WO2012009780A1 - System and method for detecting and locating punctiform, distributed targets - Google Patents

System and method for detecting and locating punctiform, distributed targets Download PDF

Info

Publication number
WO2012009780A1
WO2012009780A1 PCT/BR2011/000244 BR2011000244W WO2012009780A1 WO 2012009780 A1 WO2012009780 A1 WO 2012009780A1 BR 2011000244 W BR2011000244 W BR 2011000244W WO 2012009780 A1 WO2012009780 A1 WO 2012009780A1
Authority
WO
WIPO (PCT)
Prior art keywords
antennas
targets
antenna
receiver
target
Prior art date
Application number
PCT/BR2011/000244
Other languages
French (fr)
Portuguese (pt)
Inventor
Joao Roberto Moreira Neto
Original Assignee
Orbisat Da Amazónia Industria E Aerolevantamento S/A
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Orbisat Da Amazónia Industria E Aerolevantamento S/A filed Critical Orbisat Da Amazónia Industria E Aerolevantamento S/A
Publication of WO2012009780A1 publication Critical patent/WO2012009780A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/003Bistatic radar systems; Multistatic radar systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/42Simultaneous measurement of distance and other co-ordinates
    • G01S13/44Monopulse radar, i.e. simultaneous lobing
    • G01S13/4454Monopulse radar, i.e. simultaneous lobing phase comparisons monopulse, i.e. comparing the echo signals received by an interferometric antenna arrangement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/95Radar or analogous systems specially adapted for specific applications for meteorological use
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Definitions

  • the present invention relates to a ground radar, composed of a set of fixed antennas, which measures the range, azimuth, elevation and velocity of point and distributed targets.
  • rotary antennas 11 to scan the desired coverage area.
  • Such rotary antennas emit a directional beam 16 of radio waves which, upon reaching a solid obstacle 17, are reflected by it and picked up back on the same antenna.
  • special circuits 14 allowing the visualization 15 of the contour and size of the object hit, as well as its location and distance from the antenna.
  • the system also allows to capture information about its path and speed.
  • antennas 11 continuously rotate 360 ° about their vertical axis 12. They are equipped with motors 13 and control mechanisms with complex mechanics that, in addition to allowing movement, ensure electrical contacts. operation of the radio equipment and its connection to the antenna waveguides and feeders.
  • a hoisting motor 18 which, as shown in Fig. 1-c, moves the antenna 1 second as indicated by the arrow, so as to vary the vertical angle of the beam, which in one direction 19 detects target 20 and in another direction 21 detects target 22.
  • Such antennas are provided with numerous element-shaped feeders spaced out on a cylindrical or polyhedral surface. Said feeders are actuated sequentially through a switching circuit thus obtaining the same sweeping effect of the rotating antennas.
  • the static antenna needs a large number of elements that is greater the higher the reading accuracy desired for the radar equipment. Since each element is actually a complete radio transceiver such technology results in even higher cost antennas than rotary antennas making their widespread use economically unfeasible.
  • the first object of the present invention to provide a new type of low cost radar.
  • said radar has a minimized and optimized set of fixed antennas.
  • the horiontal coverage of 360 degrees is obtained with a small number of fixed antennas.
  • said radar allows to accurately calculate the range, azimuth, elevation and velocity of point or distributed targets.
  • said radar uses a sophisticated computational base to perform the necessary calculations in detecting said targets.
  • Figure 1 shows the block diagram of the components of a conventional system (figure 1a) as well as simplified horizontal (figure 1-b) and side (figure 1-c) views.
  • Figure 2a illustrates the horizontal coverage angle of an isolated antenna of the type used in the invention compared to the coverage angle of a known antenna as well as the main array of 360 ° horizontal coverage fixed antennas, Figure 2. -B.
  • Figure 3 illustrates an example of an application of the invention to a typical airborne ground radar system.
  • Figure 4 illustrates an example of application of the invention to a typical embedded marine radar system.
  • Figure 5 shows an illustrative diagram of the triangulation of two different targets effected by two fixed antennas as performed by the invention.
  • Figure 6 shows an illustrative diagram of signal processing by emitting pulses emitted by transmitting antennas and captured by transmitting and receiving antennas.
  • FIGS 7a and 7b illustrate the process flow chart.
  • Figure 8 illustrates the application for a weather radar.
  • the present invention is applicable to weather radar; land, sea and air surveillance radars and also in maritime navigation radars.
  • the patent application radar system of this patent is capable of making a two-dimensional (range and azimuth) or three-dimensional (range, azimuth and elevation) representation of point and distributed targets.
  • Point targets are isolated targets. As an example we have the aircraft in flight.
  • Distributed targets are exemplified by the area around us: fields, urban areas, seas, lakes, and forests.
  • said radar is composed of a first set of fixed transceiver antennas and a second set of receiver-only antennas.
  • the antenna sets and are interconnected to a dedicated electronic module that computes the information received from said antennas and displays the result on a monitor screen.
  • the basic element of the system is an antenna 30 whose radiation diagram 31 covers an angle 32 of approximately 120 degrees in azimuth.
  • the radiation diagram 33 of a conventional antenna commonly used in known radar systems covers a substantially smaller angle 34.
  • the array 35 of fixed antennas is implemented by four antennas, each of which has a diagram of approximately 120 degrees in azimuth, resulting in the radiation diagram 36, which illuminates the entire sector in question, ie. 360 degrees as shown in Fig. 2-b.
  • the four transceiver antennas that make up array 32 are mounted on a pole or tower and designated as TR-N, TR-L, TR-s and TR-O, facing, respectively to the north, east, south and west.
  • the four antennae of the receiver assembly are mounted on different poles or brackets at a convenient distance from the transceiver antennas to form baselines ⁇ long enough to allow good triangulation of the targets to be detected.
  • the transceiver and receiver antennas work together, two by two, as exemplified in Figure 3.
  • the baseline ⁇ is the distance between the south-facing TR-S transceiver antenna of the center assembly, and the RA-S receiving antenna, also facing south.
  • the baseline ⁇ is the distance between the transceiver antenna B1 and the receiving antenna. B2, both facing starboard.
  • Said target triangulation is illustrated in Figure 5.
  • Two antennas 41 and 42 working together can accurately track two targets A and B by azimuth triangulation of these targets.
  • Antenna 41 which is transceiver emits radio signal pulses which, upon reaching targets A and B, are reflected by them back to the same antenna 41 and also to antenna 42 which is only receiver.
  • the angle ⁇ shown in figure 5b, is precisely determined because we have the values Sx, Sx 'and ⁇ .
  • is the distance or baseline between antennas 1 and 2.
  • Detection of the vertical position is done with the same method as the horizontal position determination. This requires a vertical baseline.
  • the vertical elevation angle is calculated in the same way as the horizontal azimuth. Knowing the height of antenna 1 and ria calculates the height of target A.
  • Vr fd. ⁇ / 2
  • Vr is the radial velocity of the target.
  • FIGS 7A and 7B constitute the block diagram of the localization algorithm. We consider that signals S1 and S2 are being sampled correctly, such that the coherence and phase measurements can be made precisely.
  • a two-dimensional signal matrix is generated for S1 and S2, because for both:
  • the system can work with 300 MHz bandwidth, which provides a pulse of 3.3 Ns. This pulse provides a resolution in range of 50cm. Depending on the application the resolution may be larger or smaller than 50cm.
  • Fig. 8 illustrates the application for a weather radar where antennas point north, south, east and west.
  • the great advantage of the innovation is that 12 small fixed antennas replace a large, 2m diameter mobile antenna with equivalent resolution.
  • the signal received from target A appears as:
  • FIG. 4 illustrates the typical arrangement of antennas on a boat capable of detecting the position and velocity of punctual and distributed targets on the water surface.
  • Target speed information is obtained by measuring the doppler frequency of a sequence of return signals from the same target.
  • Range resolution is achieved by pulse or CW modulation.
  • Azimuth resolution is achieved by interferometric processing of two or more antennas with horizontal baselines.
  • Elevation resolution is achieved by interferometric processing of two or more antennas with vertical baselines.
  • Target speed information is obtained by measuring the doppler frequency of a sequence of return signals from the same target.

