WO2012013836A2 - Gas spring with pivoting cover - Google Patents

Gas spring with pivoting cover Download PDF

Info

Publication number
WO2012013836A2
WO2012013836A2 PCT/ES2010/070800 ES2010070800W WO2012013836A2 WO 2012013836 A2 WO2012013836 A2 WO 2012013836A2 ES 2010070800 W ES2010070800 W ES 2010070800W WO 2012013836 A2 WO2012013836 A2 WO 2012013836A2
Authority
WO
WIPO (PCT)
Prior art keywords
rod
gas spring
spring
cover
gas
Prior art date
Application number
PCT/ES2010/070800
Other languages
Spanish (es)
French (fr)
Other versions
WO2012013836A3 (en
Inventor
Gabriel Jarava Melgarejo
Oscar Alejos
Félix ESTIRADO
Original Assignee
Azol-Gas, S. L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azol-Gas, S. L. filed Critical Azol-Gas, S. L.
Publication of WO2012013836A2 publication Critical patent/WO2012013836A2/en
Publication of WO2012013836A3 publication Critical patent/WO2012013836A3/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/02Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using gas only or vacuum
    • F16F9/0209Telescopic
    • F16F9/0218Mono-tubular units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/02Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using gas only or vacuum
    • F16F9/0209Telescopic
    • F16F9/0281Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/36Special sealings, including sealings or guides for piston-rods
    • F16F9/362Combination of sealing and guide arrangements for piston rods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/36Special sealings, including sealings or guides for piston-rods
    • F16F9/366Special sealings, including sealings or guides for piston-rods functioning as guide only, e.g. bushings
    • F16F9/367Special sealings, including sealings or guides for piston-rods functioning as guide only, e.g. bushings allowing misalignment of the piston rod

