WO2012011252A1 - Gas generation device and gas generation method, and device and method utilizing the device and the method - Google Patents

Gas generation device and gas generation method, and device and method utilizing the device and the method Download PDF

Info

Publication number
WO2012011252A1
WO2012011252A1 PCT/JP2011/003987 JP2011003987W WO2012011252A1 WO 2012011252 A1 WO2012011252 A1 WO 2012011252A1 JP 2011003987 W JP2011003987 W JP 2011003987W WO 2012011252 A1 WO2012011252 A1 WO 2012011252A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
tank
liquid
aqueous liquid
pressure difference
Prior art date
Application number
PCT/JP2011/003987
Other languages
French (fr)
Japanese (ja)
Inventor
正治 棚橋
宏恵 近藤
棚橋 正和
祥子 登
Original Assignee
有限会社ターナープロセス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社ターナープロセス filed Critical 有限会社ターナープロセス
Priority to JP2012525310A priority Critical patent/JP5311245B2/en
Priority to CN2011900007443U priority patent/CN203238334U/en
Publication of WO2012011252A1 publication Critical patent/WO2012011252A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • C25B9/73Assemblies comprising two or more cells of the filter-press type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present invention relates to a gas generation apparatus and a gas generation method, and an apparatus and method using the same.
  • Hydrogen gas and oxygen gas are gases that are often used in chemical experiments. However, when these gases are used, gas cylinders are usually used, and management of the gas cylinders is difficult. Moreover, when using a gas cylinder, it was necessary to move a gas cylinder to the place which uses hydrogen gas or oxygen gas, or to perform piping. Therefore, conventionally, the labor for obtaining hydrogen gas and oxygen gas at an arbitrary place and at an arbitrary time has been great.
  • one of the objects of the present invention is to provide a novel gas generation apparatus and gas generation method that can easily limit the lowering of the liquid level of the electrolyzed aqueous liquid.
  • Another object of the present invention is to provide a novel apparatus and method using the gas generating apparatus and gas generating method of the present invention.
  • the present invention provides a first gas generating device.
  • the first gas generating device is a gas generating device that generates gas by electrolyzing an aqueous liquid placed in the first and second tanks, and is connected to the separator with the separator interposed therebetween.
  • Limiting means for limiting a decrease in at least one liquid level selected from the group consisting of the liquid level of the aqueous liquid in the first tank and the liquid level of the aqueous liquid in the second tank.
  • the present invention provides a second gas generator.
  • the second gas generation device is a gas generation device that generates gas by electrolyzing aqueous liquids placed in the first and second tanks, and is connected to the separator with the separator interposed therebetween.
  • the electrolysis of the aqueous liquid including the first and second tanks, the first electrode disposed in the first tank, and the second electrode disposed in the second tank.
  • the shape in which the lowering of the liquid level of the aqueous liquid in the second tank is limited when the gas pressure in the second tank becomes higher than the gas pressure in the first tank.
  • the first and second tanks have.
  • the present invention provides an apparatus for increasing the dissolved concentration of a predetermined gas in a liquid.
  • This apparatus includes the gas generator of the present invention and means for bringing the gas generated by the gas generator into contact with the liquid.
  • the present invention provides a gas generation method.
  • the gas generation method includes (i) a step of placing an aqueous liquid in the first and second tanks connected with a separator interposed therebetween, and (ii) a first electrode disposed in the first tank, Electrolyzing the aqueous liquid by applying a voltage between the second electrode disposed in the second tank, and in the step (ii), The lowering of at least one liquid level selected from the group consisting of the liquid level of the aqueous liquid and the liquid level of the aqueous liquid in the second tank is limited.
  • the present invention provides a method for producing a liquid having a high dissolved concentration of a predetermined gas.
  • the manufacturing method includes (I) a step of generating a gas by the gas generation method of the present invention, and (II) a step of bringing the gas into contact with a liquid.
  • the gas generating apparatus and the gas generating method of the present invention it is possible to easily prevent troubles caused by a decrease in the liquid level in the tank, for example, troubles such as gas mixing and electrolysis efficiency. That is, according to the apparatus and method of the present invention, it is possible to efficiently obtain a gas having a high purity. Moreover, according to the gas generator of the present invention, a predetermined gas can be easily generated. Further, according to the method and apparatus of the present invention, an aqueous liquid having a high dissolved concentration of a predetermined gas can be easily obtained.
  • FIG. 5A It is a schematic diagram which shows an example of the apparatus of this invention. It is sectional drawing which shows the pressure difference regulator of the apparatus shown in FIG. It is sectional drawing which shows an example of the use condition of the pressure difference regulator shown to FIG. 2A. It is sectional drawing which shows an example of a pressure difference regulator provided with a heater. It is a schematic diagram which shows an example of the use condition of the apparatus shown in FIG. It is a schematic diagram which shows the subject which this invention tends to solve. It is sectional drawing which shows an example of the pressure difference regulator used with the apparatus of this invention. It is a figure which shows one component of the pressure difference regulator shown to FIG. 5A. It is a figure which shows the other components of the pressure difference regulator shown to FIG. 5A.
  • FIG. 5A It is a figure which shows the other components of the pressure difference regulator shown to FIG. 5A. It is a schematic diagram which shows an example of a use condition about another example of the apparatus of this invention. It is sectional drawing which shows another example of the pressure difference regulator used with the apparatus of this invention. It is sectional drawing which shows another example of the pressure difference regulator used with the apparatus of this invention. It is sectional drawing which shows another example of the pressure difference regulator used with the apparatus of this invention. It is sectional drawing which shows another example of the pressure difference regulator used with the apparatus of this invention. It is sectional drawing of the pressure difference regulator shown to FIG. 7C. FIG. 7B is another cross-sectional view of the pressure difference regulator shown in FIG. 7C. FIG. 7B is another cross-sectional view of the pressure difference regulator shown in FIG. 7C.
  • FIG. 8A It is sectional drawing which shows an example of the gas distributor used with the apparatus of this invention. It is sectional drawing of the gas distributor shown to FIG. 8A. It is sectional drawing which shows the function of the gas distributor shown to FIG. 8A. It is a figure which shows an example of the electrode used with the apparatus of this invention. It is a figure which shows an example of arrangement
  • FIG. 12A and 12B It is a schematic diagram which shows an example of the use condition of the apparatus shown to FIG. 12A and 12B. It is a schematic diagram which shows another example of the apparatus of this invention. It is a figure which shows typically an example of the tank used for the apparatus which raises the dissolved concentration of gas.
  • the gas generator of the present invention generates gas by electrolyzing an aqueous liquid placed in the first and second tanks.
  • the apparatus includes a separator, a first tank, a second tank, a first electrode, and a second electrode.
  • the apparatus of the present invention can generate a predetermined gas by electrolyzing a solvent in an aqueous liquid.
  • the first gas generating device of the present invention can generate the first and second gases by electrolyzing a solvent in the aqueous liquid.
  • generation apparatus of this invention can produce
  • the apparatus of the present invention can generate hydrogen gas and oxygen gas by electrolyzing water in an aqueous liquid. Therefore, the apparatus of the present invention can be used as a hydrogen gas generator, an oxygen gas generator, or a hydrogen gas and oxygen gas generator.
  • aqueous liquid means a liquid containing water.
  • the aqueous liquid electrolyzed with the apparatus of this invention may be called “aqueous liquid (A).”
  • the aqueous liquid (A) may contain a solvent (for example, alcohol) other than water.
  • the proportion of water in the solvent of the aqueous liquid (A) is usually 50% by weight or more (for example, 80% by weight or more, 95% by weight or more, or 100% by weight).
  • the aqueous liquid (A) is an aqueous solution containing other ions in addition to hydrogen ions and hydroxide ions. Examples of such an aqueous liquid (A) include tap water.
  • the aqueous liquid (A) contains alcohol
  • the alcohol for example, at least one selected from the group consisting of methanol, ethanol, propanol, and butyl alcohol can be used.
  • the electrode reaction when the aqueous liquid (A) contains methanol include the following reactions. (Anode) CH 3 OH + H 2 O ⁇ CO 2 + 6H + + 6e ⁇ (Cathode) 6H + + 6e ⁇ ⁇ 3H 2 (Total) CH 3 OH + H 2 O ⁇ CO 2 + 3H 2
  • the alcohol concentration in the aqueous liquid (A) used for the generation of carbon dioxide is not particularly limited, and is, for example, in the range of 0.1 mol / L to 10 mol / L, preferably in the range of 1 mol / L to 5 mol / L. .
  • the gas generating device of the present invention can also be used as a device for generating carbon dioxide gas or a device for generating carbon dioxide gas and hydrogen gas.
  • oxygen gas may be produced in addition to carbon dioxide gas and hydrogen gas.
  • the aqueous liquid (A) may be an acidic aqueous solution, an alkaline aqueous solution, or an aqueous solution in which a salt is dissolved.
  • these solutions may require care in handling or may be troublesome to prepare. Therefore, it is convenient if an aqueous liquid (for example, tap water) that is easy to handle and obtain can be used as the aqueous liquid (A).
  • an aqueous liquid for example, tap water
  • a conductivity in the range of 100 ⁇ S / cm to 1000 ⁇ S / cm for example, 100 ⁇ S / cm to 300 ⁇ S / cm
  • electrolyzed it is possible.
  • electrolyzing the aqueous liquid (A) having this degree of conductivity it is possible to electrolyze water at a voltage of 15 volts or less by appropriately arranging appropriate electrodes.
  • the pH of the aqueous liquid (A) is not limited, but the aqueous liquid (A) having a pH in the range of about 5 to 9 has an advantage that it is easy to handle.
  • aqueous liquid (A) when the electrical conductivity of aqueous liquid (A) is too low, you may dissolve the compound (for example, salt) which produces an ion in aqueous liquid (A).
  • the salt to be added is preferably such that the ions produced thereby do not react within the electrolysis potential of water.
  • the salt to be added include a salt containing a proton ion or an alkali metal ion as a cation and a sulfate ion (SO 4 2 ⁇ ) or a phosphate ion (PO 4 3 ⁇ ) as an anion.
  • the salt concentration in the aqueous liquid (A) is not particularly limited, and may be, for example, in the range of 0.01 mol / L to 1 mol / L.
  • an aqueous liquid (A) that does not contain chlorine ions In order to obtain oxygen gas with high purity, it is preferable to use an aqueous liquid (A) that does not contain chlorine ions.
  • the aqueous liquid (A) not containing chlorine ions can be obtained, for example, by dissolving a salt (eg, potassium sulfate) containing no chlorine in reverse osmosis water obtained by a reverse osmosis membrane.
  • a gas with high purity it is possible to obtain an aqueous liquid in which a predetermined gas (hydrogen gas, oxygen gas, or carbon dioxide gas) has a high dissolved concentration and another gas has a low dissolved concentration.
  • the reduced amount of aqueous liquid for example, water
  • adding an aqueous liquid during electrolysis complicates the device.
  • no aqueous liquid eg, water is added during electrolysis.
  • a first gas is generated in the first tank (first electrode surface), and a second gas is generated in the second tank (second electrode surface).
  • the pressure difference between the gas pressure in the first tank and the gas pressure in the second tank may be referred to as “pressure difference (DP)”.
  • pressure difference (DP) increases, the liquid level of the aqueous liquid (A) in the first tank and the liquid level of the aqueous liquid (A) in the second tank shift.
  • this positional deviation increases, one of the liquid levels reaches a position where it contacts the separator. In that case, the gas with the higher pressure passes through the separator, and the gas in the first tank and the gas in the second tank are mixed.
  • the apparatus of the present invention provides a liquid surface of the aqueous liquid (A) in the first tank and an aqueous solution in the second tank during the electrolysis of the aqueous liquid (A).
  • Limiting means or structure for limiting a decrease in at least one liquid level selected from the group consisting of the liquid levels of the liquid (A) is included.
  • the restricting means prevents the liquid level of the aqueous liquid (A) from reaching a specific member.
  • the specific member may be a separator that partitions the first tank and the second tank, or may be the first and second electrodes.
  • the specific member may be at least one member selected from the group consisting of a separator, a first electrode, and a second electrode.
  • the specific member may be referred to as “specific member (S)”.
  • the limiting means is that the level of the aqueous liquid (A) in the first tank or the level of the aqueous liquid (A) in the second tank is lowered during the electrolysis of the aqueous liquid (A). May be a means for preventing the gas in the first tank and the gas in the second tank from being mixed. In the following, such limiting means may be referred to as “mixing prevention means”.
  • the first and second tanks are connected with a separator in between.
  • the first and second tanks are partitioned by a separator.
  • the gas in the first tank and the gas in the second tank are not released from other than the gas path. That is, in a normal use state, the first and second tanks are cut off from the atmosphere except for the gas path.
  • the tank on the side where the unused gas among the generated gases exists may be open to the atmosphere.
  • Electrolysis is performed in the first and second tanks.
  • the first electrode is disposed in the first tank.
  • the second electrode is disposed in the second tank.
  • the upper part between the 1st tank and the 2nd tank may be partitioned off by the partition which does not permeate
  • the lower part of the partition may be partitioned off by the separator. As long as the liquid level of the aqueous liquid (A) is at the partition wall, the gas in the first tank and the gas in the second tank are not mixed.
  • the first and second tanks may be formed by separating one container with a separator. Moreover, you may connect the container which comprises a 1st tank, and the container which comprises a 2nd tank on both sides of a separator.
  • the apparatus of the present invention includes a tank that is divided into a first tank and a second tank by a separator.
  • the first and second tanks are formed of a material that can hold the aqueous liquid (A).
  • the first and second tanks can be formed of, for example, glass, resin, rubber, metal, or a composite thereof. At least a part of the first and second tanks may be formed of a transparent material so that the inside of the tank can be observed.
  • the inner surfaces of the first and second tanks may be hydrophilic.
  • the method for making the inner surface of the tank hydrophilic include a method of attaching a hydrophilic film to the inner surface of the tank and a method of hydrophilizing the inner surface of the resin tank.
  • the hydrophilic film include a membrane filter (manufactured by Micropore, product number: JCWP14225).
  • the hydrophilic treatment include a method of treating with an oxidizing agent such as potassium permanganate, a corona discharge treatment, and a plasma discharge treatment.
  • the internal volumes of the first tank and the second tank may each be in the range of 100 cm 3 to 2000 cm 3 (for example, in the range of 300 cm 3 to 1000 cm 3 ).
  • the separator allows the aqueous liquid (A) and ions (cation and anion) to pass through.
  • the separator prevents a short circuit between the first electrode and the second electrode. Therefore, the separator is formed of a material (for example, an insulating material) that can prevent a short circuit between the first electrode and the second electrode.
  • the separator allows the aqueous liquid (A) in the first and second tanks to pass through.
  • the gas generated on the surface of the electrode passes through the separator, at least one of the gas in the first tank and the gas in the second tank becomes a mixed gas.
  • the separator does not transmit the gas bubbles generated on the surface of the electrode when immersed in the aqueous liquid (A).
  • the gas permeability can be controlled by, for example, the surface density of the separator or the roughness of the eyes.
  • membrane may be sufficient and the cloth (woven fabric or nonwoven fabric) formed with the fiber may be sufficient.
  • the separator may be hydrophilic.
  • the liquid is easily adsorbed on the surface, and the gas is difficult to be adsorbed. Therefore, even if the first and second electrodes are brought closer to each other so as to contact the separator, mixing of the first gas and the second gas (for example, hydrogen gas and oxygen gas) can be suppressed. Therefore, it is possible to bring the first and second electrodes closer by using a hydrophilic separator. Further, by using a hydrophilic separator, it is possible to use a porous separator that can reduce the voltage drop.
  • hydrophilic separators include separators formed using fibers having a hydrophilic surface.
  • hydrophilic separators include cloths and membranes formed of cotton, hemp, rayon, hair, silk, and the like.
  • a separator made of a hydrophilic synthetic resin or a separator made of a synthetic resin that has been subjected to a hydrophilic treatment may be used.
  • a phenomenon such as a capillary phenomenon occurs can be cited as one of measures. Specifically, a part of the separator is immersed in water, and the remaining part is taken out of the water. At that time, if the water rises against the gravity against the remaining portion, it can be estimated that the separator is hydrophilic.
  • the separator used in the apparatus of the present invention has a path (for example, a hydrophilic path) through which the aqueous liquid (A) can pass.
  • the aqueous liquid (A) in the first tank and the aqueous liquid (A) in the second tank are connected via this path. This pathway then passes both cations and anions.
  • the separator (diaphragm) used in the apparatus of the present invention usually does not have an ion exchange capacity, and allows both cations and anions to pass therethrough. In the apparatus of the present invention, it is not necessary to use an ion exchange membrane (ion exchange material). Therefore, the apparatus of the present invention usually does not include an ion exchange membrane (ion exchange material).
  • the apparatus of the present invention may include an ion exchange membrane (ion exchange material).
  • the first electrode and the second electrode are arranged so as to sandwich the separator.
  • the shortest distance between the first electrode and the second electrode is preferably 10 mm or less (for example, in the range of 0.5 mm to 5 mm).
  • the shortest distance between the first electrode and the second electrode is 20 mm or less (for example, 0.5 mm to A range of 10 mm or a range of 1 mm to 5 mm is preferable.
  • the shortest distance between the first electrode and the second electrode may be 0.5 mm or more (for example, 1 mm or more).
  • the shortest distance between the first electrode and the second electrode may be 8 mm or less, or 5 mm or less.
  • the distance between the first electrode and the second electrode may be shortened.
  • the separator is arrange
  • first and second electrodes electrodes capable of causing an electrolysis reaction of water are used.
  • the first and second electrodes include an electrode including a metal portion.
  • the first and second electrodes may be metal electrodes. It is preferable that a metal that easily undergoes an electrolysis reaction of water exists on the surfaces of the first and second electrodes.
  • metals that are susceptible to electrolysis of water include platinum.
  • a preferred example of the first and second electrodes is a metal electrode having platinum on the surface. Specifically, a platinum electrode or a metal electrode whose surface in contact with a liquid is coated with platinum is preferably used. Examples of metals coated with platinum include niobium, titanium, and tantalum, and other metals.
  • the surface of the electrode (anode) that generates oxygen gas is preferably coated with platinum.
  • the cathode may be an electrode made of a metal that generally has little corrosion, such as nickel or stainless steel.
  • an electrode including a conductive material other than metal for example, a conductive carbon material
  • an electrode obtained by coating the surface of these conductive materials with a metal platinum or other metal
  • a DC voltage is usually applied between the first electrode and the second electrode.
  • the magnitude of the applied voltage and the application method are not particularly limited.
  • the voltage may be applied between the electrodes so that the current is constant.
  • a constant voltage may be applied between the electrodes.
  • a DC voltage in the range of 2 to 70 volts or 5 to 20 volts is applied between the electrodes.
  • the first and second electrodes may each have a shape that spreads two-dimensionally.
  • the first and second electrodes may be flat electrodes.
  • the “flat electrode” means an electrode having a flat shape as a whole, and includes an electrode formed by two-dimensionally arranging linear electrodes. A through-hole may be formed in the flat electrode.
  • each of the first and second electrodes may be composed of a plurality of linear electrodes arranged on one plane, or may be an expanded metal. When the first and second electrodes have a flat plate shape, they are preferably arranged so as to face each other in parallel with the separator interposed therebetween.
  • Each of the first electrode and the second electrode may include a plurality of linear electrodes arranged in a stripe shape along the vertical direction. By using such an electrode, the gas generated on the surface of the electrode is likely to rise in the vertical direction.
  • Each of the first and second electrodes may be a comb-like electrode.
  • the surface of the linear electrode is preferably curved rather than flat. Therefore, the cross section of the linear electrode is preferably circular rather than rectangular.
  • the distance L between two adjacent linear electrodes may be 1.5 mm or less.
  • the distance L may be in the range of 0.1 mm to 1.5 mm, for example. By setting the distance L to 1.5 mm or less, it is possible to particularly suppress the gas generated on the electrode surface from staying on the electrode surface.
  • the distance between the first electrode and the separator is 1 mm or less, and the distance between the second electrode and the separator is 1 mm or less. May be.
  • the first and second electrodes may be in contact with the separator.
  • each of the first and second electrodes includes a plurality of linear electrodes arranged along the vertical direction, the gas generated on the surface of the linear electrode forms a gap between the linear electrodes. It rises up. Therefore, even when the distance between the electrode and the separator is close, the gas can be quickly discharged from the aqueous liquid (A).
  • an electrode having a structure in which gas generated on the electrode surface flows on the side opposite to the separator may be used.
  • Examples of such electrodes include electrodes using expanded metal.
  • Such an electrode is particularly preferably used when the electrode and the separator are in contact.
  • the first and second electrodes are connected to a power source (usually a DC power source) for applying a voltage (usually a DC voltage) to them.
  • the power source may be an AC-DC converter that converts an AC voltage obtained from an outlet into a DC voltage.
  • the power source may be a power generation device such as a solar cell or a fuel cell or a battery (a primary battery and a secondary battery).
  • the apparatus of the present invention may include a plurality of at least one of the first tank and the second tank. In that case, the first tank and the second tank are alternately arranged. A separator is partitioned between the first tank and the second tank. For example, if the apparatus of the present invention includes three first tanks and two second tanks, they are “first tank / second tank / first tank / second tank / They are alternately arranged in the order of “first tank”.
  • the electrode and the separator may be, for example, “first electrode / separator / second electrode / second electrode / separator / first electrode / first electrode / separator / second electrode / second”. Electrode / separator / first electrode ”.
  • the electrode area per unit volume can be increased, and the resistance between the electrodes can be reduced. Therefore, with this configuration, the amount of Joule heat generated can be reduced, and the temperature of the aqueous liquid (A) is unlikely to rise. That is, with this configuration, it is possible to increase the amount of current without increasing the amount of heat generation.
  • the liquid level of the aqueous liquid (A) in the first tank and the liquid level of the aqueous liquid (A) in the second tank change. Specifically, when the pressure of the gas in the first tank becomes higher than the pressure of the gas in the second tank, the liquid level of the aqueous liquid (A) in the first tank decreases, and the second The liquid level of the aqueous liquid (A) in the tank rises. When the liquid level of the aqueous liquid (A) in the first tank reaches the separator, the gas having a high pressure in the first tank passes through the separator. As a result, the gas in the first tank and the gas in the second tank are mixed.
  • DP pressure difference
  • the apparatus of the present invention has means and / or structures that limit such a drop in liquid level. Those limiting means and structure will be described below.
  • the limiting unit adjusts the pressure difference (DP) so that the pressure difference between the gas pressure in the first tank and the gas pressure in the second tank is small.
  • Pressure difference adjuster pressure difference adjusting means.
  • the pressure difference regulator is configured such that the liquid level of the aqueous liquid in the first tank reaches a specific member (S) and the liquid level of the aqueous liquid in the second tank is specified. It is an apparatus (means) that prevents the member (S) from being reached.
  • this pressure difference regulator is such that the gas in the first tank reaches the specific member (S), and the gas in the second tank reaches the specific member (S). It is a device (means) for preventing the arrival.
  • the first gas generating device of the present invention includes a separator, a first tank, a second tank, a first electrode, a second electrode, and a pressure difference regulator (pressure difference adjusting means). Including.
  • this pressure difference regulator By this pressure difference regulator, mixing of the gas in the first tank and the gas in the second tank can be prevented. That is, an example of the pressure difference regulator functions as a mixing preventing unit.
  • the pressure difference adjuster may adjust the pressure difference (DP) using a force generated by the pressure difference (DP).
  • the pressure difference regulator functions to increase the pressure of the lower pressure of the gas in the first tank and the gas in the second tank when a pressure difference (DP) occurs. It may be.
  • An example of the pressure difference regulator includes a container including at least one flow path selected from the group consisting of a first gas flow path and a second gas flow path, and a partition disposed in the container. .
  • the partition divides the flow path of the first gas and the flow path of the second gas in the container.
  • the container of this example may be referred to as “container (B)”.
  • the partition is deformed by the pressure difference (DP)
  • the resistance to the gas flow in at least one flow path changes so as to reduce the pressure difference (DP).
  • the resistance changes so that the pressure of the flow path whose pressure is lower than that of the other flow paths becomes higher.
  • the partition is deformed by a pressure difference (DP), so that the at least one flow path is opened and closed. More specifically, when the partition is deformed by the pressure difference (DP), the flow path whose pressure is lower than that of the other flow paths is closed.
  • a partition that does not substantially transmit the first and second gases and deforms due to a pressure difference (DP) can be used.
  • the partition may be formed of a thin metal plate, a resin sheet, a rubber sheet, or a composite material thereof.
  • the container (B) include a container that is substantially impermeable to the first and second gases and that is not substantially deformed by the pressure of the first and second gases.
  • the container (B) may be formed of metal, resin, rubber, or a composite material thereof.
  • the inside of the container (B) may be partitioned into a first space and a second space by a partition.
  • an inlet and an outlet through which the first gas flows may be connected to the first space.
  • the first space becomes a part of the flow path of the first gas.
  • An inflow port and a discharge port through which the second gas flows may be connected to the second space.
  • the second space becomes a part of the flow path of the second gas.
  • only the second gas inlet may be connected to the second space so that the pressure of the second gas is applied to the second space and the partition.
  • only the first gas inlet may be connected to the first space, and the inlet and outlet through which the second gas flows may be connected to the second space.
  • the pressure difference regulator may further include a heater for heating the inside (for example, the partition) of the container (B).
  • This heater may be included in the partition or may exist outside the partition.
  • the inside of the container (B) may be heated by arranging a heater outside the container (B) and heating the entire container (B).
  • a heater may be embedded in the container (B).
  • a known heater can be used as the heater, for example, a resistance heater (for example, a film heater or a ribbon heater) can be used.
  • the pressure difference may not be adjusted properly.
  • a problem can be avoided by heating the inside of the container (B) with a heater.
  • the temperature for heating the container (B) is not limited, and may be in the range of 40 to 100 ° C. (for example, in the range of 50 to 80 ° C. or in the range of 60 to 70 ° C.).
  • the apparatus of this invention may also include the heater which heats the flow path of gas other than a container (B).
  • the pressure difference regulator includes at least one detector that monitors the position of the liquid level of the aqueous liquid (A) in the first tank and the position of the liquid level of the aqueous liquid (A) in the second tank. And two flow regulators.
  • the at least one flow regulator changes the flow rate of the first gas and / or the flow rate of the second gas in accordance with the output of the detector.
  • the detector is not particularly limited, and may be a sensor that detects the water level by electricity, a sensor that detects the water level by light, or a sensor that detects the water level by pressure. Examples of the sensor that detects the water level by electricity include a sensor that detects the water level by electric resistance and a sensor that detects the water level by capacitance.
  • the signal is sent to the controller. Is output.
  • the controller adjusts the flow regulator based on the signal.
  • the controller reduces the flow rate of the flow path through which the gas existing in the tank different from the tank in which the liquid level has decreased (that is, the tank in which the liquid level has increased).
  • the liquid level of the tank in which the liquid level has risen is lowered, and the liquid level of the tank in which the liquid level has been lowered is raised. In this way, the liquid level is suppressed from reaching the specific member (S).
  • the apparatus of the present invention includes the position of the liquid level of the aqueous liquid (A) in the first tank and the position of the liquid level of the aqueous liquid (A) in the second tank. And a controller that stops voltage application based on an output signal of the detector.
  • the detector described above can be used as the detector.
  • the apparatus of the present invention may include a timer that stops voltage application at a predetermined time.
  • the limiting means includes a gas-liquid separation unit provided in a space in which the first gas generated in the first tank flows.
  • the space through which the first gas flows includes a space above the first tank and a flow path connecting the first tank and the outside (for example, the atmosphere).
  • This configuration can be adopted when the gas pressure in the second tank is higher than the gas pressure in the first tank.
  • the position of the liquid level of the aqueous liquid (A) does not rise any further.
  • the liquid level of the aqueous liquid (A) arranged in the first tank reaches the gas-liquid separator, the liquid level of the aqueous liquid (A) arranged in the second tank is a specific level. Do not reach the member (S).
  • the gas-liquid separator functions as a mixing preventing unit.
  • the gas-liquid separation unit allows only gas to pass without passing liquid.
  • the gas-liquid separation unit may be a layer or a membrane.
  • An example of the gas-liquid separation unit is a gas-liquid separation layer filled with a water repellent.
  • Examples of the water repellent include a fluororesin powder such as polytetrafluoroethylene.
  • Another example of the gas-liquid separation unit is a water-repellent gas-liquid separation membrane.
  • the gas-liquid separation membrane include liquid phase separation filter paper (for example, liquid phase separation filter paper manufactured by Whatman).
  • the gas-liquid separation unit may be disposed not only in the space in which the first gas generated in the first tank flows, but also in the space in which the second gas generated in the second tank flows.
  • the first gas generation device of the present invention may include a first gas / liquid separation unit and / or a second gas / liquid separation unit.
  • the first gas-liquid separation unit restricts the rise of the liquid level of the aqueous liquid (A) in the first tank
  • the second gas-liquid separation part is the liquid of the aqueous liquid (A) in the second tank. Limit the rise of the surface.
  • the gas-liquid separation unit may be provided in at least one space selected from the group consisting of a space in which the first gas flows and a space in which the second gas flows.
  • the space through which the second gas flows includes a space above the second tank and a flow path connecting the second tank and the outside (for example, the atmosphere).
  • the first gas generation device of the present invention may include both a pressure difference regulator and a gas-liquid separator.
  • the first gas generator of the present invention may further include a ventilation resistance member described later.
  • the apparatus of the present invention may further include a ventilation resistance member arranged on the downstream side of the gas-liquid separator.
  • the first and second tanks have a shape that restricts the lowering of the liquid level of the aqueous liquid (A).
  • gas mixing and electrode exposure can be prevented by using the first and second tanks having specific shapes.
  • the first and second tanks having such a shape function as the limiting means.
  • the first and second tanks have a shape in which the liquid level of (A) hardly reaches the specific member (S).
  • the horizontal sectional area inside one of the first and second tanks is made larger than the horizontal sectional area inside the other tank.
  • the cross-sectional area of the second tank should be larger than the cross-sectional area of the first tank. That's fine.
  • the rising range of the liquid level of the aqueous liquid (A) in the first tank is increased. Therefore, in order to prevent the aqueous liquid (A) in the first tank from leaking out of the first tank or flowing into the gas flow path, the height in the tank of the first tank is set to You may make it higher than the height in the tank of a 2nd tank.
  • a tubular portion may be provided above the first tank.
  • a member for increasing the ventilation resistance of the first gas may be disposed in the flow path of the first gas generated in the first tank.
  • a ventilation resistance member is usually disposed in the vicinity of the final end of the flow path of the first gas.
  • the ventilation resistance member may utilize a viscous flow of gas.
  • the ventilation resistance member include a porous member.
  • the ventilation resistance member also include a member (for example, a thin tube) provided with a channel having a small cross-sectional area.
  • the inner diameter of the flow path in the ventilation resistance member may be in the range of 0.1 mm to 4 mm, for example, in the range of 0.2 mm to 2 mm, or in the range of 0.3 mm to 1 mm.
  • the ventilation cross-sectional area of the flow path resistance in the member, 8 ⁇ 10 -3 mm 2 ⁇ 12mm may be in the range of 2, for example, 1 ⁇ 10 -2 mm 2 ⁇ 3mm 2 ranging and 7 ⁇ 10 - it may be in the range of 2 mm 2 ⁇ 0.8mm 2.
  • the length of the tube may be an appropriate length depending on the inner diameter.
  • the length may be in the range of 0.5 mm to 1000 mm, for example, in the range of 1 mm to 200 mm, 5 mm to It may be in the range of 200 mm.
  • the larger the cross-sectional area of the flow path in the ventilation resistance member the longer the flow path needs to be.
  • the second gas generation device of the present invention may include the first gas-liquid separation unit and / or the second gas-liquid separation unit described above.
  • the phrase “tank cross-sectional area” means a horizontal cross-sectional area inside the tank.
  • the horizontal cross-sectional area inside the first tank may be referred to as “cross-sectional area (S1)”.
  • the horizontal cross-sectional area inside the second tank may be referred to as “cross-sectional area (S2)”.
  • the tank may have a shape in which the horizontal cross-sectional area inside the tank varies depending on the height. In that case, the horizontal cross-sectional area inside the tank means the average of the cross-sectional areas in the range in which the liquid level of the aqueous liquid (A) present in the tank fluctuates.
  • the cross-sectional area (S2) is changed to the cross-sectional area (S1).
  • 1.1 to 10 times the range for example, a range 2 to 10 times, a range 2 to 5 times, or a range 3 to 5 times.
  • the ratio of the cross-sectional area (S1) and the cross-sectional area (S2) is in these ranges, the height in the tank of the first tank is 1.2 of the height in the tank of the second tank.
  • it may be in the range of 5 to 5 times, for example, in the range of 1.3 to 4 times or in the range of 1.5 to 3 times.
  • the height of the tubular part is also included in the height in the tank of the 1st tank.
  • the internal volume of the second tank may be in the range of 200 cm 3 to 3000 cm 3 , and the internal volume of the first tank is smaller than the internal volume of the second tank.
  • the shape of the tank is an arbitrary shape
  • the ventilation resistance member is disposed in at least one flow path selected from the group consisting of a first gas flow path and a second gas flow path. Devices that do so are also available.
  • portions other than the shape of the tank can have the same configuration as the second gas generation apparatus. According to this apparatus, it is possible to suppress rapid fluctuations in the liquid level of the aqueous liquid and pulsations of the liquid level.
  • the configuration included in the first gas generation device may be applied to the second gas generation device, and the configuration included in the second gas generation device may be applied to the first gas generation device. You may apply to.
  • the second gas generation device does not require the pressure difference regulator (pressure difference adjustment means) and the gas-liquid separation unit described in the first gas generation device.
  • the second gas generation device of the present invention may include a mixing preventing means used in the first gas generation device of the present invention.
  • the second gas generator of the present invention may include a pressure difference regulator or a gas-liquid separator used in the first gas generator of the present invention.
  • the shapes of the first and second tanks of the first gas generator of the present invention may be the shapes of the first and second tanks used in the second gas generator.
  • the cross-sectional area of one of the first and second tanks is made larger than the cross-sectional area of the other tank. May be.
  • the first and second gas generation apparatuses of the present invention may include a water vapor trap for removing water vapor or a liquid trap for trapping liquid in the gas flow path.
  • the water vapor trap may be a desiccant such as silica gel, or may be a device that condenses and removes water vapor.
  • a known water vapor trap can be used as such a water vapor trap.
  • the water vapor trap and the heater function as a means for preventing condensation in the pressure difference regulator and in the flow path.
  • the liquid trap there is no particular limitation on the liquid trap, and a known liquid trap can be used.
  • An example of the liquid trap includes a tank in which a flow path through which gas flows and a flow path through which gas is discharged are connected. The two flow paths are connected to the upper side of the tank. Usually, the tank is airtight except for two channels.
  • the liquid trap it is possible to trap the dew condensation generated in the flow path. Further, by using the liquid trap, when the aqueous liquid (A) flows through the flow channel for some reason, the aqueous liquid (A) can be trapped.
  • a liquid trap in the flow path upstream of the ventilation resistance member.
  • a liquid trap in a flow path between the gas-liquid separation unit and the ventilation resistance member.
  • a water vapor trap may be disposed in a flow path between the liquid trap and the ventilation resistance member.
  • the water vapor trap may be disposed on the upstream side of the pressure difference regulator.
  • the water vapor trap may be disposed in a flow path between a tank in which electrolysis is performed and a pressure difference regulator.
  • the first and second gas generation apparatuses of the present invention may include a distributor (distribution means) for distributing the generated gas.
  • the distributor is disposed in the gas flow path.
  • the distributor is usually arranged on the downstream side of the pressure difference regulator in the gas flow path.
  • An example of the distributor includes a container and a plurality of sheet-like partitions arranged in the container. The plurality of sheet-like partitions are arranged in parallel to each other. At least a part of the container is divided into a plurality of spaces by a plurality of partitions.
  • the gas generated by the gas generator is divided by a plurality of partitions and discharged from the container. By separating the gas, it can be used for multiple devices and / or applications at once.
  • a partition similar to the partition described in the example of the pressure difference adjuster can be used as the partition.
  • the apparatus of the present invention may include means for preventing condensation inside the distributor.
  • examples of such means include a steam trap and a heater described as means for preventing condensation inside the pressure difference regulator (pressure difference regulation means). That is, the apparatus of the present invention may further include a heater for heating the inside of the distributor (for example, the inside of the container of the distributor). The heater is disposed inside the distributor or outside the distributor.
  • the apparatus of the present invention may also include a water vapor trap disposed upstream of the distributor (eg, between the pressure differential regulator and the distributor).
  • the liquid level of the aqueous liquid (A) in the first tank and the liquid of the aqueous liquid (A) in the second tank Any one of the surfaces is lowered to prevent the first electrode or the second electrode from being exposed.
  • an ion exchange membrane may be used instead of the separator.
  • gas mixing is unlikely to occur even when the liquid level of the aqueous liquid (A) reaches the ion exchange membrane.
  • the electrolysis efficiency decreases.
  • a decrease in electrolysis efficiency is prevented by suppressing the exposure of the electrodes.
  • Another gas generation method is that the liquid level of the aqueous liquid in the first tank is lowered during the electrolysis of the aqueous liquid (A) in the first and second tanks connected by the connecting portion. Reaching the connecting portion and preventing the liquid level of the aqueous liquid in the second tank from lowering and reaching the connecting portion are prevented.
  • the apparatus in which this method is implemented is the same as the first gas generation apparatus or the second gas generation apparatus except that there is no separator at the connecting portion. Examples of tanks used in this method and apparatus include H-tubes.
  • the gas generating device of the present invention can be used as a device for increasing the dissolved concentration of a predetermined gas in a liquid.
  • the device may be referred to as “device (A)”.
  • the liquid before contacting with the gas may be referred to as “liquid (L1)”
  • the liquid after contacting with the gas may be referred to as “liquid (L2)”.
  • the gas generating apparatus of the present invention can be used as a manufacturing apparatus for a liquid (L2) having predetermined physical properties.
  • a manufacturing apparatus for a liquid (L2) having predetermined physical properties For example, it can be used as a production apparatus for a liquid (L2) having a predetermined concentration of dissolved gas and / or an oxidation-reduction potential (ORP) within a predetermined range. That is, the description of the apparatus (A) can be read as the description of the liquid (L2) manufacturing apparatus.
  • the liquid (L2) is produced by bringing the liquid (L1) into contact with the gas generated by the gas generator of the present invention, thereby changing the physical properties of the liquid (L1).
  • the liquid (L1) is not limited as long as it is a liquid whose physical properties are changed by contact with the gas generated by the gas generation apparatus of the present invention.
  • An example of the liquid (L1) is an aqueous liquid containing water, and may contain a solvent (for example, alcohol) other than water.
  • the proportion of water in the solvent is usually 50% by weight or more (for example, 80% by weight or more, 95% by weight or more, or 100% by weight).
  • An example of the liquid (L1) is water.
  • the device (A) includes the gas generation device of the present invention and means for bringing the gas generated by the gas generation device into contact with the liquid (L1).
  • the means may include the flow path for ejecting gas in a liquid (L1).
  • the means may include a tube for ejecting gas into the liquid (L1). This tube allows gas bubbling.
  • the means may include a container for holding the gas generated by the gas generation device and a device for arranging the liquid (L1) in the container.
  • the means may include a container for holding the gas generated by the gas generating device and a spraying device for spraying the liquid (L1) in the container.
  • the device (A) may include a tank for arranging the liquid (L1).
  • This tank may include means for preventing the atmosphere from being dissolved in the liquid (L1).
  • the tank may include a valve that opens only when the internal pressure of the tank is higher than the external pressure (usually atmospheric pressure). By using such a valve, it can suppress that the gas (usually air
  • the fine through-hole which lets the inside and outside of a tank pass may be formed in the tank. By allowing the inside and outside of the tank to pass through only such fine through-holes, it is possible to slowly release the gas in the tank to the outside when the pressure of the gas in the tank increases.
  • the solvent of the liquid (L2) is usually the same as the solvent of the liquid (L1).
  • the liquid (L2) may be an aqueous liquid containing water or a solvent other than water (for example, alcohol).
  • the proportion of water in the solvent is usually 50% by weight or more (for example, 80% by weight or more, 95% by weight or more, or 100% by weight).
  • the liquid (L2) is water or an aqueous solution having specific physical properties.
  • the gas generator of the present invention can generate at least one gas selected from hydrogen gas, oxygen gas, and carbon dioxide gas.
  • an aqueous liquid having a high dissolved hydrogen concentration for example, hydrogen-rich water
  • the aqueous liquid with high dissolved oxygen concentration for example, oxygen rich water
  • the aqueous liquid with high dissolved carbon dioxide concentration for example, carbonated water, is obtained by making the carbon dioxide gas produced
  • the dissolved hydrogen concentration in the liquid (L1) becomes high.
  • the redox potential (ORP) in the liquid (L1) can be lowered without greatly changing the pH of the liquid (L1).
  • the ORP of the water can be set to ⁇ 300 mV or less, ⁇ 400 mV or less, ⁇ 500 mV or less, or ⁇ 600 mV or less. Even in that case, it is possible to suppress a change in pH.
  • the pH of the liquid (L1) eg, water
  • the pH remains in the range of 6-8 (eg, in the range of 5-9).
  • the ORP of the liquid (L1) e.g., water
  • the liquid (L2) for example, water
  • an ORP in the range of 100 to ⁇ 800 mV can be easily produced.
  • the lower limit of the ORP in one example, it is ⁇ 850 mV.
  • the dissolved hydrogen concentration of water at room temperature can be 0.8 ppm (weight ratio) or more, or 1.2 ppm or more, and the temperature is 0 ° C.
  • the dissolved hydrogen concentration of the ice water can be 1.0 ppm or more or 1.5 ppm or more.
  • the residual chlorine concentration contained in tap water can be lowered by using the gas generating device of the present invention.
  • hydrogen-rich water having a residual chlorine concentration of 0.1 ppm or less it is possible to obtain hydrogen-rich water having a residual chlorine concentration of 0.1 ppm or less by bringing tap water having a residual chlorine concentration of 0.5 ppm into contact with hydrogen gas. That is, hydrogen-rich water with a low residual chlorine concentration can be obtained by treating tap water with the apparatus of the present invention.
  • the oxygen gas generated by the gas generator of the present invention When the oxygen gas generated by the gas generator of the present invention is brought into contact with the liquid (L1), oxygen is dissolved in the liquid (L1), and the dissolved oxygen concentration is increased. Therefore, it is possible to generate oxygen-rich water having a high oxygen concentration without substantially changing the pH of the liquid. For example, if the pH of the liquid (L1) (eg, water) is in the range of 6-8 (eg, in the range of 5-9), the pH remains in the range of 6-8 (eg, in the range of 5-9).
  • the oxygen concentration of the liquid (L1) can be increased.
  • a liquid (L2) for example, water
  • a liquid (L2) for example, water having a pH in the range of 1.5 to 12.5 and an oxygen concentration in the range of 10 to 40 ppm.
  • the residual chlorine concentration contained in tap water can be lowered by using the apparatus of the present invention.
  • the liquid (L1) may be sprayed in a container in which gas exists.
  • gas bubbles may flow in the liquid (L1).
  • the device (A) may include a structure for increasing the residence time of the gas in the liquid (L1).
  • the device (A) may include a structure for reducing the rising speed of the gas in the liquid (L1).
  • the device (A) may include a barrier disposed in a tank in which the liquid (L1) is placed.
  • the barrier is impermeable to gas bubbles.
  • the barrier is arranged so that the surface thereof is inclined with respect to the horizontal. In one example, the angle between the surface of the barrier and the horizontal is in the range of 5 ° to 40 °.
  • the barrier may have a configuration in which a plurality of plates are arranged in a vertical direction so that inclinations are alternately reversed.
  • the barrier may be helical.
  • the barrier prevents the bubbles from rising.
  • the bubble slowly rises along the lower surface of the barrier.
  • the time during which bubbles stay in the liquid (L1) becomes longer, and the rate of increase in the dissolved concentration of gas can be increased.
  • the gas generation method of the present invention is a method performed by the gas generation apparatus. Therefore, the matter explained about the gas generating device of the present invention is applicable to the gas generating method of the present invention. In addition, the matters described for the gas generation method of the present invention can be applied to the gas generation apparatus of the present invention.
  • the gas generation method of the present invention includes step (i) and step (ii).
  • the aqueous liquid (A) is disposed in the first and second tanks connected with the separator interposed therebetween.
  • the aqueous liquid (A) is electrolyzed by applying a voltage between the first electrode arranged in the first tank and the second electrode arranged in the second tank.
  • the fall of the at least 1 liquid level chosen from the liquid level of the aqueous liquid (A) in a 1st tank and the liquid level of the aqueous liquid (A) in a 2nd tank is carried out. Limited.
  • the liquid level of the aqueous liquid (A) in the first tank decreases to reach the specific member (S), and the liquid level of the aqueous liquid (A) in the second tank decreases. Reaching a specific member (S) is prevented.
  • the above restriction means can be used, and for example, the above pressure difference regulator (pressure difference adjustment means) can be used.
  • the method and apparatus of the present invention can be used in a method for producing a liquid having a high dissolved concentration of a predetermined gas. Specifically, it can be used in a method for producing a liquid having a high dissolved concentration of at least one gas selected from hydrogen gas, oxygen gas, and carbon dioxide gas. According to this production method, hydrogen-rich water, oxygen-rich water, and carbonated water can be produced.
  • This production method includes a step of generating gas using the gas generation method or gas generation apparatus of the present invention (step (I)) and a step of bringing the generated gas into contact with the liquid (L1) (step (II)). Including.
  • this manufacturing method is performed by the apparatus (A) of the present invention. Therefore, the matters described for the apparatus (A) of the present invention can be applied to this method.
  • this production method is a method for increasing the dissolved concentration of a predetermined gas in a liquid, and the method includes steps (I) and (II).
  • the controller includes an arithmetic processing unit and storage means.
  • the storage means may be integrated with the arithmetic processing unit.
  • Examples of the storage means include an internal memory, an external memory, and a magnetic disk (for example, a hard disk drive) of the arithmetic processing unit.
  • the storage means stores a program for executing each process.
  • An example of the controller includes a large scale integrated circuit (LSI).
  • the controller may be connected to equipment (power supply, valve, etc.) and a measuring instrument (water level gauge, etc.) included in the apparatus.
  • the controller may execute processing performed by the device by controlling the device based on the output of the measuring instrument.
  • the apparatus of the present invention may not include a controller.
  • Embodiment 1 demonstrates an example of the gas production
  • a gas generator of Embodiment 1 is schematically shown in FIG.
  • the apparatus 100 of FIG. 1 includes a tank 10, a flat plate-like first electrode 21, a flat plate-like second electrode 22, a separator 23, a DC power supply 24, and a pressure difference regulator 30.
  • the tank 10 is divided into a first tank 11 and a second tank 12 by a partition wall 10 a and a separator 23. That is, the first tank 11 is adjacent to the second tank 12 via the separator 23.
  • the partition wall 10 a partitions the upper part of the tank 10, and the separator 23 partitions the lower part of the tank 10.
  • the partition wall 10a does not pass either gas or liquid.
  • An aqueous liquid 25 is disposed in the tank 10 (the first tank 11 and the second tank 12). Gases exist on the liquid surface of the aqueous liquid 25 in the first tank 11 and on the liquid surface of the aqueous liquid 25 in the second tank 12, respectively.
  • the first electrode 21 is disposed in the first tank 11.
  • the second electrode 22 is disposed in the second tank 12.
  • the first electrode 21 and the second electrode 22 are opposed to each other with the separator 23 interposed therebetween.
  • the first electrode 21 and the second electrode 22 are connected to a DC power supply 24.
  • a voltage between the first electrode 21 and the second electrode 22 water is electrolyzed and oxygen gas and hydrogen gas are generated. Specifically, oxygen gas is generated on the surface of the anode, and hydrogen gas is generated on the surface of the cathode.
  • FIG. 2A shows a cross-sectional view of the pressure difference regulator 30.
  • the pressure difference adjuster 30 includes a partition 31 and a container 40.
  • the container 40 is formed with an inlet 41a, an outlet 41b, an inlet 42a, and an outlet 42b.
  • the interior of the container 40 is partitioned into a first space 41 and a second space 42 by a partition 31.
  • the first space 41 communicates with the outside through the inflow port 41a and the discharge port 41b.
  • the discharge port 41b is open to the atmosphere.
  • the inflow port 41a is connected to the first tank 11 via the flow path 28 of FIG.
  • the 1st tank 11 and the pressure difference regulator 30 are connected by the flow path 28 not via a tank etc.
  • the first space 41 is a part of the flow path of the first gas 26. When the pressure of the first gas 26 in the first tank 11 increases, the first gas 26 is released into the atmosphere through the inlet 41a and the outlet 41b.
  • the second space 42 communicates with the outside through the inlet 42a and the outlet 42b.
  • the discharge port 42b is open to the atmosphere.
  • the inflow port 42a is connected to the second tank 12 through the flow path 29 of FIG.
  • the 2nd tank 12 and the pressure difference regulator 30 are connected by the flow path 29, without passing through a tank etc.
  • the second space 42 is a part of the flow path of the second gas 27. When the pressure of the second gas 27 in the second tank 12 increases, the second gas 27 is released into the atmosphere through the inlet 42a and the outlet 42b.
  • the pressure difference adjuster 30 may include a heater 32 disposed around the container 40. By heating the container with the heater 32, it is possible to prevent condensation inside the container 40.
  • the pressure difference (DP) necessary for the partition 31 to block the inlet and / or the outlet may vary depending on the distance between the inlet and / or the outlet and the partition, the material and thickness of the partition 31, and the like. it can. For example, by reducing the distance between the inlet and / or outlet and the partition 31, the inlet and / or outlet can be blocked by the partition 31 with a small pressure difference (DP). In addition, by forming the partition 31 with a highly flexible material or making the partition 31 thinner, the inlet and / or the outlet can be blocked by the partition 31 with a small pressure difference (DP). .
  • the apparatus in FIG. 3 is an example of the apparatus (A).
  • a tube 43 is connected to the discharge port 42 b, and the tip of the tube 43 is placed in the liquid 44.
  • the liquid 44 is a liquid in which hydrogen gas is bubbled, and is placed in a tank 45.
  • the tip of the tube 43 is preferably hydrophilic, and particularly preferably hydrophilic and porous. By using such a tip, the gas is easily released in the form of fine bubbles.
  • the discharge port 41b is open to the atmosphere.
  • the inner surface of the tube 43 may be water-repellent, thereby preventing the liquid 44 from entering the tube 43.
  • the aqueous liquid 25 is electrolyzed by applying a voltage between the first electrode 21 and the second electrode 22 so that the first electrode 21 becomes an anode.
  • oxygen gas is generated on the surface of the first electrode 21, and hydrogen gas is generated on the surface of the second electrode 22.
  • the generated hydrogen gas is released into the liquid 44 through the flow path 29 and the tube 43.
  • the pressure of the hydrogen gas (second gas 27) increases according to the distance from the surface of the liquid 44 to the tip of the tube 43.
  • the pressure difference (DP) between the pressure of the first gas 26 and the pressure of the second gas 27 may become too large.
  • the pressure difference (DP) causes a difference between the liquid level of the aqueous liquid 25 in the first tank 11 and the liquid level of the aqueous liquid 25 in the second tank 12.
  • the pressure difference (DP) is too large, one liquid level is lowered to the position of the separator 23 as shown in FIG. In this state, the gas having the higher pressure passes through the separator, and the first gas and the second gas are mixed. Further, even when only the gas with the higher pressure is used, the gas flows from the flow path of the other gas, so that the usable amount of the gas is reduced. In order to prevent such a problem, it is important to prevent the liquid level of the aqueous liquid 25 from dropping to the position of the separator 23.
  • FIG. 5A A cross-sectional view of an example of the pressure difference regulator 30 is shown in FIG. 5A.
  • the pressure difference adjuster 30 in FIG. 5A includes a partition 31 and a container 40.
  • the container 40 is constituted by containers 40a and 40b.
  • a recess 40ac is formed in the container 40a.
  • the container 40b has a recess 40bc.
  • a space surrounded by the container 40 a and the partition 31 is a first space 41.
  • a space surrounded by the container 40b and the partition 31 becomes the second space 42.
  • the partition 31 is pressed against the container 40b by the O-ring 51.
  • FIG. 5B shows a view when the container 40a is viewed from the partition 31 side.
  • FIG. 5C shows a view of the container 40b as viewed from the partition 31 side.
  • FIG. 5D shows a view when the partition 31 is viewed from the container 40a side.
  • Screw holes 40ah are formed at the four corners of the container 40a. Similar holes 40bh and 31h are formed in the container 40b and the partition 31, respectively.
  • the container 40a and the container 40b are coupled by screws, but may be coupled by an adhesive or the like.
  • the container 40a is formed with a groove 40ar for fitting the O-ring.
  • a recess 40ac for forming the first space 41 is formed in the container 40a.
  • the container 40a is formed with an inlet 41a and an outlet 41b, which are connected to the recess 40ac.
  • the first gas 26 flows through the inlet 41a, the first space 41 (recess 40ac), and the outlet 41b.
  • the container 40b is formed with a recess 40bc for forming the second space 42.
  • the container 40b has an inlet 42a and an outlet 42b, which are connected to the recess 40bc.
  • the second gas 27 flows through the inlet 42a, the second space 42 (recess 40bc), and the outlet 42b.
  • the O-ring 51 is disposed so as to surround the inlet 41a, the outlet 41b, the inlet 42a, and the outlet 42b.
  • the partition 31 is annularly pressed against the container 40b by the O-ring 51.
  • the partition 31 may be in close contact with the container 40a and the container 40b without using the O-ring 51.
  • the partition 31 may be bonded to the container 40a and / or the container 40b. In any case, the partition 31 and the container 40 are in close contact or bonded so that the gas does not escape from the contact portion between the partition 31 and the container 40.
  • FIG. 6 An example of an apparatus provided with such a pressure difference regulator 30a is shown in FIG.
  • the apparatus 100a of FIG. 6 differs from the apparatus 100 of FIG. 1 only in that the pressure difference adjuster 30a is used instead of the pressure difference adjuster 30.
  • the pressure difference adjuster 30a differs from the pressure difference adjuster 30 only in that the discharge port 42b is not formed.
  • the inlet 42a is connected to the flow path of the second gas 27 to be used.
  • the partition 31 is deformed to block the inlet 41a and / or the outlet 41b until the pressure difference (DP) is reduced. Therefore, the device 100a can obtain the same effect as the device 100.
  • FIGS. 7A and 7B An example of such a pressure differential regulator is shown in FIGS. 7A and 7B.
  • the pressure difference adjuster 30b in FIG. 7A differs from the pressure difference adjuster 30 in FIG. 5A only in that the recess 40ac is not formed in the container 40a. Since the recess 40ac is not formed, the first space 41 does not exist in the pressure difference regulator 30b in a normal state.
  • 7B is different from the pressure difference adjuster 30 of FIG. 5A only in that the recess 40bc is not formed in the container 40b. Since the recess 40bc is not formed, the first space 41 does not exist in the pressure difference regulator 30c in a normal state.
  • FIG. 7C Another example of the pressure difference regulator is shown in FIG. 7C.
  • cross-sectional views taken along line VIID-VIID, line VIIE-VIIE, and line VIIF-VIIF in FIG. 7C are shown in FIGS. 7D, 7E, and 7F, respectively. Note that the cross-sectional view taken along line VIIG-VIIG in FIG. 7C is the same as the cross-sectional view shown in FIG. 7E.
  • the 7C includes a partition 31 and a container 40.
  • the container 40 includes containers 40a and 40b.
  • a first space 41 is formed by the recess of the container 40 a and the partition 31.
  • a second space 42 is formed by the recess of the container 40 b and the partition 31.
  • the container 40 is formed with an inlet 41 a and an outlet 41 b that communicate with the first space 41, and an inlet 42 a and an outlet 42 b that communicate with the second space 42.
  • the spaces 41 and 42 have a large cross-sectional area in the vicinity of the inlet and the outlet, respectively, and a small cross-sectional area in the middle between the inlet and the outlet.
  • the pressure can be easily adjusted.
  • it can suppress that a water droplet accumulates in the container 40 by setting it as such a shape.
  • the partition 31 is configured to reduce the pressure difference (DP). Is deformed. As a result, the pressure difference (DP) is suppressed from becoming too large.
  • the pressure difference adjuster 30a in the pressure difference adjusters 30b, 30c and 30d, it is possible to omit either the discharge port 41b or the discharge port 42b.
  • the inlet 41a may be connected to the oxygen gas generation side (anode side), and the inlet 42a may be connected to the hydrogen gas generation side (cathode side).
  • the inlet 41a may be connected to the hydrogen gas generation side (cathode side), and the inlet 42a may be connected to the oxygen gas generation side (anode side).
  • the inflow port 41a may be connected to the high pressure side, and the inflow port 42a may be connected to the low pressure side.
  • the inlet 41a may be connected to the low pressure side, and the inlet 42a may be connected to the high pressure side.
  • FIG. 8A A cross-sectional view of an example of a gas distributor is shown in FIG. 8A.
  • the distributor 80 in FIG. 8A includes a container 81 and a plurality of partitions 82.
  • an introduction path 83 and a plurality of discharge paths 84a to 84g are formed in the container 81.
  • the gas generated by the gas generator is introduced from the introduction path 83 and discharged from the discharge paths 84a to 84g.
  • the gas is divided and discharged by a plurality of partitions 82.
  • the discharged gas can be used for different uses (for example, different devices) for each of the discharge paths 84a to 84g.
  • gas discharged from two or more discharge ports selected from the discharge paths 84a to 84g can be used for the same application.
  • FIG. 8B shows a cross-sectional view taken along line VIIIB-VIIIB in FIG. 8A.
  • the upstream side and the downstream side of the partition 82 are fixed to the container 81, respectively.
  • container 81 includes a first region R1 that is not divided by partition 82 and a second region R2 that is divided by partition 82.
  • the second region R2 is divided into routes R2a to R2g, and corresponds to the discharge routes 84a to 84g, respectively.
  • Each of the plurality of partitions 82 is a sheet-shaped partition, and is arranged so as to be parallel to each other.
  • the container 81 includes a fixing portion 81a for fixing the partition 82.
  • any of the downstream paths of the discharge paths 84a to 84g may be blocked by water droplets generated by condensation of water vapor. Even if such a state occurs, it is possible to easily remove water droplets on the path due to a change in gas pressure and a change in gas flow rate accompanying the deformation of the partition 82.
  • the downstream side of the discharge path 84d is blocked with water droplets.
  • the pressure in the path R2d increases, and the two partitions 82 forming the path R2d swell outward as shown in FIG. 8C.
  • the resistance to the gas flowing through the path R2d is reduced. Therefore, the pressure loss in the path R2d is reduced, and the pressure applied to the water droplet can be increased. In this way, the possibility of removing water droplets may be increased.
  • FIG. 9A An example of the flat plate-like first electrode 21 is shown in FIG. 9A.
  • the first electrode 21 in FIG. 9A includes a plurality of linear electrodes 21a arranged in a stripe pattern and a linear electrode 21b connecting them.
  • the first electrode 21 is usually arranged so that the linear electrode 21a is parallel to the vertical direction.
  • the second electrode 22 can also have the same structure as the first electrode 21.
  • An example of the arrangement of the first electrode 21 and the separator 23 is schematically shown in FIG. 9B.
  • the flat plate-like first electrode 21 and the flat plate-like second electrode 22 are arranged in parallel with the separator 23 interposed therebetween. That is, the first electrode 21, the second electrode 22, and the separator 23 have a two-dimensional outer shape and are arranged so as to be parallel to the vertical direction when in use.
  • Embodiment 2 demonstrates an example of the gas production
  • a gas generator of Embodiment 2 is schematically shown in FIG.
  • the apparatus 200 in FIG. 10 includes a tank 10, a flat plate-like first electrode 21, a flat plate-like second electrode 22, a separator 23, a DC power supply 24, and a gas-liquid separation membrane 91. The description of the parts overlapping with the apparatus 100 is omitted.
  • FIG. 10 shows a state in which the pressure difference (DP) is zero.
  • the volume V2 of the aqueous liquid 25a exists above the position where the separator 23 and the aqueous liquid 25 are in contact with each other.
  • a space of volume V1 exists between the aqueous liquid 25 and the gas-liquid separation membrane 91 in the first tank 11.
  • the apparatus 200 is used in a state where the volume V2 is larger than the volume V1.
  • the liquid level of the aqueous liquid 25 is lowered to the position of the separator 23 when the pressure difference (DP) is large, and the first gas 26 and the second gas 27 are mixed.
  • the magnitude relationship between the volume V1 and the volume V2 can be controlled, for example, by adjusting the amount of the aqueous liquid 25 arranged in the tank 10. For example, when the amount of the aqueous liquid 25 is small, the value of (V2 / V1) decreases, and when the amount of the aqueous liquid 25 is large, the value of (V2 / V1) increases.
  • the pressure of the second gas 27 increases.
  • the pressure of the second gas 27 is high depending on the distance between the tip of the tube 43 and the liquid level of the liquid 44 and the ventilation resistance of the second gas 27 flowing through the tube 43.
  • the liquid level of the aqueous liquid 25 in the first tank 11 rises, and the liquid level of the aqueous liquid 25 in the second tank 12 falls.
  • the apparatus 200 even when the liquid level of the aqueous liquid 25 in the first tank 11 reaches the gas-liquid separation membrane 91, the liquid level of the aqueous liquid 25 in the second tank 12 is The separator 23 is not reached. Therefore, even if the pressure of the second gas 27 (hydrogen gas) in the second tank 12 increases, the first gas 26 (oxygen gas) and the second gas 27 (hydrogen gas) do not mix. . Thus, according to the apparatus 200 of Embodiment 2, it can prevent that the 1st gas 26 and the 2nd gas 27 are mixed. Further, in the apparatus 200, it is possible to prevent the aqueous liquid 25 from overflowing outside the apparatus.
  • FIG. 10 shows an example in which the gas-liquid separation unit is disposed only in the space (above the first tank) in which the first gas flows, but the gas-liquid separation unit is a space in which the second gas flows. It may be formed (above the second tank). Further, the gas-liquid separation unit may be formed in both the space in which the first gas flows and the space in which the second gas flows. Furthermore, the position where the gas-liquid separator is arranged is not limited to the position shown in FIG. The gas-liquid separation unit may be arranged so that the first gas and / or the second gas flows through the gas-liquid separation unit. In another viewpoint, the gas-liquid separation part should just be arrange
  • Embodiment 3 In Embodiment 3, an example of the second gas generation device of the present invention will be described.
  • a gas generator of Embodiment 3 is schematically shown in FIGS. 12A and 12B.
  • the apparatus 300 of FIG. 12A includes a tank 10, a flat plate-like first electrode 21, a flat plate-like second electrode 22, a separator 23, and a DC power supply 24. The description of the parts overlapping with the apparatus 100 is omitted.
  • the apparatus 300 does not include the pressure difference regulator 30. Moreover, the shape of the tank 10 of the apparatus 300 is different from the shape of the tank 10 shown in FIG.
  • the device 300 includes a liquid trap 121 and a thin tube 122 that functions as a ventilation resistance member.
  • the tank 10 shown in FIG. 12A is divided into a first tank 11 and a second tank 12 by a separator 23 (and a partition wall 10a).
  • An aqueous liquid 25 is disposed in the tank 10 (the first tank 11 and the second tank 12).
  • a first gas 26 exists on the liquid surface of the aqueous liquid 25 in the first tank 11.
  • a first gas 27 exists on the liquid surface of the aqueous liquid 25 in the second tank 12.
  • a cylindrical portion 11 a connected to the first tank 11 is formed above the first tank 11.
  • a water vapor trap may be disposed between the liquid trap 121 and the tube 122.
  • the tube 123 is fixed to the tip of the cylindrical portion 11a.
  • the tube 123 is a relatively thick tube.
  • the other end of the tube 123 is connected to the liquid trap 121.
  • a thin tube 122 is also connected to the liquid trap 121. Since the ventilation resistance of the gas released from the first tank 11 to the atmosphere can be increased by the thin tube 122, it is possible to suppress a rapid fluctuation of the liquid level of the aqueous liquid 25 and a pulsation of the liquid level. Become.
  • the horizontal cross-sectional area (S2) inside the second tank 12 is larger than the horizontal cross-sectional area (S1) inside the first tank 11. Therefore, the displacement amount of the liquid level of the aqueous liquid 25 in the second tank 12 is smaller than the displacement amount of the liquid level of the aqueous liquid 25 in the first tank 11.
  • the pressure of the second gas 27 in the second tank 12 may be increased depending on the use situation of the gas. In such a case, the liquid level of the aqueous liquid 25 in the second tank 12 decreases due to the pressure difference (DP) as shown in FIG.
  • the cross-sectional area (S2) is large, the amount of decrease in the liquid level in the second tank 12 can be reduced.
  • the second gas 27 can be prevented from reaching the separator 23.
  • the rise of a liquid level is large in the 1st tank 11 with a small cross-sectional area (S1), as shown in FIG. 13, the aqueous liquid 25 raises the cylindrical part 11a.
  • the aqueous liquid 25 raises the cylindrical part 11a.
  • mixing of gas can be prevented by enlarging the cross-sectional area of the tank of the side to be used.
  • the appropriate ratio between the cross-sectional area (S1) and the cross-sectional area (S2) can be determined from the pressure difference (DP) that is expected to occur due to use.
  • the gas generator of the present invention it is possible to electrolyze even an aqueous liquid (A) having a low conductivity such as tap water.
  • an aqueous liquid (A) having a low conductivity such as tap water.
  • the generated Joule heat increases. Therefore, when the apparatus of the present invention is used for a long time, the water temperature of the aqueous liquid (A) may increase.
  • One way to avoid such an increase in water temperature is to increase the opposing area of the electrodes. For example, as shown in FIG. 14, a plurality of tanks may be provided to increase the opposing area of the electrodes. If the facing area is doubled without changing the current, the resistance is halved and the heat generation is halved.
  • the facing area it is possible to increase the amount of gas generation with the same calorific value. For example, when the tank partition is increased to double the opposing area of the electrodes, the amount of heat generated is the same even if the current is increased by 1.4.
  • a first electrode 21 is disposed in the first tank 11.
  • a second electrode 22 is disposed in the second tank 12. According to this configuration, the facing area of the electrodes can be increased.
  • the tank 150 in FIG. 15 includes a tank body 151, a plurality of plates 152 disposed inside the tank body 151, and a lid 153 that covers the upper portion of the tank body 151.
  • the tube 154 through which the gas passes extends through the tank 150 through a part of the tank 150 (the lid 153 in the example of FIG. 15).
  • the lid 153 includes a lid body 153a and a valve 153b.
  • the valve 153 b is a valve that opens only when the pressure inside the tank 150 is higher than the pressure outside the tank 150.
  • valve 153b a known valve can be used.
  • a rubber sheet may be used.
  • An aqueous liquid 155 (liquid (L1)) is disposed in the tank body 151.
  • the gas generated by the gas generator is blown into the aqueous liquid 155 through the tube 154.
  • gas bubbles 156 are released from the tube 154.
  • the plurality of plates 152 are arranged so that the rising speed of the bubbles 156 is thereby suppressed.
  • the plurality of plates 152 are arranged in the vertical direction so that the inclinations are alternately reversed.
  • the tank 45 described above may include a lid 153 as in the case of the tank 150, and may further include a plurality of plates 152.
  • the present invention can be used in an apparatus and a method for generating gas by electrolyzing an aqueous liquid. Specifically, the present invention can be used for an apparatus and a method for generating hydrogen gas, oxygen gas, carbon dioxide gas, hydrogen gas and oxygen gas, hydrogen gas and carbon dioxide gas. Further, the present invention can be used in an apparatus and a method for increasing the dissolved concentration of those gases in a liquid.