Abstract

System and method for detecting and locating punctiform, distributed targets, which comprises two non-directional stationary antennas with high range resolution using a coherence test (Γ) for locating differentiated targets (A, B), one of said stationary antennas being a transmitter/receiver (TR-N, TR-L, TR-S, TR-O, B1, C1, D1, A2) and the other being only a receiver (RA-N, RB-N, RA-L, RB-L, RA-S, RB-S, RA-O, RB-O). Antennas (30) with 120 degrees of azimuth opening (31), directed every 90 degrees, are preferably used.

Description

SISTEMA E MÉTODO DE DETEÇÃO E LOCALIZAÇÃO DE ALVOS  TARGET DETECTION AND LOCATION SYSTEM AND METHOD
PONTUAIS E DISTRIBUÍDOS  POINTS AND DISTRIBUTED
Campo da invenção  Field of the invention
Refere-se a presente invenção a um radar terrestre, composto por um conjunto de antenas fixas, que faz medidas de alcance, azimute, elevação e velocidade de alvos pontuais e distribuídos.  The present invention relates to a ground radar, composed of a set of fixed antennas, which measures the range, azimuth, elevation and velocity of point and distributed targets.
Descrição do estado da técnica Description of the prior art
Usualmente os equipamentos de radar conhecidos, tais como exemplificado nas figuras 1-a, 1-b e 1-c, utilizam antenas rotativas 11 para efetuar a varredura da área de cobertura desejada. Tais antenas rotativas emitem um feixe direcional 16 de ondas de rádio que, ao atingir um obstáculo sólido 17, são refletidas pelo mesmo e captado de volta na mesma antena. Tal efeito é tratado por circuitos especiais 14 permitindo a visualização 15 do contorno e tamanho do objeto atingido, bem como sua localização e distancia da antena. No caso de objetos móveis, o sistema permite ainda captar informações sobre o trajeto e velocidade do mesmo.  Usually known radar equipment such as exemplified in Figures 1a, 1b and 1c use rotary antennas 11 to scan the desired coverage area. Such rotary antennas emit a directional beam 16 of radio waves which, upon reaching a solid obstacle 17, are reflected by it and picked up back on the same antenna. Such effect is treated by special circuits 14 allowing the visualization 15 of the contour and size of the object hit, as well as its location and distance from the antenna. In the case of moving objects, the system also allows to capture information about its path and speed.
Para varrer totalmente uma grande área de cobertura tais antenas 11 giram continuamente 360° em torno de seu eixo vertical 12. Para tanto, são dotadas de motores 13 e mecanismos de controle com uma mecânica complexa que, alem de permitir a movimentação assegura os contatos elétricos necessários ao funcionamento do equipamento rádio e sua conexão com os guias de onda e alimentadores da antena.  To fully sweep a large coverage area such antennas 11 continuously rotate 360 ° about their vertical axis 12. They are equipped with motors 13 and control mechanisms with complex mechanics that, in addition to allowing movement, ensure electrical contacts. operation of the radio equipment and its connection to the antenna waveguides and feeders.
Quando os alvos se situam em altitudes diversas, é necessário prover mecanismos que modifiquem o ângulo de elevação do feixe. Isto se consegue mediante o provimento de um motor de elevação 18 que, conforme ilustrado na Fig. 1-c, movimenta a antena 1 segundo indicado pela seta, de modo a variar o ângulo vertical do feixe irradiado, o qual, numa direção 19, detecta o alvo 20 e noutra direção 21 detecta o alvo 22.  When the targets are at different altitudes, it is necessary to provide mechanisms that modify the beam elevation angle. This is achieved by providing a hoisting motor 18 which, as shown in Fig. 1-c, moves the antenna 1 second as indicated by the arrow, so as to vary the vertical angle of the beam, which in one direction 19 detects target 20 and in another direction 21 detects target 22.
A complexidade mecânica de tal arranjo encarece o sistema e aumenta a vulnerabilidade a falhas e a ataques inimigos no caso de equipamentos militares envolvidos em conflitos armados. Np sentido de minimizar tais deficiências foram desenvolvidas antenas estáticas que não necessitam de movimentação e são especialmente indicadas para as atividades militares. Tais antenas são dotadas de inúmeros alimentadores em formato de elementos distribuídos espaçadamente em uma superfície cilíndrica ou poliédrica. Ditos alimentadores são acionados sequencialmente através de um circuito comutador obtendo assim o mesmo efeito de varredura das antenas rotativas. The mechanical complexity of such an arrangement makes the system more expensive and increases vulnerability to failure and enemy attacks in the case of military equipment involved in armed conflict. In order to minimize such deficiencies static antennas have been developed which do not require movement and are especially suitable for military activities. Such antennas are provided with numerous element-shaped feeders spaced out on a cylindrical or polyhedral surface. Said feeders are actuated sequentially through a switching circuit thus obtaining the same sweeping effect of the rotating antennas.
Entretanto, para obter um resultado equivalente ao das antenas rotativas, a antena estática necessita de um grande número de elementos que é tanto maior quanto maior for a precisão de leitura desejada para o equipamento de radar. Considerando que cada elemento é na verdade um transceptor de rádio completo tal tecnologia resulta em antenas de custo ainda mais alto que as antenas rotatórias inviabilizando economicamente seu uso generalizado.  However, to achieve a result equivalent to rotary antennas, the static antenna needs a large number of elements that is greater the higher the reading accuracy desired for the radar equipment. Since each element is actually a complete radio transceiver such technology results in even higher cost antennas than rotary antennas making their widespread use economically unfeasible.
Neste sentido, torna-se atraente o desenvolvimento de antenas estáticas de custo mais baixo ou compatível corirr antenas convencionai rotativas desde que os requisitos de precisão confiabilidade e segurança não sejam afetados. Objetivos da invenção  In this regard, the development of lower cost or compatible static antennas with conventional rotary antennas is attractive as long as the accuracy and reliability requirements are not affected. Objectives of the invention
Em vista do exposto, constitui o primeiro objetivo da presente invenção o provimento de um novo tipo de radar de baixo custo.  In view of the above, it is the first object of the present invention to provide a new type of low cost radar.
