WO2012011309A1 - Demultiplexer - Google Patents

Demultiplexer Download PDF

Info

Publication number
WO2012011309A1
WO2012011309A1 PCT/JP2011/060815 JP2011060815W WO2012011309A1 WO 2012011309 A1 WO2012011309 A1 WO 2012011309A1 JP 2011060815 W JP2011060815 W JP 2011060815W WO 2012011309 A1 WO2012011309 A1 WO 2012011309A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter
impedance
input impedance
passband
duplexer
Prior art date
Application number
PCT/JP2011/060815
Other languages
French (fr)
Japanese (ja)
Inventor
心平 大島
Original Assignee
太陽誘電株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太陽誘電株式会社 filed Critical 太陽誘電株式会社
Publication of WO2012011309A1 publication Critical patent/WO2012011309A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • H04B1/0053Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band
    • H04B1/0057Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band using diplexing or multiplexing filters for selecting the desired band
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/70Multiple-port networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • H03H9/72Networks using surface acoustic waves
    • H03H9/725Duplexers

Definitions

  • the present invention relates to a duplexer, and more particularly to a duplexer composed of passive elements.
  • a multiband mobile phone capable of making a call and transmitting / receiving data using a plurality of communication methods is used by many users.
  • a multi-band mobile phone includes a duplexer that separates a multi-band signal on which signals of a plurality of frequency bands are superimposed for each frequency band. As the number of communication systems used increases, a duplexer that can separate more frequency components is desired.
  • a duplexer that separates a received signal into three or more frequency bands.
  • a duplexer described in Japanese Patent Application Laid-Open No. 2007-266897 includes three or more SAW filters having different pass bands, and a plurality of SAW filters are provided between each SAW filter and an input terminal. Are distributed in multiple stages.
  • the high frequency circuit constituting the duplexer has a small insertion loss in the pass band and a high attenuation in the stop band.
  • Various embodiments of the present invention provide a duplexer that can separate multiband signals into three or more frequency bands by passive elements and is easy to design.
  • a duplexer is disposed between an input terminal for receiving a received signal from an antenna, and the input terminal and the first output terminal, and passes a signal in a first passband.
  • a first demultiplexing circuit including: a first filter that causes the first filter to pass; and a second filter that is disposed between the input terminal and the second output terminal and that passes a signal in a second passband.
  • a third filter disposed between the terminal and the third output terminal and passing a signal in a third passband outside the frequency band including the first and second passbands.
  • a second branching circuit is disposed between an input terminal for receiving a received signal from an antenna, and the input terminal and the first output terminal, and passes a signal in a first passband.
  • the first demultiplexing circuit includes: a first distributed constant line that sets an input impedance of the first demultiplexing circuit to a high impedance at least in a frequency band corresponding to the third passband; The input impedance of the first filter is set to a high impedance in a frequency band corresponding to the second pass band, and the input impedance of the second filter is set to the first pass band. And a first matching circuit having a high impedance in a corresponding frequency band.
  • the second demultiplexing circuit has a second distributed constant that makes the input impedance of the second demultiplexing circuit high impedance in a frequency band including at least the first and second passbands. Has a track.
  • a duplexer that can separate a multiband signal into three or more frequency bands by a passive element and is easy to design is provided.
  • FIG. 1 is a circuit diagram showing a duplexer according to an embodiment of the present invention. Circuit diagram showing a duplexer according to another embodiment of the present invention. Circuit diagram showing a duplexer according to another embodiment of the present invention. 1 is an equivalent circuit diagram of a duplexer according to an embodiment of the present invention.
  • FIG. 1 is a circuit diagram showing a duplexer 100 according to an embodiment of the present invention.
  • the duplexer 100 according to an embodiment of the present invention separates a multiband signal input from an antenna (not shown) through an input terminal 102 into signals of individual frequency bands, and the separated signals are output to the output terminals 116 and 118. , 120 to the subsequent circuit.
  • the duplexer 100 is used in, for example, a mobile phone.
  • a high frequency side branching circuit 140 for transmitting a high frequency side signal among the input signals is provided, and between the input terminal 102 and the output terminal 120, an input is provided.
  • a low frequency side branching circuit 160 for transmitting a low frequency side signal among the signals is provided.
  • the high frequency side branching circuit 140 includes, for example, a SAW filter 110 having a pass band of 2110-2170 MHz and a SAW filter 112 having a pass band of 1930-1990 MHz. Further, the low frequency side branching circuit 160 includes a SAW filter 114 having a pass band of 869 to 894 MHz.
  • the pass bands of the SAW filters 110, 112, and 114 may be referred to as “first pass band”, “second pass band”, and “third pass band”, respectively.
  • the frequency band of 2110-2170 MHz corresponding to this first pass band is a band allocated for reception of band I of UMTS (Universal Mobile Telecommunications System), and a frequency of 1930-1990 MHz corresponding to the second pass band
  • the band is a band allocated for reception of UMTS band II.
  • 869 to 894 MHz corresponding to the third pass band is a band allocated for reception of the band V of UMTS.
  • a signal in a frequency band corresponding to the first to third passbands is superimposed on the multiband signal received from the antenna.
  • a signal in a frequency band other than the frequency band corresponding to the first to third passbands may be superimposed on the multiband signal.
  • the high-frequency side branching circuit 140 includes a matching circuit 108 including one or a plurality of lumped constant type reactance elements in front of the SAW filters 110 and 112, and the distributed constant line 104 between the matching circuit 108 and the input terminal 102. Is provided.
  • the low frequency side branching circuit 160 includes a distributed constant line 106 between the input terminal 102 and the SAW filter 114.
  • the distributed constant line 104 has a line length L1
  • the distributed constant line 106 has a line length L2.
  • the distributed constant lines 104 and 106 delay the phase of the passing signal by the amount of phase shift corresponding to each line length.
  • the line length L1 of the distributed constant line 104 is determined so that the input impedance of the high frequency side branching circuit 140 viewed from the input terminal 102 side becomes a high impedance close to infinity in a frequency band corresponding to the third pass band. . Thereby, it is possible to prevent the signal in the third passband from leaking to the high frequency side branching circuit 140.
  • the line length L2 of the distributed constant line 106 has a high impedance close to infinity in the frequency band including the first and second passbands when the input impedance of the low frequency side branching circuit 160 viewed from the input terminal 102 side. It is decided to become.
  • the line length L2 is such that the input impedance of the low frequency side branching circuit 160 viewed from the input terminal 102 side is 2170 MHz which is the high frequency end of the first pass band and the low frequency end of the second pass band. In the frequency band between (that is, the frequency band from 1930 MHz to 2170 MHz), the impedance is determined to be close to infinity.
  • the input impedance of the low frequency side branching circuit 160 is set to the respective frequency bands of band I and band II by the distributed constant line 106.
  • the phase of the received signal can be rotated so as to have a high impedance close to infinity. Thereby, it is possible to prevent the signals in the first and second passbands from leaking to the low frequency side branching circuit 160.
  • a SAW filter having a pass band different from the first and second pass bands is provided as SAW filters 110 and 112 at the subsequent stage of the distributed constant line 104.
  • the plurality of SAW filters connected to the subsequent stage of the distributed constant line 104 have their passbands in close proximity to each other.
  • a SAW filter whose pass band is a frequency band of 1805 to 1880 MHz assigned to UMTS band III can be connected to the subsequent stage of the distributed constant line 104. Since the center frequency of band III of UMTS is 1847.5 MHz, the center frequencies of band I, band II, and band III are distributed within 300 MHz.
  • the line length L2 of the distributed constant line 106 can be set to an appropriate length by connecting a SAW filter having a pass band in any of the frequency bands of bands I, II, and III to the subsequent stage of the distributed constant line 104.
  • the phase of the received signal can be rotated so that the impedance of the low frequency side branching circuit 160 viewed from the input terminal 102 side becomes a high impedance that is close to infinity in each frequency band of the bands I, II, and III. it can.
  • a signal passing through the low frequency side branch circuit 160 by the distributed constant line 104 is prevented from leaking to the high frequency side branch circuit 140, and also passes through the high frequency side branch circuit 140 by the distributed constant line 106. Since the signal can be prevented from leaking to the low frequency side branching circuit 160, occurrence of insertion loss in the pass band can be reduced.
  • the matching circuit 108 includes a capacitor, an inductor, or a combination thereof, which is a lumped element type reactance element.
  • the matching circuit 108 connects the input impedance of the SAW filter 110 to the characteristic impedance of the external circuit of the duplexer 100 (that is, the input terminal 102 or each of the output terminals 116, 118, 120) in the first passband. In the second pass band, and the input impedance of the SAW filter 112 is matched with the characteristic impedance of the external circuit.
  • the arrangement and element values of the reactance elements constituting the matching circuit 108 are set such that, for example, the impedance of the SAW filter 110 viewed from the distributed constant line 104 side is the characteristic impedance (typically 50 ⁇ ) of the transmission line in the first passband. While matching, the impedance is high in the frequency band corresponding to the second pass band, and the impedance of the SAW filter 112 viewed from the distributed constant line 104 side is high impedance in the frequency band corresponding to the first pass band. It is determined to match the characteristic impedance of the transmission line in the second passband.
  • the characteristic impedance typically 50 ⁇
  • a method for matching the impedances of two parallel-connected SAW filters is well known to those skilled in the art, and those skilled in the art can use the Smith chart, the simulation device, the capacitors constituting the matching circuit 108 based on their own experience, etc.
  • the element value and placement of the inductor can be determined.
  • the input impedance of the SAW filter 110 has an inductive or capacitive first reactance component in the first passband
  • the input impedance of the SAW filter 112 in the first passband is The arrangement and element values of the reactance elements constituting the matching circuit 108 are determined so as to be capacitive when the first reactance component is inductive and inductive when the first reactance component is capacitive. be able to.
  • the matching circuit 108 has an inductive or capacitive second reactance component in which the input impedance of the SAW filter 112 is in the second pass band, and the input impedance in the second pass band of the SAW filter 110 is It can be configured to be capacitive when the second reactance component is inductive and to be inductive when the second reactance component is capacitive.
  • the input impedance in the first pass band of the SAW filter 110 is directed from the capacitive region toward the inductive region (or inductive). Rotated from the sex region to the capacitive region).
  • the first reactance component approaches “0”, and impedance matching of the SAW filter 110 is realized with high accuracy.
  • the input impedance in the second passband of SAW filter 112 is rotated from the capacitive region to the inductive region (or from the inductive region to the capacitive region).
  • the second reactance component approaches “0”, and impedance matching of the SAW filter 112 is realized with high accuracy.
  • Denys Orlenko, Novel High-rejection LTCC Diplexers for Dual-band WLAN Applications IEEE MTT-S Int. Microwave Symp. Dig., June 2005, pp. 727-730.
  • the distributed constant line 104 changes only the phase angle without changing the magnitude of the reflection coefficient of the received signal, and thus rotates the phase of the received signal without changing the matching state realized by the matching circuit 108. be able to.
  • the design of the matching circuit 108 is facilitated because the design can be performed independently while ignoring the influence of the circuit elements other than the matching circuit 108.
  • the matching circuit 108 is composed of lumped constant elements, when the duplexer 100 is designed with a substrate having a relative dielectric constant of about an order of magnitude, it is demultiplexed as compared with the case where impedance matching is performed using only distributed constant lines.
  • the shape of the device 100 can be reduced in size, and the insertion loss can be reduced.
  • FIG. 2 is a circuit diagram showing a duplexer 200 according to another embodiment of the present invention.
  • a low frequency side branch circuit 260 that transmits a signal on the low frequency side of the input signal is provided between the input terminal 102 and the output terminals 120 and 206.
  • the low frequency side branching circuit 260 includes a SAW filter 114 and a SAW filter 204 connected to the subsequent stage of the distributed constant line 106, and a capacitor, an inductor, or the like is concentrated between the SAW filters 114 and 204 and the distributed constant line 106.
  • a matching circuit 202 made of a constant type reactance element. The signal that has passed through the SAW filter 204 is output from the output terminal 206 to a subsequent receiver.
  • the SAW filter 204 has a pass band at, for example, 925 to 960 MHz (hereinafter may be referred to as “fourth pass band”). 925 to 960 MHz corresponds to a frequency band allocated for reception of UMTS band VIII. This fourth pass band is located on the lower frequency side outside the frequency band including the first pass band 2110-2170 MHz and the second pass band 1930-1990 MHz (that is, the 1930-2170 MHz frequency band). Therefore, the SAW filter 204 is disposed in the low frequency side branching circuit 260 that transmits the low frequency side signal.
  • the third and second received signals are transmitted using the distributed constant line 104. Both frequency components corresponding to the pass band of 4 can be rotated to the high impedance side.
  • the line length L1 of the distributed constant line 104 is such that the input impedance of the high frequency side branching circuit 140 viewed from the input terminal 102 side is a high impedance close to infinity in the frequency band including the third and fourth pass bands. It is determined as follows.
  • the line length L1 is such that the input impedance of the high frequency side branching circuit 140 viewed from the input terminal 102 side is 869 MHz which is the low frequency end of the third pass band and 960 MHz which is the high frequency end of the fourth pass band. In the frequency band between them (that is, the frequency band from 869 MHz to 960 MHz), the impedance is determined to be close to infinity.
  • Matching circuit 202 is composed of lumped constant elements, and matches the input impedance of SAW filter 114 with the characteristic impedance of the external circuit of duplexer 200 in the third pass band, and the input impedance of SAW filter 204 as the fourth pass. It is configured to match the characteristic impedance of the external circuit in the band.
  • the arrangement and the element values of the reactance elements constituting the matching circuit 202 match the impedance of the SAW filter 114 viewed from the distributed constant line 106 side with the characteristic impedance of the transmission line in a frequency band corresponding to the third pass band.
  • the impedance of the SAW filter 204 viewed from the distributed constant line 106 side is set to high impedance in the frequency band corresponding to the third pass band and the fourth impedance is set to high impedance in the frequency band corresponding to the fourth pass band. It matches with the characteristic impedance of the transmission line in a frequency band corresponding to the passband of the transmission line.
