WO2012011414A1 - Ultrasonic diagnostic device, method for operating ultrasonic diagnostic device, and operation program for ultrasonic diagnostic device - Google Patents

Ultrasonic diagnostic device, method for operating ultrasonic diagnostic device, and operation program for ultrasonic diagnostic device Download PDF

Info

Publication number
WO2012011414A1
WO2012011414A1 PCT/JP2011/065910 JP2011065910W WO2012011414A1 WO 2012011414 A1 WO2012011414 A1 WO 2012011414A1 JP 2011065910 W JP2011065910 W JP 2011065910W WO 2012011414 A1 WO2012011414 A1 WO 2012011414A1
Authority
WO
WIPO (PCT)
Prior art keywords
specimen
tissue property
feature
tissue
feature amount
Prior art date
Application number
PCT/JP2011/065910
Other languages
French (fr)
Japanese (ja)
Inventor
浩仲 宮木
弘孝 江田
裕雅 野口
忠明 神原
安広 和田
Original Assignee
オリンパスメディカルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパスメディカルシステムズ株式会社 filed Critical オリンパスメディカルシステムズ株式会社
Priority to JP2012524951A priority Critical patent/JPWO2012011414A1/en
Publication of WO2012011414A1 publication Critical patent/WO2012011414A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/485Diagnostic techniques involving measuring strain or elastic properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52023Details of receivers
    • G01S7/52025Details of receivers for pulse systems
    • G01S7/52026Extracting wanted echo signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52023Details of receivers
    • G01S7/52036Details of receivers using analysis of echo signal for target characterisation
    • G01S7/52042Details of receivers using analysis of echo signal for target characterisation determining elastic properties of the propagation medium or of the reflective target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/5205Means for monitoring or calibrating