Abstract

The device of the present invention can generate a gas by electrolyzing an aqueous liquid (25) placed in first and second vessels (11, 12). The device comprises a separator (23), the first and second vessels (11, 12) which are connected to each other through the separator (23), a first electrode (21) which is arranged in the first vessel (11), and a second electrode (22) which is arranged in the second vessel (12). In the electrolysis of the aqueous liquid (25), the first and second vessels (11, 12) are so adapted that the lowering of the level of the liquid surface of the aqueous liquid (25) in the second vessel (12) can be prevented when the pressure in a gas in the second vessel (12) becomes higher than that in the first vessel (11).

Description

ガス生成装置およびガス生成方法ならびにそれらを用いた装置および方法GAS GENERATOR, GAS GENERATION METHOD, AND DEVICE AND METHOD USING THE SAME
 本発明は、ガス生成装置およびガス生成方法、ならびにそれらを用いた装置および方法に関する。 The present invention relates to a gas generation apparatus and a gas generation method, and an apparatus and method using the same.
 水素ガスや酸素ガスは、化学の実験で用いられることが多い気体である。しかし、それらのガスを使用する場合、通常はガスボンベを用いることになり、ガスボンベの管理が大変であった。また、ガスボンベを用いる場合には、水素ガスや酸素ガスを使用する場所までガスボンベを移動させたり、配管を行ったりする必要があった。そのため、従来は、任意の場所で任意の時間に水素ガスや酸素ガスを得ることに対する労力が大きかった。 Hydrogen gas and oxygen gas are gases that are often used in chemical experiments. However, when these gases are used, gas cylinders are usually used, and management of the gas cylinders is difficult. Moreover, when using a gas cylinder, it was necessary to move a gas cylinder to the place which uses hydrogen gas or oxygen gas, or to perform piping. Therefore, conventionally, the labor for obtaining hydrogen gas and oxygen gas at an arbitrary place and at an arbitrary time has been great.
 一方、水溶液を電気分解することによって水素ガスおよび酸素ガスを生成する装置が、従来から提案されている(たとえば特開2004-143508号公報および特開2007-284730号公報)。特開2004-143508号公報の装置では、イオン交換膜を用いて電解液を電気分解している。しかし、イオン交換膜は、使用によって能力が低下するため、交換したり再生したりする必要があった。また、イオン交換膜の電気抵抗は比較的大きいため、電気分解の際に高い電圧を印加する必要があった。 On the other hand, apparatuses that generate hydrogen gas and oxygen gas by electrolyzing an aqueous solution have been proposed (for example, Japanese Patent Application Laid-Open Nos. 2004-143508 and 2007-284730). In the apparatus disclosed in Japanese Patent Application Laid-Open No. 2004-143508, an electrolytic solution is electrolyzed using an ion exchange membrane. However, since the capacity of the ion exchange membrane decreases due to use, it has been necessary to exchange or regenerate it. In addition, since the electric resistance of the ion exchange membrane is relatively large, it is necessary to apply a high voltage during electrolysis.
 特開2007-284730号公報の装置では、アルカリ電解水の電気分解を行うことによって、水素ガスと酸素ガスとが生成される。この装置では、等圧になるように制御された水素ガスと酸素ガスとが外部(下流側)に供給される。具体的には、水素ガスの圧力が3.5kg/cm2に到達したときに水素ガスが下流側に流され、酸素ガスの圧力が3.5kg/cm2に到達したときに酸素ガスが下流側に流される。特開2007-284730号公報の装置では、水素ガス用の気液分離タンクの圧力と、酸素ガス用の気液分離タンクの圧力とが等しくなるように調整される(特開2007-284730号公報の[0025]段落)。 In the apparatus disclosed in Japanese Patent Application Laid-Open No. 2007-284730, hydrogen gas and oxygen gas are generated by electrolysis of alkaline electrolyzed water. In this apparatus, hydrogen gas and oxygen gas controlled to have an equal pressure are supplied to the outside (downstream side). Specifically, when the pressure of hydrogen gas reaches 3.5 kg / cm 2 , the hydrogen gas is caused to flow downstream, and when the pressure of oxygen gas reaches 3.5 kg / cm 2 , the oxygen gas flows downstream. Flushed to the side. In the apparatus disclosed in Japanese Patent Laid-Open No. 2007-284730, the pressure of the gas-liquid separation tank for hydrogen gas is adjusted to be equal to the pressure of the gas-liquid separation tank for oxygen gas (Japanese Patent Laid-Open No. 2007-284730). [0025] paragraph).
 特開2007-284730号公報の装置では、電解槽に加えて、気液分離タンク、中間タンク、水素ガスの圧力と酸素ガスの圧力とを等しくするための等圧器、などが必要であり、構造が複雑である。また、特開2007-284730号公報の装置では、電解槽を満たすように電解液がポンプで供給されている([0020]段落)。すなわち、特開2007-284730号公報の装置では、電解槽は常に電解液で満たされている。 In the apparatus disclosed in Japanese Patent Application Laid-Open No. 2007-284730, in addition to the electrolytic cell, a gas-liquid separation tank, an intermediate tank, an isobar for equalizing hydrogen gas pressure and oxygen gas pressure, and the like are necessary. Is complicated. In the apparatus disclosed in Japanese Patent Application Laid-Open No. 2007-284730, an electrolytic solution is supplied by a pump so as to fill the electrolytic cell (paragraph [0020]). That is, in the apparatus disclosed in Japanese Patent Application Laid-Open No. 2007-284730, the electrolytic cell is always filled with the electrolytic solution.
特開2004-143508号公報JP 2004-143508 A 特開2007-284730号公報JP 2007-284730 A
 水素ガスが生成される槽と酸素ガスが生成される槽とを多孔性の膜で仕切っている装置において、電気分解される水溶液の液面がその膜の位置まで低下すると、水素ガスと酸素ガスとが混合されてしまう可能性がある。それらのガスが混合された場合、高い純度の水素ガスおよび酸素ガスを得ることができなくなってしまう。また、電気分解される水溶液の液面が低下して電極が露出すると、電気分解の効率が低下してしまう。 In an apparatus in which a tank in which hydrogen gas is generated and a tank in which oxygen gas is generated are partitioned by a porous film, when the level of the aqueous solution to be electrolyzed falls to the position of the film, hydrogen gas and oxygen gas May be mixed. When these gases are mixed, it becomes impossible to obtain high purity hydrogen gas and oxygen gas. Moreover, when the liquid level of the aqueous solution to be electrolyzed is lowered and the electrode is exposed, the electrolysis efficiency is lowered.
 このような状況において、本発明の目的の1つは、電気分解される水性液体の液面の低下を簡単に制限できる、新規なガス生成装置およびガス生成方法を提供することにある。また、本発明の目的の他の1つは、本発明のガス生成装置およびガス生成方法を用いた新規な装置および方法を提供することにある。 In such a situation, one of the objects of the present invention is to provide a novel gas generation apparatus and gas generation method that can easily limit the lowering of the liquid level of the electrolyzed aqueous liquid. Another object of the present invention is to provide a novel apparatus and method using the gas generating apparatus and gas generating method of the present invention.
 上記目的を達成するため、本発明は、第1のガス生成装置を提供する。この第1のガス生成装置は、第1および第2の槽に入れられた水性液体を電気分解することによってガスを生成するガス生成装置であって、セパレータと、前記セパレータを挟んでつながっている前記第1および第2の槽と、前記第1の槽に配置された第1の電極と、前記第2の槽に配置された第2の電極と、前記水性液体の電気分解中において、前記第1の槽内の前記水性液体の液面、および、前記第2の槽内の前記水性液体の液面からなる群より選ばれる少なくとも1つの液面の低下を制限する制限手段とを含む。 To achieve the above object, the present invention provides a first gas generating device. The first gas generating device is a gas generating device that generates gas by electrolyzing an aqueous liquid placed in the first and second tanks, and is connected to the separator with the separator interposed therebetween. During the electrolysis of the first and second tanks, the first electrode disposed in the first tank, the second electrode disposed in the second tank, and the aqueous liquid, Limiting means for limiting a decrease in at least one liquid level selected from the group consisting of the liquid level of the aqueous liquid in the first tank and the liquid level of the aqueous liquid in the second tank.
 さらに、本発明は、第2のガス生成装置を提供する。この第2のガス生成装置は、第1および第2の槽に入れられた水性液体を電気分解することによってガスを生成するガス生成装置であって、セパレータと、前記セパレータを挟んでつながっている前記第1および第2の槽と、前記第1の槽に配置された第1の電極と、前記第2の槽に配置された第2の電極とを含み、前記水性液体の電気分解中において、前記第1の槽内の気体の圧力よりも前記第2の槽内の気体の圧力が高くなったときに前記第2の槽内の前記水性液体の液面の低下が制限される形状を、前記第1および第2の槽が有する。 Furthermore, the present invention provides a second gas generator. The second gas generation device is a gas generation device that generates gas by electrolyzing aqueous liquids placed in the first and second tanks, and is connected to the separator with the separator interposed therebetween. During the electrolysis of the aqueous liquid, including the first and second tanks, the first electrode disposed in the first tank, and the second electrode disposed in the second tank The shape in which the lowering of the liquid level of the aqueous liquid in the second tank is limited when the gas pressure in the second tank becomes higher than the gas pressure in the first tank. The first and second tanks have.
 さらに、本発明は、液体中における所定のガスの溶存濃度を上昇させる装置を提供する。この装置は、本発明のガス生成装置と、前記ガス生成装置で生成されたガスを前記液体に接触させる手段とを含む。 Furthermore, the present invention provides an apparatus for increasing the dissolved concentration of a predetermined gas in a liquid. This apparatus includes the gas generator of the present invention and means for bringing the gas generated by the gas generator into contact with the liquid.
 さらに、本発明は、ガス生成方法を提供する。そのガス生成方法は、(i)セパレータを挟んでつながっている第1および第2の槽に水性液体を配置する工程と、(ii)前記第1の槽に配置された第1の電極と前記第2の槽に配置された第2の電極との間に電圧を印加することによって前記水性液体を電気分解する工程とを含み、前記(ii)の工程において、前記第1の槽内の前記水性液体の液面、および、前記第2の槽内の前記水性液体の液面からなる群より選ばれる少なくとも1つの液面の低下を制限する。 Furthermore, the present invention provides a gas generation method. The gas generation method includes (i) a step of placing an aqueous liquid in the first and second tanks connected with a separator interposed therebetween, and (ii) a first electrode disposed in the first tank, Electrolyzing the aqueous liquid by applying a voltage between the second electrode disposed in the second tank, and in the step (ii), The lowering of at least one liquid level selected from the group consisting of the liquid level of the aqueous liquid and the liquid level of the aqueous liquid in the second tank is limited.
 さらに、本発明は、所定のガスの溶存濃度が高い液体を製造する方法を提供する。その製造方法は、(I)本発明のガス生成方法でガスを生成する工程と、(II)前記ガスを液体に接触させる工程とを含む。 Furthermore, the present invention provides a method for producing a liquid having a high dissolved concentration of a predetermined gas. The manufacturing method includes (I) a step of generating a gas by the gas generation method of the present invention, and (II) a step of bringing the gas into contact with a liquid.
 本発明のガス生成装置およびガス生成方法によれば、槽内の液体の液面が低下することによって生じる障害、たとえば、ガスの混合や、電気分解の効率の低下といった障害を簡単に防止できる。すなわち、本発明の装置および方法によれば、純度が高いガスを効率よく得ることが可能である。また、本発明のガス生成装置によれば、所定のガスを簡単に生成できる。また、本発明の方法および装置によれば、所定のガスの溶存濃度が高い水性液体を簡単に得られる。 According to the gas generating apparatus and the gas generating method of the present invention, it is possible to easily prevent troubles caused by a decrease in the liquid level in the tank, for example, troubles such as gas mixing and electrolysis efficiency. That is, according to the apparatus and method of the present invention, it is possible to efficiently obtain a gas having a high purity. Moreover, according to the gas generator of the present invention, a predetermined gas can be easily generated. Further, according to the method and apparatus of the present invention, an aqueous liquid having a high dissolved concentration of a predetermined gas can be easily obtained.
本発明の装置の一例を示す模式図である。It is a schematic diagram which shows an example of the apparatus of this invention. 図1に示した装置の圧力差調節器を示す断面図である。It is sectional drawing which shows the pressure difference regulator of the apparatus shown in FIG. 図2Aに示した圧力差調節器の使用状態の一例を示す断面図である。It is sectional drawing which shows an example of the use condition of the pressure difference regulator shown to FIG. 2A. ヒータを備える圧力差調節器の一例を示す断面図である。It is sectional drawing which shows an example of a pressure difference regulator provided with a heater. 図1に示した装置の使用状態の一例を示す模式図である。It is a schematic diagram which shows an example of the use condition of the apparatus shown in FIG. 本発明が解決しようとする課題を示す模式図である。It is a schematic diagram which shows the subject which this invention tends to solve. 本発明の装置で用いられる圧力差調節器の一例を示す断面図である。It is sectional drawing which shows an example of the pressure difference regulator used with the apparatus of this invention. 図5Aに示した圧力差調節器の1つの部品を示す図である。It is a figure which shows one component of the pressure difference regulator shown to FIG. 5A. 図5Aに示した圧力差調節器の他の部品を示す図である。It is a figure which shows the other components of the pressure difference regulator shown to FIG. 5A. 図5Aに示した圧力差調節器のその他の部品を示す図である。It is a figure which shows the other components of the pressure difference regulator shown to FIG. 5A. 本発明の装置の他の一例について、使用状態の一例を示す模式図である。It is a schematic diagram which shows an example of a use condition about another example of the apparatus of this invention. 本発明の装置で用いられる圧力差調節器の他の一例を示す断面図である。It is sectional drawing which shows another example of the pressure difference regulator used with the apparatus of this invention. 本発明の装置で用いられる圧力差調節器のその他の一例を示す断面図である。It is sectional drawing which shows another example of the pressure difference regulator used with the apparatus of this invention. 本発明の装置で用いられる圧力差調節器のその他の一例を示す断面図である。It is sectional drawing which shows another example of the pressure difference regulator used with the apparatus of this invention. 図7Cに示した圧力差調節器の断面図である。It is sectional drawing of the pressure difference regulator shown to FIG. 7C. 図7Cに示した圧力差調節器の他の断面図である。FIG. 7B is another cross-sectional view of the pressure difference regulator shown in FIG. 7C. 図7Cに示した圧力差調節器の他の断面図である。FIG. 7B is another cross-sectional view of the pressure difference regulator shown in FIG. 7C. 本発明の装置で用いられるガス分配器の一例を示す断面図である。It is sectional drawing which shows an example of the gas distributor used with the apparatus of this invention. 図8Aに示したガス分配器の断面図である。It is sectional drawing of the gas distributor shown to FIG. 8A. 図8Aに示したガス分配器の機能を示す断面図である。It is sectional drawing which shows the function of the gas distributor shown to FIG. 8A. 本発明の装置で用いられる電極の一例を示す図である。It is a figure which shows an example of the electrode used with the apparatus of this invention. 電極およびセパレータの配置の一例を示す図である。It is a figure which shows an example of arrangement | positioning of an electrode and a separator. 本発明の装置のその他の一例を示す模式図である。It is a schematic diagram which shows another example of the apparatus of this invention. 図10に示した装置の使用状態の一例を示す模式図である。It is a schematic diagram which shows an example of the use condition of the apparatus shown in FIG. 本発明の装置のその他の一例の一部を示す模式図である。It is a schematic diagram which shows a part of other example of the apparatus of this invention. 図12Aに示した装置の他の一部を示す模式図である。It is a schematic diagram which shows the other part of the apparatus shown to FIG. 12A. 図12Aおよび図12Bに示した装置の使用状態の一例を示す模式図である。It is a schematic diagram which shows an example of the use condition of the apparatus shown to FIG. 12A and 12B. 本発明の装置のその他の一例を示す模式図である。It is a schematic diagram which shows another example of the apparatus of this invention. ガスの溶存濃度を上昇させる装置に用いられる槽の一例を模式的に示す図である。It is a figure which shows typically an example of the tank used for the apparatus which raises the dissolved concentration of gas.
 以下、本発明の実施形態について説明する。なお、以下の説明では、本発明の実施形態について例を挙げて説明するが、本発明は以下で説明する例に限定されない。以下の説明では、具体的な数値や材料を例示する場合があるが、本発明の効果が得られる限り、他の数値や材料を適用してもよい。また、図面を用いた説明では、同様の部分に同一の符号を付して重複する説明を省略する場合がある。 Hereinafter, embodiments of the present invention will be described. In the following description, embodiments of the present invention will be described by way of examples, but the present invention is not limited to the examples described below. In the following description, specific numerical values and materials may be exemplified, but other numerical values and materials may be applied as long as the effects of the present invention can be obtained. Moreover, in the description using drawing, the same code | symbol may be attached | subjected to the same part and the overlapping description may be abbreviate | omitted.
 [ガス生成装置(ガス発生装置)]
 本発明の第1および第2のガス生成装置に共通する事項について説明する。本発明のガス生成装置は、第1および第2の槽に入れられた水性液体を電気分解することによってガスを生成する。この装置は、セパレータ、第1の槽、第2の槽、第1の電極、および第2の電極を含む。
[Gas generator (gas generator)]
Items common to the first and second gas generating apparatuses of the present invention will be described. The gas generator of the present invention generates gas by electrolyzing an aqueous liquid placed in the first and second tanks. The apparatus includes a separator, a first tank, a second tank, a first electrode, and a second electrode.
 本発明の装置は、水性液体中の溶媒を電気分解することによって、所定の気体を生成することができる。具体的には、本発明の第1のガス生成装置は、水性液体中の溶媒を電気分解することによって、第1および第2のガスを生成することができる。同様に、本発明の第2のガス生成装置は、水性液体中の溶媒を電気分解することによって、第1および第2のガスを生成することができる。たとえば、本発明の装置は、水性液体中の水を電気分解することによって水素ガスおよび酸素ガスを生成することができる。そのため、本発明の装置は、水素ガス生成装置、酸素ガス生成装置、または、水素ガスおよび酸素ガス生成装置として利用できる。 The apparatus of the present invention can generate a predetermined gas by electrolyzing a solvent in an aqueous liquid. Specifically, the first gas generating device of the present invention can generate the first and second gases by electrolyzing a solvent in the aqueous liquid. Similarly, the 2nd gas production | generation apparatus of this invention can produce | generate the 1st and 2nd gas by electrolyzing the solvent in an aqueous liquid. For example, the apparatus of the present invention can generate hydrogen gas and oxygen gas by electrolyzing water in an aqueous liquid. Therefore, the apparatus of the present invention can be used as a hydrogen gas generator, an oxygen gas generator, or a hydrogen gas and oxygen gas generator.
 この明細書において、「水性液体」とは、水を含む液体を意味する。以下では、本発明の装置で電気分解される水性液体を、「水性液体(A)」という場合がある。本発明の効果が得られる限り、水性液体(A)は、水以外の溶媒(たとえばアルコール)を含んでもよい。水性液体(A)の溶媒に占める水の割合は、通常、50重量%以上(たとえば80重量%以上や95重量%以上や100重量%)である。典型的には、水性液体(A)は、水素イオンおよび水酸化物イオンに加えて、それら以外のイオンを含む水溶液である。そのような水性液体(A)の例には、水道水も含まれる。 In this specification, “aqueous liquid” means a liquid containing water. Below, the aqueous liquid electrolyzed with the apparatus of this invention may be called "aqueous liquid (A)." As long as the effect of the present invention can be obtained, the aqueous liquid (A) may contain a solvent (for example, alcohol) other than water. The proportion of water in the solvent of the aqueous liquid (A) is usually 50% by weight or more (for example, 80% by weight or more, 95% by weight or more, or 100% by weight). Typically, the aqueous liquid (A) is an aqueous solution containing other ions in addition to hydrogen ions and hydroxide ions. Examples of such an aqueous liquid (A) include tap water.
 水性液体(A)がアルコールを含む場合、水性液体中の水およびアルコールを電気分解することによって、炭酸ガス(二酸化炭素)および水素ガスを少なくとも生成することが可能である。アルコールとしては、たとえば、メタノール、エタノール、プロパノール、およびブチルアルコールからなる群より選ばれる少なくとも1つを用いることができる。水性液体(A)がメタノールを含む場合の電極反応の例としては、たとえば以下の反応が挙げられる。
(アノード)CH3OH+H2O→CO2+6H++6e-
(カソード)6H++6e-→3H2
(トータル)CH3OH+H2O→CO2+3H2
When the aqueous liquid (A) contains alcohol, it is possible to generate at least carbon dioxide (carbon dioxide) and hydrogen gas by electrolyzing water and alcohol in the aqueous liquid. As the alcohol, for example, at least one selected from the group consisting of methanol, ethanol, propanol, and butyl alcohol can be used. Examples of the electrode reaction when the aqueous liquid (A) contains methanol include the following reactions.
(Anode) CH 3 OH + H 2 O → CO 2 + 6H + + 6e
(Cathode) 6H + + 6e → 3H 2
(Total) CH 3 OH + H 2 O → CO 2 + 3H 2
 この炭酸ガス発生に使用する水性液体(A)中のアルコール濃度に特に限定はなく、たとえば0.1mol/L~10mol/Lの範囲にあり、好ましくは1mol/L~5mol/Lの範囲にある。 The alcohol concentration in the aqueous liquid (A) used for the generation of carbon dioxide is not particularly limited, and is, for example, in the range of 0.1 mol / L to 10 mol / L, preferably in the range of 1 mol / L to 5 mol / L. .
 以上のように本発明のガス生成装置は、炭酸ガスを生成する装置、または、炭酸ガスおよび水素ガスを生成する装置として利用することもできる。なお、アルコールを含む水性液体(A)を電気分解する場合、炭酸ガスおよび水素ガスに加えて、酸素ガスが生成される場合がある。 As described above, the gas generating device of the present invention can also be used as a device for generating carbon dioxide gas or a device for generating carbon dioxide gas and hydrogen gas. In addition, when electrolyzing the aqueous liquid (A) containing alcohol, oxygen gas may be produced in addition to carbon dioxide gas and hydrogen gas.
 水性液体(A)の導電率が高いほど、水性液体(A)の電気分解に必要な電圧を低くできる。そのため、水性液体(A)は、酸性水溶液や、アルカリ性水溶液や、塩を溶解させた水溶液であってもよい。しかし、これらの溶液は、取り扱いに注意が必要であったり、調製に手間がかかったりすることがある。そのため、取り扱いおよび入手が容易な水性液体(たとえば水道水)を水性液体(A)として用いることができれば便利である。本発明の装置では、適切な構成を採用することによって、導電率が100μS/cm~1000μS/cmの範囲(たとえば100μS/cm~300μS/cm)にある水性液体(たとえば水道水)を電気分解することが可能である。この程度の導電率を有する水性液体(A)を電気分解する場合、適切な電極を適切に配置することによって、15ボルト以下の電圧で水を電気分解することが可能である。水性液体(A)のpHに限定はないが、pHが5~9程度の範囲にある水性液体(A)は取り扱いが容易であるという利点を有する。 The higher the conductivity of the aqueous liquid (A), the lower the voltage required for the electrolysis of the aqueous liquid (A). Therefore, the aqueous liquid (A) may be an acidic aqueous solution, an alkaline aqueous solution, or an aqueous solution in which a salt is dissolved. However, these solutions may require care in handling or may be troublesome to prepare. Therefore, it is convenient if an aqueous liquid (for example, tap water) that is easy to handle and obtain can be used as the aqueous liquid (A). In the apparatus of the present invention, by adopting an appropriate configuration, an aqueous liquid (for example, tap water) having a conductivity in the range of 100 μS / cm to 1000 μS / cm (for example, 100 μS / cm to 300 μS / cm) is electrolyzed. It is possible. When electrolyzing the aqueous liquid (A) having this degree of conductivity, it is possible to electrolyze water at a voltage of 15 volts or less by appropriately arranging appropriate electrodes. The pH of the aqueous liquid (A) is not limited, but the aqueous liquid (A) having a pH in the range of about 5 to 9 has an advantage that it is easy to handle.
 なお、水性液体(A)の導電率が低すぎる場合には、イオンを生じさせる化合物(たとえば塩)を水性液体(A)に溶解させてもよい。添加する塩に限定はない。添加する塩は、それによって生じるイオンが、水の電気分解の電位内で反応しないものであることが望ましい。添加する塩の例には、陽イオンとしてプロトンイオンやアルカリ金属イオンを含有し、陰イオンとして硫酸イオン(SO4 2-)や燐酸イオン(PO4 3-)を含有する塩が含まれる。水性液体(A)中の塩濃度に特に限定はなく、たとえば0.01mol/L~1mol/Lの範囲にあってもよい。 In addition, when the electrical conductivity of aqueous liquid (A) is too low, you may dissolve the compound (for example, salt) which produces an ion in aqueous liquid (A). There is no limitation on the salt to be added. The salt to be added is preferably such that the ions produced thereby do not react within the electrolysis potential of water. Examples of the salt to be added include a salt containing a proton ion or an alkali metal ion as a cation and a sulfate ion (SO 4 2− ) or a phosphate ion (PO 4 3− ) as an anion. The salt concentration in the aqueous liquid (A) is not particularly limited, and may be, for example, in the range of 0.01 mol / L to 1 mol / L.
 純度が高い酸素ガスを得るには、塩素イオンを含まない水性液体(A)を用いることが好ましい。塩素イオンを含まない水性液体(A)を用いることによって、水性液体(A)の電気分解時に塩素ガスが生成されることを抑制できる。塩素イオンを含まない水性液体(A)は、たとえば、逆浸透膜で得た逆浸透水に塩素を含まない塩(たとえば硫酸カリウム等)を溶解させることによって得ることができる。純度が高いガスを用いることによって、所定のガス(水素ガス、酸素ガス、または炭酸ガス)の溶存濃度が高く他のガスの溶存濃度が低い水性液体を得ることが可能になる。 In order to obtain oxygen gas with high purity, it is preferable to use an aqueous liquid (A) that does not contain chlorine ions. By using the aqueous liquid (A) that does not contain chlorine ions, generation of chlorine gas during electrolysis of the aqueous liquid (A) can be suppressed. The aqueous liquid (A) not containing chlorine ions can be obtained, for example, by dissolving a salt (eg, potassium sulfate) containing no chlorine in reverse osmosis water obtained by a reverse osmosis membrane. By using a gas with high purity, it is possible to obtain an aqueous liquid in which a predetermined gas (hydrogen gas, oxygen gas, or carbon dioxide gas) has a high dissolved concentration and another gas has a low dissolved concentration.
 第1および第2の槽内の水性液体(A)が電気分解によって減少した場合、減少した分の水性液体(たとえば水)を電気分解中に追加してもよい。しかし、電気分解中に水性液体を追加する場合には、装置が複雑になる。そのため、典型的な一例では、電気分解中において、水性液体(たとえば水)は、追加されない。 When the aqueous liquid (A) in the first and second tanks is reduced by electrolysis, the reduced amount of aqueous liquid (for example, water) may be added during the electrolysis. However, adding an aqueous liquid during electrolysis complicates the device. Thus, in a typical example, no aqueous liquid (eg, water) is added during electrolysis.
 水性液体(A)の電気分解によって、第1の槽(第1の電極表面)では第1のガスが生成され、第2の槽(第2の電極表面)では第2のガスが生成される。以下では、第1の槽内の気体の圧力と第2の槽内の気体の圧力との圧力差を、「圧力差(DP)」という場合がある。圧力差(DP)が大きくなると、第1の槽内の水性液体(A)の液面と、第2の槽内の水性液体(A)の液面との位置がずれる。この位置のずれが大きくなると、いずれか一方の液面がセパレータと接触する位置に到達する。その場合、圧力が高い方の気体がセパレータを通過し、第1の槽内の気体と第2の槽内の気体とが混ざり合ってしまう。 By electrolysis of the aqueous liquid (A), a first gas is generated in the first tank (first electrode surface), and a second gas is generated in the second tank (second electrode surface). . Hereinafter, the pressure difference between the gas pressure in the first tank and the gas pressure in the second tank may be referred to as “pressure difference (DP)”. When the pressure difference (DP) increases, the liquid level of the aqueous liquid (A) in the first tank and the liquid level of the aqueous liquid (A) in the second tank shift. When this positional deviation increases, one of the liquid levels reaches a position where it contacts the separator. In that case, the gas with the higher pressure passes through the separator, and the gas in the first tank and the gas in the second tank are mixed.
 また、いずれか一方の液面が低下することによって第1の電極または第2の電極が露出すると、電気分解の効率が低下してしまう。このような問題を回避するため、本発明の装置は、水性液体(A)の電気分解中において、第1の槽内の水性液体(A)の液面、および、第2の槽内の水性液体(A)の液面からなる群より選ばれる少なくとも1つの液面の低下を制限する制限手段(または構造)を含む。一例では、水性液体(A)の液面が特定の部材に到達することが、制限手段によって防止される。ここで、特定の部材は、第1の槽と第2の槽とを仕切っているセパレータであってもよいし、第1および第2の電極であってもよい。また、特定の部材は、セパレータ、第1の電極および第2の電極からなる群より選ばれる少なくとも1つの部材であってもよい。以下では、当該特定の部材を、「特定の部材(S)」という場合がある。 In addition, when the first electrode or the second electrode is exposed due to a decrease in the liquid level of either one, the efficiency of electrolysis decreases. In order to avoid such a problem, the apparatus of the present invention provides a liquid surface of the aqueous liquid (A) in the first tank and an aqueous solution in the second tank during the electrolysis of the aqueous liquid (A). Limiting means (or structure) for limiting a decrease in at least one liquid level selected from the group consisting of the liquid levels of the liquid (A) is included. In one example, the restricting means prevents the liquid level of the aqueous liquid (A) from reaching a specific member. Here, the specific member may be a separator that partitions the first tank and the second tank, or may be the first and second electrodes. The specific member may be at least one member selected from the group consisting of a separator, a first electrode, and a second electrode. Hereinafter, the specific member may be referred to as “specific member (S)”.
 制限手段は、水性液体(A)の電気分解中において、第1の槽内の水性液体(A)の液面、または、第2の槽内の水性液体(A)の液面が低下することによって第1の槽内の気体と第2の槽内の気体とが混合されることを防止する手段であってもよい。以下では、そのような制限手段を、「混合防止手段」という場合がある。 The limiting means is that the level of the aqueous liquid (A) in the first tank or the level of the aqueous liquid (A) in the second tank is lowered during the electrolysis of the aqueous liquid (A). May be a means for preventing the gas in the first tank and the gas in the second tank from being mixed. In the following, such limiting means may be referred to as “mixing prevention means”.
 第1および第2の槽は、セパレータを挟んでつながっている。別の観点では、第1および第2の槽は、セパレータによって仕切られている。通常の使用状態では、第1の槽内の気体および第2の槽内の気体は、ガスの経路以外から放出されることはない。すなわち、通常の使用状態では、第1および第2の槽は、ガスの経路を除き、大気から遮断されている。ただし、後述する第2のガス生成装置では、生成されるガスのうち、使用されないガスが存在する側の槽は大気に開放されていてもよい。 The first and second tanks are connected with a separator in between. In another aspect, the first and second tanks are partitioned by a separator. In a normal use state, the gas in the first tank and the gas in the second tank are not released from other than the gas path. That is, in a normal use state, the first and second tanks are cut off from the atmosphere except for the gas path. However, in the second gas generation device described later, the tank on the side where the unused gas among the generated gases exists may be open to the atmosphere.
 第1および第2の槽において電気分解が行われる。第1の電極は、第1の槽に配置されている。第2の電極は、第2の槽に配置されている。なお、第1の槽と第2の槽との間の上方部分は、液体および気体のいずれをも透過させない隔壁によって仕切られていてもよい。そして、隔壁の下の部分がセパレータによって仕切られていてもよい。水性液体(A)の液面が隔壁の部分にある限り、第1の槽内の気体と第2の槽内の気体とが混ざることはない。 Electrolysis is performed in the first and second tanks. The first electrode is disposed in the first tank. The second electrode is disposed in the second tank. In addition, the upper part between the 1st tank and the 2nd tank may be partitioned off by the partition which does not permeate | transmit neither a liquid nor gas. And the lower part of the partition may be partitioned off by the separator. As long as the liquid level of the aqueous liquid (A) is at the partition wall, the gas in the first tank and the gas in the second tank are not mixed.
 第1および第2の槽は、1つの容器をセパレータで分離することによって形成してもよい。また、第1の槽を構成する容器と第2の槽を構成する容器とを、セパレータを挟んで接続してもよい。1つの観点では、本発明の装置は、セパレータによって第1の槽と第2の槽とに分けられた槽を含む。 The first and second tanks may be formed by separating one container with a separator. Moreover, you may connect the container which comprises a 1st tank, and the container which comprises a 2nd tank on both sides of a separator. In one aspect, the apparatus of the present invention includes a tank that is divided into a first tank and a second tank by a separator.
