WO2012013514A1 - Electronic component and method for producing an electronic component - Google Patents

Electronic component and method for producing an electronic component Download PDF

Info

Publication number
WO2012013514A1
WO2012013514A1 PCT/EP2011/062082 EP2011062082W WO2012013514A1 WO 2012013514 A1 WO2012013514 A1 WO 2012013514A1 EP 2011062082 W EP2011062082 W EP 2011062082W WO 2012013514 A1 WO2012013514 A1 WO 2012013514A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor chip
electronic component
layer
substrate
silver
Prior art date
Application number
PCT/EP2011/062082
Other languages
German (de)
French (fr)
Inventor
Bernd Barchmann
Gertrud KRÄUTER
Klaus Müller
Reinhard Streitel
Original Assignee
Osram Opto Semiconductors Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osram Opto Semiconductors Gmbh filed Critical Osram Opto Semiconductors Gmbh
Publication of WO2012013514A1 publication Critical patent/WO2012013514A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/647Heat extraction or cooling elements the elements conducting electric current to or from the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29194Material with a principal constituent of the material being a liquid not provided for in groups H01L2224/291 - H01L2224/29191
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29339Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29344Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/325Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8384Sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01023Vanadium [V]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01057Lanthanum [La]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01068Erbium [Er]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01076Osmium [Os]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/078Adhesive characteristics other than chemical
    • H01L2924/0781Adhesive characteristics other than chemical being an ohmic electrical conductor
    • H01L2924/07811Extrinsic, i.e. with electrical conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15787Ceramics, e.g. crystalline carbides, nitrides or oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/024Arrangements for cooling, heating, ventilating or temperature compensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/641Heat extraction or cooling elements characterized by the materials

Definitions

  • the present invention relates to an electronic component, in particular an optoelectronic
  • Electronic components in particular optoelectronic components, with a semiconductor chip generate heat during operation, which reduces the efficiency of the electronic component.
  • optoelectronic components with a semiconductor chip generate heat during operation, which reduces the efficiency of the electronic component.
  • the components of the upper power class can be any suitable components of the upper power class.
  • An object of the invention is to provide an electronic component in which the heat generated in the semiconductor chip can be dissipated quickly to the substrate.
  • Exemplary embodiment forms Various embodiments have an electronic component in which the heat generated in the semiconductor chip can be quickly dissipated to the substrate.
  • the electronic component has a substrate with at least one semiconductor chip contact layer. On the semiconductor chip contact layer, a semiconductor chip is arranged. Between the semiconductor chip contact layer and a substrate facing the contact surface of the semiconductor chip is having a pore
  • the semiconductor chip contact layer may be a metallized layer that is electrically and / or thermally conductive.
  • the semiconductor chip contact layer has gold.
  • the semiconductor chip contact layer may be in a measurable thickness or as a surface with a nearly
  • the in optoelectronic component is the in optoelectronic component
  • arranged semiconductor chip may be based on a III-V compound semiconductor material.
  • Semiconductor chips have at least one active zone that emits electromagnetic radiation.
  • the active zones may have pn junctions, double heterostructure,
  • Quantum well structure means: quantum wells (3-dim), quantum wires (2-dim) ui quantum dots (1-dim).
  • the semiconductor chip can, for example, as
  • Thin-film chip or be designed as a volume emitter, in particular as a sapphire volume emitter.
  • the thin-film chip is for example from the
  • Dissolved semiconductor layer sequence such are produced by peeling off the growth substrate
  • the radiation-emitting semiconductor component has herein a stack of different I I I-V nitride semiconductor layers, in particular gallium nitride layers.
  • the thin-film component is designed without a radiation-absorbing substrate and a reflector is applied directly on the GaN semiconductor body from the stack of different I I I-V nitride semiconductor layers.
  • the sapphire volume emitter is known, for example, from the patent DE102006015788A1.
  • sapphire can be used as the growth substrate for the semiconductor layer sequence.
  • the sapphire bulk emitter does not have the growth substrate at the end of the manufacturing process
  • the (growth) substrate is transparent to radiation generated in the active zone. This facilitates the radiation extraction from the semiconductor chip through the substrate.
  • the semiconductor chip is thus as Volume radiator formed. In the case of a volume emitter, in contrast to a surface emitter, a significant proportion of radiation is coupled out of the semiconductor chip via the substrate. The surface luminance at the outcoupling surfaces of the semiconductor chip is reduced in the case of a volume radiator with respect to a surface radiator.
  • the voided compound layer is thermally conductive. This is particularly advantageous since, as a result, the heat generated in the semiconductor chip is applied particularly quickly to the substrate
  • Sapphire volume emitter can be used in which the pore-containing compound layer is used only for thermal contact.
  • the connecting layer having pores is thermally conductive and at the same time electrically conductive. This is special
  • a semiconductor chip a thin-film chip can be used.
  • the pore-containing compound layer consists of silver.
  • the thermal conductivity with respect to bonding layers of adhesive, in particular silver conductive adhesive, or solder can be increased.
  • the pore-containing silver layer is free from organic compounds. It is also clear
  • the pore-containing compound layer of silver has a thermal conductivity between 80 W / m * K and 300 W / m * K. The fewer pores in the
  • Bonding layer are present and the smaller the pores, the higher the thermal conductivity.
  • the thermal conductivity of electrically conductive adhesive is between 1.5 W / m * K and 20 W / m * K.
  • the thermal conductivity of solder is between 50 and 60 W / m * K.
  • the thermal conductivity of solder is between 50 and 60 W / m * K.
  • Tin-containing alloy e.g. SnAgCu
  • Au80Sn20 can be used as solder.
  • the melting temperature of Au80Sn20 is about 280 ° C.
  • the pore-containing silver layer is produced at about 250 ° C by a sintering process.
  • the melting point of silver is
  • SMT assembly Surface mounting of electronic components on a printed circuit board (SMT assembly) stable and does not melt. After assembling the printed circuit boards with electronic components, the components in the soldered so-called reflow process. In this case, a maximum temperature of 260 ° C is reached. If a chip-based alloy is a tin-based alloy (except Au80Sn20) in one
  • Soldering process is used, melts the chip plaque during surface mounting. This leads to a
  • Au80Sn20 has a melting point of about 280 ° C, so no re-melting in the
  • Au80Sn20 is the high price, since the gold content is about 80 percent by weight.
  • Au80Sn20 is processed as chip chip at about 300 ° C. At this temperature, case plastics can discolour premold housings, resulting in a significant reduction in the reflectivity of these case plastics.
  • the pore-containing compound layer of silver has a thickness between about 1 ⁇ and about 50 ⁇ , preferably between 5 ⁇ and 30 ⁇ on. Because of the high thermal conductivity of the pore-containing silver layer, the thickness of the pore-containing silver layer, in contrast to the thickness of the previously used silver-conductive adhesive, is a less relevant parameter. This allows a simple
  • Silver conductive adhesive increases strongly with the layer thickness of the thermal resistance. Therefore, the glue must be processed as thinly as possible. Typically, the thickness of the Silberleitklebers 3 ⁇ to 5 ⁇ . Even layer thicknesses of 10 ⁇ are problematic
  • the pore-containing compound layer of silver has pores with it
  • Silver layer increases. Likewise, the lowest possible pore density is advantageous. The lower the pore density, the lower the thermal resistance.
  • the voided compound layer is gold. This is
  • the substrate is a leadframe.
  • the leadframe can be made of copper with a thermal conductivity of about 300 W / m * K.
  • the copper can be silvered on its surface to the