  • the arrangement and element values of the reactance elements constituting the matching circuit 202 are such that the input impedance of the SAW filter 114 has an inductive or capacitive third reactance component in the third passband, and The input impedance of the SAW filter 204 in the third passband is capacitive when the third reactance component is inductive and inductive when the third reactance component is capacitive. Determined. Further, the input impedance of the SAW filter 204 has an inductive or capacitive fourth reactance component in the fourth pass band, and the input impedance in the fourth pass band of the SAW filter 114 has a fourth reactance component.
  • the matching circuit 202 can be configured to be capacitive when inductive and to be inductive when the fourth reactance component is capacitive.
  • the input impedance in the third pass band of the SAW filter 114 is directed from the capacitive region toward the inductive region (or inductive). Rotated from the sex region to the capacitive region). As a result, the third reactance component approaches “0”, and impedance matching of the SAW filter 114 is realized with high accuracy.
  • the input impedance in the fourth passband of SAW filter 204 is rotated from the capacitive region to the inductive region (or from the inductive region to the capacitive region). As a result, the fourth reactance component approaches “0”, and impedance matching of the SAW filter 204 is realized with high accuracy.
  • FIG. 11 is an example of a Smith chart for explaining phase rotation by the distributed constant line 104 of the duplexer 200, and shows the input impedance of the high frequency side branch circuit 140.
  • FIG. 12 is an example of a Smith chart for explaining phase rotation by the distributed constant line 106 of the duplexer 200, and shows the input impedance of the low frequency side branch circuit 260.
  • markers M1, M2, M3, and M4 represent the center frequencies of the first, second, third, and fourth passbands, respectively. As shown in FIG.
  • the frequency band including M3 and M4 is rotated to the high impedance side close to infinity.
  • the bands M1 and M2 are matched in the vicinity of the characteristic impedance of the transmission line by the matching circuit 108, and the matching state in M1 and M2 is not substantially affected by the phase rotation.
  • the distributed constant line 104 rotates the phase of the received signal so that the input impedance of the high frequency side branching circuit 140 of the duplexer 200 is a high impedance close to infinity in the third and fourth passbands. Can be.
  • the phase of the input signal is rotated by the phase rotation of the distributed constant line 106, and the frequency band including M1 and M2 rotates to the high impedance side close to infinity as shown in FIG.
  • the distributed constant line 106 can set the input impedance of the low frequency side branching circuit 260 of the duplexer 200 to a high impedance close to infinity in the first and second passbands.
  • reactance elements included in the high frequency side branch circuit 140 can be ignored and the matching circuit 202 can be designed.
  • This impedance matching is realized by appropriately determining the element values and arrangement of capacitors and inductors that are components of the matching circuit 202. The method of determining the element values and arrangement of capacitors and inductors is well known to those skilled in the art, as is the case with the matching circuit 108. Those skilled in the art can design the matching circuit 202 without undue trial and error. It can be performed.
  • the duplexer 200 As the number of frequency components to be demultiplexed increases (that is, as the number of SAW filters increases), the design of matching circuits that match the impedances of these SAW filters becomes more complicated.
  • the signals in the first and second passbands are not leaked to the low frequency side branch circuit 160 and the third is added to the high frequency side branch circuit 140. Since the signal in the fourth passband does not leak, the matching circuit 108 can be designed independently from the low frequency side branching circuit 160, and the matching circuit 202 can be designed independently from the low frequency side branching circuit 160. This facilitates the design of the matching circuits 108 and 202.
  • the duplexer 200 according to the embodiment of the present invention can be easily designed for impedance matching as compared with the case where the impedances of the four SAW filters are matched only by the lumped constant element. it can.
  • FIG. 3 shows a duplexer 300 in another embodiment of the invention.
  • a high frequency side branch circuit 340 that transmits a high frequency side signal among the input signals is provided between the input terminal 102 and the output terminals 116, 118, and 306.
  • the high frequency side branching circuit 340 includes a SAW filter 304 in parallel with the SAW filters 110 and 112 in the subsequent stage of the distributed constant line 104.
  • the SAW filter 304 has a pass band at 1805 to 1880 MHz, for example (hereinafter, may be referred to as “fifth pass band”).
  • 1805 to 1880 MHz is a frequency band assigned to UMTS band III as described above.
  • the signal that has passed through the SAW filter 304 is output from the output terminal 306 to a subsequent receiver.
  • the high frequency side branching circuit 340 includes a matching circuit 302 formed of one or a plurality of lumped constant type reactance elements between the SAW filters 110, 112, and 304 and the distributed constant line 104.
  • the arrangement and element values of the reactance elements constituting the matching circuit 302 are such that the input impedance of each SAW filter viewed from the distributed constant line 104 side matches the characteristic impedance of the transmission line in the passband of the own filter, and other SAW filters. It is determined to have a high impedance close to infinity in a frequency band corresponding to the pass band.
  • the impedance of the SAW filter 110 viewed from the distributed constant line 104 side becomes a high impedance close to infinity in the frequency band corresponding to the second and fifth passbands, and the SAW viewed from the distributed constant line 104 side.
  • the impedance of the filter 112 becomes a high impedance close to infinity in frequency bands corresponding to the first and fifth pass bands.
  • the impedance of the SAW filter 304 viewed from the distributed constant line 104 side becomes a high impedance close to infinity in a frequency band corresponding to the first and second pass bands.
  • the line length L2 of the distributed constant line 106 is a high impedance that is close to infinity in the frequency band including the first, second, and fifth passbands when the input impedance of the low frequency side branching circuit 260 viewed from the input terminal 102 side. It is decided to become. Since the center frequencies of the first, second, and fifth passbands are distributed in a range within 300 MHz, the distributed constant line 106 makes these frequency components have a high impedance close to infinity.
  • the phase of the received signal can be rotated so that
  • the line length L2 of the distributed constant line 106 is such that the impedance of the distributed constant line 106 viewed from the input terminal 102 side is 2170 MHz, which is the high frequency end of the first pass band, and the low frequency end of the fifth pass band.
  • the impedance is determined to be close to infinity.
  • the duplexer 300 can separate the received multiband signal into five frequency bands by combining the distributed constant lines 104 and 106, which are passive elements, and the matching circuits 202 and 302.
  • a received signal it is more difficult to separate a received signal into five or more frequency bands using passive elements than the above-described separation into four frequency bands. For this reason, when the received signal is demultiplexed by 5, it is common to use an active element such as an SP3T (single-pole, triple-throw) switch.
  • an active element such as an SP3T (single-pole, triple-throw) switch.
  • a reception signal can be separated into five frequency components by connecting three SAW filters to the SP3T switch and combining it with two diplexers.
  • the SP3T switch is configured to selectively supply a received signal to filters connected in parallel, and cannot supply signals to a plurality of filters at the same time.
  • the duplexer 300 since the duplexer 300 demultiplexes the received signal with a passive element without using an active element such as an SP3T switch, the circuit reduces the power consumption and does not require a power supply.
  • the configuration can be simplified.
  • all of the filters 110, 112, and 304 of the duplexer 300 are always connected to the antenna, signals in three frequency bands included in the received signal can be output to the receiver at the same time.
  • passive elements such as capacitors and inductors are less expensive than SP3T switches, which contributes to a reduction in the manufacturing cost of the duplexer.
  • FIG. 4 is an equivalent circuit diagram of the duplexer 200.
  • the matching circuit 108 includes a capacitor 402 disposed between the connection point P1 of the SAW filters 110 and 112 and the SAW filter 110, a capacitor 404 disposed between the connection point P1 and the SAW filter 112, and the capacitor 402.
  • Inductors 408 and 410 disposed between terminals on both sides and the ground, and an inductor 412 disposed between a connection point between the capacitor 404 and the SAW filter 112 and the ground, respectively.
  • the element values of these capacitors and inductors are such that the impedance of each SAW filter viewed from the distributed constant line 104 side matches the characteristic impedance of the transmission line in the pass band of the own filter, and high impedance in the pass band of other SAW filters. It is determined to be.
  • the line length of the distributed constant line 104 is 22 mm
  • the capacitances of the capacitors 402 and 404 are 3 pF and 4 pF, respectively
  • the inductance values of the inductors 408, 410 and 412 are 3.5 nH, 20 nH and 20 nH, respectively.
  • the matching circuit 202 includes a capacitor 414 disposed between the connection point P2 between the SAW filter 114 and the SAW filter 204 and the SAW filter 114, a capacitor 416 disposed between the connection point P2 and the SAW filter 204, An inductor 418 disposed between the connection point between the capacitor 414 and the SAW filter 114 and the ground, an inductor 420 disposed between the connection point between the connection point P2 and the capacitor 416 and the ground, and the capacitor 416 and the SAW. And an inductor 422 connected between a connection point with the filter 204 and the ground.
  • the element values of these capacitors and inductors are such that the impedance of each SAW filter viewed from the distributed constant line 106 side matches the characteristic impedance of the transmission line in the passband of the own filter and is high impedance in the passband of other SAW filters. It is determined to be.
  • the line length of the distributed constant line 106 is 17.5 mm
  • the capacitances of the capacitors 414 and 416 are 5 pF and 4 pF, respectively
  • the inductance values of the inductors 418, 420 and 422 are 18 nH, 20 nH and 18 nH, respectively.
  • FIG. 5 is a Smith chart showing the input impedance viewed from the input terminal 102 of the duplexer 200 shown in FIG.
  • the impedance shown in FIG. 5 was measured by sweeping the frequency from 100 MHz to 6 GHz.
  • the markers m1-m4 corresponding to the first to fourth pass bands are all distributed in the vicinity of 50 ⁇ , and the input impedance of the duplexer 200 is the first to fourth pass. It was confirmed that it matched with the characteristic impedance of the transmission line in each band.
  • FIG. 6 to 9 are graphs showing the simulation results of the attenuation characteristics of the duplexer 200 shown in FIG.
  • FIG. 10 is an enlarged graph showing a part of the simulation results shown in FIGS.
  • These attenuation characteristics are simulated by incorporating the characteristics of the SAW filters 110, 112, 114, and 204 constituting the duplexer 200 into a circuit simulator, and synthesizing these characteristics with the passive elements that constitute the matching circuits 108 and 202. It is the result.
  • Each SAW filter is characterized by Agilent Technologies, Inc., headquartered in California, USA. Of PNA-L. 6 to 9, the horizontal axis represents the frequency in GHz, and the vertical axis represents the magnitude of the S parameter (S21) indicating the attenuation characteristic in dB.
  • the curve 601 represents the attenuation characteristic between the input terminal 102 and the output terminal 116
  • the curve 701 in FIG. 7 represents the attenuation characteristic between the input terminal 102 and the output terminal 118
  • the curve 801 in FIG. The attenuation characteristic between the output terminals 120 is represented.
  • a curve 901 represents the attenuation characteristic between the input terminal 102 and the output terminal 206.
  • the attenuation between the input terminal 102 and the output terminal 116 is sufficiently small to be approximately 2.5 dB or less at 2110-2170 MHz allocated to the band I of UMTS. Large enough in the band. 7 and 10, the attenuation amount between the input terminal 102 and the output terminal 118 is sufficiently small at about 3.5 dB or less at 1930-1990 MHz allocated to UMTS band II. Large enough in other bands. As is clear from FIGS. 8 and 10, the attenuation between the input terminal 102 and the output terminal 120 is sufficiently small at about 869 to 894 MHz allocated to the band V of UMTS, which is sufficiently small at about 2.5 dB or less. Large enough in the band. As is apparent from FIGS. 9 and 10, the attenuation between the input terminal 102 and the output terminal 206 is sufficiently small at about 925 to 960 MHz allocated to the UMTS band VIII and is approximately 2.5 dB or less. Large enough in the band.
  • the insertion loss when the multiband signal on which the signals of the band I, band II, band V, and band VIII of UMTS are superimposed using the branching filter 300 is divided into four is determined by the branching filter of the mobile phone. As a small enough level.
  • the insertion loss of each pass band is deteriorated by about 0.5 to 1.0 dB.
  • the insertion loss is improved by the duplexer 200 according to the embodiment of the present invention.
  • the circuit configuration of the duplexer shown in FIGS. 1 to 3 can be changed as appropriate.
  • the received signal can be demultiplexed into six frequency bands.
  • the sixth SAW filter has a pass band on the low frequency side outside the frequency band including the pass bands of the SAW filters 110, 112, and 304, for example.
  • the line length L1 of the distributed constant line 104 includes the third and fourth passbands and the passband of the sixth SAW filter when the input impedance of the high frequency side branch circuit 140 viewed from the input terminal 102 side. It is determined to have a high impedance close to infinity in the frequency band.
  • each pass band of a SAW filter connected in parallel to one distributed constant line includes a frequency band including each pass band of a SAW filter connected in parallel to another distributed constant line. (That is, between the frequency at the lowest frequency side of the low frequency ends of the passbands of the plurality of SAW filters connected in parallel to other distributed constant lines and the frequency at the highest frequency side of the high frequency ends.
  • the arrangement of each SAW filter is determined so as to be located on either the high frequency side or the low frequency side outside the frequency band. For example, in the duplexer 300 shown in FIG.
  • the frequency bands of the SAW filters 114 and 204 connected to the distributed constant line 106 are 869 to 894 MHz and 925 to 960 MHz, respectively.
  • the passbands of the SAW filters 114 and 204 are both 1805 MHz including the passband of the SAW filter connected to the distributed constant line 104 (the lowest of the low frequency ends of the passbands of the SAW filter connected to the distributed constant line 104). It is outside the frequency band (low frequency side) sandwiched between 2170 MHz (the frequency on the high frequency side of the high frequency end of the pass band of the SAW filter connected to the distributed constant line 104).
  • the passbands of the SAW filters 110, 112, and 304 connected to the distributed constant line 104 are 2110-2170 MHz, 1930-1990 MHz, and 1805 to 1880 MHz, respectively. It is outside (high frequency side) the frequency band of 869 MHz to 960 MHz including the pass band of the filter.
  • the impedance of the received signal is such that the impedance in each distributed constant line becomes high impedance in the frequency band including the respective pass bands of the SAW filters connected to the other distributed constant lines.
  • the phase can be rotated, whereby the matching circuit provided in the subsequent stage of each distributed constant line can be designed independently.
  • This rule regarding the arrangement of the SAW filter is also valid for the duplexer 100 and the duplexer 200 according to another embodiment of the present invention. And as long as this rule is satisfied, arrangement
  • the embodiment of the present invention is not limited to the mode explicitly described above, and various changes can be made.
  • the SAW filters 110, 112, 114, 204, and 304 may be dielectric filters.
  • the duplexer according to the present invention can be mounted on various wireless communication devices other than the mobile phone.
  • the duplexer according to the present invention can be reduced in size by being built in an LTCC (low temperature co-fired ceramics) multilayer circuit board.
  • LTCC low temperature co-fired ceramics