 第1および第2の槽は、水性液体(A)を保持できる材料で形成される。第1および第2の槽は、たとえば、ガラス、樹脂、ゴム、金属、またはこれらの複合体で形成できる。槽の内部が観察できるように、第1および第2の槽の少なくとも一部が透明な材料で形成されていてもよい。 The first and second tanks are formed of a material that can hold the aqueous liquid (A). The first and second tanks can be formed of, for example, glass, resin, rubber, metal, or a composite thereof. At least a part of the first and second tanks may be formed of a transparent material so that the inside of the tank can be observed.
 第1および第2の槽の内面は、親水性であってもよい。槽の内面を親水性とすることによって、生成されたガスが槽の内面に付着することを抑制できる。槽の内面を親水性にする方法としては、たとえば、親水性の膜を槽の内面に貼り付ける方法や、樹脂槽の内面を親水化処理する方法が挙げられる。親水性の膜としては、たとえば、メンブレンフィルタ(ミクロポア社製、品番:JCWP14225)が挙げられる。親水化処理の例には、過マンガン酸カリウムなどの酸化剤で処理する方法、コロナ放電処理、およびプラズマ放電処理が含まれる。 The inner surfaces of the first and second tanks may be hydrophilic. By making the inner surface of the tank hydrophilic, it is possible to suppress the generated gas from adhering to the inner surface of the tank. Examples of the method for making the inner surface of the tank hydrophilic include a method of attaching a hydrophilic film to the inner surface of the tank and a method of hydrophilizing the inner surface of the resin tank. Examples of the hydrophilic film include a membrane filter (manufactured by Micropore, product number: JCWP14225). Examples of the hydrophilic treatment include a method of treating with an oxidizing agent such as potassium permanganate, a corona discharge treatment, and a plasma discharge treatment.
 第1の槽および第2の槽の内容積に特に限定はない。第1の槽および第2の槽の内容積は、それぞれ、100cm3~2000cm3の範囲(たとえば300cm3~1000cm3の範囲)にあってもよい。 There are no particular limitations on the internal volumes of the first tank and the second tank. The internal volumes of the first tank and the second tank may each be in the range of 100 cm 3 to 2000 cm 3 (for example, in the range of 300 cm 3 to 1000 cm 3 ).
 セパレータ(隔膜)は、水性液体(A)およびイオン(陽イオンおよび陰イオン)を通過させる。セパレータは、第1の電極と第2の電極とが短絡することを防止する。そのため、セパレータは、第1の電極と第2の電極との短絡を防止できる材料(たとえば絶縁材料)で形成される。セパレータは、第1および第2の槽内の水性液体(A)を通過させる。一方、電極の表面で生成されたガスがセパレータを通過した場合、第1の槽内のガスおよび第2の槽内のガスの少なくとも一方が混合ガスになってしまう。従って、セパレータは、水性液体(A)に浸漬された状態において、電極の表面で生成されたガスの泡を透過させないことが好ましい。ガスの透過性は、たとえば、セパレータの面密度や目の粗さによって制御できる。セパレータの形態に特に限定はなく、多孔性の膜であってもよいし、繊維で形成された布(織布または不織布)であってもよい。 The separator (diaphragm) allows the aqueous liquid (A) and ions (cation and anion) to pass through. The separator prevents a short circuit between the first electrode and the second electrode. Therefore, the separator is formed of a material (for example, an insulating material) that can prevent a short circuit between the first electrode and the second electrode. The separator allows the aqueous liquid (A) in the first and second tanks to pass through. On the other hand, when the gas generated on the surface of the electrode passes through the separator, at least one of the gas in the first tank and the gas in the second tank becomes a mixed gas. Therefore, it is preferable that the separator does not transmit the gas bubbles generated on the surface of the electrode when immersed in the aqueous liquid (A). The gas permeability can be controlled by, for example, the surface density of the separator or the roughness of the eyes. There is no limitation in particular in the form of a separator, A porous film | membrane may be sufficient and the cloth (woven fabric or nonwoven fabric) formed with the fiber may be sufficient.
 セパレータは親水性であってもよい。親水性のセパレータは、その表面に液体が吸着されやすく気体は吸着されにくいため、水性液体(A)中でガスを透過させにくい。そのため、第1および第2の電極がセパレータに接触するほど両者を接近させても、第1のガスと第2のガス(たとえば、水素ガスと酸素ガス)とが混合されることを抑制できる。従って、親水性のセパレータを用いることによって、第1および第2の電極をより接近させることが可能である。また、親水性のセパレータを用いることによって、電圧降下を小さくできる多孔性のセパレータを使用することも可能となる。 The separator may be hydrophilic. In the hydrophilic separator, the liquid is easily adsorbed on the surface, and the gas is difficult to be adsorbed. Therefore, even if the first and second electrodes are brought closer to each other so as to contact the separator, mixing of the first gas and the second gas (for example, hydrogen gas and oxygen gas) can be suppressed. Therefore, it is possible to bring the first and second electrodes closer by using a hydrophilic separator. Further, by using a hydrophilic separator, it is possible to use a porous separator that can reduce the voltage drop.
 親水性のセパレータの例には、表面が親水性である繊維を用いて形成されたセパレータが含まれる。また、親水性のセパレータの例には、綿、麻、レーヨン、毛、絹などで形成された布や膜が含まれる。また、親水性の合成樹脂からなるセパレータや、親水化処理をされた合成樹脂からなるセパレータを用いてもよい。 Examples of hydrophilic separators include separators formed using fibers having a hydrophilic surface. Examples of hydrophilic separators include cloths and membranes formed of cotton, hemp, rayon, hair, silk, and the like. Alternatively, a separator made of a hydrophilic synthetic resin or a separator made of a synthetic resin that has been subjected to a hydrophilic treatment may be used.
 親水性であるか否かの目安として、毛管現象のような現象が生じるか否かを目安の1つとして挙げることができる。具体的には、セパレータの一部を水に浸漬し、残りの部分は水から出しておく。その時に、水が重力に逆らって当該残りの部分を上昇するようであれば、そのセパレータは、親水性であると推定できる。 As a measure of whether or not it is hydrophilic, whether or not a phenomenon such as a capillary phenomenon occurs can be cited as one of measures. Specifically, a part of the separator is immersed in water, and the remaining part is taken out of the water. At that time, if the water rises against the gravity against the remaining portion, it can be estimated that the separator is hydrophilic.
 本発明の装置で用いられるセパレータは、水性液体(A)が通過できる経路(たとえば親水性の経路)を有する。この経路を介して、第1の槽の水性液体(A)と第2の槽の水性液体(A)とがつながっている。そして、この経路は、陽イオンおよび陰イオンの両方を通過させる。本発明の装置で用いられるセパレータ(隔膜)は、通常、イオン交換能を有さず、陽イオンおよび陰イオンの両方を通過させる。本発明の装置では、イオン交換膜(イオン交換材料)を用いる必要はない。そのため、通常、本発明の装置は、イオン交換膜(イオン交換材料)を含まない。イオン交換膜(イオン交換材料)を含まないことによって、装置の維持が容易になり、また、低い電圧で水を電気分解することが可能になる。ただし、本発明の効果が得られる限り、本発明の装置は、イオン交換膜(イオン交換材料)を含んでもよい。 The separator used in the apparatus of the present invention has a path (for example, a hydrophilic path) through which the aqueous liquid (A) can pass. The aqueous liquid (A) in the first tank and the aqueous liquid (A) in the second tank are connected via this path. This pathway then passes both cations and anions. The separator (diaphragm) used in the apparatus of the present invention usually does not have an ion exchange capacity, and allows both cations and anions to pass therethrough. In the apparatus of the present invention, it is not necessary to use an ion exchange membrane (ion exchange material). Therefore, the apparatus of the present invention usually does not include an ion exchange membrane (ion exchange material). By not including an ion exchange membrane (ion exchange material), it becomes easy to maintain the apparatus, and water can be electrolyzed at a low voltage. However, as long as the effect of the present invention is obtained, the apparatus of the present invention may include an ion exchange membrane (ion exchange material).
 第1の電極と第2の電極とは、セパレータを挟むように配置されている。第1の電極と第2の電極との間の最短距離は、10mm以下(たとえば0.5mm~5mmの範囲)であることが好ましい。たとえば、平板状の第1の電極と平板状の第2の電極とが平行に配置されている場合、第1の電極と第2の電極との最短距離は、20mm以下(たとえば0.5mm~10mmの範囲や1mm~5mmの範囲)であることが好ましい。第1の電極と第2の電極との最短距離を10mm以下とすることによって、電極間の水性液体(A)による電圧降下を小さくすることができる。その結果、導電率が100μS/cm~500μS/cmの水性液体を、15ボルト以下の電圧で電気分解することが可能である。第1の電極と第2の電極との最短距離は、0.5mm以上(たとえば1mm以上)であってもよい。また、第1の電極と第2の電極との最短距離は、8mm以下であってもよく、5mm以下であってもよい。なお、導電率が高い水性液体(A)を用いる場合(たとえば塩が添加された水性液体(A)を用いる場合)には、第1の電極と第2の電極との最短距離がより長くても、低い電圧で水性液体(A)を電気分解できる。 The first electrode and the second electrode are arranged so as to sandwich the separator. The shortest distance between the first electrode and the second electrode is preferably 10 mm or less (for example, in the range of 0.5 mm to 5 mm). For example, when the flat plate-like first electrode and the flat plate-like second electrode are arranged in parallel, the shortest distance between the first electrode and the second electrode is 20 mm or less (for example, 0.5 mm to A range of 10 mm or a range of 1 mm to 5 mm is preferable. By setting the shortest distance between the first electrode and the second electrode to 10 mm or less, the voltage drop due to the aqueous liquid (A) between the electrodes can be reduced. As a result, it is possible to electrolyze an aqueous liquid having a conductivity of 100 μS / cm to 500 μS / cm at a voltage of 15 volts or less. The shortest distance between the first electrode and the second electrode may be 0.5 mm or more (for example, 1 mm or more). The shortest distance between the first electrode and the second electrode may be 8 mm or less, or 5 mm or less. When the aqueous liquid (A) having high conductivity is used (for example, when the aqueous liquid (A) to which salt is added is used), the shortest distance between the first electrode and the second electrode is longer. However, the aqueous liquid (A) can be electrolyzed at a low voltage.
 導電率が低い水性液体(A)を比較的低い電圧で電気分解するには、第1の電極と第2の電極との間の距離を短くすればよい。しかし、単に電極間距離を短くするだけでは、第1の電極で生成された第1のガスと、第2の電極で生成された第2のガスとが混合されてしまうという問題がある。また、第1の電極と第2の電極とが短絡する危険性がある。そのため、本発明では、第1の電極と第2の電極との間にセパレータを配置し、ガスの混合と電極の短絡とを防止している。 In order to electrolyze the aqueous liquid (A) having low conductivity at a relatively low voltage, the distance between the first electrode and the second electrode may be shortened. However, there is a problem that the first gas generated by the first electrode and the second gas generated by the second electrode are mixed only by shortening the distance between the electrodes. Further, there is a risk that the first electrode and the second electrode are short-circuited. Therefore, in this invention, the separator is arrange | positioned between the 1st electrode and the 2nd electrode, and mixing of gas and the short circuit of an electrode are prevented.
 第1および第2の電極には、水の電気分解反応を生じさせることができる電極が用いられる。第1および第2の電極の例には、金属部分を含む電極が含まれる。たとえば、第1および第2の電極は金属電極であってもよい。第1および第2の電極の表面には、水の電気分解反応が生じやすい金属が存在することが好ましい。水の電気分解反応が生じやすい金属の例には、白金が含まれる。第1および第2の電極の好ましい一例は、表面に白金が存在する金属電極である。具体的には、白金電極や、液体と接触する部分の表面が白金でコートされた金属電極が好ましく用いられる。白金でコートされる金属の例には、ニオブ、チタン、およびタンタル、およびその他の金属が挙げられる。特に、酸素ガスが発生する電極(アノード)の表面は白金でコートされることが好ましい。カソードは、たとえば、ニッケルやステンレスなどの、一般的に腐食が少ない金属からなる電極であってもよい。なお、金属以外の導電性材料(たとえば導電性の炭素材料)を含む電極を用いてもよい。また、それら導電性材料の表面を金属(白金その他の金属)でコートすることによって得られる電極を用いてもよい。 As the first and second electrodes, electrodes capable of causing an electrolysis reaction of water are used. Examples of the first and second electrodes include an electrode including a metal portion. For example, the first and second electrodes may be metal electrodes. It is preferable that a metal that easily undergoes an electrolysis reaction of water exists on the surfaces of the first and second electrodes. Examples of metals that are susceptible to electrolysis of water include platinum. A preferred example of the first and second electrodes is a metal electrode having platinum on the surface. Specifically, a platinum electrode or a metal electrode whose surface in contact with a liquid is coated with platinum is preferably used. Examples of metals coated with platinum include niobium, titanium, and tantalum, and other metals. In particular, the surface of the electrode (anode) that generates oxygen gas is preferably coated with platinum. The cathode may be an electrode made of a metal that generally has little corrosion, such as nickel or stainless steel. Note that an electrode including a conductive material other than metal (for example, a conductive carbon material) may be used. Alternatively, an electrode obtained by coating the surface of these conductive materials with a metal (platinum or other metal) may be used.
 第1の電極と第2の電極との間には、通常、直流電圧が印加される。水性液体(A)が電気分解される限り、印加する電圧の大きさおよび印加方法に特に限定はない。電圧は、電流が一定となるように、電極間に印加してもよい。あるいは、電極間に一定の電圧を印加してもよい。一例では、2ボルト~70ボルトの範囲や5ボルト~20ボルトの範囲にある直流電圧が電極間に印加される。 A DC voltage is usually applied between the first electrode and the second electrode. As long as the aqueous liquid (A) is electrolyzed, the magnitude of the applied voltage and the application method are not particularly limited. The voltage may be applied between the electrodes so that the current is constant. Alternatively, a constant voltage may be applied between the electrodes. In one example, a DC voltage in the range of 2 to 70 volts or 5 to 20 volts is applied between the electrodes.
 第1および第2の電極は、それぞれ、2次元状に広がる形状を有していてもよい。たとえば、第1および第2の電極は、平板状の電極であってもよい。この明細書において、「平板状の電極」とは、全体として平らな形状の電極を意味し、線状の電極を2次元状に配置することによって形成された電極も含まれる。平板状の電極には、貫通孔が形成されていてもよい。また、第1および第2の電極は、それぞれ、1つの平面上に配置された複数の線状の電極で構成されていてもよいし、エクスパンドメタルであってもよい。第1および第2の電極が平板状である場合、それらは、セパレータを挟んで平行に対向するように配置されることが好ましい。 The first and second electrodes may each have a shape that spreads two-dimensionally. For example, the first and second electrodes may be flat electrodes. In this specification, the “flat electrode” means an electrode having a flat shape as a whole, and includes an electrode formed by two-dimensionally arranging linear electrodes. A through-hole may be formed in the flat electrode. Further, each of the first and second electrodes may be composed of a plurality of linear electrodes arranged on one plane, or may be an expanded metal. When the first and second electrodes have a flat plate shape, they are preferably arranged so as to face each other in parallel with the separator interposed therebetween.
 第1の電極および第2の電極のそれぞれは、鉛直方向に沿ってストライプ状に配置された複数の線状の電極を含んでもよい。このような電極を用いることによって、電極の表面で発生したガスは、鉛直方向に上昇しやすくなる。第1および第2の電極は、それぞれ、櫛歯状の電極であってもよい。電極の表面で発生したガス(気泡)を速やかに上昇させるため、線状の電極の表面は、平らであるよりも湾曲している方が好ましい。従って、線状の電極の断面は、四角形であるよりも円形である方が好ましい。隣接する2つの線状の電極間の距離Lは、1.5mm以下であってもよい。距離Lは、たとえば、0.1mm~1.5mmの範囲にあってもよい。距離Lを1.5mm以下とすることによって、電極表面で発生したガスが電極表面に滞留することを特に抑制できる。 Each of the first electrode and the second electrode may include a plurality of linear electrodes arranged in a stripe shape along the vertical direction. By using such an electrode, the gas generated on the surface of the electrode is likely to rise in the vertical direction. Each of the first and second electrodes may be a comb-like electrode. In order to quickly raise the gas (bubbles) generated on the surface of the electrode, the surface of the linear electrode is preferably curved rather than flat. Therefore, the cross section of the linear electrode is preferably circular rather than rectangular. The distance L between two adjacent linear electrodes may be 1.5 mm or less. The distance L may be in the range of 0.1 mm to 1.5 mm, for example. By setting the distance L to 1.5 mm or less, it is possible to particularly suppress the gas generated on the electrode surface from staying on the electrode surface.
 第1および第2の電極が上記線状の電極を含んでいる場合、上記第1の電極とセパレータとの距離が1mm以下であり、上記第2の電極とセパレータとの距離が1mm以下であってもよい。たとえば、第1および第2の電極は、セパレータと接触していてもよい。第1および第2の電極のそれぞれが鉛直方向に沿って配置された複数の線状の電極を含んでいる場合、線状の電極表面で発生したガスは、線状の電極間の隙間をつたって上へ上昇していく。そのため、電極とセパレータとの距離が接近していても、ガスを速やかに水性液体(A)から排出させることが可能である。 When the first and second electrodes include the linear electrode, the distance between the first electrode and the separator is 1 mm or less, and the distance between the second electrode and the separator is 1 mm or less. May be. For example, the first and second electrodes may be in contact with the separator. When each of the first and second electrodes includes a plurality of linear electrodes arranged along the vertical direction, the gas generated on the surface of the linear electrode forms a gap between the linear electrodes. It rises up. Therefore, even when the distance between the electrode and the separator is close, the gas can be quickly discharged from the aqueous liquid (A).
 また、電極表面で発生したガスがセパレータとは反対側に流れるような構造を有する電極を用いてもよい。たとえば、水平方向に対して傾いている貫通孔が形成された電極を用いてもよい。そのような電極の例には、エクスパンドメタルを用いた電極が含まれる。そのような電極は、電極とセパレータとが接触している場合に特に好ましく用いられる。 Alternatively, an electrode having a structure in which gas generated on the electrode surface flows on the side opposite to the separator may be used. For example, you may use the electrode in which the through-hole inclined with respect to the horizontal direction was formed. Examples of such electrodes include electrodes using expanded metal. Such an electrode is particularly preferably used when the electrode and the separator are in contact.
 第1および第2の電極は、それらに電圧(通常、直流電圧)を印加するための電源(通常、直流電源)に接続される。電源は、コンセントから得られる交流電圧を直流電圧に変換するAC-DCコンバータであってもよい。また、電源は、太陽電池や燃料電池などの発電装置や電池(一次電池および二次電池)であってもよい。 The first and second electrodes are connected to a power source (usually a DC power source) for applying a voltage (usually a DC voltage) to them. The power source may be an AC-DC converter that converts an AC voltage obtained from an outlet into a DC voltage. The power source may be a power generation device such as a solar cell or a fuel cell or a battery (a primary battery and a secondary battery).
 なお、本発明の装置は、第1の槽および第2の槽の少なくとも一方を複数個含んでもよい。その場合、第1の槽と第2の槽とは交互に配置される。第1の槽と第2の槽との間は、セパレータで仕切られる。たとえば、本発明の装置が3個の第1の槽と2個の第2の槽を含む場合、それらは、「第1の槽/第2の槽/第1の槽/第2の槽/第1の槽」という順序で交互に配置される。また、この場合、電極およびセパレータは、たとえば「第1の電極/セパレータ/第2の電極/第2の電極/セパレータ/第1の電極/第1の電極/セパレータ/第2の電極/第2の電極/セパレータ/第1の電極」という順序で配置される。このような構成によれば、単位容積あたりの電極面積を増やすことができ、電極間の抵抗を下げることができる。そのため、この構成ではジュール熱の発生量を小さくでき、水性液体(A)の温度が上昇しにくくなる。すなわち、この構成では、発熱量を増大させずに電流量を増やすことが可能である。 Note that the apparatus of the present invention may include a plurality of at least one of the first tank and the second tank. In that case, the first tank and the second tank are alternately arranged. A separator is partitioned between the first tank and the second tank. For example, if the apparatus of the present invention includes three first tanks and two second tanks, they are “first tank / second tank / first tank / second tank / They are alternately arranged in the order of “first tank”. In this case, the electrode and the separator may be, for example, “first electrode / separator / second electrode / second electrode / separator / first electrode / first electrode / separator / second electrode / second”. Electrode / separator / first electrode ”. According to such a configuration, the electrode area per unit volume can be increased, and the resistance between the electrodes can be reduced. Therefore, with this configuration, the amount of Joule heat generated can be reduced, and the temperature of the aqueous liquid (A) is unlikely to rise. That is, with this configuration, it is possible to increase the amount of current without increasing the amount of heat generation.
 本発明の装置において、圧力差(DP)が生じると、第1の槽内の水性液体(A)の液面と、第2の槽内の水性液体(A)の液面とが変化する。具体的には、第1の槽内の気体の圧力が第2の槽内の気体の圧力よりも高くなると、第1の槽内の水性液体(A)の液面が低下し、第2の槽内の水性液体(A)の液面が上昇する。第1の槽内の水性液体(A)の液面がセパレータに到達すると、第1の槽内にある圧力が高い気体は、セパレータを通過してしまう。その結果、第1の槽内の気体と第2の槽内の気体とが混合される。すなわち、水性液体(A)の液面の一部(第1の槽内の水性液体(A)の液面または第2の槽内の水性液体(A)の液面)が低下することによって、第1の槽内の気体と、第2の槽内の気体とが混合する場合がある。また、水性液体(A)の液面の一部が低下することによって、第1の電極または第2の電極が露出し、電気分解の効率が低下する場合がある。本発明の装置は、このような液面の低下を制限する手段および/または構造を有する。それらの制限手段および構造について、以下に説明する。 In the apparatus of the present invention, when a pressure difference (DP) occurs, the liquid level of the aqueous liquid (A) in the first tank and the liquid level of the aqueous liquid (A) in the second tank change. Specifically, when the pressure of the gas in the first tank becomes higher than the pressure of the gas in the second tank, the liquid level of the aqueous liquid (A) in the first tank decreases, and the second The liquid level of the aqueous liquid (A) in the tank rises. When the liquid level of the aqueous liquid (A) in the first tank reaches the separator, the gas having a high pressure in the first tank passes through the separator. As a result, the gas in the first tank and the gas in the second tank are mixed. That is, by reducing a part of the liquid level of the aqueous liquid (A) (the liquid level of the aqueous liquid (A) in the first tank or the liquid level of the aqueous liquid (A) in the second tank), The gas in the first tank and the gas in the second tank may be mixed. Moreover, when a part of liquid level of aqueous liquid (A) falls, a 1st electrode or a 2nd electrode may be exposed and the efficiency of electrolysis may fall. The apparatus of the present invention has means and / or structures that limit such a drop in liquid level. Those limiting means and structure will be described below.
 [第1のガス生成装置]
 第1のガス生成装置の一例では、制限手段が、第1の槽内の気体の圧力と、第2の槽内の気体の圧力との圧力差が小さくなるように圧力差(DP)を調節する圧力差調節器(圧力差調節手段)を含む。この圧力差調節器(圧力差調節手段)によって、水性液体(A)の電気分解中において、第1の槽内の水性液体(A)の液面、または、第2の槽内の水性液体(A)の液面が低下することを制限できる。1つの観点では、この圧力差調節器は、第1の槽内の水性液体の液面が特定の部材(S)に到達すること、および、第2の槽内の水性液体の液面が特定の部材(S)に到達すること、を防止する機器(手段)である。また、別の観点では、この圧力差調節器は、第1の槽内の気体が特定の部材(S)に到達すること、および、第2の槽内の気体が特定の部材(S)に到達すること、を防止する機器(手段)である。
[First gas generator]
In an example of the first gas generation device, the limiting unit adjusts the pressure difference (DP) so that the pressure difference between the gas pressure in the first tank and the gas pressure in the second tank is small. Pressure difference adjuster (pressure difference adjusting means). During the electrolysis of the aqueous liquid (A), the level of the aqueous liquid (A) in the first tank or the aqueous liquid ( It can restrict | limit that the liquid level of A) falls. In one aspect, the pressure difference regulator is configured such that the liquid level of the aqueous liquid in the first tank reaches a specific member (S) and the liquid level of the aqueous liquid in the second tank is specified. It is an apparatus (means) that prevents the member (S) from being reached. Moreover, in another viewpoint, this pressure difference regulator is such that the gas in the first tank reaches the specific member (S), and the gas in the second tank reaches the specific member (S). It is a device (means) for preventing the arrival.
 1つの観点では、本発明の第1のガス生成装置は、セパレータ、第1の槽、第2の槽、第1の電極、第2の電極、および圧力差調節器(圧力差調節手段)を含む。この圧力差調節器によって、第1の槽内の気体と第2の槽内の気体との混合を防止できる。すなわち、圧力差調節器の一例は、混合防止手段として機能する。 In one aspect, the first gas generating device of the present invention includes a separator, a first tank, a second tank, a first electrode, a second electrode, and a pressure difference regulator (pressure difference adjusting means). Including. By this pressure difference regulator, mixing of the gas in the first tank and the gas in the second tank can be prevented. That is, an example of the pressure difference regulator functions as a mixing preventing unit.
 圧力差(DP)を調節できるものである限り、圧力差調節器に特に限定はない。圧力差調節器は、圧力差(DP)によって生じる力を利用して圧力差(DP)を調節するものであってもよい。圧力差調節器は、圧力差(DP)が生じたときに、第1の槽内の気体および第2の槽内の気体のうち、圧力が低い方の気体の圧力を高めるように機能するものであってもよい。 As long as the pressure difference (DP) can be adjusted, the pressure difference regulator is not particularly limited. The pressure difference adjuster may adjust the pressure difference (DP) using a force generated by the pressure difference (DP). The pressure difference regulator functions to increase the pressure of the lower pressure of the gas in the first tank and the gas in the second tank when a pressure difference (DP) occurs. It may be.
 圧力差調節器の一例は、第1のガスの流路および第2のガスの流路からなる群より選ばれる少なくとも1つの流路を含む容器と、その容器内に配置された仕切りとを含む。仕切りは、容器内において、第1のガスの流路と第2のガスの流路とを分けている。以下、この一例の容器を「容器(B)」という場合がある。圧力差(DP)によって仕切りが変形することによって、少なくとも1つの流路における気体の流れに対する抵抗が、圧力差(DP)を小さくするように変化する。たとえば、他の流路よりも圧力が低い流路の圧力が高くなるように、抵抗が変化する。一例では、圧力差(DP)によって仕切りが変形することによって、上記少なくとも1つの流路が開閉される。より具体的には、圧力差(DP)によって仕切りが変形することによって、他の流路よりも圧力が低い流路が閉じられる。 An example of the pressure difference regulator includes a container including at least one flow path selected from the group consisting of a first gas flow path and a second gas flow path, and a partition disposed in the container. . The partition divides the flow path of the first gas and the flow path of the second gas in the container. Hereinafter, the container of this example may be referred to as “container (B)”. When the partition is deformed by the pressure difference (DP), the resistance to the gas flow in at least one flow path changes so as to reduce the pressure difference (DP). For example, the resistance changes so that the pressure of the flow path whose pressure is lower than that of the other flow paths becomes higher. In one example, the partition is deformed by a pressure difference (DP), so that the at least one flow path is opened and closed. More specifically, when the partition is deformed by the pressure difference (DP), the flow path whose pressure is lower than that of the other flow paths is closed.
 仕切りには、第1および第2のガスを実質的に透過させず、且つ、圧力差(DP)によって変形する仕切りを用いることができる。仕切りは、薄い金属板、樹脂シート、ゴムシート、あるいはこれらの複合材で形成されてもよい。容器(B)の例には、第1および第2のガスを実質的に透過させず、第1および第2のガスの圧力で実質的に変形しない容器が含まれる。容器(B)は、金属、樹脂、ゴム、あるいはこれらの複合材で形成されてもよい。 As the partition, a partition that does not substantially transmit the first and second gases and deforms due to a pressure difference (DP) can be used. The partition may be formed of a thin metal plate, a resin sheet, a rubber sheet, or a composite material thereof. Examples of the container (B) include a container that is substantially impermeable to the first and second gases and that is not substantially deformed by the pressure of the first and second gases. The container (B) may be formed of metal, resin, rubber, or a composite material thereof.
 圧力差調節器の上記一例では、容器(B)の内部が仕切りによって第1の空間と第2の空間とに仕切られていてもよい。そして、第1の空間には第1のガスが流れる流入口および排出口が接続されていてもよい。この場合、第1の空間は、第1のガスの流路の一部となる。第2の空間には、第2のガスが流れる流入口および排出口が接続されていてもよい。この場合、第2の空間は第2のガスの流路の一部となる。あるいは、第2のガスの圧力が第2の空間および仕切りに加わるように、第2の空間には、第2のガスの流入口のみが接続されていてもよい。逆に、第1の空間に第1のガスの流入口のみが接続され、第2の空間に第2のガスが流れる流入口および排出口が接続されてもよい。 In the above example of the pressure difference regulator, the inside of the container (B) may be partitioned into a first space and a second space by a partition. In addition, an inlet and an outlet through which the first gas flows may be connected to the first space. In this case, the first space becomes a part of the flow path of the first gas. An inflow port and a discharge port through which the second gas flows may be connected to the second space. In this case, the second space becomes a part of the flow path of the second gas. Alternatively, only the second gas inlet may be connected to the second space so that the pressure of the second gas is applied to the second space and the partition. Conversely, only the first gas inlet may be connected to the first space, and the inlet and outlet through which the second gas flows may be connected to the second space.
 圧力差調節器は、容器(B)の内部(たとえば、仕切り)を加熱するためのヒータをさらに含んでもよい。このヒータは、仕切りに含まれてもよいし、仕切りの外部に存在してもよい。たとえば、容器(B)の外部にヒータを配置して、容器(B)の全体を加熱することによって容器(B)の内部を加熱してもよい。あるいは、容器(B)の内部にヒータを埋めこんでもよい。ヒータには、公知のヒータを用いることができ、たとえば、抵抗加熱ヒータ(たとえば、フィルムヒータやリボンヒータ)を用いることができる。本発明のガス生成装置でガスを生成すると、容器(B)を高湿度のガスが流れる。その結果、容器(B)の内部(たとえば、仕切り)に水滴が付着することがある。容器(B)の内部に水が溜まると、圧力差の調節が適切に行われない場合がある。そのような問題は、ヒータで容器(B)の内部を加熱することによって回避できる。容器(B)を加熱する温度に限定はなく、40~100℃の範囲(たとえば50~80℃の範囲や60~70℃の範囲)にあってもよい。また、本発明の装置は、容器(B)以外のガスの流路を加熱するヒータを含んでもよい。 The pressure difference regulator may further include a heater for heating the inside (for example, the partition) of the container (B). This heater may be included in the partition or may exist outside the partition. For example, the inside of the container (B) may be heated by arranging a heater outside the container (B) and heating the entire container (B). Alternatively, a heater may be embedded in the container (B). A known heater can be used as the heater, for example, a resistance heater (for example, a film heater or a ribbon heater) can be used. When gas is generated by the gas generator of the present invention, high-humidity gas flows through the container (B). As a result, water droplets may adhere to the inside (for example, the partition) of the container (B). If water accumulates inside the container (B), the pressure difference may not be adjusted properly. Such a problem can be avoided by heating the inside of the container (B) with a heater. The temperature for heating the container (B) is not limited, and may be in the range of 40 to 100 ° C. (for example, in the range of 50 to 80 ° C. or in the range of 60 to 70 ° C.). Moreover, the apparatus of this invention may also include the heater which heats the flow path of gas other than a container (B).
