WO2012012853A1 - Impact pad for use in tundish of continuous casting steel - Google Patents
Impact pad for use in tundish of continuous casting steel Download PDFInfo
- Publication number
- WO2012012853A1 WO2012012853A1 PCT/BR2011/000114 BR2011000114W WO2012012853A1 WO 2012012853 A1 WO2012012853 A1 WO 2012012853A1 BR 2011000114 W BR2011000114 W BR 2011000114W WO 2012012853 A1 WO2012012853 A1 WO 2012012853A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- impact pad
- impact
- tundish
- steel
- flow
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D41/00—Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
- B22D41/003—Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like with impact pads
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/10—Supplying or treating molten metal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D41/00—Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
- B22D41/08—Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like for bottom pouring
Definitions
- the present invention relates to an impact pad which presents an internal disposition specially developed for damping the stream of molten metal during its pouring out of a ladle to the tundish in continuous casting plants, thus minimizing the turbulence phenomenon, which is harmful to the quality of processed steel.
- the continuous casting process is used by nearly 90% of the most important steel plants in the world, due to its low operation costs, reduced energy expenditure and high productivity.
- a person skilled in the art knows that a turbulent flow within a tundish due to high velocity of the molten metal poured out of the ladle may cause slag and refractory material fragments to be dragged out into the mould, affecting the degree of purity of the processed steel.
- a skilled technician is aware of splash formation at the beginning of a continuous casting sequence or in ladle change, when a high turbulence zone is formed near the entry jet of molten steel, which may cause oxygen and nitrogen to be incorporated into the steel due to air contact, or even endanger operators due to steel projection.
- impact pads which are more or less effective according to their compliance with some theoretical rules regarding fluid flow.
- impact pads have the purpose of minimizing steel flow turbulence within the tundish, thus increasing time of residence. They are also in- tended for directing steel flow for the free surface, allowing trapping of inclusions by the slag.
- Another object is to reduce splash of the entry stream, thus reducing turbulence and consequently oxygen and nitrogen inclusions, as well as enhancing steel purity.
- Turbulence is a naturally occurring process in industrial flows. Its main characteristic is the wide variation of pressure, temperature and velocity over time.
- ⁇ ⁇ ⁇ ⁇ + ⁇ ⁇ ' ⁇ (i)
- ⁇ ⁇ ' the variation of flow velocity over time, which means that velocity ⁇ ⁇ may suffer large or small variations, for more or less than its value.
- This constant change in the values of a given property is a characteristic of turbulent flows.
- the object of the present invention is to reduce flow velocity values and its variations so as to provide a more uniform flow with smaller velocities.
- the present invention uses, in its favor, the physical characteristics of the flow processes of a given fluid (molten steel) into a particular surface.
- a characteristic used by the present invention is the fact that a fluid stream loses velocity when flowing in contact with a rugged surface (that is, the refractory wall of the impact pad of the present invention).
- the friction between the surface and the flowing fluid reduces velocity by means of the drag force, which imposes resistance to the flow, being that the stronger the drag force, the slower the flow velocity for the same velocity value analyzed.
- the drag force is defined by:
- ⁇ 2 is fluid velocity squared
- C D is the constant that measures the friction coefficient
- A is the area of contact between the solid and the fluid.
- the solution proposed by the present invention shows an increase from 15% to 35% in the superficial area of the im- pact surface at the bottom of the impact pad.
- the increase in the superficial area ranges from 20% to 50%. This increase in area causes the denominator of equation (iii) to increase and consequently to reduce the value of flow velocity.
- Another form of energy dissipation used by the present invention, especially on the side walls of the impact pad is the collision between two fluid streams (molten steel) in opposite directions.
- the impact pad of the present invention has side walls with spaced and staggered barriers in height and in length in the whole extension of the walls or part thereof.
- the reducer also has an impact bottom provided with regularly and staggeredly arranged corrugations. In both cases, on the side wall with barriers and on the corrugated impact bottom, there is a considerable increase in the area, as mentioned above, when compared to a corresponding smooth surface.
