。第2回転シャフト41の支持方法は両持ちとなっている。第2回転シャフト41の第1端部41aは筒状枠21に固定されている。一方、第2回転シャフト41の第2端部41bは、フロント支持プレート25に支持されている。具体的には、第2端部41bは先細りのテーパ形状を有している(図32参照)。フロント支持プレート25には支持孔(図示せず)が形成されている。この支持孔の内径は第2回転シャフト41の外径よりも小さい。支持孔に第2端部41bのテーパ形状の部分が挿入されている。このように、第2回転シャフト41の第2端部41bはフロント支持プレート25により支持されている。 As shown in FIG. 34, the cylindrical frame 21 has a second recess 21d. The second recess 21d is a groove extending in the Y-axis direction. The second guide portion 42 and the second rotation shaft 41 of the second adjustment frame 40 are inserted into the second recess 21d. The second rotating shaft 41 is supported at both ends. The first end 41 a of the second rotation shaft 41 is fixed to the cylindrical frame 21. On the other hand, the second end 41 b of the second rotating shaft 41 is supported by the front support plate 25. Specifically, the second end portion 41b has a tapered shape (see FIG. 32). A support hole (not shown) is formed in the front support plate 25. The inner diameter of the support hole is smaller than the outer diameter of the second rotating shaft 41. A tapered portion of the second end portion 41b is inserted into the support hole. As described above, the second end 41 b of the second rotating shaft 41 is supported by the front support plate 25.
 図22に示すように、第2回転シャフト41の中心線を第2回転軸線R2とすると、第2調整枠40は第2回転軸線R2を中心に第2回転シャフト41により回転可能に支持されている。これにより、右眼負レンズ群G1Rは本体枠2に対して第2回転軸線R2を中心に回転可能となっている。
 第2調整機構4は右眼用光学系ORのバックフォーカスを調整する機能も有している。具体的には図34に示すように、フォーカス調整バネ44には第2回転シャフト41が挿入されている。フォーカス調整バネ44は、第2案内部42および筒状枠21の間で圧縮されており、フロント支持プレート25に装着されたフォーカス調整ネジ48に第2調整枠40を押し付けている。フロント支持プレート25は筒状枠21の前側に固定されている。フロントパネル71にはフォーカス調整ネジ48がねじ込まれている。フォーカス調整ネジ48は第2調整枠40のY軸方向の移動を規制している。第2調整枠40の規制位置を変えることで、本体枠2に対する右眼負レンズ群G1RのY軸方向の位置を調整することができる。これにより、右眼用光学系ORのフォーカスを調整することができる。したがって、例えば、左眼用光学系OLおよび右眼用光学系ORのフォーカスがずれていても、フォーカス調整ネジ48を回すことで、製品出荷時に左眼用光学系OLおよび右眼用光学系ORのフォーカスを合わせることができる。左眼用光学系OLおよび右眼用光学系ORのフォーカスをユーザーが調整する必要はないので、出荷時の調整後、フォーカス調整ネジ48はフロントパネル71に例えば接着固定される。なお、ユーザーがフォーカス調整をできるようにしてもよい。
As shown in FIG. 22, when the center line of the second rotation shaft 41 is the second rotation axis R2, the second adjustment frame 40 is rotatably supported by the second rotation shaft 41 about the second rotation axis R2. Yes. Thereby, the right eye negative lens group G1R is rotatable about the second rotation axis R2 with respect to the main body frame 2.
The second adjustment mechanism 4 also has a function of adjusting the back focus of the right-eye optical system OR. Specifically, as shown in FIG. 34, the second rotating shaft 41 is inserted into the focus adjustment spring 44. The focus adjustment spring 44 is compressed between the second guide portion 42 and the cylindrical frame 21, and presses the second adjustment frame 40 against the focus adjustment screw 48 attached to the front support plate 25. The front support plate 25 is fixed to the front side of the cylindrical frame 21. A focus adjustment screw 48 is screwed into the front panel 71. The focus adjustment screw 48 restricts the movement of the second adjustment frame 40 in the Y-axis direction. By changing the restriction position of the second adjustment frame 40, the position of the right eye negative lens group G1R in the Y-axis direction with respect to the main body frame 2 can be adjusted. Thereby, the focus of the right-eye optical system OR can be adjusted. Therefore, for example, even if the left-eye optical system OL and the right-eye optical system OR are out of focus, the left-eye optical system OL and the right-eye optical system OR are shipped at the time of product shipment by turning the focus adjustment screw 48. Can be focused. Since it is not necessary for the user to adjust the focus of the left-eye optical system OL and the right-eye optical system OR, the focus adjustment screw 48 is bonded and fixed to the front panel 71, for example, after adjustment at the time of shipment. Note that the user may be able to adjust the focus.
 図22に示すように、第2回転シャフト41は右眼用光学系ORとZ軸方向に並んで配置されている。より具体的には、被写体側から見た場合、左眼光軸ALおよび右眼光軸ARを結んだラインは、右眼光軸ARおよび第2回転軸線R2を結んだラインと直交している。第2回転シャフト41がこのように配置されているので、右眼負レンズ群G1Rは概ねX軸方向に移動し、右眼負レンズ群G1RのZ軸方向の移動量を無視できる範囲内に収めることができる。例えば、右眼負レンズ群G1RのX軸方向の調整範囲が±0.2mm程度である場合、右眼負レンズ群G1RはZ軸方向にはほとんど移動しない。このような構成により、簡素な構造で輻輳角調整を実現できる。
 ここで、図35に示すように、第2前側支持孔42dおよび第2後側支持孔42eは円形ではなく概ね三角形状を有している。具体的には、第2前側支持孔42dは3つの直線縁42f、42gおよび42hを有している。直線縁42f、42gおよび42hは、例えば三角形の辺の一部をそれぞれ形成している。直線縁42fおよび42gは第2回転シャフト41と接触しているが、直線縁42hは第2回転シャフト41と接触していない。
As shown in FIG. 22, the second rotating shaft 41 is arranged side by side with the right-eye optical system OR in the Z-axis direction. More specifically, when viewed from the subject side, the line connecting the left eye optical axis AL and the right eye optical axis AR is orthogonal to the line connecting the right eye optical axis AR and the second rotation axis R2. Since the second rotation shaft 41 is arranged in this manner, the right eye negative lens group G1R moves in the X-axis direction, and the movement amount of the right eye negative lens group G1R in the Z-axis direction is within a negligible range. be able to. For example, when the adjustment range in the X axis direction of the right eye negative lens group G1R is about ± 0.2 mm, the right eye negative lens group G1R hardly moves in the Z axis direction. With such a configuration, the convergence angle can be adjusted with a simple structure.
Here, as shown in FIG. 35, the second front support hole 42d and the second rear support hole 42e are not circular but have a generally triangular shape. Specifically, the second front support hole 42d has three straight edges 42f, 42g, and 42h. The straight edges 42f, 42g, and 42h each form a part of a triangular side, for example. The straight edges 42 f and 42 g are in contact with the second rotating shaft 41, but the straight edge 42 h is not in contact with the second rotating shaft 41.
 一方、第2後側支持孔42eは3つの直線縁42i、42jおよび42kを有している。直線縁42i、42jおよび42kは、例えば三角形の辺の一部をそれぞれ形成している。直線縁42iおよび42jは第2回転シャフト41と接触しているが、直線縁42kは第2回転シャフト41と接触していない。
 図22に示すように、調整バネ38による弾性力F21と第2規制機構47での反力F22との合力F23が、第2調整枠40にかかっている。したがって、この合力F23により、第2前側支持孔42dの直線縁42fおよび42gが第2回転シャフト41に押し付けられる。それに伴い、第2後側支持孔42eの直線縁42iおよび42jが第2回転シャフト41に押し付けられる。
 このように、第2調整枠40は第2回転シャフト41に対してガタが少ない状態で第2回転シャフト41により回転可能に支持されている。
On the other hand, the second rear support hole 42e has three straight edges 42i, 42j and 42k. The straight edges 42i, 42j, and 42k form, for example, part of a triangular side. The straight edges 42 i and 42 j are in contact with the second rotating shaft 41, but the straight edges 42 k are not in contact with the second rotating shaft 41.
As shown in FIG. 22, the resultant force F <b> 23 of the elastic force F <b> 21 by the adjustment spring 38 and the reaction force F <b> 22 by the second restriction mechanism 47 is applied to the second adjustment frame 40. Therefore, the resultant edge F <b> 23 presses the straight edges 42 f and 42 g of the second front support hole 42 d against the second rotary shaft 41. Accordingly, the straight edges 42 i and 42 j of the second rear support hole 42 e are pressed against the second rotary shaft 41.
As described above, the second adjustment frame 40 is rotatably supported by the second rotation shaft 41 with less backlash than the second rotation shaft 41.
 図36に示すように、第2規制機構47(位置決め機構の一例)は、第2調整枠40の回転を規制する機構であって、第2調整枠40の規制位置を変えることで本体枠2に対する右眼負レンズ群G1Rの位置を調整する。具体的には、第2規制機構47は輻輳角調整ネジ49および支持部21fを有している。
 支持部21fは筒状枠21に形成されている。支持部21fにはネジ孔21hが形成されている。輻輳角調整ネジ49はネジ部49aおよび頭部49bを有している。ネジ部49aは、第2規制部43の第2孔43aに挿入されており、支持部21fのネジ孔21hにねじ込まれている。ネジ部49aは第2規制部43の第2孔43aに挿入されている。輻輳角調整ネジ49を回転させると、本体枠2に対して輻輳角調整ネジ49がX軸方向に移動する。
As shown in FIG. 36, the second restriction mechanism 47 (an example of a positioning mechanism) is a mechanism that restricts the rotation of the second adjustment frame 40, and changes the restriction position of the second adjustment frame 40 to change the body frame 2. The position of the right eye negative lens group G1R with respect to is adjusted. Specifically, the second regulating mechanism 47 has a convergence angle adjusting screw 49 and a support portion 21f.
The support portion 21 f is formed on the cylindrical frame 21. A screw hole 21h is formed in the support portion 21f. The convergence angle adjusting screw 49 has a screw portion 49a and a head portion 49b. The screw portion 49a is inserted into the second hole 43a of the second restricting portion 43, and is screwed into the screw hole 21h of the support portion 21f. The screw part 49 a is inserted into the second hole 43 a of the second restricting part 43. When the convergence angle adjusting screw 49 is rotated, the convergence angle adjusting screw 49 moves in the X-axis direction with respect to the main body frame 2.
 頭部49bには第2調整枠40の第2規制部43が当接している。具体的には、第2規制部43には1対の摺動突起43bが形成されている。調整バネ38により第2調整枠40には反時計回りの回転力が付与されているので、第2規制部43が頭部49bに押し付けられており、1対の摺動突起43bは頭部49bと当接している。輻輳角調整ネジ49により第2調整枠40の回転が規制されている。輻輳角調整ネジ49により第2調整枠40の回転方向の規制位置を変えることで、右眼負レンズ群G1RのX軸方向の位置を調整することができる。また、1対の摺動突起43bが頭部49bと当接しているので、輻輳角調整ネジ49を回転させる際の摺動抵抗を低減できる。
 (7)第3調整機構5
 図19に示す第3調整機構5は、CMOSイメージセンサ110の受光面110aに対する左眼用光学像QL1および右眼用光学像QR1の上下方向(垂直方向、ピッチ方向)および左右方向(水平方向、ヨー方向)の位置を調整するための機構である。左眼用光学系OLおよび右眼用光学系ORを外装部101に対して移動させることで、第3調整機構5は左眼用光学像QL1および右眼用光学像QR1の上下位置および左右位置の調整を可能としている。
The second regulating portion 43 of the second adjustment frame 40 is in contact with the head 49b. Specifically, a pair of sliding protrusions 43 b are formed on the second restricting portion 43. Since the counter-clockwise rotational force is applied to the second adjustment frame 40 by the adjustment spring 38, the second restricting portion 43 is pressed against the head 49b, and the pair of sliding protrusions 43b are formed on the head 49b. Abut. The rotation of the second adjustment frame 40 is restricted by the convergence angle adjustment screw 49. The position of the right eye negative lens group G1R in the X-axis direction can be adjusted by changing the restriction position in the rotation direction of the second adjustment frame 40 with the convergence angle adjusting screw 49. Further, since the pair of sliding projections 43b are in contact with the head 49b, the sliding resistance when the convergence angle adjusting screw 49 is rotated can be reduced.
(7) Third adjustment mechanism 5
The third adjustment mechanism 5 shown in FIG. 19 has a vertical direction (vertical direction, pitch direction) and a horizontal direction (horizontal direction, horizontal direction) of the optical image QL1 for the left eye and the optical image QR1 for the right eye with respect to the light receiving surface 110a of the CMOS image sensor 110. This is a mechanism for adjusting the position in the (yaw direction). By moving the left-eye optical system OL and the right-eye optical system OR with respect to the exterior portion 101, the third adjustment mechanism 5 causes the left-eye optical image QL1 and the right-eye optical image QR1 to move vertically and horizontally. It is possible to adjust.
 具体的には図37に示すように、第3調整機構5は、弾性連結機構59A、第1移動規制機構59Bおよび第2移動規制機構59Cを有している。
 弾性連結機構59Aは、本体枠2に対してZ軸方向(第2調整方向)に力を付与する機構であって、回転軸線R4を中心に回転可能に本体枠2を外装部101に連結している。本実施形態では、弾性連結機構59Aは、本体枠2に対してZ軸方向負側(下側)に力を付与している。
 また、弾性連結機構59Aは、本体枠2に対してX軸方向(第1調整方向)に力を付与しており、回転軸線R3(光学系回転軸の一例)を中心に回転可能に本体枠2を外装部101に連結している。本実施形態では、弾性連結機構59Aは本体枠2に対してX軸方向負側に力を付与している。
Specifically, as shown in FIG. 37, the third adjustment mechanism 5 includes an elastic coupling mechanism 59A, a first movement restriction mechanism 59B, and a second movement restriction mechanism 59C.
The elastic coupling mechanism 59A is a mechanism that applies a force to the main body frame 2 in the Z-axis direction (second adjustment direction), and connects the main body frame 2 to the exterior portion 101 so as to be rotatable about the rotation axis R4. ing. In the present embodiment, the elastic coupling mechanism 59A applies a force to the main body frame 2 on the Z axis direction negative side (lower side).
The elastic coupling mechanism 59A applies a force in the X-axis direction (first adjustment direction) to the main body frame 2, and the main body frame is rotatable around a rotation axis R3 (an example of an optical system rotation axis). 2 is connected to the exterior part 101. In the present embodiment, the elastic coupling mechanism 59A applies a force to the main body frame 2 on the X axis direction negative side.
 ここで、回転軸線R3はZ軸に平行に配置されている。回転軸線R4は、X軸方向に概ね平行に配置されており、第1連結プレート51の第1弾性支持部51Lおよび第2弾性支持部51R周辺に定義することができる。
 弾性連結機構59Aは、第1連結プレート51、第2連結プレート52、第1連結バネ56および第2連結バネ58を有している。第1連結プレート51は、本体枠2を外装部101に弾性的に連結しており、外装部101に固定されている。具体的には、第1連結プレート51は、第1本体部51a、第1弾性支持部51L、第2弾性支持部51R、第1支持アーム51b、第1当接部51dおよびダイヤル支持部51cを有している。
 第1弾性支持部51Lは、第1本体部51aからY軸方向負側に突出しており、外装部101に固定されている。第2弾性支持部51Rは、第1本体部51aからY軸方向負側に突出しており、外装部101に固定されている。本実施形態では、第1弾性支持部51Lは第2弾性支持部51Rと概ね同じ形状を有している。
Here, the rotation axis R3 is arranged parallel to the Z axis. The rotation axis R4 is disposed substantially parallel to the X-axis direction and can be defined around the first elastic support portion 51L and the second elastic support portion 51R of the first connection plate 51.
The elastic coupling mechanism 59A includes a first coupling plate 51, a second coupling plate 52, a first coupling spring 56, and a second coupling spring 58. The first connection plate 51 elastically connects the main body frame 2 to the exterior part 101 and is fixed to the exterior part 101. Specifically, the first connecting plate 51 includes a first main body 51a, a first elastic support 51L, a second elastic support 51R, a first support arm 51b, a first contact part 51d, and a dial support 51c. Have.
The first elastic support portion 51L protrudes from the first main body portion 51a to the Y axis direction negative side, and is fixed to the exterior portion 101. The second elastic support portion 51R protrudes from the first main body portion 51a to the Y axis direction negative side and is fixed to the exterior portion 101. In the present embodiment, the first elastic support portion 51L has substantially the same shape as the second elastic support portion 51R.
 第1弾性支持部51Lは、第1固定部51Lbと、第1弾性部51Laと、を有している。第1固定部51Lbは外装部101に固定されている。より詳細には、第1固定部51Lbは中間プレート11L(図10参照)を介してアッパーケース11に固定されている。第1弾性部51Laは第1固定部51Lbと第1本体部51aとを弾性的に連結している。第1弾性部51Laは例えばプレス加工によりZ軸方向に圧縮されており、第1弾性部51Laの厚みは第1固定部51Lbおよび第1本体部51aの厚みよりも薄くなっている。したがって、第1弾性部51Laの剛性(より詳細には、Z軸方向の剛性)は第1本体部51aに比べて大幅に低くなっている。
 第2弾性支持部51Rは、第2固定部51Rbと、第2弾性部51Raと、を有している。第2固定部51Rbは外装部101に固定されている。より詳細には、第2固定部51Rbは中間プレート11R(図10参照)を介してアッパーケース11に固定されている。第2弾性部51Raは第2固定部51Rbと第2本体部52aとを弾性的に連結している。図39に示すように、第2弾性部51Raは例えばプレス加工によりZ軸方向に圧縮されており、第2弾性部51Raの厚みは第2固定部51Rbおよび第2本体部52aの厚みよりも薄くなっている。したがって、第2弾性部51Raの剛性(より詳細には、Z軸方向の剛性)は第2本体部52aに比べて大幅に低くなっている。
The first elastic support portion 51L includes a first fixing portion 51Lb and a first elastic portion 51La. The first fixing portion 51Lb is fixed to the exterior portion 101. More specifically, the first fixing portion 51Lb is fixed to the upper case 11 via an intermediate plate 11L (see FIG. 10). The first elastic part 51La elastically connects the first fixing part 51Lb and the first main body part 51a. The first elastic portion 51La is compressed in the Z-axis direction by, for example, pressing, and the thickness of the first elastic portion 51La is thinner than the thickness of the first fixing portion 51Lb and the first main body portion 51a. Therefore, the rigidity (more specifically, the rigidity in the Z-axis direction) of the first elastic part 51La is significantly lower than that of the first main body part 51a.