Definitions

  • the object of the present invention is a gas spring provided with a tilting cover designed to absorb non-axial loads, thus preventing the stresses caused by said loads from causing breakdowns and reducing the life of the gas spring.
  • a gas spring is essentially formed by a movable rod along the inner chamber of a hollow cylindrical body, being also provided with a cover to prevent the gas from escaping at the end through which the rod is introduced. Thanks to the presence of a gas confined inside said chamber, the rod acts as a spring or spring: when, starting from a certain resting position, a force pushes the rod into the chamber, the gas is compressed and opposes a growing force with displacement; when the force on the rod ceases, the pressure of the gas returns the rod to its resting position.
  • Current gas springs are normally prepared to work in the axial direction, that is, in the direction of the shaft of the rod and the cylindrical chamber. To do this, they are provided with a flat surface at the end of the rod on which the thrust surface rests.
  • a drawback of current gas springs is that, as a result of the specific configuration and operation characteristics of a particular installation, or of the mounting conditions of the spring itself, vibrations or lateral stresses sometimes occur at points concrete of the rod stroke, causing the gas spring not to work exactly aligned in the direction of its axis. Any component of stress outside the shaft, in turn, causes friction, heat generation and even wear of the pressed area.
  • Gas springs are constructed by assembling machined parts in lathes, which largely ensures that their configuration is concentric and that the support surfaces are perpendicular to the axis of the part.
  • gas springs do not pose misalignment problems with respect to their work axis and the value of static misalignment does not exceed one tenth of a degree.
  • the error is even smaller because the axis in its movement causes both the axis and the top cover to be arranged in the direction of movement.
  • an installed gas spring rests on two surfaces that theoretically are parallel but may have small deviations.
  • gas springs installed in a press
  • the surfaces of the press are sufficiently parallel, but it is another factor to be taken into account in the total composition.
  • a coarse finish can also influence the quality of the gas spring seat on said surfaces.
  • the gas spring is a very elongated element in relation to its base, and therefore a small deviation in its seat can make the oscillation at its upper end be a few millimeters.
  • the upper cover is forced to be oriented according to the working direction of the rod.
  • lateral movements also occur due to the construction of the die itself and the aforementioned inclination of the support surfaces.
  • horizontal movements by the construction of the die these are due to the fact that there are situations in which it is necessary to build a floating treadmill or elements not perfectly guided in the direction of movement of the press, which due to the work they do, they can move horizontally a small distance while the press descends.
  • the support surface of the gas spring is perfectly horizontal and parallel to the base of the press, if the element on which the axis of the gas spring is supported moves horizontally to one side, this will cause lateral stress on the gas spring that will make the guiding elements have to work considerably, even exceeding their maximum effort limit.
  • the gas spring will tend to maintain its verticality, since the support surfaces are horizontal and parallel, but will transmit the lateral stress to the gas spring.
  • the lateral movements are due to the fact that one or both surfaces on which the gas spring is supported while the die is closed are inclined. Because the movement of the press is always vertical, if the gas spring is being compressed with a slight degree of inclination, there will be a displacement on the surface of contact with the die that will cause a lateral load.
  • the forces involved in the gas spring generate a reaction in the components involved in the process that can cause permanent deformation of the guiding elements and a greater inclination to compensate for that effort.
  • the proposed solution consists in having the upper cover and rod assembly oriented at all times perpendicularly to the thrust surface so that no overstress occurs.
  • the lid is basically divided into two portions, an external potion fixed to the cylindrical body and an inner portion provided with the hole into which the rod slides, the inner portion being configured to allow rotational or tilting movements relative to the cylindrical body .
  • the tilting inner portion rotates or tilts to align with said surface.
  • the gas spring with a tilting lid of the invention comprises a hollow cylindrical body that is closed at one end and along whose inner chamber a rod slides.
  • the open end of said cylindrical body is closed by the rod and by an approximately cylindrical shaped lid.
  • the particularity of the cover of the invention is that it is divided into a fixed outer portion integral with the cylindrical body and a tilting inner portion provided with a hole through which the rod slides, both portions being joined by means of a contact surface at least partially spherical that allows the inner tilting portion to be orientable.
  • the spring further comprises an additional O-ring disposed between the fixed portion and the tilting portion of the lid, which prevents gas from escaping from the chamber during oscillations of the tilting inner portion of the lid.
  • the spring also comprises an elastic ring located in the lower part of the cover to hold the inner tilting portion, thus preventing it from falling into the gas spring when the gas is evacuated from the chamber.
  • FIG. 1 shows a gas spring according to the prior art where the effects of non-linear loads with the axis are shown.
  • Fig. 2 shows a known solution to the problem of non-collinear loads with the shaft.
  • Fig. 3 shows a preferred embodiment of the gas spring of the present invention.
  • Fig. 4 shows a preferred embodiment in which the gas spring also has a sliding stop.
  • a conventional gas spring (100) depicted in Fig. 1 is described. It can be seen that it is formed by a cylindrical body (102) into which a rod (103) slides, the inner chamber of the cylindrical body (102) filled with a gas. When the gas is confined inside the chamber, the compression and expansion of the gas when the rod (103) descends or rises causes the spring (100) to behave as a dock.
  • Fig. 1 also shows the different elements arranged between the body (102) and the rod (103) to achieve adequate sealing of the assembly, as well as adequate guidance of the rod (103).
  • the cover (104) is provided, provided with a groove that houses an outer O-ring (105) to prevent gas leaks and other inner housing in which an inner bushing (106) is arranged.
  • Fig. 2 shows another example of spring (200) according to the prior art where similar reference numbers have been used to refer to parts equivalent to those of Fig. 1.
  • This spring (200) has a rounded upper end surface (203) to better accommodate thrust surfaces that are not perfectly perpendicular to the spring axis (200).
  • This solution does not prevent the appearance of excessive loads on the stem generatrix (203) opposite the thrust point, as represented by an arrow.
  • Fig. 3 shows a spring (1) according to the invention where the hollow cylindrical body (2), the rod (3) and the cover (4) can be seen.
  • the cover (4) is formed by two differentiated portions: a fixed portion (4a) and a tilting portion (4b). It can be seen in Fig.
  • the fixed portion (4a) has an approximately cylindrical shape in its lower part, while at the top it has a concave spherical shape that is complemented by the convex spherical shape of the upper part of the tilting portion (4b).
  • This configuration allows the tilting portion (4b) to rotate or tilt in relation to the fixed portion (4a), which is, in turn, fixed to the outer cylindrical body (2). That way, when a Thrust surface not completely perpendicular to the rod (3) exerts a load on the spring (1), the tilting body (4b) rotates, sliding on the fixed body (4a), until it reaches a position where said thrust surface is perfectly seated on the surface of the upper end of the stem (3).
  • the spring (1) comprises an additional O-ring (5) between the fixed portion (4a) and the movable portion (4b).
  • the spring (1) of this example incorporates an elastic ring to prevent the tilting portion (4b) of the cover (4) from falling into the chamber in case the gas is evacuated.
  • the end of the rod (3) of the gas spring (1) comprises a housing in which a sliding element (7) is arranged which is configured so as to have radial displacement capacity with respect to the rod (3) of the spring of gas (1).
  • the sliding element (7) would move laterally with respect to the rod (3), but would not transmit this effort to the gas spring (1 ) absorbing it.
  • FIG. 4 An exemplary embodiment is shown in Fig. 4 in which the sliding element (7) and the cover (4) are combined, although the sliding element (7) can be incorporated into the gas spring without the said tilting cover (4) ).
  • the sliding element (7) has a cylindrical shape and is located in a cylindrical housing of the end part of the stem (3) of the spring (1).
  • a damping means can be oil, for which the sliding support (7) would include a gasket (8) that centers the sliding support (7) and prevents the oil from escaping. Therefore, a gas spring that incorporates both the tilting cover (4) and the sliding support (7) manages to absorb any difference in the supports or in the movement of the die, thus achieving a longer life of the spring of gas (1).

Abstract

The invention relates to a gas spring (1) with a pivoting cover (4) for absorbing non-axial loads, thus preventing the stress resulting from said loads from causing failures and reducing the working life of the spring (1). The cover (4) is divided into a fixed external portion (4a) that is rigidly secured to the body (2), and a pivoting internal portion (4b) having a hole over which the shaft (3) slides, the two portions (4a, 4b) being connected via an at least partially spherical contact surface, such that the pivoting internal portion (4b) is orientable. The spring (1) also comprises an additional O-ring seal (5) between the fixed external portion (4a) and the pivoting internal portion (4b) of the cover (4) for preventing gas leaks. The end of the shaft (3) also has a sliding element (7) that can move radially to absorb horizontal movements.