  • the copper may also be gold plated to make the leadframe more stable to oxidation and to remove the copper ions from
  • the leadframe is cast in a premold housing.
  • the premold housing is a Spritzverguss.
  • the injection molding takes place at about 350 ° C and 800 to 2000 bar.
  • the premold is from one Plastic, in particular a polymer, and has a reflectivity of up to 95%.
  • the premold has a white color.
  • the premold has several functions. He holds the two parts of the leadframe together. It has a cavity, on the bottom of which the semiconductor chip is arranged. The side walls of the cavity serve as a reflector for the emitted from the semiconductor chip
  • the cavity of the premold provides space for a grout and prevents
  • the potting may have a phosphor.
  • the premold housing with leadframe can be processed very simply and cost-effectively.
  • Working temperature does not exceed 260 ° C. This condition can be met with the sintering process according to the invention, with which the pore-containing silver layer is produced.
  • the substrate is a ceramic.
  • a ceramic aluminum oxide (Al 2 O 3 ) with a thermal conductivity of about 20 W / m * K As a ceramic aluminum oxide (Al 2 O 3 ) with a thermal conductivity of about 20 W / m * K,
  • Thermal conductivity of about 220 W / m * K are used.
  • the use of a ceramic substrate is special
  • the invention is particularly advantageous for
  • Optoelectronic components of the upper power classes with an energization of more than 300 mA Optoelectronic components of the upper power classes with an energization of more than 300 mA.
  • the inventive pores having
  • Bonding layer for the following OSRAM OS products are used.
  • Leadframe and premold package components such as Advanced Power TOPLED (Plus), Golden Dragon (Plus), Platinum Deagon or Diamond Dragon.
  • the Advanced Power TOPLED has a pore-containing silver interconnect layer over one
  • Bonding layer of conductive adhesive the thermal resistance by up to 40%. This causes the luminous flux to increase by about 4%. This can be explained by the improved heat dissipation from the
  • Phosphorus is, the higher its efficiency.
  • Semiconductor chip and substrate have at least the following process steps:
  • Semiconductor chip contact layer provided. A paste is passed through the semiconductor chip contact layer
  • the paste includes silver particles, organic solvent and an organic matrix in which the silver particles
  • the silver particles have a size of less than 5 ⁇ . This is particularly advantageous because subsequent sintering at low temperatures of less than about 250 ° C provides better results the smaller the silver particles are.
  • the silver particles are in the form of flocs or beads before the sintering step.
  • the end product formed between the semiconductor chip and the semiconductor chip contact layer on the substrate, a thermally conductive, voided compound layer of silver.
  • Sintering process produces round and small pores, which are also distributed evenly in the connecting layer.
  • the sintering of the paste takes place in a circulating air oven under normal atmosphere for about 20 minutes at less than 250.degree. This
  • the annealing is carried out in a convection oven at normal atmosphere for about 10 minutes at about 150 ° C.
  • the annealing step is used for expelling the organic solvent from the paste.
  • the use of an organic solvent is particularly advantageous because it has a high vapor pressure. It evaporates even at low temperatures
  • the mold is attached to the substrate after the sintering step
  • Semiconductor chip with a potting material in particular a silicone or a resin, potted.
  • a primary optic in particular a lens, is placed on the casting.
  • Figure la shows a section through an electronic
  • Figure lb shows a section through an electronic
  • Figure 2 shows a section through an electronic
  • FIG. 3 shows a flow chart of the
  • Figure la shows a sectional view through a
  • the electronic component 100a The electronic
  • Component 100a may be an optoelectronic device.
  • the electronic component 100a includes
  • the semiconductor chip contact layer 110a comprises an electrically conductive and / or heat-conducting material.
  • the material can be gold.
  • the semiconductor chip contact layer 110a has a thickness between 0.5 ⁇ and 5 ⁇ .
  • On the semiconductor chip contact layer 110a is a
  • Semiconductor chip 102 is arranged. Between the
  • the voided interconnect layer 106 is electrically conductive and / or thermally conductive.
  • Pore-containing bonding layer 106 may be made of silver. It has a thickness between about 1 ⁇ and about 50 ⁇ , preferably between 5 ⁇ and 30 ⁇ on.
  • the pore-containing compound layer 106 of silver has over its entire volume, pores 108 having pore sizes between about 50 nm and about 1000 nm.
  • the voided compound layer 106 of silver has a thermal conductivity between 80 W / m * K and 300 W / m * K.
  • the voided interconnect layer 106 may also be gold.
  • the substrate 124 is a leadframe cast in a premold housing 118.
  • the premold housing 118 forms a cavity.
  • the bottom of the cavity is formed by the leadframe 124.
  • the semiconductor chip 102 is arranged on the leadframe 124.
  • the surface of the semiconductor chip 102 facing away from the leadframe 124 is electrically conductively connected to a bonding pad 126a on the leadframe via a contact pad 112 and a bonding wire 116.
  • the gold bonding pad 126a has a thickness of between 0.5 ⁇ and 5 ⁇ .
  • the semiconductor chip 102 is potted by a planar volume casting 120.
  • On the potting 120 is a primary optic 122 in the form of a lens
  • Figure lb shows a sectional view through a
  • FIG. lb is identical to the embodiment of Figure la, except that the semiconductor chip contact layer 110b and the bonding pad 126b have a vanishing thickness. In other words, the voided silver interconnection layer 106 directly adjoins
  • Leadframe 124 on. Analogously, the bonding wire 116 is directly applied to the leadframe 124. The shown in Figure lb
  • Embodiment is advantageous because the thermal and electrical connection between the leadframe 124 and the semiconductor chip 102 is immediate, that is mediated only by the connecting layer 106 having the pores. This leads to a particularly good heat dissipation from
  • Figure 2 shows a sectional view through a
  • the substrate 224 is a ceramic.
  • the core of the invention namely the optimized heat transfer from the semiconductor chip 202 to the substrate 224 via the connecting layer 206 made of silver having the pores, is also based on the exemplary embodiment of FIG. Of the
  • Semiconductor chip 202 is connected via its contact surface 204 with the voided connecting layer 206 made of silver.
  • the voided interconnect layer 206 is electrically and thermally conductive
  • Semiconductor chip contact layer 210 connected. Unlike in FIG. 1b, in the exemplary embodiment of FIG. 2 a conductive semiconductor chip contact layer 210 with non-negligible thickness is absolutely necessary, since the ceramic substrate 224 is an electrical insulator. The second electrical contact is made by the bonding wire 216, the contact pad 212 on the side facing away from the substrate 224 of the semiconductor chip 202 with the
  • Bondpad 226 on the ceramic 224 connects.
  • Semiconductor chip 202 is cast in a potting 220. On the potting a primary optics 222 is arranged in the form of a lens. Through the ceramic substrate 224 vias 230, 232 are arranged, which are filled with electrically conductive material. In electrical connection with the vias 230, 232 are on the semiconductor chip 202 opposite side of the substrate 224 metallized
  • Contact layers 234, 236 are for example for
  • the heat generated in the semiconductor chip 202 is primarily dissipated to the ceramic 224.
  • FIG. 3 shows a flow chart for producing an electronic, in particular an optoelectronic, component.
  • the manufacturing process can be broken down into steps S1 to S7.
  • step S1 a substrate 124, 224 with at least one semiconductor chip contact layer 110a, 110b, 210 is provided.
  • step S2 a paste is applied to the semiconductor chip contact layer 110a, 110b, 210 by dispensing or
  • the paste comprises silver particles, organic solvent and an organic matrix.
  • the silver particles are in the organic matrix
  • step S3 the semiconductor chip 102, 202 is pressed onto the paste.
  • the paste is compacted.
  • step 4 the paste for annealing the organic solvent from the paste is annealed.
  • the annealing is carried out in a convection oven under normal atmosphere for about 10 minutes at about 150 ° C.
  • step S5 the paste is sintered, resulting in a voided bonding layer 106, 206.
  • the Sintering takes place in a convection oven under normal atmosphere for about 20 minutes at about 250 ° C.
  • the organic matrix is burned out.
  • the porosity and the volume of the connecting layer 106, 206 are reduced significantly.
  • connection layer 106, 206 Increase connection layer 106, 206.
  • the sintered necks are formed by surface diffusion between the
  • step S6 the attached to the substrate
  • step S7 a primary optic 122, 222,
  • the optoelectronic device has become the