Constitui o segundo objetivo da invenção o provimento de um novo tipo de radar que, mesmo possuindo baixo custo, seja capaz de fazer medidas de alcance, azimute, elevação e velocidade de alvos pontuais ou distribuídos.  It is the second object of the invention to provide a new type of radar which, while having low cost, is capable of making range, azimuth, elevation and velocity measurements of point or distributed targets.
Constitui mais outro objetivo da invenção o provimento de um novo tipo de radar fixo que elimine completamente toda a complexidade mecânica dos radares convencionais.  It is a further object of the invention to provide a new type of fixed radar that completely eliminates the mechanical complexity of conventional radar.
Descrição resumida da invenção  Brief Description of the Invention
Os objetivos enunciados, bem como outros, são atingidos pela invenção mediante o provimento de um novo tipo de radar composto por antenas fixas não direcionais, cada antena provendo a cobertura de um determinado ângulo vertical e horizontal.  The stated objectives, as well as others, are achieved by the invention by providing a new type of radar composed of non-directional fixed antennas, each antenna providing coverage of a given vertical and horizontal angle.
Segundo outra característica da invenção, dito radar possui um conjunto minimizado e otimizado de antenas fixas.  According to another feature of the invention, said radar has a minimized and optimized set of fixed antennas.
De acordo com outra característica da invenção, a cobertura horiontal de 360 graus á obtida com um reduzido número de antenas fixas. According to another feature of the invention, the horiontal coverage of 360 degrees is obtained with a small number of fixed antennas.
Segundo mais outra característica da invenção, dito radar permite calcular com precisão o alcance, azimute, elevação e velocidade de alvos pontuais ou distribuídos.  According to another feature of the invention, said radar allows to accurately calculate the range, azimuth, elevation and velocity of point or distributed targets.
Vantajosamente, toda a complexidade mecânica dos radares móveis convencionais foi eliminada.  Advantageously, all the mechanical complexity of conventional mobile radars has been eliminated.
Segundo ainda outra característica da invenção, o referido radar utiliza uma sofisticada base computacional para efetuar os cálculos necessários na deteção de ditos alvos.  According to yet another feature of the invention, said radar uses a sophisticated computational base to perform the necessary calculations in detecting said targets.
Descrição resumida das figuras Brief Description of the Figures
As características e vantagens da presente invenção serão melhor compreendidas através da descrição de uma concretização preferida, dada a título ilustrativo e não limitativo, e das figuras que a ela se referem, nas quais:  The features and advantages of the present invention will be better understood by describing a preferred embodiment, given by way of illustration and not limitation, and the related figures, in which:
A figura 1 mostra o diagrama em blocos dos componentes de um sistema convencional (figura 1a) bem como vistas simplificadas horizontal (figura 1-b) e lateral (figura 1-c).  Figure 1 shows the block diagram of the components of a conventional system (figure 1a) as well as simplified horizontal (figure 1-b) and side (figure 1-c) views.
A figura 2-a ilustra o ângulo de cobertura horizontal de uma antena isolada do tipo utilizado na invenção, em comparação, com o ângulo de cobertura de uma antena conhecida, bem como conjunto principal de antenas fixas com cobertura horizontal de 360°, figura 2-b.  Figure 2a illustrates the horizontal coverage angle of an isolated antenna of the type used in the invention compared to the coverage angle of a known antenna as well as the main array of 360 ° horizontal coverage fixed antennas, Figure 2. -B.
A figura 3 ilustra um exemplo de aplicação da invenção a um sistema típico de radares terrestres de uso aeroviário.  Figure 3 illustrates an example of an application of the invention to a typical airborne ground radar system.
A figura 4 ilustra um exemplo de aplicação da invenção a um sistema típico de radar marítimo embarcado.  Figure 4 illustrates an example of application of the invention to a typical embedded marine radar system.
A figura 5 mostra um diagrama ilustrativo da triangulação de dois alvos diferentes, efetivada por duas antenas fixas, conforme realizada pela invenção.  Figure 5 shows an illustrative diagram of the triangulation of two different targets effected by two fixed antennas as performed by the invention.
A figura 6 mostra um diagrama ilustrativo do processamento do sinal através da emissão de pulsos emitidos pelas antenas transmissoras e captados pelas antenas transmissoras e receptoras.  Figure 6 shows an illustrative diagram of signal processing by emitting pulses emitted by transmitting antennas and captured by transmitting and receiving antennas.
As figuras 7-A e 7-B ilustram o fluxograma do processo.  Figures 7a and 7b illustrate the process flow chart.
A figura 8 ilustra a aplicação para um radar meteorológico.  Figure 8 illustrates the application for a weather radar.
Descrição detalhada da invenção As características e vantagens da presente invenção serão melhor compreendidas através da descrição de uma concretização preferida, dada a título ilustrativo e não limitativo, assim: Detailed Description of the Invention The features and advantages of the present invention will be better understood by describing a preferred embodiment, given by way of illustration and not limitation, thus:
A presente invenção aplica-se em radares meteorológicos; radares de vigilância terrestre, marítima e aérea e, também, em radares de navegação marítima.  The present invention is applicable to weather radar; land, sea and air surveillance radars and also in maritime navigation radars.
O sistema de radar objeto de solicitação desta patente é capaz de fazer uma representação bidimensional (alcance e azimute) ou tridimensional (alcance, azimute e elevação) de alvos pontuais e distribuídos.  The patent application radar system of this patent is capable of making a two-dimensional (range and azimuth) or three-dimensional (range, azimuth and elevation) representation of point and distributed targets.
Alvos pontuais são alvos isolados. Como exemplo temos as aeronaves em voo.  Point targets are isolated targets. As an example we have the aircraft in flight.
Alvos distribuídos, por outro lado, são exemplificados pela área que temos ao nosso redor: campos, áreas urbanas, mares, lagos e florestas.  Distributed targets, on the other hand, are exemplified by the area around us: fields, urban areas, seas, lakes, and forests.