- the flow pattern shown within the impact pad according to the present invention is such that the high velocity regions are confined in the impact region of the steel stream, resulting in low velocities at the metal/slag interface. Initially, the steel flow moves upward, and afterwards it moves parallel to the surface, thus facilitating the absorption of slag inclusions.
- Figure 1 - is a perspective and cross-section view of the object of the present invention.
- Figure 2 - is the schematic distribution of the fluid flows in the side walls of the object of the present invention.
- Figure 3 - is a sectional view of the object of the present inven- tion showing the fluid feed
- Figure 4 - is a sectional view showing an impact pad with a flat impact surface
- Figure 5 - is a diagram showing the path of the liquid in the corrugated surface
- Figure 6 - is a sectional view of the object of the present invention showing an inclined fluid feed.
- Figure 1 shows the impact pad of the present invention in a perspective view with a side cut showing the impact bottom 5 with corrugations 4 and side walls 2 with barriers 3, the impact pad being made of refractory material.
- Its shape should preferably be rectangular or square and its size should be compatible with the tundish model in which it will be adapted.
- Other geometric shapes such as circular, hexagonal, octagonal, etc are not beyond the scope of the invention, as long as it is possible to keep its internal basic configuration as shown in Figure 1.
- This configuration refers to the composition of multiple barriers 3 of the same material or not of the side walls 2 and that shows in a preferred embodiment the longitudinal section being rectangular, although other types of section may be considered for barriers 3.
- Said barriers 3 are arranged on the side walls 9 forming a series of obstacles through which part of the flow of molten steel 6 must go by. They may be included in the whole length and height of side walls 2, or only in part of them, and may also vary in the spacing between each other, such definitions depending on the process conditions or other variables.
- the rows of barriers 3 ensure the confinement of turbulence to the impact region.
- the use of two or more rows of barriers 3 ensures the permanence of this confinement effect of turbulence over a longer period of operation in cases of long sequences of casting.
- the presence of barriers 3, due to its large area, also provides a useful area of optimized incidence of the jet of molten steel, which is of utmost importance in operations of long inclined valves.
- FIG. 1 it can still be seen the impact bottom 5 with corruga- tions 4.
- Said corrugations 4 may have different amplitudes and forms depending on process conditions. They may extend throughout the impact bottom 5 or only part of it. They may be, for example, spherical, ovoid and/or disk or plate-shaped. However, they should avoid sharp edges that could harm or detain the flow of liquid steel, thus generating an undesirable dead volume.
- the large fluid stream entering in impact pad 1 is subdivided into several smaller streams, as shown in Figure 1.
- many small streams are formed and begin to collide with adjacent fluid streams in the opposite direction, between the layers of barriers existing in walls 2 of the impact pad 1 of the present invention.
- there is a loss of velocity by the collision of flows of opposite directions associated with the effect of loss of velocity by the friction mentioned above.
- Figure 3 shows how the flow of liquid steel 6 is forced to travel a longer way to reach wall 2, by-passing all the corrugations 4 to reach wall 2, and, as mentioned before, the higher the path traveled by the molten steel, the more kinetic energy it dissipates and the lower the turbulence of the flow to the tundish is.
- the present invention also introduces an additional advantage to the flow of molten steel due to its impact surface 5 with corrugations 4 of diffusive characteristics.
- This impact surface 5 with corrugations 4 is characte- rized by randomly distribute the flow of steel through the impact pad (see Figure 5), regardless of the angle of entry of the jet 6, as illustrated in Figure 6.
- Figure 4 shows how the flow would be if the impact pad of the present invention were made with a flat impact surface 5, that is, without corrugations 4.
- the flat surface deflects the jet of molten steel 6, towards the wall 2 of the impact pad with virtually no loss of kinetic energy.
- Figure 6 shows how the impact pad of the present invention, with the impact surface 5 with corrugations 4, achieves to keep a random distribution of the flow regardless of the angle of entry of jet 6. This causes the molten steel to be better distributed within the impact pad, increasing its efficiency in reducing the kinetic energy of the jet of molten steel 6.