The second elastic support portion 51R includes a second fixing portion 51Rb and a second elastic portion 51Ra. The second fixing portion 51Rb is fixed to the exterior portion 101. More specifically, the second fixing portion 51Rb is fixed to the upper case 11 via an intermediate plate 11R (see FIG. 10). The second elastic portion 51Ra elastically connects the second fixing portion 51Rb and the second main body portion 52a. As shown in FIG. 39, the second elastic portion 51Ra is compressed in the Z-axis direction by, for example, pressing, and the thickness of the second elastic portion 51Ra is thinner than the thickness of the second fixing portion 51Rb and the second main body portion 52a. It has become. Therefore, the rigidity (more specifically, the rigidity in the Z-axis direction) of the second elastic part 51Ra is significantly lower than that of the second main body part 52a.
 本実施形態では、第1弾性部51Laの厚みは第2弾性部51Raの厚みと概ね同じ設定されているので、第1弾性部51Laの剛性は第2弾性部51Raの剛性と概ね同じになっている。
 図40に示すように、第1支持アーム51bは第1本体部51aから延びている。第1支持アーム51bには第1連結バネ56の端部が引っ掛けられている。第1当接部51dは水平位置調整ネジ53とX軸方向に当接している。第1当接部51dには孔51fが形成されており、この孔51fには水平位置調整ネジ53のシャフト部53bが挿入されている。図38に示すように、ダイヤル支持部51cはネジ孔51eを有しており、このネジ孔51eには垂直位置調整ダイヤル57のネジ部57cがねじ込まれている。
 第2連結プレート52は、第1連結プレート51に回転可能に連結されており、本体枠2の台座部21cに固定されている(例えば図20参照)。第2連結プレート52は回転軸線R3を中心に回転可能にリベット59cにより第1連結プレート51に連結されている。
In the present embodiment, since the thickness of the first elastic portion 51La is set to be substantially the same as the thickness of the second elastic portion 51Ra, the rigidity of the first elastic portion 51La is substantially the same as the rigidity of the second elastic portion 51Ra. Yes.
As shown in FIG. 40, the first support arm 51b extends from the first main body 51a. The end of the first connection spring 56 is hooked on the first support arm 51b. The first contact portion 51d is in contact with the horizontal position adjusting screw 53 in the X-axis direction. A hole 51f is formed in the first contact portion 51d, and the shaft portion 53b of the horizontal position adjusting screw 53 is inserted into the hole 51f. As shown in FIG. 38, the dial support portion 51c has a screw hole 51e, and the screw portion 57c of the vertical position adjustment dial 57 is screwed into the screw hole 51e.
The second connection plate 52 is rotatably connected to the first connection plate 51, and is fixed to the pedestal portion 21c of the main body frame 2 (see, for example, FIG. 20). The second connection plate 52 is connected to the first connection plate 51 by a rivet 59c so as to be rotatable about the rotation axis R3.
 図37に示すように、第2連結プレート52は、第2本体部52a、第2支持アーム52d、第2当接部52bおよび支持部52cを有している。第2本体部52aは回転軸線R3を中心に回転可能にリベット59cにより第1連結プレート51に連結されている。また、第2本体部52aは本体枠2の台座部21cに固定されている。これにより、外装部101に対して回転軸線R3を中心に本体枠2が回転可能となっている。
 第2本体部52aは1対の長孔52Lおよび52Rを有している。第1連結プレート51および第2連結プレート52は2つのリベット59aおよび59bによりZ軸方向に連結されている。長孔52Lにはリベット59bが挿入されており、長孔52Rにはリベット59aが挿入されている。長孔52Lおよび52Rにより、リベット59aおよび59bが第2連結プレート52と干渉するのが防止されている。
As shown in FIG. 37, the second connection plate 52 includes a second main body portion 52a, a second support arm 52d, a second contact portion 52b, and a support portion 52c. The second main body 52a is connected to the first connection plate 51 by a rivet 59c so as to be rotatable about the rotation axis R3. The second main body 52 a is fixed to the pedestal 21 c of the main body frame 2. Thereby, the main body frame 2 can be rotated around the rotation axis R <b> 3 with respect to the exterior portion 101.
The second main body 52a has a pair of long holes 52L and 52R. The first connecting plate 51 and the second connecting plate 52 are connected in the Z-axis direction by two rivets 59a and 59b. A rivet 59b is inserted into the long hole 52L, and a rivet 59a is inserted into the long hole 52R. The long holes 52L and 52R prevent the rivets 59a and 59b from interfering with the second connecting plate 52.
 図40に示すように、第2支持アーム52dには第1連結バネ56の端部が引っ掛けられている。第1連結バネ56により第1支持アーム51bおよび第2支持アーム52dは互いに近づくように引っ張られている。これにより、本体枠2に対して回転軸線R3回りの回転力が付与されている。
 第2当接部52bは第2戻りバネ54と当接している。第2戻りバネ54はシャフト部53bの先端に装着された第2スナップリング54aと第2当接部52bとの間に挟み込まれている。第2戻りバネ54により水平位置調整ネジ53は第2連結プレート52に対してX軸方向正側に引っ張られている。
 図37に示すように、第1移動規制機構59Bは、外装部101に対する本体枠2のZ軸方向(第1方向)の移動を規制する機構であって本体枠2の規制位置を変えることで外装部101に対する本体枠2の位置を調整する。具体的には、第1移動規制機構59Bは、垂直位置調整ダイヤル57およびスナップリング58aを有している。垂直位置調整ダイヤル57はダイヤル部57aおよびシャフト部57bを有している。垂直位置調整ダイヤル57はアッパーケース11に装着されている。具体的には、シャフト部57bはアッパーケース11の孔11d(図11参照)に挿入されており、垂直位置調整ダイヤル57はアッパーケース11に対して回転可能となっている。また、シャフト部57bの根元にはスナップリング58aが装着されており、スナップリング58aとアッパーケース11との間には第2連結バネ58が圧縮された状態で挟み込まれている。したがって、ダイヤル部57aがアッパーケース11に常に押し付けられている状態となり、垂直位置調整ダイヤル57のアッパーケース11に対するZ軸方向の位置が安定する。また、垂直位置調整ダイヤル57がアッパーケース11から脱落しない。
As shown in FIG. 40, the end of the first coupling spring 56 is hooked on the second support arm 52d. The first support arm 51b and the second support arm 52d are pulled by the first connecting spring 56 so as to approach each other. Thereby, a rotational force around the rotation axis R <b> 3 is applied to the main body frame 2.
The second contact portion 52 b is in contact with the second return spring 54. The second return spring 54 is sandwiched between the second snap ring 54a attached to the tip of the shaft portion 53b and the second contact portion 52b. The horizontal return adjusting screw 53 is pulled by the second return spring 54 toward the X axis direction positive side with respect to the second connecting plate 52.
As shown in FIG. 37, the first movement restricting mechanism 59B is a mechanism that restricts the movement of the main body frame 2 in the Z-axis direction (first direction) relative to the exterior portion 101, and changes the restriction position of the main body frame 2. The position of the main body frame 2 with respect to the exterior part 101 is adjusted. Specifically, the first movement restriction mechanism 59B includes a vertical position adjustment dial 57 and a snap ring 58a. The vertical position adjustment dial 57 has a dial portion 57a and a shaft portion 57b. The vertical position adjustment dial 57 is attached to the upper case 11. Specifically, the shaft portion 57 b is inserted into the hole 11 d (see FIG. 11) of the upper case 11, and the vertical position adjustment dial 57 is rotatable with respect to the upper case 11. Further, a snap ring 58a is attached to the base of the shaft portion 57b, and the second connecting spring 58 is sandwiched between the snap ring 58a and the upper case 11 in a compressed state. Accordingly, the dial portion 57a is always pressed against the upper case 11, and the position of the vertical position adjustment dial 57 in the Z-axis direction with respect to the upper case 11 is stabilized. Further, the vertical position adjustment dial 57 does not fall off the upper case 11.
 シャフト部57bのネジ部57cは、ダイヤル支持部51cのネジ孔51eにねじ込まれている。垂直位置調整ダイヤル57を回すと、ダイヤル支持部51cがZ軸方向に移動する。このように、垂直位置調整ダイヤル57により外装部101に対する本体枠2のZ軸方向の移動(より詳細には、回転軸線R4を中心とした回転)が規制されている。垂直位置調整ダイヤル57を回すと外装部101に対する本体枠2の規制位置が変わるので、外装部101に対する本体枠2の上下の角度を調整することができる。
 図37に示すように、第2移動規制機構59Cは、外装部101に対する本体枠2のX軸方向(第1調整方向)の移動を規制する機構であって、本体枠2の規制位置を変えることで外装部101に対する本体枠2の位置を調整する。具体的には、第2移動規制機構59Cは、水平位置調整ネジ53、第2戻りバネ54および第2スナップリング54aを有している。水平位置調整ネジ53は、ジョイント部53aおよびシャフト部53bを有している。ジョイント部53aの外径はシャフト部53bの外径よりも大きい。シャフト部53bの端部にジョイント部53aが装着されている。ジョイント部53aは操作機構6の第2ジョイントシャフト65と連結されている。ジョイント部53aおよび第2ジョイントシャフト65によりユニバーサルジョイントが構成されている。
The screw portion 57c of the shaft portion 57b is screwed into the screw hole 51e of the dial support portion 51c. When the vertical position adjustment dial 57 is turned, the dial support portion 51c moves in the Z-axis direction. As described above, the vertical position adjustment dial 57 restricts the movement of the main body frame 2 relative to the exterior portion 101 in the Z-axis direction (more specifically, rotation around the rotation axis R4). When the vertical position adjustment dial 57 is turned, the restriction position of the main body frame 2 with respect to the exterior portion 101 changes, so that the vertical angle of the main body frame 2 with respect to the exterior portion 101 can be adjusted.
As shown in FIG. 37, the second movement restriction mechanism 59C is a mechanism that restricts movement of the main body frame 2 in the X-axis direction (first adjustment direction) relative to the exterior portion 101, and changes the restriction position of the main body frame 2. Thus, the position of the main body frame 2 with respect to the exterior portion 101 is adjusted. Specifically, the second movement restricting mechanism 59C includes a horizontal position adjusting screw 53, a second return spring 54, and a second snap ring 54a. The horizontal position adjusting screw 53 has a joint portion 53a and a shaft portion 53b. The outer diameter of the joint part 53a is larger than the outer diameter of the shaft part 53b. A joint portion 53a is attached to the end portion of the shaft portion 53b. The joint portion 53 a is connected to the second joint shaft 65 of the operation mechanism 6. The joint portion 53a and the second joint shaft 65 constitute a universal joint.
 図40に示すように、ジョイント部53aは第1連結プレート51の第1当接部51dと当接している。第1連結バネ56の弾性力により、ジョイント部53aは第1当接部51dに押し付けられている。シャフト部53bはネジ部53cを有している。ネジ部53cは支持部52cのネジ孔52fにねじ込まれている。水平位置調整ネジ53を回すと、本体枠2に対して水平位置調整ネジ53がX軸方向に移動する。第1連結バネ56の弾性力により第1当接部51dはシャフト部53bに押し付けられているので、水平位置調整ネジ53を回すと、第2連結プレート52が第1連結プレート51に対して回転軸線R3を中心に回転する。第2連結プレート52が第1連結プレート51に対して回転軸線R3を中心に回転すると、外装部101に対して本体枠2が回転軸線R3を中心に回転する(図19参照)。このように、水平位置調整ネジ53により第2連結プレート52の回転方向の規制位置を変えることで、外装部101に対する本体枠2のX軸方向の位置を調整することができる。より詳細には、外装部101に対する本体枠2の回転位置(姿勢)を調整することができる。 40, the joint portion 53a is in contact with the first contact portion 51d of the first connecting plate 51. As shown in FIG. The joint portion 53a is pressed against the first contact portion 51d by the elastic force of the first connecting spring 56. The shaft portion 53b has a screw portion 53c. The screw part 53c is screwed into the screw hole 52f of the support part 52c. When the horizontal position adjusting screw 53 is turned, the horizontal position adjusting screw 53 moves in the X-axis direction with respect to the main body frame 2. Since the first contact portion 51 d is pressed against the shaft portion 53 b by the elastic force of the first connection spring 56, the second connection plate 52 rotates relative to the first connection plate 51 when the horizontal position adjusting screw 53 is turned. It rotates around the axis R3. When the second connecting plate 52 rotates about the rotation axis R3 with respect to the first connecting plate 51, the main body frame 2 rotates about the rotation axis R3 with respect to the exterior portion 101 (see FIG. 19). As described above, the position of the main body frame 2 in the X-axis direction with respect to the exterior portion 101 can be adjusted by changing the restriction position in the rotation direction of the second connecting plate 52 with the horizontal position adjusting screw 53. More specifically, the rotational position (posture) of the main body frame 2 with respect to the exterior portion 101 can be adjusted.
 また、第2戻りバネ54を設けているので、ユーザーが水平位置調整ネジ53を回しすぎた際に、支持部52cがネジ部53cから完全に脱落してしまうのを防止できる。具体的には、支持部52cがネジ部53cの第1側53Xまで移動した場合、第2戻りバネ54の弾性力が第1連結バネ56の弾性力に打ち勝つことによりネジ部53cが支持部52cのネジ孔と接触した状態が維持される。逆に、支持部52cがネジ部53cの第2側53Yまで移動した場合、第1連結バネ56の弾性力が第2戻りバネ54の弾性力に打ち勝つことによりネジ部53cが支持部52cのネジ孔と接触した状態が維持される。このように、第1連結バネ56および第2戻りバネ54の弾性力を調整しておくことで、ユーザーが水平位置調整ネジ53を回しすぎても、支持部52cがネジ部53cから完全に脱落してしまうのを防止できる。さらに、ネジ部53cがジョイント部53aと離れて配置されているので、回しすぎによる破損も防止できる。 Further, since the second return spring 54 is provided, it is possible to prevent the support portion 52c from completely falling off the screw portion 53c when the user turns the horizontal position adjusting screw 53 too much. Specifically, when the support portion 52c moves to the first side 53X of the screw portion 53c, the elastic force of the second return spring 54 overcomes the elastic force of the first connecting spring 56, whereby the screw portion 53c becomes the support portion 52c. The state in contact with the screw hole is maintained. On the other hand, when the support portion 52c moves to the second side 53Y of the screw portion 53c, the elastic force of the first connecting spring 56 overcomes the elastic force of the second return spring 54, so that the screw portion 53c becomes a screw of the support portion 52c. The state in contact with the hole is maintained. In this way, by adjusting the elastic force of the first connecting spring 56 and the second return spring 54, even if the user turns the horizontal position adjusting screw 53 too much, the support portion 52c is completely removed from the screw portion 53c. Can be prevented. Furthermore, since the screw part 53c is arranged away from the joint part 53a, damage due to excessive rotation can be prevented.
 (8)操作機構6
 図41に示すように、操作機構6は、支持フレーム63、相対ズレ調整ダイヤル61、水平位置調整ダイヤル62、第1ジョイントシャフト64および第2ジョイントシャフト65を有している。
 支持フレーム63は本体枠2の上面に固定されている。相対ズレ調整ダイヤル61および水平位置調整ダイヤル62は支持フレーム63により回転可能に支持されている。カバー15を開けている状態では、相対ズレ調整ダイヤル61の一部および水平位置調整ダイヤル62の一部はアッパーケース11の第1開口11bおよび第2開口11c(図9および図11参照)から外部に露出している。カバー15を開けると、ユーザーは相対ズレ調整ダイヤル61および水平位置調整ダイヤル62を操作することができる。
(8) Operation mechanism 6
As shown in FIG. 41, the operation mechanism 6 includes a support frame 63, a relative displacement adjustment dial 61, a horizontal position adjustment dial 62, a first joint shaft 64, and a second joint shaft 65.
The support frame 63 is fixed to the upper surface of the main body frame 2. The relative deviation adjustment dial 61 and the horizontal position adjustment dial 62 are rotatably supported by a support frame 63. In a state where the cover 15 is opened, a part of the relative displacement adjustment dial 61 and a part of the horizontal position adjustment dial 62 are externally provided from the first opening 11b and the second opening 11c (see FIGS. 9 and 11) of the upper case 11. Is exposed. When the cover 15 is opened, the user can operate the relative shift adjustment dial 61 and the horizontal position adjustment dial 62.
 図41に示すように、相対ズレ調整ダイヤル61には第1ジョイントシャフト64が挿入されている。水平位置調整ダイヤル62には第2ジョイントシャフト65が挿入されている。相対ズレ調整ダイヤル61の回転は第1ジョイントシャフト64を介して相対ズレ調整ネジ39に伝達される。水平位置調整ダイヤル62の回転は第2ジョイントシャフト65を介して水平位置調整ネジ53に伝達される。相対ズレ調整ダイヤル61を回すと、左眼用および右眼用画像の垂直相対ズレを調整することができる。水平位置調整ダイヤル62を回すと、CMOSイメージセンサ110に対する左眼用光学像QL1および右眼用光学像QR1の水平方向の位置を調整することができる。なお、垂直位置調整ダイヤル57(図38)を回すと、CMOSイメージセンサ110に対する左眼用光学像QL1および右眼用光学像QR1の鉛直方向の位置を調整することができる。 41, a first joint shaft 64 is inserted into the relative deviation adjustment dial 61. A second joint shaft 65 is inserted into the horizontal position adjustment dial 62. The rotation of the relative deviation adjustment dial 61 is transmitted to the relative deviation adjustment screw 39 via the first joint shaft 64. The rotation of the horizontal position adjustment dial 62 is transmitted to the horizontal position adjustment screw 53 via the second joint shaft 65. When the relative shift adjustment dial 61 is turned, the vertical relative shift between the left-eye image and the right-eye image can be adjusted. When the horizontal position adjustment dial 62 is turned, the horizontal position of the left-eye optical image QL1 and the right-eye optical image QR1 with respect to the CMOS image sensor 110 can be adjusted. When the vertical position adjustment dial 57 (FIG. 38) is turned, the vertical positions of the left-eye optical image QL1 and the right-eye optical image QR1 with respect to the CMOS image sensor 110 can be adjusted.
 〔ステレオ画像について〕
 ここで、3Dアダプタ100をビデオカメラ200に装着した場合にCMOSイメージセンサ110上に形成される左眼用光学像QL1および右眼用光学像QR1について説明する。