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
  • Input Circuits Of Receivers And Coupling Of Receivers And Audio Equipment (AREA)

Abstract

The disclosed demultiplexer is provided with: a first demultiplexing circuit including a first filter which allows the passage of signals of a first pass band and a second filter which allows the passage of signals of a second pass band; and a second demultiplexing circuit including a third filter which allows the passage of signals of a third pass band, to the outside of the frequency band which includes the first and second pass bands. The first demultiplexing circuit comprises a first distributed constant line which makes the input impedance of the first demultiplexing circuit a high impedance in at least a frequency band corresponding to the third pass band, and a first matching circuit which is formed from a lumped parameter element; the first demultiplexing circuit comprises a first distributed constant line which makes the input impedance of the first demultiplexing circuit a high impedance in a frequency band corresponding to the third pass band; and the second demultiplexing circuit comprises a second distributed constant line which makes the input impedance of the second demultiplexing circuit a high impedance close to infinity in at least a frequency band which includes the first and second pass bands.

Description

分波器Duplexer
本発明は分波器に関し、特に、受動素子からなる分波器に関する。 The present invention relates to a duplexer, and more particularly to a duplexer composed of passive elements.
複数の通信方式を利用して通話やデータ送受信を行うことができるマルチバンド対応の携帯電話機が多くのユーザに利用されている。マルチバンド対応の携帯電話機は、複数の周波数帯の信号が重畳されたマルチバンド信号を周波数帯ごとに分離する分波器を備える。利用される通信方式の増加に伴って、より多くの周波数成分を分離できる分波器が望まれている。 A multiband mobile phone capable of making a call and transmitting / receiving data using a plurality of communication methods is used by many users. A multi-band mobile phone includes a duplexer that separates a multi-band signal on which signals of a plurality of frequency bands are superimposed for each frequency band. As the number of communication systems used increases, a duplexer that can separate more frequency components is desired.
受信信号を3つ以上の周波数帯に分離する分波器についての開示例がある。例えば、特開2007-266897号公報(特許文献1)に記載の分波器は、互いに異なる通過帯域を持つ3つ以上のSAWフィルタを備えており、各SAWフィルタと入力端子との間に複数の分布定数線路が多段に配置される。また、SP3T(single-Pole、triple-throw)スイッチを用いることによって受信信号を3つ以上の周波数成分に分離する手法も知られている。 There is a disclosed example of a duplexer that separates a received signal into three or more frequency bands. For example, a duplexer described in Japanese Patent Application Laid-Open No. 2007-266897 (Patent Document 1) includes three or more SAW filters having different pass bands, and a plurality of SAW filters are provided between each SAW filter and an input terminal. Are distributed in multiple stages. Also known is a method of separating a received signal into three or more frequency components by using an SP3T (single-pole, triple-throw) switch.
分波器を構成する高周波回路は、通過帯域において挿入損失が小さく、阻止域において高減衰であることが望ましい。 It is desirable that the high frequency circuit constituting the duplexer has a small insertion loss in the pass band and a high attenuation in the stop band.
特開2007-266897号公報JP 2007-266897 A
本発明の様々な実施態様は、受動素子によってマルチバンド信号を3以上の周波数帯域に分離することができ、設計が容易な分波器を提供する。 Various embodiments of the present invention provide a duplexer that can separate multiband signals into three or more frequency bands by passive elements and is easy to design.
その他の課題は、下記の詳細な説明、添付図面等の記載から理解される。 Other problems will be understood from the following detailed description and the accompanying drawings.
本発明の一実施態様に係る分波器は、アンテナからの受信信号を入力する入力端子と、前記入力端子と第1の出力端子との間に配置され、第1の通過帯域の信号を通過させる第1のフィルタと、前記入力端子と第2の出力端子との間に配置され、第2の通過帯域の信号を通過させる第2のフィルタと、を含む第1分波回路と、前記入力端子と第3の出力端子との間に配置され、前記第1及び第2の通過帯域を含む周波数帯域の外側にある第3の通過帯域の信号を通過させる第3のフィルタと、を含む第2分波回路と、を備える。本発明の一実施態様において、前記第1分波回路は、少なくとも前記第3の通過帯域に相当する周波数帯域において前記第1分波回路の入力インピーダンスを高インピーダンスにする第1の分布定数線路と、集中定数素子からなり、前記第1のフィルタの入力インピーダンスを前記第2の通過帯域に相当する周波数帯域において高インピーダンスにし、且つ、前記第2のフィルタの入力インピーダンスを前記第1の通過帯域に相当する周波数帯域において高インピーダンスにする第1の整合回路と、を有する。本発明の一実施態様において、前記第2分波回路は、少なくとも前記第1及び第2の通過帯域を含む周波数帯域において前記第2分波回路の入力インピーダンスを高インピーダンスにする第2の分布定数線路を有する。 A duplexer according to an embodiment of the present invention is disposed between an input terminal for receiving a received signal from an antenna, and the input terminal and the first output terminal, and passes a signal in a first passband. A first demultiplexing circuit including: a first filter that causes the first filter to pass; and a second filter that is disposed between the input terminal and the second output terminal and that passes a signal in a second passband. A third filter disposed between the terminal and the third output terminal and passing a signal in a third passband outside the frequency band including the first and second passbands. A second branching circuit. In one embodiment of the present invention, the first demultiplexing circuit includes: a first distributed constant line that sets an input impedance of the first demultiplexing circuit to a high impedance at least in a frequency band corresponding to the third passband; The input impedance of the first filter is set to a high impedance in a frequency band corresponding to the second pass band, and the input impedance of the second filter is set to the first pass band. And a first matching circuit having a high impedance in a corresponding frequency band. In one embodiment of the present invention, the second demultiplexing circuit has a second distributed constant that makes the input impedance of the second demultiplexing circuit high impedance in a frequency band including at least the first and second passbands. Has a track.
本発明の様々な実施態様によれば、受動素子によってマルチバンド信号を3以上の周波数帯域に分離することができ、設計が容易な分波器が提供される。 According to various embodiments of the present invention, a duplexer that can separate a multiband signal into three or more frequency bands by a passive element and is easy to design is provided.
本発明の一実施形態に係る分波器を示す回路図1 is a circuit diagram showing a duplexer according to an embodiment of the present invention. 本発明の他の実施形態に係る分波器を示す回路図Circuit diagram showing a duplexer according to another embodiment of the present invention. 本発明の他の実施形態に係る分波器を示す回路図Circuit diagram showing a duplexer according to another embodiment of the present invention. 本発明の一実施形態に係る分波器の等価回路図1 is an equivalent circuit diagram of a duplexer according to an embodiment of the present invention. 本発明の一実施形態に係る分波器の入力インピーダンスを示すスミスチャートSmith chart showing input impedance of duplexer according to one embodiment of the present invention 本発明の一実施形態に係る分波器の減衰特性を表すグラフThe graph showing the attenuation characteristic of the duplexer which concerns on one Embodiment of this invention 本発明の一実施形態に係る分波器の減衰特性を表すグラフThe graph showing the attenuation characteristic of the duplexer which concerns on one Embodiment of this invention 本発明の一実施形態に係る分波器の減衰特性を表すグラフThe graph showing the attenuation characteristic of the duplexer which concerns on one Embodiment of this invention 本発明の一実施形態に係る分波器の減衰特性を表すグラフThe graph showing the attenuation characteristic of the duplexer which concerns on one Embodiment of this invention 本発明の一実施形態に係る分波器の減衰特性を表すグラフThe graph showing the attenuation characteristic of the duplexer which concerns on one Embodiment of this invention 本発明の一実施形態に係る分布定数線路による位相回転を説明するスミスチャートSmith chart for explaining phase rotation by distributed constant line according to an embodiment of the present invention 本発明の一実施形態に係る分布定数線路による位相回転を説明するスミスチャートSmith chart for explaining phase rotation by distributed constant line according to an embodiment of the present invention
本発明の様々な実施形態について添付図面を参照して説明する。図1は、本発明の一実施形態に係る分波器100を表す回路図である。本発明の一実施形態における分波器100は、図示しないアンテナから入力端子102を介して入力されたマルチバンド信号を個別の周波数帯の信号に分離し、分離した信号を各出力端子116、118、120から後段の回路に出力する。分波器100は、例えば携帯電話機において用いられる。 Various embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a circuit diagram showing a duplexer 100 according to an embodiment of the present invention. The duplexer 100 according to an embodiment of the present invention separates a multiband signal input from an antenna (not shown) through an input terminal 102 into signals of individual frequency bands, and the separated signals are output to the output terminals 116 and 118. , 120 to the subsequent circuit. The duplexer 100 is used in, for example, a mobile phone.
入力端子102と出力端子116、118との間には、入力信号のうち高周波側の信号を伝送する高周波側分波回路140が設けられ、入力端子102と出力端子120との間には、入力信号のうち低周波側の信号を伝送する低周波側分波回路160が設けられる。高周波側分波回路140は、例えば、2110-2170MHzを通過帯域とするSAWフィルタ110と、1930-1990MHzを通過帯域とするSAWフィルタ112とを備える。また、低周波側分波回路160は、869-894MHzを通過帯域とするSAWフィルタ114を備える。本明細書において、SAWフィルタ110、112、114の通過帯域を、それぞれ「第1の通過帯域」、「第2の通過帯域」、「第3の通過帯域」と称することがある。 Between the input terminal 102 and the output terminals 116 and 118, a high frequency side branching circuit 140 for transmitting a high frequency side signal among the input signals is provided, and between the input terminal 102 and the output terminal 120, an input is provided. A low frequency side branching circuit 160 for transmitting a low frequency side signal among the signals is provided. The high frequency side branching circuit 140 includes, for example, a SAW filter 110 having a pass band of 2110-2170 MHz and a SAW filter 112 having a pass band of 1930-1990 MHz. Further, the low frequency side branching circuit 160 includes a SAW filter 114 having a pass band of 869 to 894 MHz. In the present specification, the pass bands of the SAW filters 110, 112, and 114 may be referred to as “first pass band”, “second pass band”, and “third pass band”, respectively.
この第1の通過帯域に相当する2110-2170MHzの周波数帯はUMTS(Universal Mobile Telecommunications System)のバンドIの受信用に割り当てられた帯域であり、第2の通過帯域に相当する1930-1990MHzの周波数帯はUMTSのバンドIIの受信用に割り当てられた帯域である。また、第3の通過帯域に相当する869-894MHzはUMTSのバンドVの受信用に割り当てられた帯域である。アンテナから受信されるマルチバンド信号には、これら第1から第3の通過帯域に相当する周波数帯の信号が重畳される。マルチバンド信号には、第1から第3の通過帯域に相当する周波数帯以外の周波数帯の信号が重畳されることもある。 The frequency band of 2110-2170 MHz corresponding to this first pass band is a band allocated for reception of band I of UMTS (Universal Mobile Telecommunications System), and a frequency of 1930-1990 MHz corresponding to the second pass band The band is a band allocated for reception of UMTS band II. In addition, 869 to 894 MHz corresponding to the third pass band is a band allocated for reception of the band V of UMTS. A signal in a frequency band corresponding to the first to third passbands is superimposed on the multiband signal received from the antenna. A signal in a frequency band other than the frequency band corresponding to the first to third passbands may be superimposed on the multiband signal.
高周波側分波回路140は、SAWフィルタ110、112の前方に単数又は複数の集中定数型のリアクタンス素子からなる整合回路108を備え、この整合回路108と入力端子102との間に分布定数線路104を備える。また、低周波側分波回路160は、入力端子102とSAWフィルタ114との間に分布定数線路106を備える。 The high-frequency side branching circuit 140 includes a matching circuit 108 including one or a plurality of lumped constant type reactance elements in front of the SAW filters 110 and 112, and the distributed constant line 104 between the matching circuit 108 and the input terminal 102. Is provided. The low frequency side branching circuit 160 includes a distributed constant line 106 between the input terminal 102 and the SAW filter 114.
分布定数線路104は線路長L1を有し、分布定数線路106は線路長L2を有する。分布定数線路104、106は、それぞれの線路長に応じた移相量だけ通過信号の位相を遅らせる。分布定数線路104の線路長L1は、入力端子102側から見た高周波側分波回路140の入力インピーダンスが第3の通過帯域に相当する周波数帯域において無限大に近い高インピーダンスになるように決められる。これにより、第3の通過帯域の信号が高周波側分波回路140に漏洩することを防止できる。 The distributed constant line 104 has a line length L1, and the distributed constant line 106 has a line length L2. The distributed constant lines 104 and 106 delay the phase of the passing signal by the amount of phase shift corresponding to each line length. The line length L1 of the distributed constant line 104 is determined so that the input impedance of the high frequency side branching circuit 140 viewed from the input terminal 102 side becomes a high impedance close to infinity in a frequency band corresponding to the third pass band. . Thereby, it is possible to prevent the signal in the third passband from leaking to the high frequency side branching circuit 140.
一方、分布定数線路106の線路長L2は、入力端子102側から見た低周波側分波回路160の入力インピーダンスが第1及び第2の通過帯域を含む周波数帯域において無限大に近い高インピーダンスになるように決められる。一実施形態において、線路長L2は、入力端子102側から見た低周波側分波回路160の入力インピーダンスが、第1の通過帯域の高周波端である2170MHzと第2の通過帯域の低周波端との間の周波数帯域(つまり、1930MHzから2170MHzまでの周波数帯域)において無限大に近い高インピーダンスになるように決められる。バンドI及びバンドIIの中心周波数はそれぞれ2140MHz及び1960MHzにあって互いに近接しているため、分布定数線路106によって、低周波側分波回路160の入力インピーダンスがバンドI及びバンドIIのそれぞれの周波数帯において無限大に近い高インピーダンスになるように受信信号の位相を回転させることができる。これにより、第1及び第2の通過帯域の信号が低周波側分波回路160に漏洩することを防止できる。 On the other hand, the line length L2 of the distributed constant line 106 has a high impedance close to infinity in the frequency band including the first and second passbands when the input impedance of the low frequency side branching circuit 160 viewed from the input terminal 102 side. It is decided to become. In one embodiment, the line length L2 is such that the input impedance of the low frequency side branching circuit 160 viewed from the input terminal 102 side is 2170 MHz which is the high frequency end of the first pass band and the low frequency end of the second pass band. In the frequency band between (that is, the frequency band from 1930 MHz to 2170 MHz), the impedance is determined to be close to infinity. Since the center frequencies of band I and band II are 2140 MHz and 1960 MHz, respectively, and are close to each other, the input impedance of the low frequency side branching circuit 160 is set to the respective frequency bands of band I and band II by the distributed constant line 106. The phase of the received signal can be rotated so as to have a high impedance close to infinity. Thereby, it is possible to prevent the signals in the first and second passbands from leaking to the low frequency side branching circuit 160.