Considerando-se primeiramente o caso de radares bidimensionais, exemplificados por radares marítimos, dito radar é composto por um primeiro conjunto de antenas transceptoras fixas e um segundo conjunto de antenas somente receptoras. Os conjuntos de antenas e são interligados a um módulo eletrônico dedicado que computa as informações recebidas das ditas antenas e apresenta o resultado na tela de um monitor.  Considering first the case of two-dimensional radars, exemplified by marine radars, said radar is composed of a first set of fixed transceiver antennas and a second set of receiver-only antennas. The antenna sets and are interconnected to a dedicated electronic module that computes the information received from said antennas and displays the result on a monitor screen.
Conforme mostrado na Fig. 2-a, o elemento básico do sistema é uma antena 30 cujo diagrama de radiação 31 cobre um ângulo 32 de aproximadamente 120 graus em azimute. Apenas para fins de comparação, o diagrama de radiação 33 de uma antena convencional usualmente utilizada nos sistemas de radar conhecidos, cobre um ângulo 34 substancialmente menor. No sistema proposto, o conjunto 35 de antenas fixas é .implementado por quatro antenas, cada uma das quais com diagrama de aproximadamente 120 graus em azimute, resultando o diagrama de radiação 36, o qual ilumina a totalidade do setor em questão, ou seja, os 360 graus, conforme mostra a Fig. 2-b.  As shown in Fig. 2-a, the basic element of the system is an antenna 30 whose radiation diagram 31 covers an angle 32 of approximately 120 degrees in azimuth. For comparison purposes only, the radiation diagram 33 of a conventional antenna commonly used in known radar systems covers a substantially smaller angle 34. In the proposed system, the array 35 of fixed antennas is implemented by four antennas, each of which has a diagram of approximately 120 degrees in azimuth, resulting in the radiation diagram 36, which illuminates the entire sector in question, ie. 360 degrees as shown in Fig. 2-b.
Conforme mostrado na figura 3, num sistema de radar terrestre as quatro antenas transceptoras que formam o conjunto 32 são montadas num poste ou torre e designadas como TR-N, TR-L, TR-s e TR-O, estando voltadas, respectivamente para o Norte, Leste, Sul e Oeste. As quatro antenas do conjunto receptor são montadas em postes ou suportes diferentes a uma distância conveniente das antenas transceptoras de maneira a formar linhas de base β de comprimento suficiente para permitir uma boa triangulação dos alvos que se deseja detectar. As antenas transceptoras e receptoras trabalham em conjunto, duas a duas, como exemplificado na figura 3. Assim por exemplo, nessa figura, a linha de base βΑ é a distância entre a antena transceptora TR-S voltada para o Sul, do conjunto central, e a antena receptora RA-S, igualmente voltada para o Sul. O mesmo princípio se aplica aos conjuntos de antenas instaladas numa embarcação, conforme Fig. 4, onde a linha de base βΒ é a distância entre a antena transceptora B1 e a antena receptora B2, ambas voltadas para boreste. As shown in Figure 3, in a terrestrial radar system the four transceiver antennas that make up array 32 are mounted on a pole or tower and designated as TR-N, TR-L, TR-s and TR-O, facing, respectively to the north, east, south and west. The four antennae of the receiver assembly are mounted on different poles or brackets at a convenient distance from the transceiver antennas to form baselines β long enough to allow good triangulation of the targets to be detected. The transceiver and receiver antennas work together, two by two, as exemplified in Figure 3. Thus, for example, in this figure, the baseline βΑ is the distance between the south-facing TR-S transceiver antenna of the center assembly, and the RA-S receiving antenna, also facing south. The same principle applies to antenna assemblies mounted on a vessel, as shown in Fig. 4, where the baseline βΒ is the distance between the transceiver antenna B1 and the receiving antenna. B2, both facing starboard.
Dita triangulação de alvos é ilustrada na figura 5. Duas antenas 41 e 42 trabalhando em conjunto podem rastrear com precisão dois alvos A e B através da triangulação do azimute desses alvos. A antena 41 què é transceptora emite pulsos de sinal de rádio que, ao atingir os alvos A e B, são refletidos pelos mesmos de volta para a mesma antena 41 e também à antena 42 que é apenas receptora.  Said target triangulation is illustrated in Figure 5. Two antennas 41 and 42 working together can accurately track two targets A and B by azimuth triangulation of these targets. Antenna 41 which is transceiver emits radio signal pulses which, upon reaching targets A and B, are reflected by them back to the same antenna 41 and also to antenna 42 which is only receiver.
Assim temos o sinal Sx recebido pela antena 41 (trajeto riA) e o sinal Sx' recebido pela antena 42 (trajeto r2A). Devido às diferenças entre os trajetos, ambos os sinais se apresentam nas respectivas antenas com diferentes tempos de retorno. Thus we have signal Sx received by antenna 41 (path riA) and signal Sx 'received by antenna 42 (path r 2 A). Due to the differences between the paths, both signals are present in the respective antennas with different return times.
Desta forma, o ângulo Θ, mostrado na figura 5b, é determinado com precisão pois temos os valores Sx, Sx' e β. Sendo β a distancia ou linha de base entre as antenas 1 e 2.  Thus, the angle Θ, shown in figure 5b, is precisely determined because we have the values Sx, Sx 'and β. Where β is the distance or baseline between antennas 1 and 2.
Através da análise computacional da interferometria das diferenças do tempo que o sinal transmitido leva para atingir o alvo A e retomar até as duas antenas 1 e 2, efetivada pelo computador do módulo eletrôniço (não ilustrado nessa figura), temos a determinação do azimute do alvo A que pode ser visualizado na tela do monitor. O processo é descrito mais detalhadamente como segue.  Through the computational analysis of the interferometry of the differences in the time it takes the transmitted signal to reach target A and return to both antennas 1 and 2, performed by the electronics module computer (not shown in this figure), we determine the azimuth of the target. The one that can be viewed on the monitor screen. The process is described in more detail as follows.
Considera-se que cp= d. (-4π/λ), ou seja, um afastamento do alvo d em alcance causa uma mudança de fase de d. (-4π/λ). Considerando a geometria da Fig. 5, o triângulo formado entre a antena 1 , antena 2 e o alvo A é dado por: Γ|Α, r2A e β. β é precisamente conhecido, pois pode ser medido fisicamente. A diferença precisa entre Γ|Α e r2A, aqui chamada de ΔΓ, é determinada pela interferometria da seguinte forma: Cp = d is considered. (-4π / λ), that is, a departure from target d in range causes a phase change of d. (-4π / λ). Considering the geometry of Fig. 5, the triangle formed between antenna 1, antenna 2 and target A is given by: Γ | Α, r 2 A and β. β is precisely known as it can be measured physically. The precise difference between Γ | Α and r 2 A, here called ΔΓ, is determined by interferometry as follows:
i) é recebido o sinal
Figure imgf000007_0001
da antena 2.
(i) the signal is received
Figure imgf000007_0001
of the antenna 2.
φ1 = (-4π/λ) . ria e q>2= (-4π/λ) . r2a  φ1 = (-4π / λ). ria and q> 2 = (-4π / λ). r2a
verifica-se se S1 e S2 são do mesmo alvo, calculando-se a coerência Γ de 4d.  check whether S1 and S2 are from the same target by calculating the coherence Γ of 4d.
ii) Caso a coerência seja baixa Γ ~ 0, ignora-se esse par de sinais.  ii) If the consistency is low Γ ~ 0, this pair of signals is ignored.
Caso a coerência seja alta Γ ~ 1 , calcula-se a fase:  If the coherence is high Γ ~ 1, the phase is calculated:
Δ φ = arctan (S1 - S2).  Δ φ = arctan (S1 - S2).
iii) Desenvolvendo:  iii) Developing:
S1 . S2 = A1ei<p1 . Α2^φ2 S1 S2 = A1 and i <p1 . Α2 ^ φ2
S1 . S2 = A1 . A2. β·*1 -^ S1 S2 = A1. A2. β · * 1 - ^
Δ φ = arctan (A1 . A2. e^1 " ç2)) Δ φ = arctan (A1. A2. And ^ 1 "ç2) )
Δ φ = φ1 - φ2 de onde se chega a  Δ φ = φ1 - φ2 from where
Δ φ = (-4π/λ) (ria - r2a) = (-4π/λ) . ΔΓ  Δ φ = (-4π / λ) (ria - r2a) = (-4π / λ). ΔΓ
Assim, medindo-se Δφ através do arco tangente da multiplicação de S1 pelo complexo conjugado de S2, calcula-se a diferença ΔΓ entre P|A e r2A com precisão. Thus, by measuring Δφ through the tangent arc of the multiplication of S1 by the conjugate complex of S2, the difference ΔΓ between P | A and 2 A is precisely calculated.
ΔΓ = -(λ/4ττ) . Δ φ  ΔΓ = - (λ / 4ττ). Δ φ
Construindo o triângulo com β, ΓιΑ e r2A = A + ΔΓ Constructing the triangle with β, ΓιΑ er 2 A = A + ΔΓ
iv) Com os três lados precisos do triângulo calcula-se o ângulo Ga, que é a medida do azimute, com a lei dos cosenos  iv) With the three precise sides of the triangle the angle Ga, which is the azimuth measurement, is calculated with the cosine law
A detecção da posição horizontal é então dada pelo alcance e o ângulo de azimute ΘΑ. Para isso foi necessária uma linha de base horizontal. Com riA e ΘΑ determinação a posição do alvo A tendo como conhecida a posição da antena 1.  The detection of the horizontal position is then given by the range and the azimuth angle ΘΑ. This required a horizontal baseline. With riA and ΘΑ determine the position of target A having known the position of antenna 1.
A detecção da posição vertical é feita com o mesmo método utilizado na determinação da posição horizontal. Para isso é necessária uma linha de base vertical. O ângulo de elevação vertical é calculado da mesma maneira que o azimute horizontal. Conhecendo-se a altura da antena 1 e ria calcula-se a altura do alvo A. Detection of the vertical position is done with the same method as the horizontal position determination. This requires a vertical baseline. The vertical elevation angle is calculated in the same way as the horizontal azimuth. Knowing the height of antenna 1 and ria calculates the height of target A.
A velocidade é determinada pelos seguintes passos:  Speed is determined by the following steps:
i) Medida da frequência doppler fd, através de uma análise espectral do sinal do alvo.  (i) Doppler frequency measurement fd by spectral analysis of the target signal.
i) Conversão de frequência para velocidade com  (i) frequency to speed conversion with
Vr = fd . λ / 2  Vr = fd. λ / 2
Onde Vr é a velocidade radial do alvo.  Where Vr is the radial velocity of the target.
As figuras 7-A e 7-B constituem o diagrama em blocos do algoritmo de localização. Consideramos que os sinais S1 e S2 estão sendo amostrados de forma correta, que tal forma que as medidas de coerência e fase possam ser feitas precisamente.  Figures 7A and 7B constitute the block diagram of the localization algorithm. We consider that signals S1 and S2 are being sampled correctly, such that the coherence and phase measurements can be made precisely.
É gerada uma matriz bi-dimensional de sinal para S1 e S2, pois para ambos:  A two-dimensional signal matrix is generated for S1 and S2, because for both:
i) o sinal de retorno é amostrado em alcance e tem uma resolução dada por õr = cT/2.  (i) the return signal is range sampled and has a resolution given by õr = cT / 2.
ii) são transmitidos vários pulsos e seus retornos em alcance amostrados. Assim, temos várias linhas de sinal de retorno que formam a segunda dimensão.  ii) several pulses are transmitted and their returns in range sampled. Thus we have several return signal lines that form the second dimension.
No tocante à resolução proporcionada pelo sistema pode-se trabalhar com 300 MHz de largura de banda, que proporciona um pulso de 3,3 Ns. Este pulso fornece uma resolução em alcance de 50cm. Dependendo da aplicação a resolução pode ser maior ou menor que 50cm.  Regarding the resolution provided by the system can work with 300 MHz bandwidth, which provides a pulse of 3.3 Ns. This pulse provides a resolution in range of 50cm. Depending on the application the resolution may be larger or smaller than 50cm.
A Fig. 8 ilustra a aplicação para um radar meteorológico onde as antenas apontam nas direções norte, sul, leste e oeste.  Fig. 8 illustrates the application for a weather radar where antennas point north, south, east and west.
Na aplicação ao radar terrestre não há necessidade de determinação de altura. Tem-se, portanto, o mesmo diagrama em blocos da Fig. 8.  In terrestrial radar application there is no need for height determination. There is thus the same block diagram as Fig. 8.
Na aplicação em radar de navegação, o diagrama em blocos de sistema é o mesmo da Fig. 8.  In navigation radar application, the system block diagram is the same as in Fig. 8.
Fazendo a comparação no estado da técnica, ficam evidentes as vantagens da invenção como segue: • Radar meteorológico Comparing in the prior art, the advantages of the invention are apparent as follows: • Weather radar
E.Técnica: Antenas móveis com controle em azimute e elevação com dimensões próximas a 2 metros. Por exemplo: uma antena parabólica com 2m de diâmetro.  E. Technique: Azimuth-controlled mobile antennas with elevation close to 2 meters. For example: a 2m diameter satellite dish.
Inovação: 4 antenas transmissoras/receptoras e 8 antenas só receptoras, todas fixas e com dimensões próximas a 10 cm X 10 cm. Linha de base horizontal próxima a 30m e linha de base vertical próxima a 30m. Assim, temos para um alcance de 20Km: õazimute = (0,5m/30m) ..20.000 = 333m  Innovation: 4 transmitter / receiver antennas and 8 receiver-only antennas, all fixed and with dimensions close to 10 cm X 10 cm. Horizontal baseline close to 30m and vertical baseline close to 30m. Thus we have for a range of 20Km: õazimute = (0.5m / 30m) ..20.000 = 333m
õelevação = (0,5m/30m) . 20.000 = 333m  Elevation = (0.5m / 30m). 20,000 = 333m
que corresponde a larguras de feixes de:  which corresponds to beam widths of:
9a = (333m/20.000m) . 57 = 1o 9a = (333m / 20,000m). 57 = 1 o
Ge = (333m/20.000m) . 57 = 1o Ge = (333m / 20,000m). 57 = 1 o
A grande vantagem da inovação é que 12 antenas fixas pequenas substituem uma antena grande, móvel, de 2m de diâmetro com resolução equivalente.  The great advantage of the innovation is that 12 small fixed antennas replace a large, 2m diameter mobile antenna with equivalent resolution.
• Radar terrestre:  • Ground radar:
E.Técnica: antena móvel em azimute, de 1m.  E. Technique: 1 m mobile azimuth antenna.
Inovação: 4 antenas transmisspras/recepstoras, e 4 antenas só receptoras. Linha de base só horizontal de 15m, obtem-se:  Innovation: 4 transmit / receive antennas, and 4 only receive antennas. Only 15m horizontal baseline gives:
õazimute = (0,5m/15m) . 20.000 = 666m  azimuth = (0.5m / 15m). 20,000 = 666m
que corresponde a 2o de largura de feixe, equivalente ao feixe da antena de 1m. · . 2 corresponding to the beam width equivalent to 1m of the antenna beam. ·.
• Radar de navegação marítima:  • Marine Navigation Radar:
E.Técnica: antena móvel em azimute de 0,5m.  E. Technique: 0.5m azimuth mobile antenna.
Inovação: a mesma implementação do exemplo anterior, com linha de base de 7,5m, produzindo feixe .de ·4Ρ igual aquele da antena de 0,5m. Innovation: the same implementation as the previous example, with 7.5m baseline, producing .de · 4 ixe beam equal to that of 0.5m antenna.
Como mostrado na figura 5, podemos ter simultaneamente na área de cobertura das antenas mais de um alvo, no caso ilustrado os alvos A e B.  As shown in figure 5, we can have simultaneously in the coverage area of the antennas more than one target, in the case illustrated the targets A and B.
É imprescindível que o sistema possa diferenciar esses alvos um do outro. Esse objetivo é conseguido através da análise da coerência entre os sinais recebidos de alvos distintos. Sinais provenientes de alvos diferentes se apresentam numa mesma antena receptora com fases distintas. It is essential that the system can differentiate these targets from other. This objective is achieved by analyzing the coherence between signals received from different targets. Signals from different targets appear on the same receiver antenna with different phases.
O sinal recebido do alvo A se apresenta como:  The signal received from target A appears as:
Sx = Tx ei<px Sx = Tx and i <px
Já o sinal proveniente do alvo B aparece como:  Already the signal coming from target B appears as:
Sy zr Ty eW  Sy zr Ty eW
Portanto as fases dos sinais são diferentes. Dividindo o conjugado pelo normalizado desses sinais, temos:  Therefore the signal phases are different. Dividing the conjugate by the normalized of these signals, we have:
< Sx• Sy* >  <Sx • Sy *>
r _ J< Sx * Sx* > * < Sy *Sy* > r _ J <Sx * Sx *> * <Sy * Sy *>
E calculando a interferometria entre essas fases:  And calculating the interferometry between these phases:
9interf = < ^ ^y* >  9interf = <^ ^ y *>
Desta forma, temos a identificação e a determinação da posição de diferentes alvos dentro da área de cobertura do sistema de antenas.  Thus, we have the identification and determination of the position of different targets within the coverage area of the antenna system.
Portanto, a resolução em azimute é obtida através de um processamento interferométrico de duas ou mais antenas com linhas de base horizontais. Esse sistema é adequado para radares marítimos onde é suficiente a determinação do azimute dos alvos. A figura 4 ilustra a disposição típica das antenas em um barco capaz de detetar a posição e velocidade de alvos pontuais e distribuídos na superfície da água.  Therefore, azimuth resolution is achieved by interferometric processing of two or more antennas with horizontal baselines. This system is suitable for marine radars where target azimuth determination is sufficient. Figure 4 illustrates the typical arrangement of antennas on a boat capable of detecting the position and velocity of punctual and distributed targets on the water surface.
A informação da velocidade do alvo é obtida através da medida da frequência doppler de uma sequência de sinais de retorno do mesmo alvo.  Target speed information is obtained by measuring the doppler frequency of a sequence of return signals from the same target.
No caso de radares aeronáuticos ou meteorológicos necessita-se determinar.também a elevação do alvò em relação ao solo. Para tanto, torna-se necessário um conjunto adicional de antenas receptoras montadas nos mesmos mastros do primeiro conjunto já descrito. Tais antenas adicionais são equipadas nos mastros a uma distância vertical conveniente para formar uma linha de base vertical com as ditas antenas do primeiro conjunto. Desta forma, utilizando a mesma metodologia de cálculo, o sistema é agora capaz de determinar a elevação dos alvos. Resumindo: In the case of aeronautical or weather radar it is also necessary to determine the elevation of the target in relation to the ground. This requires an additional set of receiver antennas mounted on the same masts as the first set already described. Such additional antennas are fitted to the masts at a convenient vertical distance to form a vertical baseline with said antennas of the first set. Thus, using the same calculation methodology, the system is now able to determine target elevation. Summing up:
• A resolução em alcance é obtida por pulsos ou por modulação em CW.  • Range resolution is achieved by pulse or CW modulation.
• A resolução em azimute é obtida através de um processamento interferométrico de duas ou mais antenas com linhas de base horizontais.  • Azimuth resolution is achieved by interferometric processing of two or more antennas with horizontal baselines.
• A resolução em elevação é obtida através de um processamento interferométrico de duas ou mais antenas com linhas de base verticais.  • Elevation resolution is achieved by interferometric processing of two or more antennas with vertical baselines.
• A informação da velocidade do alvo é obtida através da medida da frequência doppler de uma sequência de sinais de retorno do mesmo alvo.  • Target speed information is obtained by measuring the doppler frequency of a sequence of return signals from the same target.
Se bem que a invenção tenha sido descrita com base em algumas concretizações exemplificativas preferidas, os técnicos no assunto poderão introduzir modificações dentro do conceito inventivo básico, particularmente em relação ao formato e dimensões da antena. De acordo, a invenção é definida pelo conjunto de reivindicações que se segue.  While the invention has been described on the basis of some preferred exemplary embodiments, those skilled in the art may make modifications within the basic inventive concept, particularly in relation to the shape and dimensions of the antenna. Accordingly, the invention is defined by the following set of claims.

Claims

REIVINDICAÇÕES
1. SISTEMA DE DETEÇÃO E LOCALIZAÇÃO DE ALVOS PONTUAIS E DISTRIBUÍDOS, caracterizado pelo fato de compreender pelo menos duas antenas fixas não direcionais com alta resolução em alcance utilizando teste de coerência para localização de alvos diferenciados.  1. DISTRIBUTED POINT DETECTION AND LOCATION SYSTEM, characterized in that it comprises at least two non-directional fixed antennas with high range resolution using coherence testing to locate differentiated targets.
2. SISTEMA, de acordo com a reivindicação 1 , caracterizado pelo fato de uma de ditas antenas fixas ser transmissora e receptora (TR-N, TR-L, TR-S, TR-O, B1, C1 , D1 , A2) , e a outra sendo somente receptora (RA-N, RB-N, RA- L, RB-L, RA-S, RB-S, RA-O, RB-O).  SYSTEM according to claim 1, characterized in that one of said fixed antennas is transmitter and receiver (TR-N, TR-L, TR-S, TR-O, B1, C1, D1, A2), and the other being receiver only (RA-N, RB-N, RA-L, RB-L, RA-S, RB-S, RA-O, RB-O).
3. SISTEMA, de acordo com a reivindicação 2, caracterizado pelo fato de ditas antenas (30) possuírem abertura (31) aproximada de 120 graus em azimute  A system according to claim 2, characterized in that said antennas (30) have an aperture (31) of approximately 120 degrees in azimuth.
4. SISTEMA, de acordo com a reivindicação 3, caracterizado pelo fato de compreender um conjunto (32) de 4 antenas transmissoras/receptoras (TR- N, TR-L, TR-S, TR-O) direcionadas de 90 em 90 graus e 4 antenas receptoras (RA-N, RB-N, RA-L, RB-L, RA-S, RB-S, RA-O, RB-O) igualmente direcionadas de 90 em 90 graus, sendo ditas antenas receptoras distanciadas das respectivas antenas transmissoras/receptoras.  SYSTEM according to claim 3, characterized in that it comprises a set (32) of 4 transmitter / receiver antennas (TR-N, TR-L, TR-S, TR-O) directed every 90 degrees. and 4 receiving antennas (RA-N, RB-N, RA-L, RB-L, RA-S, RB-S, RA-O, RB-O) equally directed every 90 degrees, with distanced receiving antennas being said respective transmitter / receiver antennas.
5. SISTEMA, de acordo com a reivindicação 4, caracterizado pelo fato das distâncias entre cada antena transmissora/receptora, e a correspondente antena receptora constituir a linha de base (β) para cálculo da localização dos alvos detectados.  SYSTEM according to Claim 4, characterized in that the distances between each transmitting / receiving antenna and the corresponding receiving antenna constitute the baseline (β) for calculating the location of the detected targets.
6. MÉTODO de deteção e localização de alvos pontuais e distribuídos, utilizando o sistema definido pelas reivindicações de 1 a 5, caracterizado pelo fato de ser o azimute do alvo calculado por método interferométrico quê utiliza os sinais de retorno (r-|A, Γ2Α, P|B, r2B) do dito alvo captados por ambas as antenas (41, 42) apontadas numa dada direção. Method of detection and location of point and distributed targets using the system defined by claims 1 to 5, characterized in that it is the azimuth of the target calculated by the interferometric method which uses the return signals (r- | A, Γ2Α). , P | B, r 2 B) of said target captured by both antennas (41, 42) pointed in a given direction.
7. MÉTODO, de acordo com a reivindicação 6, caracterizado pelo fato de ser verificada a coerência (Γ) dos sinais refletidos, dois a dois, pelos alvos, para identificação destes. Method according to claim 6, characterized in that the coherence (Γ) of the signals reflected two by two by the targets is verified to identify them.
8. MÉTODO, de acordo com a reivindicação 6 ou 7, caracterizado pelo fato da velocidade (Vr) do alvo ser determinada pela medida de frequência Doppler (fd ), através de uma análise espectral do sinal refletido por este. Method according to Claim 6 or 7, characterized in that the target velocity (Vr) is determined by the Doppler frequency measurement (f d ) by means of a spectral analysis of the reflected signal.
PCT/BR2011/000244 2010-07-22 2011-07-22 System and method for detecting and locating punctiform, distributed targets WO2012009780A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BRPI1002542-1A BRPI1002542A2 (en) 2010-07-22 2010-07-22 system and method of detecting and locating point and distributed targets