Abstract

The invention relates to an electronic component (100a, 100b, 200), in particular an optoelectronic component. The electronic component comprises a substrate (124, 224) having at least one semiconductor chip contact layer (110a, 110b, 210). A semiconductor chip (102, 202) is disposed on the semiconductor chip contact layer (110a, 110b, 210). A connection layer (106, 206) comprising pores is disposed between the semiconductor chip contact layer (110a, 110b, 210) and a contact surface (104, 204) of the semiconductor chip (102, 202) facing the substrate (124, 224).

Description

ELE KT RONISCHES BAUELEMENT UND VERFAHREN ZUR HERSTELLUNG EINES ELEKTRONISCHEN BAUELEMENTS  ELE KT RONIC COMPONENT AND METHOD FOR PRODUCING AN ELECTRONIC COMPONENT
BESCHREIBUNG DESCRIPTION
Die vorliegende Erfindung betrifft ein elektronisches Bauelement, insbesondere ein optoelektronisches The present invention relates to an electronic component, in particular an optoelectronic
Bauelement, und ein Verfahren zur Herstellung eines solchen Bauelements. Component, and a method for producing such a device.
Elektronische Bauelemente, insbesondere optoelektronische Bauelemente, mit einem Halbleiterchip erzeugen im Betrieb Wärme, die die Effizienz des elektronischen Bauelements verringert. Insbesondere bei optoelektronischen Electronic components, in particular optoelectronic components, with a semiconductor chip generate heat during operation, which reduces the efficiency of the electronic component. Especially with optoelectronic
Bauelementen der oberen Leistungsklasse kann das The components of the upper power class can
thermische Management problematisch sein. thermal management be problematic.
Eine Aufgabe der Erfindung ist es, ein elektronisches Bauelement anzugeben, bei dem die im Halbleiterchip erzeugte Wärme schnell an das Substrat abgeführt werden kann . An object of the invention is to provide an electronic component in which the heat generated in the semiconductor chip can be dissipated quickly to the substrate.
Diese Aufgabe wird durch ein elektronisches Bauelement gemäß dem unabhängigen Patentanspruch 1 und durch ein Verfahren zur Herstellung eines elektronischen This object is achieved by an electronic component according to independent claim 1 and by a method for producing an electronic component
Bauelements gemäß dem unabhängigen Patentanspruch 11 gelöst . Component solved according to the independent claim 11.
Weiterbildungen und vorteilhafte Ausgestaltungen des elektronischen Bauelements und des Verfahrens zur Further developments and advantageous embodiments of the electronic component and the method for
Herstellung des elektronischen Bauelements sind in den abhängigen Ansprüchen angegeben. Production of the electronic component are given in the dependent claims.
Beispielhafte Ausführungs formen Verschiedene Aus führungs formen weisen ein elektronische Bauelement auf, bei dem die im Halbleiterchip erzeugte Wärme schnell an das Substrat abgeführt werden kann . Exemplary embodiment forms Various embodiments have an electronic component in which the heat generated in the semiconductor chip can be quickly dissipated to the substrate.
Das elektronische Bauelement weist ein Substrat auf mit mindestens einer Halbleiterchip-Kontaktschicht. Auf der Halbleiterchip-Kontaktschicht ist ein Halbleiterchip angeordnet. Zwischen der Halbleiterchip-Kontaktschicht und einer dem Substrat zugewandten Kontaktfläche des Halbleiterchips ist eine Poren aufweisende The electronic component has a substrate with at least one semiconductor chip contact layer. On the semiconductor chip contact layer, a semiconductor chip is arranged. Between the semiconductor chip contact layer and a substrate facing the contact surface of the semiconductor chip is having a pore
Verbindungsschicht angeordnet. Connecting layer arranged.
Die Halbleiterchip-Kontaktschicht kann eine metallisierte Schicht sein, die elektrisch und/oder thermisch leitfähig ist. Beispielsweise weist die Halbleiterchip- Kontaktschicht Gold auf. Die Halbleiterchip- Kontaktschicht kann je nach Aus führungs form in einer meßbaren Dicke oder als Fläche mit einer nahezu The semiconductor chip contact layer may be a metallized layer that is electrically and / or thermally conductive. For example, the semiconductor chip contact layer has gold. Depending on the embodiment, the semiconductor chip contact layer may be in a measurable thickness or as a surface with a nearly
verschwindenden Dicke vorliegen. vanishing thickness.
In einer bevorzugten Aus führungs form ist das In a preferred embodiment, this is
elektronische Bauelement ein optoelektronisches electronic component an optoelectronic
Bauelement. Der im optoelektronische Bauelement Component. The in optoelectronic component
angeordnete Halbleitchip kann auf einem III-V- Verbindungshalbleitermaterial basieren. Die arranged semiconductor chip may be based on a III-V compound semiconductor material. The
Halbleiterchips weisen mindestens eine aktive Zone auf, die elektromagnetische Strahlung emittiert. Die aktiven Zonen können pn-Übergänge, Doppelheterostruktur, Semiconductor chips have at least one active zone that emits electromagnetic radiation. The active zones may have pn junctions, double heterostructure,
Mehrfach-Quantentopfstruktur (MQW) , Einfach- Quantentopfstruktur (SQW) sein. Quantentopfstruktur bedeutet: Quantentöpfe (3-dim), Quantendrähte (2-dim) ui Quantenpunkte (1-dim) . Der Halbleiterchip kann beispielsweise als Multiple quantum well structure (MQW), single quantum well structure (SQW). Quantum well structure means: quantum wells (3-dim), quantum wires (2-dim) ui quantum dots (1-dim). The semiconductor chip can, for example, as
Oberflächenemitter , insbesondere als sogenannter Surface emitter, especially as so-called
Dünnfilmchip oder als Volumenemitter , insbesondere als Saphir-Volumenemitter ausgelegt sein. Der Dünnfilmchip ist beispielsweise aus der Thin-film chip or be designed as a volume emitter, in particular as a sapphire volume emitter. The thin-film chip is for example from the
Offenlegungsschrift WO2005081319A1 bekannt. Wird während der Herstellung des optoelektronischen Bauelements, insbesondere eines Bauelements mit einer metallhaltigen Spiegelschicht, das Aufwachssubstrat der  Publication WO2005081319A1 known. During the production of the optoelectronic component, in particular of a component with a metal-containing mirror layer, the growth substrate of the
Halbleiterschichtenfolge abgelöst, so werden derartige unter Ablösen des Aufwachssubstrats hergestellte Dissolved semiconductor layer sequence, such are produced by peeling off the growth substrate
Bauelemente auch als Dünnfilm-Bauelemente bezeichnet. Das strahlungsemittierende Halbleiterbauelement weist hierin einen Stapel unterschiedlicher I I I-V-Nitrid- Halbleiterschichten, insbesondere Galliumnitrid- Schichten, auf. Das Dünnschichtbauelement ist ohne strahlungsabsorbierendes Substrat ausgeführt und ein Reflektor ist direkt auf dem GaN-Halbleiterkörper aus dem Stapel unterschiedlicher I I I-V-Nitrid-Halbleiterschichten aufgebracht. Components also referred to as thin-film components. The radiation-emitting semiconductor component has herein a stack of different I I I-V nitride semiconductor layers, in particular gallium nitride layers. The thin-film component is designed without a radiation-absorbing substrate and a reflector is applied directly on the GaN semiconductor body from the stack of different I I I-V nitride semiconductor layers.
Der Saphir-Volumen-Emitter ist beispielsweise aus der Patentschrift DE102006015788A1 bekannt. Dabei kann als Aufwachssubstrat für die Halbleiterschichtenfolge Saphir verwendet werden. Im Gegensatz zum Dünnfilmchip wird beim Saphir-Volumen-Emitter das Aufwachssubstrat am Ende des Herstellungsprozesses nicht von der The sapphire volume emitter is known, for example, from the patent DE102006015788A1. In this case, sapphire can be used as the growth substrate for the semiconductor layer sequence. Unlike the thin-film chip, the sapphire bulk emitter does not have the growth substrate at the end of the manufacturing process
Halbleiterschichtenfolge abgelöst. Das (Aufwachs- ) Substrat ist strahlungsdurchlässig für die in der aktiven Zone erzeugte Strahlung. Dies erleichtert die Strahlungsauskopplung aus dem Halbleiterchip durch das Substrat. Der Halbleiterchip ist damit als Volumenstrahler ausgebildet. Bei einem Volumenstrahler wird im Gegensatz zu einem Oberflächenemitter auch über das Substrat ein maßgeblicher Strahlungsanteil aus dem Halbleiterchip ausgekoppelt. Die Oberflächenleuchtdichte an den Auskoppelflächen des Halbleiterchips ist bei einem Volumenstrahler gegenüber einem Oberflächenstrahler verringert . Semiconductor layer sequence detached. The (growth) substrate is transparent to radiation generated in the active zone. This facilitates the radiation extraction from the semiconductor chip through the substrate. The semiconductor chip is thus as Volume radiator formed. In the case of a volume emitter, in contrast to a surface emitter, a significant proportion of radiation is coupled out of the semiconductor chip via the substrate. The surface luminance at the outcoupling surfaces of the semiconductor chip is reduced in the case of a volume radiator with respect to a surface radiator.
Die Offenbarungen der Schriften WO2005081319A1 und The disclosures of the publications WO2005081319A1 and
DE102006015788A1 werden hiermit durch Rückbezug in die Offenbarung der vorliegenden Anmeldung aufgenommen. DE102006015788A1 are hereby incorporated by reference into the disclosure of the present application.