分布定数線路104の後段には、SAWフィルタ110、112に代えて、又はこれらのSAWフィルタに加えて、第1及び第2の通過帯域と異なる通過帯域を有するSAWフィルタをSAWフィルタ110、112と並列に接続することができる。分布定数線路104の後段に接続される複数のSAWフィルタは、それぞれの通過帯域が互いに近接した帯域にあることが望ましい。例えば、UMTSのバンドIIIに割り当てられた1805-1880MHzの周波数帯を通過帯域とするSAWフィルタを分布定数線路104の後段に接続することができる。UMTSのバンドIIIの中心周波数は1847.5MHzであるから、バンドI、バンドII、及びバンドIIIの中心周波数は300MHz以内に分布している。したがって、分布定数線路104の後段に、バンドI、II、IIIの周波数帯域のいずれかを通過帯域とするSAWフィルタを接続すれば、分布定数線路106の線路長L2を適切な長さに定めることにより、入力端子102側から見た低周波側分波回路160のインピーダンスがバンドI、II、IIIのそれぞれの周波数大域において無限大に近い高インピーダンスになるように受信信号の位相を回転することができる。 Subsequent to the SAW filters 110 and 112, or in addition to these SAW filters, a SAW filter having a pass band different from the first and second pass bands is provided as SAW filters 110 and 112 at the subsequent stage of the distributed constant line 104. Can be connected in parallel. It is desirable that the plurality of SAW filters connected to the subsequent stage of the distributed constant line 104 have their passbands in close proximity to each other. For example, a SAW filter whose pass band is a frequency band of 1805 to 1880 MHz assigned to UMTS band III can be connected to the subsequent stage of the distributed constant line 104. Since the center frequency of band III of UMTS is 1847.5 MHz, the center frequencies of band I, band II, and band III are distributed within 300 MHz. Therefore, the line length L2 of the distributed constant line 106 can be set to an appropriate length by connecting a SAW filter having a pass band in any of the frequency bands of bands I, II, and III to the subsequent stage of the distributed constant line 104. Thus, the phase of the received signal can be rotated so that the impedance of the low frequency side branching circuit 160 viewed from the input terminal 102 side becomes a high impedance that is close to infinity in each frequency band of the bands I, II, and III. it can.
このように、分布定数線路104によって低周波側分波回路160を通過する信号が高周波側分波回路140に漏洩することを防止するとともに、分布定数線路106によって高周波側分波回路140を通過する信号が低周波側分波回路160に漏洩することを防止できるので、通過帯域における挿入損失の発生を低減することができる。 As described above, a signal passing through the low frequency side branch circuit 160 by the distributed constant line 104 is prevented from leaking to the high frequency side branch circuit 140, and also passes through the high frequency side branch circuit 140 by the distributed constant line 106. Since the signal can be prevented from leaking to the low frequency side branching circuit 160, occurrence of insertion loss in the pass band can be reduced.
整合回路108は、集中定数素子型のリアクタンス素子であるキャパシタ、インダクタ又はこれらの組み合わせから構成される。この整合回路108は、前記第1の通過帯域において、SAWフィルタ110の入力インピーダンスを、分波器100の外部回路の特性インピーダンス(つまり、入力端子102又は各出力端子116、118、120に接続される伝送線路もしくは回路の特性インピーダンスであり、通常は50Ωである。)と整合させるとともに、前記第2の通過帯域において、SAWフィルタ112の入力インピーダンスを外部回路の特性インピーダンスと整合させる。整合回路108を構成するリアクタンス素子の配置及び素子値は、例えば、分布定数線路104側から見たSAWフィルタ110のインピーダンスが第1の通過帯域において伝送線路の特性インピーダンス(典型的には50Ω)に整合するとともに第2の通過帯域に相当する周波数帯域おいて高インピーダンスになり、分布定数線路104側から見たSAWフィルタ112のインピーダンスが第1の通過帯域に相当する周波数帯域において高インピーダンスになるとともに第2の通過帯域において伝送線路の特性インピーダンスに整合するように定められる。2つの並列接続されたSAWフィルタのインピーダンスを整合する方法自体は当業者に周知であり、当業者であれば、スミスチャート、シミュレーション装置、自身の経験などに基づいて整合回路108を構成するキャパシタやインダクタの素子値及び配置を決定することができる。 The matching circuit 108 includes a capacitor, an inductor, or a combination thereof, which is a lumped element type reactance element. The matching circuit 108 connects the input impedance of the SAW filter 110 to the characteristic impedance of the external circuit of the duplexer 100 (that is, the input terminal 102 or each of the output terminals 116, 118, 120) in the first passband. In the second pass band, and the input impedance of the SAW filter 112 is matched with the characteristic impedance of the external circuit. The arrangement and element values of the reactance elements constituting the matching circuit 108 are set such that, for example, the impedance of the SAW filter 110 viewed from the distributed constant line 104 side is the characteristic impedance (typically 50Ω) of the transmission line in the first passband. While matching, the impedance is high in the frequency band corresponding to the second pass band, and the impedance of the SAW filter 112 viewed from the distributed constant line 104 side is high impedance in the frequency band corresponding to the first pass band. It is determined to match the characteristic impedance of the transmission line in the second passband. A method for matching the impedances of two parallel-connected SAW filters is well known to those skilled in the art, and those skilled in the art can use the Smith chart, the simulation device, the capacitors constituting the matching circuit 108 based on their own experience, etc. The element value and placement of the inductor can be determined.
他の実施形態において、SAWフィルタ110の入力インピーダンスが第1の通過帯域において誘導性または容量性の第1リアクタンス成分を有し、かつ、SAWフィルタ112の前記第1の通過帯域における入力インピーダンスが、前記第1リアクタンス成分が誘導性である場合に容量性となり、前記第1リアクタンス成分が容量性である場合に誘導性となるように、整合回路108を構成するリアクタンス素子の配置及び素子値を定めることができる。また、整合回路108は、SAWフィルタ112の入力インピーダンスが第2の通過帯域において誘導性または容量性の第2リアクタンス成分を有し、かつ、SAWフィルタ110の第2の通過帯域における入力インピーダンスが、第2リアクタンス成分が誘導性である場合に容量性となり、前記第2リアクタンス成分が容量性である場合に誘導性となるように構成することができる。このように構成された整合回路108にSAWフィルタ110、112が接続されることにより、SAWフィルタ110の第1の通過帯域における入力インピーダンスは容量性の領域から誘導性の領域に向かって(又は誘導性の領域から容量性の領域に向かって)回転される。この結果、第1リアクタンス成分は“0”に近づき、SAWフィルタ110のインピーダンスマッチングが精度良く実現される。同様に、SAWフィルタ112の第2の通過帯域における入力インピーダンスは容量性の領域から誘導性の領域に向かって(又は誘導性の領域から容量性の領域に向かって)回転される。この結果、第2リアクタンス成分は“0”に近づき、SAWフィルタ112のインピーダンスマッチングが精度良く実現される。このように2つのフィルタを組み合わせてインピーダンスを整合する技術は、例えば、Denys Orlenko, Novel High-rejection LTCC Diplexers for Dual-band WLAN
Applications, IEEE MTT-S Int.Microwave Symp. Dig., June 2005, pp. 727-730.に開示されている。
In another embodiment, the input impedance of the SAW filter 110 has an inductive or capacitive first reactance component in the first passband, and the input impedance of the SAW filter 112 in the first passband is The arrangement and element values of the reactance elements constituting the matching circuit 108 are determined so as to be capacitive when the first reactance component is inductive and inductive when the first reactance component is capacitive. be able to. The matching circuit 108 has an inductive or capacitive second reactance component in which the input impedance of the SAW filter 112 is in the second pass band, and the input impedance in the second pass band of the SAW filter 110 is It can be configured to be capacitive when the second reactance component is inductive and to be inductive when the second reactance component is capacitive. By connecting the SAW filters 110 and 112 to the matching circuit 108 configured in this way, the input impedance in the first pass band of the SAW filter 110 is directed from the capacitive region toward the inductive region (or inductive). Rotated from the sex region to the capacitive region). As a result, the first reactance component approaches “0”, and impedance matching of the SAW filter 110 is realized with high accuracy. Similarly, the input impedance in the second passband of SAW filter 112 is rotated from the capacitive region to the inductive region (or from the inductive region to the capacitive region). As a result, the second reactance component approaches “0”, and impedance matching of the SAW filter 112 is realized with high accuracy. For example, Denys Orlenko, Novel High-rejection LTCC Diplexers for Dual-band WLAN
Applications, IEEE MTT-S Int. Microwave Symp. Dig., June 2005, pp. 727-730.
上述したように、第1及び第2の通過帯域における信号が低周波側分波回路160に漏洩しないので、SAWフィルタ110、112のインピーダンス整合を行う際に高周波側分波回路160に含まれるリアクタンス素子(例えば、SAWフィルタ114)の影響を無視することができる。つまり、整合回路108を構成するリアクタンス素子の配置や素子値の設計は、高周波側分波回路160から独立して行うことができる。また、分布定数線路104は、受信信号の反射係数の大きさを変化させずに位相角のみを変化させるので、整合回路108によって実現される整合状態を変化させずに受信信号の位相を回転させることができる。このように、整合回路108以外の回路素子による影響を無視して独立に設計することができるので、整合回路108の設計が容易になる。また、整合回路108は集中定数素子で構成されるため、分波器100を比誘電率が一桁程度の基板で設計した場合、インピーダンス整合を分布定数線路のみで行う場合と比較して分波器100の形状を小型化することができるとともに、挿入損失の低減を図ることができる。 As described above, since signals in the first and second passbands do not leak to the low frequency side branching circuit 160, reactance included in the high frequency side branching circuit 160 when impedance matching of the SAW filters 110 and 112 is performed. The influence of the element (for example, the SAW filter 114) can be ignored. That is, the arrangement of reactance elements constituting the matching circuit 108 and the design of the element values can be performed independently from the high frequency side branching circuit 160. In addition, the distributed constant line 104 changes only the phase angle without changing the magnitude of the reflection coefficient of the received signal, and thus rotates the phase of the received signal without changing the matching state realized by the matching circuit 108. be able to. As described above, the design of the matching circuit 108 is facilitated because the design can be performed independently while ignoring the influence of the circuit elements other than the matching circuit 108. In addition, since the matching circuit 108 is composed of lumped constant elements, when the duplexer 100 is designed with a substrate having a relative dielectric constant of about an order of magnitude, it is demultiplexed as compared with the case where impedance matching is performed using only distributed constant lines. The shape of the device 100 can be reduced in size, and the insertion loss can be reduced.
図2は、本発明の他の実施形態に係る分波器200を示す回路図である。分波器200の構成要素のうち図1の構成要素と実質的に同じものについては、図1の対応する構成要素と同じ参照符号をつけてその説明を適宜省略する。分波器200において、入力端子102と出力端子120、206との間には、入力信号のうち低周波側の信号を伝送する低周波側分波回路260が設けられる。この低周波側分波回路260は、分布定数線路106の後段に接続されたSAWフィルタ114及びSAWフィルタ204を備え、SAWフィルタ114、204と分布定数線路106との間にキャパシタやインダクタ等の集中定数型のリアクタンス素子からなる整合回路202とを備える。SAWフィルタ204を通過した信号は出力端子206から後段の受信機に出力される。 FIG. 2 is a circuit diagram showing a duplexer 200 according to another embodiment of the present invention. Of the constituent elements of the duplexer 200, those substantially the same as the constituent elements of FIG. 1 are given the same reference numerals as the corresponding constituent elements of FIG. In the duplexer 200, a low frequency side branch circuit 260 that transmits a signal on the low frequency side of the input signal is provided between the input terminal 102 and the output terminals 120 and 206. The low frequency side branching circuit 260 includes a SAW filter 114 and a SAW filter 204 connected to the subsequent stage of the distributed constant line 106, and a capacitor, an inductor, or the like is concentrated between the SAW filters 114 and 204 and the distributed constant line 106. And a matching circuit 202 made of a constant type reactance element. The signal that has passed through the SAW filter 204 is output from the output terminal 206 to a subsequent receiver.
SAWフィルタ204は、例えば、925-960MHzに通過帯域を有する(以下、「第4の通過帯域」と称することがある。)。925-960MHzは、UMTSのバンドVIIIの受信用に割り当てられている周波数帯域に相当する。この第4の通過帯域は、第1の通過帯域である2110-2170MHzと第2の通過帯域である1930-1990MHzを含む周波数帯域(つまり、1930-2170MHzの周波数帯域)の外側の低周波側にあるので、SAWフィルタ204は、低周波側の信号を伝送する低周波側分波回路260に配置される。第4の通過帯域の中心周波数は942.5MHzであり、第3の通過帯域の中心周波数である881.5MHzに近接しているため、分布定数線路104を用いて、受信信号の第3及び第4の通過帯域に相当する周波数成分を共に高インピーダンス側に回転させることができる。この分布定数線路104の線路長L1は、入力端子102側から見た高周波側分波回路140の入力インピーダンスが、第3及び第4の通過帯域を含む周波数帯域において無限大に近い高インピーダンスになるように定められる。例えば、線路長L1は、入力端子102側から見た高周波側分波回路140の入力インピーダンスが、第3の通過帯域の低周波端である869MHzと第4の通過帯域の高周波端である960MHzの間の周波数帯域(つまり、869MHzから960MHzまでの周波数帯域)において無限大に近い高インピーダンスになるように決められる。 The SAW filter 204 has a pass band at, for example, 925 to 960 MHz (hereinafter may be referred to as “fourth pass band”). 925 to 960 MHz corresponds to a frequency band allocated for reception of UMTS band VIII. This fourth pass band is located on the lower frequency side outside the frequency band including the first pass band 2110-2170 MHz and the second pass band 1930-1990 MHz (that is, the 1930-2170 MHz frequency band). Therefore, the SAW filter 204 is disposed in the low frequency side branching circuit 260 that transmits the low frequency side signal. Since the center frequency of the fourth passband is 942.5 MHz and is close to 881.5 MHz, which is the center frequency of the third passband, the third and second received signals are transmitted using the distributed constant line 104. Both frequency components corresponding to the pass band of 4 can be rotated to the high impedance side. The line length L1 of the distributed constant line 104 is such that the input impedance of the high frequency side branching circuit 140 viewed from the input terminal 102 side is a high impedance close to infinity in the frequency band including the third and fourth pass bands. It is determined as follows. For example, the line length L1 is such that the input impedance of the high frequency side branching circuit 140 viewed from the input terminal 102 side is 869 MHz which is the low frequency end of the third pass band and 960 MHz which is the high frequency end of the fourth pass band. In the frequency band between them (that is, the frequency band from 869 MHz to 960 MHz), the impedance is determined to be close to infinity.
整合回路202は、集中定数素子からなり、SAWフィルタ114の入力インピーダンスを第3の通過帯域において分波器200の外部回路の特性インピーダンスと整合させるとともに、SAWフィルタ204の入力インピーダンスを第4の通過帯域において外部回路の特性インピーダンスと整合させるように構成される。整合回路202を構成するリアクタンス素子の配置及び素子値は、例えば、分布定数線路106側から見たSAWフィルタ114のインピーダンスを第3の通過帯域に相当する周波数帯域において伝送線路の特性インピーダンスに整合させるとともに第4の通過帯域に相当する周波数帯域おいて高インピーダンスにし、分布定数線路106側から見たSAWフィルタ204のインピーダンスを第3の通過帯域に相当する周波数帯域おいて高インピーダンスにするとともに第4の通過帯域に相当する周波数帯域において伝送線路の特性インピーダンスに整合させる。 Matching circuit 202 is composed of lumped constant elements, and matches the input impedance of SAW filter 114 with the characteristic impedance of the external circuit of duplexer 200 in the third pass band, and the input impedance of SAW filter 204 as the fourth pass. It is configured to match the characteristic impedance of the external circuit in the band. For example, the arrangement and the element values of the reactance elements constituting the matching circuit 202 match the impedance of the SAW filter 114 viewed from the distributed constant line 106 side with the characteristic impedance of the transmission line in a frequency band corresponding to the third pass band. In addition, the impedance of the SAW filter 204 viewed from the distributed constant line 106 side is set to high impedance in the frequency band corresponding to the third pass band and the fourth impedance is set to high impedance in the frequency band corresponding to the fourth pass band. It matches with the characteristic impedance of the transmission line in a frequency band corresponding to the passband of the transmission line.