- the jet of molten steel 6 from the casting ladle is poured out from the upper side into the recipient of the impact pad 1 that is properly fitted inside the tundish.
- the recipient of the impact pad 1 receives in its impact bottom 5 the impact caused by the intensity of the jet of molten steel 6 which varies depending on the volume of molten steel contained in the ladle.
- the level of turbulence generated during pouring out will be proportional to the kinetic energy contained in the jet of molten steel 6.
- the absorption of part of this energy and consequent reduction of turbulence by the impact pad 1 of the present invention is due to the fact that the jet of steel 6, after reaching the impact bottom 5 with the corrugations 4 of diffusive characteristics, has its flow distributed uniformly with a reduction of kinetic energy due to the large area and consequent high friction, subsequently going against the side walls 2. On the side walls, part of this jet 6 is forced to pass through obstacles formed by barriers 3, thus reducing their movement speed inside the recipient due to the collision of partial flows in the opposite direction and to the wall friction. Barriers 3 also generate a large useful contact area with respective high friction and kinetic energy absorption.
- the jet of molten steel 6 to the tundish and, then, to the outlet nozzle of the casting mold occurs with a softened laminar flow, thus avoiding the problems described initially related to oxygen and nitrogen inclusions, slag purging and refractory impairing steel purity.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Continuous Casting (AREA)
Abstract
The present invention relates to an impact pad for use in tundish of continuous casting steel during pouring out of molten steel (6) from the casting ladle into the tundish. The impact pad (1) has side walls (2) provided with barriers (3) distributed spaced apart and staggered in height and in length in the whole extension of the walls (2) or part thereof, the impact pad (1) still comprises an impact bottom (5) provided with corrugations (4) uniformly distributed and staggered in its entirety or part thereof.
Description
Title: "IMPACT PAD FOR USE IN TUNDISH OF CONTINUOUS CASTING STEEL".
The present invention relates to an impact pad which presents an internal disposition specially developed for damping the stream of molten metal during its pouring out of a ladle to the tundish in continuous casting plants, thus minimizing the turbulence phenomenon, which is harmful to the quality of processed steel.
Description of Prior Art
The continuous casting process is used by nearly 90% of the most important steel plants in the world, due to its low operation costs, reduced energy expenditure and high productivity. A person skilled in the art knows that a turbulent flow within a tundish due to high velocity of the molten metal poured out of the ladle may cause slag and refractory material fragments to be dragged out into the mould, affecting the degree of purity of the processed steel. A skilled technician is aware of splash formation at the beginning of a continuous casting sequence or in ladle change, when a high turbulence zone is formed near the entry jet of molten steel, which may cause oxygen and nitrogen to be incorporated into the steel due to air contact, or even endanger operators due to steel projection.
A usual form to minimize these and other possible problems caused by turbulence is the use of impact pads, which are more or less effective according to their compliance with some theoretical rules regarding fluid flow. In general, impact pads have the purpose of minimizing steel flow turbulence within the tundish, thus increasing time of residence. They are also in- tended for directing steel flow for the free surface, allowing trapping of inclusions by the slag. Another object is to reduce splash of the entry stream, thus reducing turbulence and consequently oxygen and nitrogen inclusions, as well as enhancing steel purity.
A solution for this problem is presented in document BR0800035- 2, which describes a turbulence inhibitor for tundish in continuous casting steel plants, wherein an impact pad is adapted to the internal part of the tundish of continuous casting, minimizing turbulence during pouring out of mol-
ten metal from the feed ladle. The internal structure of the impact pad involves a corrugated relief formed by peaks and valleys on the base and on its side walls. This impact pad may have any geometric form, provided that its internal basic configuration is kept. The large surface generated by the cor- rugations absorbs the kinetic energy of the liquid entering the impact pad. Brief Description of the Invention
Turbulence is a naturally occurring process in industrial flows. Its main characteristic is the wide variation of pressure, temperature and velocity over time.