 ビデオカメラ200のCMOSイメージセンサ110には、図6に示すような2つの光学像が形成される。具体的には、左眼用光学系OLにより左眼用光学像QL1が形成され、右眼用光学系ORにより右眼用光学像QR1が形成される。図6は、背面側(像側)から見た場合のCMOSイメージセンサ110上の光学像を示している。光学系Vにより左眼用光学像QL1と右眼用光学像QR1とは、左右の位置が入れ替わるとともに、それぞれ上下反転する。
[About stereo images]
Here, the left-eye optical image QR1 and the right-eye optical image QR1 formed on the CMOS image sensor 110 when the 3D adapter 100 is attached to the video camera 200 will be described.
Two optical images as shown in FIG. 6 are formed on the CMOS image sensor 110 of the video camera 200. Specifically, the left-eye optical image QL1 is formed by the left-eye optical system OL, and the right-eye optical image QR1 is formed by the right-eye optical system OR. FIG. 6 shows an optical image on the CMOS image sensor 110 when viewed from the back side (image side). The left and right positions of the left-eye optical image QL1 and the right-eye optical image QR1 are reversed upside down by the optical system V.
 図42に示すように、左眼用光学像QL1の有効像高は0.3~0.7の範囲内に設定されており、右眼用光学像QR1の有効像高は0.3~0.7の範囲内に設定されている。より詳細には、左眼用光学系OLの光軸中心を通る光線は、本体最大像高さを1.0とした場合に、本体最大像高さの0.3~0.7の範囲に対応する領域に到達する。また、右眼用光学系ORの光軸中心を通る光線は、本体最大像高さを1.0とした場合に、本体最大像高さの0.3~0.7の範囲に対応する領域に到達する。
 ここでいう有効像高とは、通常撮影時(2次元撮影時)の有効像高を基準として設定されている。具体的には、3次元撮影時の左眼用光学像QL1の有効像高とは、2次元画像の有効像円の中心C0から左眼用光学像QL1の有効像円の中心CLまでの距離DLを2次元画像の中心C0からの対角長さD0で除した値である。左眼用光学系OLの光軸中心を通る光線は中心CLに到達する。同様に、3次元撮影時の右眼用光学像QR1の有効像高とは、2次元画像の有効像円の中心C0から右眼用光学像QR1の有効像円の中心CRまでの距離DRを2次元画像の中心C0からの対角長さD0で除した値である。右眼用光学系ORの光軸中心を通る光線は中心CRに到達する。
As shown in FIG. 42, the effective image height of the left-eye optical image QL1 is set within a range of 0.3 to 0.7, and the effective image height of the right-eye optical image QR1 is 0.3 to 0. .7 is set. More specifically, the light beam passing through the center of the optical axis of the left-eye optical system OL falls within the range of 0.3 to 0.7 of the main body maximum image height when the main body maximum image height is 1.0. Reach the corresponding area. A light ray passing through the optical axis center of the optical system OR for the right eye is a region corresponding to a range of 0.3 to 0.7 of the main body maximum image height when the main body maximum image height is 1.0. To reach.
The effective image height here is set based on the effective image height at the time of normal shooting (at the time of two-dimensional shooting). Specifically, the effective image height of the left-eye optical image QL1 during three-dimensional imaging is the distance from the center C0 of the effective image circle of the two-dimensional image to the center CL of the effective image circle of the left-eye optical image QL1. This is a value obtained by dividing DL by the diagonal length D0 from the center C0 of the two-dimensional image. The light beam passing through the optical axis center of the left-eye optical system OL reaches the center CL. Similarly, the effective image height of the right-eye optical image QR1 at the time of three-dimensional imaging is the distance DR from the center C0 of the effective image circle of the two-dimensional image to the center CR of the effective image circle of the right-eye optical image QR1. It is a value divided by the diagonal length D0 from the center C0 of the two-dimensional image. A light ray passing through the optical axis center of the optical system OR for the right eye reaches the center CR.
 上記の範囲内に左眼用光学像QL1および右眼用光学像QR1の有効像高を設定することで、左眼用光学像QL1および右眼用光学像QR1が有効画像範囲内に収まりやすくなる。
 なお、有効像高がともに0.3の場合が図43に示す状態、有効像高がともに0.7の場合が図44に示す状態である。図42に示す状態は、有効像高がともに0.435の場合である。
 通常、左眼用光学像QL1の周辺部および右眼用光学像QR1の周辺部は中央部に比べて光量が低下するので、左眼用光学像QL1および右眼用光学像QR1で画像として抽出できる領域は限られている。さらに、左眼用光学像QL1の有効領域に右眼用光学像QR1の周辺部が重ならないように、かつ、右眼用光学像QR1の有効領域に左眼用光学像QL1の周辺部が重ならないように、左眼用光学像QL1および右眼用光学像QR1の有効領域を離す必要がある。したがって、CMOSイメージセンサ110上に左眼用光学像QL1の有効領域および右眼用光学像QR1の有効領域を収めるためには、有効像高を前述のような設定にしたとしても、左眼用光学像QL1および右眼用光学像QR1をある程度小さくする必要がある。
By setting the effective image heights of the left-eye optical image QL1 and the right-eye optical image QR1 within the above-mentioned range, the left-eye optical image QL1 and the right-eye optical image QR1 can easily fall within the effective image range. .
Note that the case where the effective image height is both 0.3 is the state shown in FIG. 43, and the case where both the effective image height is 0.7 is the state shown in FIG. The state shown in FIG. 42 is a case where both effective image heights are 0.435.
Usually, since the amount of light in the peripheral portion of the left-eye optical image QL1 and the peripheral portion of the right-eye optical image QR1 is lower than that in the central portion, the left-eye optical image QL1 and the right-eye optical image QR1 are extracted as images. The area that can be done is limited. Further, the peripheral portion of the right-eye optical image QR1 does not overlap with the effective region of the left-eye optical image QR1, and the peripheral portion of the left-eye optical image QL1 overlaps the effective region of the right-eye optical image QR1. Therefore, it is necessary to separate the effective regions of the left-eye optical image QL1 and the right-eye optical image QR1. Therefore, in order to fit the effective area of the left-eye optical image QL1 and the effective area of the right-eye optical image QR1 on the CMOS image sensor 110, even if the effective image height is set as described above, It is necessary to reduce the optical image QL1 and the right-eye optical image QR1 to some extent.
 しかし、左眼用光学像QL1および右眼用光学像QR1を小さくすると、3次元撮影の解像度が低下してしまう。適正なステレオ画像を得るためには、左眼用光学像QL1および右眼用光学像QR1をCMOSイメージセンサ110の有効画像領域に効率よく並べるのが好ましい。
 そこで、この3Dアダプタ100では、左眼用光学像QL1および右眼用光学像QR1に意図的にケラレ領域を設けている。
 具体的には、図45に示すように、左眼用光学像QL1は、左眼有効画像領域QL1aと、中間遮光部72aにより光量が低減される左眼ケラレ領域QL1bと、を有している。図45は左眼用光学像QL1のみを示している。左眼有効画像領域QL1aは、第1開口72Laを通る光により形成されており、左眼ケラレ領域QL1bと隣接している。左眼有効画像領域QL1aがステレオ画像の生成に用いられる。より詳細には、図6および図42に示すように、左眼有効画像領域QL1aの画像データから第1抽出領域AL2の画像データが切り出されてステレオ画像の生成に用いられる。一方、図45に示すように、左眼ケラレ領域QL1bは、中間遮光部72aにより光量を低減されている領域であり、ステレオ画像の生成には用いられない。
However, if the left-eye optical image QL1 and the right-eye optical image QR1 are reduced, the resolution of the three-dimensional imaging is lowered. In order to obtain an appropriate stereo image, it is preferable that the left-eye optical image QL1 and the right-eye optical image QR1 are efficiently arranged in the effective image area of the CMOS image sensor 110.
Therefore, in this 3D adapter 100, a vignetting region is intentionally provided in the left-eye optical image QL1 and the right-eye optical image QR1.
Specifically, as shown in FIG. 45, the left-eye optical image QL1 has a left-eye effective image area QL1a and a left-eye vignetting area QL1b in which the amount of light is reduced by the intermediate light-shielding portion 72a. . FIG. 45 shows only the left-eye optical image QL1. The left eye effective image area QL1a is formed by light passing through the first opening 72La, and is adjacent to the left eye vignetting area QL1b. The left-eye effective image area QL1a is used for generating a stereo image. More specifically, as shown in FIGS. 6 and 42, the image data of the first extraction area AL2 is cut out from the image data of the left-eye effective image area QL1a and used to generate a stereo image. On the other hand, as shown in FIG. 45, the left-eye vignetting area QL1b is an area in which the amount of light is reduced by the intermediate light shielding unit 72a, and is not used for generating a stereo image.
 また、図46に示すように、右眼用光学像QR1は、右眼有効画像領域QR1aと、中間遮光部72aにより光量が低減される右眼ケラレ領域QR1bと、を有している。図46は右眼用光学像QR1のみを示している。右眼有効画像領域QR1aは、第2開口72Raを通る光により形成されており、右眼ケラレ領域QR1bと隣接している。右眼有効画像領域QR1aがステレオ画像の生成に用いられる。より詳細には、図6および図42に示すように、右眼有効画像領域QR1aの画像データから第2抽出領域AR2の画像データが切り出されてステレオ画像の生成に用いられる。一方、図46に示すように、右眼ケラレ領域QR1bは、中間遮光部72aにより光量を低減されている領域であり、ステレオ画像の生成には用いられない。
 図47は左眼用光学像QL1および右眼用光学像QR1を示している。図47に示すように、通常の撮影時には、左眼ケラレ領域QL1bの一部は右眼ケラレ領域QR1bと重なっている。
As shown in FIG. 46, the right-eye optical image QR1 has a right-eye effective image area QR1a and a right-eye vignetting area QR1b in which the amount of light is reduced by the intermediate light-shielding portion 72a. FIG. 46 shows only the right-eye optical image QR1. The right eye effective image area QR1a is formed by light passing through the second opening 72Ra, and is adjacent to the right eye vignetting area QR1b. The right eye effective image area QR1a is used for generating a stereo image. More specifically, as shown in FIGS. 6 and 42, the image data of the second extraction area AR2 is cut out from the image data of the right-eye effective image area QR1a and used for generating a stereo image. On the other hand, as shown in FIG. 46, the right-eye vignetting region QR1b is a region in which the amount of light is reduced by the intermediate light shielding unit 72a and is not used for generating a stereo image.
FIG. 47 shows the left-eye optical image QL1 and the right-eye optical image QR1. As shown in FIG. 47, during normal shooting, a part of the left eye vignetting area QL1b overlaps with the right eye vignetting area QR1b.
 例えば、図45および図47に示すように、左眼ケラレ領域QL1bは、第1受光面110L上に形成される左眼内側領域QL1cと、第2受光面110R上に形成される左眼外側領域QL1dと、を有している。左眼外側領域QL1dの面積は左眼内側領域QL1cの面積よりも小さい。より詳細には、左眼外側領域QL1dの水平方向の寸法は、左眼内側領域QL1cの水平方向の寸法よりも小さく、本実施形態では左眼内側領域QL1cの水平方向の寸法の概ね半分である。
 同様に、図46および図47に示すように、右眼ケラレ領域QR1bの一部は右眼ケラレ領域QR1bと重なっている。右眼ケラレ領域QR1bは、第2受光面110R上に形成される右眼内側領域QR1cと、第1受光面110L上に形成される右眼外側領域QR1dと、を有している。右眼外側領域QR1dの面積は右眼内側領域QR1cの面積よりも小さい。より詳細には、右眼外側領域QR1dの水平方向の寸法は右眼内側領域QR1cの水平方向の寸法よりも小さく、本実施形態では右眼内側領域QR1cの水平方向の寸法の概ね半分である。
For example, as shown in FIGS. 45 and 47, the left eye vignetting area QL1b includes a left eye inner area QL1c formed on the first light receiving surface 110L and a left eye outer area formed on the second light receiving surface 110R. QL1d. The area of the left eye outer area QL1d is smaller than the area of the left eye inner area QL1c. More specifically, the horizontal dimension of the left-eye outer area QL1d is smaller than the horizontal dimension of the left-eye inner area QL1c, and is approximately half the horizontal dimension of the left-eye inner area QL1c in this embodiment. .
Similarly, as shown in FIGS. 46 and 47, a part of the right eye vignetting area QR1b overlaps with the right eye vignetting area QR1b. The right eye vignetting region QR1b has a right eye inner region QR1c formed on the second light receiving surface 110R and a right eye outer region QR1d formed on the first light receiving surface 110L. The area of the right eye outer area QR1d is smaller than the area of the right eye inner area QR1c. More specifically, the horizontal dimension of the right-eye outer area QR1d is smaller than the horizontal dimension of the right-eye inner area QR1c, and in this embodiment, is approximately half the horizontal dimension of the right-eye inner area QR1c.
 このように、中間遮光部72aにより左眼ケラレ領域QL1bおよび右眼ケラレ領域QR1bが形成されており、撮影時において左眼ケラレ領域QL1bの一部が右眼ケラレ領域QR1bと重なっており、右眼ケラレ領域QR1bの一部が左眼ケラレ領域QL1bと重なっている。この結果、左眼用光学像QL1の周辺部が右眼用光学像QR1の有効領域と重なるのを防止することができ、さらに右眼用光学像QR1の周辺部が左眼用光学像QL1の有効領域と重なるのを防止することができる。これにより、左眼用光学像QL1の有効領域および右眼用光学像QR1の有効領域を互いに近づけることができ、左眼用光学像QL1の有効領域および右眼用光学像QR1の有効領域を比較的大きく設定することができる。すなわち、CMOSイメージセンサ110の有効画像領域を効率よく用いることができる。 Thus, the left-eye vignetting area QL1b and the right-eye vignetting area QR1b are formed by the intermediate light-shielding portion 72a, and a part of the left-eye vignetting area QL1b overlaps the right-eye vignetting area QR1b at the time of shooting. A part of the vignetting area QR1b overlaps with the left-eye vignetting area QL1b. As a result, it is possible to prevent the peripheral portion of the left-eye optical image QL1 from overlapping the effective area of the right-eye optical image QR1, and the peripheral portion of the right-eye optical image QR1 to the left-eye optical image QL1. It is possible to prevent overlapping with the effective area. Thus, the effective area of the left-eye optical image QL1 and the effective area of the right-eye optical image QR1 can be brought close to each other, and the effective area of the left-eye optical image QL1 and the effective area of the right-eye optical image QR1 are compared. Can be set larger. That is, the effective image area of the CMOS image sensor 110 can be used efficiently.
 左眼ケラレ領域QL1bおよび右眼ケラレ領域QR1bの重なり具合は、主に中間遮光部72aの幅(X軸方向の寸法)により調整されている。図15に示すように、中間遮光部72aは第1縁部72Lおよび第2縁部72Rを有している。第1縁部72Lは、左眼ケラレ領域QL1bの端を形成しており、Z軸方向に平行に(基準平面に垂直に)配置されている。第2縁部72Rは、右眼ケラレ領域QR1bの端を形成しており、Z軸方向に平行に(基準平面に垂直に)配置されている。
 より詳細には、遮光シート72(遮光部材の一例、遮光ユニットの一例)は、左眼用光学系OLへの入射光が通る矩形の第1開口72Laと、右眼用光学系ORへの入射光が通る矩形の第2開口72Raと、を有している。中間遮光部72aは第1開口72Laおよび第2開口72Raにより形成されている。第1開口72Laの縁の一部は第1縁部72Lにより形成されており、第2開口72Raの縁の一部は第2縁部72Rにより形成されている。第1縁部72Lが直線的に形成されているので、図45および図47に示すように、左眼有効画像領域QL1aと左眼ケラレ領域QL1bとの第1境界BLは、概ね直線となっている。第2縁部72Rが直線的に形成されているので、図46および図47に示すように、右眼有効画像領域QR1aと右眼ケラレ領域QR1bとの第2境界BRは、概ね直線となっている。したがって、第1抽出領域AL2および第2抽出領域AR2をさらに広く確保しやすくなる。
The degree of overlap between the left-eye vignetting area QL1b and the right-eye vignetting area QR1b is mainly adjusted by the width (dimension in the X-axis direction) of the intermediate light shielding portion 72a. As shown in FIG. 15, the intermediate light-shielding portion 72a has a first edge portion 72L and a second edge portion 72R. The first edge portion 72L forms the end of the left eye vignetting region QL1b, and is arranged in parallel to the Z-axis direction (perpendicular to the reference plane). The second edge 72R forms the end of the right eye vignetting region QR1b, and is arranged in parallel to the Z-axis direction (perpendicular to the reference plane).
More specifically, the light shielding sheet 72 (an example of a light shielding member and an example of a light shielding unit) includes a rectangular first opening 72La through which incident light to the left-eye optical system OL passes and an incident light to the right-eye optical system OR. And a rectangular second opening 72Ra through which light passes. The intermediate light shielding part 72a is formed by a first opening 72La and a second opening 72Ra. Part of the edge of the first opening 72La is formed by the first edge part 72L, and part of the edge of the second opening 72Ra is formed by the second edge part 72R. Since the first edge portion 72L is formed linearly, as shown in FIGS. 45 and 47, the first boundary BL between the left-eye effective image area QL1a and the left-eye vignetting area QL1b is substantially a straight line. Yes. Since the second edge 72R is formed linearly, as shown in FIGS. 46 and 47, the second boundary BR between the right-eye effective image area QR1a and the right-eye vignetting area QR1b is substantially a straight line. Yes. Therefore, it becomes easy to ensure the first extraction area AL2 and the second extraction area AR2.