他の実施形態において、整合回路202を構成するリアクタンス素子の配置及び素子値は、SAWフィルタ114の入力インピーダンスが、第3の通過帯域において誘導性または容量性の第3リアクタンス成分を有し、かつ、SAWフィルタ204の前記第3の通過帯域における入力インピーダンスが、前記第3リアクタンス成分が誘導性である場合に容量性となり、前記第3リアクタンス成分が容量性である場合に誘導性となるように定められる。また、SAWフィルタ204の入力インピーダンスが、第4の通過帯域において誘導性または容量性の第4リアクタンス成分を有し、かつ、SAWフィルタ114の第4通過帯域における入力インピーダンスが、第4リアクタンス成分が誘導性である場合に容量性となり、前記第4リアクタンス成分が容量性である場合に誘導性となるように、整合回路202を構成することができる。このように構成された整合回路202にSAWフィルタ114、204が接続されることにより、SAWフィルタ114の第3の通過帯域における入力インピーダンスは容量性の領域から誘導性の領域に向かって(又は誘導性の領域から容量性の領域に向かって)回転される。この結果、第3リアクタンス成分は“0”に近づき、SAWフィルタ114のインピーダンスマッチングが精度良く実現される。同様に、SAWフィルタ204の第4の通過帯域における入力インピーダンスは容量性の領域から誘導性の領域に向かって(又は誘導性の領域から容量性の領域に向かって)回転される。この結果、第4リアクタンス成分は“0”に近づき、SAWフィルタ204のインピーダンスマッチングが精度良く実現される。 In another embodiment, the arrangement and element values of the reactance elements constituting the matching circuit 202 are such that the input impedance of the SAW filter 114 has an inductive or capacitive third reactance component in the third passband, and The input impedance of the SAW filter 204 in the third passband is capacitive when the third reactance component is inductive and inductive when the third reactance component is capacitive. Determined. Further, the input impedance of the SAW filter 204 has an inductive or capacitive fourth reactance component in the fourth pass band, and the input impedance in the fourth pass band of the SAW filter 114 has a fourth reactance component. The matching circuit 202 can be configured to be capacitive when inductive and to be inductive when the fourth reactance component is capacitive. By connecting the SAW filters 114 and 204 to the matching circuit 202 configured in this way, the input impedance in the third pass band of the SAW filter 114 is directed from the capacitive region toward the inductive region (or inductive). Rotated from the sex region to the capacitive region). As a result, the third reactance component approaches “0”, and impedance matching of the SAW filter 114 is realized with high accuracy. Similarly, the input impedance in the fourth passband of SAW filter 204 is rotated from the capacitive region to the inductive region (or from the inductive region to the capacitive region). As a result, the fourth reactance component approaches “0”, and impedance matching of the SAW filter 204 is realized with high accuracy.
続いて、分布定数線路104、106による受信信号の位相回転について、図11及び図12を参照して説明する。図11は、分波器200の分布定数線路104による位相回転を説明するスミスチャートの一例であり、高周波側分波回路140の入力インピーダンスを示す。また、図12は、分波器200の分布定数線路106による位相回転を説明するスミスチャートの一例であり、低周波側分波回路260の入力インピーダンスを示す。これらの図において、マーカM1、M2、M3、M4は、それぞれ第1、第2、第3、第4の通過帯域の中心周波数をそれぞれ表す。図11に示されるように、分布定数線路104による位相回転によって入力信号の位相を回転させることにより、M3及びM4を含む周波数帯域が無限大に近い高インピーダンス側に回転する。M1、M2の帯域は、整合回路108により伝送線路の特性インピーダンス付近に整合されており、M1及びM2における整合状態は位相回転によって実質的な影響を受けない。このように、分布定数線路104は、受信信号の位相を回転させることにより、分波器200の高周波側分波回路140の入力インピーダンスを第3、第4の通過帯域において無限大に近い高インピーダンスにすることができる。同様に、分布定数線路106の位相回転によって入力信号の位相が回転され、M1及びM2を含む周波数帯域が図12に示すように無限大に近い高インピーダンス側に回転する。このように、分布定数線路106は、分波器200の低周波側分波回路260の入力インピーダンスを第1、第2の通過帯域において無限大に近い高インピーダンスにすることができる。 Next, the phase rotation of the received signal by the distributed constant lines 104 and 106 will be described with reference to FIGS. 11 and 12. FIG. 11 is an example of a Smith chart for explaining phase rotation by the distributed constant line 104 of the duplexer 200, and shows the input impedance of the high frequency side branch circuit 140. FIG. 12 is an example of a Smith chart for explaining phase rotation by the distributed constant line 106 of the duplexer 200, and shows the input impedance of the low frequency side branch circuit 260. In these figures, markers M1, M2, M3, and M4 represent the center frequencies of the first, second, third, and fourth passbands, respectively. As shown in FIG. 11, by rotating the phase of the input signal by the phase rotation by the distributed constant line 104, the frequency band including M3 and M4 is rotated to the high impedance side close to infinity. The bands M1 and M2 are matched in the vicinity of the characteristic impedance of the transmission line by the matching circuit 108, and the matching state in M1 and M2 is not substantially affected by the phase rotation. As described above, the distributed constant line 104 rotates the phase of the received signal so that the input impedance of the high frequency side branching circuit 140 of the duplexer 200 is a high impedance close to infinity in the third and fourth passbands. Can be. Similarly, the phase of the input signal is rotated by the phase rotation of the distributed constant line 106, and the frequency band including M1 and M2 rotates to the high impedance side close to infinity as shown in FIG. As described above, the distributed constant line 106 can set the input impedance of the low frequency side branching circuit 260 of the duplexer 200 to a high impedance close to infinity in the first and second passbands.
上述のように、高周波側分波回路140に第3及び第4の通過帯域の信号が漏洩しないため、高周波側分波回路140に含まれるリアクタンス素子(整合回路108を構成するリアクタンス素子及びSAWフィルタ110、112等)の影響を無視して整合回路202を設計することができる。これにより、整合回路202の設計が容易になる。このインピーダンス整合は、整合回路202の構成要素であるキャパシタやインダクタの素子値及び配置を適切に決定することによって実現される。かかるキャパシタやインダクタの素子値及び配置を決定する方法は、整合回路108の場合と同様に当業者に周知であり、当業者はであれば、過度の試行錯誤を要せず整合回路202の設計を行うことができる。 As described above, since signals in the third and fourth passbands do not leak to the high frequency side branch circuit 140, reactance elements included in the high frequency side branch circuit 140 (reactance elements and SAW filters constituting the matching circuit 108). 110, 112, etc.) can be ignored and the matching circuit 202 can be designed. This facilitates the design of the matching circuit 202. This impedance matching is realized by appropriately determining the element values and arrangement of capacitors and inductors that are components of the matching circuit 202. The method of determining the element values and arrangement of capacitors and inductors is well known to those skilled in the art, as is the case with the matching circuit 108. Those skilled in the art can design the matching circuit 202 without undue trial and error. It can be performed.
分波する周波数成分の数が増えるほど(つまり、SAWフィルタの数が増えるほど)これらのSAWフィルタのインピーダンスを整合させる整合回路の設計が複雑になる。一方、本発明の一実施形態に係る分波器200によれば、低周波側分波回路160に第1及び第2の通過帯域の信号が漏洩せず、高周波側分波回路140に第3及び第4の通過帯域の信号が漏洩しないので、整合回路108は低周波側分波回路160から独立して設計でき、整合回路202は低周波側分波回路160から独立して設計できる。これにより、整合回路108、202の設計が容易になる。このように、本発明の一実施形態に係る分波器200は、集中定数素子のみによって4つのSAWフィルタのインピーダンスを整合させる場合と比較して、インピーダンス整合のための設計を容易に行うことができる。 As the number of frequency components to be demultiplexed increases (that is, as the number of SAW filters increases), the design of matching circuits that match the impedances of these SAW filters becomes more complicated. On the other hand, according to the duplexer 200 according to the embodiment of the present invention, the signals in the first and second passbands are not leaked to the low frequency side branch circuit 160 and the third is added to the high frequency side branch circuit 140. Since the signal in the fourth passband does not leak, the matching circuit 108 can be designed independently from the low frequency side branching circuit 160, and the matching circuit 202 can be designed independently from the low frequency side branching circuit 160. This facilitates the design of the matching circuits 108 and 202. As described above, the duplexer 200 according to the embodiment of the present invention can be easily designed for impedance matching as compared with the case where the impedances of the four SAW filters are matched only by the lumped constant element. it can.
図3は、本発明の他の実施形態における分波器300を示す。分波器300の構成要素のうち、図1又は図2の構成要素と実質的に同一のものについては、図1又は図2の対応する構成要素と同じ参照符号をつけてその説明を適宜省略する。分波器300において、入力端子102と出力端子116、118、306との間には、入力信号のうち高周波側の信号を伝送する高周波側分波回路340が設けられる。この高周波側分波回路340は、分布定数線路104の後段にSAWフィルタ110、112と並列にSAWフィルタ304を備える。SAWフィルタ304は、例えば、1805-1880MHzに通過帯域を有する(以下、「第5の通過帯域」と称することがある。)。1805-1880MHzは、上述したようにUMTSのバンドIIIに割り当てられた周波数帯域である。SAWフィルタ304を通過した信号は出力端子306から後段の受信機に出力される。 FIG. 3 shows a duplexer 300 in another embodiment of the invention. Among the components of the duplexer 300, those substantially the same as the components of FIG. 1 or FIG. 2 are denoted by the same reference numerals as the corresponding components of FIG. 1 or FIG. To do. In the duplexer 300, a high frequency side branch circuit 340 that transmits a high frequency side signal among the input signals is provided between the input terminal 102 and the output terminals 116, 118, and 306. The high frequency side branching circuit 340 includes a SAW filter 304 in parallel with the SAW filters 110 and 112 in the subsequent stage of the distributed constant line 104. The SAW filter 304 has a pass band at 1805 to 1880 MHz, for example (hereinafter, may be referred to as “fifth pass band”). 1805 to 1880 MHz is a frequency band assigned to UMTS band III as described above. The signal that has passed through the SAW filter 304 is output from the output terminal 306 to a subsequent receiver.
高周波側分波回路340は、SAWフィルタ110、112、304と分布定数線路104との間に、単数又は複数の集中定数型のリアクタンス素子からなる整合回路302を備える。整合回路302を構成するリアクタンス素子の配置及び素子値は、分布定数線路104側から見た各SAWフィルタの入力インピーダンスが自フィルタの通過帯域において伝送線路の特性インピーダンスに整合するとともに、他のSAWフィルタの通過帯域に相当する周波数帯域おいて無限大に近い高インピーダンスとなるよう定められる。これにより、分布定数線路104側から見たSAWフィルタ110のインピーダンスは第2及び第5の通過帯域に相当する周波数帯域においてそれぞれ無限大に近い高インピーダンスになり、分布定数線路104側から見たSAWフィルタ112のインピーダンスは第1及び第5の通過帯域に相当する周波数帯域においてそれぞれ無限大に近い高インピーダンスになる。また、分布定数線路104側から見たSAWフィルタ304のインピーダンスは、第1及び第2の通過帯域に相当する周波数帯域においてそれぞれ無限大に近い高インピーダンスになる。 The high frequency side branching circuit 340 includes a matching circuit 302 formed of one or a plurality of lumped constant type reactance elements between the SAW filters 110, 112, and 304 and the distributed constant line 104. The arrangement and element values of the reactance elements constituting the matching circuit 302 are such that the input impedance of each SAW filter viewed from the distributed constant line 104 side matches the characteristic impedance of the transmission line in the passband of the own filter, and other SAW filters. It is determined to have a high impedance close to infinity in a frequency band corresponding to the pass band. Thereby, the impedance of the SAW filter 110 viewed from the distributed constant line 104 side becomes a high impedance close to infinity in the frequency band corresponding to the second and fifth passbands, and the SAW viewed from the distributed constant line 104 side. The impedance of the filter 112 becomes a high impedance close to infinity in frequency bands corresponding to the first and fifth pass bands. Further, the impedance of the SAW filter 304 viewed from the distributed constant line 104 side becomes a high impedance close to infinity in a frequency band corresponding to the first and second pass bands.
分布定数線路106の線路長L2は、入力端子102側から見た低周波側分波回路260の入力インピーダンスが第1、第2及び第5の通過帯域を含む周波数帯域において無限大に近い高インピーダンスになるように決められる。第1、第2、及び第5の通過帯域のそれぞれの中心周波数は、300MHz以内の範囲に分布しているので、分布定数線路106によって、これらの周波数成分がいずれも無限大に近い高インピーダンスになるよう受信信号を位相回転させることができる。例えば、分布定数線路106の線路長L2は、入力端子102側から見た分布定数線路106のインピーダンスが、第1の通過帯域の高周波端である2170MHzと第5の通過帯域の低周波端である1805MHzとの間の周波数帯域(つまり、1805MHzから2170MHzまでの周波数帯域)において無限大に近い高インピーダンスになるように決められる。 The line length L2 of the distributed constant line 106 is a high impedance that is close to infinity in the frequency band including the first, second, and fifth passbands when the input impedance of the low frequency side branching circuit 260 viewed from the input terminal 102 side. It is decided to become. Since the center frequencies of the first, second, and fifth passbands are distributed in a range within 300 MHz, the distributed constant line 106 makes these frequency components have a high impedance close to infinity. The phase of the received signal can be rotated so that For example, the line length L2 of the distributed constant line 106 is such that the impedance of the distributed constant line 106 viewed from the input terminal 102 side is 2170 MHz, which is the high frequency end of the first pass band, and the low frequency end of the fifth pass band. In the frequency band between 1805 MHz (that is, the frequency band from 1805 MHz to 2170 MHz), the impedance is determined to be close to infinity.
このように、分波器300は、いずれも受動素子である分布定数線路104、106と整合回路202、302との組み合わせにより、受信したマルチバンド信号を5つの周波数帯に分離することができる。 As described above, the duplexer 300 can separate the received multiband signal into five frequency bands by combining the distributed constant lines 104 and 106, which are passive elements, and the matching circuits 202 and 302.
受動素子を用いて受信信号を5つ以上の周波数帯に分離することは、上述した4つの周波数帯への分離よりもさらに困難である。そのため、受信信号を5分波する場合にはSP3T(single-Pole、triple-throw)スイッチ等の能動素子を用いることが一般的である。例えば、SP3Tスイッチに3つのSAWフィルタを接続し、2台のダイプレクサと組み合わせることにより、受信信号を5つの周波数成分に分離することができる。SP3Tスイッチは、並列接続されたフィルタに対して選択的に受信信号を供給するように構成されており、複数のフィルタに対して信号を同時に供給することはその性質上できない。一方、本発明の一実施形態に係る分波器300は、SP3Tスイッチ等の能動素子を用いずに受動素子によって受信信号を分波するので、消費電力を低減するとともに電源が不要な分だけ回路構成を簡素にすることができる。また、分波器300のフィルタ110、112、304はいずれもアンテナと常時導通しているので、受信信号に含まれる3つの周波数帯域の信号を同時に受信機へ出力することができる。さらに、キャパシタ・インダクタ等の受動素子はSP3Tスイッチと比較して安価であるため、分波器の製造コストの低減に寄与する。 It is more difficult to separate a received signal into five or more frequency bands using passive elements than the above-described separation into four frequency bands. For this reason, when the received signal is demultiplexed by 5, it is common to use an active element such as an SP3T (single-pole, triple-throw) switch. For example, a reception signal can be separated into five frequency components by connecting three SAW filters to the SP3T switch and combining it with two diplexers. The SP3T switch is configured to selectively supply a received signal to filters connected in parallel, and cannot supply signals to a plurality of filters at the same time. On the other hand, since the duplexer 300 according to an embodiment of the present invention demultiplexes the received signal with a passive element without using an active element such as an SP3T switch, the circuit reduces the power consumption and does not require a power supply. The configuration can be simplified. In addition, since all of the filters 110, 112, and 304 of the duplexer 300 are always connected to the antenna, signals in three frequency bands included in the received signal can be output to the receiver at the same time. Furthermore, passive elements such as capacitors and inductors are less expensive than SP3T switches, which contributes to a reduction in the manufacturing cost of the duplexer.