In einer bevorzugten Aus führungs form ist die Poren aufweisende Verbindungsschicht wärmeleit fähig . Dies ist besonders vorteilhaft, da dadurch die im Halbleiterchip erzeugte Wärme besonders schnell an das Substrat In a preferred embodiment, the voided compound layer is thermally conductive. This is particularly advantageous since, as a result, the heat generated in the semiconductor chip is applied particularly quickly to the substrate
abgeführt werden kann. Als Halbleiterchip kann ein can be dissipated. As a semiconductor chip, a
Saphir-Volumen-Emitter eingesetzt werden, bei dem die Poren aufweisende Verbindungsschicht nur zum thermischen Kontakt dient.  Sapphire volume emitter can be used in which the pore-containing compound layer is used only for thermal contact.
In einer weiteren bevorzugten Aus führungs form ist die Poren aufweisende Verbindungsschicht wärmeleit fähig und zugleich elektrisch leitfähig. Dies ist besonders In a further preferred embodiment, the connecting layer having pores is thermally conductive and at the same time electrically conductive. This is special
vorteilhaft, da dadurch neben der Wärmeabfuhr auch einer der beiden elektrischen Kontakte des Halbleiterchips realisiert wird. Als Halbleiterchip kann ein Dünnfilmchip eingesetzt werden. advantageous because in addition to the heat dissipation one of the two electrical contacts of the semiconductor chip is realized. As a semiconductor chip, a thin-film chip can be used.
In einer bevorzugten Aus führungs form besteht die Poren aufweisende Verbindungsschicht aus Silber. Dadurch kann die Wärmeleitfähigkeit gegenüber Verbindungsschichten aus Kleber, insbesondere Silberleitkleber, oder Lot erhöht werden. Die Poren aufweisende Silberschicht ist frei von organischen Verbindungen. Zudem ist sie deutlich In a preferred embodiment, the pore-containing compound layer consists of silver. As a result, the thermal conductivity with respect to bonding layers of adhesive, in particular silver conductive adhesive, or solder can be increased. The pore-containing silver layer is free from organic compounds. It is also clear
preiswerter (Faktor 10) als ein Lot aus Au80Sn20, das zu 80 Gewichtsprozent aus Gold und zu 20 Gewichtsprozent aus Zinn besteht. Die Poren aufweisende Verbindungsschicht aus Silber weist eine Wärmeleitfähigkeit zwischen 80 W/m*K und 300 W/m*K auf. Je weniger Poren in der cheaper (factor 10) than a Au80Sn20 solder consisting of 80% by weight of gold and 20% by weight of tin. The pore-containing compound layer of silver has a thermal conductivity between 80 W / m * K and 300 W / m * K. The fewer pores in the
Verbindungsschicht vorhanden sind und je kleiner die Poren sind desto höher ist die Wärmeleitfähigkeit. Bonding layer are present and the smaller the pores, the higher the thermal conductivity.
Die Wärmeleitfähigkeit von elektrisch leitfähigem Kleber liegt zwischen 1,5 W/m*K und 20 W/m*K. Die The thermal conductivity of electrically conductive adhesive is between 1.5 W / m * K and 20 W / m * K. The
Wärmeleitfähigkeit von Lot liegt je nach verwendetem Lottyp zwischen 50 und 60 W/m*K. Als Lot kann eine  Depending on the type of solder used, the thermal conductivity of solder is between 50 and 60 W / m * K. As Lot can one
Zinnhaltige Legierung, z.B. SnAgCu, verwendet werden. Alternativ kann als Lot Au80Sn20 verwendet werden. Die Schmelztemperatur von Au80Sn20 liegt bei etwa 280°C. Tin-containing alloy, e.g. SnAgCu, to be used. Alternatively, Au80Sn20 can be used as solder. The melting temperature of Au80Sn20 is about 280 ° C.
Mit anderen Worten ist ein Kerngedanke der Erfindung, den bisher verwendeten Silberleitkleber bzw. das bisher verwendete Lot zwischen dem Halbleiterchip und der In other words, a core idea of the invention, the previously used Silberleitkleber or the previously used Lot between the semiconductor chip and the
Halbleiterchip-Kontaktschicht auf dem Substrat durch eine Silberschicht zu ersetzen. Replacing the semiconductor chip contact layer on the substrate with a silver layer.
Besonders vorteilhaft ist es, dass die Poren aufweisende Silberschicht bei etwa 250°C durch einen Sinterprozess erzeugt wird. Der Schmelzpunkt von Silber liegt It is particularly advantageous that the pore-containing silver layer is produced at about 250 ° C by a sintering process. The melting point of silver is
wesentlich höher, bei etwa 960 °C. Mit anderen Worten wird beim Sintern die flüssige Phase umgangen. Die Poren aufweisende Silberschicht bleibt bei der späteren much higher, at about 960 ° C. In other words, the liquid phase is bypassed during sintering. The pore-containing silver layer remains at the later
Oberflächenmontage der elektronischen Bauelemente auf eine Leiterplatte ( SMT-Assembly) stabil und schmilzt nicht auf. Nach dem Bestücken der Leiterplatten mit elektronischen Bauelementen, werden die Bauelemente im sog. Reflow-Verfahren verlötet. Dabei wird maximal eine Temperatur von 260°C erreicht. Wenn als Chiplot eine Zinnbasierte Legierung (außer Au80Sn20) in einem Surface mounting of electronic components on a printed circuit board (SMT assembly) stable and does not melt. After assembling the printed circuit boards with electronic components, the components in the soldered so-called reflow process. In this case, a maximum temperature of 260 ° C is reached. If a chip-based alloy is a tin-based alloy (except Au80Sn20) in one
Weichlotprozess verwendet wird, schmilzt das Chiplot bei der Oberflächenmontage auf. Dies führt zu einem Soldering process is used, melts the chip plaque during surface mounting. This leads to a
Undefinierten Gefügezustand des Chiplotes und kann thermische Probleme und Zuverlässigkeitsprobleme zur Folge haben. Als Alternative könnte ein Lot aus Au80Sn20 verwendet werden. Au80Sn20 hat einen Schmelzpunkt von etwa 280 °C, weshalb kein Wiederaufschmelzen bei der Undefined microstructural state of the chip card and can result in thermal problems and reliability problems. Alternatively, a lot of Au80Sn20 could be used. Au80Sn20 has a melting point of about 280 ° C, so no re-melting in the
Oberflächenmontage erfolgt. Nachteilig bei der Verwendung von Au80Sn20 als Lot ist zum einen der hohe Preis, da der Goldanteil etwa 80 Gewichtsprozent beträgt. Ein weiterer Nachteil ist der, dass Au80Sn20 als Chiplot bei etwa 300°C verarbeitet wird. Bei dieser Temperatur können sich Gehäusekunststoffe von Premoldgehäusen verfärben, was zu einer deutlichen Verringerung der Reflektivität dieser Gehäusekunststoffe führt. Surface mounting done. One disadvantage of using Au80Sn20 as solder is the high price, since the gold content is about 80 percent by weight. Another disadvantage is that Au80Sn20 is processed as chip chip at about 300 ° C. At this temperature, case plastics can discolour premold housings, resulting in a significant reduction in the reflectivity of these case plastics.
In einer bevorzugten Aus führungs form weist die Poren aufweisende Verbindungsschicht aus Silber eine Dicke zwischen etwa 1 μπι und etwa 50 μπι, vorzugsweise zwischen 5 μπι und 30 μπι auf. Wegen der hohen Wärmeleitfähigkeit der Poren aufweisenden Silberschicht ist die Dicke der Poren aufweisenden Silberschicht im Gegensatz zur Dicke des bisher verwendeten Silberleitklebers ein weniger relevanter Parameter. Dies ermöglicht eine einfache In a preferred disclosed embodiment, the pore-containing compound layer of silver has a thickness between about 1 μπι and about 50 μπι, preferably between 5 μπι and 30 μπι on. Because of the high thermal conductivity of the pore-containing silver layer, the thickness of the pore-containing silver layer, in contrast to the thickness of the previously used silver-conductive adhesive, is a less relevant parameter. This allows a simple
Prozessierung mit relativ großen Toleranzen. Beim Processing with relatively large tolerances. At the
Silberleitkleber hingegen, steigt mit der Schichtdicke der Wärmewiderstand stark ab. Deshalb muss der Kleber so dünn wie möglich prozessiert werden. Typischer Weise beträgt die Dicke des Silberleitklebers 3 μπι bis 5 μπι. Schon Schichtdicken von 10 μπι sind problematisch Silver conductive adhesive, however, increases strongly with the layer thickness of the thermal resistance. Therefore, the glue must be processed as thinly as possible. Typically, the thickness of the Silberleitklebers 3 μπι to 5 μπι. Even layer thicknesses of 10 μπι are problematic
hinsichtlich der Abfuhr der vom Halbleiterchip erzeugten Wärme . with regard to the removal of the heat generated by the semiconductor chip.
In einer bevorzugten Aus führungs form weist die Poren aufweisende Verbindungsschicht aus Silber Poren mit In a preferred embodiment, the pore-containing compound layer of silver has pores with it
Porengrößen zwischen etwa 50 nm und etwa 1000 nm auf. Die geringe Größe der Poren ist vorteilhaft, da mit Pore sizes between about 50 nm and about 1000 nm. The small size of the pores is advantageous because with
abnehmender Porengröße die Wärmeleitfähigkeit der decreasing pore size the thermal conductivity of the
Silberschicht ansteigt. Ebenso ist eine möglichst geringe Porendichte vorteilhaft. Je geringer die Porendichte desto geringer der thermische Widerstand. Silver layer increases. Likewise, the lowest possible pore density is advantageous. The lower the pore density, the lower the thermal resistance.
In einer bevorzugten Aus führungs form besteht die Poren aufweisende Verbindungsschicht aus Gold. Dies ist In a preferred embodiment, the voided compound layer is gold. This is