 一方、通常の撮影時には、ビデオカメラ200は中間遮光部72aにピントを合わせることができないが、調整モードでは、ビデオカメラ200は中間遮光部72aにピントを合わせることができるように構成されている。具体的には、調整モードボタン133が押されると、第2レンズ群G2および第4レンズ群G4が所定の位置までそれぞれズームモータ214およびフォーカスモータ233により駆動される。ピントの微調整はコントラスト検出方式のオートフォーカスで行われてもよいし、フォーカス調整レバー(図示せず)を用いてユーザーが行えるようにしてもよい。こうして、遮光シート72の中間遮光部72aにピントを合わせることができる。中間遮光部72aにピントを合わせると、焦点距離が長くなり、受光面110a上の像高さが全体的に高くなる。この結果、図48に示すように、左眼用光学像QL1は右眼用光学像QR1と水平方向に離れ、これに伴い、左眼ケラレ領域QL1bは右眼ケラレ領域QR1bと水平方向に離れる。この場合、カメラモニタ120上には、左眼用光学像QL1および右眼用光学像QR1の間に黒帯Eが表示される。この状態であれば、左眼用光学像QL1と右眼用光学像QR1との上下方向の相対ズレをユーザーが認識しやすくなり、第1調整機構3により調整することができる。 On the other hand, during normal shooting, the video camera 200 cannot focus on the intermediate light-shielding portion 72a. However, in the adjustment mode, the video camera 200 is configured to be able to focus on the intermediate light-shielding portion 72a. Specifically, when the adjustment mode button 133 is pressed, the second lens group G2 and the fourth lens group G4 are driven to a predetermined position by the zoom motor 214 and the focus motor 233, respectively. Fine adjustment of focus may be performed by contrast detection type autofocus, or may be performed by a user using a focus adjustment lever (not shown). In this way, it is possible to focus on the intermediate light shielding portion 72a of the light shielding sheet 72. When focusing on the intermediate light-shielding portion 72a, the focal length increases and the image height on the light receiving surface 110a increases overall. As a result, as shown in FIG. 48, the left-eye optical image QL1 is separated from the right-eye optical image QR1 in the horizontal direction, and accordingly, the left-eye vignetting area QL1b is separated from the right-eye vignetting area QR1b in the horizontal direction. In this case, a black band E is displayed on the camera monitor 120 between the left-eye optical image QL1 and the right-eye optical image QR1. In this state, the user can easily recognize the vertical shift between the left-eye optical image QL1 and the right-eye optical image QR1, and the first adjustment mechanism 3 can make adjustment.
 〔調整作業〕
 3Dアダプタ100およびビデオカメラ200には、製品の個体差が存在するので、第1調整機構3、第2調整機構4および第3調整機構5により左眼用光学系OLおよび右眼用光学系ORの状態を出荷時および使用時に調整するのが好ましい。
 以下に、前述の構成を用いた各種調整作業について概要を説明する。
 <相対ズレ調整>
 相対ズレ調整とは、左眼用光学像QL1および右眼用光学像QR1の上下方向の位置ズレを調整することをいう。適正なステレオ画像を生成するためには、CMOSイメージセンサ110上に形成される左眼用光学像QL1および右眼用光学像QR1の上下方向の位置を比較的高い精度で合わせることが好ましい。
[Adjustment work]
Since there are individual differences between products in the 3D adapter 100 and the video camera 200, the left eye optical system OL and the right eye optical system OR are operated by the first adjustment mechanism 3, the second adjustment mechanism 4, and the third adjustment mechanism 5. It is preferable to adjust the state at the time of shipment and use.
The outline of various adjustment operations using the above-described configuration will be described below.
<Relative misalignment adjustment>
Relative displacement adjustment means adjusting the vertical displacement of the left-eye optical image QL1 and the right-eye optical image QR1. In order to generate an appropriate stereo image, it is preferable to match the vertical positions of the left-eye optical image QL1 and the right-eye optical image QR1 formed on the CMOS image sensor 110 with relatively high accuracy.
 しかし、出荷時に調整をしたとしても、装着するビデオカメラ200の個体差によって相対ズレが大きくなる場合も想定される。
 そこで、この3Dアダプタ100では、使用時にユーザーがカメラモニタ120に表示される画像を見ながら相対ズレ調整ダイヤル61により左眼用光学像QL1および右眼用光学像QR1の上下方向の位置(より具体的には、左眼用画像および右眼用画像の上下方向の位置)を調整する。
 相対ズレの調整は、調整モードにおいて相対ズレ調整ダイヤル61を操作することで行われる。3Dアダプタ100がビデオカメラ200に装着されている状態で調整モードボタン133を押すと調整モードが実行される。調整モードでは、左眼用および右眼用画像のうち一方だけでなく、CMOSイメージセンサ110の有効画像領域に対応する画像全体がカメラモニタ120に表示され、ピントが遮光シート72の中間遮光部72aに合わせられる。中間遮光部72aにピントがあっている状態では、図48に示すように、カメラモニタ120の表示画面上において、左眼用光学像QL1および右眼用光学像QR1が左右方向の外側にそれぞれ移動し、左眼用光学像QL1および右眼用光学像QR1が左右に離れる。左眼用光学像QL1および右眼用光学像QR1の間には黒帯Eが現れるので、カメラモニタ120上で左眼用光学像QL1および右眼用光学像QR1の垂直相対ズレをユーザーが把握しやすくなる。
However, even if the adjustment is performed at the time of shipment, it is assumed that the relative deviation increases due to individual differences of the video cameras 200 to be mounted.
Therefore, in this 3D adapter 100, when the user looks at the image displayed on the camera monitor 120 during use, the relative displacement adjustment dial 61 allows the left-eye optical image QL1 and the right-eye optical image QR1 to be positioned in the vertical direction (more specifically, Specifically, the vertical position of the left eye image and the right eye image is adjusted.
The relative shift adjustment is performed by operating the relative shift adjustment dial 61 in the adjustment mode. When the adjustment mode button 133 is pressed while the 3D adapter 100 is attached to the video camera 200, the adjustment mode is executed. In the adjustment mode, not only one of the left-eye image and the right-eye image but also the entire image corresponding to the effective image area of the CMOS image sensor 110 is displayed on the camera monitor 120, and the intermediate light-shielding portion 72 a of the light-shielding sheet 72 is in focus. Adapted to. In the state where the intermediate light-shielding portion 72a is in focus, as shown in FIG. 48, the left-eye optical image QL1 and the right-eye optical image QR1 move respectively outward in the left-right direction on the display screen of the camera monitor 120. Then, the left-eye optical image QL1 and the right-eye optical image QR1 are separated to the left and right. Since a black band E appears between the left-eye optical image QL1 and the right-eye optical image QR1, the user grasps the vertical relative deviation between the left-eye optical image QL1 and the right-eye optical image QR1 on the camera monitor 120. It becomes easy to do.
 図22に示すように、相対ズレ調整ダイヤル61を回すと、第1ジョイントシャフト64を介して相対ズレ調整ネジ39が回転する。ネジ部39cが第1支持プレート66のネジ孔にねじ込まれているので、相対ズレ調整ネジ39が回転すると相対ズレ調整ネジ39が本体枠2に対してX軸方向に移動する。調整バネ38の弾性力により相対ズレ調整ネジ39に第1規制部33が押し付けられているので、相対ズレ調整ネジ39が本体枠2に対してX軸方向に移動すると、それに伴い第1調整枠30が第1回転軸線R1を中心に回転する。第1調整枠30が回転すると左眼負レンズ群G1Lが第1回転軸線R1を中心に回転し、この結果、左眼負レンズ群G1Lが概ねZ軸方向に移動する。
 左眼負レンズ群G1Lが概ねZ軸方向に移動すると、CMOSイメージセンサ110上に形成される左眼用光学像QL1の垂直位置が変化する。この結果、カメラモニタ120に表示される左眼用画像が上下に移動する。
As shown in FIG. 22, when the relative deviation adjustment dial 61 is turned, the relative deviation adjustment screw 39 is rotated via the first joint shaft 64. Since the screw portion 39 c is screwed into the screw hole of the first support plate 66, when the relative displacement adjustment screw 39 rotates, the relative displacement adjustment screw 39 moves in the X-axis direction with respect to the main body frame 2. Since the first regulating portion 33 is pressed against the relative displacement adjustment screw 39 by the elastic force of the adjustment spring 38, when the relative displacement adjustment screw 39 moves in the X-axis direction with respect to the main body frame 2, the first adjustment frame is accordingly accompanied. 30 rotates around the first rotation axis R1. When the first adjustment frame 30 rotates, the left-eye negative lens group G1L rotates about the first rotation axis R1, and as a result, the left-eye negative lens group G1L moves approximately in the Z-axis direction.
When the left-eye negative lens group G1L moves substantially in the Z-axis direction, the vertical position of the left-eye optical image QL1 formed on the CMOS image sensor 110 changes. As a result, the left-eye image displayed on the camera monitor 120 moves up and down.
 このように、カメラモニタ120を見ながら相対ズレ調整ダイヤル61を回して、カメラモニタ120上で左眼用画像の上下方向の位置を右眼用画像に合わせることで、左眼用画像および右眼用画像の垂直相対ズレを低減することができる。
 <輻輳角調整>
 輻輳角とは左眼光軸ALおよび右眼光軸ARのなす角度をいう。適正なステレオ画像を生成するためには、輻輳角を適正な角度に設定することが好ましい。
 しかし、製品の個体差により製品ごとで輻輳角がばらつくことが考えられる。適正なステレオ画像を生成するためには、輻輳角のばらつきを抑えることが好ましい。
 そこで、この3Dアダプタ100では、製造時あるいは出荷時に、作業員が第2調整機構4を用いて輻輳角を調整する。
In this way, by turning the relative shift adjustment dial 61 while looking at the camera monitor 120 and matching the vertical position of the left-eye image with the right-eye image on the camera monitor 120, the left-eye image and the right-eye image are displayed. It is possible to reduce the vertical relative deviation of the image for use.
<Convergence angle adjustment>
The convergence angle is an angle formed by the left eye optical axis AL and the right eye optical axis AR. In order to generate an appropriate stereo image, it is preferable to set the convergence angle to an appropriate angle.
However, it is conceivable that the angle of convergence varies from product to product due to individual differences between products. In order to generate an appropriate stereo image, it is preferable to suppress variation in the convergence angle.
Therefore, in the 3D adapter 100, the worker adjusts the convergence angle using the second adjustment mechanism 4 at the time of manufacture or shipment.
 図22に示すように、外装部101を取り外している状態で、作業員が輻輳角調整ネジ49を回す。輻輳角調整ネジ49は支持部21fのネジ孔21hにねじ込まれているので、輻輳角調整ネジ49を回すと輻輳角調整ネジ49が本体枠2に対してX軸方向に移動する。調整バネ38の弾性力により第2規制部43が頭部49bに押し付けられているので、輻輳角調整ネジ49が本体枠2に対してX軸方向に移動すると、それに伴い、第2調整枠40が第2回転軸線R2を中心に回転する。第2調整枠40が回転すると、右眼負レンズ群G1Rが第2回転軸線R2を中心に回転し、この結果、右眼負レンズ群G1Rが概ねX軸方向に移動する。
 右眼負レンズ群G1Rが概ねX軸方向に移動すると、CMOSイメージセンサ110上に形成される右眼用光学像QR1の水平位置が変化する。このようにして、輻輳角を適正な角度に調整することができる。
As shown in FIG. 22, the worker turns the convergence angle adjustment screw 49 while the exterior portion 101 is removed. Since the convergence angle adjusting screw 49 is screwed into the screw hole 21h of the support portion 21f, when the convergence angle adjusting screw 49 is turned, the convergence angle adjusting screw 49 moves in the X-axis direction with respect to the main body frame 2. Since the second restricting portion 43 is pressed against the head 49b by the elastic force of the adjusting spring 38, when the convergence angle adjusting screw 49 moves in the X-axis direction with respect to the main body frame 2, the second adjusting frame 40 is accordingly moved. Rotates around the second rotation axis R2. When the second adjustment frame 40 rotates, the right eye negative lens group G1R rotates about the second rotation axis R2, and as a result, the right eye negative lens group G1R moves substantially in the X-axis direction.
When the right-eye negative lens group G1R moves in the X-axis direction, the horizontal position of the right-eye optical image QR1 formed on the CMOS image sensor 110 changes. In this way, the convergence angle can be adjusted to an appropriate angle.
 輻輳角は、一旦調整が完了すると、ユーザーが再度調整する必要がないので、調整後は輻輳角調整ネジ49が第2規制部43に例えば接着固定される。なお、ユーザーが輻輳角を調整できるようにしてもよい。
 <フォーカス調整>
 適正なステレオ画像を生成するためには、左眼用光学系OLおよび右眼用光学系ORのフォーカスがずれていないのが好ましい。
 しかし、製品の個体差によって左眼用光学系OLおよび右眼用光学系ORのフォーカスがずれてしまう場合がある。
 そこで、この3Dアダプタ100では、製造時あるいは出荷時に、作業員が第2調整機構4を用いて左眼用光学系OLおよび右眼用光学系ORのフォーカスを合わせる。本実施形態では、右眼用光学系ORの右眼負レンズ群G1RをY軸方向に移動させることで、フォーカス調整が行われる。
Once the adjustment of the convergence angle is completed, it is not necessary for the user to adjust the convergence angle again. Therefore, after the adjustment, the convergence angle adjusting screw 49 is bonded and fixed to the second restricting portion 43, for example. Note that the user may be able to adjust the convergence angle.
<Focus adjustment>
In order to generate an appropriate stereo image, it is preferable that the left-eye optical system OL and the right-eye optical system OR are not out of focus.
However, the left-eye optical system OL and the right-eye optical system OR may be out of focus due to individual differences in products.
Therefore, in the 3D adapter 100, the worker uses the second adjustment mechanism 4 to focus the left-eye optical system OL and the right-eye optical system OR at the time of manufacture or shipment. In the present embodiment, focus adjustment is performed by moving the right-eye negative lens group G1R of the right-eye optical system OR in the Y-axis direction.
 図34に示すように、作業員がフォーカス調整ネジ48を回すと、本体枠2に対してフォーカス調整ネジ48がY軸方向に移動する。フォーカス調整バネ44の弾性力によりフォーカス調整ネジ48に第2調整枠40が押し付けられているので、フォーカス調整ネジ48が移動すると、それに伴い、本体枠2に対して第2調整枠40もY軸方向に移動する。この結果、右眼正レンズ群G2Rに対して右眼負レンズ群G1RがY軸方向に移動し、右眼用光学系ORのフォーカスが変化する。
 このように、フォーカス調整ネジ48を回すことで、左眼用光学系OLおよび右眼用光学系ORのフォーカスのズレを調整することができる。
 フォーカスは、一旦調整が完了すると、ユーザーが再度調整する必要がない。このため、調整後はフォーカス調整ネジ48がフロント支持プレート25に例えば接着固定される。なお、ユーザーがフォーカスを調整できるようにしてもよい。
As shown in FIG. 34, when the worker turns the focus adjustment screw 48, the focus adjustment screw 48 moves in the Y axis direction with respect to the main body frame 2. Since the second adjustment frame 40 is pressed against the focus adjustment screw 48 by the elastic force of the focus adjustment spring 44, when the focus adjustment screw 48 moves, the second adjustment frame 40 also moves with respect to the main body frame 2 along the Y axis. Move in the direction. As a result, the right eye negative lens group G1R moves in the Y-axis direction with respect to the right eye positive lens group G2R, and the focus of the right eye optical system OR changes.
Thus, by turning the focus adjustment screw 48, it is possible to adjust the focus shift between the left-eye optical system OL and the right-eye optical system OR.
Once the focus is adjusted, the user does not need to adjust it again. For this reason, after adjustment, the focus adjustment screw 48 is bonded and fixed to the front support plate 25, for example. Note that the user may be able to adjust the focus.
 <画像位置調整>
 適正なステレオ画像を生成するためには、CMOSイメージセンサ110上での左眼用光学像QL1および右眼用光学像QR1の位置を適切な位置に設定することが好ましい。
 しかし、製品の個体差により左眼用光学像QL1および右眼用光学像QR1の位置が設計位置から大きくずれる場合もあり得る。また、前述の相対ズレ調整および輻輳角調整により、CMOSイメージセンサ110上での左眼用光学像QL1および右眼用光学像QR1の位置が全体的にずれる場合もあり得る。
 そこで、この3Dアダプタ100では、使用時において(あるいは調整モードのようにCMOSイメージセンサ110の有効画像領域がカメラモニタ120に表示されている状態で)、ユーザーが第3調整機構5を用いて画像位置の調整を行う。
<Image position adjustment>
In order to generate an appropriate stereo image, the positions of the left-eye optical image QL1 and the right-eye optical image QR1 on the CMOS image sensor 110 are preferably set to appropriate positions.
However, the positions of the left-eye optical image QL1 and the right-eye optical image QR1 may be greatly deviated from the design position due to individual differences between products. In addition, the position of the left-eye optical image QL1 and the right-eye optical image QR1 on the CMOS image sensor 110 may be entirely displaced by the above-described relative shift adjustment and convergence angle adjustment.
Therefore, in this 3D adapter 100, the user can use the third adjustment mechanism 5 to display an image using the third adjustment mechanism 5 in use (or in a state where the effective image area of the CMOS image sensor 110 is displayed on the camera monitor 120 as in the adjustment mode). Adjust the position.
 図38に示すように、垂直位置調整ダイヤル57を回すと、ダイヤル支持部51cのネジ孔に垂直位置調整ダイヤル57のネジ部57cがねじ込まれているので、第1弾性支持部51Lおよび第2弾性支持部51Rを支点として外装部101に対して本体枠2が上下に移動する。より詳細には、回転軸線R4を中心として外装部101に対して本体枠2が回転する。このとき、第1弾性部51Laおよび第2弾性部51Raの厚みが薄くなっているので、第1弾性支持部51Lおよび第2弾性支持部51Rに大きな負荷が作用しない。
 外装部101に対して本体枠2が回転軸線R4を中心に回転すると、左眼用光学系OLおよび右眼用光学系ORが外装部101に対してZ軸方向に移動する。より詳細には、左眼用光学系OLおよび右眼用光学系ORの姿勢が外装部101に対して上向きあるいは下向きに変化する。これにより、CMOSイメージセンサ110での左眼用光学像QL1および右眼用光学像QR1の垂直位置を調整することができる。
As shown in FIG. 38, when the vertical position adjustment dial 57 is turned, the screw portion 57c of the vertical position adjustment dial 57 is screwed into the screw hole of the dial support portion 51c. Therefore, the first elastic support portion 51L and the second elastic support portion 51L The main body frame 2 moves up and down with respect to the exterior portion 101 with the support portion 51R as a fulcrum. More specifically, the main body frame 2 rotates with respect to the exterior portion 101 around the rotation axis R4. At this time, since the first elastic part 51La and the second elastic part 51Ra are thin, a large load does not act on the first elastic support part 51L and the second elastic support part 51R.
When the main body frame 2 rotates about the rotation axis R4 with respect to the exterior part 101, the left-eye optical system OL and the right-eye optical system OR move in the Z-axis direction with respect to the exterior part 101. More specifically, the postures of the left-eye optical system OL and the right-eye optical system OR change upward or downward with respect to the exterior portion 101. Accordingly, the vertical positions of the left-eye optical image QL1 and the right-eye optical image QR1 in the CMOS image sensor 110 can be adjusted.
 また、図41に示すように、水平位置を調整する場合、例えば、水平位置調整ダイヤル62を回すと、第2ジョイントシャフト65を介して水平位置調整ネジ53が回転する。図40に示すように、第1連結バネ56の引っ張り力により第1当接部51dが水平位置調整ネジ53のジョイント部53aに押し付けられているので、水平位置調整ネジ53は第1連結プレート51に対してX軸方向に移動しない。その代わりに、ネジ部53cが支持部52cのネジ孔52fにねじ込まれているので、水平位置調整ネジ53が回転すると、支持部52cが第1連結プレート51(つまり外装部101)に対してX軸方向に移動する。つまり、第2連結プレート52および本体枠2が回転軸線R3を中心に外装部101に対して回転する。