Assuming that a laminar flow, that is, without turbulence, has an average velocity υ0 , the turbulent flow will be characterized by:
υχ = Ίχ + υχ' · (i) wherein the term υχ' represents the variation of flow velocity over time, which means that velocity υχ may suffer large or small variations, for more or less than its value. This constant change in the values of a given property is a characteristic of turbulent flows.
The object of the present invention is to reduce flow velocity values and its variations so as to provide a more uniform flow with smaller velocities. In order to achieve such object, the present invention uses, in its favor, the physical characteristics of the flow processes of a given fluid (molten steel) into a particular surface.
A characteristic used by the present invention is the fact that a fluid stream loses velocity when flowing in contact with a rugged surface (that is, the refractory wall of the impact pad of the present invention). The friction between the surface and the flowing fluid reduces velocity by means of the drag force, which imposes resistance to the flow, being that the stronger the drag force, the slower the flow velocity for the same velocity value analyzed.
The drag force is defined by:
FD = ^pv2CDA (ii)
Wherein:
p is fluid density;
υ2 is fluid velocity squared
CD is the constant that measures the friction coefficient.
A is the area of contact between the solid and the fluid.
From equation (iii) it can be seen that, in order to change the velocity value, it would be natural to change the value of the area where the flows passes through, since the other values are constant or difficult to be changed, and FD is the friction force resulting from flow properties; p is fluid density, that is, a property of molten steel, which does not significantly vary under ingot casting conditions; and CD , the friction coefficient, is a measure related to the geometrical characteristics of the surface where the fluid passes through, which cannot be changed during the process.
The solution proposed by the present invention, as discussed below, shows an increase from 15% to 35% in the superficial area of the im- pact surface at the bottom of the impact pad. On the side surfaces of the reducer, the increase in the superficial area ranges from 20% to 50%. This increase in area causes the denominator of equation (iii) to increase and consequently to reduce the value of flow velocity.
Another form of energy dissipation used by the present invention, especially on the side walls of the impact pad is the collision between two fluid streams (molten steel) in opposite directions.
The impact pad of the present invention has side walls with spaced and staggered barriers in height and in length in the whole extension of the walls or part thereof. The reducer also has an impact bottom provided with regularly and staggeredly arranged corrugations. In both cases, on the side wall with barriers and on the corrugated impact bottom, there is a considerable increase in the area, as mentioned above, when compared to a corresponding smooth surface.
The presence of a steel flow directed outward or away from the impact zone, as is the case of long inclined valves, may cause localized wear
in the refractory lining. This other stat-of-the-art problem is solved by the present invention through its impact surface having corrugations of diffusive characteristics.
When the prior-art impact pads exhibit a smooth impact surface, there may be a preferential path of high-speed jet with associated reduction in the minimum residence time of the steel in the tundish. Thus, there is an increase in the amount of turbulence kinetic energy at the metal-slag interface. The incorporation of an impact surface having diffusive characteristics such as that of the present invention reduces turbulence and eliminates the formation of a preferential flow path (short-circuit) due to its bigger useful area.
The combination of an impact bottom having a corrugated reiief with its high capacity of absorbing kinetic energy, and side walls of a turbulence inhibitor with barriers that promote the collision of fluids coming from opposite directions, besides increasing the contact area, provides a considerable advantage over the objects already known from the prior art.
The flow pattern shown within the impact pad according to the present invention is such that the high velocity regions are confined in the impact region of the steel stream, resulting in low velocities at the metal/slag interface. Initially, the steel flow moves upward, and afterwards it moves parallel to the surface, thus facilitating the absorption of slag inclusions.
Brief Description of the Drawings
The present invention will be, hereinafter, more fully described based on an example depicted in the drawings. The figures show:
Figure 1 - is a perspective and cross-section view of the object of the present invention;
Figure 2 - is the schematic distribution of the fluid flows in the side walls of the object of the present invention;
Figure 3 - is a sectional view of the object of the present inven- tion showing the fluid feed;
Figure 4 - is a sectional view showing an impact pad with a flat impact surface;
Figure 5 - is a diagram showing the path of the liquid in the corrugated surface; and
Figure 6 - is a sectional view of the object of the present invention showing an inclined fluid feed.