vorteilhaft, da Gold ähnlich günstige Eigenschaften aufweist wie Silber und zudem nicht oxidiert. Dies führt dazu, dass die thermische und elektrische Leitfähigkeit langfristig konstant bleibt. advantageous because gold has similar favorable properties as silver and also not oxidized. As a result, the thermal and electrical conductivity remains constant in the long term.
In einer bevorzugten Aus führungs form ist das Substrat ein Leadframe. Der Leadframe kann aus Kupfer bestehen mit einer Wärmeleitfähigkeit von etwa 300 W/m*K. Das Kupfer kann an seiner Oberfläche versilbert sein, um die In a preferred embodiment, the substrate is a leadframe. The leadframe can be made of copper with a thermal conductivity of about 300 W / m * K. The copper can be silvered on its surface to the
Reflektivität für die vom Halbleiterchip emittierte elektromagnetische Strahlung zu erhöhen. Das Kupfer kann auch vergoldet sein, um den Leadframe stabiler gegenüber Oxidation zu machen und um die Kupferionen vom To increase reflectivity for the emitted from the semiconductor chip electromagnetic radiation. The copper may also be gold plated to make the leadframe more stable to oxidation and to remove the copper ions from
Halbleiterchip fernzuhalten. Keep semiconductor chip away.
In einer bevorzugten Aus führungs form ist der Leadframe in ein Premold-Gehäuse eingegossen. Das Premold-Gehäuse ist ein Spritzverguss . Der Spritzguss erfolgt bei etwa 350°C und 800 bis 2000 bar. Der Premold ist aus einem Kunststoff, insbesondere einem Polymer, und weist eine Reflektivität von bis zu 95% auf. Der Premold hat eine weiße Färbung. Der Premold hat mehrere Funktionen. Er hält die beiden Teile des Leadframes zusammen. Er weist eine Kavität auf, auf deren Boden der Halbleiterchip angeordnet ist. Die Seitenwände der Kavität dienen als Reflektor für die vom Halbleiterchip emittierte In a preferred embodiment, the leadframe is cast in a premold housing. The premold housing is a Spritzverguss. The injection molding takes place at about 350 ° C and 800 to 2000 bar. The premold is from one Plastic, in particular a polymer, and has a reflectivity of up to 95%. The premold has a white color. The premold has several functions. He holds the two parts of the leadframe together. It has a cavity, on the bottom of which the semiconductor chip is arranged. The side walls of the cavity serve as a reflector for the emitted from the semiconductor chip
elektromagnetische Strahlung. Die Kavität des Premold bietet Platz für einen Verguss und verhindert ein electromagnetic radiation. The cavity of the premold provides space for a grout and prevents
seitliches Verlaufen des Vergusses. Der Verguss kann einen Leuchtstoff aufweisen. Insgesamt kann das Premold- Gehäuse mit Leadframe sehr einfach und kostengünstig prozessiert werden. lateral course of the potting. The potting may have a phosphor. Overall, the premold housing with leadframe can be processed very simply and cost-effectively.
Wegen der begrenzten thermischen Beständigkeit von Because of the limited thermal stability of
Polymeren, ist es beim Einsatz eines Premold-Gehäuse erforderlich, dass die kurzzeitige Polymers, it is necessary when using a premold housing that the short-term
Verarbeitungstemperatur 260°C nicht überschreitet. Diese Bedingung kann mit dem erfindungsgemäßen Sinterprozess , mit dem die Poren aufweisende Silberschicht erzeugt wird, eingehalten werden.  Working temperature does not exceed 260 ° C. This condition can be met with the sintering process according to the invention, with which the pore-containing silver layer is produced.
In einer bevorzugten Aus führungs form ist das Substrat eine Keramik. Als Keramik können Aluminium-Oxid (AI2O3) mit einer Wärmeleitfähigkeit von etwa 20 W/m*K, In a preferred embodiment, the substrate is a ceramic. As a ceramic aluminum oxide (Al 2 O 3 ) with a thermal conductivity of about 20 W / m * K,
Aluminiumnitrid (A1N) mit einer Wärmeleitfähigkeit von etwa 170 W/m*K oder Bornitrid (BN) mit einer Aluminum nitride (A1N) with a thermal conductivity of about 170 W / m * K or boron nitride (BN) with a
Wärmeleitfähigkeit von etwa 220 W/m*K zum Einsatz kommen. Der Einsatz eines Keramiksubstrats ist besonders  Thermal conductivity of about 220 W / m * K are used. The use of a ceramic substrate is special
vorteilhaft, da Keramik weitestgehend advantageous because ceramic largely
temperaturunempfindlich ist. Die Erfindung ist besonders vorteilhaft für temperature insensitive. The invention is particularly advantageous for
optoelektronische Bauelemente der oberen Leistungsklassen mit einer Bestromung mit mehr als 300 mA. Beispielsweise kann die erfindungsgemäße Poren aufweisende Optoelectronic components of the upper power classes with an energization of more than 300 mA. For example, the inventive pores having
Verbindungsschicht bei folgenden OSRAM OS Produkten zum Einsatz kommen. Bauelemente mit einem Leadframe und einem Premold-Gehäuse, wie Advanced Power TOPLED (Plus), Golden Dragon (Plus), Platinum Deagon oder Diamond Dragon. Bonding layer for the following OSRAM OS products are used. Leadframe and premold package components such as Advanced Power TOPLED (Plus), Golden Dragon (Plus), Platinum Deagon or Diamond Dragon.
Bauelemente mit einem Keramiksubstrat, wie die Oslon. Components with a ceramic substrate, such as the Oslon.
In einer bevorzugten Aus führungs form verringert sich bei der Advanced Power TOPLED durch die Poren aufweisende Verbindungsschicht aus Silber gegenüber einer In a preferred embodiment, the Advanced Power TOPLED has a pore-containing silver interconnect layer over one
Verbindungsschicht aus leitfähigem Kleber der thermische Widerstand um bis zu 40%. Dies führt dazu, dass der Lichtstrom um etwa 4% zunimmt. Dies kann dadurch erklärt werden, dass durch die verbesserte Wärmeabfuhr vom Bonding layer of conductive adhesive, the thermal resistance by up to 40%. This causes the luminous flux to increase by about 4%. This can be explained by the improved heat dissipation from the
Halbleiterchip an den Leadframe der Leuchtstoff weniger erwärmt wird. Je niedriger die Temperatur des Semiconductor chip to the leadframe of the phosphor is heated less. The lower the temperature of the
Leuchtstoffes ist, desto höher ist seine Effizienz. Phosphorus is, the higher its efficiency.
Verschiedene Aus führungs formen des Verfahrens zum Various embodiments of the method for
Herstellen eines elektronischen Bauelements mit einer Poren aufweisenden Verbindungsschicht zwischen Producing an electronic component with a voided connecting layer between
Halbleiterchip und Substrat weisen mindestens die folgenden Verfahrensschritte auf: Semiconductor chip and substrate have at least the following process steps:
Zunächst wird ein Substrat mit mindestens einer First, a substrate with at least one
Halbleiterchip-Kontaktschicht bereitgestellt. Auf die Halbleiterchip-Kontaktschicht wird eine Paste durch Semiconductor chip contact layer provided. A paste is passed through the semiconductor chip contact layer
Dispensen oder Siebdrucken oder Stempeln oder Dispensing or screen printing or stamping or
Schablonendrucken oder Jetten aufgebracht. Die Paste beinhaltet Silberpartikel, organisches Lösungsmittel und eine organische Matrix, in der die Silberpartikel Stencil printing or jetting applied. The paste includes silver particles, organic solvent and an organic matrix in which the silver particles
eingebettet sind. Die Silberpartikel weisen eine Größe von kleiner 5 μπι auf. Dies ist besonders vorteilhaft, da das nachfolgende Sintern bei niedrigen Temperaturen von kleiner etwa 250°C umso bessere Ergebnisse liefert, je kleiner die Silberpartikel sind. Die Silberpartikel liegen vor dem Sinterschritt in Form von Flocken oder Kügelchen vor. Nach dem Aufbringen der Paste wird der Halbleiterchip auf die Paste gepresst, was auch Die- Attach genannt wird. Abschließend wird die Paste are embedded. The silver particles have a size of less than 5 μπι. This is particularly advantageous because subsequent sintering at low temperatures of less than about 250 ° C provides better results the smaller the silver particles are. The silver particles are in the form of flocs or beads before the sintering step. After application of the paste, the semiconductor chip is pressed onto the paste, which is also called Die Attach. Finally, the paste
gesintert, um die organische Matrix auszubrennen. Als Endprodukt entsteht zwischen dem Halbleiterchip und der Halbleiterchip-Kontaktschicht auf dem Substrat eine wärmeleitfähige, Poren aufweisende Verbindungsschicht aus Silber. sintered to burn out the organic matrix. The end product formed between the semiconductor chip and the semiconductor chip contact layer on the substrate, a thermally conductive, voided compound layer of silver.
In besonders vorteilhafter Weise werden beim In a particularly advantageous manner
Sinterprozess runde und möglichst kleine Poren erzeugt, die zudem gleichmäßig in der Verbindungsschicht verteilt sind . In einer bevorzugten Aus führungs form erfolgt das Sintern der Paste in einem Umluftofen unter Normalatmosphäre während etwa 20 Minuten bei kleiner 250°C. Dieses Sintering process produces round and small pores, which are also distributed evenly in the connecting layer. In a preferred embodiment, the sintering of the paste takes place in a circulating air oven under normal atmosphere for about 20 minutes at less than 250.degree. This
Niedertemperatur-Sintern ist insbesondere bei Premold- Gehäusen besonders vorteilhaft, da sich die Low-temperature sintering is particularly advantageous in premold housings, since the