 圧力差調節器は、第1の槽内の水性液体(A)の液面の位置、および、第2の槽内の水性液体(A)の液面の位置をモニタする検出器と、少なくとも1つの流量調節器とを含んでもよい。少なくとも1つの流量調節器は、検出器の出力に応じて第1のガスの流量および/または第2のガスの流量を変化させる。検出器に特に限定はなく、電気によって水位を検出するセンサや、光によって水位を検出するセンサや、圧力によって水位を検出するセンサであってもよい。電気によって水位を検出するセンサの例には、電気抵抗によって水位を検出するセンサや、静電容量によって水位を検出するセンサが含まれる。第1の槽内の水性液体(A)の液面、または、第2の槽内の水性液体(A)の液面がセパレータまたは電極に近づいたことを検出器が検出すると、その信号がコントローラに出力される。コントローラは、その信号に基づいて、流量調節器を調節する。第1の槽内の気体および第2の槽内の気体のうちの一方が他方よりも圧力が高いと、その一方が存在する槽内の水性液体(A)の液面が低下する。コントローラは、液面が低下した槽とは異なる槽(すなわち、液面が上昇した槽)に存在するガスが流れる流路の流量を小さくする。その結果、液面が上昇した槽の液面が低下し、液面が低下した槽の液面が上昇する。このようにして、液面が特定の部材(S)に到達することが抑制される。 The pressure difference regulator includes at least one detector that monitors the position of the liquid level of the aqueous liquid (A) in the first tank and the position of the liquid level of the aqueous liquid (A) in the second tank. And two flow regulators. The at least one flow regulator changes the flow rate of the first gas and / or the flow rate of the second gas in accordance with the output of the detector. The detector is not particularly limited, and may be a sensor that detects the water level by electricity, a sensor that detects the water level by light, or a sensor that detects the water level by pressure. Examples of the sensor that detects the water level by electricity include a sensor that detects the water level by electric resistance and a sensor that detects the water level by capacitance. When the detector detects that the level of the aqueous liquid (A) in the first tank or the level of the aqueous liquid (A) in the second tank has approached the separator or electrode, the signal is sent to the controller. Is output. The controller adjusts the flow regulator based on the signal. When one of the gas in the first tank and the gas in the second tank is higher in pressure than the other, the liquid level of the aqueous liquid (A) in the tank in which one of the gases is lower. The controller reduces the flow rate of the flow path through which the gas existing in the tank different from the tank in which the liquid level has decreased (that is, the tank in which the liquid level has increased). As a result, the liquid level of the tank in which the liquid level has risen is lowered, and the liquid level of the tank in which the liquid level has been lowered is raised. In this way, the liquid level is suppressed from reaching the specific member (S).
 なお、本発明の装置では、液面が特定の部材(S)に近づいたときに電圧印加を停止してもよい。そのような処理をするために、本発明の装置は、第1の槽内の水性液体(A)の液面の位置、および、第2の槽内の水性液体(A)の液面の位置を検出する検出器と、検出器の出力信号に基づいて電圧印加を停止するコントローラとを備えてもよい。検出器には、上述した検出器を用いることができる。また、本発明の装置は、所定の時間で電圧印加を停止するタイマを備えてもよい。 In the device of the present invention, voltage application may be stopped when the liquid level approaches a specific member (S). In order to perform such a process, the apparatus of the present invention includes the position of the liquid level of the aqueous liquid (A) in the first tank and the position of the liquid level of the aqueous liquid (A) in the second tank. And a controller that stops voltage application based on an output signal of the detector. The detector described above can be used as the detector. The apparatus of the present invention may include a timer that stops voltage application at a predetermined time.
 第1のガス生成装置の他の一例では、制限手段が、第1の槽において生成される第1のガスが流れる空間に設けられた気液分離部を含む。第1のガスが流れる空間には、第1の槽の上方の空間、および、第1の槽と外部(たとえば大気)とを結ぶ流路が含まれる。この構成は、第2の槽内の気体の圧力が第1の槽内の気体の圧力よりも高くなるような場合に採用できる。装置を使用している際に、第2の槽内の気体の圧力が高くなると、第2の槽内の水性液体(A)の液面が低下し、第1の槽内の水性液体(A)の液面が上昇する。第1の槽に配置された水性液体(A)の液面が気液分離部に到達すると、水性液体(A)の液面の位置がそれ以上上昇することはない。この形態では、第1の槽に配置された水性液体(A)の液面が気液分離部に到達したときに、第2の槽に配置された水性液体(A)の液面が特定の部材(S)に到達しないようにする。そのような状態は、第1および第2の槽の形状、ならびに、槽内に配置する水性液体(A)の量を調節することによって実現できる。一例では、気液分離部は混合防止手段として機能する。 In another example of the first gas generation device, the limiting means includes a gas-liquid separation unit provided in a space in which the first gas generated in the first tank flows. The space through which the first gas flows includes a space above the first tank and a flow path connecting the first tank and the outside (for example, the atmosphere). This configuration can be adopted when the gas pressure in the second tank is higher than the gas pressure in the first tank. When using the apparatus, when the pressure of the gas in the second tank increases, the liquid level of the aqueous liquid (A) in the second tank decreases, and the aqueous liquid (A in the first tank) ) The liquid level rises. When the liquid level of the aqueous liquid (A) arranged in the first tank reaches the gas-liquid separation part, the position of the liquid level of the aqueous liquid (A) does not rise any further. In this embodiment, when the liquid level of the aqueous liquid (A) arranged in the first tank reaches the gas-liquid separator, the liquid level of the aqueous liquid (A) arranged in the second tank is a specific level. Do not reach the member (S). Such a state can be realized by adjusting the shapes of the first and second tanks and the amount of the aqueous liquid (A) disposed in the tank. In one example, the gas-liquid separator functions as a mixing preventing unit.
 気液分離部(気液分離手段)は、液体を通過させず気体のみを通過させる。気液分離部は、層であってもよいし、膜であってもよい。気液分離部の一例は、撥水剤が充填された気液分離層である。撥水剤の例には、ポリテトラフルオロエチレンなどのフッ素樹脂の粉末が含まれる。気液分離部の他の一例は、撥水性の気液分離膜である。気液分離膜の例には液相分離濾紙(たとえばWhatman製の液相分離濾紙)が含まれる。 The gas-liquid separation unit (gas-liquid separation means) allows only gas to pass without passing liquid. The gas-liquid separation unit may be a layer or a membrane. An example of the gas-liquid separation unit is a gas-liquid separation layer filled with a water repellent. Examples of the water repellent include a fluororesin powder such as polytetrafluoroethylene. Another example of the gas-liquid separation unit is a water-repellent gas-liquid separation membrane. Examples of the gas-liquid separation membrane include liquid phase separation filter paper (for example, liquid phase separation filter paper manufactured by Whatman).
 なお、気液分離部は、第1の槽において生成される第1のガスが流れる空間だけでなく、第2の槽において生成される第2のガスが流れる空間にも配置されていてもよい。すなわち、本発明の第1のガス生成装置は、第1の気液分離部および/または第2の気液分離部を含んでもよい。第1の気液分離部は、第1の槽内の水性液体(A)の液面の上昇を制限し、第2の気液分離部は第2の槽内の水性液体(A)の液面の上昇を制限する。たとえば、気液分離部は、第1のガスが流れる空間および第2のガスが流れる空間からなる群より選ばれる少なくとも1つの空間に設けられていてもよい。ここで、第2のガスが流れる空間には、第2の槽の上方の空間、および、第2の槽と外部(たとえば大気)とを結ぶ流路が含まれる。また、本発明の第1のガス生成装置は、圧力差調節器および気液分離部の両方を含んでもよい。 Note that the gas-liquid separation unit may be disposed not only in the space in which the first gas generated in the first tank flows, but also in the space in which the second gas generated in the second tank flows. . That is, the first gas generation device of the present invention may include a first gas / liquid separation unit and / or a second gas / liquid separation unit. The first gas-liquid separation unit restricts the rise of the liquid level of the aqueous liquid (A) in the first tank, and the second gas-liquid separation part is the liquid of the aqueous liquid (A) in the second tank. Limit the rise of the surface. For example, the gas-liquid separation unit may be provided in at least one space selected from the group consisting of a space in which the first gas flows and a space in which the second gas flows. Here, the space through which the second gas flows includes a space above the second tank and a flow path connecting the second tank and the outside (for example, the atmosphere). In addition, the first gas generation device of the present invention may include both a pressure difference regulator and a gas-liquid separator.
 本発明の第1のガス生成装置は、後述する通気抵抗部材をさらに含んでもよい。たとえば、上記制限手段が気液分離部である場合、本発明の装置は、気液分離部の下流側に配置された通気抵抗部材をさらに含んでもよい。 The first gas generator of the present invention may further include a ventilation resistance member described later. For example, when the restricting means is a gas-liquid separator, the apparatus of the present invention may further include a ventilation resistance member arranged on the downstream side of the gas-liquid separator.
 [第2のガス生成装置]
 第2のガス生成装置では、水性液体(A)の電気分解中において、第1の槽内の気体の圧力よりも第2の槽内の気体の圧力が高くなったときに第2の槽内の水性液体(A)の液面の低下が制限される形状を、第1および第2の槽が有する。第2のガス生成装置では、特定の形状の第1および第2の槽を用いることによって、ガスの混合や電極の露出を防止できる。換言すれば、そのような形状を有する第1および第2の槽が、上記制限手段として機能する。別の観点では、水性液体(A)の電気分解中において、第1の槽内の気体の圧力よりも第2の槽内の気体の圧力が高くなったときに第2の槽内の水性液体(A)の液面が特定の部材(S)に到達しにくい形状を、第1および第2の槽が有する。
[Second gas generator]
In the second gas generator, during the electrolysis of the aqueous liquid (A), when the gas pressure in the second tank becomes higher than the gas pressure in the first tank, The first and second tanks have a shape that restricts the lowering of the liquid level of the aqueous liquid (A). In the second gas generation device, gas mixing and electrode exposure can be prevented by using the first and second tanks having specific shapes. In other words, the first and second tanks having such a shape function as the limiting means. In another aspect, during the electrolysis of the aqueous liquid (A), when the gas pressure in the second tank becomes higher than the gas pressure in the first tank, the aqueous liquid in the second tank. The first and second tanks have a shape in which the liquid level of (A) hardly reaches the specific member (S).
 第2のガス生成装置の一例では、第1および第2の槽のいずれか一方の内部の水平方向の断面積を、他方の槽の内部の水平方向の断面積よりも大きくする。このような構成によって、断面積が大きい方の槽内の水性液体(A)の液面の高さの変動を小さくすることが可能である。また、このような構成によって、一方の槽内の水性液体(A)の液面の高さの変動を小さくしつつ、装置の設置面積を小さくすることが可能である。 In an example of the second gas generating device, the horizontal sectional area inside one of the first and second tanks is made larger than the horizontal sectional area inside the other tank. With such a configuration, it is possible to reduce the fluctuation in the height of the liquid level of the aqueous liquid (A) in the tank having the larger cross-sectional area. In addition, with such a configuration, it is possible to reduce the installation area of the apparatus while reducing fluctuations in the height of the liquid level of the aqueous liquid (A) in one tank.
 第2の槽内の気体の圧力が第1の槽内の気体の圧力よりも高くなる条件で装置が用いられる場合、第2の槽の断面積を第1の槽の断面積よりも大きくすればよい。なお、この場合、第1の槽内の水性液体(A)の液面の上昇範囲が大きくなる。そのため、第1の槽内の水性液体(A)が第1の槽の外に漏れたり気体の流路に流れたりすることを防止するために、第1の槽の槽内の高さを、第2の槽の槽内の高さよりも高くしてもよい。たとえば、第1の槽の上方に、管状部を設けてもよい。 When the apparatus is used under the condition that the gas pressure in the second tank is higher than the gas pressure in the first tank, the cross-sectional area of the second tank should be larger than the cross-sectional area of the first tank. That's fine. In this case, the rising range of the liquid level of the aqueous liquid (A) in the first tank is increased. Therefore, in order to prevent the aqueous liquid (A) in the first tank from leaking out of the first tank or flowing into the gas flow path, the height in the tank of the first tank is set to You may make it higher than the height in the tank of a 2nd tank. For example, a tubular portion may be provided above the first tank.
 また、第1の槽において生成される第1のガスの流路には、第1のガスの通気抵抗を高めるための部材を配置してもよい。そのような通気抵抗部材は、通常、第1のガスの流路の最終端近傍に配置される。通気抵抗を高める通気抵抗部材を配置することによって、水性液体(A)の液面の急激な変動や、液面の脈動を抑制できる。通気抵抗部材は、気体の粘性流を利用するものであってもよい。通気抵抗部材の例には、多孔性の部材が含まれる。また、通気抵抗部材の例には、少なくとも一部の断面積が小さい流路を備える部材(たとえば細い管)も含まれる。通気抵抗部材内の流路の内径は、0.1mm~4mmの範囲にあってもよく、たとえば0.2mm~2mmの範囲や0.3mm~1mmの範囲にあってもよい。また、通気抵抗部材内の流路の断面積は、8×10-3mm2~12mm2の範囲にあってもよく、たとえば1×10-2mm2~3mm2の範囲や7×10-2mm2~0.8mm2の範囲にあってもよい。管の長さは、内径に応じて適当な長さとすればよい。たとえば、通気抵抗部材内の流路の直径または断面積が上記範囲のいずれかにある場合、長さは、0.5mm~1000mmの範囲にあってもよく、たとえば1mm~200mmの範囲や5mm~200mmの範囲にあってもよい。通常、通気抵抗部材内の流路の断面積が大きいほど、当該流路を長くすることが必要になる。 In addition, a member for increasing the ventilation resistance of the first gas may be disposed in the flow path of the first gas generated in the first tank. Such a ventilation resistance member is usually disposed in the vicinity of the final end of the flow path of the first gas. By disposing a ventilation resistance member that increases the ventilation resistance, it is possible to suppress rapid fluctuation of the liquid level of the aqueous liquid (A) and pulsation of the liquid level. The ventilation resistance member may utilize a viscous flow of gas. Examples of the ventilation resistance member include a porous member. Examples of the ventilation resistance member also include a member (for example, a thin tube) provided with a channel having a small cross-sectional area. The inner diameter of the flow path in the ventilation resistance member may be in the range of 0.1 mm to 4 mm, for example, in the range of 0.2 mm to 2 mm, or in the range of 0.3 mm to 1 mm. Further, the ventilation cross-sectional area of the flow path resistance in the member, 8 × 10 -3 mm 2 ~ 12mm may be in the range of 2, for example, 1 × 10 -2 mm 2 ~ 3mm 2 ranging and 7 × 10 - it may be in the range of 2 mm 2 ~ 0.8mm 2. The length of the tube may be an appropriate length depending on the inner diameter. For example, when the diameter or cross-sectional area of the flow path in the ventilation resistance member is in any of the above ranges, the length may be in the range of 0.5 mm to 1000 mm, for example, in the range of 1 mm to 200 mm, 5 mm to It may be in the range of 200 mm. Usually, the larger the cross-sectional area of the flow path in the ventilation resistance member, the longer the flow path needs to be.
 また、本発明の第2のガス生成装置は、上述した第1の気液分離部および/または第2の気液分離部を含んでもよい。 Moreover, the second gas generation device of the present invention may include the first gas-liquid separation unit and / or the second gas-liquid separation unit described above.
 以下、この明細書において、「槽の断面積」という語句は、槽の内部の水平方向の断面積を意味する。また、第1の槽の内部の水平方向の断面積を、「断面積(S1)」という場合がある。また、第2の槽の内部の水平方向の断面積を、「断面積(S2)」という場合がある。なお、槽の内部の水平方向の断面積が高さによって変動する形状を、槽が有する場合がある。その場合、槽の内部の水平方向の断面積は、槽内に存在する水性液体(A)の液面が変動する範囲における断面積の平均を意味する。第2のガス生成装置において、第2の槽内の気体の圧力が第1の槽内の気体の圧力よりも高くなる条件で装置が用いられる場合、断面積(S2)を断面積(S1)の1.1~10倍の範囲としてもよく、たとえば、2~10倍の範囲や2~5倍の範囲や3~5倍の範囲としてもよい。また、断面積(S1)と断面積(S2)との比がこれらの範囲にある場合、第1の槽の槽内の高さは、第2の槽の槽内の高さの1.2倍~5倍の範囲にあってもよく、たとえば、1.3倍~4倍の範囲や1.5倍~3倍の範囲にあってもよい。なお、第1の槽の上方に管状部が設けられている場合には、その管状部の高さも第1の槽の槽内の高さに含まれる。第2の槽の内容積は、200cm3~3000cm3の範囲にあってもよく、第1の槽の内容積は第2の槽の内容積よりも小さい。 Hereinafter, in this specification, the phrase “tank cross-sectional area” means a horizontal cross-sectional area inside the tank. In addition, the horizontal cross-sectional area inside the first tank may be referred to as “cross-sectional area (S1)”. The horizontal cross-sectional area inside the second tank may be referred to as “cross-sectional area (S2)”. The tank may have a shape in which the horizontal cross-sectional area inside the tank varies depending on the height. In that case, the horizontal cross-sectional area inside the tank means the average of the cross-sectional areas in the range in which the liquid level of the aqueous liquid (A) present in the tank fluctuates. In the second gas generating device, when the device is used under the condition that the gas pressure in the second tank is higher than the gas pressure in the first tank, the cross-sectional area (S2) is changed to the cross-sectional area (S1). 1.1 to 10 times the range, for example, a range 2 to 10 times, a range 2 to 5 times, or a range 3 to 5 times. Moreover, when the ratio of the cross-sectional area (S1) and the cross-sectional area (S2) is in these ranges, the height in the tank of the first tank is 1.2 of the height in the tank of the second tank. For example, it may be in the range of 5 to 5 times, for example, in the range of 1.3 to 4 times or in the range of 1.5 to 3 times. In addition, when the tubular part is provided above the 1st tank, the height of the tubular part is also included in the height in the tank of the 1st tank. The internal volume of the second tank may be in the range of 200 cm 3 to 3000 cm 3 , and the internal volume of the first tank is smaller than the internal volume of the second tank.
 なお、本発明の第2のガス生成装置を変形した他のガス生成装置も利用可能である。たとえば、槽の形状を任意の形状とし、第1のガスの流路および第2のガスの流路からなる群より選ばれる少なくとも1つの流路に通気抵抗部材が配置されていることを特徴とする装置も利用可能である。この装置では、槽の形状以外の部分については、第2のガス生成装置と同じ構成とすることができる。この装置によれば、水性液体の液面の急激な変動や、液面の脈動を抑制できる。 It should be noted that other gas generators obtained by modifying the second gas generator of the present invention can also be used. For example, the shape of the tank is an arbitrary shape, and the ventilation resistance member is disposed in at least one flow path selected from the group consisting of a first gas flow path and a second gas flow path. Devices that do so are also available. In this apparatus, portions other than the shape of the tank can have the same configuration as the second gas generation apparatus. According to this apparatus, it is possible to suppress rapid fluctuations in the liquid level of the aqueous liquid and pulsations of the liquid level.
 本発明の効果が得られる限り、第1のガス生成装置に含まれる構成を第2のガス生成装置に適用してもよく、第2のガス生成装置に含まれる構成を第1のガス生成装置に適用してもよい。 As long as the effects of the present invention can be obtained, the configuration included in the first gas generation device may be applied to the second gas generation device, and the configuration included in the second gas generation device may be applied to the first gas generation device. You may apply to.
 第2のガス生成装置は、第1のガス生成装置で説明した圧力差調節器(圧力差調節手段)や気液分離部を必要としない。ただし、本発明の第2のガス生成装置は、本発明の第1のガス生成装置で用いられる混合防止手段を含んでもよい。たとえば、本発明の第2のガス生成装置は、本発明の第1のガス生成装置で用いられる圧力差調節器または気液分離部を含んでもよい。別の観点では、本発明の第1のガス生成装置の第1および第2槽の形状を、第2のガス生成装置で用いられる第1および第2の槽の形状としてもよい。たとえば、圧力差調節器または気液分離部を備える本発明の第1のガス生成装置において、第1および第2の槽のいずれか一方の断面積を、他方の槽の断面積よりも大きくしてもよい。 The second gas generation device does not require the pressure difference regulator (pressure difference adjustment means) and the gas-liquid separation unit described in the first gas generation device. However, the second gas generation device of the present invention may include a mixing preventing means used in the first gas generation device of the present invention. For example, the second gas generator of the present invention may include a pressure difference regulator or a gas-liquid separator used in the first gas generator of the present invention. In another aspect, the shapes of the first and second tanks of the first gas generator of the present invention may be the shapes of the first and second tanks used in the second gas generator. For example, in the first gas generator of the present invention having a pressure difference regulator or a gas-liquid separator, the cross-sectional area of one of the first and second tanks is made larger than the cross-sectional area of the other tank. May be.
 本発明の第1および第2のガス生成装置は、水蒸気を除去する水蒸気トラップや、液体をトラップする液トラップをガスの流路に備えてもよい。水蒸気トラップは、シリカゲルなどの乾燥剤であってもよいし、水蒸気を凝結させて除去する装置であってもよい。そのような水蒸気トラップには、公知の水蒸気トラップを用いることができる。水蒸気トラップおよび上記のヒータは、圧力差調節器の内部や流路における結露を防止する手段として機能する。 The first and second gas generation apparatuses of the present invention may include a water vapor trap for removing water vapor or a liquid trap for trapping liquid in the gas flow path. The water vapor trap may be a desiccant such as silica gel, or may be a device that condenses and removes water vapor. A known water vapor trap can be used as such a water vapor trap. The water vapor trap and the heater function as a means for preventing condensation in the pressure difference regulator and in the flow path.
 液トラップに特に制限はなく、公知の液トラップを用いることができる。一例の液トラップは、ガスが流入する流路と、ガスが排出される流路とが接続された槽を含む。2つの流路は、槽の上部側に接続される。通常、2つの流路を除いて、槽は気密にされる。液トラップを用いることによって、流路で生じた結露をトラップすることが可能である。また、液トラップを用いることによって、何らかの理由で水性液体(A)が流路を流れたときに、その水性液体(A)をトラップできる。 There is no particular limitation on the liquid trap, and a known liquid trap can be used. An example of the liquid trap includes a tank in which a flow path through which gas flows and a flow path through which gas is discharged are connected. The two flow paths are connected to the upper side of the tank. Usually, the tank is airtight except for two channels. By using the liquid trap, it is possible to trap the dew condensation generated in the flow path. Further, by using the liquid trap, when the aqueous liquid (A) flows through the flow channel for some reason, the aqueous liquid (A) can be trapped.
 通気抵抗部材を含む装置では、通気抵抗部材の上流側の流路に液トラップを配置することが好ましい。たとえば、気液分離部と通気抵抗部材とを含む装置では、気液分離部と通気抵抗部材との間の流路に液トラップを配置することが好ましい。液トラップおよび通気抵抗部材を含む装置では、液トラップと通気抵抗部材との間の流路に水蒸気トラップを配置してもよい。 In an apparatus including a ventilation resistance member, it is preferable to arrange a liquid trap in the flow path upstream of the ventilation resistance member. For example, in an apparatus including a gas-liquid separation unit and a ventilation resistance member, it is preferable to arrange a liquid trap in a flow path between the gas-liquid separation unit and the ventilation resistance member. In an apparatus including a liquid trap and a ventilation resistance member, a water vapor trap may be disposed in a flow path between the liquid trap and the ventilation resistance member.
 圧力差調節器を含むガス生成装置において、水蒸気トラップは、圧力差調節器の上流側に配置されてもよい。たとえば、水蒸気トラップは、電気分解が行われる槽と圧力差調節器との間の流路に配置されてもよい。 In the gas generating device including the pressure difference regulator, the water vapor trap may be disposed on the upstream side of the pressure difference regulator. For example, the water vapor trap may be disposed in a flow path between a tank in which electrolysis is performed and a pressure difference regulator.
 本発明の第1および第2のガス生成装置は、生成されたガスを分配するための分配器(分配手段)を備えてもよい。分配器は、ガスの流路に配置される。第1のガス生成装置では、分配器は、通常、ガスの流路のうち圧力差調節器の下流側に配置される。分配器の一例は、容器と、容器内に配置された複数のシート状の仕切りとを備える。複数のシート状の仕切りは、互いに平行に配置されている。容器内の少なくとも一部は、複数の仕切りによって、複数の空間に分けられている。ガス生成装置で生成されたガスは、複数の仕切りによって分けられて容器から排出される。ガスを分けることによって、一度に複数の機器および/または用途にガスを利用できる。仕切りには、圧力差調節器の一例で説明した仕切りと同様の仕切りを用いることができる。 The first and second gas generation apparatuses of the present invention may include a distributor (distribution means) for distributing the generated gas. The distributor is disposed in the gas flow path. In the first gas generating device, the distributor is usually arranged on the downstream side of the pressure difference regulator in the gas flow path. An example of the distributor includes a container and a plurality of sheet-like partitions arranged in the container. The plurality of sheet-like partitions are arranged in parallel to each other. At least a part of the container is divided into a plurality of spaces by a plurality of partitions. The gas generated by the gas generator is divided by a plurality of partitions and discharged from the container. By separating the gas, it can be used for multiple devices and / or applications at once. A partition similar to the partition described in the example of the pressure difference adjuster can be used as the partition.
 なお、分配器の内部に結露が生じると、ガスの分配が適切に行われにくくなる場合がある。そのため、本発明の装置は、分配器内部の結露を防止する手段を備えてもよい。そのような手段の例には、圧力差調節器(圧力差調節手段)の内部の結露を防止する手段として説明した、水蒸気トラップおよびヒータが含まれる。すなわち、本発明の装置は、分配器の内部(たとえば分配器の容器の内部)を加熱するためのヒータをさらに備えてもよい。ヒータは、分配器の内部または分配器の外部に配置される。また、本発明の装置は、分配器の上流側(たとえば、圧力差調節器と分配器との間)に配置された水蒸気トラップを備えてもよい。 Note that if condensation occurs inside the distributor, it may be difficult to properly distribute the gas. Therefore, the apparatus of the present invention may include means for preventing condensation inside the distributor. Examples of such means include a steam trap and a heater described as means for preventing condensation inside the pressure difference regulator (pressure difference regulation means). That is, the apparatus of the present invention may further include a heater for heating the inside of the distributor (for example, the inside of the container of the distributor). The heater is disposed inside the distributor or outside the distributor. The apparatus of the present invention may also include a water vapor trap disposed upstream of the distributor (eg, between the pressure differential regulator and the distributor).
 本発明の製造装置の一例では、水性液体(A)の電気分解中に、第1の槽内の水性液体(A)の液面、および、第2の槽内の水性液体(A)の液面のいずれかが低下して、第1の電極または第2の電極が露出することが防止される。この装置では、セパレータの代わりにイオン交換膜が用いられてもよい。イオン交換膜を用いる場合には、水性液体(A)の液面がイオン交換膜に到達しても、ガスの混合は起こりにくい。しかし、水性液体(A)の液面が低下することによって電極が露出すると、電気分解の効率が低下する。この一例の装置では、電極の露出を抑制することによって、電気分解の効率の低下を防止する。 In an example of the production apparatus of the present invention, during the electrolysis of the aqueous liquid (A), the liquid level of the aqueous liquid (A) in the first tank and the liquid of the aqueous liquid (A) in the second tank. Any one of the surfaces is lowered to prevent the first electrode or the second electrode from being exposed. In this apparatus, an ion exchange membrane may be used instead of the separator. When an ion exchange membrane is used, gas mixing is unlikely to occur even when the liquid level of the aqueous liquid (A) reaches the ion exchange membrane. However, when the electrode is exposed due to a decrease in the liquid level of the aqueous liquid (A), the electrolysis efficiency decreases. In the apparatus of this example, a decrease in electrolysis efficiency is prevented by suppressing the exposure of the electrodes.
 また、別のガス生成方法は、連結部で連結された第1および第2の槽中の水性液体(A)の電気分解中に、第1の槽内の水性液体の液面が低下して連結部に到達すること、および、第2の槽内の水性液体の液面が低下して連結部に到達することを防止する。この方法が実施される装置は、連結部にセパレータがないことを除いて、第1のガス生成装置または第2のガス生成装置と同じである。この方法および装置で用いられる槽の例には、H字管が含まれる。 Another gas generation method is that the liquid level of the aqueous liquid in the first tank is lowered during the electrolysis of the aqueous liquid (A) in the first and second tanks connected by the connecting portion. Reaching the connecting portion and preventing the liquid level of the aqueous liquid in the second tank from lowering and reaching the connecting portion are prevented. The apparatus in which this method is implemented is the same as the first gas generation apparatus or the second gas generation apparatus except that there is no separator at the connecting portion. Examples of tanks used in this method and apparatus include H-tubes.
 [所定のガスの溶存濃度を上昇させる装置]
 本発明のガス生成装置(たとえば第1のガス生成装置および第2のガス生成装置)で生成されたガスを、液体に接触させることによって、当該液体中における所定のガスの溶存濃度を上昇させることができる。そのため、本発明のガス生成装置は、液体中における所定のガスの溶存濃度を上昇させる装置として利用できる。以下では、当該装置を「装置(A)」という場合がある。また、以下では、ガスと接触させる前の液体を「液体(L1)」といい、ガスと接触させた後の液体を「液体(L2)」という場合がある。別の観点では、本発明のガス生成装置は、所定の物性を有する液体(L2)の製造装置として利用できる。たとえば、所定のガスの溶存濃度および/または酸化還元電位(ORP)が所定の範囲にある液体(L2)の製造装置として利用できる。すなわち、装置(A)についての説明は、液体(L2)の製造装置の説明として読み替えることができる。
[Device for increasing the dissolved concentration of a given gas]
Increasing the dissolved concentration of a predetermined gas in the liquid by bringing the gas generated by the gas generating apparatus (for example, the first gas generating apparatus and the second gas generating apparatus) of the present invention into contact with the liquid. Can do. Therefore, the gas generating device of the present invention can be used as a device for increasing the dissolved concentration of a predetermined gas in a liquid. Hereinafter, the device may be referred to as “device (A)”. In the following, the liquid before contacting with the gas may be referred to as “liquid (L1)”, and the liquid after contacting with the gas may be referred to as “liquid (L2)”. In another aspect, the gas generating apparatus of the present invention can be used as a manufacturing apparatus for a liquid (L2) having predetermined physical properties. For example, it can be used as a production apparatus for a liquid (L2) having a predetermined concentration of dissolved gas and / or an oxidation-reduction potential (ORP) within a predetermined range. That is, the description of the apparatus (A) can be read as the description of the liquid (L2) manufacturing apparatus.
 液体(L2)は、液体(L1)と、本発明のガス生成装置で生成されたガスとを接触させ、それによって液体(L1)の物性を変化させることによって製造される。本発明のガス生成装置で生成されるガスと接触することによって物性が変化する液体である限り、液体(L1)に限定はない。液体(L1)の一例は、水を含む水性液体であり、水以外の溶媒(たとえばアルコール)を含んでもよい。液体(L1)が水性液体である場合、その溶媒に占める水の割合は、通常、50重量%以上(たとえば80重量%以上や95重量%以上や100重量%)である。液体(L1)の一例は水である。 The liquid (L2) is produced by bringing the liquid (L1) into contact with the gas generated by the gas generator of the present invention, thereby changing the physical properties of the liquid (L1). The liquid (L1) is not limited as long as it is a liquid whose physical properties are changed by contact with the gas generated by the gas generation apparatus of the present invention. An example of the liquid (L1) is an aqueous liquid containing water, and may contain a solvent (for example, alcohol) other than water. When the liquid (L1) is an aqueous liquid, the proportion of water in the solvent is usually 50% by weight or more (for example, 80% by weight or more, 95% by weight or more, or 100% by weight). An example of the liquid (L1) is water.
 装置(A)は、本発明のガス生成装置と、ガス生成装置で生成されたガスを液体(L1)に接触させる手段とを備える。当該手段に限定はなく、たとえば、ガスを液体(L1)中に噴出させるための流路を含んでもよい。たとえば、当該手段は、液体(L1)中にガスを噴出させるためのチューブを備えてもよい。このチューブによって、ガスのバブリングが可能になる。あるいは、当該手段は、ガス生成装置で生成されたガスを保持するための容器と、その容器内に液体(L1)を配置するための装置とを含んでもよい。たとえば、当該手段は、ガス生成装置で生成されたガスを保持するための容器と、その容器内に液体(L1)を噴霧するための噴霧装置とを含んでもよい。 The device (A) includes the gas generation device of the present invention and means for bringing the gas generated by the gas generation device into contact with the liquid (L1). There is no limitation in the said means, For example, you may include the flow path for ejecting gas in a liquid (L1). For example, the means may include a tube for ejecting gas into the liquid (L1). This tube allows gas bubbling. Alternatively, the means may include a container for holding the gas generated by the gas generation device and a device for arranging the liquid (L1) in the container. For example, the means may include a container for holding the gas generated by the gas generating device and a spraying device for spraying the liquid (L1) in the container.