Detailed Description of the Drawings
Figure 1 shows the impact pad of the present invention in a perspective view with a side cut showing the impact bottom 5 with corrugations 4 and side walls 2 with barriers 3, the impact pad being made of refractory material. Its shape should preferably be rectangular or square and its size should be compatible with the tundish model in which it will be adapted. Other geometric shapes such as circular, hexagonal, octagonal, etc are not beyond the scope of the invention, as long as it is possible to keep its internal basic configuration as shown in Figure 1. This configuration refers to the composition of multiple barriers 3 of the same material or not of the side walls 2 and that shows in a preferred embodiment the longitudinal section being rectangular, although other types of section may be considered for barriers 3. Said barriers 3 are arranged on the side walls 9 forming a series of obstacles through which part of the flow of molten steel 6 must go by. They may be included in the whole length and height of side walls 2, or only in part of them, and may also vary in the spacing between each other, such definitions depending on the process conditions or other variables.
The rows of barriers 3 ensure the confinement of turbulence to the impact region. The use of two or more rows of barriers 3 ensures the permanence of this confinement effect of turbulence over a longer period of operation in cases of long sequences of casting. The presence of barriers 3, due to its large area, also provides a useful area of optimized incidence of the jet of molten steel, which is of utmost importance in operations of long inclined valves.
In Figure 1 , it can still be seen the impact bottom 5 with corruga- tions 4. Said corrugations 4 may have different amplitudes and forms depending on process conditions. They may extend throughout the impact bottom 5 or only part of it. They may be, for example, spherical, ovoid and/or
disk or plate-shaped. However, they should avoid sharp edges that could harm or detain the flow of liquid steel, thus generating an undesirable dead volume.
As can be seen from figure 2, the flows indicated by vectors u, and υ2 collide between barriers 3 on the side wall 2 of the impact pad of the present invention. This collision causes the horizontal and opposite direction velocities to tend to reduce, in very efficient manner, the resultant final value of the velocity that leaves into the tundish as flow υΊ .
Analyzing the flow of molten steel along the walls 2 of the impact pad 1 of the present invention, the large fluid stream entering in impact pad 1 is subdivided into several smaller streams, as shown in Figure 1. Thus, many small streams are formed and begin to collide with adjacent fluid streams in the opposite direction, between the layers of barriers existing in walls 2 of the impact pad 1 of the present invention. Thus, there is a loss of velocity by the collision of flows of opposite directions associated with the effect of loss of velocity by the friction mentioned above.
Figure 3 shows how the flow of liquid steel 6 is forced to travel a longer way to reach wall 2, by-passing all the corrugations 4 to reach wall 2, and, as mentioned before, the higher the path traveled by the molten steel, the more kinetic energy it dissipates and the lower the turbulence of the flow to the tundish is.
The present invention also introduces an additional advantage to the flow of molten steel due to its impact surface 5 with corrugations 4 of diffusive characteristics. This impact surface 5 with corrugations 4 is characte- rized by randomly distribute the flow of steel through the impact pad (see Figure 5), regardless of the angle of entry of the jet 6, as illustrated in Figure 6. Figure 4 shows how the flow would be if the impact pad of the present invention were made with a flat impact surface 5, that is, without corrugations 4. The flat surface deflects the jet of molten steel 6, towards the wall 2 of the impact pad with virtually no loss of kinetic energy. Figure 6 shows how the impact pad of the present invention, with the impact surface 5 with corrugations 4, achieves to keep a random distribution of the flow regardless of the
angle of entry of jet 6. This causes the molten steel to be better distributed within the impact pad, increasing its efficiency in reducing the kinetic energy of the jet of molten steel 6.