Gehäusekunststoffe nicht verfärben. Do not discolour housing plastics.
In einer bevorzugten Aus führungs form wird nach dem In a preferred disclosed embodiment is after the
Pressen des Halbleiterchips auf die Paste und vor dem Sinterschritt ein Temperschritt ausgeführt. Das Tempern erfolgt in einem Umluftofen bei Normal-Atmosphäre während etwa 10 Minuten bei etwa 150°C. Der Temperschritt dient zum Austreiben des organischen Lösungsmittels aus der Paste. Der Einsatz eines organischen Lösungsmittels ist besonders vorteilhaft, da es einen hohen Dampfdruck aufweist. Es verdampft schon bei niedrigen Temperaturen Pressing the semiconductor chip on the paste and prior to the sintering step carried out an annealing step. The annealing is carried out in a convection oven at normal atmosphere for about 10 minutes at about 150 ° C. The annealing step is used for expelling the organic solvent from the paste. The use of an organic solvent is particularly advantageous because it has a high vapor pressure. It evaporates even at low temperatures
In einer bevorzugten Aus führungs form wird nach dem Sinterschritt der auf dem Substrat befestigte In a preferred embodiment, the mold is attached to the substrate after the sintering step
Halbleiterchip mit einem Vergussmaterial, insbesondere einem Silikon oder einem Harz, vergossen. Semiconductor chip with a potting material, in particular a silicone or a resin, potted.
In einer bevorzugten Aus führungs form wird nach dem Vergießen des Halbleiterchips eine Primäroptik, insbesondere eine Linse, auf den Verguss aufgesetzt. In a preferred embodiment, after the casting of the semiconductor chip, a primary optic, in particular a lens, is placed on the casting.
KU RZ E B E S C H R E I B U N G D E R ZE I C H N U N G E N KU RZ E B E S C H R E I U N G D E R I C H N U N G E N
Verschiedene Ausführungsbeispiele der erfindungsgemäßen Lösung werden im Folgenden anhand der Zeichnungen näher erläutert . Various embodiments of the solution according to the invention are explained in more detail below with reference to the drawings.
Figur la zeigt einen Schnitt durch ein elektronisches  Figure la shows a section through an electronic
Bauelement mit einem Leadframe als Substrat;  Component with a leadframe as a substrate;
Figur lb zeigt einen Schnitt durch ein elektronisches Figure lb shows a section through an electronic
Bauelement mit einem Leadframe als Substrat;  Component with a leadframe as a substrate;
Figur 2 zeigt einen Schnitt durch ein elektronisches Figure 2 shows a section through an electronic
Bauelement mit einer Keramik als Substrat;  Component with a ceramic substrate;
Figur 3 zeigt ein Ablaufdiagramm des FIG. 3 shows a flow chart of the
Herstellungsverfahrens des erfindungsgemäßen elektronischen Bauelements. AU S F Ü H R U N G S B E I S P I E L E Production method of the electronic component according to the invention. EXAMINATION EXAMPLES
Gleiche, gleichartige oder gleich wirkende Elemente sind in den Figuren mit denselben Bezugszeichen versehen. Die Figuren und die Größenverhältnisse der in den Figuren dargestellten Elemente untereinander sind nicht als maßstäblich zu betrachten. Vielmehr können einzelne The same, similar or equivalent elements are provided in the figures with the same reference numerals. The figures and the proportions of the elements shown in the figures with each other are not to be considered to scale. Rather, individual can
Elemente zur besseren Darstellbarkeit und zum besseren Verständnis übertrieben groß oder verkleinert dargestellt sein .  Elements for better representability and for better understanding to be shown exaggerated or reduced.
Figur la zeigt eine Schnittansicht durch ein Figure la shows a sectional view through a
elektronisches Bauelement 100a. Das elektronisches electronic component 100a. The electronic
Bauelement 100a kann ein optoelektronisches Bauelement sein. Das elektronische Bauelement 100a weist ein  Component 100a may be an optoelectronic device. The electronic component 100a includes
Substrat 124 auf, auf dem eine Halbleiterchip- Kontaktschicht 110a vorgesehen ist. Die Halbleiterchip- Kontaktschicht 110a weist ein elektrisch leitendes und/oder Wärme leitendes Material auf. Als Material kann Gold verwendet werden. Die Halbleiterchip-Kontaktschicht 110a weist eine Dicke zwischen 0,5 μπι und 5μπι auf. Auf der Halbleiterchip-Kontaktschicht 110a ist ein Substrate 124, on which a semiconductor chip contact layer 110a is provided. The semiconductor chip contact layer 110a comprises an electrically conductive and / or heat-conducting material. The material can be gold. The semiconductor chip contact layer 110a has a thickness between 0.5 μπι and 5μπι. On the semiconductor chip contact layer 110a is a
Halbleiterchip 102 angeordnet. Zwischen der Semiconductor chip 102 is arranged. Between the
Halbleiterchip-Kontaktschicht 110a und einer dem Substrat 124 zugewandten Kontakt fläche 104 des Halbleiterchips 102 ist eine Poren aufweisende Verbindungsschicht 106 angeordnet. Die Poren aufweisende Verbindungsschicht 106 ist elektrisch leitfähig und/oder wärmeleit fähig . Die Semiconductor chip contact layer 110 a and the substrate 124 facing contact surface 104 of the semiconductor chip 102 is a voided compound layer 106 is disposed. The voided interconnect layer 106 is electrically conductive and / or thermally conductive. The
Poren aufweisende Verbindungsschicht 106 kann aus Silber bestehen. Sie weist eine Dicke zwischen etwa 1 μπι und etwa 50 μπι, vorzugsweise zwischen 5 μπι und 30 μπι auf. Die Poren aufweisende Verbindungsschicht 106 aus Silber weist über Ihr gesamtes Volumen Poren 108 mit Porengrößen zwischen etwa 50 nm und etwa 1000 nm auf. Pore-containing bonding layer 106 may be made of silver. It has a thickness between about 1 μπι and about 50 μπι, preferably between 5 μπι and 30 μπι on. The pore-containing compound layer 106 of silver has over its entire volume, pores 108 having pore sizes between about 50 nm and about 1000 nm.
Die Poren aufweisende Verbindungsschicht 106 aus Silber weist eine Wärmeleitfähigkeit zwischen 80 W/m*K und 300 W/m*K auf. The voided compound layer 106 of silver has a thermal conductivity between 80 W / m * K and 300 W / m * K.
Alternativ kann die Poren aufweisende Verbindungsschicht 106 auch aus Gold bestehen. Alternatively, the voided interconnect layer 106 may also be gold.
Das Substrat 124 ist ein Leadframe, der in ein Premold- Gehäuse 118 eingegossen ist. Das Premold-Gehäuse 118 bildet eine Kavität. Der Boden der Kavität ist durch den Leadframe 124 gebildet. Der Halbleiterchip 102 ist auf dem Leadframe 124 angeordnet. Die vom Leadframe 124 abgewandte Fläche des Halbleiterchip 102 ist über ein Kontaktpad 112 und einen Bonddraht 116 elektrisch leitend mit einem Bondpad 126a auf dem Leadframe verbunden. Das Bondpad 126a aus Gold weist eine Dicke zwischen 0,5 μπι und 5 μπι auf. Der Halbleiterchip 102 ist durch einen planaren Volumenverguss 120 vergossen. Auf dem Verguss 120 ist eine Primäroptik 122 in Form einer Linse The substrate 124 is a leadframe cast in a premold housing 118. The premold housing 118 forms a cavity. The bottom of the cavity is formed by the leadframe 124. The semiconductor chip 102 is arranged on the leadframe 124. The surface of the semiconductor chip 102 facing away from the leadframe 124 is electrically conductively connected to a bonding pad 126a on the leadframe via a contact pad 112 and a bonding wire 116. The gold bonding pad 126a has a thickness of between 0.5 μπι and 5 μπι. The semiconductor chip 102 is potted by a planar volume casting 120. On the potting 120 is a primary optic 122 in the form of a lens
angeordnet. arranged.
Figur lb zeigt eine Schnittansicht durch ein Figure lb shows a sectional view through a
elektronisches Bauelement 100b. Das Ausführungsbeispiel von Figur lb ist identisch zum Ausführungsbeispiel von Figur la, außer dass die Halbleiterchip-Kontaktschicht 110b und das Bondpad 126b eine verschwindende Dicke aufweisen. Mit anderen Worten setzt die Poren aufweisende Verbindungsschicht 106 aus Silber direkt auf den electronic component 100b. The embodiment of Figure lb is identical to the embodiment of Figure la, except that the semiconductor chip contact layer 110b and the bonding pad 126b have a vanishing thickness. In other words, the voided silver interconnection layer 106 directly adjoins
Leadframe 124 auf. Analog setzt der Bonddraht 116 direkt auf den Leadframe 124 auf. Das in Figur lb gezeigte Leadframe 124 on. Analogously, the bonding wire 116 is directly applied to the leadframe 124. The shown in Figure lb
Ausführungsbeispiel ist vorteilhaft, da die thermische und elektrische Verbindung zwischen Leadframe 124 und Halbleiterchip 102 unmittelbar ist, also nur durch die Poren aufweisende Verbindungsschicht 106 vermittelt wird. Dies führt zu einer besonders guten Wärmeabfuhr vom Embodiment is advantageous because the thermal and electrical connection between the leadframe 124 and the semiconductor chip 102 is immediate, that is mediated only by the connecting layer 106 having the pores. This leads to a particularly good heat dissipation from
Halbleiterchip 102 an den Leadframe 124. Semiconductor chip 102 to the leadframe 124th
Figur 2 zeigt eine Schnittansicht durch ein Figure 2 shows a sectional view through a