Description

RESORTE DE GAS CON TAPA BASCULANTE  GAS SPRING WITH SWING COVER
OBJETIVO DE LA INVENCIÓN El objeto de la presente invención es un resorte de gas dotado de una tapa basculante diseñada para absorber cargas no axiales, evitando así que los esfuerzos provocados por dichas cargas provoquen averías y disminuyan la vida útil del resorte de gas. ANTECEDENTES DE LA INVENCIÓN OBJECTIVE OF THE INVENTION The object of the present invention is a gas spring provided with a tilting cover designed to absorb non-axial loads, thus preventing the stresses caused by said loads from causing breakdowns and reducing the life of the gas spring. BACKGROUND OF THE INVENTION
Un resorte de gas está formado fundamentalmente por un vástago desplazable a lo largo de la cámara interior de un cuerpo cilindrico hueco, estando dotado además de una tapa para evitar la salida del gas en el extremo por el que se introduce el vástago. Gracias a la presencia de un gas confinado en el interior de dicha cámara, el vástago actúa como un resorte o muelle: cuando, partiendo de una posición de reposo determinada, una fuerza empuja el vástago hacia el interior de la cámara, el gas se comprime y opone una fuerza creciente con el desplazamiento; cuando cesa la fuerza sobre el vástago, la presión del gas devuelve el vástago a su posición de reposo. Los resortes de gas actuales normalmente están preparados para trabajar en dirección axial, es decir, en la dirección del eje del vástago y la cámara cilindrica. Para ello, están dotados de una superficie plana en el extremo del vástago sobre la que se apoya la superficie de empuje. Si esta superficie de empuje no es perfectamente perpendicular al eje del resorte, el contacto entre ambas superficies se efectúa sobre una arista del vástago, produciéndose un par de giro perjudicial para el correcto funcionamiento del resorte. Los resortes de gas se vienen utilizando desde hace algún tiempo en diferentes industrias como elementos elásticos de limitación de fuerza, por ejemplo en prensas en procesos de estampación de chapa. A gas spring is essentially formed by a movable rod along the inner chamber of a hollow cylindrical body, being also provided with a cover to prevent the gas from escaping at the end through which the rod is introduced. Thanks to the presence of a gas confined inside said chamber, the rod acts as a spring or spring: when, starting from a certain resting position, a force pushes the rod into the chamber, the gas is compressed and opposes a growing force with displacement; when the force on the rod ceases, the pressure of the gas returns the rod to its resting position. Current gas springs are normally prepared to work in the axial direction, that is, in the direction of the shaft of the rod and the cylindrical chamber. To do this, they are provided with a flat surface at the end of the rod on which the thrust surface rests. If this thrust surface is not perfectly perpendicular to the axis of the spring, the contact between the two surfaces is made on an edge of the rod, producing a torque that is detrimental to the correct operation of the spring. Gas springs have been used for some time in different industries as elastic force limitation elements, for example in presses in sheet metal stamping processes.
Un inconveniente de los resortes de gas actuales es que, como consecuencia de las características concretas de configuración y funcionamiento de una determinada instalación, o bien de las condiciones de montaje del propio resorte, a veces se producen vibraciones o esfuerzos laterales en puntos concretos de la carrera del vástago, provocando que el resorte de gas no trabaje exactamente alineado en la dirección de su eje. Cualquier componente de esfuerzo fuera del eje, a su vez, ocasiona rozamiento, generación de calor e incluso desgaste de la zona presionada. A drawback of current gas springs is that, as a result of the specific configuration and operation characteristics of a particular installation, or of the mounting conditions of the spring itself, vibrations or lateral stresses sometimes occur at points concrete of the rod stroke, causing the gas spring not to work exactly aligned in the direction of its axis. Any component of stress outside the shaft, in turn, causes friction, heat generation and even wear of the pressed area.
Los resortes de gas se construyen mediante el ensamblaje de piezas mecanizadas en tornos, lo que asegura en gran medida que su configuración es concéntrica y que las superficies de apoyo son perpendiculares al eje de la pieza. En general, los resortes de gas no plantean problemas de desalineación respecto de su eje de trabajo y el valor de la desalineación en estático no supera la décima de grado. En dinámico, el error es aún menor porque el eje en su movimiento hace que tanto el eje como la tapa superior se dispongan en la dirección del movimiento. Por otro lado, un resorte de gas instalado se apoya sobre dos superficies que teóricamente son paralelas pero que pueden tener pequeñas desviaciones. Por ejemplo, en el caso de resortes de gas instalados en una prensa, en general se puede aceptar que las superficies de la prensa están suficientemente paralelas, pero es un factor más a tener en cuenta en la composición total. Adicionalmente, un acabado basto puede también influir en la calidad del asiento del resorte de gas sobre dichas superficies. Nótese además que el resorte de gas es un elemento muy alargado con relación a su base, y por lo tanto una pequeña desviación en su asiento puede hacer que en su extremo superior la oscilación sea de algunos milímetros. Gas springs are constructed by assembling machined parts in lathes, which largely ensures that their configuration is concentric and that the support surfaces are perpendicular to the axis of the part. In general, gas springs do not pose misalignment problems with respect to their work axis and the value of static misalignment does not exceed one tenth of a degree. In dynamic, the error is even smaller because the axis in its movement causes both the axis and the top cover to be arranged in the direction of movement. On the other hand, an installed gas spring rests on two surfaces that theoretically are parallel but may have small deviations. For example, in the case of gas springs installed in a press, it can generally be accepted that the surfaces of the press are sufficiently parallel, but it is another factor to be taken into account in the total composition. Additionally, a coarse finish can also influence the quality of the gas spring seat on said surfaces. Note also that the gas spring is a very elongated element in relation to its base, and therefore a small deviation in its seat can make the oscillation at its upper end be a few millimeters.
Como consecuencia de la combinación de todos estos elementos, en ocasiones se producen desalineaciones que pueden provocar los siguientes efectos: As a result of the combination of all these elements, misalignments sometimes occur that can cause the following effects:
- Mayor apoyo del vástago sobre los elementos de guiado.  - Increased support of the rod on the guiding elements.
- Distinta distribución de esfuerzo sobre la junta de estanqueidad.  - Different distribution of stress on the seal.
- Se fuerza a la tapa superior a orientarse según la dirección de trabajo del vástago.  - The upper cover is forced to be oriented according to the working direction of the rod.
- Contacto metal-metal entre tapa y vástago. Como consecuencia, se genera más calor, lo cual a su vez provoca que las juntas de estanqueidad trabajen más cerca de su límite térmico o incluso que lo superen, y que los elementos de guiado se desgasten por la zona de presión y se lleguen a producir contactos de metal contra metal, que pueden despedir pequeñas partículas de acero o virutas que rayan las juntas, produciéndose fugas de gas. La consecuencia última es la aparición de averías y la disminución de la vida útil de los resortes de gas. - Metal-metal contact between cover and stem. As a result, more heat is generated, which in turn causes the gaskets to work closer to their thermal limit or even exceed it, and that the guiding elements wear out through the pressure zone and become produced Metal-to-metal contacts, which can fire small particles of steel or chips that scratch the joints, causing gas leaks. The ultimate consequence is the occurrence of breakdowns and the decrease in the life of gas springs.
Para solucionar estos problemas, una solución propuesta ha sido dotar al extremo superior del vástago de forma esférica con el objeto de minimizar el efecto del par de giro sobre el vástago. Sin embargo, esta opción provoca la aparición en la generatriz opuesta al punto de contacto de una carga superior que en el resto de la superficie del vástago, por lo que tampoco se resuelve completamente el problema. To solve these problems, a proposed solution has been to provide the upper end of the rod with a spherical shape in order to minimize the effect of the torque on the rod. However, this option causes the appearance in the generatrix opposite to the contact point of a higher load than in the rest of the rod surface, so that the problem is not completely resolved.
Además de lo anterior en un troquel se producen también movimientos laterales por la propia construcción del troquel y por la referida inclinación de las superficies de apoyo. En el caso de los movimientos horizontales por la construcción del troquel, estos son debido a que existen situaciones en las que es necesario construir un pisador flotante o elementos no guiados perfectamente en la dirección de movimiento de la prensa, que debido al trabajo que realizan, pueden desplazarse horizontalmente una pequeña distancia a la vez que la prensa desciende. Aunque la superficie de apoyo del resorte de gas sea perfectamente horizontal y paralela a la base de la prensa, si el elemento sobre el que va apoyado el eje del resorte de gas se mueve horizontalmente hacia un lado, esto va a causar un esfuerzo lateral sobre el resorte de gas que va a hacer que los elementos de guiado tengan que trabajar de forma considerable, superando incluso su límite de esfuerzo máximo. El resorte de gas tenderá a mantener su verticalidad, ya que las superficies de apoyo son horizontales y paralelas, pero transmitirá el esfuerzo lateral al resorte de gas. En el caso de inclinación de la superficie de apoyo, los movimientos laterales son debidos a que una o ambas superficies sobre las que el resorte de gas está apoyado mientras el troquel se cierra están inclinadas. Debido a que el movimiento de la prensa es siempre vertical, si el resorte de gas está siendo comprimido con un ligero grado de inclinación, sobre la superficie de contacto con el troquel va a haber un desplazamiento que va a originar una carga lateral. Las fuerzas que intervienen en el resorte de gas generan una reacción en los componentes que intervienen en el proceso que pueden ocasionar una deformación permanente de los elementos de guiado y una inclinación mayor para compensar ese esfuerzo. In addition to the above in a die, lateral movements also occur due to the construction of the die itself and the aforementioned inclination of the support surfaces. In the case of horizontal movements by the construction of the die, these are due to the fact that there are situations in which it is necessary to build a floating treadmill or elements not perfectly guided in the direction of movement of the press, which due to the work they do, they can move horizontally a small distance while the press descends. Although the support surface of the gas spring is perfectly horizontal and parallel to the base of the press, if the element on which the axis of the gas spring is supported moves horizontally to one side, this will cause lateral stress on the gas spring that will make the guiding elements have to work considerably, even exceeding their maximum effort limit. The gas spring will tend to maintain its verticality, since the support surfaces are horizontal and parallel, but will transmit the lateral stress to the gas spring. In the case of inclination of the support surface, the lateral movements are due to the fact that one or both surfaces on which the gas spring is supported while the die is closed are inclined. Because the movement of the press is always vertical, if the gas spring is being compressed with a slight degree of inclination, there will be a displacement on the surface of contact with the die that will cause a lateral load. The forces involved in the gas spring generate a reaction in the components involved in the process that can cause permanent deformation of the guiding elements and a greater inclination to compensate for that effort.
DESCRIPCIÓN DE LA INVENCIÓN DESCRIPTION OF THE INVENTION
La solución propuesta consiste en hacer que el conjunto de tapa superior y vástago se orienten en todo momento perpendicularmente a la superficie de empuje para que no se produzcan sobreesfuerzos. Para ello, fundamentalmente la tapa se divide en dos porciones, una poción exterior fijada al cuerpo cilindrico y una porción interior dotada del orificio dentro del cual desliza el vástago, estando la porción interior configurada para permitir movimientos de giro o basculación con relación al cuerpo cilindrico. Así, cuando la superficie sobre la que se apoya el vástago no es perfectamente perpendicular al eje del resorte, la porción interior basculante gira o bascula para alinearse con dicha superficie. The proposed solution consists in having the upper cover and rod assembly oriented at all times perpendicularly to the thrust surface so that no overstress occurs. To do this, the lid is basically divided into two portions, an external potion fixed to the cylindrical body and an inner portion provided with the hole into which the rod slides, the inner portion being configured to allow rotational or tilting movements relative to the cylindrical body . Thus, when the surface on which the rod rests is not perfectly perpendicular to the axis of the spring, the tilting inner portion rotates or tilts to align with said surface.