 装置(A)は、液体(L1)を配置するための槽を備えてもよい。この槽は、大気が液体(L1)に溶解することを防止するための手段を備えてもよい。たとえば、この槽は、槽の内圧が外圧(通常は大気圧)よりも高い状態のときのみに開放する弁を備えてもよい。そのような弁を用いることによって、槽の外の気体(通常は大気)が槽内に混入することを抑制できる。この弁の作動圧を高い圧力に設定することによって、所定のガスの溶存濃度をさらに高めることができる。また、槽には、槽の内部と外部とを通じさせる微細な貫通孔が形成されていてもよい。そのような微細な貫通孔のみによって槽の内部と外部とを通じさせることによって、槽内の気体の圧力が高まったときに、槽内の気体をゆっくりと外部に放出することが可能である。 The device (A) may include a tank for arranging the liquid (L1). This tank may include means for preventing the atmosphere from being dissolved in the liquid (L1). For example, the tank may include a valve that opens only when the internal pressure of the tank is higher than the external pressure (usually atmospheric pressure). By using such a valve, it can suppress that the gas (usually air | atmosphere) outside a tank mixes in a tank. By setting the operating pressure of this valve to a high pressure, the dissolved concentration of the predetermined gas can be further increased. Moreover, the fine through-hole which lets the inside and outside of a tank pass may be formed in the tank. By allowing the inside and outside of the tank to pass through only such fine through-holes, it is possible to slowly release the gas in the tank to the outside when the pressure of the gas in the tank increases.
 液体(L2)の溶媒は、通常、液体(L1)の溶媒と同じである。たとえば、液体(L2)は、水を含む水性液体であってもよく、水以外の溶媒(たとえばアルコール)を含んでもよい。液体(L2)が水性液体である場合、その溶媒に占める水の割合は、通常、50重量%以上(たとえば80重量%以上や95重量%以上や100重量%)である。典型的には、液体(L2)は、特定の物性を有する水または水溶液である。 The solvent of the liquid (L2) is usually the same as the solvent of the liquid (L1). For example, the liquid (L2) may be an aqueous liquid containing water or a solvent other than water (for example, alcohol). When the liquid (L2) is an aqueous liquid, the proportion of water in the solvent is usually 50% by weight or more (for example, 80% by weight or more, 95% by weight or more, or 100% by weight). Typically, the liquid (L2) is water or an aqueous solution having specific physical properties.
 本発明のガス生成装置は、水素ガス、酸素ガス、および炭酸ガスから選ばれる少なくとも1つのガスを生成することができる。ガス生成装置で生成された水素ガスと水性液体とを接触させることによって、溶存水素濃度が高い水性液体、たとえば水素リッチ水、が得られる。また、ガス生成装置で生成された酸素ガスと水性液体とを接触させることによって、溶存酸素濃度が高い水性液体、たとえば酸素リッチ水、が得られる。また、ガス生成装置で生成された炭酸ガスと水性液体とを接触させることによって、溶存二酸化炭素濃度が高い水性液体、たとえば炭酸水、が得られる。すなわち、本発明の装置によれば、水素リッチ水、酸素リッチ水および炭酸水を製造できる。 The gas generator of the present invention can generate at least one gas selected from hydrogen gas, oxygen gas, and carbon dioxide gas. By bringing the hydrogen gas generated by the gas generator into contact with the aqueous liquid, an aqueous liquid having a high dissolved hydrogen concentration, for example, hydrogen-rich water, is obtained. Moreover, the aqueous liquid with high dissolved oxygen concentration, for example, oxygen rich water, is obtained by making the oxygen gas produced | generated with the gas production | generation apparatus and aqueous liquid contact. Moreover, the aqueous liquid with high dissolved carbon dioxide concentration, for example, carbonated water, is obtained by making the carbon dioxide gas produced | generated with the gas production | generation apparatus and aqueous liquid contact. That is, according to the apparatus of the present invention, hydrogen-rich water, oxygen-rich water, and carbonated water can be produced.
 本発明のガス生成装置で生成された水素ガスと、液体(L1)とを接触させた場合、液体(L1)中の溶存水素濃度が高くなる。その結果、液体(L1)のpHを大きく変えることなく、液体(L1)中の酸化還元電位(ORP)を低下させることができる。たとえば、水素ガスを水と接触させることによって、その水のORPを、-300mV以下や、-400mV以下や、-500mV以下や、-600mV以下にすることができる。その場合も、pHの変化を抑制することが可能である。たとえば、液体(L1)(たとえば水)のpHが6~8の範囲(たとえば5~9の範囲)にあった場合、pHを6~8の範囲(たとえば5~9の範囲)としたままで液体(L1)のORPを低減することが可能である。装置(A)を用いることによって、pHが1.5~12.5の範囲にあり、ORPが100~-800mVの範囲にある液体(L2)(たとえば水)を容易に製造できる。ORPの下限に限定はないが、一例では、-850mVである。 When the hydrogen gas generated by the gas generator of the present invention is brought into contact with the liquid (L1), the dissolved hydrogen concentration in the liquid (L1) becomes high. As a result, the redox potential (ORP) in the liquid (L1) can be lowered without greatly changing the pH of the liquid (L1). For example, by bringing hydrogen gas into contact with water, the ORP of the water can be set to −300 mV or less, −400 mV or less, −500 mV or less, or −600 mV or less. Even in that case, it is possible to suppress a change in pH. For example, if the pH of the liquid (L1) (eg, water) is in the range of 6-8 (eg, in the range of 5-9), the pH remains in the range of 6-8 (eg, in the range of 5-9). It is possible to reduce the ORP of the liquid (L1). By using the apparatus (A), the liquid (L2) (for example, water) having a pH in the range of 1.5 to 12.5 and an ORP in the range of 100 to −800 mV can be easily produced. Although there is no limitation on the lower limit of the ORP, in one example, it is −850 mV.
 水性液体の温度が低いほど、水性液体中の溶存水素濃度を高めることができる。たとえば、本発明のガス生成装置を用いることによって、室温(25℃)の水の溶存水素濃度を0.8ppm(重量比)以上や1.2ppm以上とすることが可能であり、温度が0℃の氷水の溶存水素濃度を1.0ppm以上や1.5ppm以上とすることが可能である。また、本発明のガス生成装置を用いることによって、水道水に含まれる残留塩素濃度を低くすることも可能である。たとえば、残留塩素濃度が0.5ppmである水道水を水素ガスと接触させることによって、残留塩素濃度が0.1ppm以下の水素リッチ水を得ることが可能である。すなわち、本発明の装置で水道水を処理することによって、残留塩素濃度が低い水素リッチ水を得ることができる。 The lower the temperature of the aqueous liquid, the higher the dissolved hydrogen concentration in the aqueous liquid. For example, by using the gas generator of the present invention, the dissolved hydrogen concentration of water at room temperature (25 ° C.) can be 0.8 ppm (weight ratio) or more, or 1.2 ppm or more, and the temperature is 0 ° C. The dissolved hydrogen concentration of the ice water can be 1.0 ppm or more or 1.5 ppm or more. Moreover, the residual chlorine concentration contained in tap water can be lowered by using the gas generating device of the present invention. For example, it is possible to obtain hydrogen-rich water having a residual chlorine concentration of 0.1 ppm or less by bringing tap water having a residual chlorine concentration of 0.5 ppm into contact with hydrogen gas. That is, hydrogen-rich water with a low residual chlorine concentration can be obtained by treating tap water with the apparatus of the present invention.
 本発明のガス生成装置で生成された酸素ガスと液体(L1)とを接触させた場合、液体(L1)中に酸素が溶け込み、溶存酸素濃度が高くなる。そのため、液のpHを実質的に変えることなく、酸素濃度が高い酸素リッチ水を生成することが可能である。たとえば、液体(L1)(たとえば水)のpHが6~8の範囲(たとえば5~9の範囲)にあった場合、pHを6~8の範囲(たとえば5~9の範囲)としたままで液体(L1)の酸素濃度を高めることができる。装置(A)を用いることによって、pHが1.5~12.5の範囲にあり、酸素濃度が10ppm~40ppmの範囲にある液体(L2)(たとえば水)を容易に製造できる。また、本発明の装置を用いることによって、水道水に含まれる残留塩素濃度を低くすることも可能である。たとえば、残留塩素濃度が0.5ppmである水道水を酸素ガスと接触させることによって、残留塩素濃度が0.1ppm以下の酸素リッチ水を得ることが可能である。すなわち、本発明の装置で水道水を処理することによって、残留塩素濃度が低い酸素リッチ水を得ることができる。 When the oxygen gas generated by the gas generator of the present invention is brought into contact with the liquid (L1), oxygen is dissolved in the liquid (L1), and the dissolved oxygen concentration is increased. Therefore, it is possible to generate oxygen-rich water having a high oxygen concentration without substantially changing the pH of the liquid. For example, if the pH of the liquid (L1) (eg, water) is in the range of 6-8 (eg, in the range of 5-9), the pH remains in the range of 6-8 (eg, in the range of 5-9). The oxygen concentration of the liquid (L1) can be increased. By using the apparatus (A), it is possible to easily produce a liquid (L2) (for example, water) having a pH in the range of 1.5 to 12.5 and an oxygen concentration in the range of 10 to 40 ppm. Moreover, the residual chlorine concentration contained in tap water can be lowered by using the apparatus of the present invention. For example, it is possible to obtain oxygen-rich water having a residual chlorine concentration of 0.1 ppm or less by bringing tap water having a residual chlorine concentration of 0.5 ppm into contact with oxygen gas. That is, by treating tap water with the apparatus of the present invention, oxygen-rich water having a low residual chlorine concentration can be obtained.
 本発明のガス生成装置で生成されたガスを液体(L1)と接触させる方法に限定はない。たとえば、ガスが存在する容器内で液体(L1)を噴霧してもよい。あるいは、液体(L1)の中をガスの気泡が流れるようにしてもよい。この場合、ガスの溶解を促進させるために、ガスの泡が小さくなるようにすることが好ましい。また、ガスの泡が液体(L1)中に長時間滞留することが好ましい。そのようにするために、装置(A)は、液体(L1)中でのガスの滞留時間を長くするための構造を含んでもよい。換言すれば、装置(A)は、液体(L1)中におけるガスの上昇速度を低下させるための構造を含んでもよい。たとえば、装置(A)は、液体(L1)が入れられる槽内に配置された障壁を含んでもよい。その障壁は、ガスの泡を透過させない。また、その障壁は、その表面が水平に対して斜めになるように配置されている。一例では、障壁の表面と水平とがなす角度は、5°~40°の範囲にある。障壁は、複数の板が、傾きが交互に逆になるように垂直方向に並んで配置された構成を有していてもよい。また、障壁は、らせん状であってもよい。ガス生成装置で生成されたガスが、液体(L1)中に放出されると、当該ガスの泡は液体(L1)中を上昇する。障壁は、ガスの泡が上昇時に通過する位置に配置される。障壁が存在する場合、障壁によって泡の上昇が妨げられる。泡は、障壁の下面に沿ってゆっくり上昇する。その結果、液体(L1)中に泡が滞留する時間が長くなり、ガスの溶存濃度の上昇速度を高めることができる。 There is no limitation on the method of bringing the gas generated by the gas generating apparatus of the present invention into contact with the liquid (L1). For example, the liquid (L1) may be sprayed in a container in which gas exists. Alternatively, gas bubbles may flow in the liquid (L1). In this case, it is preferable to make the gas bubbles small in order to promote the dissolution of the gas. Further, it is preferable that the gas bubbles stay in the liquid (L1) for a long time. To do so, the device (A) may include a structure for increasing the residence time of the gas in the liquid (L1). In other words, the device (A) may include a structure for reducing the rising speed of the gas in the liquid (L1). For example, the device (A) may include a barrier disposed in a tank in which the liquid (L1) is placed. The barrier is impermeable to gas bubbles. The barrier is arranged so that the surface thereof is inclined with respect to the horizontal. In one example, the angle between the surface of the barrier and the horizontal is in the range of 5 ° to 40 °. The barrier may have a configuration in which a plurality of plates are arranged in a vertical direction so that inclinations are alternately reversed. The barrier may be helical. When the gas generated by the gas generating device is released into the liquid (L1), the bubbles of the gas rise in the liquid (L1). The barrier is arranged at a position where the gas bubble passes when rising. If a barrier is present, the barrier prevents the bubbles from rising. The bubble slowly rises along the lower surface of the barrier. As a result, the time during which bubbles stay in the liquid (L1) becomes longer, and the rate of increase in the dissolved concentration of gas can be increased.
 [ガス生成方法]
 本発明のガス生成方法は、上記ガス生成装置で実施される方法である。そのため、本発明のガス生成装置について説明した事項は、本発明のガス生成方法に適用できる。また、本発明のガス生成方法について説明した事項は、本発明のガス生成装置に適用できる。
[Gas generation method]
The gas generation method of the present invention is a method performed by the gas generation apparatus. Therefore, the matter explained about the gas generating device of the present invention is applicable to the gas generating method of the present invention. In addition, the matters described for the gas generation method of the present invention can be applied to the gas generation apparatus of the present invention.
 本発明のガス生成方法は、工程(i)および工程(ii)を含む。工程(i)では、セパレータを挟んでつながっている第1および第2の槽に水性液体(A)が配置される。工程(ii)では、第1の槽に配置された第1の電極と第2の槽に配置された第2の電極との間に電圧を印加することによって水性液体(A)が電気分解される。そして、工程(ii)において、第1の槽内の水性液体(A)の液面、および、第2の槽内の水性液体(A)の液面から選ばれる少なくとも1つの液面の低下が制限される。たとえば、第1の槽内の水性液体(A)の液面が低下して特定の部材(S)に到達すること、および、第2の槽内の水性液体(A)の液面が低下して特定の部材(S)に到達すること、が防止される。この防止には、上記の制限手段を用いることができ、たとえば、上記の圧力差調節器(圧力差調節手段)を用いることができる。 The gas generation method of the present invention includes step (i) and step (ii). In the step (i), the aqueous liquid (A) is disposed in the first and second tanks connected with the separator interposed therebetween. In step (ii), the aqueous liquid (A) is electrolyzed by applying a voltage between the first electrode arranged in the first tank and the second electrode arranged in the second tank. The And in process (ii), the fall of the at least 1 liquid level chosen from the liquid level of the aqueous liquid (A) in a 1st tank and the liquid level of the aqueous liquid (A) in a 2nd tank is carried out. Limited. For example, the liquid level of the aqueous liquid (A) in the first tank decreases to reach the specific member (S), and the liquid level of the aqueous liquid (A) in the second tank decreases. Reaching a specific member (S) is prevented. In order to prevent this, the above restriction means can be used, and for example, the above pressure difference regulator (pressure difference adjustment means) can be used.
 [所定のガスの溶存濃度が高い液体の製造方法]
 本発明の方法および装置は、所定のガスの溶存濃度が高い液体の製造方法に利用できる。具体的には、水素ガス、酸素ガスおよび炭酸ガスから選ばれる少なくとも1つのガスの溶存濃度が高い液体の製造方法に利用できる。この製造方法によれば、水素リッチ水、酸素リッチ水、および炭酸水を製造できる。この製造方法は、本発明のガス生成方法またはガス生成装置を用いてガスを生成させる工程(工程(I))と、生成されたガスを液体(L1)に接触させる工程(工程(II))とを含む。この製造方法は、本発明の装置(A)で実施される方法である。そのため、本発明の装置(A)について説明した事項は、この方法に適用できる。別の観点では、この製造方法は、液体中における所定のガスの溶存濃度を上昇させる方法であり、その方法は、工程(I)および(II)を含む。
[Method for producing a liquid having a high dissolved concentration of a predetermined gas]
The method and apparatus of the present invention can be used in a method for producing a liquid having a high dissolved concentration of a predetermined gas. Specifically, it can be used in a method for producing a liquid having a high dissolved concentration of at least one gas selected from hydrogen gas, oxygen gas, and carbon dioxide gas. According to this production method, hydrogen-rich water, oxygen-rich water, and carbonated water can be produced. This production method includes a step of generating gas using the gas generation method or gas generation apparatus of the present invention (step (I)) and a step of bringing the generated gas into contact with the liquid (L1) (step (II)). Including. This manufacturing method is performed by the apparatus (A) of the present invention. Therefore, the matters described for the apparatus (A) of the present invention can be applied to this method. In another aspect, this production method is a method for increasing the dissolved concentration of a predetermined gas in a liquid, and the method includes steps (I) and (II).
 上述した本発明の装置は、いずれも、コントローラを備えてもよい。コントローラは、演算処理装置と記憶手段とを含む。なお、記憶手段は、演算処理装置と一体化されていてもよい。記憶手段の例には、演算処理装置の内部メモリ、外部メモリ、磁気ディスク(たとえばハードディスクドライブ)などが含まれる。記憶手段には、各工程を実行するためのプログラムが格納される。コントローラの一例には大規模集積回路(LSI)が含まれる。コントローラは、装置に含まれる機器(電源、バルブなど)および計測器(水位計など)に接続されていてもよい。コントローラは、計測器の出力に基づいて機器を制御することによって、装置で行われる処理を実行してもよい。なお、本発明の装置は、コントローラを備えていなくてもよい。 Any of the devices of the present invention described above may include a controller. The controller includes an arithmetic processing unit and storage means. Note that the storage means may be integrated with the arithmetic processing unit. Examples of the storage means include an internal memory, an external memory, and a magnetic disk (for example, a hard disk drive) of the arithmetic processing unit. The storage means stores a program for executing each process. An example of the controller includes a large scale integrated circuit (LSI). The controller may be connected to equipment (power supply, valve, etc.) and a measuring instrument (water level gauge, etc.) included in the apparatus. The controller may execute processing performed by the device by controlling the device based on the output of the measuring instrument. Note that the apparatus of the present invention may not include a controller.
 [実施形態1]
 実施形態1では、圧力差調節器を含むガス生成装置の一例について説明する。実施形態1のガス生成装置を図1に模式的に示す。図1の装置100は、槽10、平板状の第1の電極21、平板状の第2の電極22、セパレータ23、直流電源24、および圧力差調節器30を含む。
[Embodiment 1]
Embodiment 1 demonstrates an example of the gas production | generation apparatus containing a pressure difference regulator. A gas generator of Embodiment 1 is schematically shown in FIG. The apparatus 100 of FIG. 1 includes a tank 10, a flat plate-like first electrode 21, a flat plate-like second electrode 22, a separator 23, a DC power supply 24, and a pressure difference regulator 30.
 槽10は、隔壁10aおよびセパレータ23によって、第1の槽11と第2の槽12とに分けられている。すなわち、第1の槽11は、セパレータ23を介して第2の槽12に隣接している。隔壁10aは槽10の上部を仕切り、セパレータ23は槽10の下部を仕切っている。隔壁10aは、気体および液体のいずれをも通過させない。槽10(第1の槽11および第2の槽12)の中には、水性液体25が配置されている。第1の槽11中の水性液体25の液面の上、および、第2の槽12中の水性液体25の液面の上には、それぞれ、気体が存在する。以下では、第1の槽11中には、第1の槽11において電気分解によって生成される第1のガス26のみが存在し、第2の槽12中には、第2の槽12において電気分解によって生成される第2のガス27のみが存在すると仮定する。また、以下では、水性液体25の電気分解によって水素ガスおよび酸素ガスが生成される場合について説明する。 The tank 10 is divided into a first tank 11 and a second tank 12 by a partition wall 10 a and a separator 23. That is, the first tank 11 is adjacent to the second tank 12 via the separator 23. The partition wall 10 a partitions the upper part of the tank 10, and the separator 23 partitions the lower part of the tank 10. The partition wall 10a does not pass either gas or liquid. An aqueous liquid 25 is disposed in the tank 10 (the first tank 11 and the second tank 12). Gases exist on the liquid surface of the aqueous liquid 25 in the first tank 11 and on the liquid surface of the aqueous liquid 25 in the second tank 12, respectively. In the following, only the first gas 26 generated by electrolysis in the first tank 11 exists in the first tank 11, and the electric power in the second tank 12 exists in the second tank 12. Assume that only the second gas 27 produced by the decomposition is present. Hereinafter, a case where hydrogen gas and oxygen gas are generated by electrolysis of the aqueous liquid 25 will be described.
 第1の電極21は、第1の槽11内に配置されている。第2の電極22は、第2の槽12内に配置されている。第1の電極21と第2の電極22とは、セパレータ23を挟んで対向している。第1の電極21と第2の電極22とは、直流電源24に接続されている。第1の電極21と第2の電極22との間に電圧を印加することによって、水が電気分解され、酸素ガスと水素ガスとが生成される。具体的には、アノードの表面で酸素ガスが生成し、カソードの表面で水素ガスが生成される。 The first electrode 21 is disposed in the first tank 11. The second electrode 22 is disposed in the second tank 12. The first electrode 21 and the second electrode 22 are opposed to each other with the separator 23 interposed therebetween. The first electrode 21 and the second electrode 22 are connected to a DC power supply 24. By applying a voltage between the first electrode 21 and the second electrode 22, water is electrolyzed and oxygen gas and hydrogen gas are generated. Specifically, oxygen gas is generated on the surface of the anode, and hydrogen gas is generated on the surface of the cathode.
 圧力差調節器30の断面図を図2Aに示す。圧力差調節器30は、仕切り31および容器40を含む。容器40には、流入口41a、排出口41b、流入口42a、および排出口42bが形成されている。容器40の内部は、仕切り31によって、第1の空間41と第2の空間42とに仕切られている。 FIG. 2A shows a cross-sectional view of the pressure difference regulator 30. The pressure difference adjuster 30 includes a partition 31 and a container 40. The container 40 is formed with an inlet 41a, an outlet 41b, an inlet 42a, and an outlet 42b. The interior of the container 40 is partitioned into a first space 41 and a second space 42 by a partition 31.
 第1の空間41は、流入口41aおよび排出口41bを介して外部と通じている。排出口41bは大気に開放されている。流入口41aは、図1の流路28を介して第1の槽11に接続されている。装置100では、第1の槽11と圧力差調節器30とが、タンク等を介さずに流路28で接続されている。第1の空間41は、第1のガス26の流路の一部となっている。第1の槽11の第1のガス26の圧力が高まると、第1のガス26は、流入口41aおよび排出口41bを通じて大気中に放出される。 The first space 41 communicates with the outside through the inflow port 41a and the discharge port 41b. The discharge port 41b is open to the atmosphere. The inflow port 41a is connected to the first tank 11 via the flow path 28 of FIG. In the apparatus 100, the 1st tank 11 and the pressure difference regulator 30 are connected by the flow path 28 not via a tank etc. The first space 41 is a part of the flow path of the first gas 26. When the pressure of the first gas 26 in the first tank 11 increases, the first gas 26 is released into the atmosphere through the inlet 41a and the outlet 41b.
 第2の空間42は、流入口42aおよび排出口42bを介して外部と通じている。排出口42bは大気に開放されている。流入口42aは、図1の流路29を介して第2の槽12に接続されている。装置100では、第2の槽12と圧力差調節器30とが、タンク等を介さずに流路29で接続されている。第2の空間42は、第2のガス27の流路の一部となっている。第2の槽12の第2のガス27の圧力が高まると、第2のガス27は、流入口42aおよび排出口42bを通じて大気中に放出される。 The second space 42 communicates with the outside through the inlet 42a and the outlet 42b. The discharge port 42b is open to the atmosphere. The inflow port 42a is connected to the second tank 12 through the flow path 29 of FIG. In the apparatus 100, the 2nd tank 12 and the pressure difference regulator 30 are connected by the flow path 29, without passing through a tank etc. The second space 42 is a part of the flow path of the second gas 27. When the pressure of the second gas 27 in the second tank 12 increases, the second gas 27 is released into the atmosphere through the inlet 42a and the outlet 42b.
 ここで、第2のガス27の圧力が第1のガス26の圧力よりも大きい場合について考える。両者の圧力差(DP)が仕切り31を変形させるほど大きい場合には、図2Bに示すように仕切り31が変形し、流入口41aおよび/または排出口41bを塞ぐ。つまり、第1のガス26の流路が閉じられる。その結果、第2のガス27のみが排出口42bから排出される。電圧印加が続けられる限り、電極の表面では水素ガスおよび酸素ガスが生成されるため、第1のガス26の圧力は徐々に高くなる。圧力差(DP)が小さくなると、流入口41aおよび排出口41bが開放状態となり、第1のガス26および第2のガス27が、ともに圧力差調節器30から排出される。このように、圧力差調節器30を用いることによって、圧力差(DP)が大きくなりすぎることを抑制できる。 Here, a case where the pressure of the second gas 27 is larger than the pressure of the first gas 26 will be considered. When the pressure difference (DP) between the two is so large that the partition 31 is deformed, the partition 31 is deformed as shown in FIG. 2B and closes the inflow port 41a and / or the discharge port 41b. That is, the flow path of the first gas 26 is closed. As a result, only the second gas 27 is discharged from the discharge port 42b. As long as the voltage application continues, hydrogen gas and oxygen gas are generated on the surface of the electrode, so that the pressure of the first gas 26 gradually increases. When the pressure difference (DP) decreases, the inlet 41a and the outlet 41b are opened, and the first gas 26 and the second gas 27 are both discharged from the pressure difference regulator 30. Thus, by using the pressure difference regulator 30, it can suppress that a pressure difference (DP) becomes large too much.
 図2Cに示すように、圧力差調節器30は、容器40の周囲に配置されたヒータ32を備えてもよい。ヒータ32で容器を加熱することによって、容器40の内部における結露を防止することが可能である。 2C, the pressure difference adjuster 30 may include a heater 32 disposed around the container 40. By heating the container with the heater 32, it is possible to prevent condensation inside the container 40.
 仕切り31が流入口および/または排出口を塞ぐために必要な圧力差(DP)は、流入口および/または排出口と仕切りとの間の距離や、仕切り31の材料および厚さ等によって変えることができる。たとえば、流入口および/または排出口と仕切り31との間の距離を小さくすることによって、小さい圧力差(DP)で、流入口および/または排出口を仕切り31によって塞ぐことが可能になる。また、柔軟性が高い材料で仕切り31を形成したり、仕切り31を薄くしたりすることによって、小さい圧力差(DP)で、流入口および/または排出口を仕切り31によって塞ぐことが可能になる。 The pressure difference (DP) necessary for the partition 31 to block the inlet and / or the outlet may vary depending on the distance between the inlet and / or the outlet and the partition, the material and thickness of the partition 31, and the like. it can. For example, by reducing the distance between the inlet and / or outlet and the partition 31, the inlet and / or outlet can be blocked by the partition 31 with a small pressure difference (DP). In addition, by forming the partition 31 with a highly flexible material or making the partition 31 thinner, the inlet and / or the outlet can be blocked by the partition 31 with a small pressure difference (DP). .
 本発明の装置で得られた水素ガスでバブリングを行う場合の一例について、図3を参照しながら説明する。図3の装置は、装置(A)の一例である。図3に示すように、この一例では、排出口42bにチューブ43が接続され、チューブ43の先端が、液体44の中に入れられている。液体44は、水素ガスのバブリングが行われる液体であり、槽45に入れられている。チューブ43の先端は、親水性であることが好ましく、特に、親水性の多孔質であることが好ましい。そのような先端を用いることによって、気体を細かい泡状にして放出しやすくなる。排出口41bは、大気に開放されている。チューブ43の内面は撥水性であってもよく、それによってチューブ43の内部に液体44が進入することを抑制できる。 An example of bubbling with hydrogen gas obtained by the apparatus of the present invention will be described with reference to FIG. The apparatus in FIG. 3 is an example of the apparatus (A). As shown in FIG. 3, in this example, a tube 43 is connected to the discharge port 42 b, and the tip of the tube 43 is placed in the liquid 44. The liquid 44 is a liquid in which hydrogen gas is bubbled, and is placed in a tank 45. The tip of the tube 43 is preferably hydrophilic, and particularly preferably hydrophilic and porous. By using such a tip, the gas is easily released in the form of fine bubbles. The discharge port 41b is open to the atmosphere. The inner surface of the tube 43 may be water-repellent, thereby preventing the liquid 44 from entering the tube 43.
 図3に示すように、第1の電極21がアノードとなるように、第1の電極21と第2の電極22との間に電圧を印加することによって、水性液体25を電気分解する。その結果、第1の電極21の表面では酸素ガスが生成され、第2の電極22の表面では水素ガスが生成される。生成された水素ガスは、流路29およびチューブ43を通って液体44中に放出される。液体44の表面からチューブ43の先端までの距離に応じて、水素ガス(第2のガス27)の圧力が高まる。第1のガス26の圧力と第2のガス27の圧力との圧力差(DP)が大きい場合、圧力差(DP)によって、圧力差調節器30の仕切り31が変形する。そして、圧力差(DP)が充分に大きい場合、図2Bに示すように、流入口41aおよび/または排出口41bが仕切り31によって塞がれる。この状態は、第1の電極21の表面で生成される酸素ガスによって第1のガス26の圧力が高まり、それによって圧力差(DP)が小さくなるまで継続する。圧力差(DP)が充分に小さくなると、仕切り31の変形が小さくなり、その結果、流入口41aおよび排出口41bが開放状態となる。このように、本発明の装置では、圧力差(DP)が大きくなりすぎることを抑制できる。なお、図2Bでは、流入口41aおよび排出口41bの両方が塞がれている状態を示しているが、いずれか一方が塞がれればよい。 As shown in FIG. 3, the aqueous liquid 25 is electrolyzed by applying a voltage between the first electrode 21 and the second electrode 22 so that the first electrode 21 becomes an anode. As a result, oxygen gas is generated on the surface of the first electrode 21, and hydrogen gas is generated on the surface of the second electrode 22. The generated hydrogen gas is released into the liquid 44 through the flow path 29 and the tube 43. The pressure of the hydrogen gas (second gas 27) increases according to the distance from the surface of the liquid 44 to the tip of the tube 43. When the pressure difference (DP) between the pressure of the first gas 26 and the pressure of the second gas 27 is large, the partition 31 of the pressure difference regulator 30 is deformed by the pressure difference (DP). When the pressure difference (DP) is sufficiently large, the inlet 41a and / or the outlet 41b are blocked by the partition 31, as shown in FIG. 2B. This state continues until the pressure of the first gas 26 is increased by the oxygen gas generated on the surface of the first electrode 21, thereby reducing the pressure difference (DP). When the pressure difference (DP) is sufficiently small, the deformation of the partition 31 is small, and as a result, the inlet 41a and the outlet 41b are opened. Thus, in the apparatus of this invention, it can suppress that a pressure difference (DP) becomes large too much. 2B shows a state where both the inflow port 41a and the discharge port 41b are blocked, it is sufficient that either one of them is blocked.
 圧力差調節器30が存在しない場合、第1のガス26の圧力と第2のガス27の圧力との圧力差(DP)が大きくなりすぎる場合がある。圧力差(DP)は、第1の槽11内の水性液体25の液面と、第2の槽12内の水性液体25の液面との差をもたらす。圧力差(DP)が大きすぎる場合、図4に示すように、一方の液面がセパレータ23の位置まで下がってしまう。この状態では、圧力が高い方のガスがセパレータを通過して第1のガスと第2のガスとが混合される。また、圧力が高い方のガスしか使用しない場合でも、当該ガスが他方のガスの流路から流れてしまうため、当該ガスの利用可能な量が減ってしまう。このような問題を防止するには、水性液体25の液面がセパレータ23の位置まで下がることを防止することが重要である。 When the pressure difference regulator 30 is not present, the pressure difference (DP) between the pressure of the first gas 26 and the pressure of the second gas 27 may become too large. The pressure difference (DP) causes a difference between the liquid level of the aqueous liquid 25 in the first tank 11 and the liquid level of the aqueous liquid 25 in the second tank 12. When the pressure difference (DP) is too large, one liquid level is lowered to the position of the separator 23 as shown in FIG. In this state, the gas having the higher pressure passes through the separator, and the first gas and the second gas are mixed. Further, even when only the gas with the higher pressure is used, the gas flows from the flow path of the other gas, so that the usable amount of the gas is reduced. In order to prevent such a problem, it is important to prevent the liquid level of the aqueous liquid 25 from dropping to the position of the separator 23.
 [圧力差調節器の例]
 圧力差調節器30の一例の断面図を図5Aに示す。図5Aの圧力差調節器30は、仕切り31、および容器40を含む。容器40は、容器40aおよび40bによって構成される。容器40aには、凹部40acが形成されている。また、容器40bには、凹部40bcが形成されている。容器40aおよび仕切り31によって囲まれた空間が第1の空間41となる。容器40bおよび仕切り31によって囲まれた空間が第2の空間42となる。仕切り31は、オーリング51によって、容器40bに押しつけられている。
[Example of pressure difference regulator]
A cross-sectional view of an example of the pressure difference regulator 30 is shown in FIG. 5A. The pressure difference adjuster 30 in FIG. 5A includes a partition 31 and a container 40. The container 40 is constituted by containers 40a and 40b. A recess 40ac is formed in the container 40a. The container 40b has a recess 40bc. A space surrounded by the container 40 a and the partition 31 is a first space 41. A space surrounded by the container 40b and the partition 31 becomes the second space 42. The partition 31 is pressed against the container 40b by the O-ring 51.