elektronisches Bauelement 200. Im Gegensatz zu Figur la und lb ist das Substrat 224 eine Keramik. Der Kern der Erfindung, nämlich der optimierte Wärmetransport vom Halbleiterchip 202 zum Substrat 224 über die Poren aufweisende Verbindungsschicht 206 aus Silber, liegt auch dem Ausführungsbeispiel von Figur 2 zugrunde. Der electronic device 200. In contrast to FIGS. 1a and 1b, the substrate 224 is a ceramic. The core of the invention, namely the optimized heat transfer from the semiconductor chip 202 to the substrate 224 via the connecting layer 206 made of silver having the pores, is also based on the exemplary embodiment of FIG. Of the
Halbleiterchip 202 ist über seine Kontakt fläche 204 mit der Poren aufweisenden Verbindungsschicht 206 aus Silber verbunden. Die Poren aufweisende Verbindungsschicht 206 ist mit der elektrisch und thermisch leitenden Semiconductor chip 202 is connected via its contact surface 204 with the voided connecting layer 206 made of silver. The voided interconnect layer 206 is electrically and thermally conductive
Halbleiterchip-Kontaktschicht 210 verbunden. Anders als in Figur lb ist im Ausführungsbeispiel von Figur 2 eine leitfähige Halbleiterchip-Kontaktschicht 210 mit nicht- verschwindender Dicke zwingend notwendig, da das Keramik- Substrat 224 ein elektrischer Isolator ist. Der zweite elektrische Kontakt kommt durch den Bonddraht 216 zu Stande, der das Kontaktpad 212 auf der dem Substrat 224 abgewandten Fläche des Halbleiterchips 202 mit dem Semiconductor chip contact layer 210 connected. Unlike in FIG. 1b, in the exemplary embodiment of FIG. 2 a conductive semiconductor chip contact layer 210 with non-negligible thickness is absolutely necessary, since the ceramic substrate 224 is an electrical insulator. The second electrical contact is made by the bonding wire 216, the contact pad 212 on the side facing away from the substrate 224 of the semiconductor chip 202 with the
Bondpad 226 auf der Keramik 224 verbindet. Der Bondpad 226 on the ceramic 224 connects. Of the
Halbleiterchip 202 ist in einem Verguss 220 eingegossen. Auf dem Verguss ist eine Primäroptik 222 in Form einer Linse angeordnet. Durch das Keramik-Substrat 224 sind Vias 230, 232 angeordnet, die mit elektrisch leitfähigem Material gefüllt sind. In elektrischer Verbindung mit den Vias 230, 232 sind auf der dem Halbleiterchip 202 abgewandten Seite des Substrats 224 metallisierte Semiconductor chip 202 is cast in a potting 220. On the potting a primary optics 222 is arranged in the form of a lens. Through the ceramic substrate 224 vias 230, 232 are arranged, which are filled with electrically conductive material. In electrical connection with the vias 230, 232 are on the semiconductor chip 202 opposite side of the substrate 224 metallized
Kontaktschichten 234, 236 angeordnet. Diese Contact layers 234, 236 arranged. These
Kontaktschichten 234, 236 sind beispielsweise zur Contact layers 234, 236 are for example for
Kontaktierung auf einer Leiterplatte vorgesehen. Die im Halbleiterchip 202 erzeugte Wärme wird primär an die Keramik 224 abgeführt. Contacting provided on a printed circuit board. The heat generated in the semiconductor chip 202 is primarily dissipated to the ceramic 224.
Figur 3 zeigt ein Ablaufdiagramm zur Herstellung eines elektronischen, insbesondere eines optoelektronischen, Bauelements. Der Herstellungsprozess lässt sich in die Schritte Sl bis S7 aufgliedern. FIG. 3 shows a flow chart for producing an electronic, in particular an optoelectronic, component. The manufacturing process can be broken down into steps S1 to S7.
Im Schritt Sl wird ein Substrat 124, 224 mit mindestens einer Halbleiterchip-Kontaktschicht 110a, 110b, 210 bereitgestellt. In step S1, a substrate 124, 224 with at least one semiconductor chip contact layer 110a, 110b, 210 is provided.
Im Schritt S2 wird eine Paste auf die Halbleiterchip- Kontaktschicht 110a, 110b, 210 durch Dispensen oder In step S2, a paste is applied to the semiconductor chip contact layer 110a, 110b, 210 by dispensing or
Siebdrucken oder Stempeln oder Schablonendrucken oder Jetten aufgebracht. Die Paste weist Silberpartikel, organisches Lösungsmittel und eine organische Matrix auf. Die Silberpartikel sind in die organische Matrix Screen printing or stamping or stencil printing or jetting applied. The paste comprises silver particles, organic solvent and an organic matrix. The silver particles are in the organic matrix
eingebettet, wodurch wenigstens ein minimaler embedded, creating at least a minimal
Zusammenhalt zwischen den Silberpartikeln gegeben ist.  Cohesion between the silver particles is given.
Im Schritt S3 wird der Halbleiterchip 102, 202 auf die Paste aufgepresst. Dabei wird die Paste verdichtet. In step S3, the semiconductor chip 102, 202 is pressed onto the paste. The paste is compacted.
Im optionalen Schritt 4 wird die Paste zum Austreiben des organischen Lösungsmittels aus der Paste getempert. Das Tempern erfolgt in einem Umluftofen unter Normal- Atmosphäre während etwa 10 Minuten bei etwa 150°C. In optional step 4, the paste for annealing the organic solvent from the paste is annealed. The annealing is carried out in a convection oven under normal atmosphere for about 10 minutes at about 150 ° C.
Im Schritt S5 wird die Paste gesintert, was zu einer Poren aufweisenden Verbindungsschicht 106, 206 führt. Das Sintern erfolgt in einem Umluftofen unter Normal- Atmosphäre während etwa 20 Minuten bei etwa 250°C. Im Sinterschritt wird die organische Matrix ausgebrannt. Die Porosität und das Volumen der Verbindungsschicht 106, 206 verringert sich dabei deutlich. Zudem bilden sich In step S5, the paste is sintered, resulting in a voided bonding layer 106, 206. The Sintering takes place in a convection oven under normal atmosphere for about 20 minutes at about 250 ° C. In the sintering step, the organic matrix is burned out. The porosity and the volume of the connecting layer 106, 206 are reduced significantly. In addition, form
sogenannte Sinterhälse, die die Festigkeit der so-called sintering necks, the strength of the
Verbindungsschicht 106, 206 erhöhen. Die Sinterhälse entstehen durch Oberflächendiffusion zwischen den Increase connection layer 106, 206. The sintered necks are formed by surface diffusion between the
Sinterpartikeln. Im Schritt S6 wird der auf dem Substrat befestigte Sintered particles. In step S6, the attached to the substrate
Halbleiterchip 102, 202 mit einem Vergussmaterial, insbesondere einem Silikon oder einem Harz, vergossen. Semiconductor chip 102, 202 with a potting material, in particular a silicone or a resin encapsulated.
Im Schritt S7 wird eine Primäroptik 122, 222, In step S7, a primary optic 122, 222,
insbesondere eine Linse, auf den Verguss 120, 220 in particular a lens, on the potting 120, 220th
aufgesetzt. placed.
Das optoelektronische Bauelement wurde zur The optoelectronic device has become the
Veranschaulichung des zugrundeliegenden Gedankens anhand einiger Ausführungsbeispiele beschrieben. Die Illustration of the underlying idea described with reference to some embodiments. The
Ausführungsbeispiele sind dabei nicht auf bestimmte Embodiments are not specific
Merkmalskombinationen beschränkt. Auch wenn einige Characteristic combinations limited. Although some
Merkmale und Ausgestaltungen nur im Zusammenhang mit einem besonderen Ausführungsbeispiel oder einzelnen Features and configurations only in connection with a particular embodiment or individual
Ausführungsbeispielen beschrieben wurden, können sie jeweils mit anderen Merkmalen aus anderen Embodiments have been described, they can each with other characteristics of others
Ausführungsbeispielen kombiniert werden. Es ist ebenso denkbar, in Ausführungsbeispielen einzelne dargestellte Merkmale oder besondere Ausgestaltungen wegzulassen oder hinzuzufügen, soweit die allgemeine technische Lehre realisiert bleibt. Bezugs zeichenliste Embodiments are combined. It is also conceivable to omit or add in individual embodiments illustrated features or special embodiments, as far as the general technical teaching is realized. Reference sign list
100a elektronisches Bauelement  100a electronic component
100b elektronisches Bauelement  100b electronic component
102 Halbleiterchip  102 semiconductor chip
104 Kontaktfläche des Halbleiterchips  104 contact surface of the semiconductor chip
106 Poren aufweisende Verbindungsschicht aus Silber 106 pore-containing compound layer of silver
108 Poren in der Verbindungsschicht 108 pores in the tie layer
110a Halbleiterchip-Kontaktschicht auf Leadframe 110b Halbleiterchip-Kontaktschicht auf Leadframe 110a semiconductor chip contact layer on leadframe 110b semiconductor chip contact layer on leadframe
112 Kontaktpad 112 contact pad
116 Bonddraht  116 bonding wire
118 Premold-Gehäuse  118 premold case
120 Verguss  120 potting
122 Primäroptik  122 Primary optics
124 Leadframe  124 leadframe
126a Bondpad auf Leadframe  126a bond pad on leadframe
126b Bondpad auf Leadframe  126b bond pad on leadframe
200 elektronisches Bauelement  200 electronic component
202 Halbleiterchip 204 Kontakt fläche des Halbleiterchips 202 semiconductor chip 204 contact surface of the semiconductor chip
206 Poren aufweisende Verbindungsschicht aus Silber 206 pore silver compound layer
208 Poren in der Verbindungsschicht 208 pores in the tie layer
210 Halbleiterchip-Kontaktschicht auf Keramik 212 Kontaktpad  210 semiconductor chip contact layer on ceramic 212 contact pad
216 Bonddraht  216 bonding wire
220 Verguss  220 potting
222 Primäroptik  222 primary optics
224 Keramik  224 ceramics
226 Bondpad auf Keramik 226 Bondpad on ceramic
230 elektrisch leitfähiges Via  230 electrically conductive via
232 elektrisch leitfähiges Via  232 electrically conductive via
234 metallisierte Kontaktschicht  234 metallized contact layer
236 metallisierte Kontaktschicht  236 metallized contact layer