According to the figures mentioned above, we can summarize that the jet of molten steel 6 from the casting ladle is poured out from the upper side into the recipient of the impact pad 1 that is properly fitted inside the tundish. The recipient of the impact pad 1 , receives in its impact bottom 5 the impact caused by the intensity of the jet of molten steel 6 which varies depending on the volume of molten steel contained in the ladle. In this process, the level of turbulence generated during pouring out will be proportional to the kinetic energy contained in the jet of molten steel 6. The absorption of part of this energy and consequent reduction of turbulence by the impact pad 1 of the present invention is due to the fact that the jet of steel 6, after reaching the impact bottom 5 with the corrugations 4 of diffusive characteristics, has its flow distributed uniformly with a reduction of kinetic energy due to the large area and consequent high friction, subsequently going against the side walls 2. On the side walls, part of this jet 6 is forced to pass through obstacles formed by barriers 3, thus reducing their movement speed inside the recipient due to the collision of partial flows in the opposite direction and to the wall friction. Barriers 3 also generate a large useful contact area with respective high friction and kinetic energy absorption. As a result, the jet of molten steel 6 to the tundish and, then, to the outlet nozzle of the casting mold, occurs with a softened laminar flow, thus avoiding the problems described initially related to oxygen and nitrogen inclusions, slag purging and refractory impairing steel purity.
The invention has been described with reference to a preferred embodiment. It should be construed that the scope of the present invention includes all other possible variations, being limited solely by the content of the appended claims, including possible equivalents therein.
Claims
1. Impact pad for use in tundish of continuous casting of steel during pouring out of molten steel (6) from the casting ladle into the tundish, characterized in that the impact pad (1 ) has side walls (2) provided with bar- riers (3) distributed spaced apart and staggered in height and in length in the whole extension of the walls (2) or part thereof, the impact pad (1) still comprises an impact bottom (5) provided with corrugations (4) uniformly distributed and staggered in its entirety or part thereof.
2. Impact pad according to claim 1 , characterized in that the im- pact pad (1) is made of refractory material.
3. Impact pad according to claim 1 , characterized in that the barriers (3) can be made of the same refractory material of the impact pad (1 ) and preferably have a rectangular cross section.
4. Impact pad according to ciaim 1 , characterized in that the barriers (3) are arranged in at least two rows inside the impact pad (1 ).
5. impact pad according to claim 1 , characterized in that the corrugations (4) are spherical, ovoid, disk or plate-shaped, without sharp edges.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES11719446.4T ES2639421T3 (en) | 2010-07-27 | 2011-04-19 | Impact block for use in a continuous casting steel trough |
US13/812,746 US9511419B2 (en) | 2010-07-27 | 2011-04-19 | Impact pad for use in tundish of continuous casting steel |
EP11719446.4A EP2598269B1 (en) | 2010-07-27 | 2011-04-19 | Impact pad for use in tundish of continuous casting steel |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BRPI1002628-2 | 2010-07-27 | ||
BRPI1002628-2A BRPI1002628A2 (en) | 2010-07-27 | 2010-07-27 | turbulence reducer for use in continuous casting steel distributors |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012012853A1 true WO2012012853A1 (en) | 2012-02-02 |