 容器40aを仕切り31側から見たときの図を、図5Bに示す。容器40bを仕切り31側から見たときの図を、図5Cに示す。容器40a側から仕切り31を見たときの図を、図5Dに示す。容器40aの四隅には、ねじ止め用の穴40ahが形成されている。同様の穴40bhおよび31hが、それぞれ、容器40bおよび仕切り31に形成されている。容器40aと容器40bとは、ねじで結合されるが、接着剤などによって結合されてもよい。容器40aには、オーリングをはめ込むための溝40arが形成されている。 FIG. 5B shows a view when the container 40a is viewed from the partition 31 side. FIG. 5C shows a view of the container 40b as viewed from the partition 31 side. FIG. 5D shows a view when the partition 31 is viewed from the container 40a side. Screw holes 40ah are formed at the four corners of the container 40a. Similar holes 40bh and 31h are formed in the container 40b and the partition 31, respectively. The container 40a and the container 40b are coupled by screws, but may be coupled by an adhesive or the like. The container 40a is formed with a groove 40ar for fitting the O-ring.
 また、容器40aには、第1の空間41を形成するための凹部40acが形成されている。容器40aには流入口41aおよび排出口41bが形成されており、それらは凹部40acにつながっている。第1のガス26は、流入口41a、第1の空間41(凹部40ac)および排出口41bを流れる。 Further, a recess 40ac for forming the first space 41 is formed in the container 40a. The container 40a is formed with an inlet 41a and an outlet 41b, which are connected to the recess 40ac. The first gas 26 flows through the inlet 41a, the first space 41 (recess 40ac), and the outlet 41b.
 また、容器40bには、第2の空間42を形成するための凹部40bcが形成されている。容器40bには流入口42aおよび排出口42bが形成されており、それらは凹部40bcにつながっている。第2のガス27は、流入口42a、第2の空間42(凹部40bc)および排出口42bを流れる。 In addition, the container 40b is formed with a recess 40bc for forming the second space 42. The container 40b has an inlet 42a and an outlet 42b, which are connected to the recess 40bc. The second gas 27 flows through the inlet 42a, the second space 42 (recess 40bc), and the outlet 42b.
 オーリング51は、流入口41a、排出口41b、流入口42a、および排出口42bを囲むように配置される。仕切り31は、オーリング51によって環状に容器40bに押しつけられる。なお、仕切り31は、オーリング51を使わないで容器40aおよび容器40bに密着させてもよい。たとえば、仕切り31を、容器40aおよび/または容器40bに接着してもよい。いずれにしても、仕切り31と容器40との接触部から気体が逃げることがないように、仕切り31と容器40とは密着または接着される。 The O-ring 51 is disposed so as to surround the inlet 41a, the outlet 41b, the inlet 42a, and the outlet 42b. The partition 31 is annularly pressed against the container 40b by the O-ring 51. The partition 31 may be in close contact with the container 40a and the container 40b without using the O-ring 51. For example, the partition 31 may be bonded to the container 40a and / or the container 40b. In any case, the partition 31 and the container 40 are in close contact or bonded so that the gas does not escape from the contact portion between the partition 31 and the container 40.
 なお、第2の空間42に接続されるのは流入口42aのみであってもよい。そのような圧力差調節器30aを備える装置の一例を図6に示す。図6の装置100aは、圧力差調節器30の代わりに圧力差調節器30aを用いる点のみが、図1の装置100と異なる。圧力差調節器30aは、排出口42bが形成されていない点のみが圧力差調節器30と異なる。 Note that only the inlet 42a may be connected to the second space 42. An example of an apparatus provided with such a pressure difference regulator 30a is shown in FIG. The apparatus 100a of FIG. 6 differs from the apparatus 100 of FIG. 1 only in that the pressure difference adjuster 30a is used instead of the pressure difference adjuster 30. The pressure difference adjuster 30a differs from the pressure difference adjuster 30 only in that the discharge port 42b is not formed.
 流入口42aは、使用される第2のガス27の流路に接続されている。第2のガス27の圧力が高まると、仕切り31が変形して、圧力差(DP)が小さくなるまで流入口41aおよび/または排出口41bを塞ぐ。そのため、装置100aでも、装置100と同様の効果が得られる。 The inlet 42a is connected to the flow path of the second gas 27 to be used. When the pressure of the second gas 27 is increased, the partition 31 is deformed to block the inlet 41a and / or the outlet 41b until the pressure difference (DP) is reduced. Therefore, the device 100a can obtain the same effect as the device 100.
 なお、第1の空間41と第2の空間42のいずれか一方がない圧力差調節器を使用することも可能である。そのような圧力差調節器の例を図7Aおよび図7Bに示す。図7Aの圧力差調節器30bは、容器40aに凹部40acが形成されていない点のみが、図5Aの圧力差調節器30とは異なる。凹部40acが形成されていないため、通常の状態では、圧力差調節器30bには第1の空間41は存在しない。また、図7Bの圧力差調節器30cは、容器40bに凹部40bcが形成されていない点のみが、図5Aの圧力差調節器30とは異なる。凹部40bcが形成されていないため、通常の状態では、圧力差調節器30cには第1の空間41は存在しない。 Note that it is also possible to use a pressure difference regulator that does not have one of the first space 41 and the second space 42. An example of such a pressure differential regulator is shown in FIGS. 7A and 7B. The pressure difference adjuster 30b in FIG. 7A differs from the pressure difference adjuster 30 in FIG. 5A only in that the recess 40ac is not formed in the container 40a. Since the recess 40ac is not formed, the first space 41 does not exist in the pressure difference regulator 30b in a normal state. 7B is different from the pressure difference adjuster 30 of FIG. 5A only in that the recess 40bc is not formed in the container 40b. Since the recess 40bc is not formed, the first space 41 does not exist in the pressure difference regulator 30c in a normal state.
 圧力差調節器の他の例を図7Cに示す。また、図7Cの線VIID-VIID、線VIIE-VIIE、および線VIIF-VIIFにおける断面図を、それぞれ、図7D、7Eおよび7Fに示す。なお、図7Cの線VIIG-VIIGにおける断面図は、図7Eに示す断面図と同じである。 Another example of the pressure difference regulator is shown in FIG. 7C. In addition, cross-sectional views taken along line VIID-VIID, line VIIE-VIIE, and line VIIF-VIIF in FIG. 7C are shown in FIGS. 7D, 7E, and 7F, respectively. Note that the cross-sectional view taken along line VIIG-VIIG in FIG. 7C is the same as the cross-sectional view shown in FIG. 7E.
 図7Cに示す圧力差調節器30dは、仕切り31と容器40とを含む。容器40は、容器40aおよび40bを含む。容器40aの凹部と仕切り31とによって、第1の空間41が形成されている。容器40bの凹部と仕切り31とによって、第2の空間42が形成されている。容器40には、第1の空間41に通じる流入口41aおよび排出口41bと、第2の空間42に通じる流入口42aおよび排出口42bが形成されている。 7C includes a partition 31 and a container 40. The pressure difference adjuster 30d illustrated in FIG. The container 40 includes containers 40a and 40b. A first space 41 is formed by the recess of the container 40 a and the partition 31. A second space 42 is formed by the recess of the container 40 b and the partition 31. The container 40 is formed with an inlet 41 a and an outlet 41 b that communicate with the first space 41, and an inlet 42 a and an outlet 42 b that communicate with the second space 42.
 図7D~7Fに示すように、空間41および42は、それぞれ、流入口の近傍および排出口の近傍における断面積が大きく、流入口と排出口との中間における断面積が小さい。このような形状にすることによって、圧力の調節が容易になる。また、このような形状にすることによって、容器40内に水滴が溜まることを抑制できる。 As shown in FIGS. 7D to 7F, the spaces 41 and 42 have a large cross-sectional area in the vicinity of the inlet and the outlet, respectively, and a small cross-sectional area in the middle between the inlet and the outlet. By adopting such a shape, the pressure can be easily adjusted. Moreover, it can suppress that a water droplet accumulates in the container 40 by setting it as such a shape.
 圧力差調節器30b、30cおよび30dにおいても、第1のガス26の圧力と第2のガス27の圧力との圧力差(DP)が大きくなると、圧力差(DP)を小さくするように仕切り31が変形する。その結果、圧力差(DP)が大きくなりすぎることが抑制される。圧力差調節器30aと同様に、圧力差調節器30b、30cおよび30dにおいて、排出口41bおよび排出口42bのいずれか一方を省略することが可能である。 Also in the pressure difference adjusters 30b, 30c, and 30d, when the pressure difference (DP) between the pressure of the first gas 26 and the pressure of the second gas 27 is increased, the partition 31 is configured to reduce the pressure difference (DP). Is deformed. As a result, the pressure difference (DP) is suppressed from becoming too large. Similarly to the pressure difference adjuster 30a, in the pressure difference adjusters 30b, 30c and 30d, it is possible to omit either the discharge port 41b or the discharge port 42b.
 本発明で用いられる圧力差調節器において、流入口41aが酸素ガス生成側(アノード側)に接続され、流入口42aが水素ガス生成側(カソード側)に接続されてもよい。あるいは、流入口41aが水素ガス生成側(カソード側)に接続され、流入口42aが酸素ガス生成側(アノード側)に接続されてもよい。また、流入口41aが高圧側に接続され、流入口42aが低圧側に接続されてもよい。あるいは、流入口41aが低圧側に接続され、流入口42aが高圧側に接続されてもよい。 In the pressure difference regulator used in the present invention, the inlet 41a may be connected to the oxygen gas generation side (anode side), and the inlet 42a may be connected to the hydrogen gas generation side (cathode side). Alternatively, the inlet 41a may be connected to the hydrogen gas generation side (cathode side), and the inlet 42a may be connected to the oxygen gas generation side (anode side). The inflow port 41a may be connected to the high pressure side, and the inflow port 42a may be connected to the low pressure side. Alternatively, the inlet 41a may be connected to the low pressure side, and the inlet 42a may be connected to the high pressure side.
 [分配器の例]
 ガス分配器の一例の断面図を図8Aに示す。図8Aの分配器80は、容器81と、複数の仕切り82とを含む。容器81には、導入経路83と複数の排出経路84a~84gとが形成されている。ガス生成装置で生成されたガスは、導入経路83から導入され、排出経路84a~84gから排出される。その際に、ガスは、複数の仕切り82によって分けられて排出される。その結果、排出されたガスは、排出経路84a~84gごとに異なる用途(たとえば異なる機器)に使用できる。もちろん、排出経路84a~84gから選ばれる2つ以上の排出口から排出されたガスを同じ用途に用いることもできる。
[Example of distributor]
A cross-sectional view of an example of a gas distributor is shown in FIG. 8A. The distributor 80 in FIG. 8A includes a container 81 and a plurality of partitions 82. In the container 81, an introduction path 83 and a plurality of discharge paths 84a to 84g are formed. The gas generated by the gas generator is introduced from the introduction path 83 and discharged from the discharge paths 84a to 84g. At that time, the gas is divided and discharged by a plurality of partitions 82. As a result, the discharged gas can be used for different uses (for example, different devices) for each of the discharge paths 84a to 84g. Of course, gas discharged from two or more discharge ports selected from the discharge paths 84a to 84g can be used for the same application.
 図8Aの線VIIIB-VIIIBにおける断面図を図8Bに示す。仕切り82の上流側の一辺および下流側の一辺は、それぞれ、容器81に固定されている。図8Aを参照して、容器81は、仕切り82で分けられていない第1の領域R1と、仕切り82で分けられた第2の領域R2とを含む。第2の領域R2は、経路R2a~R2gに分けられており、それぞれ、排出経路84a~84gに対応している。複数の仕切り82は、それぞれシート状の仕切りであり、互いに平行になるように配置されている。容器81は、仕切り82を固定するための固定部81aを含む。 FIG. 8B shows a cross-sectional view taken along line VIIIB-VIIIB in FIG. 8A. The upstream side and the downstream side of the partition 82 are fixed to the container 81, respectively. Referring to FIG. 8A, container 81 includes a first region R1 that is not divided by partition 82 and a second region R2 that is divided by partition 82. The second region R2 is divided into routes R2a to R2g, and corresponds to the discharge routes 84a to 84g, respectively. Each of the plurality of partitions 82 is a sheet-shaped partition, and is arranged so as to be parallel to each other. The container 81 includes a fixing portion 81a for fixing the partition 82.
 排出経路84a~84gの下流側の経路のうちのいずれかが、水蒸気の凝結によって生成する水滴で塞がれる可能性がある。そのような状態が生じても、仕切り82の変形に伴う、ガスの圧力の変化およびガスの流量の変化によって、経路上の水滴が除去されやすくすることが可能である。ここで、排出経路84a~84gを通るガスのうち、排出経路84dの下流側が水滴で塞がれた場合を考える。その場合、経路R2dの圧力が高くなり、経路R2dを形成している2つの仕切り82が図8Cのように外側に膨らむ。その結果、経路R2dを流れるガスに対する抵抗が小さくなる。そのため、経路R2dにおける圧力損失が小さくなり、水滴に加わる圧力を高くできる。このようにして、水滴を除去できる可能性を高めることができる場合がある。 Any of the downstream paths of the discharge paths 84a to 84g may be blocked by water droplets generated by condensation of water vapor. Even if such a state occurs, it is possible to easily remove water droplets on the path due to a change in gas pressure and a change in gas flow rate accompanying the deformation of the partition 82. Here, let us consider a case where, of the gas passing through the discharge paths 84a to 84g, the downstream side of the discharge path 84d is blocked with water droplets. In that case, the pressure in the path R2d increases, and the two partitions 82 forming the path R2d swell outward as shown in FIG. 8C. As a result, the resistance to the gas flowing through the path R2d is reduced. Therefore, the pressure loss in the path R2d is reduced, and the pressure applied to the water droplet can be increased. In this way, the possibility of removing water droplets may be increased.
 [電極の例]
 平板状の第1の電極21の一例について、図9Aに示す。図9Aの第1の電極21は、ストライプ状に配置された複数の線状の電極21aと、それらを接続する線状の電極21bとを含む。装置の使用時において、通常、線状の電極21aが鉛直方向と平行になるように、第1の電極21は配置される。第2の電極22も、第1の電極21と同じ構造とすることができる。第1の電極21とセパレータ23との配置の一例を、図9Bに模式的に示す。好ましい一例では、平板状の第1の電極21と平板状の第2の電極22とは、セパレータ23を挟んで、平行に配置される。すなわち、第1の電極21、第2の電極22、およびセパレータ23は2次元状の外形を有し、使用時において、それらは鉛直方向と平行になるように配置される。
[Example of electrode]
An example of the flat plate-like first electrode 21 is shown in FIG. 9A. The first electrode 21 in FIG. 9A includes a plurality of linear electrodes 21a arranged in a stripe pattern and a linear electrode 21b connecting them. When the apparatus is used, the first electrode 21 is usually arranged so that the linear electrode 21a is parallel to the vertical direction. The second electrode 22 can also have the same structure as the first electrode 21. An example of the arrangement of the first electrode 21 and the separator 23 is schematically shown in FIG. 9B. In a preferred example, the flat plate-like first electrode 21 and the flat plate-like second electrode 22 are arranged in parallel with the separator 23 interposed therebetween. That is, the first electrode 21, the second electrode 22, and the separator 23 have a two-dimensional outer shape and are arranged so as to be parallel to the vertical direction when in use.
 [実施形態2]
 実施形態2では、気液分離部を含むガス生成装置の一例について説明する。実施形態2のガス生成装置を図10に模式的に示す。図10の装置200は、槽10、平板状の第1の電極21、平板状の第2の電極22、セパレータ23、直流電源24、および気液分離膜91を含む。装置100と重複する部分の説明は省略する。
[Embodiment 2]
Embodiment 2 demonstrates an example of the gas production | generation apparatus containing a gas-liquid separation part. A gas generator of Embodiment 2 is schematically shown in FIG. The apparatus 200 in FIG. 10 includes a tank 10, a flat plate-like first electrode 21, a flat plate-like second electrode 22, a separator 23, a DC power supply 24, and a gas-liquid separation membrane 91. The description of the parts overlapping with the apparatus 100 is omitted.
 第1の槽11の上方には筒状部11aが存在し、筒状部11aには、気液分離膜91が配置されている。第1の槽11の内部は、気液分離膜91を介して大気とつながっている。図10は、圧力差(DP)がゼロの状態を示している。第2の槽12において、セパレータ23と水性液体25とが接触している位置よりも上には、体積V2の水性液体25aが存在している。また、第1の槽11の水性液体25と気液分離膜91との間には、体積V1の空間が存在している。装置200は、体積V1よりも体積V2が大きい状態で使用される。体積V1よりも体積V2が小さいと、圧力差(DP)が大きいときには水性液体25の液面がセパレータ23の位置まで低下して第1のガス26と第2のガス27とが混合される場合がある。体積V1と体積V2との大小関係は、たとえば、槽10内に配置する水性液体25の量を調節することによって制御できる。たとえば、水性液体25の量が少ないと(V2/V1)の値が小さくなり、水性液体25の量が多いと(V2/V1)の値が大きくなる。 The cylindrical part 11a exists above the 1st tank 11, and the gas-liquid separation film | membrane 91 is arrange | positioned at the cylindrical part 11a. The inside of the first tank 11 is connected to the atmosphere via a gas-liquid separation membrane 91. FIG. 10 shows a state in which the pressure difference (DP) is zero. In the second tank 12, the volume V2 of the aqueous liquid 25a exists above the position where the separator 23 and the aqueous liquid 25 are in contact with each other. A space of volume V1 exists between the aqueous liquid 25 and the gas-liquid separation membrane 91 in the first tank 11. The apparatus 200 is used in a state where the volume V2 is larger than the volume V1. When the volume V2 is smaller than the volume V1, the liquid level of the aqueous liquid 25 is lowered to the position of the separator 23 when the pressure difference (DP) is large, and the first gas 26 and the second gas 27 are mixed. There is. The magnitude relationship between the volume V1 and the volume V2 can be controlled, for example, by adjusting the amount of the aqueous liquid 25 arranged in the tank 10. For example, when the amount of the aqueous liquid 25 is small, the value of (V2 / V1) decreases, and when the amount of the aqueous liquid 25 is large, the value of (V2 / V1) increases.
 装置200において水性液体25中の水が電気分解されると、水素ガスおよび酸素ガスが生成される。以下では、第1の電極21がアノードとなるように第1の電極21と第2の電極22との間に電圧を印加する場合について説明する。もちろん、逆方向に電圧を印加してもよい。 When water in the aqueous liquid 25 is electrolyzed in the apparatus 200, hydrogen gas and oxygen gas are generated. Below, the case where a voltage is applied between the 1st electrode 21 and the 2nd electrode 22 is demonstrated so that the 1st electrode 21 may become an anode. Of course, a voltage may be applied in the reverse direction.
 電圧印加によって、第1の電極21の表面では酸素ガスが生成され、第2の電極22の表面では水素ガスが生成される。装置の状況によっては、第2のガス27(水素ガス)の圧力が高くなる。たとえば、図11に示す状況では、チューブ43の先端と液体44の液面との距離、および、チューブ43を流れる第2のガス27の通気抵抗に応じて、第2のガス27の圧力が高くなる。その結果、図11に示すように、第1の槽11内の水性液体25の液面が上昇し、第2の槽12内の水性液体25の液面が低下する。 By applying voltage, oxygen gas is generated on the surface of the first electrode 21, and hydrogen gas is generated on the surface of the second electrode 22. Depending on the state of the apparatus, the pressure of the second gas 27 (hydrogen gas) increases. For example, in the situation shown in FIG. 11, the pressure of the second gas 27 is high depending on the distance between the tip of the tube 43 and the liquid level of the liquid 44 and the ventilation resistance of the second gas 27 flowing through the tube 43. Become. As a result, as shown in FIG. 11, the liquid level of the aqueous liquid 25 in the first tank 11 rises, and the liquid level of the aqueous liquid 25 in the second tank 12 falls.
 図11に示すように、装置200では、第1の槽11内の水性液体25の液面が気液分離膜91に到達しても、第2の槽12内の水性液体25の液面がセパレータ23に到達しない。そのため、第2の槽12内の第2のガス27(水素ガス)の圧力が高まっても、第1のガス26(酸素ガス)と第2のガス27(水素ガス)とが混ざることがない。このように、実施形態2の装置200によれば、第1のガス26と第2のガス27とが混ざることを防止できる。また、装置200では、水性液体25が装置の外にあふれでることを防止できる。 As shown in FIG. 11, in the apparatus 200, even when the liquid level of the aqueous liquid 25 in the first tank 11 reaches the gas-liquid separation membrane 91, the liquid level of the aqueous liquid 25 in the second tank 12 is The separator 23 is not reached. Therefore, even if the pressure of the second gas 27 (hydrogen gas) in the second tank 12 increases, the first gas 26 (oxygen gas) and the second gas 27 (hydrogen gas) do not mix. . Thus, according to the apparatus 200 of Embodiment 2, it can prevent that the 1st gas 26 and the 2nd gas 27 are mixed. Further, in the apparatus 200, it is possible to prevent the aqueous liquid 25 from overflowing outside the apparatus.
 なお、図10では、第1のガスが流れる空間(第1の槽の上方)にのみ気液分離部が配置される例を示したが、気液分離部は、第2のガスが流れる空間(第2の槽の上方)に形成されてもよい。また、気液分離部は、第1のガスが流れる空間および第2のガスが流れる空間の両方に形成されてもよい。さらに、気液分離部が配置される位置は、図10に示した位置に限定されない。気液分離部は、第1のガスおよび/または第2のガスが気液分離部を通って流れるように、配置されていればよい。別の観点では、気液分離部は、槽内の空間と大気との間に配置されていればよい。 Note that FIG. 10 shows an example in which the gas-liquid separation unit is disposed only in the space (above the first tank) in which the first gas flows, but the gas-liquid separation unit is a space in which the second gas flows. It may be formed (above the second tank). Further, the gas-liquid separation unit may be formed in both the space in which the first gas flows and the space in which the second gas flows. Furthermore, the position where the gas-liquid separator is arranged is not limited to the position shown in FIG. The gas-liquid separation unit may be arranged so that the first gas and / or the second gas flows through the gas-liquid separation unit. In another viewpoint, the gas-liquid separation part should just be arrange | positioned between the space in a tank, and air | atmosphere.
 [実施形態3]
 実施形態3では、本発明の第2のガス生成装置の一例について説明する。実施形態3のガス生成装置を図12Aおよび12Bに模式的に示す。図12Aの装置300は、槽10、平板状の第1の電極21、平板状の第2の電極22、セパレータ23、および直流電源24を含む。装置100と重複する部分の説明は省略する。
[Embodiment 3]
In Embodiment 3, an example of the second gas generation device of the present invention will be described. A gas generator of Embodiment 3 is schematically shown in FIGS. 12A and 12B. The apparatus 300 of FIG. 12A includes a tank 10, a flat plate-like first electrode 21, a flat plate-like second electrode 22, a separator 23, and a DC power supply 24. The description of the parts overlapping with the apparatus 100 is omitted.
 装置300は、装置100とは異なり、圧力差調節器30を含まない。また、装置300の槽10の形状は、図1に示した槽10の形状とは異なる。また、装置300は、液トラップ121と、通気抵抗部材として機能する細いチューブ122とを備える。 Unlike the apparatus 100, the apparatus 300 does not include the pressure difference regulator 30. Moreover, the shape of the tank 10 of the apparatus 300 is different from the shape of the tank 10 shown in FIG. The device 300 includes a liquid trap 121 and a thin tube 122 that functions as a ventilation resistance member.
 図12Aに示す槽10は、セパレータ23(および隔壁10a)によって、第1の槽11と第2の槽12とに分けられている。槽10(第1の槽11および第2の槽12)の中には、水性液体25が配置されている。第1の槽11中の水性液体25の液面の上には、第1のガス26が存在する。第2の槽12中の水性液体25の液面の上には、第1のガス27が存在する。第1の槽11の上方には、第1の槽11とつながった筒状部11aが形成されている。なお、筒状部11aには、気液分離部を設けてもよい。また、液トラップ121とチューブ122との間に水蒸気トラップを配置してもよい。 The tank 10 shown in FIG. 12A is divided into a first tank 11 and a second tank 12 by a separator 23 (and a partition wall 10a). An aqueous liquid 25 is disposed in the tank 10 (the first tank 11 and the second tank 12). A first gas 26 exists on the liquid surface of the aqueous liquid 25 in the first tank 11. A first gas 27 exists on the liquid surface of the aqueous liquid 25 in the second tank 12. A cylindrical portion 11 a connected to the first tank 11 is formed above the first tank 11. In addition, you may provide a gas-liquid separation part in the cylindrical part 11a. Further, a water vapor trap may be disposed between the liquid trap 121 and the tube 122.
 筒状部11aの先端には、チューブ123の一端が固定されている。チューブ123は、比較的太いチューブである。図12Bに示すように、チューブ123の他端は、液トラップ121に接続されている。液トラップ121には、細いチューブ122も接続されている。第1の槽11から大気中に放出されるガスの通気抵抗を細いチューブ122によって高めることができるため、水性液体25の液面の急激な変動や、液面の脈動を抑制することが可能となる。 One end of the tube 123 is fixed to the tip of the cylindrical portion 11a. The tube 123 is a relatively thick tube. As shown in FIG. 12B, the other end of the tube 123 is connected to the liquid trap 121. A thin tube 122 is also connected to the liquid trap 121. Since the ventilation resistance of the gas released from the first tank 11 to the atmosphere can be increased by the thin tube 122, it is possible to suppress a rapid fluctuation of the liquid level of the aqueous liquid 25 and a pulsation of the liquid level. Become.
 第2の槽12の内部の水平方向の断面積(S2)は、第1の槽11の内部の水平方向の断面積(S1)よりも大きい。そのため、第1の槽11内の水性液体25の液面の変位量に比べて、第2の槽12内の水性液体25の液面の変位量は小さくなる。水の電気分解によって第2の槽12で生成される気体を利用する場合について考えると、気体の利用状況によっては第2の槽12内の第2のガス27の圧力が高まることがある。そのような場合には、圧力差(DP)によって、図13に示すように、第2の槽12内の水性液体25の液面が低下する。しかし、断面積(S2)が大きいため、第2の槽12内における液面の低下量を小さくできる。その結果、第2のガス27がセパレータ23に到達することを防止できる。なお、断面積(S1)が小さい第1の槽11では液面の上昇が大きいが、図13に示すように、水性液体25は筒状部11aを上昇する。筒状部11aを充分に高くすることによって、水性液体25が筒状部11aからあふれることを防止できる。なお、筒状部11aを形成せずに、第1の槽11の高さを高くしてもよい。このように、使用する側の槽の断面積を大きくすることによって、気体の混合を防止できる。なお、断面積(S1)と断面積(S2)との適正な比は、使用によって生じると予想される圧力差(DP)から決定できる。 The horizontal cross-sectional area (S2) inside the second tank 12 is larger than the horizontal cross-sectional area (S1) inside the first tank 11. Therefore, the displacement amount of the liquid level of the aqueous liquid 25 in the second tank 12 is smaller than the displacement amount of the liquid level of the aqueous liquid 25 in the first tank 11. Considering the case of using the gas generated in the second tank 12 by electrolysis of water, the pressure of the second gas 27 in the second tank 12 may be increased depending on the use situation of the gas. In such a case, the liquid level of the aqueous liquid 25 in the second tank 12 decreases due to the pressure difference (DP) as shown in FIG. However, since the cross-sectional area (S2) is large, the amount of decrease in the liquid level in the second tank 12 can be reduced. As a result, the second gas 27 can be prevented from reaching the separator 23. In addition, although the rise of a liquid level is large in the 1st tank 11 with a small cross-sectional area (S1), as shown in FIG. 13, the aqueous liquid 25 raises the cylindrical part 11a. By making the cylindrical part 11a sufficiently high, the aqueous liquid 25 can be prevented from overflowing from the cylindrical part 11a. In addition, you may make the height of the 1st tank 11 high, without forming the cylindrical part 11a. Thus, mixing of gas can be prevented by enlarging the cross-sectional area of the tank of the side to be used. The appropriate ratio between the cross-sectional area (S1) and the cross-sectional area (S2) can be determined from the pressure difference (DP) that is expected to occur due to use.
 本発明のガス生成装置では、水道水のような導電率が低い水性液体(A)でも電気分解することが可能である。しかし、導電率が低い水性液体(A)に一定電流を流すと、発生するジュール熱が大きくなる。そのため、本発明の装置を長時間使用すると、水性液体(A)の水温が上昇する場合がある。そのような水温上昇を回避する方法の1つは、電極の対向面積を大きくすることである。たとえば、図14に示すように複数の槽を設けて電極の対向面積を増してもよい。電流を変えないで対向面積を2倍にすると、抵抗が1/2になって発熱量は1/2になる。また、対向面積を大きくすることによって、発熱量を同じにしてガス生成量を増加させることが可能である。たとえば、槽の仕切りを増やして電極の対向面積を2倍にした場合、電流を1.4倍にしても発熱量は同じになる。 In the gas generator of the present invention, it is possible to electrolyze even an aqueous liquid (A) having a low conductivity such as tap water. However, when a constant current is passed through the aqueous liquid (A) having a low conductivity, the generated Joule heat increases. Therefore, when the apparatus of the present invention is used for a long time, the water temperature of the aqueous liquid (A) may increase. One way to avoid such an increase in water temperature is to increase the opposing area of the electrodes. For example, as shown in FIG. 14, a plurality of tanks may be provided to increase the opposing area of the electrodes. If the facing area is doubled without changing the current, the resistance is halved and the heat generation is halved. Further, by increasing the facing area, it is possible to increase the amount of gas generation with the same calorific value. For example, when the tank partition is increased to double the opposing area of the electrodes, the amount of heat generated is the same even if the current is increased by 1.4.
 図14の槽10は、2枚のセパレータ23によって、2つの第1の槽11と1つの第2の槽12とに仕切られている。第1の槽11には第1の電極21が配置されている。第2の槽12には、第2の電極22が配置されている。この構成によれば、電極の対向面積を大きくすることができる。 14 is divided into two first tanks 11 and one second tank 12 by two separators 23. A first electrode 21 is disposed in the first tank 11. A second electrode 22 is disposed in the second tank 12. According to this configuration, the facing area of the electrodes can be increased.
 [液体(L1)を入れる槽の例]
 ガスの溶存濃度を上昇させる装置(A)が含んでもよい槽の一例について説明する。図15の槽150は、槽本体151と、槽本体151の内側に配置された複数の板152と、槽本体151の上部を覆う蓋153とを含む。ガスが通るチューブ154は、槽150の一部(図15の一例では蓋153)を通って槽150の内部に伸びている。蓋153は、蓋本体153aと弁153bとを備える。弁153bは、槽150の内部の圧力が、槽150の外部の圧力よりも高い状態のときだけ開く弁である。そのような弁153bには、公知の弁を用いることができ、たとえばゴムシートのようなものであってもよい。弁153bが閉じているときには、チューブ154の経路を除いて、槽150の内部は槽150の外部に開放されていない。
[Example of tank containing liquid (L1)]
An example of the tank that may be included in the device (A) for increasing the dissolved concentration of gas will be described. The tank 150 in FIG. 15 includes a tank body 151, a plurality of plates 152 disposed inside the tank body 151, and a lid 153 that covers the upper portion of the tank body 151. The tube 154 through which the gas passes extends through the tank 150 through a part of the tank 150 (the lid 153 in the example of FIG. 15). The lid 153 includes a lid body 153a and a valve 153b. The valve 153 b is a valve that opens only when the pressure inside the tank 150 is higher than the pressure outside the tank 150. As such a valve 153b, a known valve can be used. For example, a rubber sheet may be used. When the valve 153 b is closed, the inside of the tank 150 is not open to the outside of the tank 150 except for the path of the tube 154.
 槽本体151には、水性液体155(液体(L1))が配置される。ガス生成装置で生成されたガスは、チューブ154を介して水性液体155に吹き込まれる。その結果、チューブ154からガスの泡156が放出される。複数の板152は、それによって泡156の上昇速度が抑制されるように配置されている。具体的には、複数の板152は、傾きが交互に逆になるように、垂直方向に並べて配置されている。ガスが槽150内に送り込まれるにつれて、槽150の内圧が高まる。槽150の内圧が、外圧よりも高い所定の圧力に到達すると、弁153bが開き、槽150内のガスが槽150の外部に放出される。その結果、槽150内の圧力が過剰に高くなることを抑制できるとともに、槽150の外気が槽150内に入ることを抑制できる。また、弁153aが開く圧力を高めに設定することによって、水性液体155中におけるガスの溶存濃度を高めることも可能である。なお、上述した槽45は、槽150のように、蓋153を含んでもよいし、さらに、複数の板152を含んでもよい。 An aqueous liquid 155 (liquid (L1)) is disposed in the tank body 151. The gas generated by the gas generator is blown into the aqueous liquid 155 through the tube 154. As a result, gas bubbles 156 are released from the tube 154. The plurality of plates 152 are arranged so that the rising speed of the bubbles 156 is thereby suppressed. Specifically, the plurality of plates 152 are arranged in the vertical direction so that the inclinations are alternately reversed. As the gas is fed into the tank 150, the internal pressure of the tank 150 increases. When the internal pressure of the tank 150 reaches a predetermined pressure higher than the external pressure, the valve 153b is opened and the gas in the tank 150 is released to the outside of the tank 150. As a result, it is possible to suppress the pressure in the tank 150 from becoming excessively high, and to prevent the outside air of the tank 150 from entering the tank 150. It is also possible to increase the dissolved concentration of the gas in the aqueous liquid 155 by setting the pressure at which the valve 153a is opened high. The tank 45 described above may include a lid 153 as in the case of the tank 150, and may further include a plurality of plates 152.
 本発明は、水性液体を電気分解することによってガスを生成する装置および方法に利用できる。具体的には、本発明は、水素ガス、酸素ガス、炭酸ガス、水素ガスおよび酸素ガス、水素ガスおよび炭酸ガスを生成する装置および方法に利用できる。また、本発明は、液体中におけるそれらのガスの溶存濃度を上昇させる装置および方法に利用できる。 The present invention can be used in an apparatus and a method for generating gas by electrolyzing an aqueous liquid. Specifically, the present invention can be used for an apparatus and a method for generating hydrogen gas, oxygen gas, carbon dioxide gas, hydrogen gas and oxygen gas, hydrogen gas and carbon dioxide gas. Further, the present invention can be used in an apparatus and a method for increasing the dissolved concentration of those gases in a liquid.