Claims

PAT E N TAN S P R Ü C H E PAT EN TAN SPRU
1. Elektronisches Bauelement (100a, 100b, 200), insbesondere optoelektronisches Bauelement, mit: 1. Electronic component (100a, 100b, 200), in particular optoelectronic component, with:
- einem Substrat (124, 224) aufweisend mindestens eine Halbleiterchip-Kontaktschicht (110a, 110b, 210), a substrate having at least one semiconductor chip contact layer,
- mindestens einem auf der Halbleiterchip- Kontaktschicht (110a, 110b, 210) angeordneten - At least one on the semiconductor chip contact layer (110a, 110b, 210) arranged
Halbleiterchip (102, 202),  Semiconductor chip (102, 202),
- wobei zwischen der Halbleiterchip-Kontaktschicht (110a, 110b, 210) und einer dem Substrat (124, 224) zugewandten Kontakt fläche (104, 204) des  - Wherein between the semiconductor chip contact layer (110 a, 110 b, 210) and the substrate (124, 224) facing contact surface (104, 204) of the
Halbleiterchips (102, 202) eine Poren aufweisende Verbindungsschicht (106, 206) angeordnet ist.  Semiconductor chips (102, 202) a voided compound layer (106, 206) is arranged.
2. Elektronisches Bauelement gemäß Anspruch 1, wobei die Poren aufweisende Verbindungsschicht (106, 206) elektrisch leitfähig und/oder wärmeleit fähig ist. 2. The electronic component according to claim 1, wherein the voided connecting layer (106, 206) is electrically conductive and / or thermally conductive.
3. Elektronisches Bauelement gemäß Anspruch 1 oder 2, wobei die Poren aufweisende Verbindungsschicht (106, 206) aus Silber besteht. 3. The electronic component according to claim 1 or 2, wherein the voided connecting layer (106, 206) consists of silver.
4. Elektronisches Bauelement gemäß Anspruch 3, wobei die Poren aufweisende Verbindungsschicht (106, 206) aus Silber eine Dicke zwischen etwa 1 μπι und etwa 50 μπι, vorzugsweise zwischen 5 μπι und 30 μπι aufweist. 4. The electronic component according to claim 3, wherein the void having connecting layer (106, 206) made of silver has a thickness between about 1 μπι and about 50 μπι, preferably between 5 μπι and 30 μπι.
5. Elektronisches Bauelement gemäß Anspruch 3 oder 4, wobei die Poren aufweisende Verbindungsschicht (106,5. Electronic component according to claim 3 or 4, wherein the voided connecting layer (106,
206) aus Silber Poren (108, 208) mit Porengrößen zwischen etwa 50 nm und etwa 1000 nm aufweist. 206) of silver has pores (108, 208) with pore sizes between about 50 nm and about 1000 nm.
6. Elektronisches Bauelement gemäß einem der Ansprüche 3 bis 5, wobei die Poren aufweisende 6. Electronic component according to one of claims 3 to 5, wherein the pores having
Verbindungsschicht (106, 206) aus Silber eine Connecting layer (106, 206) made of silver one
Wärmeleitfähigkeit zwischen etwa 80 W/m*K und etwa 300 W/m*K aufweist. Thermal conductivity between about 80 W / m * K and about 300 W / m * K has.
7. Elektronisches Bauelement gemäß Anspruch 1 oder 2, wobei die Poren aufweisende Verbindungsschicht aus Gold besteht. 7. An electronic device according to claim 1 or 2, wherein the voided compound layer consists of gold.
8. Elektronisches Bauelement gemäß einem der vorigen Ansprüche, wobei das Substrat (124) ein Leadframe ist. 8. The electronic component according to one of the preceding claims, wherein the substrate (124) is a leadframe.
9. Elektronisches Bauelement gemäß Anspruch 8, wobei der Leadframe (124) in ein Premold-Gehäuse eingegossen ist . 9. Electronic component according to claim 8, wherein the leadframe (124) is cast in a premold housing.
10. Elektronisches Bauelement gemäß einem der Ansprüche 1 bis 7, wobei das Substrat (224) eine 10. The electronic component according to one of claims 1 to 7, wherein the substrate (224) a
Keramik ist.  Ceramics is.
11. Verfahren zum Herstellen eines elektronischen Bauelements (100a, 100b, 200), insbesondere eines optoelektronischen Bauelements, mit mindestens den folgenden Schritten: 11. A method for producing an electronic component (100a, 100b, 200), in particular an optoelectronic component, having at least the following steps:
- Bereitstellen eines Substrats (124, 224) mit  - Providing a substrate (124, 224) with
mindestens einer Halbleiterchip-Kontaktschicht (110a, 110b, 210), at least one semiconductor chip contact layer (110a, 110b, 210),
- Aufbringen einer Paste aufweisend Silberpartikel, organisches Lösungsmittel und eine organische Matrix auf die Halbleiterchip-Kontaktschicht (110a, 110b, 210) ,  Applying a paste comprising silver particles, organic solvent and an organic matrix to the semiconductor chip contact layer (110a, 110b, 210),
- Pressen des Halbleiterchips (102, 202) auf die  - Pressing the semiconductor chip (102, 202) on the
Paste, - Sintern der Paste zum Ausbrennen der organischen Matrix . Paste, - sintering the paste to burn off the organic matrix.
12. Verfahren gemäß dem vorigen Anspruch, wobei das Sintern der Paste während etwa 20 Minuten bei etwa 250°C erfolgt. 12. A method according to the preceding claim, wherein the sintering of the paste is carried out at about 250 ° C for about 20 minutes.
13. Verfahren gemäß Anspruch 11 oder 12, wobei ein Temperschritt zum Austreiben des organischen 13. The method according to claim 11 or 12, wherein an annealing step for expelling the organic
Lösungsmittels nach dem Pressen des Halbleiterchips (102, 202) auf die Paste und vor dem Sinterschritt ausgeführt wird. Solvent after pressing the semiconductor chip (102, 202) is performed on the paste and before the sintering step.
14. Verfahren gemäß Anspruch 13, wobei das Tempern während etwa 10 Minuten bei etwa 150°C erfolgt. 14. A process according to claim 13, wherein the annealing is carried out at about 150 ° C for about 10 minutes.
PCT/EP2011/062082 2010-07-26 2011-07-14 Electronic component and method for producing an electronic component WO2012013514A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010038405.4 2010-07-26
DE102010038405A DE102010038405A1 (en) 2010-07-26 2010-07-26 Electronic component and method for producing an electronic component

Publications (1)

Publication Number Publication Date
WO2012013514A1 true WO2012013514A1 (en) 2012-02-02

Family

ID=44510916

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/062082 WO2012013514A1 (en) 2010-07-26 2011-07-14 Electronic component and method for producing an electronic component

Country Status (3)

Country Link
DE (1) DE102010038405A1 (en)
TW (1) TW201222899A (en)
WO (1) WO2012013514A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT513747B1 (en) * 2013-02-28 2014-07-15 Mikroelektronik Ges Mit Beschränkter Haftung Ab Assembly process for circuit carriers and circuit carriers

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005081319A1 (en) 2004-02-20 2005-09-01 Osram Opto Semiconductors Gmbh Optoelectronic component, device comprising a plurality of optoelectronic components, and method for the production of an optoelectronic component
DE102006015788A1 (en) 2006-01-27 2007-09-13 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor chip
US20080145607A1 (en) * 2006-12-18 2008-06-19 Renesas Technology Corp. Semiconductor apparatus and manufacturing method of semiconductor apparatus
US20090096100A1 (en) * 2007-10-10 2009-04-16 Ryoichi Kajiwara Semiconductor apparatus, manufacturing method of semiconductor apparatus, and joint material
US20090189264A1 (en) * 2008-01-28 2009-07-30 Renesas Technology Corp. Semiconductor device and manufacturing method of the same
EP2158997A2 (en) * 2008-08-27 2010-03-03 W.C. Heraeus GmbH Control of the porosity of metal pastes for pressure-free low temperature sinter-process

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI260798B (en) * 2005-05-02 2006-08-21 Ind Tech Res Inst Highly heat-dissipating light-emitting diode
US9412926B2 (en) * 2005-06-10 2016-08-09 Cree, Inc. High power solid-state lamp
US7550319B2 (en) * 2005-09-01 2009-06-23 E. I. Du Pont De Nemours And Company Low temperature co-fired ceramic (LTCC) tape compositions, light emitting diode (LED) modules, lighting devices and method of forming thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005081319A1 (en) 2004-02-20 2005-09-01 Osram Opto Semiconductors Gmbh Optoelectronic component, device comprising a plurality of optoelectronic components, and method for the production of an optoelectronic component
DE102006015788A1 (en) 2006-01-27 2007-09-13 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor chip
US20080145607A1 (en) * 2006-12-18 2008-06-19 Renesas Technology Corp. Semiconductor apparatus and manufacturing method of semiconductor apparatus
US20090096100A1 (en) * 2007-10-10 2009-04-16 Ryoichi Kajiwara Semiconductor apparatus, manufacturing method of semiconductor apparatus, and joint material
US20090189264A1 (en) * 2008-01-28 2009-07-30 Renesas Technology Corp. Semiconductor device and manufacturing method of the same
EP2158997A2 (en) * 2008-08-27 2010-03-03 W.C. Heraeus GmbH Control of the porosity of metal pastes for pressure-free low temperature sinter-process

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHRISTIAN MERTENS ED - MERTENS CHRISTIAN: "Die Niedertemperatur-Verbindungstechnik der Leistungselektronik", 1 January 2004, DIE NIEDERTEMPERATUR-VERBINDUNGSTECHNIK DER LEISTUNGSELEKTRONIK; [FORTSCHRITT-BERICHTE VDI : REIHE 21, ELEKTROTECHNIK ; 365], VDI VERLAG, DÜSSELDORF, GERMANY, PAGE(S) 1 - 35,72, ISBN: 978-3-18-336521-0, XP002541611 *

Also Published As

Publication number Publication date
TW201222899A (en) 2012-06-01
DE102010038405A1 (en) 2012-01-26

Similar Documents

Publication Publication Date Title
DE102004034166B4 (en) Light-emitting device
EP1728280B1 (en) Optoelectronic component comprising a multi-part housing body
DE102008021402B4 (en) Surface mount light emitting diode module and method for manufacturing a surface mount light emitting diode module
DE102012209325B4 (en) Optoelectronic module
EP2345074B1 (en) Supporting body for a semiconductor element, semiconductor element and method for production of a supporting body
DE102005042778A1 (en) Optical solid state device
DE102010048159A1 (en) LED chip
DE102013108354A1 (en) Electronic component and method for manufacturing an electronic component
WO2013185839A1 (en) Method for producing an optoelectronic semiconductor device comprising a connecting layer sintered under the action of heat, pressure and ultrasound
WO2016062464A1 (en) Electronic device and method for producing an electronic device
WO2016120047A1 (en) Optoelectronic semiconductor component, optoelectronic arrangement and method for producing an optoelectronic semiconductor component
EP2593974A2 (en) Carrier device for a semiconductor chip, electronic component comprising a carrier device and optoelectronic component comprising a carrier device
DE102011053099A1 (en) A method of filling a contact hole in a chip package and chip package assemblies
DE102019122628A1 (en) Light emitting device package and method of making a light emitting device package
WO2012013514A1 (en) Electronic component and method for producing an electronic component
WO2022248247A1 (en) Optoelectronic semiconductor component and panel
DE102010049961A1 (en) Optoelectronic semiconductor component with a semiconductor chip, a carrier substrate and a film and a method for its production
DE102021133724A1 (en) LIGHT EMITTING MODULE AND METHOD FOR MANUFACTURING A LIGHT EMITTING MODULE
DE102018131775A1 (en) Electronic component and method for producing an electronic component
WO2009103285A1 (en) Optoelectronic component
DE102017208533B4 (en) Joining materials, electronic devices and methods of making them
WO2020083692A1 (en) Optoelectronic component, production method therefor and illumination device
DE102015107591B4 (en) Optoelectronic semiconductor component and method for producing an optoelectronic semiconductor component
DE102010033868A1 (en) Chip carrier, electronic component with chip carrier and method for producing a chip carrier
WO2018228976A1 (en) Method for the self-adjusted equipping of a contact carrier with a component, device and optoelectronic component

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11733838

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11733838

Country of ref document: EP

Kind code of ref document: A1