 外装部101に対して本体枠2が回転軸線R3を中心に回転すると、左眼用光学系OLおよび右眼用光学系ORが外装部101に対してX軸方向に移動する。より詳細には、左眼用光学系OLおよび右眼用光学系ORの姿勢が外装部101に対して右向きあるいは左向きに変化する。これにより、CMOSイメージセンサ110での左眼用光学像QL1および右眼用光学像QR1の水平位置を調整することができる。
As shown in FIG. 41, when adjusting the horizontal position, for example, when the horizontal position adjustment dial 62 is turned, the horizontal position adjustment screw 53 rotates via the second joint shaft 65. As shown in FIG. 40, since the first contact portion 51 d is pressed against the joint portion 53 a of the horizontal position adjusting screw 53 by the pulling force of the first connecting spring 56, the horizontal position adjusting screw 53 is connected to the first connecting plate 51. Does not move in the X-axis direction. Instead, since the screw part 53c is screwed into the screw hole 52f of the support part 52c, when the horizontal position adjusting screw 53 rotates, the support part 52c is X with respect to the first connection plate 51 (that is, the exterior part 101). Move in the axial direction. That is, the 2nd connection plate 52 and the main body frame 2 rotate with respect to the exterior part 101 centering | focusing on rotation axis R3.
When the main body frame 2 rotates about the rotation axis R <b> 3 with respect to the exterior portion 101, the left-eye optical system OL and the right-eye optical system OR move in the X-axis direction with respect to the exterior portion 101. More specifically, the postures of the left-eye optical system OL and the right-eye optical system OR change rightward or leftward with respect to the exterior portion 101. Thereby, the horizontal positions of the left-eye optical image QL1 and the right-eye optical image QR1 in the CMOS image sensor 110 can be adjusted.
 〔ビデオカメラの動作〕
 3Dアダプタ100を用いてビデオカメラ200にて3次元撮影を行う場合のビデオカメラ200の動作について説明する。
 図49に示すように、ビデオカメラ200の電源がONになると、各部に電力が供給され、再生モード、2次元撮影モードおよび3次元撮影モードなどの動作モードの確認がカメラコントローラー140により行われる(ステップS1)。
 なお、3Dアダプタ100がビデオカメラ200に装着されている状態で電源がONになると、レンズ検出部149は3Dアダプタ100が装着されていることを検出し、カメラコントローラー140によりビデオカメラ200の撮影モードが自動的に3次元撮影モードに切り替えられる。また、ビデオカメラ200の電源がONの状態で3Dアダプタ100がビデオカメラ200に装着されても、レンズ検出部149は3Dアダプタ100が装着されていることを検出し、カメラコントローラー140によりビデオカメラ200の撮影モードが自動的に3次元撮影モードに切り替えられる。
[Operation of video camera]
The operation of the video camera 200 when performing 3D shooting with the video camera 200 using the 3D adapter 100 will be described.
As shown in FIG. 49, when the power of the video camera 200 is turned on, power is supplied to each unit, and operation modes such as a playback mode, a two-dimensional shooting mode, and a three-dimensional shooting mode are confirmed by the camera controller 140 ( Step S1).
When the power is turned on while the 3D adapter 100 is attached to the video camera 200, the lens detection unit 149 detects that the 3D adapter 100 is attached, and the camera controller 140 uses the shooting mode of the video camera 200. Is automatically switched to the three-dimensional imaging mode. Even if the 3D adapter 100 is attached to the video camera 200 with the power of the video camera 200 turned on, the lens detection unit 149 detects that the 3D adapter 100 is attached, and the camera controller 140 causes the video camera 200 to be attached. The shooting mode is automatically switched to the three-dimensional shooting mode.
 ここで、製品の個体差(より詳細には、ビデオカメラ200の個体差)によって、3Dアダプタ100の基準面距離(図7参照)が設計値からずれてしまい、輻輳角も設計値からずれてしまい、結果として、左眼用光学像QL1および右眼用光学像QR1の左右の位置が設計位置からずれてしまう場合がある。また、環境温度の変化により光学系Vの特性が変化する場合もあるので、設計位置を基準とした左眼用光学像QL1および右眼用光学像QR1の左右の位置ズレは、環境温度の変化によっても発生し得る。左眼用光学像QL1および右眼用光学像QR1の左右の位置ズレは、3次元画像の立体視に影響を及ぼすため好ましくない。
 そこで、ビデオカメラ200は基準面距離のズレを補正することによって、設計位置を基準とした左眼用光学像QL1および右眼用光学像QR1の左右の位置ズレを補正する機能を有している。基準面距離の調整はズーム調整レンズ群である第2レンズ群G2をズームモータ214によりY軸方向に動かすことで行われる。
Here, due to individual differences of products (more specifically, individual differences of the video camera 200), the reference plane distance (see FIG. 7) of the 3D adapter 100 deviates from the design value, and the convergence angle also deviates from the design value. As a result, the left and right positions of the left-eye optical image QL1 and the right-eye optical image QR1 may deviate from the design position. In addition, since the characteristics of the optical system V may change due to changes in the environmental temperature, the left-right positional deviation of the left-eye optical image QL1 and the right-eye optical image QR1 with respect to the design position is a change in the environmental temperature. Can also occur. The left-right positional shift between the left-eye optical image QL1 and the right-eye optical image QR1 is not preferable because it affects the stereoscopic view of the three-dimensional image.
Therefore, the video camera 200 has a function of correcting a left-right positional shift between the left-eye optical image QL1 and the right-eye optical image QR1 based on the design position by correcting a reference plane distance shift. . Adjustment of the reference plane distance is performed by moving the second lens group G2, which is a zoom adjustment lens group, in the Y-axis direction by the zoom motor 214.
 具体的には、ビデオカメラ200の動作モードが3次元撮影モードに切り替えられると、各パラメータが駆動制御部140dにより読み込まれる(ステップS2)。光学系Vの個体差を示す指標データがROM140bから駆動制御部140dに読み込まれる。この指標データは、製品の出荷時に測定されROM140bに予め格納されている。
 次に、環境温度によって光学系Vの特性が変化するので、環境温度を把握するために、温度センサ118(図4)により温度が検出される(ステップS3)。検出された温度は温度情報としてRAM140cに一時的に格納され、必要に応じて駆動制御部140dにより読み込まれる。
 さらに、指標データおよび検出温度に基づいて駆動制御部140dによりズームモータ214が制御される。具体的には、指標データおよび検出温度に基づいて駆動制御部140dにより第2レンズ群G2(ズーム調整レンズ群)の目標位置が算出される(ステップS4)。指標データおよび検出温度に基づいて第2レンズ群G2の目標位置を算出するための情報(例えば、算出式やデータテーブル)は、ROM140bに予め格納されている。算出された目標位置まで第2レンズ群G2がズームモータ214により駆動される(ステップS5)。なお、指標データのみに基づいて第2レンズ群G2の目標位置を算出してもよい。
Specifically, when the operation mode of the video camera 200 is switched to the three-dimensional shooting mode, each parameter is read by the drive control unit 140d (step S2). Index data indicating individual differences of the optical system V is read from the ROM 140b into the drive control unit 140d. This index data is measured when the product is shipped and stored in the ROM 140b in advance.
Next, since the characteristics of the optical system V change depending on the environmental temperature, the temperature is detected by the temperature sensor 118 (FIG. 4) in order to grasp the environmental temperature (step S3). The detected temperature is temporarily stored in the RAM 140c as temperature information, and is read by the drive control unit 140d as necessary.
Further, the zoom motor 214 is controlled by the drive control unit 140d based on the index data and the detected temperature. Specifically, the target position of the second lens group G2 (zoom adjustment lens group) is calculated by the drive control unit 140d based on the index data and the detected temperature (step S4). Information (for example, a calculation formula or a data table) for calculating the target position of the second lens group G2 based on the index data and the detected temperature is stored in advance in the ROM 140b. The second lens group G2 is driven by the zoom motor 214 to the calculated target position (step S5). Note that the target position of the second lens group G2 may be calculated based only on the index data.
 さらに、フォーカスの微調整を行うために、算出された第2レンズ群G2の目標位置に基づいて駆動制御部140dにより第4レンズ群G4の目標位置が算出される(ステップS6)。第4レンズ群G4の目標位置を算出するための情報(例えば、算出式やデータテーブル)はROM140bに予め格納されている。算出された目標位置まで第4レンズ群G4がフォーカスモータ233により駆動される(ステップS7)。
 このように、製品の個体差あるいは環境温度の変化により左眼用光学像QL1および右眼用光学像QR1の左右の位置ズレが発生することを考慮して上記のような制御を行っているので、3Dアダプタ100をビデオカメラ200に装着して3次元撮影を行う際に、より適正なステレオ画像を取得することができる。
 3次元撮影を行う場合、例えば、ユーザーが録画ボタン131を押すと、ステレオ画像の撮影が実行される。具体的には図50に示すように、ユーザーが録画ボタン131を押すと、ウォブリングなどによりオートフォーカスが実行され(ステップS21)、CMOSイメージセンサ110が露光され(ステップS22)、CMOSイメージセンサ110から画像信号(全画素のデータ)が信号処理部215に順次取り込まれる(ステップS23)。
Further, in order to perform fine adjustment of the focus, the target position of the fourth lens group G4 is calculated by the drive control unit 140d based on the calculated target position of the second lens group G2 (step S6). Information (for example, a calculation formula or a data table) for calculating the target position of the fourth lens group G4 is stored in the ROM 140b in advance. The fourth lens group G4 is driven by the focus motor 233 to the calculated target position (step S7).
In this way, the control as described above is performed in consideration of the occurrence of a left-right misalignment between the left-eye optical image QL1 and the right-eye optical image QR1 due to individual differences in products or changes in environmental temperature. When the 3D adapter 100 is attached to the video camera 200 and three-dimensional imaging is performed, a more appropriate stereo image can be acquired.
When performing three-dimensional imaging, for example, when the user presses the recording button 131, imaging of a stereo image is executed. Specifically, as shown in FIG. 50, when the user presses the recording button 131, autofocus is executed by wobbling or the like (step S21), the CMOS image sensor 110 is exposed (step S22), and the CMOS image sensor 110 Image signals (data of all pixels) are sequentially taken into the signal processing unit 215 (step S23).
 3次元撮影時のフォーカス調整は、左眼用光学像QL1および右眼用光学像QR1のうちいずれか一方を用いて行われる。本実施形態では、左眼用光学像QL1を用いてフォーカス調整が行われる。例えば、ウォブリングの場合、AF評価値を算出する領域が左眼用光学像QL1の左眼有効画像領域QL1aの一部に設定される。設定された領域でAF評価値が所定の周期で算出され、算出されたAF評価値に基づいてウォブリングが実行される。
 取り込まれた画像信号に対して信号処理部215においてAD変換などの信号処理が施される(ステップS24)。信号処理部215により生成された基本画像データはDRAM241に一時的に格納される。
 次に、画像抽出部216により、左眼用画像データおよび右眼用画像データが基本画像データから抽出される(ステップS25)。このときの第1および第2抽出領域AL2およびAR2のサイズならびに位置は、ROM140bに予め格納されている。
Focus adjustment during three-dimensional imaging is performed using either one of the left-eye optical image QL1 and the right-eye optical image QR1. In the present embodiment, focus adjustment is performed using the left-eye optical image QL1. For example, in the case of wobbling, the area for calculating the AF evaluation value is set as a part of the left-eye effective image area QL1a of the left-eye optical image QL1. An AF evaluation value is calculated at a predetermined cycle in the set area, and wobbling is executed based on the calculated AF evaluation value.
The signal processing unit 215 performs signal processing such as AD conversion on the captured image signal (step S24). The basic image data generated by the signal processing unit 215 is temporarily stored in the DRAM 241.
Next, the image extraction unit 216 extracts left-eye image data and right-eye image data from the basic image data (step S25). The sizes and positions of the first and second extraction areas AL2 and AR2 at this time are stored in advance in the ROM 140b.
 さらに、補正処理部218により、抽出された左眼用画像データおよび右眼用画像データに補正処理が施され、画像圧縮部217によりJPEG圧縮などの圧縮処理が左眼用画像データおよび右眼用画像データに対して行われる(ステップS26およびS27)。録画ボタン131が再度押されるまで、ステップS23からステップS27の処理が実行される(ステップS27A)。
 録画ボタン131が再度押されると、カメラコントローラー140のメタデータ生成部147により、ステレオベースおよび輻輳角を含むメタデータが生成される(ステップS28)。
 メタデータ生成後、圧縮された左眼用および右眼用画像データとメタデータとを組み合わせて、MPF形式の画像ファイルが画像ファイル生成部148により生成される(ステップS29)。生成された画像ファイルは、例えばカードスロット170に送信されメモリーカード171に順次保存される(ステップS30)。動画撮影の場合は、これらの動作が繰り返される。
Further, the correction processing unit 218 performs correction processing on the extracted left-eye image data and right-eye image data, and the image compression unit 217 performs compression processing such as JPEG compression on the left-eye image data and the right-eye image data. This is performed on the image data (steps S26 and S27). Until the recording button 131 is pressed again, the processing from step S23 to step S27 is executed (step S27A).
When the recording button 131 is pressed again, metadata including the stereo base and the convergence angle is generated by the metadata generation unit 147 of the camera controller 140 (step S28).
After the metadata is generated, the image file generation unit 148 generates an image file in the MPF format by combining the compressed image data for the left eye and right eye and the metadata (step S29). The generated image file is transmitted to, for example, the card slot 170 and sequentially stored in the memory card 171 (step S30). In the case of moving image shooting, these operations are repeated.
 このようにして得られたステレオ映像ファイルをステレオベースおよび輻輳角などの情報を用いて3次元表示すると、専用メガネなどを用いれば表示された画像を立体視することができる。
 〔特徴〕
 以上に説明した3Dアダプタ100の特徴を以下にまとめる。
 (1)図47に示すように、この3Dアダプタ100では、中間遮光部72aにより左眼ケラレ領域QL1bおよび右眼ケラレ領域QR1bが形成されており、撮影時において左眼ケラレ領域QL1bの一部が右眼ケラレ領域QR1bと重なっており、右眼ケラレ領域QR1bの一部が左眼ケラレ領域QL1bと重なっている。この結果、左眼用光学像QL1の周辺部が右眼用光学像QR1の有効領域と重なるのを防止することができ、さらに右眼用光学像QR1の周辺部が左眼用光学像QL1の有効領域と重なるのを防止することができる。これにより、左眼用光学像QL1の有効領域および右眼用光学像QR1の有効領域を互いに近づけることができ、左眼用光学像QL1の有効領域および右眼用光学像QR1の有効領域を比較的大きく設定することができる。すなわち、この3Dアダプタ100では、CMOSイメージセンサ110上の有効画像領域を効率よく用いることができる。
If the stereo video file obtained in this way is three-dimensionally displayed using information such as the stereo base and the convergence angle, the displayed image can be stereoscopically viewed using dedicated glasses or the like.
〔Characteristic〕
The characteristics of the 3D adapter 100 described above are summarized below.
(1) As shown in FIG. 47, in this 3D adapter 100, the left-eye vignetting area QL1b and the right-eye vignetting area QR1b are formed by the intermediate light-shielding portion 72a, and a part of the left-eye vignetting area QL1b is captured at the time of shooting. The right eye vignetting area QR1b overlaps, and a part of the right eye vignetting area QR1b overlaps with the left eye vignetting area QL1b. As a result, it is possible to prevent the peripheral portion of the left-eye optical image QL1 from overlapping the effective area of the right-eye optical image QR1, and the peripheral portion of the right-eye optical image QR1 to the left-eye optical image QL1. It is possible to prevent overlapping with the effective area. Thus, the effective area of the left-eye optical image QL1 and the effective area of the right-eye optical image QR1 can be brought close to each other, and the effective area of the left-eye optical image QL1 and the effective area of the right-eye optical image QR1 are compared. Can be set larger. That is, in this 3D adapter 100, the effective image area on the CMOS image sensor 110 can be used efficiently.
 (2)図45および図46に示すように、左眼外側領域QL1dの面積は左眼内側領域QL1cの面積よりも小さく、右眼外側領域QR1dの面積は右眼内側領域QR1cの面積よりも小さい。したがって、図47に示すように、右眼外側領域QR1dが左眼用光学像QL1の有効領域に入り込むことがなく、左眼外側領域QL1dが右眼用光学像QR1の有効領域に入り込むことがない。
 (3)図45に示すように、左眼ケラレ領域QL1bの端が垂直な第1縁部72L(図15参照)により形成されるので、左眼ケラレ領域QL1bの端(より詳細には、左眼有効画像領域QL1aと左眼ケラレ領域QL1bとの間の第1境界BL)が直線的に形成される。また、図46に示すように、右眼ケラレ領域QR1bの端が垂直な第2縁部72R(図15参照)により形成されるので、右眼ケラレ領域QR1bの端(より詳細には、右眼有効画像領域QR1aと右眼ケラレ領域QR1bとの間の第2境界BR)が直線的に形成される。したがって、左眼有効画像領域QL1aのうち左眼ケラレ領域QL1b側の領域や右眼有効画像領域QR1aのうち右眼ケラレ領域QR1b側の領域をさらに有効利用することができる。
(2) As shown in FIGS. 45 and 46, the area of the left-eye outer area QL1d is smaller than the area of the left-eye inner area QL1c, and the area of the right-eye outer area QR1d is smaller than the area of the right-eye inner area QR1c. . Therefore, as shown in FIG. 47, the right-eye outer area QR1d does not enter the effective area of the left-eye optical image QL1, and the left-eye outer area QL1d does not enter the effective area of the right-eye optical image QR1. .