Claims (19)

  1.  第1および第2の槽に入れられた水性液体を電気分解することによってガスを生成するガス生成装置であって、
     セパレータと、
     前記セパレータを挟んでつながっている前記第1および第2の槽と、
     前記第1の槽に配置された第1の電極と、
     前記第2の槽に配置された第2の電極とを含み、
     前記水性液体の電気分解中において、前記第1の槽内の気体の圧力よりも前記第2の槽内の気体の圧力が高くなったときに前記第2の槽内の前記水性液体の液面の低下が制限される形状を、前記第1および第2の槽が有する、ガス生成装置。
    A gas generating device that generates gas by electrolyzing an aqueous liquid placed in first and second tanks,
    A separator;
    The first and second tanks connected via the separator;
    A first electrode disposed in the first tank;
    A second electrode disposed in the second tank,
    During electrolysis of the aqueous liquid, when the pressure of the gas in the second tank becomes higher than the pressure of the gas in the first tank, the liquid level of the aqueous liquid in the second tank The gas generator has the shape in which the first and second tanks have a shape in which the decrease in the pressure is limited.
  2.  前記第2の槽内の水平方向の断面積が、前記第1の槽内の水平方向の断面積よりも大きい、請求項1に記載のガス生成装置。 The gas generating device according to claim 1, wherein a horizontal cross-sectional area in the second tank is larger than a horizontal cross-sectional area in the first tank.
  3.  前記第1の槽において生成される第1のガスの流路、および、前記第2の槽において生成される第2のガスの流路からなる群より選ばれる少なくとも1つの流路に、通気抵抗を高めるための部分が存在する、請求項2に記載のガス生成装置。 Ventilation resistance in at least one flow path selected from the group consisting of the flow path of the first gas generated in the first tank and the flow path of the second gas generated in the second tank The gas generating device according to claim 2, wherein there is a portion for increasing the pressure.
  4.  前記通気抵抗を高めるための部分が、断面積が1×10-2mm2~3mm2の範囲にあり、長さが1mm~200mmの範囲にある流路である、請求項3に記載のガス生成装置。 Portions for increasing the flow resistance is in the range cross-sectional area of 1 × 10 -2 mm 2 ~ 3mm 2, is a flow path in the range of 1 mm ~ 200 mm length, according to claim 3 gas Generator.
  5.  第1および第2の槽に入れられた水性液体を電気分解することによってガスを生成するガス生成装置であって、
     セパレータと、
     前記セパレータを挟んでつながっている前記第1および第2の槽と、
     前記第1の槽に配置された第1の電極と、
     前記第2の槽に配置された第2の電極と、
     前記水性液体の電気分解中において、前記第1の槽内の前記水性液体の液面、および、前記第2の槽内の前記水性液体の液面からなる群より選ばれる少なくとも1つの液面の低下を制限する制限手段とを含む、ガス生成装置。
    A gas generating device that generates gas by electrolyzing an aqueous liquid placed in first and second tanks,
    A separator;
    The first and second tanks connected via the separator;
    A first electrode disposed in the first tank;
    A second electrode disposed in the second tank;
    During electrolysis of the aqueous liquid, at least one liquid level selected from the group consisting of the liquid level of the aqueous liquid in the first tank and the liquid level of the aqueous liquid in the second tank. A gas generating device including limiting means for limiting the decrease.
  6.  前記制限手段は、前記水性液体の電気分解中において、前記第1の槽内の前記水性液体の液面、または、前記第2の槽内の前記水性液体の液面が低下することによって前記第1の槽内の気体と前記第2の槽内の気体とが混合されることを防止する、請求項5に記載のガス生成装置。 In the electrolysis of the aqueous liquid, the limiting means reduces the liquid level of the aqueous liquid in the first tank or the liquid level of the aqueous liquid in the second tank. The gas generation device according to claim 5, wherein the gas in the first tank and the gas in the second tank are prevented from being mixed.
  7.  前記制限手段が、前記第1の槽内の気体の圧力と、前記第2の槽内の気体の圧力との圧力差が小さくなるように前記圧力差を調節する圧力差調節器を含む、請求項5に記載のガス生成装置。 The limiting means includes a pressure difference adjuster that adjusts the pressure difference so that a pressure difference between a gas pressure in the first tank and a gas pressure in the second tank becomes small. Item 6. The gas generator according to Item 5.
  8.  前記圧力差調節器は、前記圧力差によって生じる力を利用して前記圧力差を調節する、請求項7に記載のガス生成装置。 The gas generation device according to claim 7, wherein the pressure difference adjuster adjusts the pressure difference using a force generated by the pressure difference.
  9.  前記圧力差調節器は、前記第1の槽において生成される第1のガスの流路および前記第2の槽において生成される第2のガスの流路からなる群より選ばれる少なくとも1つの流路を含む容器と、前記容器内に配置された仕切りとを含み、
     前記圧力差によって前記仕切りが変形することによって、前記少なくとも1つの流路における気体の流れに対する抵抗が、前記圧力差を小さくするように変化する、請求項8に記載のガス生成装置。
    The pressure difference regulator includes at least one flow selected from the group consisting of a flow path of a first gas generated in the first tank and a flow path of a second gas generated in the second tank. A container including a path; and a partition disposed in the container;
    The gas generation device according to claim 8, wherein the partition is deformed by the pressure difference, whereby a resistance to a gas flow in the at least one flow path changes so as to reduce the pressure difference.
  10.  前記圧力差によって前記仕切りが変形することによって、前記少なくとも1つの流路が開閉される、請求項9に記載のガス生成装置。 The gas generating device according to claim 9, wherein the at least one flow path is opened and closed by the partition being deformed by the pressure difference.
  11.  前記圧力差調節器が、前記容器の内部を加熱するためのヒータをさらに備える、請求項9に記載のガス生成装置。 The gas generation device according to claim 9, wherein the pressure difference regulator further includes a heater for heating the inside of the container.
  12.  前記制限手段が、前記第1の槽において生成される第1のガスが流れる空間に設けられた気液分離部を含む、請求項5に記載のガス生成装置。 The gas generation device according to claim 5, wherein the limiting means includes a gas-liquid separation unit provided in a space in which the first gas generated in the first tank flows.
  13.  液体中における所定のガスの溶存濃度を上昇させる装置であって、
     請求項1または5に記載のガス生成装置と、
     前記ガス生成装置で生成されたガスを前記液体に接触させる手段とを含む、装置。
    An apparatus for increasing the dissolved concentration of a predetermined gas in a liquid,
    A gas generator according to claim 1 or 5,
    And means for bringing the gas produced by the gas production device into contact with the liquid.
  14.  前記液体を配置するための槽を含み、
     前記液体中での前記ガスの滞留時間を長くするための構造を含む、請求項13に記載の装置。
    A tank for placing the liquid,
    14. The apparatus of claim 13, comprising a structure for increasing the residence time of the gas in the liquid.
  15.  ガス生成方法であって、
     (i)セパレータを挟んでつながっている第1および第2の槽に水性液体を配置する工程と、
     (ii)前記第1の槽に配置された第1の電極と前記第2の槽に配置された第2の電極との間に電圧を印加することによって前記水性液体を電気分解する工程とを含み、
     前記(ii)の工程において、前記第1の槽内の前記水性液体の液面、および、前記第2の槽内の前記水性液体の液面からなる群より選ばれる少なくとも1つの液面の低下を制限する、ガス生成方法。
    A gas generation method comprising:
    (I) disposing an aqueous liquid in the first and second tanks connected with the separator interposed therebetween;
    (Ii) electrolyzing the aqueous liquid by applying a voltage between the first electrode disposed in the first tank and the second electrode disposed in the second tank; Including
    In the step (ii), a decrease in at least one liquid level selected from the group consisting of the liquid level of the aqueous liquid in the first tank and the liquid level of the aqueous liquid in the second tank. Limit the gas generation method.
  16.  前記(ii)の工程において、前記第1の槽内の前記水性液体の液面、または、前記第2の槽内の前記水性液体の液面が低下することによって前記第1の槽内の気体と前記第2の槽内の気体とが混合されることを防止する、請求項15に記載のガス生成方法。 In the step (ii), the liquid level of the aqueous liquid in the first tank or the liquid level of the aqueous liquid in the second tank is lowered to lower the gas in the first tank. The gas generation method according to claim 15, wherein mixing of the gas in the second tank and the gas in the second tank is prevented.
  17.  前記(ii)の工程において、前記水性液体中の水を電気分解することによって水素ガスと酸素ガスとを生成する、請求項15に記載のガス生成方法。 The gas generating method according to claim 15, wherein in the step (ii), hydrogen gas and oxygen gas are generated by electrolyzing water in the aqueous liquid.
  18.  前記水性液体がアルコールを含み、
     前記(ii)の工程において、前記水性液体中の水および前記アルコールを電気分解することによって、水素ガスおよび炭酸ガスを少なくとも生成する、請求項15に記載のガス生成方法。
    The aqueous liquid contains alcohol;
    The gas generating method according to claim 15, wherein in the step (ii), at least hydrogen gas and carbon dioxide gas are generated by electrolyzing water and the alcohol in the aqueous liquid.
  19.  所定のガスの溶存濃度が高い液体を製造する方法であって、
     (I)請求項15に記載のガス生成方法でガスを生成する工程と、
     (II)前記ガスを液体に接触させる工程とを含む、製造方法。
    A method for producing a liquid having a high dissolved concentration of a predetermined gas,
    (I) a step of generating gas by the gas generation method according to claim 15;
    (II) a step of bringing the gas into contact with a liquid.
PCT/JP2011/003987 2010-07-21 2011-07-12 Gas generation device and gas generation method, and device and method utilizing the device and the method WO2012011252A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012525310A JP5311245B2 (en) 2010-07-21 2011-07-12 GAS GENERATOR, GAS GENERATION METHOD, AND DEVICE AND METHOD USING THE SAME
CN2011900007443U CN203238334U (en) 2010-07-21 2011-07-12 Gas generation device and device using gas generation device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010163837 2010-07-21
JP2010-163837 2010-07-21