Family
ID=44209559
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/BR2011/000114 WO2012012853A1 (en) | 2010-07-27 | 2011-04-19 | Impact pad for use in tundish of continuous casting steel |
Country Status (5)
Country | Link |
---|---|
US (1) | US9511419B2 (en) |
EP (1) | EP2598269B1 (en) |
BR (1) | BRPI1002628A2 (en) |
ES (1) | ES2639421T3 (en) |
WO (1) | WO2012012853A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2769785A1 (en) * | 2013-02-25 | 2014-08-27 | Refractory Intellectual Property GmbH & Co. KG | Refractory impact pad |
WO2024022622A1 (en) | 2022-07-28 | 2024-02-01 | Refractory Intellectual Property Gmbh & Co. Kg | Impact pot with vertical and horizontal barriers |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2398511T5 (en) * | 2010-07-19 | 2016-04-29 | Refractory Intellectual Property Gmbh & Co. Kg | Ceramic fireproof impact bucket |
CN110479995B (en) * | 2019-08-27 | 2021-05-28 | 北京利尔高温材料股份有限公司 | Internal and external composite type flow stabilizer for continuous casting triangular tundish |
CN110814330A (en) * | 2019-12-25 | 2020-02-21 | 武汉科技大学 | Top rotating type turbulence controller for continuous casting tundish |
CN111069579B (en) * | 2019-12-31 | 2021-10-15 | 浙江红鹰铭德高温材料科技有限公司 | Long-life tundish integral impact barrel, formula and manufacturing process thereof |
CN113231629B (en) * | 2021-05-14 | 2022-04-08 | 东北大学 | Molten steel rotating device and method in tundish |
CN218252879U (en) | 2022-09-29 | 2023-01-10 | 维苏威高级陶瓷(中国)有限公司 | Tundish current stabilizer |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1232814A1 (en) * | 2001-02-14 | 2002-08-21 | Refractaria, S.A. | Impact pad for continuous casting |
US20040041312A1 (en) * | 2002-09-04 | 2004-03-04 | Connors Charles W | Tundish impact pad |
DE102007035452A1 (en) * | 2007-07-26 | 2009-01-29 | Pa-Ha-Ge Feuerfeste Erzeugnisse Gmbh & Co. Kg | impact absorber |
US20090050285A1 (en) * | 2007-08-20 | 2009-02-26 | North American Refractories Company | Impact pad |
BRPI0800035A2 (en) * | 2008-01-18 | 2009-09-01 | Magnesita Refratarios S A | turbulence inhibitor for steel distributors in continuous casting plants |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2312137B2 (en) | 1973-03-12 | 1975-02-27 | Kloeckner-Werke, Ag, 4100 Duisburg | Process for casting steel killed with silicon and / or aluminum in a strand |
US4776570A (en) | 1987-07-08 | 1988-10-11 | Sidbec Dosco Inc. | Ladle stream breaker |
US5188796A (en) * | 1990-05-29 | 1993-02-23 | Magneco/Metrel, Inc. | Tundish impact pad |
US5131635A (en) * | 1990-05-29 | 1992-07-21 | Magneco/Metrel, Inc. | Impact pad with rising flow surface |
US5169591A (en) | 1992-02-07 | 1992-12-08 | Bethlehem Steel Corporation | Impact pad for a continuous caster tundish |
US5358551A (en) | 1993-11-16 | 1994-10-25 | Ccpi, Inc. | Turbulence inhibiting tundish and impact pad and method of using |
US5518153A (en) | 1994-11-09 | 1996-05-21 | Foseco International Limited | Tundish impact pad |
US5597528A (en) * | 1995-08-31 | 1997-01-28 | A.P. Green Industries, Inc. | Impact pad |
GB9913241D0 (en) * | 1999-06-08 | 1999-08-04 | Foseco Int | Impact pad for tundish |
-
2010
- 2010-07-27 BR BRPI1002628-2A patent/BRPI1002628A2/en not_active Application Discontinuation
-
2011
- 2011-04-19 US US13/812,746 patent/US9511419B2/en active Active
- 2011-04-19 WO PCT/BR2011/000114 patent/WO2012012853A1/en active Application Filing
- 2011-04-19 EP EP11719446.4A patent/EP2598269B1/en active Active
- 2011-04-19 ES ES11719446.4T patent/ES2639421T3/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1232814A1 (en) * | 2001-02-14 | 2002-08-21 | Refractaria, S.A. | Impact pad for continuous casting |
US20040041312A1 (en) * | 2002-09-04 | 2004-03-04 | Connors Charles W | Tundish impact pad |