(3) As shown in FIG. 45, since the end of the left eye vignetting area QL1b is formed by the vertical first edge 72L (see FIG. 15), the end of the left eye vignetting area QL1b (more specifically, the left A first boundary BL) between the eye effective image area QL1a and the left eye vignetting area QL1b is linearly formed. Also, as shown in FIG. 46, the end of the right eye vignetting area QR1b is formed by the vertical second edge 72R (see FIG. 15), so the end of the right eye vignetting area QR1b (more specifically, the right eye A second boundary BR) between the effective image area QR1a and the right eye vignetting area QR1b is linearly formed. Therefore, the left eye vignetting area QL1b side of the left eye effective image area QL1a and the right eye vignetting area QR1b side of the right eye effective image area QR1a can be further effectively used.
 (4)図15に示すように、遮光シート72は、左眼用光学系OLへの入射光が通る矩形の第1開口72Laと、右眼用光学系ORへの入射光が通る矩形の第2開口72Raと、を有している。中間遮光部72aは、第1開口72Laおよび第2開口72Raにより形成されている。これにより、左眼有効画像領域QL1aおよび右眼有効画像領域QR1aを概ね矩形にすることができ、CMOSイメージセンサ110上の有効画像領域をさらに効率よく用いることができる。
 〔他の実施形態〕
 本発明は、前述の実施形態に限定されるものではなく、本発明の範囲を逸脱することなく種々の変形および修正が可能である。
 (A)ビデオカメラ200は動画および静止画撮影が可能であるが、3Dアダプタ100を装着する撮像装置は動画のみ撮影可能あるいは静止画のみ撮影可能な装置であってもよい。
(4) As shown in FIG. 15, the light shielding sheet 72 includes a rectangular first opening 72La through which incident light to the left-eye optical system OL passes and a rectangular first opening 72La through which incident light enters the right-eye optical system OR. 2 openings 72Ra. The intermediate light shielding part 72a is formed by a first opening 72La and a second opening 72Ra. Thereby, the left-eye effective image area QL1a and the right-eye effective image area QR1a can be substantially rectangular, and the effective image area on the CMOS image sensor 110 can be used more efficiently.
[Other Embodiments]
The present invention is not limited to the above-described embodiments, and various changes and modifications can be made without departing from the scope of the present invention.
(A) The video camera 200 can shoot moving images and still images, but the imaging device to which the 3D adapter 100 is attached may be a device that can shoot only moving images or only still images.
 (B)前述の実施形態では、3Dアダプタ100を例にレンズユニットについて説明しているが、レンズユニットの構成は前述の実施形態に限定されない。例えば、左眼用光学系OLおよび右眼用光学系ORの構成や各光学素子の配置は、前述の実施形態に限定されない。前述の各レンズ群および各プリズム群は、単一の光学素子から構成されていてもよいし、複数の光学素子から構成されていてもよい。また、3Dアダプタ100は、輻輳角や垂直相対ズレなどを調整できる機構を備えているが、これらの調整機構のうち一部あるいは全部を備えていなくてもよい。
 (C)前述の実施形態では、左眼用光学系OLおよび右眼用光学系ORを例に第1および第2光学系について説明しているが、第1および第2光学系の構成は前述の実施形態に限定されない。例えば、第1および第2光学系が左眼用光学系OLおよび右眼用光学系ORとそれぞれ異なる構成を有していてもよい。
(B) In the above-described embodiment, the lens unit has been described by taking the 3D adapter 100 as an example, but the configuration of the lens unit is not limited to the above-described embodiment. For example, the configurations of the left-eye optical system OL and the right-eye optical system OR and the arrangement of the optical elements are not limited to the above-described embodiments. Each lens group and each prism group described above may be composed of a single optical element or a plurality of optical elements. The 3D adapter 100 includes a mechanism that can adjust the convergence angle, vertical relative deviation, and the like, but may not include some or all of these adjustment mechanisms.
(C) In the above-described embodiment, the first and second optical systems have been described by taking the left-eye optical system OL and the right-eye optical system OR as an example, but the configurations of the first and second optical systems have been described above. It is not limited to the embodiment. For example, the first and second optical systems may have different configurations from the left-eye optical system OL and the right-eye optical system OR.
 (D)前述の実施形態では、中間遮光部72aにより左眼ケラレ領域QL1bおよび右眼ケラレ領域QR1bが形成されており、撮影時において左眼ケラレ領域QL1bの一部(左眼外側領域QL1d)が右眼ケラレ領域QR1bと重なっているが、左眼ケラレ領域QL1bの全部が右眼ケラレ領域QR1bと重なっていてもよい。
 同様に、撮影時において右眼ケラレ領域QR1bの一部(右眼外側領域QR1d)が左眼ケラレ領域QL1bと重なっているが、右眼ケラレ領域QR1bの全部が左眼ケラレ領域QL1bと重なっていてもよい。
 (E)前述の実施形態では、左眼外側領域QL1dの面積は、左眼内側領域QL1cの面積よりも小さいが、左眼内側領域QL1cの面積と同じであってもよい。同様に、右眼外側領域QR1dの面積は、右眼内側領域QR1cの面積よりも小さいが、右眼内側領域QR1cの面積と同じであってもよい。
(D) In the above-described embodiment, the left-eye vignetting area QL1b and the right-eye vignetting area QR1b are formed by the intermediate light-shielding portion 72a, and a part of the left-eye vignetting area QL1b (left-eye outer area QL1d) is captured at the time of shooting. Although it overlaps with the right eye vignetting area QR1b, the entire left eye vignetting area QL1b may overlap with the right eye vignetting area QR1b.
Similarly, a part of the right eye vignetting area QR1b overlaps the left eye vignetting area QL1b at the time of shooting, but the entire right eye vignetting area QR1b overlaps with the left eye vignetting area QL1b. Also good.
(E) In the above-described embodiment, the area of the left-eye outer area QL1d is smaller than the area of the left-eye inner area QL1c, but may be the same as the area of the left-eye inner area QL1c. Similarly, the area of the right eye outer region QR1d is smaller than the area of the right eye inner region QR1c, but may be the same as the area of the right eye inner region QR1c.
 (F)図51に示すように、中間遮光部72aに垂直相対ズレ調整用のゲージを設けてもよい。図51は被写体側から見た遮光シート72の正面図である。図51に示すように、中間遮光部72aには1対のゲージ72eおよび72fが設けられており、ピントが中間遮光部72aに合った状態では、左眼ケラレ領域QL1bおよび右眼ケラレ領域QR1bが互いに左右に離れるので、カメラモニタ120にはゲージ72eおよび72fがゲージ像72gおよび72hとして映し出される(図52参照)。左眼用光学像QL1および右眼用光学像QR1の垂直相対ズレを調整する際に、ゲージ72eおよび72fの像を参考にすることで、左眼用光学像QL1および右眼用光学像QR1の相対ズレを把握することができる。したがって、ゲージ像72gおよび72hの上下方向の位置を合わせることで、左眼用光学像QL1および右眼用光学像QR1の垂直相対ズレをより精度よく調整することができ、左眼用画像および右眼用画像の上下方向の位置調整の精度を高めることができる。また、ゲージ像72gおよび72hは、左眼用光学像QL1および右眼用光学像QR1の上下方向の垂直位置調整にも利用することができる。 (F) As shown in FIG. 51, a gauge for adjusting the vertical relative deviation may be provided in the intermediate light-shielding portion 72a. FIG. 51 is a front view of the light shielding sheet 72 viewed from the subject side. As shown in FIG. 51, a pair of gauges 72e and 72f are provided in the intermediate light-shielding portion 72a. When the focus is on the intermediate light-shielding portion 72a, the left-eye vignetting region QL1b and the right-eye vignetting region QR1b Since they are separated from each other left and right, gauges 72e and 72f are displayed on the camera monitor 120 as gauge images 72g and 72h (see FIG. 52). When adjusting the vertical relative misalignment between the left-eye optical image QL1 and the right-eye optical image QR1, the images of the gauges 72e and 72f are referred to, thereby the left-eye optical image QL1 and the right-eye optical image QR1. The relative deviation can be grasped. Therefore, by aligning the vertical positions of the gauge images 72g and 72h, the vertical relative deviation between the left-eye optical image QL1 and the right-eye optical image QR1 can be adjusted more accurately. The accuracy of the vertical position adjustment of the ophthalmic image can be increased. The gauge images 72g and 72h can also be used for vertical position adjustment in the vertical direction of the left-eye optical image QL1 and the right-eye optical image QR1.
 調整モードにおいて中間遮光部72aにピントが合った後、カメラモニタ120に表示されているゲージ像72gおよび72hの垂直位置が同じになるように、ユーザーが相対ズレ調整ダイヤル61を操作して左眼負レンズ群G1Lの位置を調整する。こうして、左眼用光学像QL1および右眼用光学像QR1の垂直相対ズレを補正することができる。
 図53に示すように、通常撮影時には、左眼ケラレ領域QL1bおよび右眼ケラレ領域QR1bが重なるが、この場合、ゲージ像72gおよび72hは第1境界BLおよび第2境界BR付近にそれぞれ配置されることになる。また、場合によっては、ゲージ像72gが第1境界BLよりも右眼用光学像QR1側に、そしてゲージ像72hが第2境界BRよりも左眼用光学像QL1側に、それぞれ配置されることもあり得る。したがって、ゲージ72eおよび72fは左眼用画像データおよび右眼用画像データの抽出にはほとんど影響を及ぼさない。
In the adjustment mode, the user operates the relative deviation adjustment dial 61 so that the vertical positions of the gauge images 72g and 72h displayed on the camera monitor 120 are the same after the intermediate light-shielding portion 72a is focused. The position of the negative lens group G1L is adjusted. In this way, the vertical relative deviation between the left-eye optical image QL1 and the right-eye optical image QR1 can be corrected.
As shown in FIG. 53, during normal imaging, the left-eye vignetting area QL1b and the right-eye vignetting area QR1b overlap, but in this case, the gauge images 72g and 72h are arranged near the first boundary BL and the second boundary BR, respectively. It will be. In some cases, the gauge image 72g is disposed closer to the right eye optical image QR1 than the first boundary BL, and the gauge image 72h is disposed closer to the left eye optical image QL1 than the second boundary BR. There is also a possibility. Therefore, the gauges 72e and 72f have little influence on the extraction of the left-eye image data and the right-eye image data.
 なお、1対のゲージ72eおよび72fは左眼用光学像QL1および右眼用光学像QR1の相対位置が分かり易くなるのであれば、どのような形状であってもよい。同様に、左眼用光学像QL1および右眼用光学像QR1の上下方向の位置が分かりやすくなるのであれば、1対のゲージ72eおよび72fはどのような形状であってもよい。例えば、ゲージ72eおよび72fが互いに異なる形状を有していてもよい。
 また、中間遮光部72aやゲージ72eおよび72fをキャップ9(図17)に設けてもよい。
 (G)前述の実施形態では、中間遮光部72aは1つの部分から構成されているが、中間遮光部72aが複数の部分(あるいは複数の部材)から構成されていてもよい。
The pair of gauges 72e and 72f may have any shape as long as the relative positions of the left-eye optical image QL1 and the right-eye optical image QR1 can be easily understood. Similarly, the pair of gauges 72e and 72f may have any shape as long as the vertical positions of the left-eye optical image QL1 and the right-eye optical image QR1 can be easily understood. For example, the gauges 72e and 72f may have different shapes.
Further, the intermediate light shielding portion 72a and gauges 72e and 72f may be provided on the cap 9 (FIG. 17).
(G) In the above-described embodiment, the intermediate light-shielding part 72a is composed of one part, but the intermediate light-shielding part 72a may be composed of a plurality of parts (or a plurality of members).
 上記の技術は、レンズユニットおよび撮像装置に適用可能である。 The above technology can be applied to a lens unit and an imaging device.
  1 ビデオカメラユニット
  2 本体枠(本体枠の一例)
  3 第1調整機構(相対ズレ調整機構の一例)
 30 第1調整枠(相対ズレ調整枠の一例)
 31 第1回転シャフト(回転支持シャフトの一例)
 37 第1規制機構(回転規制機構の一例)
 38 調整バネ(調整弾性部材の一例、第1弾性部材の一例、第2弾性部材の一例)
  4 第2調整機構(輻輳角調整機構の一例)
 40 第2調整枠(輻輳角調整枠の一例)
 41 第2回転シャフト(調整回転シャフトの一例)
 47 第2規制機構(位置決め機構の一例)
  5 第3調整機構(本体枠調整機構の一例)
 59A 弾性連結機構(弾性連結機構の一例)
 59B 第1移動規制機構(第1移動規制機構の一例)
 59C 第2移動規制機構(第2移動規制機構の一例)
  6 操作機構
 72 遮光シート(遮光部材の一例、遮光ユニットの一例)
 72a 中間遮光部(中間遮光部の一例)
 72e ゲージ(第1調整基準部または第2調整基準部の一例)
 72f ゲージ(第1調整基準部または第2調整基準部の一例)
  9 キャップ(遮光部材の一例、遮光ユニットの一例)
100 3Dアダプタ(レンズユニットの一例)
101 外装部(筐体の一例)
118 温度センサ(温度検出部の一例)
140 カメラコントローラー
140b ROM(指標記憶部の一例)
140d 駆動制御部(駆動制御部の一例)
200 ビデオカメラ(撮像装置の一例)
214 ズームモータ(ズーム駆動部の一例)
233 フォーカスモータ(フォーカス駆動部の一例)
 OL 左眼用光学系(第1光学系または第2光学系の一例)
 OR 右眼用光学系(第1光学系または第2光学系の一例)
 AL 左眼光軸(第1光軸または第2光軸の一例)
 AR 右眼光軸(第1光軸または第2光軸の一例)
 QL1 左眼用光学像(第1光学像または第2光学像の一例)
 QL1a 左眼有効画像領域(第1使用領域または第2使用領域の一例)
 QL1b 左眼ケラレ領域(第1ケラレ領域または第2ケラレ領域の一例)
 QL1c 左眼内側領域(第1内側領域または第2内側領域の一例)
 QL1d 左眼外側領域(第1外側領域または第2外側領域の一例)
 QR1 右眼用光学像(第1光学像または第2光学像の一例)
 QR1a 右眼有効画像領域(第1使用領域または第2使用領域の一例)
 QR1b 右眼ケラレ領域(第1ケラレ領域または第2ケラレ領域の一例)
 QR1c 右眼内側領域(第1内側領域または第2内側領域の一例)
 QR1d 右眼外側領域(第1外側領域または第2外側領域の一例)
 G1L 左眼負レンズ群(相対ズレ調整光学系の一例、第1負レンズ群または第2負レンズ群の一例)
 G2L 左眼正レンズ群(第1正レンズ群または第2正レンズ群の一例)
 G3L 左眼プリズム群(第1プリズム群または第2プリズム群の一例)
 G1R 右眼負レンズ群(輻輳角調整光学系の一例、第1負レンズ群または第2負レンズ群の一例)
 G2R 右眼正レンズ群(第1正レンズ群または第2正レンズ群の一例)
 G3R 右眼プリズム群(第1プリズム群または第2プリズム群の一例)
 R1 第1回転軸線
 R2 第2回転軸線
 R3 回転軸線(光学系回転軸の一例)
 R4 回転軸線(本体回転軸の一例)
  V 光学系(1軸光学系の一例)
 G1 第1レンズ群
 G2 第2レンズ群(ズーム調整レンズ群の一例)
 G3 第3レンズ群
 G4 第4レンズ群(フォーカスレンズ群の一例)
1 Video camera unit 2 Body frame (example of body frame)
3 First adjustment mechanism (an example of a relative deviation adjustment mechanism)
30 First adjustment frame (an example of a relative displacement adjustment frame)
31 1st rotation shaft (an example of a rotation support shaft)
37 First restriction mechanism (an example of a rotation restriction mechanism)
38 Adjustment spring (an example of an adjustment elastic member, an example of a first elastic member, an example of a second elastic member)
4 Second adjustment mechanism (an example of the convergence angle adjustment mechanism)
40 Second adjustment frame (an example of a convergence angle adjustment frame)
41 Second rotating shaft (an example of an adjusting rotating shaft)
47 Second restriction mechanism (an example of a positioning mechanism)
5 Third adjustment mechanism (an example of a body frame adjustment mechanism)
59A Elastic coupling mechanism (an example of an elastic coupling mechanism)
59B first movement restriction mechanism (an example of a first movement restriction mechanism)
59C Second movement restriction mechanism (an example of a second movement restriction mechanism)
6 Operation mechanism 72 Light-shielding sheet (an example of a light-shielding member, an example of a light-shielding unit)
72a Intermediate light shielding part (an example of an intermediate light shielding part)
72e gauge (an example of a first adjustment reference part or a second adjustment reference part)
72f gauge (an example of a first adjustment reference part or a second adjustment reference part)
9 Cap (an example of a light shielding member, an example of a light shielding unit)
100 3D adapter (an example of a lens unit)
101 Exterior (example of housing)
118 Temperature sensor (example of temperature detector)
140 Camera controller 140b ROM (an example of an index storage unit)
140d Drive control unit (an example of a drive control unit)
200 Video camera (an example of an imaging device)
214 Zoom motor (an example of a zoom drive unit)
233 Focus motor (an example of a focus drive unit)
OL left-eye optical system (an example of a first optical system or a second optical system)
OR Optical system for right eye (example of first optical system or second optical system)
AL left eye optical axis (example of first optical axis or second optical axis)
AR right eye optical axis (an example of the first optical axis or the second optical axis)
QL1 Optical image for left eye (an example of a first optical image or a second optical image)
QL1a left eye effective image area (an example of a first use area or a second use area)
QL1b Left eye vignetting area (an example of a first vignetting area or a second vignetting area)
QL1c left eye inner region (an example of a first inner region or a second inner region)
QL1d Left eye outer region (an example of a first outer region or a second outer region)
QR1 Optical image for right eye (example of first optical image or second optical image)
QR1a right eye effective image area (an example of a first use area or a second use area)
QR1b Right eye vignetting area (an example of the first vignetting area or the second vignetting area)
QR1c Right eye inner region (an example of a first inner region or a second inner region)
QR1d Right eye outer region (an example of a first outer region or a second outer region)
G1L Left-eye negative lens group (an example of a relative displacement adjustment optical system, an example of a first negative lens group or a second negative lens group)
G2L left-eye positive lens group (an example of a first positive lens group or a second positive lens group)
G3L Left-eye prism group (an example of a first prism group or a second prism group)
G1R right-eye negative lens group (an example of a convergence angle adjusting optical system, an example of a first negative lens group or a second negative lens group)
G2R right eye positive lens group (an example of a first positive lens group or a second positive lens group)
G3R right eye prism group (an example of a first prism group or a second prism group)
R1 first rotation axis R2 second rotation axis R3 rotation axis (an example of an optical system rotation axis)
R4 axis of rotation (an example of body rotation axis)
V optical system (an example of a uniaxial optical system)
G1 first lens group G2 second lens group (an example of a zoom adjustment lens group)
G3 Third lens group G4 Fourth lens group (an example of a focus lens group)