Por lo tanto, el resorte de gas con tapa basculante de la invención comprende un cuerpo cilindrico hueco que está cerrado por un extremo y a lo largo de cuya cámara interior desliza un vástago. El extremo abierto de dicho cuerpo cilindrico está cerrado por el vástago y por una tapa de forma aproximadamente cilindrica. La particularidad de la tapa de la invención es que está dividida en una porción exterior fija solidaria al cuerpo cilindrico y una porción interior basculante dotada de un orificio por el que desliza el vástago, estando ambas porciones unidas por medio de una superficie de contacto al menos parcialmente esférica que permite que la porción basculante interior sea orientable. Así, cuando la superficie sobre la que se apoya el extremo del vástago no es completamente perpendicular al eje del resorte, la porción interior basculante gira con relación a la porción exterior fija hasta que el vástago queda perfectamente alineado con dicha superficie, evitándose rozamientos indeseados con los elementos de guía del resorte. El resorte comprende además una junta tórica adicional dispuesta entre la porción fija y la porción basculante de la tapa, que impide que el gas escape de la cámara durante las oscilaciones de la porción interior basculante de la tapa. Therefore, the gas spring with a tilting lid of the invention comprises a hollow cylindrical body that is closed at one end and along whose inner chamber a rod slides. The open end of said cylindrical body is closed by the rod and by an approximately cylindrical shaped lid. The particularity of the cover of the invention is that it is divided into a fixed outer portion integral with the cylindrical body and a tilting inner portion provided with a hole through which the rod slides, both portions being joined by means of a contact surface at least partially spherical that allows the inner tilting portion to be orientable. Thus, when the surface on which the rod end rests is not completely perpendicular to the axis of the spring, the portion tilting interior rotates relative to the fixed outer portion until the rod is perfectly aligned with said surface, avoiding unwanted friction with the guide elements of the spring. The spring further comprises an additional O-ring disposed between the fixed portion and the tilting portion of the lid, which prevents gas from escaping from the chamber during oscillations of the tilting inner portion of the lid.
Según una realización preferente de la invención, el resorte comprende también un anillo elástico situado en la zona inferior de la tapa para sujetar la porción interior basculante, evitando así que pueda caerse al interior del resorte de gas cuando se evacúa el gas de la cámara. According to a preferred embodiment of the invention, the spring also comprises an elastic ring located in the lower part of the cover to hold the inner tilting portion, thus preventing it from falling into the gas spring when the gas is evacuated from the chamber.
BREVE DESCRIPCIÓN DE LAS FIGURAS La Fig. 1 muestra un resorte de gas según la técnica anterior donde se muestran los efectos de cargas no lineales con el eje. BRIEF DESCRIPTION OF THE FIGURES Fig. 1 shows a gas spring according to the prior art where the effects of non-linear loads with the axis are shown.
La Fig. 2 muestra una solución conocida al problema de las cargas no colineales con el eje. Fig. 2 shows a known solution to the problem of non-collinear loads with the shaft.
La Fig. 3 muestra una realización preferente del resorte de gas de la presente invención. Fig. 3 shows a preferred embodiment of the gas spring of the present invention.
La Fig. 4 muestra una realización preferente en la que el resorte de gas posee además un tope deslizante. Fig. 4 shows a preferred embodiment in which the gas spring also has a sliding stop.
REALIZACIÓN PREFERIDA DE LA INVENCIÓN PREFERRED EMBODIMENT OF THE INVENTION
En primer lugar, se describe un resorte (100) de gas convencional representado en la Fig. 1. Se aprecia que está formado por un cuerpo (102) de forma cilindrica dentro del cual desliza un vástago (103), estando la cámara interior del cuerpo (102) cilindrico llena con un gas. Al estar el gas confinado en el interior de la cámara, la compresión y expansión del gas cuando el vástago (103) desciende o asciende provocan que el resorte (100) se comporte como un muelle. La Fig. 1 muestra además los diferentes elementos dispuestos entre el cuerpo (102) y el vástago (103) para conseguir una adecuada estanqueidad del conjunto, así como un guiado adecuado del vástago (103). En particular, se ha representado la tapa (104), dotada de una ranura que aloja una junta tórica (105) exterior para evitar pérdidas de gas y de otro alojamiento interior en el que se dispone un casquillo (106) interior. También se observa un rascador (107), un protector (108), un aro (109) y la empaquetadura (1 10). Todos estos elementos y sus funciones son conocidos en la técnica anterior. Así pues, si el resorte (100) de gas de la Fig. 1 se apoya sobre una superficie de empuje que no es perpendicular a su eje, como se ha representado en la zona superior de la figura, se produce un par de giro que provoca fricciones cerca de la generatriz del vástago opuesta al punto de contacto con dicha superficie de empuje. First, a conventional gas spring (100) depicted in Fig. 1 is described. It can be seen that it is formed by a cylindrical body (102) into which a rod (103) slides, the inner chamber of the cylindrical body (102) filled with a gas. When the gas is confined inside the chamber, the compression and expansion of the gas when the rod (103) descends or rises causes the spring (100) to behave as a dock. Fig. 1 also shows the different elements arranged between the body (102) and the rod (103) to achieve adequate sealing of the assembly, as well as adequate guidance of the rod (103). In particular, the cover (104) is provided, provided with a groove that houses an outer O-ring (105) to prevent gas leaks and other inner housing in which an inner bushing (106) is arranged. There is also a scraper (107), a protector (108), a ring (109) and the gasket (1 10). All these elements and their functions are known in the prior art. Thus, if the gas spring (100) of Fig. 1 rests on a thrust surface that is not perpendicular to its axis, as shown in the upper area of the figure, a torque is produced which it causes friction near the generatrix of the rod opposite the point of contact with said thrust surface.
La Fig. 2 muestra otro ejemplo de resorte (200) según la técnica anterior donde se han empleado números de referencia similares para hacer referencia a partes equivalentes a las de la Fig. 1 . Este resorte (200) presente una superficie del extremo superior del vástago (203) redondeada para acomodarse mejor a superficies de empuje que no son perfectamente perpendiculares al eje del resorte (200). Esta solución, sin embargo, no evita la aparición de cargas excesivas sobre la generatriz del vástago (203) opuesta al punto de empuje, como se representa por medio de una flecha. La Fig. 3 muestra un resorte (1 ) según la invención donde se aprecia el cuerpo (2) cilindrico hueco, el vástago (3) y la tapa (4). Según se ha mencionado anteriormente en el presente documento, en este ejemplo la tapa (4) está formada por dos porciones diferenciadas: una porción fija (4a) y una porción basculante (4b). Se aprecia en la Fig. 3 cómo la porción fija (4a) tiene una forma aproximadamente cilindrica en su parte inferior, mientra que por la superior tiene una forma esférica cóncava que se complementa con la forma esférica convexa de la parte superior de la porción basculante (4b). Esta configuración permite que la porción basculante (4b) gire o bascule con relación a la porción fija (4a), la cual está, a su vez, fijada al cuerpo (2) cilindrico exterior. De ese modo, cuando una superficie de empuje no completamente perpendicular al vástago (3) ejerce una carga sobre el resorte (1 ), el cuerpo basculante (4b) gira, deslizando sobre el cuerpo fijo (4a), hasta llegar a una posición donde dicha superficie de empuje queda perfectamente asentada sobre la superficie del extremo superior del vástago (3). Fig. 2 shows another example of spring (200) according to the prior art where similar reference numbers have been used to refer to parts equivalent to those of Fig. 1. This spring (200) has a rounded upper end surface (203) to better accommodate thrust surfaces that are not perfectly perpendicular to the spring axis (200). This solution, however, does not prevent the appearance of excessive loads on the stem generatrix (203) opposite the thrust point, as represented by an arrow. Fig. 3 shows a spring (1) according to the invention where the hollow cylindrical body (2), the rod (3) and the cover (4) can be seen. As mentioned hereinbefore, in this example the cover (4) is formed by two differentiated portions: a fixed portion (4a) and a tilting portion (4b). It can be seen in Fig. 3 how the fixed portion (4a) has an approximately cylindrical shape in its lower part, while at the top it has a concave spherical shape that is complemented by the convex spherical shape of the upper part of the tilting portion (4b). This configuration allows the tilting portion (4b) to rotate or tilt in relation to the fixed portion (4a), which is, in turn, fixed to the outer cylindrical body (2). That way, when a Thrust surface not completely perpendicular to the rod (3) exerts a load on the spring (1), the tilting body (4b) rotates, sliding on the fixed body (4a), until it reaches a position where said thrust surface is perfectly seated on the surface of the upper end of the stem (3).
Para evitar que se produzcan pérdidas de gas durante los movimientos de basculación, el resorte (1 ) comprende una junta tórica (5) adicional entre la porción fija (4a) y la porción móvil (4b). Además, el resorte (1 ) de este ejemplo incorpora un anillo elástico para evitar que la porción basculante (4b) de la tapa (4) caiga hacia el interior de la cámara en caso de que se evacué el gas. To prevent gas losses during the tilting movements, the spring (1) comprises an additional O-ring (5) between the fixed portion (4a) and the movable portion (4b). In addition, the spring (1) of this example incorporates an elastic ring to prevent the tilting portion (4b) of the cover (4) from falling into the chamber in case the gas is evacuated.
En la Fig. 4 se representa un ejemplo de realización del resorte de gas que resuelve el problema derivado de los movimientos laterales. Para ello el extremo del vástago (3) del resorte de gas (1 ) comprende un alojamiento en el que se dispone insertado un elemento deslizante (7) que está configurado de modo que posee capacidad de desplazamiento radial respecto del vástago (3) del resorte de gas (1 ). De este modo al contactar, por ejemplo, con una superficie inclinada que puede desplazar lateralmente al vástago (3), el elemento deslizante (7) se desplazaría lateralmente respecto del vástago (3), pero no transmitiría este esfuerzo al resorte de gas (1 ) absorbiendo el mismo. An example of embodiment of the gas spring that solves the problem derived from lateral movements is shown in Fig. 4. For this, the end of the rod (3) of the gas spring (1) comprises a housing in which a sliding element (7) is arranged which is configured so as to have radial displacement capacity with respect to the rod (3) of the spring of gas (1). Thus, by contacting, for example, with an inclined surface that can move laterally to the rod (3), the sliding element (7) would move laterally with respect to the rod (3), but would not transmit this effort to the gas spring (1 ) absorbing it.
En la Fig. 4 se muestra un ejemplo de realización en el que se combina el elemento deslizante (7) y la tapa (4), aunque el elemento deslizante (7) se puede incorporar al resorte de gas sin la mencionada tapa basculante (4). En el ejemplo de realización mostrado, el elemento deslizante (7) posee una forma cilindrica y se localiza en un alojamiento también cilindrico de la parte extrema del vástago (3) del resorte (1 ). Finalmente entre el apoyo deslizante (7) y la pared interna del alojamiento del mismo (7) en el extremo del vástago (3) existe un medio amortiguador. Este medio amortiguador puede ser aceite, para lo que el apoyo deslizante (7) incluiría una junta (8) que centra el apoyo deslizante (7) y evita que el aceite pueda salir. Por lo tanto, un resorte de gas que incorpore tanto la tapa (4) basculante como el apoyo deslizante (7) logra absorber cualquier diferencia en los apoyos o en el movimiento del troquel, logrando de esta manera conseguir una mayor vida útil del resorte de gas (1 ). An exemplary embodiment is shown in Fig. 4 in which the sliding element (7) and the cover (4) are combined, although the sliding element (7) can be incorporated into the gas spring without the said tilting cover (4) ). In the exemplary embodiment shown, the sliding element (7) has a cylindrical shape and is located in a cylindrical housing of the end part of the stem (3) of the spring (1). Finally, between the sliding support (7) and the inner wall of the housing thereof (7) at the end of the rod (3) there is a damping means. This buffer means can be oil, for which the sliding support (7) would include a gasket (8) that centers the sliding support (7) and prevents the oil from escaping. Therefore, a gas spring that incorporates both the tilting cover (4) and the sliding support (7) manages to absorb any difference in the supports or in the movement of the die, thus achieving a longer life of the spring of gas (1).

Claims

REIVINDICACIONES
1. Resorte (1 ) de gas con tapa basculante, que comprende un cuerpo (2) cilindrico hueco cerrado por un extremo a lo largo de cuya cámara interior desliza un vástago (3), y estando cerrado el extremo abierto de dicho cuerpo (2) por el vástago (3) y por una tapa (4) aproximadamente cilindrica, caracterizado porque la tapa (4) está dividida en una porción exterior fija (4a) solidaria al cuerpo (2) y una porción interior basculante (4b) dotada de un orificio sobre el que desliza el vástago (3), estando ambas porciones (4a, 4b) unidas mediante una superficie de contacto al menos parcialmente esférica, de modo que la porción interior basculante (4b) es orientable, y que además comprende una junta tórica (5) adicional dispuesta entre la porción exterior fija (4a) y la porción interior basculante (4b) de la tapa (4) para evitar fugas de gas. 1. Gas spring (1) with a tilting lid, comprising a hollow cylindrical body (2) closed at one end along whose inner chamber a rod (3) slides, and the open end of said body (2) being closed ) by the rod (3) and by an approximately cylindrical cover (4), characterized in that the cover (4) is divided into a fixed outer portion (4a) integral with the body (2) and a tilting inner portion (4b) provided with a hole on which the rod (3) slides, both portions (4a, 4b) being joined by a contact surface at least partially spherical, so that the tilting inner portion (4b) is orientable, and also comprises a joint O-ring (5) arranged between the fixed outer portion (4a) and the tilting inner portion (4b) of the lid (4) to prevent gas leakage.
2. Resorte (1 ) de gas según la reivindicación 1 , caracterizada porque además comprende un anillo elástico (6) situado en la zona inferior de la tapa (4). 2. Gas spring (1) according to claim 1, characterized in that it further comprises an elastic ring (6) located in the lower area of the cover (4).
3. Resorte (1 ) de gas según una cualquiera de las reivindicaciones anteriores, caracterizada porque el extremo del vástago (3) comprende un alojamiento en el que se dispone insertado un elemento deslizante (7) que está configurado de modo que posee capacidad de desplazamiento radial respecto del vástago (3) del resorte de gas (1 ). 3. Gas spring (1) according to any one of the preceding claims, characterized in that the end of the rod (3) comprises a housing in which a sliding element (7) is inserted which is configured so as to have displacement capability radial with respect to the rod (3) of the gas spring (1).
4. Resorte (1 ) de gas según la reivindicación 3, caracterizada porque el elemento deslizante (7) posee forma cilindrica. 4. Gas spring (1) according to claim 3, characterized in that the sliding element (7) has a cylindrical shape.
5. Resorte (1 ) de gas según la reivindicación 3 ó 4, caracterizado porque comprende un medio amortiguador entre el apoyo deslizante (7) y la pared interna del alojamiento del mismo (7) en el extremo del vástago. 5. Gas spring (1) according to claim 3 or 4, characterized in that it comprises a damping means between the sliding support (7) and the internal wall of the housing thereof (7) at the end of the rod.
6. Resorte (1 ) de gas según la reivindicación 5, caracterizado porque el medio amortiguador es aceite. 6. Gas spring (1) according to claim 5, characterized in that the buffer means is oil.
PCT/ES2010/070800 2010-07-26 2010-12-03 Gas spring with pivoting cover WO2012013836A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201031155A ES2351837B1 (en) 2010-07-26 2010-07-26 GAS SPRING WITH SWING COVER.
ESP201031155 2010-07-26

Publications (2)