Publications (1)

Publication Number Publication Date
WO2012011252A1 true WO2012011252A1 (en) 2012-01-26

Family

ID=45496686

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/003987 WO2012011252A1 (en) 2010-07-21 2011-07-12 Gas generation device and gas generation method, and device and method utilizing the device and the method

Country Status (3)

Country Link
JP (1) JP5311245B2 (en)
CN (1) CN203238334U (en)
WO (1) WO2012011252A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150034277A (en) * 2012-07-20 2015-04-02 헬스 서포트 센터 주식회사 Desktop Hydrogen Gas Generation Device
JP2016121378A (en) * 2014-12-25 2016-07-07 パナソニックIpマネジメント株式会社 Water decomposition device and water decomposition system
JP2017150072A (en) * 2016-02-23 2017-08-31 株式会社東芝 Electrochemical reaction device
JP2018165396A (en) * 2016-08-10 2018-10-25 有限会社ターナープロセス Hydrogen gas generation device, and hydrogen gas suction apparatus including the same
JP2019143219A (en) * 2018-02-22 2019-08-29 大和精機株式会社 Electrolytic apparatus
JP2021130857A (en) * 2020-02-21 2021-09-09 本田技研工業株式会社 Water electrolysis system and water-level error calculation apparatus
JP2021529250A (en) * 2018-03-22 2021-10-28 ハイメット アーペーエス Pressure compensation system and high-pressure electrolyzer system equipped with it
JP2022009018A (en) * 2016-08-10 2022-01-14 有限会社ターナープロセス Hydrogen gas generation device
KR20230027582A (en) * 2021-08-19 2023-02-28 한국과학기술연구원 Catalyst-Electrode Structure and Electrochemical Reactor using the same and System of utilizing Carbon Dioxide using the same
KR20230028629A (en) * 2021-08-19 2023-03-02 한국과학기술연구원 System of utilizing Carbon Dioxide

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI624301B (en) * 2016-04-07 2018-05-21 中鼎工程股份有限公司 Waste gas recovery system
CN113457568B (en) * 2021-06-30 2022-03-18 华中科技大学 Chamber pressure intensity balancing device of high-pressure multiphase electrolytic cell
TWI766780B (en) * 2021-07-29 2022-06-01 鄭益 Electrolyzer device that can separate hydrogen and oxygen

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006263615A (en) * 2005-03-24 2006-10-05 Noritz Corp Filling method with gas in apparatus for producing gas-dissolved water

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006263615A (en) * 2005-03-24 2006-10-05 Noritz Corp Filling method with gas in apparatus for producing gas-dissolved water

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101718110B1 (en) 2012-07-20 2017-03-20 헬스 서포트 센터 주식회사 Desktop Hydrogen Gas Generation Device
KR101732117B1 (en) 2012-07-20 2017-05-02 헬스 서포트 센터 주식회사 Desktop Hydrogen Gas Generation Device
KR20150034277A (en) * 2012-07-20 2015-04-02 헬스 서포트 센터 주식회사 Desktop Hydrogen Gas Generation Device
JP2016121378A (en) * 2014-12-25 2016-07-07 パナソニックIpマネジメント株式会社 Water decomposition device and water decomposition system
JP2017150072A (en) * 2016-02-23 2017-08-31 株式会社東芝 Electrochemical reaction device
JP2022009018A (en) * 2016-08-10 2022-01-14 有限会社ターナープロセス Hydrogen gas generation device
JP2018165396A (en) * 2016-08-10 2018-10-25 有限会社ターナープロセス Hydrogen gas generation device, and hydrogen gas suction apparatus including the same
JP7195662B2 (en) 2016-08-10 2022-12-26 有限会社ターナープロセス hydrogen gas generator
JP2019143219A (en) * 2018-02-22 2019-08-29 大和精機株式会社 Electrolytic apparatus
JP2021529250A (en) * 2018-03-22 2021-10-28 ハイメット アーペーエス Pressure compensation system and high-pressure electrolyzer system equipped with it
JP7342020B2 (en) 2018-03-22 2023-09-11 ハイメット アーペーエス Pressure compensation system and high-pressure electrolyzer system equipped with the same
JP2021130857A (en) * 2020-02-21 2021-09-09 本田技研工業株式会社 Water electrolysis system and water-level error calculation apparatus
KR20230027582A (en) * 2021-08-19 2023-02-28 한국과학기술연구원 Catalyst-Electrode Structure and Electrochemical Reactor using the same and System of utilizing Carbon Dioxide using the same
KR20230028629A (en) * 2021-08-19 2023-03-02 한국과학기술연구원 System of utilizing Carbon Dioxide
KR102638399B1 (en) * 2021-08-19 2024-02-20 한국과학기술연구원 Catalyst-Electrode Structure and Electrochemical Reactor using the same and System of utilizing Carbon Dioxide using the same
KR102653962B1 (en) * 2021-08-19 2024-04-03 한국과학기술연구원 System of utilizing Carbon Dioxide

Also Published As

Publication number Publication date
CN203238334U (en) 2013-10-16
JPWO2012011252A1 (en) 2013-09-09
JP5311245B2 (en) 2013-10-09

Similar Documents

Publication Publication Date Title
JP5311245B2 (en) GAS GENERATOR, GAS GENERATION METHOD, AND DEVICE AND METHOD USING THE SAME
JP2014095115A (en) Gas generation device
JP5308282B2 (en) Ozone generator operating method and ozone generator
JP6062597B2 (en) ELECTROLYTIC DEVICE, ELECTRODE UNIT, AND ELECTROLYTIC WATER GENERATION METHOD
JP6542265B2 (en) Porous diaphragm, method for producing the same, electrode unit for producing hypochlorous acid water, and apparatus for producing hypochlorous acid water using the same
US20160186336A1 (en) Electrode unit, electrolytic cell comprising electrode unit and electrolytic device
CN106661743B (en) Electrode unit, electrolytic cell provided with electrode unit, electrolytic device, and method for manufacturing electrode of electrode unit
JP2008075097A (en) Photo-assisted water electrolytic device and photo-assisted water electrolytic system
JP3202182U (en) Gas generator
US20240044024A1 (en) Capillary-based electro-synthetic or electro-energy gas-liquid cells
JP6639638B2 (en) Electrolysis electrode, electrode unit, and electrolyzed water generator
KR101863186B1 (en) Solid salt reverse electrodialysis device
JP2016172883A (en) Gas generator and device using the same
JP2016172921A (en) Gas generator and device using the same
JP6746681B2 (en) Method of manufacturing electrode unit and method of manufacturing electrolyzed water generator
JP3216137U (en) Gas dissolving device
CN116762195A (en) Capillary-based electrosynthetic or electric energy cell
JP2016172884A (en) Gas generator and device using the same
JP6208380B2 (en) Electrode for electrolysis, electrode unit, and electrolysis apparatus

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201190000744.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11809428

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012525310

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11809428

Country of ref document: EP

Kind code of ref document: A1