図4は、分波器200の等価回路図である。整合回路108は、SAWフィルタ110、112の接続点P1とSAWフィルタ110との間に配置されるキャパシタ402と、接続点P1とSAWフィルタ112との間に配置されるキャパシタ404と、キャパシタ402の両側の端子と接地との間にそれぞれ配置されるインダクタ408、410と、キャパシタ404とSAWフィルタ112との接続点と接地との間に配置されるインダクタ412と、を備える。これらのキャパシタやインダクタの素子値は、分布定数線路104側から見た各SAWフィルタのインピーダンスが自フィルタの通過帯域において伝送線路の特性インピーダンスに整合するととともに他のSAWフィルタの通過帯域において高インピーダンスとなるよう定められる。例えば、分布定数線路104の線路長は22mmであり、キャパシタ402、404の容量はそれぞれ3pF、4pFであり、インダクタ408、410、412のインダクタンス値はそれぞれ3.5nH、20nH、20nHである。 FIG. 4 is an equivalent circuit diagram of the duplexer 200. The matching circuit 108 includes a capacitor 402 disposed between the connection point P1 of the SAW filters 110 and 112 and the SAW filter 110, a capacitor 404 disposed between the connection point P1 and the SAW filter 112, and the capacitor 402. Inductors 408 and 410 disposed between terminals on both sides and the ground, and an inductor 412 disposed between a connection point between the capacitor 404 and the SAW filter 112 and the ground, respectively. The element values of these capacitors and inductors are such that the impedance of each SAW filter viewed from the distributed constant line 104 side matches the characteristic impedance of the transmission line in the pass band of the own filter, and high impedance in the pass band of other SAW filters. It is determined to be. For example, the line length of the distributed constant line 104 is 22 mm, the capacitances of the capacitors 402 and 404 are 3 pF and 4 pF, respectively, and the inductance values of the inductors 408, 410 and 412 are 3.5 nH, 20 nH and 20 nH, respectively.
整合回路202は、SAWフィルタ114とSAWフィルタ204との接続点P2とSAWフィルタ114との間に配置されるキャパシタ414と、接続点P2とSAWフィルタ204との間に配置されるキャパシタ416と、キャパシタ414とSAWフィルタ114との接続点と接地との間に配置されるインダクタ418と、接続点P2とキャパシタ416との接続点と接地との間に配置されるインダクタ420と、キャパシタ416とSAWフィルタ204との接続点と接地との間に接続されるインダクタ422と、を備える。これらのキャパシタやインダクタの素子値は、分布定数線路106側から見た各SAWフィルタのインピーダンスが自フィルタの通過帯域において伝送線路の特性インピーダンスに整合するととともに他のSAWフィルタの通過帯域において高インピーダンスとなるよう定められる。例えば、分布定数線路106の線路長は17.5mm、キャパシタ414、416の容量はそれぞれ5pF、4pF、インダクタ418、420、422のインダクタンス値はそれぞれ18nH、20nH、18nHである。 The matching circuit 202 includes a capacitor 414 disposed between the connection point P2 between the SAW filter 114 and the SAW filter 204 and the SAW filter 114, a capacitor 416 disposed between the connection point P2 and the SAW filter 204, An inductor 418 disposed between the connection point between the capacitor 414 and the SAW filter 114 and the ground, an inductor 420 disposed between the connection point between the connection point P2 and the capacitor 416 and the ground, and the capacitor 416 and the SAW. And an inductor 422 connected between a connection point with the filter 204 and the ground. The element values of these capacitors and inductors are such that the impedance of each SAW filter viewed from the distributed constant line 106 side matches the characteristic impedance of the transmission line in the passband of the own filter and is high impedance in the passband of other SAW filters. It is determined to be. For example, the line length of the distributed constant line 106 is 17.5 mm, the capacitances of the capacitors 414 and 416 are 5 pF and 4 pF, respectively, and the inductance values of the inductors 418, 420 and 422 are 18 nH, 20 nH and 18 nH, respectively.
図5は、図4に示す分波器200の入力端子102から見た入力インピーダンスを示すスミスチャートである。図5に示されるインピーダンスは、周波数を100MHzから6GHzまで掃引して測定された。第1から第4の通過帯域にそれぞれ相当するマーカm1-m4は、図5から明らかなようにいずれも50Ω近辺に分布しており、分波器200の入力インピーダンスは第1から第4の通過帯域のそれぞれにおいて伝送線路の特性インピーダンスに整合していることが確認された。 FIG. 5 is a Smith chart showing the input impedance viewed from the input terminal 102 of the duplexer 200 shown in FIG. The impedance shown in FIG. 5 was measured by sweeping the frequency from 100 MHz to 6 GHz. As is apparent from FIG. 5, the markers m1-m4 corresponding to the first to fourth pass bands are all distributed in the vicinity of 50Ω, and the input impedance of the duplexer 200 is the first to fourth pass. It was confirmed that it matched with the characteristic impedance of the transmission line in each band.
図6ないし図9は、図4に示す分波器200の減衰特性のシミュレーション結果を表すグラフである。図10は、図6ないし図9に表されるシミュレーション結果の一部を拡大して表すグラフである。これらの減衰特性は、分波器200を構成するSAWフィルタ110、112、114、204の特性を回路シミュレータに取り込み、これらの特性を整合回路108、202を構成する受動素子と合成してシミュレートした結果である。各SAWフィルタの特性は、アメリカ合衆国カリフォルニア州に本社を有するAgilent Technologies, Inc.のPNA-Lを用いて測定された。図6ないし図9において、横軸は周波数をGHz単位で表し、縦軸は減衰特性を示すSパラメータ(S21)の大きさをdB単位で表す。図6において曲線601は入力端子102・出力端子116間の減衰特性を表し、図7において曲線701は入力端子102・出力端子118間の減衰特性を表し、図8において曲線801は入力端子102・出力端子120間の減衰特性を表し、図9において曲線901は入力端子102・出力端子206間の減衰特性を表す。 6 to 9 are graphs showing the simulation results of the attenuation characteristics of the duplexer 200 shown in FIG. FIG. 10 is an enlarged graph showing a part of the simulation results shown in FIGS. These attenuation characteristics are simulated by incorporating the characteristics of the SAW filters 110, 112, 114, and 204 constituting the duplexer 200 into a circuit simulator, and synthesizing these characteristics with the passive elements that constitute the matching circuits 108 and 202. It is the result. Each SAW filter is characterized by Agilent Technologies, Inc., headquartered in California, USA. Of PNA-L. 6 to 9, the horizontal axis represents the frequency in GHz, and the vertical axis represents the magnitude of the S parameter (S21) indicating the attenuation characteristic in dB. 6, the curve 601 represents the attenuation characteristic between the input terminal 102 and the output terminal 116, the curve 701 in FIG. 7 represents the attenuation characteristic between the input terminal 102 and the output terminal 118, and the curve 801 in FIG. The attenuation characteristic between the output terminals 120 is represented. In FIG. 9, a curve 901 represents the attenuation characteristic between the input terminal 102 and the output terminal 206.
図6及び図10から明らかなように、入力端子102・出力端子116間の減衰量は、UMTSのバンドIに割り当てられている2110-2170MHzにおいて概ね2.5dB以下と十分に小さく、これ以外の帯域において十分に大きい。また、図7及び図10から明らかなように、入力端子102・出力端子118間の減衰量は、UMTSのバンドIIに割り当てられている1930-1990MHzにおいて概ね3.5dB以下と十分に小さく、これ以外の帯域において十分に大きい。図8及び図10から明らかなように、入力端子102・出力端子120間の減衰量は、UMTSのバンドVに割り当てられている869-894MHzにおいて概ね2.5dB以下と十分に小さく、これ以外の帯域において十分に大きい。図9及び図10から明らかなように、入力端子102・出力端子206間の減衰量は、UMTSのバンドVIIIに割り当てられている925-960MHzにおいて概ね2.5dB以下と十分に小さく、これ以外の帯域において十分に大きい。 As is apparent from FIGS. 6 and 10, the attenuation between the input terminal 102 and the output terminal 116 is sufficiently small to be approximately 2.5 dB or less at 2110-2170 MHz allocated to the band I of UMTS. Large enough in the band. 7 and 10, the attenuation amount between the input terminal 102 and the output terminal 118 is sufficiently small at about 3.5 dB or less at 1930-1990 MHz allocated to UMTS band II. Large enough in other bands. As is clear from FIGS. 8 and 10, the attenuation between the input terminal 102 and the output terminal 120 is sufficiently small at about 869 to 894 MHz allocated to the band V of UMTS, which is sufficiently small at about 2.5 dB or less. Large enough in the band. As is apparent from FIGS. 9 and 10, the attenuation between the input terminal 102 and the output terminal 206 is sufficiently small at about 925 to 960 MHz allocated to the UMTS band VIII and is approximately 2.5 dB or less. Large enough in the band.
このように、分波器300を用いてUMTSのバンドI、バンドII、バンドV、バンドVIIIの信号が重畳されたマルチバンド信号を4分波する際の挿入損失は、携帯電話機の分波器として十分に小さい水準である。比較のためにSP3Tスイッチを備える分波器を用いて本発明者が行ったシミュレーションによれば、各通過帯域の挿入損失は概ね0.5-1.0dB程度劣化する。このように、本発明の一実施形態に係る分波器200によって挿入損失が改善することが確認できた。 As described above, the insertion loss when the multiband signal on which the signals of the band I, band II, band V, and band VIII of UMTS are superimposed using the branching filter 300 is divided into four is determined by the branching filter of the mobile phone. As a small enough level. For comparison, according to a simulation performed by the present inventor using a duplexer including an SP3T switch, the insertion loss of each pass band is deteriorated by about 0.5 to 1.0 dB. Thus, it has been confirmed that the insertion loss is improved by the duplexer 200 according to the embodiment of the present invention.
図1ないし図3に表された分波器の回路構成は適宜変更することができる。例えば、SAWフィルタ114、204と並列に6番目のSAWフィルタを配置することにより、受信信号を6つの周波数帯域に分波することができる。この6番目のSAWフィルタは、例えば、SAWフィルタ110、112、304のそれぞれの通過帯域を含む周波数帯域の外側の低周波側に通過帯域を有する。この場合、分布定数線路104の線路長L1は、入力端子102側から見た高周波側分波回路140の入力インピーダンスが、第3、第4の通過帯域および6番目のSAWフィルタの通過帯域を含む周波数帯域において無限大に近い高インピーダンスになるように定められる。 The circuit configuration of the duplexer shown in FIGS. 1 to 3 can be changed as appropriate. For example, by arranging a sixth SAW filter in parallel with the SAW filters 114 and 204, the received signal can be demultiplexed into six frequency bands. The sixth SAW filter has a pass band on the low frequency side outside the frequency band including the pass bands of the SAW filters 110, 112, and 304, for example. In this case, the line length L1 of the distributed constant line 104 includes the third and fourth passbands and the passband of the sixth SAW filter when the input impedance of the high frequency side branch circuit 140 viewed from the input terminal 102 side. It is determined to have a high impedance close to infinity in the frequency band.
また、図1ないし図3に表された各分波器において、SAWフィルタの配置を適宜変更することができる。本発明の様々な実施形態においては、一の分布定数線路に並列接続されるSAWフィルタのそれぞれの通過帯域が、他の分布定数線路に並列接続されるSAWフィルタのそれぞれの通過帯域を含む周波数帯域(つまり、他の分布定数線路に並列接続される複数のSAWフィルタの通過帯域の低周波端の中で最も低周波側にある周波数と高周波端の中で最も高周波側にある周波数との間の周波数帯域)の外側の高周波側又は低周波側のいずれかに位置するように、各SAWフィルタの配置が定められる。例えば、図3に示す分波器300においては、分布定数線路106に接続されたSAWフィルタ114、204の周波数帯はそれぞれ869-894MHz、925-960MHzであるから、分布定数線路106に接続されたSAWフィルタ114、204の通過帯域は、いずれも分布定数線路104に接続されたSAWフィルタの通過帯域を含む1805MHz(分布定数線路104に接続されるSAWフィルタの各通過帯域の低周波端のうち最も低周波側の周波数)と2170MHz(分布定数線路104に接続されるSAWフィルタの通過帯域の高周波端のうち最も高周波側の周波数)とに挟まれた周波数帯域の外側(低周波側)にある。同様に、分布定数線路104に接続されたSAWフィルタ110、112、304の通過帯域は、それぞれ2110-2170MHz、1930-1990MHz、1805-1880MHzであるから、いずれも分布定数線路106に接続されたSAWフィルタの通過帯域を含む869MHzから960MHzの周波数帯域の外側(高周波側)にある。この規則に従って複数のSAWフィルタを配置することにより、各分布定数線路におけるインピーダンスが他の分布定数線路に接続されたSAWフィルタのそれぞれの通過帯域を含む周波数帯域において高インピーダンスになるように受信信号の位相を回転させることができ、これにより、各分布定数線路の後段に設けられる整合回路の設計を独立して行うことができる。このSAWフィルタの配置に関する規則は、本発明の他の実施形態に係る分波器100及び分波器200についても妥当する。そして、この規則を満足する限り、各SAWフィルタの配置及び設置数は適宜変更され得る。 In addition, in each of the duplexers shown in FIGS. 1 to 3, the arrangement of the SAW filter can be changed as appropriate. In various embodiments of the present invention, each pass band of a SAW filter connected in parallel to one distributed constant line includes a frequency band including each pass band of a SAW filter connected in parallel to another distributed constant line. (That is, between the frequency at the lowest frequency side of the low frequency ends of the passbands of the plurality of SAW filters connected in parallel to other distributed constant lines and the frequency at the highest frequency side of the high frequency ends. The arrangement of each SAW filter is determined so as to be located on either the high frequency side or the low frequency side outside the frequency band. For example, in the duplexer 300 shown in FIG. 3, the frequency bands of the SAW filters 114 and 204 connected to the distributed constant line 106 are 869 to 894 MHz and 925 to 960 MHz, respectively. The passbands of the SAW filters 114 and 204 are both 1805 MHz including the passband of the SAW filter connected to the distributed constant line 104 (the lowest of the low frequency ends of the passbands of the SAW filter connected to the distributed constant line 104). It is outside the frequency band (low frequency side) sandwiched between 2170 MHz (the frequency on the high frequency side of the high frequency end of the pass band of the SAW filter connected to the distributed constant line 104). Similarly, the passbands of the SAW filters 110, 112, and 304 connected to the distributed constant line 104 are 2110-2170 MHz, 1930-1990 MHz, and 1805 to 1880 MHz, respectively. It is outside (high frequency side) the frequency band of 869 MHz to 960 MHz including the pass band of the filter. By arranging a plurality of SAW filters according to this rule, the impedance of the received signal is such that the impedance in each distributed constant line becomes high impedance in the frequency band including the respective pass bands of the SAW filters connected to the other distributed constant lines. The phase can be rotated, whereby the matching circuit provided in the subsequent stage of each distributed constant line can be designed independently. This rule regarding the arrangement of the SAW filter is also valid for the duplexer 100 and the duplexer 200 according to another embodiment of the present invention. And as long as this rule is satisfied, arrangement | positioning and the number of installation of each SAW filter may be changed suitably.
本発明の実施形態は、以上明示的に述べた態様に限られず、様々な変更を行うことができる。例えば、SAWフィルタ110、112、114、204、304は、誘電体フィルタであってもよい。本発明に係る分波器は、携帯電話機以外の様々な無線通信装置に搭載され得る。本発明に係る分波器は、LTCC(低温同時焼成セラミックス)多層回路基板に作りこむことで小型化することができる。その他、本発明の趣旨を逸脱しない範囲で、上述した実施形態に対して様々な変更を行うことができる。 The embodiment of the present invention is not limited to the mode explicitly described above, and various changes can be made. For example, the SAW filters 110, 112, 114, 204, and 304 may be dielectric filters. The duplexer according to the present invention can be mounted on various wireless communication devices other than the mobile phone. The duplexer according to the present invention can be reduced in size by being built in an LTCC (low temperature co-fired ceramics) multilayer circuit board. In addition, various modifications can be made to the above-described embodiment without departing from the spirit of the present invention.
100、200、300 分波器
 102 入力端子
 104、106 分布定数線路
 108、202、302 整合回路
 110、112、114、204、304 SAWフィルタ
 116、118、120、206、306 出力端子
 140、340 高周波側分波回路
 160、260 低周波側分波回路
 402、404、414、416 キャパシタ
 408、410、412、418、420、422 インダクタ
100, 200, 300 Splitter 102 Input terminal 104, 106 Distributed constant line 108, 202, 302 Matching circuit 110, 112, 114, 204, 304 SAW filter 116, 118, 120, 206, 306 Output terminal 140, 340 High frequency Side demultiplexing circuit 160, 260 Low frequency side demultiplexing circuit 402, 404, 414, 416 Capacitor 408, 410, 412, 418, 420, 422 Inductor