Claims (6)

  1.  撮像素子に第1光学像および第2光学像を形成するレンズユニットであって、
     第1の視点から見た前記第1光学像を形成するための光学系であって、第1光軸を有する第1光学系と、
     前記第1の視点とは異なる第2の視点から見た前記第2光学像を形成するための光学系であって、第2光軸を有する第2光学系と、
     前記第1および第2光学系の被写体側に配置され、前記第1および第2光軸の間に配置された中間遮光部を有する遮光部材と、を備え、
     前記第1光学系により前記撮像素子上に形成される前記第1光学像は、前記中間遮光部により光量が低減される第1ケラレ領域を有しており、
     前記第2光学系により前記撮像素子上に形成される前記第2光学像は、前記中間遮光部により光量が低減される第2ケラレ領域を有しており、
     撮影時において、前記第1ケラレ領域の少なくとも一部は、前記第2ケラレ領域と重なっている、
    レンズユニット。
    A lens unit for forming a first optical image and a second optical image on an image sensor;
    An optical system for forming the first optical image viewed from a first viewpoint, the first optical system having a first optical axis;
    An optical system for forming the second optical image viewed from a second viewpoint different from the first viewpoint, the second optical system having a second optical axis;
    A light shielding member disposed on the subject side of the first and second optical systems, and having an intermediate light shielding portion disposed between the first and second optical axes,
    The first optical image formed on the image sensor by the first optical system has a first vignetting area in which the amount of light is reduced by the intermediate light shielding portion,
    The second optical image formed on the image sensor by the second optical system has a second vignetting area in which the amount of light is reduced by the intermediate light shielding portion,
    At the time of shooting, at least a part of the first vignetting area overlaps with the second vignetting area,
    Lens unit.
  2.  前記撮像素子は、前記第1光学像が結像される第1受光面と、前記第1受光面と同じ面積を有し前記第2光学像が結像される第2受光面と、を有しており、
     前記第1ケラレ領域は、前記第1受光面上に形成される第1内側領域と、前記第2受光面上に形成される第1外側領域と、を有しており、
     前記第2ケラレ領域は、前記第2受光面上に形成される第2内側領域と、前記第1受光面上に形成される第2外側領域と、を有している、
    請求項1に記載のレンズユニット。
    The imaging device includes a first light receiving surface on which the first optical image is formed and a second light receiving surface having the same area as the first light receiving surface and on which the second optical image is formed. And
    The first vignetting region has a first inner region formed on the first light receiving surface and a first outer region formed on the second light receiving surface,
    The second vignetting region has a second inner region formed on the second light receiving surface and a second outer region formed on the first light receiving surface.
    The lens unit according to claim 1.
  3.  前記第1外側領域の面積は、前記第1内側領域の面積と同じまたは前記第1内側領域の面積よりも小さく、
     前記第2外側領域の面積は、前記第2内側領域の面積と同じまたは前記第2内側領域の面積よりも小さい、
    請求項2に記載のレンズユニット。
    The area of the first outer region is the same as the area of the first inner region or smaller than the area of the first inner region,
    The area of the second outer region is the same as the area of the second inner region or smaller than the area of the second inner region,
    The lens unit according to claim 2.
  4.  前記第1および第2光軸が交差している状態で前記第1および第2光軸に平行な仮想面を基準平面とした場合、
     前記中間遮光部は、前記第1ケラレ領域の端を形成し前記基準平面に垂直な第1縁部と、前記第2ケラレ領域の端を形成し前記基準平面に垂直な第2縁部と、を有している、
    請求項1から3のいずれかに記載のレンズユニット。
    When a virtual plane parallel to the first and second optical axes is a reference plane in a state where the first and second optical axes intersect,
    The intermediate light-shielding portion forms an end of the first vignetting area and is perpendicular to the reference plane, and a second edge that forms an end of the second vignetting area and is perpendicular to the reference plane; have,
    The lens unit according to claim 1.
  5.  前記遮光部材は、前記第1光学系への入射光が通る矩形の第1開口と、前記第2光学系への入射光が通る矩形の第2開口と、を有しており、
     前記中間遮光部は、前記第1開口および前記第2開口により形成されている、
    請求項1から4のいずれかに記載のレンズユニット。
    The light shielding member has a rectangular first opening through which incident light to the first optical system passes, and a rectangular second opening through which incident light to the second optical system passes,
    The intermediate light shielding portion is formed by the first opening and the second opening.
    The lens unit according to claim 1.
  6.  前記第1光学像は、前記第1ケラレ領域に隣接して配置され前記第1開口を通る光により形成される第1使用領域を有しており、
     前記第2光学像は、前記第2ケラレ領域に隣接して配置され前記第2開口を通る光により形成される第2使用領域を有しており、
     前記第1使用領域と前記第1ケラレ領域との第1境界線は、概ね直線であり、
     前記第2使用領域と前記第2ケラレ領域との第2境界線は、概ね直線である、
    請求項1から5のいずれかに記載のレンズユニット。
    The first optical image has a first use region that is formed adjacent to the first vignetting region and formed by light passing through the first opening,
    The second optical image has a second use area formed by light passing through the second opening disposed adjacent to the second vignetting area,
    The first boundary line between the first use area and the first vignetting area is substantially a straight line,
    The second boundary line between the second use area and the second vignetting area is substantially a straight line.
    The lens unit according to claim 1.
PCT/JP2011/004221 2010-07-26 2011-07-26 Lens unit WO2012014453A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-167640 2010-07-26
JP2010167640A JP2013210397A (en) 2010-07-26 2010-07-26 Lens unit