Publication Number Publication Date
WO2012013836A2 true WO2012013836A2 (en) 2012-02-02
WO2012013836A3 WO2012013836A3 (en) 2013-04-11

Family

ID=43503559

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2010/070800 WO2012013836A2 (en) 2010-07-26 2010-12-03 Gas spring with pivoting cover

Country Status (2)

Country Link
ES (1) ES2351837B1 (en)
WO (1) WO2012013836A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2440093A1 (en) * 2013-12-11 2014-01-27 Azol-Gas, S.L. Gas springs support plate (Machine-translation by Google Translate, not legally binding)
CN105156579A (en) * 2015-09-01 2015-12-16 上海交通大学 Vibration damping and impact resisting hydraulic cylinder and impact resisting method thereof
EA034634B1 (en) * 2017-11-27 2020-02-28 Общество с ограниченной ответственностью "ТрансЭлКон" Hydraulic damper

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1367757A (en) * 1962-07-07 1964-07-24 Bosch Gmbh Robert Hydraulic shock absorber
DE1230532B (en) * 1965-09-22 1966-12-15 Walter Hunger K G Hydraulic cylinder
DE19816920C1 (en) * 1998-04-16 1999-10-14 Knorr Bremse Systeme Suspended mounting for railway carriage bodywork
EP1441145A2 (en) * 1998-07-23 2004-07-28 Barnes Group Inc. Low contact force spring
DE102004032411A1 (en) * 2004-07-02 2006-02-09 Zf Friedrichshafen Ag Air spring vibration damper
DE102008053227A1 (en) * 2008-10-27 2010-05-12 Carl Zeiss Industrielle Messtechnik Gmbh Piston/cylinder unit fastening arrangement for pneumatic and/or hydraulic compensation of weight-force of sleeve of e.g. coordinate measuring device, has compensation device held on support structure and/or connected with support structure

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2817963B2 (en) * 1989-08-30 1998-10-30 日本発条株式会社 Die spring device
WO2004081377A2 (en) * 2003-03-10 2004-09-23 Actuant Corporation Actuator having external load supporting member
JP2008157343A (en) * 2006-12-22 2008-07-10 Pascal Engineering Corp Gas spring

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1367757A (en) * 1962-07-07 1964-07-24 Bosch Gmbh Robert Hydraulic shock absorber
DE1230532B (en) * 1965-09-22 1966-12-15 Walter Hunger K G Hydraulic cylinder
DE19816920C1 (en) * 1998-04-16 1999-10-14 Knorr Bremse Systeme Suspended mounting for railway carriage bodywork
EP1441145A2 (en) * 1998-07-23 2004-07-28 Barnes Group Inc. Low contact force spring
DE102004032411A1 (en) * 2004-07-02 2006-02-09 Zf Friedrichshafen Ag Air spring vibration damper
DE102008053227A1 (en) * 2008-10-27 2010-05-12 Carl Zeiss Industrielle Messtechnik Gmbh Piston/cylinder unit fastening arrangement for pneumatic and/or hydraulic compensation of weight-force of sleeve of e.g. coordinate measuring device, has compensation device held on support structure and/or connected with support structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2440093A1 (en) * 2013-12-11 2014-01-27 Azol-Gas, S.L. Gas springs support plate (Machine-translation by Google Translate, not legally binding)
CN105156579A (en) * 2015-09-01 2015-12-16 上海交通大学 Vibration damping and impact resisting hydraulic cylinder and impact resisting method thereof
EA034634B1 (en) * 2017-11-27 2020-02-28 Общество с ограниченной ответственностью "ТрансЭлКон" Hydraulic damper

Also Published As

Publication number Publication date
ES2351837A1 (en) 2011-02-11
WO2012013836A3 (en) 2013-04-11
ES2351837B1 (en) 2011-12-02

Similar Documents

Publication Publication Date Title
ES2395284T3 (en) Hydraulic hammer
WO2012013836A2 (en) Gas spring with pivoting cover
ES2296512B1 (en) DOUBLE TUBE HYDRAULIC SHOCK ABSORBER.
WO2016182066A1 (en) Trunnion-type ball valve, sealing structure of valve, and packing for valve
US20170234215A1 (en) Device for compensating for the operating clearances of an engine
KR20120031221A (en) Load cylinder for compensating unbalanced forces
ES2762997T3 (en) Shock absorber
JP2008095346A (en) Steel bearing
US2426358A (en) Joint construction
US1046600A (en) Compensating bolt connection.
WO2021213138A1 (en) Low friction sealing system for shock absorber
US2676045A (en) Lubricant-sealed tie rod joint
JP6501887B2 (en) Cylinder device
US20180297187A1 (en) Hydraulic percussion device
KR102500977B1 (en) Top-Entry type Metal Seat Ball Valve
ES2267084T3 (en) OBTURATION AND GUIDE PACKING.
KR20200023230A (en) Two-way valve
ES2768474B2 (en) Set of cylindrical diaphragm of reduced diameter for hydraulic shock absorbers with sealing at both ends, used in self-closing furniture
JP4785782B2 (en) Valve lifter with valve pause mechanism
WO2024057597A1 (en) Diaphragm valve
JPS6124848A (en) Hydraulic buffer
KR102074439B1 (en) Temperature compensating valve for gas spring
ES2255591T3 (en) BOARD OF A PRESSURE CHAMBER.
ES2713156T3 (en) Gas spring
JP4987226B2 (en) Hydraulic shock absorber

Legal Events

Date Code Title Description
NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10855244

Country of ref document: EP

Kind code of ref document: A2