Claims (14)

  1.  アンテナからの受信信号を入力する入力端子と、
     前記入力端子と第1の出力端子との間に配置され、第1の通過帯域の信号を通過させる第1のフィルタと、前記入力端子と第2の出力端子との間に配置され、第2の通過帯域の信号を通過させる第2のフィルタと、を含む第1分波回路と、
     前記入力端子と第3の出力端子との間に配置され、前記第1及び第2の通過帯域を含む周波数帯域の外側にある第3の通過帯域の信号を通過させる第3のフィルタと、を含む第2分波回路と、
     を備え、
     前記第1分波回路は、
     少なくとも前記第3の通過帯域に相当する周波数帯域において前記第1分波回路の入力インピーダンスを高インピーダンスにする第1の分布定数線路と、
     集中定数素子からなり、前記第1のフィルタの入力インピーダンスを前記第1の通過帯域において、また、前記第2のフィルタの入力インピーダンスを前記第2の通過帯域において、それぞれ外部回路の特性インピーダンスと整合させる第1の整合回路と、
     を有し、
     前記第2分波回路は、少なくとも前記第1及び第2の通過帯域を含む周波数帯域において前記第2分波回路の入力インピーダンスを高インピーダンスにする第2の分布定数線路 を有する、
     分波器。 
    An input terminal for inputting a received signal from the antenna;
    A first filter disposed between the input terminal and the first output terminal and configured to pass a signal in a first passband; and disposed between the input terminal and the second output terminal; A first filter that includes a second filter that passes a signal in the passband of
    A third filter disposed between the input terminal and the third output terminal and passing a signal in a third pass band outside the frequency band including the first and second pass bands; A second branching circuit including:
    With
    The first branching circuit includes:
    A first distributed constant line that sets an input impedance of the first branching circuit to a high impedance in a frequency band corresponding to at least the third passband;
    It consists of a lumped constant element and matches the input impedance of the first filter with the characteristic impedance of the external circuit in the first passband and the input impedance of the second filter in the second passband, respectively. A first matching circuit,
    Have
    The second demultiplexing circuit includes a second distributed constant line that makes the input impedance of the second demultiplexing circuit high in a frequency band including at least the first and second passbands.
    Duplexer.
  2.  前記第1の整合回路が、前記第1のフィルタの入力インピーダンスを前記第2の通過帯域に相当する周波数帯域において高インピーダンスにし、且つ、前記第2のフィルタの入力インピーダンスを前記第1の通過帯域に相当する周波数帯域において高インピーダンスにする請求項1に記載の分波器。 The first matching circuit sets the input impedance of the first filter to a high impedance in a frequency band corresponding to the second pass band, and sets the input impedance of the second filter to the first pass band. The duplexer according to claim 1, wherein a high impedance is set in a frequency band corresponding to.
  3.  前記第1のフィルタの入力インピーダンスが前記第1の通過帯域において誘導性または容量性の第1リアクタンス成分を有し、かつ、前記第2のフィルタの前記第1の通過帯域における入力インピーダンスが、前記第1リアクタンス成分が誘導性である場合に容量性となり、前記第1リアクタンス成分が容量性である場合に誘導性となるように、前記第1の整合回路が構成される請求項1に記載の分波器。 The input impedance of the first filter has an inductive or capacitive first reactance component in the first passband, and the input impedance of the second filter in the first passband is the The first matching circuit according to claim 1, wherein the first matching circuit is configured to be capacitive when the first reactance component is inductive and to be inductive when the first reactance component is capacitive. Duplexer.
  4.  前記第2のフィルタの入力インピーダンスが、前記第2の通過帯域において誘導性または容量性の第2リアクタンス成分を有し、かつ、前記第1のフィルタの前記第2の通過帯域における入力インピーダンスが、前記第2リアクタンス成分が誘導性である場合に容量性となり、前記第2リアクタンス成分が容量性である場合に誘導性となるように、前記第1の整合回路が構成される請求項1または3に記載の分波器。 The input impedance of the second filter has an inductive or capacitive second reactance component in the second passband, and the input impedance of the first filter in the second passband is 4. The first matching circuit is configured to be capacitive when the second reactance component is inductive and to be inductive when the second reactance component is capacitive. The duplexer described in 1.
  5.  前記第2分波回路が、
     前記第2の分布定数線路と第4の出力端子との間に前記第1及び第2の通過帯域を含む周波数帯域の外側の前記第3の通過帯域と同じ側に第4の通過帯域を有する第4のフィルタと、
     集中定数素子からなり、前記第3のフィルタの入力インピーダンスを前記第3の通過帯域において、また、前記第4のフィルタの入力インピーダンスを前記第4の通過帯域において、それぞれ前記特性インピーダンスと整合させる第2の整合回路と、
     を備え、
     前記第1の分布定数線路が、前記第3及び第4の通過帯域を含む周波数帯域において前記第1分波回路の入力インピーダンスを高インピーダンスにする、
     請求項1ないし4のいずれか1項に記載の分波器。
    The second branching circuit is
    Between the second distributed constant line and the fourth output terminal, a fourth pass band is provided on the same side as the third pass band outside the frequency band including the first and second pass bands. A fourth filter;
    A lumped-constant element that matches the input impedance of the third filter with the characteristic impedance in the third passband and the input impedance of the fourth filter in the fourth passband, respectively. Two matching circuits;
    With
    The first distributed constant line has a high impedance input impedance of the first branching circuit in a frequency band including the third and fourth passbands;
    The duplexer according to any one of claims 1 to 4.
  6.  前記第2の整合回路が、前記第3のフィルタの入力インピーダンスを前記第4の通過帯域に相当する周波数帯域において高インピーダンスにするとともに、前記第4のフィルタの入力インピーダンスを前記第3の通過帯域に相当する周波数帯域において高インピーダンスにする請求項5に記載の分波器。 The second matching circuit sets the input impedance of the third filter to a high impedance in a frequency band corresponding to the fourth pass band, and sets the input impedance of the fourth filter to the third pass band. The duplexer according to claim 5, wherein a high impedance is set in a frequency band corresponding to.
  7.  前記第3のフィルタの入力インピーダンスが、前記第3の通過帯域において誘導性または容量性の第3リアクタンス成分を有し、かつ、前記第4のフィルタの前記第3の通過帯域における入力インピーダンスが、前記第3リアクタンス成分が誘導性である場合に容量性となり、前記第3リアクタンス成分が容量性である場合に誘導性となるように、前記第2の整合回路が構成される請求項5に記載の分波器。 The input impedance of the third filter has an inductive or capacitive third reactance component in the third passband, and the input impedance of the fourth filter in the third passband is The second matching circuit is configured to be capacitive when the third reactance component is inductive and to be inductive when the third reactance component is capacitive. Duplexer.
  8.  前記第4のフィルタの入力インピーダンスが、前記第4の通過帯域において誘導性または容量性の第4リアクタンス成分を有し、かつ、前記第3のフィルタの前記第4の通過帯域における入力インピーダンスが、前記第4リアクタンス成分が誘導性である場合に容量性となり、前記第4リアクタンス成分が容量性である場合に誘導性となるように、前記第1の整合回路が構成される請求項5または7に記載の分波器。 The input impedance of the fourth filter has an inductive or capacitive fourth reactance component in the fourth passband, and the input impedance of the third filter in the fourth passband is 8. The first matching circuit is configured to be capacitive when the fourth reactance component is inductive and to be inductive when the fourth reactance component is capacitive. The duplexer described in 1.
  9.  前記第1分波回路が、
     前記第1の整合回路と第5の出力端子との間に、前記第3及び第4の通過帯域を含む周波数帯域の外側の前記第1及び第2の通過帯域と同じ側に第5の通過帯域を有する第5のフィルタをさらに備え、
     前記第1の整合回路が、 
     前記第1のフィルタの入力インピーダンスを前記第2及び第5の通過帯域に相当する周波数帯域のそれぞれにおいて高インピーダンスにし、
     前記第2のフィルタの入力インピーダンスを前記第1及び第5の通過帯域に相当する周波数帯域のそれぞれにおいて高インピーダンスにし、且つ、
     前記第5のフィルタの入力インピーダンスを前記第1及び第2の通過帯域に相当する周波数帯域のそれぞれにおいて高インピーダンスにし、
     前記第1の分布定数線路が、前記第3、第4、及び第5の通過帯域を含む周波数帯域において前記第1分波回路の入力インピーダンスを高インピーダンスにする、
     請求項5ないし8のいずれか1項に記載の分波器。
    The first branching circuit is
    Between the first matching circuit and the fifth output terminal, a fifth pass on the same side as the first and second passbands outside the frequency band including the third and fourth passbands. A fifth filter having a band;
    The first matching circuit comprises:
    The input impedance of the first filter is set to high impedance in each of frequency bands corresponding to the second and fifth passbands,
    The input impedance of the second filter is set to high impedance in each of the frequency bands corresponding to the first and fifth passbands; and
    The input impedance of the fifth filter is set to high impedance in each of the frequency bands corresponding to the first and second passbands,
    The first distributed constant line has a high impedance input impedance of the first branching circuit in a frequency band including the third, fourth, and fifth passbands;
    The duplexer according to any one of claims 5 to 8.
  10.  前記第1ないし第5のフィルタがいずれも弾性表面波フィルタである請求項9に記載の分波器。 The duplexer according to claim 9, wherein each of the first to fifth filters is a surface acoustic wave filter.
  11.  前記第1ないし第5のフィルタがいずれも誘電体フィルタである請求項9に記載の分波器。 The duplexer according to claim 9, wherein each of the first to fifth filters is a dielectric filter.
  12.  前記第1の整合回路が、
     前記第1及び第2のフィルタの接続点と前記第1のフィルタとの間に配置された第1のキャパシタと、
     前記第1及び第2のフィルタの接続点と前記第2のフィルタとの間に配置された第2のキャパシタと、
     前記第1のキャパシタの両側の端子と接地との間にそれぞれ配置された第1及び第2のインダクタと、
     前記第2のキャパシタと前記第2のフィルタとの接続点と接地との間に配置された第3のインダクタと、
     を備える請求項1ないし11のいずれか1項に記載の分波器。 
    The first matching circuit comprises:
    A first capacitor disposed between a connection point of the first and second filters and the first filter;
    A second capacitor disposed between a connection point of the first and second filters and the second filter;
    First and second inductors respectively disposed between terminals on both sides of the first capacitor and ground;
    A third inductor disposed between a connection point between the second capacitor and the second filter and the ground;
    The duplexer according to claim 1, further comprising:
  13.  前記第2の整合回路が、
     前記第3及び第4のフィルタの接続点と前記第3のフィルタとの間に配置された第3のキャパシタと、
     前記第3及び第4のフィルタの接続点と前記第4のフィルタとの間に配置された第4のキャパシタと、
     前記第3のキャパシタと前記第3のフィルタとの接続点と接地との間に配置された第4のインダクタと、
     前記第4のキャパシタの両側の端子と接地との間にそれぞれ配置された第5及び第6のインダクタと、
     を備える請求項5ないし12のいずれか1項に記載の分波器。
    The second matching circuit comprises:
    A third capacitor disposed between a connection point of the third and fourth filters and the third filter;
    A fourth capacitor disposed between a connection point of the third and fourth filters and the fourth filter;
    A fourth inductor disposed between a connection point between the third capacitor and the third filter and the ground;
    Fifth and sixth inductors respectively disposed between terminals on both sides of the fourth capacitor and ground;
    The duplexer according to claim 5, further comprising:
  14.  請求項1ないし13のいずれか1項に記載の分波器を備える無線通信装置。 A wireless communication device comprising the duplexer according to any one of claims 1 to 13.
PCT/JP2011/060815 2010-07-21 2011-05-11 Demultiplexer WO2012011309A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-163630 2010-07-21
JP2010163630A JP2012028896A (en) 2010-07-21 2010-07-21 Branching filter