BRPI1002542-1 2010-07-22

Publications (1)

Publication Number Publication Date
WO2012009780A1 true WO2012009780A1 (en) 2012-01-26

Family

ID=45496393

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2011/000244 WO2012009780A1 (en) 2010-07-22 2011-07-22 System and method for detecting and locating punctiform, distributed targets

Country Status (2)

Country Link
BR (1) BRPI1002542A2 (en)
WO (1) WO2012009780A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2979718A (en) * 1957-11-19 1961-04-11 Westinghouse Electric Corp Automatic target tracking passive radar apparatus
US3014677A (en) * 1957-06-19 1961-12-26 Honeywell Regulator Co Aircraft navigation control
US5260711A (en) * 1993-02-19 1993-11-09 Mmtc, Inc. Difference-in-time-of-arrival direction finders and signal sorters
US5872628A (en) * 1996-09-27 1999-02-16 The Regents Of The University Of California Noise pair velocity and range echo location system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3014677A (en) * 1957-06-19 1961-12-26 Honeywell Regulator Co Aircraft navigation control
US2979718A (en) * 1957-11-19 1961-04-11 Westinghouse Electric Corp Automatic target tracking passive radar apparatus
US5260711A (en) * 1993-02-19 1993-11-09 Mmtc, Inc. Difference-in-time-of-arrival direction finders and signal sorters
US5872628A (en) * 1996-09-27 1999-02-16 The Regents Of The University Of California Noise pair velocity and range echo location system

Also Published As

Publication number Publication date
BRPI1002542A2 (en) 2012-03-27

Similar Documents

Publication Publication Date Title
US11715228B2 (en) Imaging systems and related methods including radar imaging with moving arrays or moving targets
US6061022A (en) Azimuth and elevation direction finding system based on hybrid amplitude/phase comparison
PT1654561E (en) Target localization using tdoa distributed antenna
US9250319B2 (en) Floodlight radar system for detecting and locating moving targets in three dimensions
ES2635252T3 (en) Real opening radar system for use on board a satellite and for maritime surveillance applications
US8981990B2 (en) Three dimensional radar system
US10871457B2 (en) Determining material category based on the polarization of received signals
US20220146623A1 (en) Radar System and Vehicle
JP2003114275A (en) Bistatic radar system
US20190033440A1 (en) Interferometric multiple object tracking radar system for precision time space position information data acquisiton
US10768295B2 (en) Ground-based, multi-bistatic interferometric radar system for measuring 2D and 3D deformations
Felguera-Martín et al. Interferometric inverse synthetic aperture radar experiment using an interferometric linear frequency modulated continuous wave millimetre-wave radar
CN103487798A (en) Method for measuring height of phase array radar
AU2016298643B2 (en) Interferometric radar with rotating antenna
US9933519B2 (en) Three dimensional radar system
JPH09230039A (en) Interference synthetic aperture radar equipment and terrain height measuring method using the synthetic aperture radar equipment
Gennarelli et al. 24 GHz FMCW MIMO radar for marine target localization: A feasibility study
ES2764200T3 (en) Procedure to locate electromagnetic pulse emission sources in an environment that includes reflectors
KR102258202B1 (en) Apparatus for generating pseudo-sea surface model for image decoding apparatus based on airborn
WO2012009780A1 (en) System and method for detecting and locating punctiform, distributed targets
Hu et al. A knowledge-based target relocation method for wide-area GMTI mode
CN108896984A (en) A kind of moving object positioning and tracing method based on radio frequency single-frequency continuous wave
Kalkan et al. Target localization methods for frequency-only MIMO radar
Mecatti et al. A novel ground based multi bistatic radar for interferometric measurement of displacement vector
Hidayat et al. Simulation of signal processing for ship detection on two overlapping HF radars with FMCW waveforms

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11809097

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11809097

Country of ref document: EP

Kind code of ref document: A1