Definitions

  • the present invention relates to an ultrasonic diagnostic apparatus for diagnosing a tissue property of a specimen using ultrasonic waves, an operating method of the ultrasonic diagnostic apparatus, and an operating program for the ultrasonic diagnostic apparatus.
  • Ultrasonic elastography is a technique that utilizes the fact that the hardness of cancer and tumor tissue in a living body varies depending on the progress of the disease and the living body.
  • the amount of strain and elastic modulus of the biological tissue at the examination location are measured using ultrasound while the examination location is pressed from the outside, and the measurement result is displayed as a tomographic image.
  • the ultrasonic elastography described above has a problem in that the pressure applied to the lower part of a blood vessel or a lymph vessel is difficult to be transmitted. Therefore, when a tumor is formed in the vicinity of the blood vessel, the boundary of the tumor is unclear and it is difficult to distinguish the invasion of the tumor into the blood vessel. As described above, in ultrasonic elastography, there are cases in which it is not possible to accurately distinguish tissue properties.
  • the present invention has been made in view of the above, and enables an ultrasonic diagnostic apparatus and an ultrasonic diagnostic apparatus capable of accurately distinguishing tissue properties and improving the reliability of measurement results. It is an object to provide an operating method and an operating program for an ultrasonic diagnostic apparatus.
  • an ultrasonic diagnostic apparatus transmits ultrasonic waves to a specimen to be diagnosed and receives ultrasonic waves reflected by the specimen.
  • An ultrasonic diagnostic apparatus for diagnosing the tissue characteristics of the specimen based on the received ultrasound, the frequency analyzer calculating the frequency spectrum by analyzing the frequency of the received ultrasound, and the frequency analyzer calculating
  • a feature quantity extraction unit for extracting the feature quantity of the frequency spectrum by approximating the frequency spectrum, and the feature quantity of the frequency spectrum extracted based on the ultrasonic waves respectively reflected by the plurality of known specimens.
  • a storage unit that stores information in association with tissue properties of known samples, and a feature that the storage unit stores in association with tissue properties of the plurality of known samples. And characterized in that and a tissue characterization determining unit determines the tissue properties of a predetermined area of the specimen by using a feature quantity the feature amount extraction unit and extracted.
  • the ultrasonic diagnostic apparatus is characterized in that, in the above invention, the feature amount extraction unit approximates the frequency spectrum by a polynomial by regression analysis.
  • the feature amount extraction unit approximates the frequency spectrum with a linear expression, the slope of the linear expression, the intercept of the linear expression, and the frequency spectrum.
  • a plurality of feature quantities including a frequency included in the frequency band, an intensity determined by the slope and the intercept are extracted.
  • the storage unit stores an average of each feature amount in a group classified for each tissue property with respect to the plurality of known samples, and the tissue property
  • the determination unit sets a feature amount space including at least one of the plurality of feature amounts as a component, and sets the feature amount constituting the component of the feature amount space among the feature amounts of the frequency spectrum in the predetermined region of the specimen.
  • a specimen average point having an average as coordinates of the feature quantity space, and an average of feature quantities constituting components of the feature quantity space among the feature quantities in the group of the plurality of known specimens as coordinates of the feature quantity space
  • the tissue property of the specimen is determined based on the distance in the feature amount space with the known specimen average point.
  • the tissue property determination unit corresponds to a group in which a distance in the feature amount space between the specimen average point and the known specimen average point is minimum.
  • the tissue property is the tissue property of the specimen.
  • the tissue property determination unit has a larger value as a distance in the feature amount space between the specimen average point and the known specimen average point is smaller.
  • the probability that the sum of the values corresponding to all the distances is 1 is calculated with respect to all the distances, whereby the tissue properties of the specimen are determined probabilistically.
  • the ultrasonic diagnostic apparatus in the above invention, generates visual information corresponding to the feature amount of the specimen, the generated visual information, an image generated based on the received ultrasonic wave, and A determination result display image data generation unit for generating determination result display image data for displaying the determination result of the tissue property of the predetermined region of the specimen by using the result determined by the tissue property determination unit; To do.
  • the visual information is a variable constituting a color space.
  • the operation method of the ultrasonic diagnostic apparatus includes transmitting the ultrasonic wave to the specimen to be diagnosed and receiving the ultrasonic wave reflected by the specimen, whereby the specimen based on the received ultrasonic wave
  • the method of operating an ultrasonic diagnostic apparatus for diagnosing the tissue properties of a frequency analysis step of calculating a frequency spectrum by a frequency analysis unit by analyzing the frequency of the received ultrasonic wave, and the frequency calculated in the frequency analysis step A feature amount extraction step for extracting a feature amount of the frequency spectrum by approximating the spectrum by a feature amount extraction unit, and a feature amount of the frequency spectrum extracted based on ultrasonic waves respectively reflected by a plurality of known specimens
  • the operation program of the ultrasonic diagnostic apparatus includes transmitting the ultrasonic wave to the sample to be diagnosed and receiving the ultrasonic wave reflected by the sample, whereby the sample based on the received ultrasonic wave
  • a feature amount extraction step for extracting a feature amount of the frequency spectrum by a feature amount extraction unit; a feature amount of the frequency spectrum extracted based on ultrasonic waves respectively reflected by a plurality of known specimens;
  • the feature amount read from the storage unit that is stored in association with the property and the feature amount extraction step Characterized in that to perform tissue characterization determining step determines the tissue characterization determining unit tissue characterization of a predetermined area of said specimen by in using the extracted feature quantity.
  • FIG. 1 is a block diagram showing the configuration of the ultrasonic diagnostic apparatus according to Embodiment 1 of the present invention.
  • FIG. 2 is a flowchart showing an outline of processing of the ultrasonic diagnostic apparatus according to Embodiment 1 of the present invention.
  • FIG. 3 is a diagram showing a display example of a B-mode image on the display unit of the ultrasonic diagnostic apparatus according to Embodiment 1 of the present invention.
  • FIG. 4 is a flowchart showing an outline of processing performed by the frequency analysis unit of the ultrasonic diagnostic apparatus according to Embodiment 1 of the present invention.
  • FIG. 5 is a diagram schematically showing a data array of one sound ray.
  • FIG. 6 is a diagram illustrating an example (first example) of a frequency spectrum calculated by the frequency analysis unit of the ultrasonic diagnostic apparatus according to Embodiment 1 of the present invention.
  • FIG. 7 is a diagram illustrating an example (second example) of a frequency spectrum calculated by the frequency analysis unit of the ultrasonic diagnostic apparatus according to Embodiment 1 of the present invention.
  • FIG. 8 is a flowchart showing an outline of processing performed by the tissue property determination unit of the ultrasonic diagnostic apparatus according to Embodiment 1 of the present invention.
  • FIG. 9 is a diagram illustrating an example of a feature amount space set by the tissue property determination unit of the ultrasonic diagnostic apparatus according to Embodiment 1 of the present invention.
  • FIG. 10 is a diagram illustrating a display example of a determination result display image displayed by the display unit of the ultrasonic diagnostic apparatus according to Embodiment 1 of the present invention.
  • FIG. 11 is a diagram illustrating another display example of the determination result display image displayed by the display unit of the ultrasonic diagnostic apparatus according to Embodiment 1 of the present invention.
  • FIG. 12 is a diagram illustrating an overview of the tissue property determination process performed by the tissue property determination unit of the ultrasonic diagnostic apparatus according to Embodiment 4 of the present invention.
  • FIG. 1 is a block diagram showing the configuration of the ultrasonic diagnostic apparatus according to Embodiment 1 of the present invention.
  • An ultrasonic diagnostic apparatus 1 shown in FIG. 1 is an apparatus for diagnosing the tissue properties of a specimen to be diagnosed using ultrasonic waves.
  • the ultrasonic diagnostic apparatus 1 transmits and receives electrical signals between the ultrasonic probe 2 that outputs an ultrasonic pulse to the outside and receives an ultrasonic echo reflected from the outside, and the ultrasonic probe 2. Transmitting / receiving unit 3 for performing the calculation, calculation unit 4 for performing a predetermined calculation on the electrical echo signal converted from the ultrasonic echo, and generation of image data corresponding to the electrical echo signal converted from the ultrasonic echo An image processing unit 5 to be performed, an interface such as a keyboard, a mouse, a touch panel, and the like.
  • the image processing unit 5 is realized by using an input unit 6 that receives input of various information and a display panel made of liquid crystal or organic EL.
  • a display unit 7 that displays various types of information including the image generated
  • a storage unit 8 that stores various types of information including information related to the tissue properties of the known specimen
  • a control unit that controls the operation of the ultrasonic diagnostic apparatus 1. And, equipped with a.
  • the ultrasonic probe 2 converts an electrical pulse signal received from the transmission / reception unit 3 into an ultrasonic pulse (acoustic pulse signal), and converts an ultrasonic echo reflected by an external specimen into an electrical echo signal.
  • a signal conversion unit 21 for conversion is included.
  • the ultrasonic probe 2 may be one that mechanically scans an ultrasonic transducer, or one that electronically scans a plurality of ultrasonic transducers.
  • the transmitting / receiving unit 3 is electrically connected to the ultrasonic probe 2, transmits a pulse signal to the ultrasonic probe 2, and receives an echo signal from the ultrasonic probe 2. Specifically, the transmission / reception unit 3 generates a pulse signal based on a preset waveform and transmission timing, and transmits the generated pulse signal to the ultrasound probe 2. Further, the transmission / reception unit 3 performs processing such as amplification and filtering on the received echo signal, and then performs A / D conversion to generate and output a digital RF signal.
  • the transmission / reception unit 3 has a multi-channel circuit for beam synthesis corresponding to the plurality of ultrasonic transducers.
  • the calculation unit 4 is obtained by a frequency analysis unit 41 that performs a frequency analysis of an echo signal by performing a fast Fourier transform (FFT) on the digital RF signal output from the transmission / reception unit 3, and a frequency analysis performed by the frequency analysis unit 41.
  • the feature quantity extraction unit 42 that extracts the feature quantity of the frequency spectrum by approximating the obtained frequency spectrum (power spectrum), and the tissue quantity of the predetermined region of the specimen are determined using the feature quantity extracted by the feature quantity extraction unit 42 And a tissue property determination unit 43.
  • the frequency analysis unit 41 calculates a frequency spectrum by performing a fast Fourier transform on an FFT data group having a predetermined amount of data for each sound ray (line data).
  • the frequency spectrum shows different tendencies depending on the tissue properties of the specimen. This is because the frequency spectrum has a correlation with the size, density, acoustic impedance, and the like of the specimen as a scatterer that scatters ultrasonic waves.
  • “intensity” refers to any of parameters such as voltage, power, sound pressure, and acoustic energy.
  • the inclination a has a correlation with the size of the ultrasonic scatterer, and it is generally considered that the larger the scatterer, the lower the inclination.
  • the intercept b has a correlation with the size of the scatterer, the difference in acoustic impedance, the density (concentration) of the scatterer, and the like.
  • the intensity c is an indirect parameter derived from the slope a and the intercept b, and gives the spectral intensity at the center in the effective frequency band. Therefore, the intensity c is considered to have a certain degree of correlation with the brightness of the B-mode image in addition to the size of the scatterer, the difference in acoustic impedance, and the density of the scatterer.
  • the approximate polynomial calculated by the feature amount extraction unit 42 is not limited to a linear expression, and it is possible to use a quadratic or higher approximate polynomial.
  • the tissue property determination unit 43 calculates the average and standard deviation of the feature amounts of the frequency spectrum extracted by the feature amount extraction unit 42 for each feature amount.
  • the tissue property determination unit 43 determines the tissue property of a predetermined region of the sample by using the calculated average and standard deviation and the average and standard deviation of the feature amounts of the frequency spectrum of the known sample stored in the storage unit 8. .
  • the “predetermined region” referred to here is a region in the image (hereinafter referred to as “region of interest”) designated by the input unit 6 by the operator of the ultrasonic diagnostic apparatus 1 who viewed the image generated by the image processing unit 5. That is.
  • tissue property is, for example, any of cancer, endocrine tumor, mucinous tumor, normal tissue, vascular and the like.
  • tissue properties include chronic pancreatitis, autoimmune pancreatitis and the like.
  • the average and standard deviation of the feature values calculated by the tissue characterization determining unit 43 is a systematic change such as a change in cell level such as nuclear enlargement or anomaly, an increase in fibers in the stroma, or a replacement of the real tissue with fibers. This is a unique value depending on the tissue properties. Therefore, by using such an average and standard deviation of the feature amounts, it is possible to accurately determine the tissue properties of a predetermined region of the specimen.
  • the image processing unit 5 outputs the B-mode image data generating unit 51 that generates the B-mode image data to be displayed by converting the amplitude of the echo signal into the luminance, the B-mode image data generating unit 51, and the calculation unit 4, respectively.
  • a determination result display image data generation unit 52 that generates determination result display image data for displaying the determination result of the tissue property of the region of interest and information related to the determination result using the data.
  • the B-mode image data generation unit 51 performs signal processing using a known technique such as a bandpass filter, logarithmic conversion, gain processing, contrast processing, and the like on the digital signal, and also according to the image display range on the display unit 7.
  • B-mode image data is generated by thinning out data in accordance with the data step width determined in advance.
  • the determination result display image data generation unit 52 uses the B mode image data generated by the B mode image data generation unit 51, the feature amount calculated by the feature amount extraction unit 42, and the determination result determined by the tissue property determination unit 43.
  • determination result display image data including the determination result of the tissue property of the region of interest and the tissue property emphasized image that emphasizes the tissue property is generated.
  • the storage unit 8 includes a known sample information storage unit 81 that stores information on known samples, and a window function storage unit 82 that stores a window function used in the frequency analysis process performed by the frequency analysis unit 41.
  • the known specimen information storage unit 81 stores the characteristic amount of the frequency spectrum extracted by the frequency analysis for the known specimen in association with the tissue property of the known specimen.
  • the known specimen information storage unit 81 uses the average and standard deviation calculated for each group classified for each tissue property of the known specimen with respect to the feature quantity of the frequency spectrum related to the known specimen. It is memorized with all the data.
  • the information on the known specimen stored in the known specimen information storage unit 81 is desirably information with high reliability related to the tissue properties.
  • the window function storage unit 82 stores at least one of window functions such as Hamming, anning, and Blackman.
  • the storage unit 8 includes a ROM in which an operation program for the ultrasonic diagnostic apparatus according to the first embodiment, a program for starting a predetermined OS, and the like are stored in advance, and a RAM in which calculation parameters and data for each process are stored. It is realized using.
  • Components other than the ultrasound probe 2 of the ultrasound diagnostic apparatus 1 having the above functional configuration are realized using a computer having a CPU having a calculation and control function.
  • the CPU provided in the ultrasonic diagnostic apparatus 1 reads out various programs including information stored and stored in the storage unit 8 and the above-described operation program of the ultrasonic diagnostic apparatus from the storage unit 8, so that the ultrasonic according to the first embodiment is obtained. Arithmetic processing related to the operation method of the ultrasonic diagnostic apparatus is executed.
  • the operation program of the ultrasonic diagnostic apparatus may be recorded on a computer-readable recording medium such as a hard disk, a flash memory, a CD-ROM, a DVD-ROM, or a flexible disk and widely distributed. Is possible.
  • FIG. 2 is a flowchart showing an outline of processing of the ultrasonic diagnostic apparatus 1 having the above configuration.
  • the ultrasound diagnostic apparatus 1 first measures a new specimen by the ultrasound probe 2 (step S1). Thereafter, the B mode image data generation unit 51 generates B mode image data (step S2).
  • FIG. 3 is a diagram illustrating a display example of the B-mode image on the display unit 7.
  • a B-mode image 100 shown in the figure is a grayscale image in which values of red (R), green (G), and blue (B), which are variables when the RGB color system is adopted as a color space, are matched. .
  • step S4: Yes the frequency analysis unit 41 calculates a frequency spectrum by performing frequency analysis by FFT calculation (step S5). In this step S5, it is also possible to set the entire region of the image as the region of interest.
  • step S5 it is also possible to set the entire region of the image as the region of interest.
  • step S6: Yes when an instruction to end the process is input by the input unit 6 (step S6: Yes), the ultrasound diagnostic apparatus 1 ends the process. .
  • step S6: No when the region of interest is not designated (step S4: No), when the instruction to end the process is not input by the input unit 6 in step S6 (step S6: No), the ultrasonic diagnostic apparatus 1 Return to step S4.
  • the frequency analysis unit 41 sets the sound ray number L of the sound ray to be analyzed first as an initial value L 0 (step S11).
  • the initial value L 0 may be given, for example, to a sound ray that is first received by the transmission / reception unit 3, or for a sound ray corresponding to one of the left and right boundary positions of the region of interest set by the input unit 6. May be given.
  • FIG. 5 is a diagram schematically showing a data array of one sound ray.
  • a white or black rectangle means one piece of data.
  • the sound ray LD is discretized at a time interval corresponding to a sampling frequency (for example, 50 MHz) in A / D conversion performed by the transmission / reception unit 3.
  • FIG. 5 shows a case where the first data of the sound ray LD is set as the initial value Z 0 of the data position Z.
  • FIG. 5 is merely an example, and the position of the initial value Z 0 can be arbitrarily set.
  • the data position Z corresponding to the upper end position of the region of interest may be set as the initial value Z 0 .
  • the frequency analysis unit 41 acquires the FFT data group at the data position Z (step S13), and causes the window function stored in the window function storage unit 82 to act on the acquired FFT data group (step S14). In this way, by applying the window function to the FFT data group, it is possible to avoid the FFT data group from becoming discontinuous at the boundary and to prevent the occurrence of artifacts.
  • the frequency analysis unit 41 determines whether or not the FFT data group at the data position Z is a normal data group (step S15).
  • the FFT data group needs to have a power number of 2 data.
  • the number of data in the FFT data group is 2 n (n is a positive integer). That the FFT data group is normal means that the data position Z is the 2 n-1 th position from the front in the FFT data group.
  • the FFT data groups F 2 , F 3 and F K-1 are normal, while the FFT data groups F 1 and F K are abnormal.
  • step S15 If the result of determination in step S15 is that the FFT data group at the data position Z is normal (step S15: Yes), the frequency analysis unit 41 proceeds to step S17 described later.
  • step S15 If the result of determination in step S15 is that the FFT data group at the data position Z is not normal (step S15: No), the frequency analysis unit 41 generates a normal FFT data group by inserting zero data for the shortage (Ste S16).
  • the FFT function group determined to be not normal in step S15 is subjected to a window function before adding zero data. For this reason, discontinuity of data does not occur even if zero data is inserted into the FFT data group.
  • step S16 the frequency analysis unit 41 proceeds to step S17 described later.
  • step S17 the frequency analysis unit 41 obtains a frequency spectrum by performing an FFT operation using the FFT data group (step S17).
  • 6 and 7 are diagrams illustrating examples of frequency spectra calculated by the frequency analysis unit 41.
  • FIG. 6 and 7, the horizontal axis f is the frequency
  • the vertical axis I is the intensity.
  • the lower limit frequency f LOW and the upper limit frequency f HIGH of the frequency spectrum are the frequency band of the ultrasonic probe 2 and the pulse signal transmitted by the transmitting / receiving unit 3.
  • f LOW 3 MHz
  • f HIGH 10 MHz.
  • the straight line L 1 shown in FIG. 6 and the straight line L 2 shown in FIG. 7 will be described in a feature amount extraction process described later.
  • the curve and the straight line are composed of a set of discrete points. This also applies to the embodiments described later.
  • the frequency analysis unit 41 adds a predetermined data step width D to the data position Z to calculate the data position Z of the next FFT data group to be analyzed (step S18).
  • the data step width D here is preferably the same as the data step width used when the B-mode image data generation unit 51 generates the B-mode image data. However, when it is desired to reduce the amount of calculation in the frequency analysis unit 41 In this case, a value larger than the data step width used by the B-mode image data generation unit 51 may be set.
  • the frequency analysis unit 41 determines whether or not the data position Z is greater than the final data position Z max (step S19).
  • the final data position Z max may be the data length of the sound ray LD, or may be the data position corresponding to the lower end of the region of interest.
  • the frequency analysis unit 41 increments the sound ray number L by 1 (step S20).
  • the frequency analysis unit 41 returns to step S13.
  • [X] represents the maximum integer not exceeding X.
  • step S21: Yes When the sound ray number L after being incremented in step S20 is larger than the final sound ray number Lmax (step S21: Yes), the frequency analysis unit 41 returns to the main routine shown in FIG. On the other hand, when the sound ray number L after being incremented in step S20 is equal to or less than the final sound ray number Lmax (step S21: No), the frequency analysis unit 41 returns to step S12.
  • the frequency analysis unit 41 performs K FFT operations for each of (L max ⁇ L 0 +1) sound rays.
  • the final sound ray number L max may be given to the last sound ray received by the transmission / reception unit 3, for example, or may be given to the sound ray corresponding to either the left or right boundary of the region of interest.
  • P be the total number of FFT operations (L max ⁇ L 0 +1) ⁇ K performed by the frequency analysis unit 41 for all sound rays.
  • the feature amount extraction unit 42 extracts the feature amount by performing regression analysis on the P frequency spectra calculated by the frequency analysis unit 41 (step S7). Specifically, the feature amount extraction unit 42 calculates three feature amounts a, b, and c by calculating a linear expression that approximates the frequency spectrum of the frequency band f LOW ⁇ f ⁇ f HIGH by regression analysis. .
  • a straight line L 1 shown in FIG. 6 and a straight line L 2 shown in FIG. 7 are regression lines obtained in step S7.
  • the tissue property determination unit 43 determines the tissue property in the region of interest of the sample based on the feature amount extracted by the feature amount extraction unit 42 and the known sample information stored in the known sample information storage unit 81 (step S8).
  • the tissue characterization determining unit 43 calculates the average and standard deviation of each of the three feature values a, b, and c of the Q ( ⁇ P) sets of FFT data located inside the region of interest (step S31). .
  • the tissue property determining unit 43 sets a feature amount space used when determining the tissue property (step S32).
  • the tissue property determining unit 43 sets a feature amount space used when determining the tissue property (step S32).
  • the tissue property determining unit 43 sets a feature amount space used when determining the tissue property (step S32).
  • the feature amount space to be set is determined in advance, but the operator may select a desired feature amount space by the input unit 6.
  • FIG. 9 is a diagram illustrating an example of the feature amount space set by the tissue property determination unit 43.
  • the horizontal axis is the feature quantity b
  • the vertical axis is the feature quantity c.
  • the point Sp shown in FIG. 9 has, as coordinates of the feature amount space, the average of the feature amounts b and c of the frequency spectrum of the FFT data group included in the region of interest of the specimen calculated by the feature amount extracting unit 42 in step S31.
  • a point hereinafter, this point is referred to as “specimen average point”.
  • tissue properties of the known samples stored in the known sample information storage unit 81 are A, B, and C, respectively.
  • the three groups SA, SB, and SC exist in regions that do not intersect with other groups in the feature amount space.
  • the tissue characterization determining unit 43 uses the average of the specimen average point Sp and the feature quantities b and c of the frequency spectrum of the FFT data group included in each of the groups SA, SB, and SC as coordinates in the feature quantity space.
  • the distances ⁇ , ⁇ , ⁇ on the feature amount space between the points A 0 , B 0 , C 0 (hereinafter referred to as “known specimen average points”) are calculated (step S33).
  • known specimen average points are calculated (step S33).
  • the scales of the b-axis component and the c-axis component in the feature amount space are greatly different, it is desirable to appropriately perform weighting for making the contribution of each distance substantially equal.
  • the tissue property determination unit 43 determines the tissue property of the specimen average point Sp based on the distance calculated in step S33 (step S34).
  • the distance ⁇ is the minimum. Therefore, the tissue property determination unit 43 determines that the tissue property of the specimen is A.
  • the tissue property determination unit 43 may output an error signal.
  • the tissue property determination unit 43 may select all tissue properties corresponding to the minimum value as candidates, or any one according to a predetermined rule. One tissue property may be selected. In the latter case, for example, a method of setting a high priority for highly malignant tissue properties such as cancer can be mentioned.
  • the tissue property determination unit 43 may output an error signal.
  • the tissue property determination unit 43 outputs the distance calculation result in step S33 and the determination result in step S34 (step S35). Thereby, the tissue property determination process in step S8 ends.
  • the determination result display image data generation unit 52 includes the B mode image data generated by the B mode image data generation unit 51, the feature amount calculated by the feature amount extraction unit 42, and the tissue property determination unit 43.
  • the determination result display image data is generated by using the determination result determined by (step S9).
  • FIG. 10 is a diagram illustrating a display example of the determination result display image displayed on the display unit 7.
  • the determination result display image 200 shown in the figure is an image display that displays an information display unit 201 that displays various related information including a determination result of tissue properties, and a tissue property emphasized image that emphasizes tissue properties based on a B-mode image. Part 202.
  • the tissue property emphasizing image 300 displayed on the image display unit 202 is equivalent to the B mode image 100 shown in FIG. 3 in which the slices b are equal to R (red), G (green), and B (blue). It is the assigned grayscale image.
  • the display unit 7 displays the determination result display image 200 having the above configuration, the operator can more accurately grasp the tissue properties of the region of interest.
  • the tissue property enhancement image 300 shown in FIG. 10 is merely an example.
  • the tissue property enhanced image can be displayed as a color image.
  • the color space may be configured with complementary color system variables such as cyan, magenta, and yellow, and a feature amount may be assigned to each variable.
  • the tissue property enhanced image data may be generated by mixing B-mode image data and color image data at a predetermined ratio.
  • tissue property enhanced image data may be generated by replacing only the region of interest with color image data.
  • the frequency spectrum feature quantity in the predetermined region of the specimen is extracted by approximating the frequency spectrum obtained by analyzing the frequency of the received ultrasonic wave.
  • the strain amount and elastic modulus of the biological tissue It is possible to clearly distinguish the difference between tissues without using. Therefore, it is possible to accurately distinguish the tissue properties and improve the reliability of the measurement results.
  • FIG. 11 is a diagram illustrating another display example of the determination result display image on the display unit 7.
  • the determination result display image 400 shown in the figure includes an information display unit 401, a first image display unit 402 that displays a B-mode image, and a second image display unit 403 that displays a tissue property emphasized image.
  • the B-mode image 100 is displayed on the first image display unit 402
  • the tissue property emphasized image 300 is displayed on the second image display unit 403.
  • the difference between the two images can be recognized on one screen.
  • the image displayed on the first image display unit 402 and the image displayed on the second image display unit 403 may be interchanged.
  • the display between the determination result display image 200 and the determination result display image 400 may be switched by an input from the input unit 6.
  • the second embodiment of the present invention is different from the first embodiment in the tissue property determination process in the tissue property determination unit.
  • the configuration of the ultrasonic diagnostic apparatus according to the second embodiment is the same as the configuration of the ultrasonic diagnostic apparatus 1 described in the first embodiment. Therefore, in the following description, the same reference numerals are given to the components corresponding to the components of the ultrasonic diagnostic apparatus 1.
  • the tissue property determination unit 43 uses the feature quantities (a, b, c) of the Q sets of FFT data groups located inside the region of interest as the groups SA, SB, and SC constituting the tissue properties A, B, and C (see FIG. 9), a new population is formed, and then a standard deviation for each feature amount of data constituting each tissue property is obtained.
  • the tissue property determination unit 43 performs standard deviation of each feature amount of the groups SA, SB, SC in the original population consisting only of known samples, and groups SA, SB in the new population to which new samples are added, respectively.
  • SC and the standard deviation of each feature quantity (hereinafter, simply referred to as “standard deviation difference”), and the tissue characteristics corresponding to the group including the feature quantity having the smallest standard deviation difference are calculated as the tissue of the specimen. Judged as a property.
  • the tissue property determination unit 43 may calculate the difference of the standard deviation only with respect to the standard deviation of the feature amount selected in advance from a plurality of feature amounts.
  • the feature amount may be selected arbitrarily by the operator, or may be automatically performed by the ultrasonic diagnostic apparatus 1.
  • the tissue property determination unit 43 calculates a value obtained by appropriately weighting and adding the standard deviation differences of all feature amounts for each group, and the tissue property corresponding to the group having the minimum value is determined as the tissue property of the specimen. May be determined.
  • tissue characterization determining unit 43 three feature amounts a, b, respectively corresponding weights c w a, w b, as w c w a Calculate (difference of standard deviation of a) + w b (difference of standard deviation of b) + w c (difference of standard deviation of c), and determine the tissue properties of the specimen based on the calculated values It will be.
  • the values of the weights w a , w b , and w c may be set arbitrarily by the operator, or may be automatically set by the ultrasonic diagnostic apparatus 1.
  • the tissue property determination unit 43 calculates a square root of a value obtained by appropriately weighting and adding the square of the difference between the standard deviations of all feature amounts for each group, and the tissue property corresponding to the group having the minimum square root. May be determined as the tissue property of the specimen. In this case, for example, when the feature amounts are a, b, and c, the tissue property determination unit 43 assigns weights corresponding to the three feature amounts a, b, and c to w ′ a , w ′ b , and w ′ c, respectively.
  • tissue property is determined based on the calculated value.
  • the values of the weights w ′ a , w ′ b , and w ′ c may be arbitrarily set by the operator, or may be automatically set by the ultrasonic diagnostic apparatus 1. May be.
  • the tissue property determination unit 43 determines the tissue property based on a change in standard deviation of each feature amount between the original population and the population to which a new specimen is added. This was just an example.
  • the tissue property determination unit 43 may determine the tissue property based on an average change of each feature amount between the original population and the population to which a new specimen is added.
  • the third embodiment of the present invention is different from the first embodiment in the tissue property determination process in the tissue property determination unit.
  • the configuration of the ultrasonic diagnostic apparatus according to the third embodiment is the same as the configuration of the ultrasonic diagnostic apparatus 1 described in the first embodiment. Therefore, in the following description, components corresponding to those of the ultrasonic diagnostic apparatus 1 are denoted by the same reference numerals.
  • the tissue property determination unit 43 calculates the probability of belonging to each tissue property by using the distance between the average point of the sample in the feature amount space and the average point of the tissue property of the known sample. Specifically, in the case of the feature amount space (b, c) shown in FIG. 9, by using the distances ⁇ , ⁇ , ⁇ between the sample average point Sp and the known sample average points A 0 , B 0 , C 0 , The probability of belonging to each tissue property is calculated. The probability of belonging to each known specimen is set so that the smaller the distance, the larger the probability.
  • the probability belonging to the tissue property A is ⁇ / ⁇
  • the probability belonging to the tissue property B is ⁇ / ⁇
  • the probability belonging to the tissue property C is ⁇ / It can be defined as ⁇ .
  • the information display unit displays the probability of belonging to each tissue property.
  • the fourth embodiment of the present invention differs from the first embodiment in the tissue property determination process in the tissue property determination unit.
  • the configuration of the ultrasonic diagnostic apparatus according to the fourth embodiment is the same as the configuration of the ultrasonic diagnostic apparatus 1 described in the first embodiment. Therefore, in the following description, the same reference numerals are given to the components corresponding to the components of the ultrasonic diagnostic apparatus 1.
  • FIG. 12 is a diagram for explaining the outline of the tissue property determination process performed by the tissue property determination unit 43 in the fourth embodiment.
  • the horizontal axis is the feature quantity b
  • the vertical axis is the feature quantity c.
  • regions are grouped according to organizational properties.
  • the tissue property determination unit 43 determines the tissue property according to the position of the specimen average point.
  • FIG. 12 shows a case where the specimen average point Sp ′ belongs to the group SB ′ (region where the tissue property is B). In this case, the tissue property determination unit 43 determines that the tissue property of the region of interest of the specimen is B.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Radar, Positioning & Navigation (AREA)
  • General Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Remote Sensing (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

Disclosed is an ultrasonic diagnostic device that diagnoses tissue characteristics in a subject based on received ultrasonic waves, by sending ultrasonic waves to a diagnostic subject and also receiving the ultrasonic waves that have been reflected by the subject. The ultrasonic diagnostic device extracts frequency characteristics of a frequency spectrum in a prescribed area in a subject by approximating a frequency spectrum obtained by analyzing the frequency of the received ultrasonic waves and determines the tissue characteristics of a prescribed area in a subject by using these frequency characteristics and the frequency characteristics of a frequency spectrum extracted based on the tissue characteristics of a plurality of known subjects and ultrasonic waves reflected from the plurality of known subjects.

Description

超音波診断装置、超音波診断装置の作動方法および超音波診断装置の作動プログラムUltrasonic diagnostic apparatus, method for operating ultrasonic diagnostic apparatus, and operation program for ultrasonic diagnostic apparatus
 本発明は、超音波を用いて検体の組織性状を診断する超音波診断装置、超音波診断装置の作動方法および超音波診断装置の作動プログラムに関する。 The present invention relates to an ultrasonic diagnostic apparatus for diagnosing a tissue property of a specimen using ultrasonic waves, an operating method of the ultrasonic diagnostic apparatus, and an operating program for the ultrasonic diagnostic apparatus.
 従来、超音波を用いた乳がん等の検査技術として、超音波エラストグラフィという技術が知られている(例えば、特許文献1を参照)。超音波エラストグラフィは、生体内の癌や腫瘍組織の硬さが病気の進行状況や生体によって異なることを利用する技術である。この技術では、外部から検査箇所を圧迫した状態で、超音波を用いてその検査箇所における生体組織の歪量や弾性率を計測し、この計測結果を断層像として画像表示している。 Conventionally, a technique called ultrasonic elastography is known as an inspection technique for breast cancer and the like using ultrasonic waves (see, for example, Patent Document 1). Ultrasonic elastography is a technique that utilizes the fact that the hardness of cancer and tumor tissue in a living body varies depending on the progress of the disease and the living body. In this technique, the amount of strain and elastic modulus of the biological tissue at the examination location are measured using ultrasound while the examination location is pressed from the outside, and the measurement result is displayed as a tomographic image.
国際公開第2005/122906号International Publication No. 2005/122906
 しかしながら、上述した超音波エラストグラフィでは、血管やリンパ管などの脈管の下部には押し付ける圧力が伝わりにくいという問題があった。そのため、脈管の近傍に腫瘍が形成されている場合、腫瘍の境界が不明りょうであり、脈管内への腫瘍の浸潤の鑑別も難しかった。このように、超音波エラストグラフィでは、組織性状の鑑別を精度よく行うことができない場合があった。 However, the ultrasonic elastography described above has a problem in that the pressure applied to the lower part of a blood vessel or a lymph vessel is difficult to be transmitted. Therefore, when a tumor is formed in the vicinity of the blood vessel, the boundary of the tumor is unclear and it is difficult to distinguish the invasion of the tumor into the blood vessel. As described above, in ultrasonic elastography, there are cases in which it is not possible to accurately distinguish tissue properties.
 また、超音波エラストグラフィでは、検査者が検査箇所を圧迫する際の圧力や圧迫速度に個人差が生じやすいため、測定結果の信頼性が低いという問題もあった。 Also, ultrasonic elastography has a problem in that the reliability of measurement results is low because individual differences are likely to occur in the pressure and compression speed when the examiner compresses the examination location.
 本発明は、上記に鑑みてなされたものであって、組織性状を精度よく鑑別することを可能にするとともに、測定結果の信頼性を向上させることができる超音波診断装置、超音波診断装置の作動方法および超音波診断装置の作動プログラムを提供することを目的とする。 The present invention has been made in view of the above, and enables an ultrasonic diagnostic apparatus and an ultrasonic diagnostic apparatus capable of accurately distinguishing tissue properties and improving the reliability of measurement results. It is an object to provide an operating method and an operating program for an ultrasonic diagnostic apparatus.
 上述した課題を解決し、目的を達成するために、本発明に係る超音波診断装置は、診断対象の検体に対して超音波を送信するとともに前記検体によって反射された超音波を受信することにより、受信した超音波に基づく前記検体の組織性状を診断する超音波診断装置であって、受信した超音波の周波数を解析することによって周波数スペクトルを算出する周波数解析部と、前記周波数解析部が算出した周波数スペクトルを近似することによって前記周波数スペクトルの特徴量を抽出する特徴量抽出部と、複数の既知検体によってそれぞれ反射された超音波をもとに抽出された周波数スペクトルの特徴量を前記複数の既知検体の組織性状と関連付けて記憶する記憶部と、前記記憶部が前記複数の既知検体の組織性状と関連付けて記憶する特徴量および前記特徴量抽出部が抽出した特徴量を用いることによって前記検体の所定領域の組織性状を判定する組織性状判定部と、を備えたことを特徴とする。 In order to solve the above-described problems and achieve the object, an ultrasonic diagnostic apparatus according to the present invention transmits ultrasonic waves to a specimen to be diagnosed and receives ultrasonic waves reflected by the specimen. An ultrasonic diagnostic apparatus for diagnosing the tissue characteristics of the specimen based on the received ultrasound, the frequency analyzer calculating the frequency spectrum by analyzing the frequency of the received ultrasound, and the frequency analyzer calculating A feature quantity extraction unit for extracting the feature quantity of the frequency spectrum by approximating the frequency spectrum, and the feature quantity of the frequency spectrum extracted based on the ultrasonic waves respectively reflected by the plurality of known specimens. A storage unit that stores information in association with tissue properties of known samples, and a feature that the storage unit stores in association with tissue properties of the plurality of known samples. And characterized in that and a tissue characterization determining unit determines the tissue properties of a predetermined area of the specimen by using a feature quantity the feature amount extraction unit and extracted.
 また、本発明に係る超音波診断装置は、上記発明において、前記特徴量抽出部は、回帰分析によって前記周波数スペクトルを多項式で近似することを特徴とする。 The ultrasonic diagnostic apparatus according to the present invention is characterized in that, in the above invention, the feature amount extraction unit approximates the frequency spectrum by a polynomial by regression analysis.
 また、本発明に係る超音波診断装置は、上記発明において、前記特徴量抽出部は、前記周波数スペクトルを一次式で近似し、前記一次式の傾きと、前記一次式の切片と、前記周波数スペクトルの周波数帯域に含まれる周波数、前記傾きおよび前記切片によって定まる強度と、を含む複数の特徴量を抽出することを特徴とする。 Further, in the ultrasonic diagnostic apparatus according to the present invention, in the above invention, the feature amount extraction unit approximates the frequency spectrum with a linear expression, the slope of the linear expression, the intercept of the linear expression, and the frequency spectrum. A plurality of feature quantities including a frequency included in the frequency band, an intensity determined by the slope and the intercept are extracted.
 また、本発明に係る超音波診断装置は、上記発明において、前記記憶部は、前記複数の既知検体に対して組織性状ごとに分類されたグループにおける各特徴量の平均を記憶し、前記組織性状判定部は、前記複数の特徴量の少なくともいずれか一つを成分とする特徴量空間を設定し、前記検体の所定領域における周波数スペクトルの特徴量のうち前記特徴量空間の成分をなす特徴量の平均を前記特徴量空間の座標として有する検体平均点と、前記複数の既知検体の前記グループにおける各特徴量のうち前記特徴量空間の成分をなす特徴量の平均を前記特徴量空間の座標として有する既知検体平均点との前記特徴量空間上の距離に基づいて、前記検体の組織性状を判定することを特徴とする。 Further, in the ultrasonic diagnostic apparatus according to the present invention, in the above invention, the storage unit stores an average of each feature amount in a group classified for each tissue property with respect to the plurality of known samples, and the tissue property The determination unit sets a feature amount space including at least one of the plurality of feature amounts as a component, and sets the feature amount constituting the component of the feature amount space among the feature amounts of the frequency spectrum in the predetermined region of the specimen. A specimen average point having an average as coordinates of the feature quantity space, and an average of feature quantities constituting components of the feature quantity space among the feature quantities in the group of the plurality of known specimens as coordinates of the feature quantity space The tissue property of the specimen is determined based on the distance in the feature amount space with the known specimen average point.
 また、本発明に係る超音波診断装置は、上記発明において、前記組織性状判定部は、前記検体平均点と前記既知検体平均点との前記特徴量空間上の距離が最小となるグループに対応する組織性状を前記検体の組織性状とすることを特徴とする。 In the ultrasonic diagnostic apparatus according to the present invention, in the above invention, the tissue property determination unit corresponds to a group in which a distance in the feature amount space between the specimen average point and the known specimen average point is minimum. The tissue property is the tissue property of the specimen.
 また、本発明に係る超音波診断装置は、上記発明において、前記組織性状判定部は、前記検体平均点と前記既知検体平均点との前記特徴量空間上の距離が小さいほど大きな値を有し、全ての距離に対応した値の和が1である確率を、全ての距離に対してそれぞれ算出することにより、前記検体の組織性状を確率的に判定することを特徴とする。 In the ultrasonic diagnostic apparatus according to the present invention as set forth in the invention described above, the tissue property determination unit has a larger value as a distance in the feature amount space between the specimen average point and the known specimen average point is smaller. The probability that the sum of the values corresponding to all the distances is 1 is calculated with respect to all the distances, whereby the tissue properties of the specimen are determined probabilistically.
 また、本発明に係る超音波診断装置は、上記発明において、前記組織性状判定部は、前記複数の既知検体における組織性状ごとに分類されたグループに前記検体の特徴量を加えた母集団における特徴量の標準偏差を算出し、この標準偏差と前記グループにおける特徴量の標準偏差との差が最小である特徴量を有するグループに対応した組織性状を前記検体の組織性状とすることを特徴とする。 Further, in the ultrasonic diagnostic apparatus according to the present invention, in the above invention, the tissue property determination unit includes a feature in a population obtained by adding a feature amount of the sample to a group classified for each tissue property in the plurality of known samples. A standard deviation of the quantity is calculated, and a tissue characteristic corresponding to a group having a characteristic quantity having a minimum difference between the standard deviation and the standard deviation of the characteristic quantity in the group is defined as the tissue characteristic of the specimen. .
 また、本発明に係る超音波診断装置は、上記発明において、前記検体の特徴量に対応する視覚情報を生成し、この生成した視覚情報、受信した超音波をもとに生成される画像、および前記組織性状判定部が判定した結果を用いることによって前記検体の所定領域の組織性状の判定結果を表示する判定結果表示画像データを生成する判定結果表示画像データ生成部をさらに備えたことを特徴とする。 Further, the ultrasonic diagnostic apparatus according to the present invention, in the above invention, generates visual information corresponding to the feature amount of the specimen, the generated visual information, an image generated based on the received ultrasonic wave, and A determination result display image data generation unit for generating determination result display image data for displaying the determination result of the tissue property of the predetermined region of the specimen by using the result determined by the tissue property determination unit; To do.
 また、本発明に係る超音波診断装置は、上記発明において、前記視覚情報は、色空間を構成する変数であることを特徴とする。 In the ultrasonic diagnostic apparatus according to the present invention as set forth in the invention described above, the visual information is a variable constituting a color space.
 また、本発明に係る超音波診断装置の作動方法は、診断対象の検体に対して超音波を送信するとともに前記検体によって反射された超音波を受信することにより、受信した超音波に基づく前記検体の組織性状を診断する超音波診断装置の作動方法であって、受信した超音波の周波数を解析することによって周波数スペクトルを周波数解析部により算出する周波数解析ステップと、前記周波数解析ステップで算出した周波数スペクトルを近似することによって前記周波数スペクトルの特徴量を特徴量抽出部により抽出する特徴量抽出ステップと、複数の既知検体によってそれぞれ反射された超音波をもとに抽出された周波数スペクトルの特徴量を前記複数の既知検体の組織性状と関連付けて記憶する記憶部から読み出した特徴量および前記特徴量抽出ステップで抽出した特徴量を用いることによって前記検体の所定領域の組織性状を組織性状判定部により判定する組織性状判定ステップと、を有することを特徴とする。 In addition, the operation method of the ultrasonic diagnostic apparatus according to the present invention includes transmitting the ultrasonic wave to the specimen to be diagnosed and receiving the ultrasonic wave reflected by the specimen, whereby the specimen based on the received ultrasonic wave The method of operating an ultrasonic diagnostic apparatus for diagnosing the tissue properties of a frequency analysis step of calculating a frequency spectrum by a frequency analysis unit by analyzing the frequency of the received ultrasonic wave, and the frequency calculated in the frequency analysis step A feature amount extraction step for extracting a feature amount of the frequency spectrum by approximating the spectrum by a feature amount extraction unit, and a feature amount of the frequency spectrum extracted based on ultrasonic waves respectively reflected by a plurality of known specimens The feature amount read from the storage unit that stores the plurality of known specimens in association with the tissue properties and the feature Characterized by having a a tissue property determining step of determining the tissue characterization determining unit tissue characterization of a predetermined area of said specimen by using the feature information extracted in an amount extraction step.
 また、本発明に係る超音波診断装置の作動プログラムは、診断対象の検体に対して超音波を送信するとともに前記検体によって反射された超音波を受信することにより、受信した超音波に基づく前記検体の組織性状を診断する超音波診断装置に、受信した超音波の周波数を解析することによって周波数スペクトルを周波数解析部により算出する周波数解析ステップ、前記周波数解析ステップで算出した周波数スペクトルを近似することによって前記周波数スペクトルの特徴量を特徴量抽出部により抽出する特徴量抽出ステップ、複数の既知検体によってそれぞれ反射された超音波をもとに抽出された周波数スペクトルの特徴量を前記複数の既知検体の組織性状と関連付けて記憶する記憶部から読み出した特徴量および前記特徴量抽出ステップで抽出した特徴量を用いることによって前記検体の所定領域の組織性状を組織性状判定部により判定する組織性状判定ステップ、を実行させることを特徴とする。 In addition, the operation program of the ultrasonic diagnostic apparatus according to the present invention includes transmitting the ultrasonic wave to the sample to be diagnosed and receiving the ultrasonic wave reflected by the sample, whereby the sample based on the received ultrasonic wave A frequency analysis step of calculating a frequency spectrum by a frequency analysis unit by analyzing the frequency of the received ultrasonic wave, and approximating the frequency spectrum calculated in the frequency analysis step to an ultrasonic diagnostic apparatus for diagnosing the tissue property of A feature amount extraction step for extracting a feature amount of the frequency spectrum by a feature amount extraction unit; a feature amount of the frequency spectrum extracted based on ultrasonic waves respectively reflected by a plurality of known specimens; The feature amount read from the storage unit that is stored in association with the property and the feature amount extraction step Characterized in that to perform tissue characterization determining step determines the tissue characterization determining unit tissue characterization of a predetermined area of said specimen by in using the extracted feature quantity.
 本発明によれば、受信した超音波の周波数を解析することによって得た周波数スペクトルを近似することによって検体の所定領域における周波数スペクトルの特徴量を抽出し、この特徴量を用いるとともに複数の既知検体によって反射された超音波をもとに抽出された周波数スペクトルの特徴量を用いることによって検体の所定領域の組織性状を判定するため、生体組織の歪量や弾性率を用いることなく、組織の違いを明確に峻別することができる。したがって、組織性状を精度よく鑑別することを可能にするとともに、測定結果の信頼性を向上させることができる。 According to the present invention, a frequency spectrum characteristic amount in a predetermined region of the specimen is extracted by approximating a frequency spectrum obtained by analyzing the frequency of the received ultrasonic wave, and a plurality of known specimens are used while using this characteristic quantity. The tissue characteristics of a predetermined region of the specimen are determined by using the feature quantity of the frequency spectrum extracted based on the ultrasonic wave reflected by the tissue. Can be clearly distinguished. Therefore, it is possible to accurately distinguish the tissue properties and improve the reliability of the measurement results.
図1は、本発明の実施の形態1に係る超音波診断装置の構成を示すブロック図である。FIG. 1 is a block diagram showing the configuration of the ultrasonic diagnostic apparatus according to Embodiment 1 of the present invention. 図2は、本発明の実施の形態1に係る超音波診断装置の処理の概要を示すフローチャートである。FIG. 2 is a flowchart showing an outline of processing of the ultrasonic diagnostic apparatus according to Embodiment 1 of the present invention. 図3は、本発明の実施の形態1に係る超音波診断装置の表示部におけるBモード画像の表示例を示す図である。FIG. 3 is a diagram showing a display example of a B-mode image on the display unit of the ultrasonic diagnostic apparatus according to Embodiment 1 of the present invention. 図4は、本発明の実施の形態1に係る超音波診断装置の周波数解析部が行う処理の概要を示すフローチャートである。FIG. 4 is a flowchart showing an outline of processing performed by the frequency analysis unit of the ultrasonic diagnostic apparatus according to Embodiment 1 of the present invention. 図5は、一つの音線のデータ配列を模式的に示す図である。FIG. 5 is a diagram schematically showing a data array of one sound ray. 図6は、本発明の実施の形態1に係る超音波診断装置の周波数解析部が算出した周波数スペクトルの例(第1例)を示す図である。FIG. 6 is a diagram illustrating an example (first example) of a frequency spectrum calculated by the frequency analysis unit of the ultrasonic diagnostic apparatus according to Embodiment 1 of the present invention. 図7は、本発明の実施の形態1に係る超音波診断装置の周波数解析部が算出した周波数スペクトルの例(第2例)を示す図である。FIG. 7 is a diagram illustrating an example (second example) of a frequency spectrum calculated by the frequency analysis unit of the ultrasonic diagnostic apparatus according to Embodiment 1 of the present invention. 図8は、本発明の実施の形態1に係る超音波診断装置の組織性状判定部が行う処理の概要を示すフローチャートである。FIG. 8 is a flowchart showing an outline of processing performed by the tissue property determination unit of the ultrasonic diagnostic apparatus according to Embodiment 1 of the present invention. 図9は、本発明の実施の形態1に係る超音波診断装置の組織性状判定部が設定する特徴量空間の一例を示す図である。FIG. 9 is a diagram illustrating an example of a feature amount space set by the tissue property determination unit of the ultrasonic diagnostic apparatus according to Embodiment 1 of the present invention. 図10は、本発明の実施の形態1に係る超音波診断装置の表示部が表示する判定結果表示画像の表示例を示す図である。FIG. 10 is a diagram illustrating a display example of a determination result display image displayed by the display unit of the ultrasonic diagnostic apparatus according to Embodiment 1 of the present invention. 図11は、本発明の実施の形態1に係る超音波診断装置の表示部が表示する判定結果表示画像の別な表示例を示す図である。FIG. 11 is a diagram illustrating another display example of the determination result display image displayed by the display unit of the ultrasonic diagnostic apparatus according to Embodiment 1 of the present invention. 図12は、本発明の実施の形態4に係る超音波診断装置の組織性状判定部が行う組織性状判定処理の概要を説明する図である。FIG. 12 is a diagram illustrating an overview of the tissue property determination process performed by the tissue property determination unit of the ultrasonic diagnostic apparatus according to Embodiment 4 of the present invention.
 以下、添付図面を参照して、本発明を実施するための形態(以下、「実施の形態」という)を説明する。 DETAILED DESCRIPTION Hereinafter, embodiments for carrying out the present invention (hereinafter referred to as “embodiments”) will be described with reference to the accompanying drawings.
(実施の形態1)
 図1は、本発明の実施の形態1に係る超音波診断装置の構成を示すブロック図である。同図に示す超音波診断装置1は、超音波を用いて診断対象である検体の組織性状を診断する装置である。
(Embodiment 1)
FIG. 1 is a block diagram showing the configuration of the ultrasonic diagnostic apparatus according to Embodiment 1 of the present invention. An ultrasonic diagnostic apparatus 1 shown in FIG. 1 is an apparatus for diagnosing the tissue properties of a specimen to be diagnosed using ultrasonic waves.
 超音波診断装置1は、外部へ超音波パルスを出力するとともに、外部で反射された超音波エコーを受信する超音波探触子2と、超音波探触子2との間で電気信号の送受信を行う送受信部3と、超音波エコーを変換した電気的なエコー信号に対して所定の演算を施す演算部4と、超音波エコーを変換した電気的なエコー信号に対応する画像データの生成を行う画像処理部5と、キーボード、マウス、タッチパネル等のインタフェースを用いて実現され、各種情報の入力を受け付ける入力部6と、液晶または有機EL等からなる表示パネルを用いて実現され、画像処理部5が生成した画像を含む各種情報を表示する表示部7と、既知検体の組織性状に関する情報を含む各種情報を記憶する記憶部8と、超音波診断装置1の動作制御を行う制御部9と、を備える。 The ultrasonic diagnostic apparatus 1 transmits and receives electrical signals between the ultrasonic probe 2 that outputs an ultrasonic pulse to the outside and receives an ultrasonic echo reflected from the outside, and the ultrasonic probe 2. Transmitting / receiving unit 3 for performing the calculation, calculation unit 4 for performing a predetermined calculation on the electrical echo signal converted from the ultrasonic echo, and generation of image data corresponding to the electrical echo signal converted from the ultrasonic echo An image processing unit 5 to be performed, an interface such as a keyboard, a mouse, a touch panel, and the like. The image processing unit 5 is realized by using an input unit 6 that receives input of various information and a display panel made of liquid crystal or organic EL. 5, a display unit 7 that displays various types of information including the image generated, a storage unit 8 that stores various types of information including information related to the tissue properties of the known specimen, and a control unit that controls the operation of the ultrasonic diagnostic apparatus 1. And, equipped with a.
 超音波探触子2は、送受信部3から受信した電気的なパルス信号を超音波パルス(音響パルス信号)に変換するとともに、外部の検体で反射された超音波エコーを電気的なエコー信号に変換する信号変換部21を有する。超音波探触子2は、超音波振動子をメカ的に走査させるものであってもよいし、複数の超音波振動子を電子的に走査させるものであってもよい。 The ultrasonic probe 2 converts an electrical pulse signal received from the transmission / reception unit 3 into an ultrasonic pulse (acoustic pulse signal), and converts an ultrasonic echo reflected by an external specimen into an electrical echo signal. A signal conversion unit 21 for conversion is included. The ultrasonic probe 2 may be one that mechanically scans an ultrasonic transducer, or one that electronically scans a plurality of ultrasonic transducers.
 送受信部3は、超音波探触子2と電気的に接続され、パルス信号を超音波探触子2へ送信するとともに、超音波探触子2からエコー信号を受信する。具体的には、送受信部3は、予め設定された波形および送信タイミングに基づいてパルス信号を生成し、この生成したパルス信号を超音波探触子2へ送信する。また、送受信部3は、受信したエコー信号に増幅、フィルタリング等の処理を施した後、A/D変換することによってデジタルRF信号を生成して出力する。なお、超音波探触子2が複数の超音波振動子を電子的に走査させるものである場合、送受信部3は、複数の超音波振動子に対応したビーム合成用の多チャンネル回路を有する。 The transmitting / receiving unit 3 is electrically connected to the ultrasonic probe 2, transmits a pulse signal to the ultrasonic probe 2, and receives an echo signal from the ultrasonic probe 2. Specifically, the transmission / reception unit 3 generates a pulse signal based on a preset waveform and transmission timing, and transmits the generated pulse signal to the ultrasound probe 2. Further, the transmission / reception unit 3 performs processing such as amplification and filtering on the received echo signal, and then performs A / D conversion to generate and output a digital RF signal. When the ultrasonic probe 2 is to electronically scan a plurality of ultrasonic transducers, the transmission / reception unit 3 has a multi-channel circuit for beam synthesis corresponding to the plurality of ultrasonic transducers.
 演算部4は、送受信部3が出力したデジタルRF信号に高速フーリエ変換(FFT)を施すことによってエコー信号の周波数解析を行う周波数解析部41と、周波数解析部41が行った周波数解析によって得られた周波数スペクトル(パワースペクトル)を近似することによって周波数スペクトルの特徴量を抽出する特徴量抽出部42と、特徴量抽出部42が抽出した特徴量を用いて検体の所定領域の組織性状を判定する組織性状判定部43と、を有する。 The calculation unit 4 is obtained by a frequency analysis unit 41 that performs a frequency analysis of an echo signal by performing a fast Fourier transform (FFT) on the digital RF signal output from the transmission / reception unit 3, and a frequency analysis performed by the frequency analysis unit 41. The feature quantity extraction unit 42 that extracts the feature quantity of the frequency spectrum by approximating the obtained frequency spectrum (power spectrum), and the tissue quantity of the predetermined region of the specimen are determined using the feature quantity extracted by the feature quantity extraction unit 42 And a tissue property determination unit 43.
 周波数解析部41は、各音線(ラインデータ)に対し、所定のデータ量からなるFFTデータ群を高速フーリエ変換することによって周波数スペクトルを算出する。周波数スペクトルは、検体の組織性状によって異なる傾向を示す。これは、周波数スペクトルが、超音波を散乱する散乱体としての検体の大きさ、密度、音響インピーダンス等と相関を有しているためである。 The frequency analysis unit 41 calculates a frequency spectrum by performing a fast Fourier transform on an FFT data group having a predetermined amount of data for each sound ray (line data). The frequency spectrum shows different tendencies depending on the tissue properties of the specimen. This is because the frequency spectrum has a correlation with the size, density, acoustic impedance, and the like of the specimen as a scatterer that scatters ultrasonic waves.
 特徴量抽出部42は、回帰分析によって周波数スペクトルを一次式で近似し、この近似した一次式を特徴付ける特徴量を抽出する。具体的には、特徴量抽出部42は、回帰分析によって一次式の傾きaおよび切片bを算出するとともに、周波数スペクトルにおける周波数帯域の中心周波数fMID=(fLOW+fHIGH)/2における強度(Mid-band fit)c=afMID+bを算出する。ここでいう「強度」とは、電圧、電力、音圧、音響エネルギー等のパラメータのいずれかを指す。このうち、傾きaは、超音波の散乱体の大きさと相関があり、一般に散乱体が大きいほど傾きが低下すると考えられる。また、切片bは、散乱体の大きさ、音響インピーダンスの差、散乱体の密度(濃度)等と相関を有する。強度cは、傾きaと切片bから導出される間接的なパラメータであり、有効な周波数帯域内の中心におけるスペクトル強度を与える。このため、強度cは、散乱体の大きさ、音響インピーダンスの差、散乱体の密度に加えて、Bモード画像の輝度とある程度の相関を有していると考えられる。なお、特徴量抽出部42が算出する近似多項式は一次式に限定されるわけではなく、二次以上の近似多項式を用いることも可能である。 The feature quantity extraction unit 42 approximates the frequency spectrum with a linear expression by regression analysis, and extracts a feature quantity that characterizes the approximated primary expression. Specifically, the feature quantity extraction unit 42 calculates the slope a and the intercept b of the linear expression by regression analysis, and at the same time the intensity at the center frequency f MID = (f LOW + f HIGH ) / 2 in the frequency spectrum. Mid-band fit) c = af MID + b is calculated. Here, “intensity” refers to any of parameters such as voltage, power, sound pressure, and acoustic energy. Among these, the inclination a has a correlation with the size of the ultrasonic scatterer, and it is generally considered that the larger the scatterer, the lower the inclination. The intercept b has a correlation with the size of the scatterer, the difference in acoustic impedance, the density (concentration) of the scatterer, and the like. The intensity c is an indirect parameter derived from the slope a and the intercept b, and gives the spectral intensity at the center in the effective frequency band. Therefore, the intensity c is considered to have a certain degree of correlation with the brightness of the B-mode image in addition to the size of the scatterer, the difference in acoustic impedance, and the density of the scatterer. Note that the approximate polynomial calculated by the feature amount extraction unit 42 is not limited to a linear expression, and it is possible to use a quadratic or higher approximate polynomial.
 組織性状判定部43は、特徴量抽出部42によって抽出された周波数スペクトルの特徴量の平均および標準偏差を特徴量ごとに算出する。組織性状判定部43は、算出した平均および標準偏差と、記憶部8が記憶する既知検体の周波数スペクトルの特徴量の平均および標準偏差とを用いることにより、検体の所定領域の組織性状を判定する。ここでいう「所定領域」は、画像処理部5によって生成された画像を見た超音波診断装置1の操作者が入力部6によって指定した画像中の領域(以下、「関心領域」という)のことである。また、ここでいう「組織性状」とは、例えば癌、内分泌腫瘍、粘液性腫瘍、正常組織、脈管などのいずれかである。なお、検体が膵臓である場合には、組織性状として慢性膵炎、自己免疫性膵炎なども含まれる。 The tissue property determination unit 43 calculates the average and standard deviation of the feature amounts of the frequency spectrum extracted by the feature amount extraction unit 42 for each feature amount. The tissue property determination unit 43 determines the tissue property of a predetermined region of the sample by using the calculated average and standard deviation and the average and standard deviation of the feature amounts of the frequency spectrum of the known sample stored in the storage unit 8. . The “predetermined region” referred to here is a region in the image (hereinafter referred to as “region of interest”) designated by the input unit 6 by the operator of the ultrasonic diagnostic apparatus 1 who viewed the image generated by the image processing unit 5. That is. In addition, the “tissue property” referred to here is, for example, any of cancer, endocrine tumor, mucinous tumor, normal tissue, vascular and the like. When the specimen is pancreas, the tissue properties include chronic pancreatitis, autoimmune pancreatitis and the like.
 組織性状判定部43が算出する特徴量の平均および標準偏差は、核の腫大や異形などの細胞レベルの変化、間質における線維の増生や実質組織の線維への置換などの組織的な変化を反映しており、組織性状に応じて特有の値を示す。したがって、そのような特徴量の平均および標準偏差を用いることにより、検体の所定領域の組織性状を正確に判定することが可能となる。 The average and standard deviation of the feature values calculated by the tissue characterization determining unit 43 is a systematic change such as a change in cell level such as nuclear enlargement or anomaly, an increase in fibers in the stroma, or a replacement of the real tissue with fibers. This is a unique value depending on the tissue properties. Therefore, by using such an average and standard deviation of the feature amounts, it is possible to accurately determine the tissue properties of a predetermined region of the specimen.
 画像処理部5は、エコー信号の振幅を輝度に変換して表示するBモード画像データを生成するBモード画像データ生成部51と、Bモード画像データ生成部51および演算部4によってそれぞれ出力されたデータを用いて関心領域の組織性状の判定結果および該判定結果に関連する情報を表示する判定結果表示画像データを生成する判定結果表示画像データ生成部52と、を有する。 The image processing unit 5 outputs the B-mode image data generating unit 51 that generates the B-mode image data to be displayed by converting the amplitude of the echo signal into the luminance, the B-mode image data generating unit 51, and the calculation unit 4, respectively. A determination result display image data generation unit 52 that generates determination result display image data for displaying the determination result of the tissue property of the region of interest and information related to the determination result using the data.
 Bモード画像データ生成部51は、デジタル信号に対してバンドパスフィルタ、対数変換、ゲイン処理、コントラスト処理等の公知の技術を用いた信号処理を行うとともに、表示部7における画像の表示レンジに応じて定まるデータステップ幅に応じたデータの間引き等を行うことによってBモード画像データを生成する。 The B-mode image data generation unit 51 performs signal processing using a known technique such as a bandpass filter, logarithmic conversion, gain processing, contrast processing, and the like on the digital signal, and also according to the image display range on the display unit 7. B-mode image data is generated by thinning out data in accordance with the data step width determined in advance.
 判定結果表示画像データ生成部52は、Bモード画像データ生成部51が生成したBモード画像データ、特徴量抽出部42が算出した特徴量、および組織性状判定部43が判定した判定結果を用いることにより、関心領域の組織性状の判定結果およびその組織性状を強調する組織性状強調画像を含む判定結果表示画像データを生成する。 The determination result display image data generation unit 52 uses the B mode image data generated by the B mode image data generation unit 51, the feature amount calculated by the feature amount extraction unit 42, and the determination result determined by the tissue property determination unit 43. Thus, determination result display image data including the determination result of the tissue property of the region of interest and the tissue property emphasized image that emphasizes the tissue property is generated.
 記憶部8は、既知検体の情報を記憶する既知検体情報記憶部81と、周波数解析部41が行う周波数解析処理の際に使用する窓関数を記憶する窓関数記憶部82とを有する。既知検体情報記憶部81は、既知検体に対する周波数解析によって抽出された周波数スペクトルの特徴量を既知検体の組織性状と関連付けて記憶している。また、既知検体情報記憶部81は、既知検体に関連した周波数スペクトルの特徴量に対し、既知検体の組織性状ごとに分類されたグループごとに算出された平均および標準偏差を、既知検体の特徴量の全データとともに記憶している。既知検体情報記憶部81が記憶する既知検体の情報は、組織性状に関する信頼度の高い情報であることが望ましい。窓関数記憶部82は、Hamming,  anning, Blackmanなどの窓関数のうち少なくともいずれか一つの窓関数を記憶している。記憶部8は、本実施の形態1に係る超音波診断装置の作動プログラムや所定のOSを起動するプログラムや等が予め記憶されたROM、および各処理の演算パラメータやデータ等を記憶するRAM等を用いて実現される。 The storage unit 8 includes a known sample information storage unit 81 that stores information on known samples, and a window function storage unit 82 that stores a window function used in the frequency analysis process performed by the frequency analysis unit 41. The known specimen information storage unit 81 stores the characteristic amount of the frequency spectrum extracted by the frequency analysis for the known specimen in association with the tissue property of the known specimen. In addition, the known specimen information storage unit 81 uses the average and standard deviation calculated for each group classified for each tissue property of the known specimen with respect to the feature quantity of the frequency spectrum related to the known specimen. It is memorized with all the data. The information on the known specimen stored in the known specimen information storage unit 81 is desirably information with high reliability related to the tissue properties. The window function storage unit 82 stores at least one of window functions such as Hamming, anning, and Blackman. The storage unit 8 includes a ROM in which an operation program for the ultrasonic diagnostic apparatus according to the first embodiment, a program for starting a predetermined OS, and the like are stored in advance, and a RAM in which calculation parameters and data for each process are stored. It is realized using.
 以上の機能構成を有する超音波診断装置1の超音波探触子2以外の構成要素は、演算および制御機能を有するCPUを備えたコンピュータを用いて実現される。超音波診断装置1が備えるCPUは、記憶部8が記憶、格納する情報および上述した超音波診断装置の作動プログラムを含む各種プログラムを記憶部8から読み出すことにより、本実施の形態1に係る超音波診断装置の作動方法に関連した演算処理を実行する。 Components other than the ultrasound probe 2 of the ultrasound diagnostic apparatus 1 having the above functional configuration are realized using a computer having a CPU having a calculation and control function. The CPU provided in the ultrasonic diagnostic apparatus 1 reads out various programs including information stored and stored in the storage unit 8 and the above-described operation program of the ultrasonic diagnostic apparatus from the storage unit 8, so that the ultrasonic according to the first embodiment is obtained. Arithmetic processing related to the operation method of the ultrasonic diagnostic apparatus is executed.
 なお、本実施の形態1に係る超音波診断装置の作動プログラムは、ハードディスク、フラッシュメモリ、CD-ROM、DVD-ROM、フレキシブルディスク等のコンピュータ読み取り可能な記録媒体に記録して広く流通させることも可能である。 Note that the operation program of the ultrasonic diagnostic apparatus according to the first embodiment may be recorded on a computer-readable recording medium such as a hard disk, a flash memory, a CD-ROM, a DVD-ROM, or a flexible disk and widely distributed. Is possible.
 図2は、以上の構成を有する超音波診断装置1の処理の概要を示すフローチャートである。図2において、超音波診断装置1は、まず超音波探触子2によって新規の検体の測定を行う(ステップS1)。その後、Bモード画像データ生成部51がBモード画像データを生成する(ステップS2)。 FIG. 2 is a flowchart showing an outline of processing of the ultrasonic diagnostic apparatus 1 having the above configuration. In FIG. 2, the ultrasound diagnostic apparatus 1 first measures a new specimen by the ultrasound probe 2 (step S1). Thereafter, the B mode image data generation unit 51 generates B mode image data (step S2).
 続いて、制御部9は、Bモード画像データ生成部51が生成したBモード画像データに対応するBモード画像を表示部7に表示させる制御を行う(ステップS3)。図3は、表示部7におけるBモード画像の表示例を示す図である。同図に示すBモード画像100は、色空間としてRGB表色系を採用した場合の変数である赤(R)、緑(G)、青(B)の値を一致させたグレースケール画像である。 Subsequently, the control unit 9 controls the display unit 7 to display a B mode image corresponding to the B mode image data generated by the B mode image data generation unit 51 (step S3). FIG. 3 is a diagram illustrating a display example of the B-mode image on the display unit 7. A B-mode image 100 shown in the figure is a grayscale image in which values of red (R), green (G), and blue (B), which are variables when the RGB color system is adopted as a color space, are matched. .
 その後、入力部6を介して関心領域の設定がなされた場合(ステップS4:Yes)、周波数解析部41は、FFT演算による周波数解析を行うことによって周波数スペクトルを算出する(ステップS5)。このステップS5では、画像の全領域を関心領域として設定することも可能である。一方、関心領域の設定がなされていない場合(ステップS4:No)において、処理を終了する指示が入力部6によって入力されたとき(ステップS6:Yes)、超音波診断装置1は処理を終了する。これに対し、関心領域の指定がなされていない場合(ステップS4:No)において、ステップS6で処理を終了する指示が入力部6によって入力されないとき(ステップS6:No)、超音波診断装置1はステップS4へ戻る。 Thereafter, when a region of interest is set via the input unit 6 (step S4: Yes), the frequency analysis unit 41 calculates a frequency spectrum by performing frequency analysis by FFT calculation (step S5). In this step S5, it is also possible to set the entire region of the image as the region of interest. On the other hand, when the region of interest has not been set (step S4: No), when an instruction to end the process is input by the input unit 6 (step S6: Yes), the ultrasound diagnostic apparatus 1 ends the process. . On the other hand, when the region of interest is not designated (step S4: No), when the instruction to end the process is not input by the input unit 6 in step S6 (step S6: No), the ultrasonic diagnostic apparatus 1 Return to step S4.
 ここで、周波数解析部41が行う処理(ステップS5)について、図4に示すフローチャートを参照して詳細に説明する。まず、周波数解析部41は、最初に解析対象とする音線の音線番号Lを初期値L0とする(ステップS11)。初期値L0は、例えば送受信部3が最初に受信する音線に対して付与してもよいし、入力部6によって設定される関心領域の左右の一方の境界位置に対応する音線に対して付与してもよい。 Here, the process (step S5) performed by the frequency analysis unit 41 will be described in detail with reference to the flowchart shown in FIG. First, the frequency analysis unit 41 sets the sound ray number L of the sound ray to be analyzed first as an initial value L 0 (step S11). The initial value L 0 may be given, for example, to a sound ray that is first received by the transmission / reception unit 3, or for a sound ray corresponding to one of the left and right boundary positions of the region of interest set by the input unit 6. May be given.
 続いて、周波数解析部41は、一つの音線上の全ての周波数スペクトルを算出する。まず、周波数解析部41は、FFT演算用に取得する一連のデータ群(FFTデータ群)を代表するデータ位置Zの初期値Z0を設定する(ステップS12)。図5は、一つの音線のデータ配列を模式的に示す図である。同図に示す音線LDにおいて、白または黒の長方形は、一つのデータを意味している。音線LDは、送受信部3が行うA/D変換におけるサンプリング周波数(例えば50MHz)に対応した時間間隔で離散化されている。図5では、音線LDの1番目のデータをデータ位置Zの初期値Z0として設定した場合を示している。なお、図5はあくまでも一例に過ぎず、初期値Z0の位置は任意に設定することができる。例えば、関心領域の上端位置に対応するデータ位置Zを初期値Z0として設定してもよい。 Subsequently, the frequency analysis unit 41 calculates all frequency spectra on one sound ray. First, the frequency analysis unit 41 sets an initial value Z 0 of a data position Z that represents a series of data groups (FFT data group) acquired for FFT calculation (step S12). FIG. 5 is a diagram schematically showing a data array of one sound ray. In the sound ray LD shown in the figure, a white or black rectangle means one piece of data. The sound ray LD is discretized at a time interval corresponding to a sampling frequency (for example, 50 MHz) in A / D conversion performed by the transmission / reception unit 3. FIG. 5 shows a case where the first data of the sound ray LD is set as the initial value Z 0 of the data position Z. Note that FIG. 5 is merely an example, and the position of the initial value Z 0 can be arbitrarily set. For example, the data position Z corresponding to the upper end position of the region of interest may be set as the initial value Z 0 .
 その後、周波数解析部41は、データ位置ZのFFTデータ群を取得し(ステップS13)、取得したFFTデータ群に対し、窓関数記憶部82が記憶する窓関数を作用させる(ステップS14)。このようにFFTデータ群に対して窓関数を作用させることにより、FFTデータ群が境界で不連続になることを回避し、アーチファクトが発生するのを防止することができる。 Thereafter, the frequency analysis unit 41 acquires the FFT data group at the data position Z (step S13), and causes the window function stored in the window function storage unit 82 to act on the acquired FFT data group (step S14). In this way, by applying the window function to the FFT data group, it is possible to avoid the FFT data group from becoming discontinuous at the boundary and to prevent the occurrence of artifacts.
 続いて、周波数解析部41は、データ位置ZのFFTデータ群が正常なデータ群であるか否かを判定する(ステップS15)。ここで、FFTデータ群は、2のべき乗のデータ数を有している必要がある。以下、FFTデータ群のデータ数を2n(nは正の整数)とする。FFTデータ群が正常であるとは、データ位置ZがFFTデータ群で前から2n-1番目の位置であること意味する。換言すると、FFTデータ群が正常であるとは、データ位置Zの前方に2n-1-1(=Nとする)個のデータがあり、データ位置Zの後方に2n-1(=Mとする)個のデータがあることを意味する。図5に示す場合、FFTデータ群F2、F3、FK-1は正常である一方、FFTデータ群F1、FKは異常である。ただし、図5ではn=4(N=7,M=8)としている。 Subsequently, the frequency analysis unit 41 determines whether or not the FFT data group at the data position Z is a normal data group (step S15). Here, the FFT data group needs to have a power number of 2 data. Hereinafter, the number of data in the FFT data group is 2 n (n is a positive integer). That the FFT data group is normal means that the data position Z is the 2 n-1 th position from the front in the FFT data group. In other words, the normal FFT data group means that there are 2 n−1 −1 (= N) data in front of the data position Z, and 2 n−1 (= M Means that there is data. In the case shown in FIG. 5, the FFT data groups F 2 , F 3 and F K-1 are normal, while the FFT data groups F 1 and F K are abnormal. However, in FIG. 5, n = 4 (N = 7, M = 8).
 ステップS15における判定の結果、データ位置ZのFFTデータ群が正常である場合(ステップS15:Yes)、周波数解析部41は、後述するステップS17へ移行する。 If the result of determination in step S15 is that the FFT data group at the data position Z is normal (step S15: Yes), the frequency analysis unit 41 proceeds to step S17 described later.
 ステップS15における判定の結果、データ位置ZのFFTデータ群が正常でない場合(ステップS15:No)、周波数解析部41は、不足分だけゼロデータを挿入することによって正常なFFTデータ群を生成する(ステップS16)。ステップS15において正常でないと判定されたFFTデータ群は、ゼロデータを追加する前に窓関数が作用されている。このため、FFTデータ群にゼロデータを挿入してもデータの不連続は生じない。ステップS16の後、周波数解析部41は、後述するステップS17へ移行する。 If the result of determination in step S15 is that the FFT data group at the data position Z is not normal (step S15: No), the frequency analysis unit 41 generates a normal FFT data group by inserting zero data for the shortage ( Step S16). The FFT function group determined to be not normal in step S15 is subjected to a window function before adding zero data. For this reason, discontinuity of data does not occur even if zero data is inserted into the FFT data group. After step S16, the frequency analysis unit 41 proceeds to step S17 described later.
 ステップS17において、周波数解析部41は、FFTデータ群を用いてFFT演算を行うことにより、周波数スペクトルを得る(ステップS17)。図6および図7は、周波数解析部41が算出した周波数スペクトルの例を示す図である。図6および図7では、横軸fが周波数であり、縦軸Iが強度である。図6および図7にそれぞれ示す周波数スペクトル曲線C1およびC2において、周波数スペクトルの下限周波数fLOWおよび上限周波数fHIGHは、超音波探触子2の周波数帯域、送受信部3が送信するパルス信号の周波数帯域などをもとに決定されるパラメータであり、例えばfLOW=3MHz、fHIGH=10MHzである。なお、図6に示す直線L1および図7に示す直線L2については、後述する特徴量抽出処理で説明する。本実施の形態1において、曲線および直線は、離散的な点の集合からなる。この点については、後述する実施の形態においても同様である。 In step S17, the frequency analysis unit 41 obtains a frequency spectrum by performing an FFT operation using the FFT data group (step S17). 6 and 7 are diagrams illustrating examples of frequency spectra calculated by the frequency analysis unit 41. FIG. 6 and 7, the horizontal axis f is the frequency, and the vertical axis I is the intensity. In frequency spectrum curves C 1 and C 2 shown in FIGS. 6 and 7, respectively, the lower limit frequency f LOW and the upper limit frequency f HIGH of the frequency spectrum are the frequency band of the ultrasonic probe 2 and the pulse signal transmitted by the transmitting / receiving unit 3. For example, f LOW = 3 MHz and f HIGH = 10 MHz. Note that the straight line L 1 shown in FIG. 6 and the straight line L 2 shown in FIG. 7 will be described in a feature amount extraction process described later. In the first embodiment, the curve and the straight line are composed of a set of discrete points. This also applies to the embodiments described later.
 続いて、周波数解析部41は、データ位置Zに所定のデータステップ幅Dを加算して次の解析対象のFFTデータ群のデータ位置Zを算出する(ステップS18)。ここでのデータステップ幅Dは、Bモード画像データ生成部51がBモード画像データを生成する際に利用するデータステップ幅と一致させることが望ましいが、周波数解析部41における演算量を削減したい場合には、Bモード画像データ生成部51が利用するデータステップ幅より大きい値を設定してもよい。図5では、D=15の場合を示している。 Subsequently, the frequency analysis unit 41 adds a predetermined data step width D to the data position Z to calculate the data position Z of the next FFT data group to be analyzed (step S18). The data step width D here is preferably the same as the data step width used when the B-mode image data generation unit 51 generates the B-mode image data. However, when it is desired to reduce the amount of calculation in the frequency analysis unit 41 In this case, a value larger than the data step width used by the B-mode image data generation unit 51 may be set. FIG. 5 shows a case where D = 15.
 その後、周波数解析部41は、データ位置Zが最終データ位置Zmaxより大きいか否かを判定する(ステップS19)。ここで、最終データ位置Zmaxは、音線LDのデータ長としてもよいし、関心領域の下端に対応するデータ位置としてもよい。判定の結果、データ位置Zが最終データ位置Zmaxより大きい場合(ステップS19:Yes)、周波数解析部41は、音線番号Lを1だけインクリメントする(ステップS20)。一方、データ位置Zが最終データ位置Zmax以下である場合(ステップS19:No)、周波数解析部41はステップS13へ戻る。このようにして、周波数解析部41は、一つの音線LDに対して、[{(Zmax-Z0)/D}+1](=K)個のFFTデータ群に対するFFT演算を行う。ここで、[X]は、Xを超えない最大の整数を表す。 Thereafter, the frequency analysis unit 41 determines whether or not the data position Z is greater than the final data position Z max (step S19). Here, the final data position Z max may be the data length of the sound ray LD, or may be the data position corresponding to the lower end of the region of interest. As a result of the determination, when the data position Z is larger than the final data position Z max (step S19: Yes), the frequency analysis unit 41 increments the sound ray number L by 1 (step S20). On the other hand, when the data position Z is equal to or less than the final data position Z max (step S19: No), the frequency analysis unit 41 returns to step S13. In this way, the frequency analysis unit 41 performs an FFT operation on [{(Z max −Z 0 ) / D} +1] (= K) FFT data groups for one sound ray LD. Here, [X] represents the maximum integer not exceeding X.
 ステップS20でインクリメントした後の音線番号Lが最終音線番号Lmaxより大きい場合(ステップS21:Yes)、周波数解析部41は図2に示すメインルーチンへ戻る。一方、ステップS20でインクリメントした後の音線番号Lが最終音線番号Lmax以下である場合(ステップS21:No)、周波数解析部41はステップS12へ戻る。 When the sound ray number L after being incremented in step S20 is larger than the final sound ray number Lmax (step S21: Yes), the frequency analysis unit 41 returns to the main routine shown in FIG. On the other hand, when the sound ray number L after being incremented in step S20 is equal to or less than the final sound ray number Lmax (step S21: No), the frequency analysis unit 41 returns to step S12.
 このようにして、周波数解析部41は、(Lmax-L0+1)本の音線の各々についてK回のFFT演算を行う。なお、最終音線番号Lmaxは、例えば送受信部3が受信する最終の音線に付与してもよいし、関心領域の左右のいずれか一方の境界に対応する音線に付与してもよい。以下、周波数解析部41が全ての音線に対して行うFFT演算の総数(Lmax-L0+1)×KをPとおく。 In this way, the frequency analysis unit 41 performs K FFT operations for each of (L max −L 0 +1) sound rays. The final sound ray number L max may be given to the last sound ray received by the transmission / reception unit 3, for example, or may be given to the sound ray corresponding to either the left or right boundary of the region of interest. . Hereinafter, let P be the total number of FFT operations (L max −L 0 +1) × K performed by the frequency analysis unit 41 for all sound rays.
 以上説明したステップS5の周波数解析処理に続いて、特徴量抽出部42が、周波数解析部41が算出したP個の周波数スペクトルを回帰分析することによって特徴量を抽出する(ステップS7)。具体的には、特徴量抽出部42は、周波数帯域fLOW<f<fHIGHの周波数スペクトルを近似する一次式を回帰分析によって算出することにより、三つの特徴量a,b,cを算出する。図6に示す直線L1および図7に示す直線L2は、このステップS7で得られる回帰直線である。 Following the frequency analysis processing in step S5 described above, the feature amount extraction unit 42 extracts the feature amount by performing regression analysis on the P frequency spectra calculated by the frequency analysis unit 41 (step S7). Specifically, the feature amount extraction unit 42 calculates three feature amounts a, b, and c by calculating a linear expression that approximates the frequency spectrum of the frequency band f LOW <f <f HIGH by regression analysis. . A straight line L 1 shown in FIG. 6 and a straight line L 2 shown in FIG. 7 are regression lines obtained in step S7.
 この後、組織性状判定部43は、特徴量抽出部42によって抽出された特徴量と既知検体情報記憶部81が記憶する既知検体情報に基づいて、検体の関心領域における組織性状を判定する(ステップS8)。 Thereafter, the tissue property determination unit 43 determines the tissue property in the region of interest of the sample based on the feature amount extracted by the feature amount extraction unit 42 and the known sample information stored in the known sample information storage unit 81 (step S8).
 ここで、組織性状判定部43が行う処理(ステップS8)について、図8に示すフローチャートを参照して詳細に説明する。まず、組織性状判定部43は、関心領域の内部に位置するQ(≦P)組のFFTデータ群の三つの特徴量a,b,cの各々の平均および標準偏差を算出する(ステップS31)。 Here, the process (step S8) performed by the tissue property determination unit 43 will be described in detail with reference to the flowchart shown in FIG. First, the tissue characterization determining unit 43 calculates the average and standard deviation of each of the three feature values a, b, and c of the Q (≦ P) sets of FFT data located inside the region of interest (step S31). .
 続いて、組織性状判定部43は、組織性状を判定する際に使用する特徴量空間を設定する(ステップS32)。本実施の形態1において、三つの特徴量である傾きa,切片b,強度cのうち、独立なパラメータは二つである。したがって、三つの特徴量のうち任意の二つの特徴量を成分とする二次元空間を特徴量空間として設定することができる。また、三つの特徴量のうち任意の一つの特徴量を成分とする一次元空間を特徴量空間として設定することもできる。このステップS32では、設定すべき特徴量空間が予め定められているものとしているが、操作者が入力部6によって所望の特徴量空間を選択するようにしてもよい。 Subsequently, the tissue property determining unit 43 sets a feature amount space used when determining the tissue property (step S32). In the first embodiment, there are two independent parameters among the three characteristic quantities, ie, the inclination a, the intercept b, and the intensity c. Accordingly, it is possible to set a two-dimensional space having two arbitrary feature amounts as components as the feature amount space among the three feature amounts. In addition, a one-dimensional space having any one of the three feature quantities as a component can be set as the feature quantity space. In step S32, the feature amount space to be set is determined in advance, but the operator may select a desired feature amount space by the input unit 6.
 図9は、組織性状判定部43が設定する特徴量空間の一例を示す図である。図9に示す特徴量空間は、横軸が特徴量b、縦軸が特徴量cである。図9に示す点Spは、ステップS31で特徴量抽出部42が算出した検体の関心領域内に含まれるFFTデータ群の周波数スペクトルの特徴量bおよびcの各平均を特徴量空間の座標として有する点(以下、この点を「検体平均点」という)を示している。また、図9に示す領域SA、SB,SCは、既知検体情報記憶部81が記憶する既知検体の組織性状が、それぞれA,B,Cであるグループを示している。図9に示す場合、三つのグループSA、SB、SCは、特徴量空間上において、互いに他のグループと交わりを有しない領域に存在している。このように、本実施の形態1では、周波数解析によって得られた周波数スペクトルの特徴量を指標として組織性状の分類、判定を行うため、互いに異なる組織性状を峻別することができる。 FIG. 9 is a diagram illustrating an example of the feature amount space set by the tissue property determination unit 43. In the feature quantity space shown in FIG. 9, the horizontal axis is the feature quantity b, and the vertical axis is the feature quantity c. The point Sp shown in FIG. 9 has, as coordinates of the feature amount space, the average of the feature amounts b and c of the frequency spectrum of the FFT data group included in the region of interest of the specimen calculated by the feature amount extracting unit 42 in step S31. A point (hereinafter, this point is referred to as “specimen average point”) is shown. In addition, areas SA, SB, and SC shown in FIG. 9 indicate groups in which the tissue properties of the known samples stored in the known sample information storage unit 81 are A, B, and C, respectively. In the case illustrated in FIG. 9, the three groups SA, SB, and SC exist in regions that do not intersect with other groups in the feature amount space. As described above, in the first embodiment, since the tissue properties are classified and determined using the characteristic amount of the frequency spectrum obtained by the frequency analysis as an index, different tissue properties can be distinguished from each other.
 ステップS32の後、組織性状判定部43は、検体平均点Spと、グループSA,SB、SCにそれぞれ含まれるFFTデータ群の周波数スペクトルの特徴量bおよびcの各平均を特徴量空間の座標として有する点A0,B0,C0(以下、これらの点を「既知検体平均点」という)との間の特徴量空間上の距離α,β,γをそれぞれ算出する(ステップS33)。ここで、特徴量空間におけるb軸成分とc軸成分のスケールが大きく異なる場合には、各距離の寄与を略均等にするための重み付けを適宜行うことが望ましい。 After step S32, the tissue characterization determining unit 43 uses the average of the specimen average point Sp and the feature quantities b and c of the frequency spectrum of the FFT data group included in each of the groups SA, SB, and SC as coordinates in the feature quantity space. The distances α, β, γ on the feature amount space between the points A 0 , B 0 , C 0 (hereinafter referred to as “known specimen average points”) are calculated (step S33). Here, when the scales of the b-axis component and the c-axis component in the feature amount space are greatly different, it is desirable to appropriately perform weighting for making the contribution of each distance substantially equal.
 続いて、組織性状判定部43は、ステップS33で算出した距離に基づいて、検体平均点Spの組織性状を判定する(ステップS34)。図9に示す場合、距離αが最小である。したがって、組織性状判定部43は、検体の組織性状がAであると判定する。なお、検体平均点Spが既知検体平均点A0,B0,C0と極端に離れている場合には、たとえ距離α,β,γの最小値が求まったとしても組織性状の判定結果の信頼度は低い。そこで、α,β,γが所定の閾値より大きい場合、組織性状判定部43はエラー信号を出力するようにしてもよい。また、α,β,γのうち最小値が二つ以上生じた場合、組織性状判定部43は最小値に対応するすべての組織性状を候補として選択してもよいし、所定の規則にしたがっていずれか一つの組織性状を選択してもよい。後者の場合、例えば癌などの悪性の高い組織性状の優先順位を高く設定する方法を挙げることができる。また、α,β,γのうち最小値が二つ以上生じた場合、組織性状判定部43はエラー信号を出力してもよい。 Subsequently, the tissue property determination unit 43 determines the tissue property of the specimen average point Sp based on the distance calculated in step S33 (step S34). In the case shown in FIG. 9, the distance α is the minimum. Therefore, the tissue property determination unit 43 determines that the tissue property of the specimen is A. When the sample average point Sp is extremely far from the known sample average points A 0 , B 0 , C 0 , the determination result of the tissue property is obtained even if the minimum values of the distances α, β, γ are obtained. Reliability is low. Therefore, when α, β, and γ are greater than a predetermined threshold, the tissue property determination unit 43 may output an error signal. When two or more minimum values occur among α, β, and γ, the tissue property determination unit 43 may select all tissue properties corresponding to the minimum value as candidates, or any one according to a predetermined rule. One tissue property may be selected. In the latter case, for example, a method of setting a high priority for highly malignant tissue properties such as cancer can be mentioned. When two or more minimum values occur among α, β, and γ, the tissue property determination unit 43 may output an error signal.
 この後、組織性状判定部43は、ステップS33における距離算出結果、およびステップS34における判定結果を出力する(ステップS35)。これにより、ステップS8の組織性状判定処理が終了する。 Thereafter, the tissue property determination unit 43 outputs the distance calculation result in step S33 and the determination result in step S34 (step S35). Thereby, the tissue property determination process in step S8 ends.
 以上説明したステップS8の後、判定結果表示画像データ生成部52は、Bモード画像データ生成部51が生成したBモード画像データ、特徴量抽出部42が算出した特徴量、および組織性状判定部43が判定した判定結果を用いることにより、判定結果表示画像データを生成する(ステップS9)。 After step S8 described above, the determination result display image data generation unit 52 includes the B mode image data generated by the B mode image data generation unit 51, the feature amount calculated by the feature amount extraction unit 42, and the tissue property determination unit 43. The determination result display image data is generated by using the determination result determined by (step S9).
 その後、表示部7は、判定結果表示画像データ生成部52が生成した判定結果表示画像を表示する(ステップS10)。図10は、表示部7が表示する判定結果表示画像の表示例を示す図である。同図に示す判定結果表示画像200は、組織性状の判定結果を含む各種関連情報を表示する情報表示部201と、Bモード画像に基づいて組織性状を強調する組織性状強調画像を表示する画像表示部202とを有する。 Thereafter, the display unit 7 displays the determination result display image generated by the determination result display image data generation unit 52 (step S10). FIG. 10 is a diagram illustrating a display example of the determination result display image displayed on the display unit 7. The determination result display image 200 shown in the figure is an image display that displays an information display unit 201 that displays various related information including a determination result of tissue properties, and a tissue property emphasized image that emphasizes tissue properties based on a B-mode image. Part 202.
 情報表示部201には、例えば検体の識別情報(ID番号、名前、性別等)、組織性状判定部43が算出した組織性状判定結果、組織性状判定を行う際の特徴量に関する情報、ゲインやコントラスト等の超音波画質情報が表示される。ここで、特徴量に関する情報として、関心領域の内部に位置するQ組のFFTデータ群の周波数スペクトルの特徴量の平均、標準偏差を利用した表示を行うことが可能である。具体的には、情報表示部201では、例えばa=1.5±0.3(dB/MHz)、b=-60±2(dB/MHz)、c=-50±1.5(dB/MHz)、と表示することができる。 The information display unit 201 includes, for example, specimen identification information (ID number, name, sex, and the like), tissue property determination results calculated by the tissue property determination unit 43, information on feature amounts when performing tissue property determination, gain, and contrast. Ultrasonic image quality information such as is displayed. Here, it is possible to perform display using the average and standard deviation of the feature amounts of the frequency spectrum of the Q sets of FFT data groups located inside the region of interest as the information on the feature amount. Specifically, in the information display unit 201, for example, a = 1.5 ± 0.3 (dB / MHz), b = −60 ± 2 (dB / MHz), c = −50 ± 1.5 (dB / MHz).
 画像表示部202に表示されている組織性状強調画像300は、図3に示すBモード画像100に対して、切片bをR(赤),G(緑),B(青)に対して均等に割り当てたグレースケール画像である。 The tissue property emphasizing image 300 displayed on the image display unit 202 is equivalent to the B mode image 100 shown in FIG. 3 in which the slices b are equal to R (red), G (green), and B (blue). It is the assigned grayscale image.
 以上の構成を有する判定結果表示画像200を表示部7が表示することにより、操作者はより正確に関心領域の組織性状を把握することが可能となる。 When the display unit 7 displays the determination result display image 200 having the above configuration, the operator can more accurately grasp the tissue properties of the region of interest.
 なお、図10に示す組織性状強調画像300はあくまでも一例に過ぎない。他にも、例えば傾きa、切片b、強度cをR(赤)、G(緑)、B(青)にそれぞれ割り当てることにより、組織性状強調画像をカラー画像によって表示することも可能である。この場合、組織性状に対して固有の色で表現されるため、操作者は画像の色分布をもとに関心領域の組織性状を把握することが可能となる。また、色空間をRGB表色系で構成する代わりに、シアン、マゼンダ、イエローのような補色系の変数によって構成し、各変数に対して特徴量を割り当ててもよい。また、Bモード画像データとカラー画像データとを所定の比率で混合させることによって組織性状強調画像データを生成してもよい。また、関心領域のみカラー画像データへ置換することによって組織性状強調画像データを生成してもよい。 Note that the tissue property enhancement image 300 shown in FIG. 10 is merely an example. In addition, for example, by assigning the inclination a, the intercept b, and the intensity c to R (red), G (green), and B (blue), the tissue property enhanced image can be displayed as a color image. In this case, since the tissue characteristic is expressed by a unique color, the operator can grasp the tissue characteristic of the region of interest based on the color distribution of the image. Further, instead of configuring the color space with the RGB color system, the color space may be configured with complementary color system variables such as cyan, magenta, and yellow, and a feature amount may be assigned to each variable. Alternatively, the tissue property enhanced image data may be generated by mixing B-mode image data and color image data at a predetermined ratio. Alternatively, tissue property enhanced image data may be generated by replacing only the region of interest with color image data.
 以上説明した本発明の実施の形態1によれば、受信した超音波の周波数を解析することによって得た周波数スペクトルを近似することによって検体の所定領域における周波数スペクトルの特徴量を抽出し、この特徴量を用いるとともに複数の既知検体によって反射された超音波をもとに抽出された周波数スペクトルの特徴量を用いることによって検体の所定領域の組織性状を判定するため、生体組織の歪量や弾性率を用いることなく、組織の違いを明確に峻別することができる。したがって、組織性状を精度よく鑑別することを可能にするとともに、測定結果の信頼性を向上させることができる。 According to the first embodiment of the present invention described above, the frequency spectrum feature quantity in the predetermined region of the specimen is extracted by approximating the frequency spectrum obtained by analyzing the frequency of the received ultrasonic wave. In order to determine the tissue properties of a predetermined region of the specimen by using the quantity and using the characteristic quantity of the frequency spectrum extracted based on the ultrasonic waves reflected by a plurality of known specimens, the strain amount and elastic modulus of the biological tissue It is possible to clearly distinguish the difference between tissues without using. Therefore, it is possible to accurately distinguish the tissue properties and improve the reliability of the measurement results.
 図11は、表示部7における判定結果表示画像の別な表示例を示す図である。同図に示す判定結果表示画像400は、情報表示部401と、Bモード画像を表示する第1画像表示部402と、組織性状強調画像を表示する第2画像表示部403とを有する。図11に示す場合には、第1画像表示部402にBモード画像100が表示され、第2画像表示部403に組織性状強調画像300が表示されている。このようにしてBモード画像と組織性状強調画像を並べて表示することにより、両画像の違いを一つの画面上で認識することができる。なお、第1画像表示部402で表示する画像と第2画像表示部403で表示する画像を入れ替えることができるようにしてもよい。また、入力部6からの入力によって判定結果表示画像200と判定結果表示画像400との表示を切り換えることができるようにしてもよい。 FIG. 11 is a diagram illustrating another display example of the determination result display image on the display unit 7. The determination result display image 400 shown in the figure includes an information display unit 401, a first image display unit 402 that displays a B-mode image, and a second image display unit 403 that displays a tissue property emphasized image. In the case illustrated in FIG. 11, the B-mode image 100 is displayed on the first image display unit 402, and the tissue property emphasized image 300 is displayed on the second image display unit 403. Thus, by displaying the B-mode image and the tissue property emphasized image side by side, the difference between the two images can be recognized on one screen. Note that the image displayed on the first image display unit 402 and the image displayed on the second image display unit 403 may be interchanged. Further, the display between the determination result display image 200 and the determination result display image 400 may be switched by an input from the input unit 6.
(実施の形態2)
 本発明の実施の形態2は、組織性状判定部における組織性状判定処理が実施の形態1と異なる。本実施の形態2に係る超音波診断装置の構成は、実施の形態1で説明した超音波診断装置1の構成と同様である。そこで、以下の説明において、超音波診断装置1の構成要素と対応する構成要素には同一の符号を付すものとする。
(Embodiment 2)
The second embodiment of the present invention is different from the first embodiment in the tissue property determination process in the tissue property determination unit. The configuration of the ultrasonic diagnostic apparatus according to the second embodiment is the same as the configuration of the ultrasonic diagnostic apparatus 1 described in the first embodiment. Therefore, in the following description, the same reference numerals are given to the components corresponding to the components of the ultrasonic diagnostic apparatus 1.
 組織性状判定部43は、関心領域の内部に位置するQ組のFFTデータ群の特徴量(a,b,c)を、組織性状A,B,Cを構成するグループSA、SB、SC(図9を参照)にそれぞれ加えて新たな母集団を構成した後、各組織性状を構成するデータの特徴量ごとの標準偏差を求める。 The tissue property determination unit 43 uses the feature quantities (a, b, c) of the Q sets of FFT data groups located inside the region of interest as the groups SA, SB, and SC constituting the tissue properties A, B, and C (see FIG. 9), a new population is formed, and then a standard deviation for each feature amount of data constituting each tissue property is obtained.
 その後、組織性状判定部43は、既知検体のみからなる元の母集団におけるグループSA,SB,SCの各特徴量の標準偏差と、新規の検体をそれぞれ加えた新たな母集団におけるグループSA,SB,SCの各特徴量の標準偏差との差(以下、単に「標準偏差の差」という)を算出し、この標準偏差の差が最も小さい特徴量を含むグループに対応する組織性状を検体の組織性状と判定する。 Thereafter, the tissue property determination unit 43 performs standard deviation of each feature amount of the groups SA, SB, SC in the original population consisting only of known samples, and groups SA, SB in the new population to which new samples are added, respectively. , SC and the standard deviation of each feature quantity (hereinafter, simply referred to as “standard deviation difference”), and the tissue characteristics corresponding to the group including the feature quantity having the smallest standard deviation difference are calculated as the tissue of the specimen. Judged as a property.
 ここで、組織性状判定部43は、複数の特徴量の中から予め選択された特徴量の標準偏差に対してのみ、標準偏差の差を算出するようにしてもよい。この場合の特徴量の選択は、操作者が任意に行うようにしてもよいし、超音波診断装置1が自動的に行うようにしてもよい。 Here, the tissue property determination unit 43 may calculate the difference of the standard deviation only with respect to the standard deviation of the feature amount selected in advance from a plurality of feature amounts. In this case, the feature amount may be selected arbitrarily by the operator, or may be automatically performed by the ultrasonic diagnostic apparatus 1.
 また、組織性状判定部43が、グループ毎に全ての特徴量の標準偏差の差に適宜重み付けして加算した値を算出し、この値が最小となるグループに対応する組織性状を検体の組織性状と判定するようにしてもよい。この場合において、例えば特徴量がa,b,cであるとき、組織性状判定部43は、三つの特徴量a,b,cにそれぞれ対応する重みをwa,wb,wcとしてwa・(aの標準偏差の差)+wb・(bの標準偏差の差)+w・(cの標準偏差の差)を算出し、この算出した値をもとに検体の組織性状を判定することとなる。なお、重みwa,wb,wcの値は、操作者が任意に設定するようにしてもよいし、超音波診断装置1が自動的に設定するようにしてもよい。 In addition, the tissue property determination unit 43 calculates a value obtained by appropriately weighting and adding the standard deviation differences of all feature amounts for each group, and the tissue property corresponding to the group having the minimum value is determined as the tissue property of the specimen. May be determined. In this case, for example, when the feature quantity is a, b, c, tissue characterization determining unit 43, three feature amounts a, b, respectively corresponding weights c w a, w b, as w c w a Calculate (difference of standard deviation of a) + w b (difference of standard deviation of b) + w c (difference of standard deviation of c), and determine the tissue properties of the specimen based on the calculated values It will be. Note that the values of the weights w a , w b , and w c may be set arbitrarily by the operator, or may be automatically set by the ultrasonic diagnostic apparatus 1.
 また、組織性状判定部43が、グループ毎に全ての特徴量の標準偏差の差の2乗に適宜重み付けして加算した値の平方根を算出し、この平方根が最小となるグループに対応する組織性状を検体の組織性状と判定するようにしてもよい。この場合において、例えば特徴量がa,b,cであるとき、組織性状判定部43は、三つの特徴量a,b,cにそれぞれ対応する重みをw'a,w'b,w'cとして{w'a・(aの標準偏差の差)2+w'b・(bの標準偏差の差)2+w'・(cの標準偏差の差)21/2を算出し、この算出した値をもとに組織性状を判定することとなる。なお、この場合にも、重みw'a,w'b,w'cの値は、操作者が任意に設定するようにしてもよいし、超音波診断装置1が自動的に設定するようにしてもよい。 Further, the tissue property determination unit 43 calculates a square root of a value obtained by appropriately weighting and adding the square of the difference between the standard deviations of all feature amounts for each group, and the tissue property corresponding to the group having the minimum square root. May be determined as the tissue property of the specimen. In this case, for example, when the feature amounts are a, b, and c, the tissue property determination unit 43 assigns weights corresponding to the three feature amounts a, b, and c to w ′ a , w ′ b , and w ′ c, respectively. {W ′ a · (difference of standard deviation of a) 2 + w ′ b · (difference of standard deviation of b) 2 + w ′ c · (difference of standard deviation of c) 2 } 1/2 The tissue property is determined based on the calculated value. In this case as well, the values of the weights w ′ a , w ′ b , and w ′ c may be arbitrarily set by the operator, or may be automatically set by the ultrasonic diagnostic apparatus 1. May be.
 以上説明した本発明の実施の形態2によれば、上述した実施の形態1と同様、組織性状を精度よく鑑別することを可能にするとともに、測定結果の信頼性を向上させることができる。 According to the second embodiment of the present invention described above, as in the first embodiment described above, it is possible to accurately distinguish the tissue properties and improve the reliability of the measurement results.
 なお、本実施の形態2では、組織性状判定部43が、もとの母集団と新規の検体を加えた母集団との間の各特徴量の標準偏差の変化に基づいて組織性状の判定を行っていたが、これは一例に過ぎない。例えば、組織性状判定部43は、もとの母集団と新規の検体を加えた母集団との間の各特徴量の平均の変化に基づいて組織性状の判定を行うようにしてもよい。 In the second embodiment, the tissue property determination unit 43 determines the tissue property based on a change in standard deviation of each feature amount between the original population and the population to which a new specimen is added. This was just an example. For example, the tissue property determination unit 43 may determine the tissue property based on an average change of each feature amount between the original population and the population to which a new specimen is added.
(実施の形態3)
 本発明の実施の形態3は、組織性状判定部における組織性状判定処理が実施の形態1と異なる。本実施の形態3に係る超音波診断装置の構成は、実施の形態1で説明した超音波診断装置1の構成と同様である。そこで、以下の説明において、超音波診断装置1の構成要素と対応する構成要素には同一の符号を付すものとする。
(Embodiment 3)
The third embodiment of the present invention is different from the first embodiment in the tissue property determination process in the tissue property determination unit. The configuration of the ultrasonic diagnostic apparatus according to the third embodiment is the same as the configuration of the ultrasonic diagnostic apparatus 1 described in the first embodiment. Therefore, in the following description, components corresponding to those of the ultrasonic diagnostic apparatus 1 are denoted by the same reference numerals.
 組織性状判定部43は、特徴量空間における検体の平均点と既知検体の組織性状の平均点との距離を用いることにより、各組織性状に属する確率を算出する。具体的には、図9に示す特徴量空間(b,c)の場合、検体平均点Spと既知検体平均点A0,B0,C0との距離α,β,γを用いることにより、各組織性状に属する確率を算出する。各既知検体に属する確率は、距離が小さい方が大きくなるように設定する。例えば、λ=100/(α-1+β-1+γ-1)として、組織性状Aに属する確率をλ/α、組織性状Bに属する確率をλ/β、組織性状Cに属する確率をλ/γと定義することができる。 The tissue property determination unit 43 calculates the probability of belonging to each tissue property by using the distance between the average point of the sample in the feature amount space and the average point of the tissue property of the known sample. Specifically, in the case of the feature amount space (b, c) shown in FIG. 9, by using the distances α, β, γ between the sample average point Sp and the known sample average points A 0 , B 0 , C 0 , The probability of belonging to each tissue property is calculated. The probability of belonging to each known specimen is set so that the smaller the distance, the larger the probability. For example, assuming that λ = 100 / (α -1 + β -1 + γ -1 ), the probability belonging to the tissue property A is λ / α, the probability belonging to the tissue property B is λ / β, and the probability belonging to the tissue property C is λ / It can be defined as γ.
 本実施の形態3では、表示部7が判定結果表示画像を表示する際、情報表示部において各組織性状に属する確率を表示する。例えば、表示部7が判定結果表示画像200を表示する場合、情報表示部201において、判定結果を「組織性状がAである確率=60%、組織性状がBである確率=5%、組織性状がCである確率35%」と表示する。 In the third embodiment, when the display unit 7 displays the determination result display image, the information display unit displays the probability of belonging to each tissue property. For example, when the display unit 7 displays the determination result display image 200, the information display unit 201 displays the determination result as “probability that the tissue property is A = 60%, probability that the tissue property is B = 5%, tissue property. Is 35% probability ”.
 以上説明した本発明の実施の形態3によれば、上述した実施の形態1と同様、組織性状を精度よく鑑別することを可能にするとともに、測定結果の信頼性を向上させることができる。 According to the third embodiment of the present invention described above, as in the first embodiment described above, it is possible to accurately distinguish tissue properties and improve the reliability of measurement results.
(実施の形態4)
 本発明の実施の形態4は、組織性状判定部における組織性状判定処理が実施の形態1と異なる。本実施の形態4に係る超音波診断装置の構成は、実施の形態1で説明した超音波診断装置1の構成と同様である。そこで、以下の説明において、超音波診断装置1の構成要素と対応する構成要素には同一の符号を付すものとする。
(Embodiment 4)
The fourth embodiment of the present invention differs from the first embodiment in the tissue property determination process in the tissue property determination unit. The configuration of the ultrasonic diagnostic apparatus according to the fourth embodiment is the same as the configuration of the ultrasonic diagnostic apparatus 1 described in the first embodiment. Therefore, in the following description, the same reference numerals are given to the components corresponding to the components of the ultrasonic diagnostic apparatus 1.
 図12は、本実施の形態4において組織性状判定部43が行う組織性状判定処理の概要を説明する図である。図12に示す特徴量空間は、横軸が特徴量b、縦軸が特徴量cである。この特徴量空間は、組織性状に応じて領域がグループ分けされている。組織性状判定部43は、検体平均点の位置に応じて組織性状を判定する。図12では、検体平均点Sp'がグループSB'(組織性状がBである領域)に属している場合を示している。この場合、組織性状判定部43は、検体の関心領域の組織性状がBであると判定する。 FIG. 12 is a diagram for explaining the outline of the tissue property determination process performed by the tissue property determination unit 43 in the fourth embodiment. In the feature quantity space shown in FIG. 12, the horizontal axis is the feature quantity b, and the vertical axis is the feature quantity c. In this feature amount space, regions are grouped according to organizational properties. The tissue property determination unit 43 determines the tissue property according to the position of the specimen average point. FIG. 12 shows a case where the specimen average point Sp ′ belongs to the group SB ′ (region where the tissue property is B). In this case, the tissue property determination unit 43 determines that the tissue property of the region of interest of the specimen is B.
 以上説明した本発明の実施の形態4によれば、上述した実施の形態1と同様、組織性状を精度よく鑑別することを可能にするとともに、測定結果の信頼性を向上させることができる。 According to the fourth embodiment of the present invention described above, as in the first embodiment described above, it is possible to accurately distinguish the tissue properties and improve the reliability of the measurement results.
 ここまで、本発明を実施するための形態を説明してきたが、本発明は上述した実施の形態1~4によってのみ限定されるべきものではない。すなわち、本発明は、特許請求の範囲に記載した技術的思想を逸脱しない範囲内において、様々な実施の形態を含みうるものである。 Up to this point, the mode for carrying out the present invention has been described. However, the present invention should not be limited only to the first to fourth embodiments described above. That is, the present invention can include various embodiments without departing from the technical idea described in the claims.
 1 超音波診断装置
 2 超音波探触子
 3 送受信部
 4 演算部
 5 画像処理部
 6 入力部
 7 表示部
 8 記憶部
 9 制御部
 21 信号変換部
 22 超音波送受信部
 41 周波数解析部
 42 特徴量抽出部
 43 組織性状判定部
 51 Bモード画像データ生成部
 52 判定結果表示画像データ生成部
 81 既知検体情報記憶部
 82 窓関数記憶部
 100 Bモード画像
 200、400 判定結果表示画像
 201、401 情報表示部
 202 画像表示部
 300 組織性状強調画像
 402 第1画像表示部
 403 第2画像表示部
DESCRIPTION OF SYMBOLS 1 Ultrasonic diagnostic apparatus 2 Ultrasonic probe 3 Transmission / reception part 4 Calculation part 5 Image processing part 6 Input part 7 Display part 8 Storage part 9 Control part 21 Signal conversion part 22 Ultrasonic transmission / reception part 41 Frequency analysis part 42 Feature-value extraction Unit 43 tissue property determination unit 51 B mode image data generation unit 52 determination result display image data generation unit 81 known specimen information storage unit 82 window function storage unit 100 B mode image 200, 400 determination result display image 201, 401 information display unit 202 Image display unit 300 Tissue characteristic emphasized image 402 First image display unit 403 Second image display unit

Claims (11)

  1.  診断対象の検体に対して超音波を送信するとともに前記検体によって反射された超音波を受信することにより、受信した超音波に基づく前記検体の組織性状を診断する超音波診断装置であって、
     受信した超音波の周波数を解析することによって周波数スペクトルを算出する周波数解析部と、
     前記周波数解析部が算出した周波数スペクトルを近似することによって前記周波数スペクトルの特徴量を抽出する特徴量抽出部と、
     複数の既知検体によってそれぞれ反射された超音波をもとに抽出された周波数スペクトルの特徴量を前記複数の既知検体の組織性状と関連付けて記憶する記憶部と、
     前記記憶部が前記複数の既知検体の組織性状と関連付けて記憶する特徴量および前記特徴量抽出部が抽出した特徴量を用いることによって前記検体の所定領域の組織性状を判定する組織性状判定部と、
     を備えたことを特徴とする超音波診断装置。
    An ultrasonic diagnostic apparatus for diagnosing the tissue property of the specimen based on the received ultrasonic wave by transmitting an ultrasonic wave to the specimen to be diagnosed and receiving an ultrasonic wave reflected by the specimen,
    A frequency analysis unit that calculates a frequency spectrum by analyzing the frequency of the received ultrasonic wave;
    A feature amount extraction unit that extracts a feature amount of the frequency spectrum by approximating the frequency spectrum calculated by the frequency analysis unit;
    A storage unit that stores a characteristic amount of a frequency spectrum extracted based on ultrasonic waves respectively reflected by a plurality of known specimens in association with tissue characteristics of the plurality of known specimens;
    A tissue property determination unit that determines a tissue property of a predetermined region of the specimen by using the feature amount stored in association with the tissue properties of the plurality of known specimens and the feature amount extracted by the feature quantity extraction unit; ,
    An ultrasonic diagnostic apparatus comprising:
  2.  前記特徴量抽出部は、
     回帰分析によって前記周波数スペクトルを多項式で近似することを特徴とする請求項1に記載の超音波診断装置。
    The feature amount extraction unit includes:
    The ultrasonic diagnostic apparatus according to claim 1, wherein the frequency spectrum is approximated by a polynomial by regression analysis.
  3.  前記特徴量抽出部は、
     前記周波数スペクトルを一次式で近似し、
     前記一次式の傾きと、前記一次式の切片と、前記周波数スペクトルの周波数帯域に含まれる周波数、前記傾きおよび前記切片によって定まる強度と、を含む複数の特徴量を抽出することを特徴とする請求項2に記載の超音波診断装置。
    The feature amount extraction unit includes:
    Approximating the frequency spectrum with a linear equation,
    A plurality of feature amounts including the slope of the linear expression, the intercept of the linear expression, the frequency included in the frequency band of the frequency spectrum, and the intensity determined by the slope and the intercept are extracted. Item 3. The ultrasonic diagnostic apparatus according to Item 2.
  4.  前記記憶部は、
     前記複数の既知検体に対して組織性状ごとに分類されたグループにおける各特徴量の平均を記憶し、
     前記組織性状判定部は、
     前記複数の特徴量の少なくともいずれか一つを成分とする特徴量空間を設定し、前記検体の所定領域における周波数スペクトルの特徴量のうち前記特徴量空間の成分をなす特徴量の平均を前記特徴量空間の座標として有する検体平均点と、前記複数の既知検体の前記グループにおける各特徴量のうち前記特徴量空間の成分をなす特徴量の平均を前記特徴量空間の座標として有する既知検体平均点との前記特徴量空間上の距離に基づいて、前記検体の組織性状を判定することを特徴とする請求項3に記載の超音波診断装置。
    The storage unit
    Storing an average of each feature amount in a group classified for each tissue property with respect to the plurality of known specimens;
    The tissue property determination unit
    A feature amount space including at least one of the plurality of feature amounts as a component is set, and an average of the feature amounts constituting the component of the feature amount space among the feature amounts of the frequency spectrum in the predetermined region of the specimen is the feature. A specimen average point having coordinates of the quantity space, and a known specimen average point having, as coordinates of the feature quantity space, an average of feature quantities constituting components of the feature quantity space among the feature quantities in the group of the plurality of known specimens The ultrasonic diagnostic apparatus according to claim 3, wherein a tissue property of the specimen is determined based on a distance in the feature amount space.
  5.  前記組織性状判定部は、
     前記検体平均点と前記既知検体平均点との前記特徴量空間上の距離が最小となるグループに対応する組織性状を前記検体の組織性状とすることを特徴とする請求項4に記載の超音波診断装置。
    The tissue property determination unit
    5. The ultrasonic wave according to claim 4, wherein a tissue property corresponding to a group that minimizes a distance in the feature amount space between the sample average point and the known sample average point is a tissue property of the sample. Diagnostic device.
  6.  前記組織性状判定部は、
     前記検体平均点と前記既知検体平均点との前記特徴量空間上の距離が小さいほど大きな値を有し、全ての距離に対応した値の和が1である確率を、全ての距離に対してそれぞれ算出することにより、前記検体の組織性状を確率的に判定することを特徴とする請求項4に記載の超音波診断装置。
    The tissue property determination unit
    The smaller the distance between the specimen average point and the known specimen average point in the feature amount space, the larger the value, and the probability that the sum of the values corresponding to all the distances is 1 is set for all the distances. The ultrasonic diagnostic apparatus according to claim 4, wherein the tissue characteristics of the specimen are determined probabilistically by calculating each.
  7.  前記組織性状判定部は、
     前記複数の既知検体における組織性状ごとに分類されたグループに前記検体の特徴量を加えた母集団における特徴量の標準偏差を算出し、この標準偏差と前記グループにおける特徴量の標準偏差との差が最小である特徴量を有するグループに対応した組織性状を前記検体の組織性状とすることを特徴とする請求項1~3のいずれか一項に記載の超音波診断装置。
    The tissue property determination unit
    A standard deviation of the feature quantity in the population obtained by adding the feature quantity of the specimen to the group classified for each tissue property in the plurality of known specimens, and a difference between the standard deviation and the standard deviation of the feature quantity in the group The ultrasonic diagnostic apparatus according to any one of claims 1 to 3, wherein a tissue property corresponding to a group having a feature quantity having a minimum is the tissue property of the specimen.
  8.  前記検体の特徴量に対応する視覚情報を生成し、この生成した視覚情報、受信した超音波をもとに生成される画像、および前記組織性状判定部が判定した結果を用いることによって前記検体の所定領域の組織性状の判定結果を表示する判定結果表示画像データを生成する判定結果表示画像データ生成部をさらに備えたことを特徴とする請求項1~7のいずれか一項に記載の超音波診断装置。 Visual information corresponding to the feature amount of the specimen is generated, and the generated visual information, an image generated based on the received ultrasonic wave, and a result determined by the tissue property determination unit are used. The ultrasonic wave according to any one of claims 1 to 7, further comprising a determination result display image data generation unit that generates determination result display image data for displaying a determination result of tissue characteristics in a predetermined region. Diagnostic device.
  9.  前記視覚情報は、色空間を構成する変数であることを特徴とする請求項8に記載の超音波診断装置。 The ultrasonic diagnostic apparatus according to claim 8, wherein the visual information is a variable constituting a color space.
  10.  診断対象の検体に対して超音波を送信するとともに前記検体によって反射された超音波を受信することにより、受信した超音波に基づく前記検体の組織性状を診断する超音波診断装置の作動方法であって、
     受信した超音波の周波数を解析することによって周波数スペクトルを周波数解析部により算出する周波数解析ステップと、
     前記周波数解析ステップで算出した周波数スペクトルを近似することによって前記周波数スペクトルの特徴量を特徴量抽出部により抽出する特徴量抽出ステップと、
     複数の既知検体によってそれぞれ反射された超音波をもとに抽出された周波数スペクトルの特徴量を前記複数の既知検体の組織性状と関連付けて記憶する記憶部から読み出した特徴量および前記特徴量抽出ステップで抽出した特徴量を用いることによって前記検体の所定領域の組織性状を組織性状判定部により判定する組織性状判定ステップと、
     を有することを特徴とする超音波診断装置の作動方法。
    An operation method of an ultrasonic diagnostic apparatus for diagnosing the tissue property of the specimen based on the received ultrasonic wave by transmitting ultrasonic waves to the specimen to be diagnosed and receiving ultrasonic waves reflected by the specimen. And
    A frequency analysis step of calculating a frequency spectrum by a frequency analysis unit by analyzing the frequency of the received ultrasonic wave,
    A feature amount extraction step of extracting a feature amount of the frequency spectrum by approximating the frequency spectrum calculated in the frequency analysis step by a feature amount extraction unit;
    Feature quantity read out from a storage unit for storing feature quantities of frequency spectra extracted based on ultrasonic waves respectively reflected by a plurality of known specimens in association with tissue properties of the plurality of known specimens and the feature quantity extracting step A tissue property determination step of determining the tissue property of the predetermined region of the specimen by the tissue property determination unit by using the feature amount extracted in
    A method for operating an ultrasonic diagnostic apparatus, comprising:
  11.  診断対象の検体に対して超音波を送信するとともに前記検体によって反射された超音波を受信することにより、受信した超音波に基づく前記検体の組織性状を診断する超音波診断装置に、
     受信した超音波の周波数を解析することによって周波数スペクトルを周波数解析部により算出する周波数解析ステップ、
     前記周波数解析ステップで算出した周波数スペクトルを近似することによって前記周波数スペクトルの特徴量を特徴量抽出部により抽出する特徴量抽出ステップ、
     複数の既知検体によってそれぞれ反射された超音波をもとに抽出された周波数スペクトルの特徴量を前記複数の既知検体の組織性状と関連付けて記憶する記憶部から読み出した特徴量および前記特徴量抽出ステップで抽出した特徴量を用いることによって前記検体の所定領域の組織性状を組織性状判定部により判定する組織性状判定ステップ、
     を実行させることを特徴とする超音波診断装置の作動プログラム。 
    In the ultrasonic diagnostic apparatus for diagnosing the tissue property of the specimen based on the received ultrasonic wave by transmitting the ultrasonic wave to the specimen to be diagnosed and receiving the ultrasonic wave reflected by the specimen,
    A frequency analysis step of calculating a frequency spectrum by a frequency analysis unit by analyzing the frequency of the received ultrasonic wave,
    A feature amount extraction step of extracting a feature amount of the frequency spectrum by a feature amount extraction unit by approximating the frequency spectrum calculated in the frequency analysis step;
    Feature quantity read out from a storage unit for storing feature quantities of frequency spectra extracted based on ultrasonic waves respectively reflected by a plurality of known specimens in association with tissue properties of the plurality of known specimens and the feature quantity extracting step A tissue property determination step of determining a tissue property of the predetermined region of the specimen by the tissue property determination unit by using the feature amount extracted in
    An operation program for an ultrasonic diagnostic apparatus, characterized in that
PCT/JP2011/065910 2010-07-20 2011-07-12 Ultrasonic diagnostic device, method for operating ultrasonic diagnostic device, and operation program for ultrasonic diagnostic device WO2012011414A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012524951A JPWO2012011414A1 (en) 2010-07-20 2011-07-12 Ultrasonic diagnostic equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-163290 2010-07-20
JP2010163290 2010-07-20

Publications (1)

Publication Number Publication Date
WO2012011414A1 true WO2012011414A1 (en) 2012-01-26

Family

ID=45496841

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/065910 WO2012011414A1 (en) 2010-07-20 2011-07-12 Ultrasonic diagnostic device, method for operating ultrasonic diagnostic device, and operation program for ultrasonic diagnostic device

Country Status (2)

Country Link
JP (1) JPWO2012011414A1 (en)
WO (1) WO2012011414A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013162810A (en) * 2012-02-09 2013-08-22 Ge Medical Systems Global Technology Co Llc Ultrasonic diagnostic apparatus and control program therefor
WO2015190180A1 (en) * 2014-06-11 2015-12-17 オリンパス株式会社 Medical diagnostic device, medical diagnostic device operation method, and medical diagnostic device operation program
WO2015198712A1 (en) * 2014-06-24 2015-12-30 オリンパス株式会社 Ultrasonic observation apparatus, method for operating ultrasonic observation apparatus, and program for operating ultrasonic observation apparatus
WO2017069068A1 (en) * 2015-10-23 2017-04-27 オリンパス株式会社 Ultrasonic observation apparatus, operation method for ultrasonic observation apparatus, and operation program for ultrasonic observation apparatus
US9662093B2 (en) 2014-12-22 2017-05-30 Olympus Corporation Ultrasound observation apparatus, method for operating ultrasound observation apparatus, and computer-readable recording medium
WO2017098931A1 (en) 2015-12-08 2017-06-15 オリンパス株式会社 Ultrasonic diagnostic apparatus, operation method for ultrasonic diagnostic apparatus, and operation program for ultrasonic diagnostic apparatus
JP2022510333A (en) * 2018-12-07 2022-01-26 ヴェラン メディカル テクノロジーズ,インコーポレイテッド Intrabronchial catheter system and method for rapid diagnosis of lung disease

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005536289A (en) * 2002-08-26 2005-12-02 ザ クリーブランド クリニック ファウンデーション System and method for characterizing vascular tissue
JP2007524431A (en) * 2003-02-03 2007-08-30 ザ クリーヴランド クリニック ファウンデーション Non-invasive tissue characterization system and method
JP2009530068A (en) * 2006-03-22 2009-08-27 ヴォルケイノウ・コーポレーション Automatic lesion analysis based on automatic plaque characterization according to classification criteria
JP2010051553A (en) * 2008-08-28 2010-03-11 Konica Minolta Medical & Graphic Inc Ultrasonic diagnostic system and method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6200268B1 (en) * 1999-09-10 2001-03-13 The Cleveland Clinic Foundation Vascular plaque characterization
JP4575737B2 (en) * 2004-09-29 2010-11-04 富士フイルム株式会社 Ultrasonic imaging device
WO2007047566A2 (en) * 2005-10-14 2007-04-26 The Cleveland Clinic Foundation System and method for characterizing vascular tissue
WO2007072720A1 (en) * 2005-12-19 2007-06-28 Tohoku University Diagnostic imaging apparatus for medical use and method of identifying biological tissue
JP2008200074A (en) * 2007-02-16 2008-09-04 Hitachi Medical Corp Ultrasonic diagnostic apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005536289A (en) * 2002-08-26 2005-12-02 ザ クリーブランド クリニック ファウンデーション System and method for characterizing vascular tissue
JP2007524431A (en) * 2003-02-03 2007-08-30 ザ クリーヴランド クリニック ファウンデーション Non-invasive tissue characterization system and method
JP2009530068A (en) * 2006-03-22 2009-08-27 ヴォルケイノウ・コーポレーション Automatic lesion analysis based on automatic plaque characterization according to classification criteria
JP2010051553A (en) * 2008-08-28 2010-03-11 Konica Minolta Medical & Graphic Inc Ultrasonic diagnostic system and method

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013162810A (en) * 2012-02-09 2013-08-22 Ge Medical Systems Global Technology Co Llc Ultrasonic diagnostic apparatus and control program therefor
WO2015190180A1 (en) * 2014-06-11 2015-12-17 オリンパス株式会社 Medical diagnostic device, medical diagnostic device operation method, and medical diagnostic device operation program
JP5897227B1 (en) * 2014-06-11 2016-03-30 オリンパス株式会社 Medical diagnostic device, medical diagnostic device operating method, and medical diagnostic device operating program
CN105828726A (en) * 2014-06-11 2016-08-03 奥林巴斯株式会社 Medical diagnostic device, medical diagnostic device operation method, and medical diagnostic device operation program
US9655593B2 (en) 2014-06-11 2017-05-23 Olympus Corporation Medical diagnostic apparatus, method for operating medical diagnostic apparatus, and computer-readable recording medium
WO2015198712A1 (en) * 2014-06-24 2015-12-30 オリンパス株式会社 Ultrasonic observation apparatus, method for operating ultrasonic observation apparatus, and program for operating ultrasonic observation apparatus
US9517054B2 (en) 2014-06-24 2016-12-13 Olympus Corporation Ultrasound observation apparatus, method for operating ultrasound observation apparatus, and computer-readable recording medium
US9662093B2 (en) 2014-12-22 2017-05-30 Olympus Corporation Ultrasound observation apparatus, method for operating ultrasound observation apparatus, and computer-readable recording medium
WO2017069068A1 (en) * 2015-10-23 2017-04-27 オリンパス株式会社 Ultrasonic observation apparatus, operation method for ultrasonic observation apparatus, and operation program for ultrasonic observation apparatus
JP6157790B1 (en) * 2015-10-23 2017-07-05 オリンパス株式会社 Ultrasonic observation apparatus, operation method of ultrasonic observation apparatus, and operation program of ultrasonic observation apparatus
US10617389B2 (en) 2015-10-23 2020-04-14 Olympus Corporation Ultrasound observation apparatus, method of operating ultrasound observation apparatus, and computer-readable recording medium
WO2017098931A1 (en) 2015-12-08 2017-06-15 オリンパス株式会社 Ultrasonic diagnostic apparatus, operation method for ultrasonic diagnostic apparatus, and operation program for ultrasonic diagnostic apparatus
JP2022510333A (en) * 2018-12-07 2022-01-26 ヴェラン メディカル テクノロジーズ,インコーポレイテッド Intrabronchial catheter system and method for rapid diagnosis of lung disease
JP7408658B2 (en) 2018-12-07 2024-01-05 ヴェラン メディカル テクノロジーズ,インコーポレイテッド Endobronchial catheter system and method for rapid diagnosis of lung diseases

Also Published As

Publication number Publication date
JPWO2012011414A1 (en) 2013-09-09

Similar Documents

Publication Publication Date Title
JP5054254B2 (en) Ultrasonic diagnostic apparatus, method for operating ultrasonic diagnostic apparatus, and operation program for ultrasonic diagnostic apparatus
JP5433097B2 (en) Ultrasonic observation apparatus, operation method of ultrasonic observation apparatus, and operation program of ultrasonic observation apparatus
JP5307939B2 (en) Ultrasonic observation apparatus, operation method of ultrasonic observation apparatus, and operation program of ultrasonic observation apparatus
JP5568199B1 (en) Ultrasonic observation apparatus, operation method of ultrasonic observation apparatus, and operation program of ultrasonic observation apparatus
JP5079177B2 (en) Ultrasonic observation apparatus, operation method of ultrasonic observation apparatus, and operation program of ultrasonic observation apparatus
JP5054253B2 (en) Ultrasonic observation apparatus, operation method of ultrasonic observation apparatus, and operation program of ultrasonic observation apparatus
WO2012063930A1 (en) Ultrasound diagnostic device, operating method for ultrasound diagnostic device and operating program for ultrasound diagnostic device
JP5430809B1 (en) Ultrasonic observation apparatus, operation method of ultrasonic observation apparatus, and operation program of ultrasonic observation apparatus
JP5066306B2 (en) Ultrasonic observation apparatus, operation method of ultrasonic observation apparatus, and operation program of ultrasonic observation apparatus
WO2012011414A1 (en) Ultrasonic diagnostic device, method for operating ultrasonic diagnostic device, and operation program for ultrasonic diagnostic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11809588

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012524951

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11809588

Country of ref document: EP

Kind code of ref document: A1