Publications (1)

Publication Number Publication Date
WO2012011309A1 true WO2012011309A1 (en) 2012-01-26

Family

ID=45496738

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/060815 WO2012011309A1 (en) 2010-07-21 2011-05-11 Demultiplexer

Country Status (2)

Country Link
JP (1) JP2012028896A (en)
WO (1) WO2012011309A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015098791A1 (en) * 2013-12-27 2015-07-02 株式会社村田製作所 Branching device
WO2016104551A1 (en) * 2014-12-26 2016-06-30 住友大阪セメント株式会社 Optical modulator

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109417379B (en) 2016-06-28 2022-08-12 株式会社村田制作所 Multiplexer, high-frequency front-end circuit and communication device
KR102091686B1 (en) 2016-06-29 2020-03-20 가부시키가이샤 무라타 세이사쿠쇼 Multiplexer, high frequency front end circuit and communication device
CN109417380B (en) 2016-06-29 2022-08-12 株式会社村田制作所 Multiplexer, high-frequency front-end circuit and communication device
KR102399689B1 (en) 2016-10-13 2022-05-19 가부시키가이샤 무라타 세이사쿠쇼 acoustic wave filter device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09172340A (en) * 1995-12-19 1997-06-30 Murata Mfg Co Ltd Branching filter
JP2007266897A (en) * 2006-03-28 2007-10-11 Kyocera Corp Branching filter
JP2010045563A (en) * 2008-08-12 2010-02-25 Murata Mfg Co Ltd Multiband duplexer module

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003087076A (en) * 2001-09-07 2003-03-20 Murata Mfg Co Ltd Chip-like lc composite component and circuit using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09172340A (en) * 1995-12-19 1997-06-30 Murata Mfg Co Ltd Branching filter
JP2007266897A (en) * 2006-03-28 2007-10-11 Kyocera Corp Branching filter
JP2010045563A (en) * 2008-08-12 2010-02-25 Murata Mfg Co Ltd Multiband duplexer module

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DENYS ORLENKO: "Novel High-Rrejection LTCC Diplexers for Dual-Band WLAN Applications", IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM DIGEST, 2005, pages 727 - 730, XP010844572, DOI: doi:10.1109/MWSYM.2005.1516713 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015098791A1 (en) * 2013-12-27 2015-07-02 株式会社村田製作所 Branching device
CN105850038A (en) * 2013-12-27 2016-08-10 株式会社村田制作所 Branching device
US10116284B2 (en) 2013-12-27 2018-10-30 Murata Manufacturing Co., Ltd. Branching device
CN105850038B (en) * 2013-12-27 2019-01-08 株式会社村田制作所 Wave splitter device
DE112014006059B4 (en) 2013-12-27 2023-05-04 Murata Manufacturing Co., Ltd. branching device
WO2016104551A1 (en) * 2014-12-26 2016-06-30 住友大阪セメント株式会社 Optical modulator
JP2016126054A (en) * 2014-12-26 2016-07-11 住友大阪セメント株式会社 Optical modulator
US10162201B2 (en) 2014-12-26 2018-12-25 Sumitomo Osaka Cement Co., Ltd. Optical modulator

Also Published As

Publication number Publication date
JP2012028896A (en) 2012-02-09

Similar Documents

Publication Publication Date Title
CN1945987B (en) Duplexer for connecting wire
KR101009896B1 (en) Duplexer and method of isolating an rx-band and a tx-band
EP2870699B1 (en) Transceiver front-end
US7349717B2 (en) Front-end circuit for wireless transmission systems
US7194247B2 (en) Dual-channel passband filtering system using acoustic resonators in lattice topology
JP4243532B2 (en) Switching circuit
JP6965581B2 (en) High frequency module and communication equipment
EP2870701B1 (en) Transceiver front-end
JP2004312741A (en) Integrated two-band inductance and its application
WO2012011309A1 (en) Demultiplexer
JP2017208656A (en) Switch module and high frequency module
WO2016204053A1 (en) High-frequency front-end circuit
KR100691134B1 (en) Quadplexer
US11956069B2 (en) Multiplexer, filter, and communication device
JP5873294B2 (en) Duplexer
JP5351847B2 (en) Duplexer
CN112019186A (en) High-frequency circuit and communication device
JP2021064874A (en) High frequency module and communication device
CN110710119B (en) High frequency module
CN108631813B (en) Front end module
JP2013243600A (en) Triplexer
JP2020014104A (en) Filter and multiplexer
US20170324393A1 (en) Radio Frequency Duplexer
US11881844B2 (en) Multiplexer
JP4842245B2 (en) Triplexer circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11809483

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11809483

Country of ref document: EP

Kind code of ref document: A1