DE102007035452A1 (en) * | 2007-07-26 | 2009-01-29 | Pa-Ha-Ge Feuerfeste Erzeugnisse Gmbh & Co. Kg | impact absorber |
US20090050285A1 (en) * | 2007-08-20 | 2009-02-26 | North American Refractories Company | Impact pad |
BRPI0800035A2 (en) * | 2008-01-18 | 2009-09-01 | Magnesita Refratarios S A | turbulence inhibitor for steel distributors in continuous casting plants |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2769785A1 (en) * | 2013-02-25 | 2014-08-27 | Refractory Intellectual Property GmbH & Co. KG | Refractory impact pad |
WO2014128013A1 (en) | 2013-02-25 | 2014-08-28 | Refractory Intellectual Property Gmbh & Co. Kg | Refractory impact pad |
CN104955592A (en) * | 2013-02-25 | 2015-09-30 | 里弗雷克特里知识产权两合公司 | Refractory impact pad |
AU2014220873B2 (en) * | 2013-02-25 | 2016-01-21 | Refractory Intellectual Property Gmbh & Co. Kg | Refractory impact pad |
JP2016504200A (en) * | 2013-02-25 | 2016-02-12 | リフラクトリー・インテレクチュアル・プロパティー・ゲー・エム・ベー・ハー・ウント・コ・カーゲー | Fireproof impact pad |
US9815112B2 (en) | 2013-02-25 | 2017-11-14 | Refractory Intellectual Property Gmbh & Co. Kg | Refractory impact pad |
EA028440B1 (en) * | 2013-02-25 | 2017-11-30 | Рифрэктори Интеллектчуал Проперти Гмбх Унд Ко. Кг | Refractory impact pad |
WO2024022622A1 (en) | 2022-07-28 | 2024-02-01 | Refractory Intellectual Property Gmbh & Co. Kg | Impact pot with vertical and horizontal barriers |
Also Published As
Publication number | Publication date |
---|---|
EP2598269A1 (en) | 2013-06-05 |
US20130221588A1 (en) | 2013-08-29 |
BRPI1002628A2 (en) | 2012-03-27 |
US9511419B2 (en) | 2016-12-06 |
EP2598269B1 (en) | 2017-06-07 |
ES2639421T3 (en) | 2017-10-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2598269A1 (en) | Impact pad for use in tundish of continuous casting steel | |
CA2082459C (en) | Impact pad for a continuous caster tundish | |
Zhang | Fluid Flow, Heat Transfer and Inclusion Motion in a Four‐Strand Billet Continuous Casting Tundish | |
AU2002310036A1 (en) | Impact pad for dividing and distributing liquid metal flow | |
CN1071606C (en) | Apparatus for controlling molten metal flow in tundish | |
EP2837441A1 (en) | Method for manufacturing high-purity steel casting, and tundish | |
JP4344107B2 (en) | Tundish cushion pad | |
KR101049846B1 (en) | Continuous Dish for Continuous Casting | |
KR101539793B1 (en) | Metallurgical impact pad | |
JP2014516802A (en) | Impact pad | |
JP5751078B2 (en) | Manufacturing method of high cleanliness steel slab by continuous casting | |
AU2009321773B2 (en) | Tundish impact pad | |
RU2507028C1 (en) | Hearth | |
CN2873365Y (en) | Turbulence controller | |
WO2003061879A1 (en) | Impact absorber | |
Yue et al. | Water modeling of swirling flow tundish for steel continuous casting | |
KR20030044589A (en) | Tundish dam for guiding molten iron | |
BRPI1016276B1 (en) | TURBULENCE REDUCER FOR USE IN CONTINUOUS STEELING STEEL DISTRIBUTORS | |
JP2012020315A (en) | Method for production of high-cleanliness steel cast slab by continuous casting | |
CN2496580Y (en) | Middle ladle absorbing apparatus | |
JP5768751B2 (en) | Method for continuous casting of molten metal | |
EP3725430A1 (en) | Molten material processing device | |
CN2656051Y (en) | Electro magnetic pouring basket slag retaining weir | |
JP5831138B2 (en) | Manufacturing method of high cleanliness steel slab by continuous casting | |
Zhu et al. | The Design of New Submerged Entry Nozzles for Beam-Blank Continuous Casting |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11719446 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2011719446 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011719446 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13812746 Country of ref document: US |