Publications (1)

Publication Number Publication Date
WO2012014453A1 true WO2012014453A1 (en) 2012-02-02

Family

ID=45529684

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/004221 WO2012014453A1 (en) 2010-07-26 2011-07-26 Lens unit

Country Status (2)

Country Link
JP (1) JP2013210397A (en)
WO (1) WO2012014453A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7500505B2 (en) 2021-06-11 2024-06-17 キヤノン株式会社 Lens mount and lens device having the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0843966A (en) * 1994-07-29 1996-02-16 Canon Inc Compound-eye image pickup system
JP2005045328A (en) * 2003-07-22 2005-02-17 Sharp Corp Three-dimensional imaging apparatus
JP2009265412A (en) * 2008-04-25 2009-11-12 Fuji Heavy Ind Ltd Stereo camera unit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0843966A (en) * 1994-07-29 1996-02-16 Canon Inc Compound-eye image pickup system
JP2005045328A (en) * 2003-07-22 2005-02-17 Sharp Corp Three-dimensional imaging apparatus
JP2009265412A (en) * 2008-04-25 2009-11-12 Fuji Heavy Ind Ltd Stereo camera unit

Also Published As

Publication number Publication date
JP2013210397A (en) 2013-10-10

Similar Documents

Publication Publication Date Title
WO2012017684A1 (en) Lense unit
KR102211291B1 (en) 3D multi-aperture imaging device, multi-aperture imaging device, method of providing an output signal of a 3D multi-aperture imaging device, and method of capturing the entire field of view
WO2011142086A1 (en) Camera body, interchangeable lens unit, image capturing device, method for controlling camera body, method for controlling interchangeable lens unit, program, and recording medium on which program is recorded
WO2013027343A1 (en) Three-dimensional image capture device, lens control device, and program
US20080117316A1 (en) Multi-eye image pickup device
US9256116B2 (en) Stereoscopic imaging device, image reproducing device, and editing software
WO2012014452A1 (en) Lens unit
JP2011259168A (en) Stereoscopic panoramic image capturing device
US20120113231A1 (en) 3d camera
JP2011199755A (en) Image pickup device
WO2012014453A1 (en) Lens unit
WO2012014454A1 (en) Lens unit
WO2012014450A1 (en) Imaging device
JP2013217947A (en) Lens unit
US20130088580A1 (en) Camera body, interchangeable lens unit, image capturing device, method for controlling camera body, program, and recording medium on which program is recorded
US20120069148A1 (en) Image production device, image production method, program, and storage medium storing program
JP2013117568A (en) Parallax image acquisition device, portable information terminal, and parallax image acquisition method
JP2010210691A (en) Stereoscopic imaging apparatus
JP2011150068A (en) Digital camera
JP7543214B2 (en) Lens device
JP2010166229A (en) Stereoscopic imaging device
WO2014017173A1 (en) Camera and method for controlling operation thereof
JP2023037539A (en) Lens device and imaging device
JP2024052503A (en) Lens device and imaging apparatus
JP5362157B1 (en) Stereoscopic imaging apparatus and stereoscopic imaging method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11812055

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11812055

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP