WO2012008795A2 - Method for preparing an organic phase-change material from animal and plant oils - Google Patents

Method for preparing an organic phase-change material from animal and plant oils Download PDF

Info

Publication number
WO2012008795A2
WO2012008795A2 PCT/KR2011/005229 KR2011005229W WO2012008795A2 WO 2012008795 A2 WO2012008795 A2 WO 2012008795A2 KR 2011005229 W KR2011005229 W KR 2011005229W WO 2012008795 A2 WO2012008795 A2 WO 2012008795A2
Authority
WO
WIPO (PCT)
Prior art keywords
phase change
change material
organic phase
oil
catalyst
Prior art date
Application number
PCT/KR2011/005229
Other languages
French (fr)
Korean (ko)
Other versions
WO2012008795A3 (en
Inventor
김도완
김도경
이상일
전희중
강신영
유재욱
오승훈
Original Assignee
에스케이이노베이션 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이이노베이션 주식회사 filed Critical 에스케이이노베이션 주식회사
Priority claimed from KR1020110070245A external-priority patent/KR20120008460A/en
Publication of WO2012008795A2 publication Critical patent/WO2012008795A2/en
Publication of WO2012008795A3 publication Critical patent/WO2012008795A3/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/06Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa
    • C09K5/063Materials absorbing or liberating heat during crystallisation; Heat storage materials
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C3/00Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
    • C11C3/12Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by hydrogenation
    • C11C3/126Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by hydrogenation using catalysts based principally on other metals or derivates

Definitions

  • the present invention in the production of organic phase change material through the hydrotreating reaction of animal and vegetable oil, in the presence of a catalyst, by controlling the reaction temperature, the reaction pressure and the carrier of the catalyst organic phase change material having an odd carbon number of the organic having an even carbon number
  • the present invention relates to a method for preparing an organic phase change material that is selectively adjusted to be higher than the weight of the phase change material.
  • phase change material can absorb or release a lot of heat (latent heat) as the phase changes at a certain temperature without changing the temperature so that it stores its surrounding heat and releases it when needed It is a substance.
  • latent heats have tens to hundreds of times more energy storage and release capacity than sensible heat, which is why they are superior to conventional sensible energy storage materials.
  • phase-change materials have an energy industry and eco-friendly housing systems (interior materials, heating and cooling, air conditioning systems, solar systems, low cost energy utilization systems), sports clothing and jewelry (climbing, hiking backpacks, motorcycle clothing, in-line skates).
  • Sleeping bag functional clothing (special military uniform), footwear (sneakers, shoes, specialization, specialization, work shoes), military industry facilities and munitions, automotive industry (interior materials, sheet), heat protection system of various digital and electric equipment, medical equipment
  • Phase change materials are classified into organic phase change materials and inorganic phase change materials according to constituent materials.
  • organic materials are normally used as normal-paraffins and inorganic materials are calcium chloride.
  • organic phase change materials are not corrosive, chemically and thermally stable, and have no sub-cooling, while the disadvantages are low phase change enthalpy, density and thermal conductivity.
  • inorganic phase change materials have advantages of high phase change enthalpy and density, but disadvantages include overcooling, corrosiveness, phase separation, and lack of cycle stability.
  • organic phase change materials are known to be superior to inorganic phase change materials.
  • Normal-paraffin a representative organic phase change material, is produced from kerosene, one of the crude oil refined products.
  • Kerosene generally contains 1-5% by weight of normal-paraffins, and the carbon number of the normal-paraffins is present in a wide range.
  • the production of normal-paraffins from kerosene involves the steps of 1) separating the mixture of the desired carbon number using the boiling point 2) removing impurities such as sulfur, nitrogen, and oxygen in the mixture acting as a poison of the adsorbent used at the end 3) adsorbent Normal-paraffin adsorption process in the mixture using 4) adsorbed normal-paraffin desorption process using desorption material 5) It is a very complicated and expensive process to go through the desorption material and each normal-paraffin separation process using a boiling point. Moreover, since kerosene contains components having various carbon numbers and various normal-paraffin derivatives, the concentration of normal-paraffins that we need is not high, so it is difficult to effectively separate normal-paraffins from kerosene.
  • animal oils include fish oil, tallow, pork and confined fat.
  • animal and vegetable oil is composed of triglyceride (triglyceride) in which three molecules of fatty acids are combined with one molecule of glycerol. Occupies.
  • palm oil is composed of 1% by weight of C14 fatty acid, 43% of C16 fatty acid, and 55% by weight of C18 fatty acid.
  • Hydrogenation of these triglycerides yields a mixture of high concentrations of normal-paraffinic materials.
  • Hydrogenation of triglyceride is performed by 1) separating triglyceride into 3 molecules of fatty acid and 1 molecule of glycerol, 2) olefin saturation reaction in fatty acid, and 3) converting fatty acid into normal-paraffin through dehydration and decarboxylation reaction.
  • palm oil is mainly triglycerides composed mainly of C16 and C18 fatty acids, so when the palm oil is hydrogenated, four kinds of normal-paraffins, mainly C15, C16, C17 and C18, can be obtained.
  • normal-paraffin When normal-paraffin is used as a raw material for phase change material, the use of a single substance having a specific melting point is advantageous to the application of the phase change material as compared to the use of a mixture form having various melting points. Since the phase change material utilizes the latent heat of the process of coagulation and melting of normal-paraffins, the melting point of each normal-paraffin determines the use of the phase change material made from it. For example, C17 (melting point 21 degrees) and C18 (melting point 28 to 30 degrees), which have a melting point similar to the temperature of the active area, are used for housing and clothing purposes, and below C16 (18 degrees melting point). Normal-paraffins are mainly used for cold energy storage and C19 (melting point 32 ⁇ 34 degrees) or more. Normal-paraffins are mainly used for thermal energy storage.
  • phase change materials for residential applications can be divided into passive and active methods.
  • the passive method is a method of controlling the temperature of a house with only phase change material without the help of other air-conditioning devices
  • the active method is a method of reducing the energy of the air conditioner by acting as a supplement to the air conditioners currently used.
  • the passive method would be the ideal method, but considering the seasonal temperature fluctuations, the limit of latent heat capacity of phase change materials, and customer convenience, the use of phase change materials in an active manner would be most appropriate.
  • C17 is expected to be the largest among normal-paraffins for phase change material applications.
  • C15 normal-paraffin with a melting point of 10 degrees is expected to be in high demand because it is most suitable for cold energy storage. Therefore, it would be very commercially useful if the weight ratio of the organic phase change material having an odd carbon number such as C15 and C17 can be maximized by controlling relatively easy factors such as reaction temperature, reaction pressure and catalyst carrier.
  • the present invention is an organic phase change material having an odd number of carbon atoms in the presence of a catalyst in the presence of a catalyst in the production of an organic phase change material through a hydrotreating reaction of animal and vegetable oil having an even carbon number It provides a method for producing an organic phase change material that is selectively higher than the weight of the phase change material.
  • the method for preparing an organic phase change material according to the present invention is characterized in that the weight ratio of the organic phase change material is more effectively controlled by controlling the reaction temperature, the reaction pressure, and the carrier of the catalyst as a control factor during the hydrogenation reaction. More specifically, the method for producing an organic phase change material through the hydrotreating reaction of animal and vegetable oil according to the present invention is controlled by the reaction temperature, reaction pressure and the carrier of the catalyst in the presence of a catalyst to commercially more advantageously It is characterized in that the weight ratio R o / e of the organic phase change material defined by is greater than one.
  • n is an odd number of 13 to 21
  • m (n) is the weight of the organic phase change material having n carbon atoms
  • m (n + 1) is of the organic phase change material having (n + 1) It is weight.
  • the method for preparing an organic phase change material through a hydrotreating reaction of animal and vegetable oil includes a carrier of the catalyst including zirconium and controlling the reaction temperature (T, o C) and reaction pressure (P, bar) By adjusting to satisfy Equation 2, the weight ratio R o / e of the organic phase change material may be greater than one.
  • the carrier of the catalyst contains zirconium, the reaction temperature (T, o C) is 250 ⁇ 410 o C and the reaction pressure (P, bar) is controlled to 10 ⁇ 150 bar to satisfy the above formula 2, the organic phase change material
  • the weight ratio R o / e may be greater than one. That is, if R o / e is greater than 1, the weight ratio of the organic phase change material having an odd carbon number is obtained at a higher ratio than the weight ratio of the organic phase change material having an even carbon number by controlling the reaction temperature and the reaction pressure within the above range. It means you can.
  • the reaction temperature (T, o C) in Equation 2 is 280 °C ⁇ T ⁇ 350 °C and the reaction pressure is 20bar It is more preferable that ⁇ P ⁇ 80 bar.
  • the method for producing an organic phase change material through the hydrotreating reaction of animal and vegetable oil according to the present invention includes a titanium of the catalyst and the reaction temperature (T, o C) and the reaction pressure (P, bar) by controlling the When Equation 3 is satisfied, R o / e, which is a weight ratio of the organic phase change material, may be greater than one.
  • the catalyst carrier includes aluminum, and the reaction temperature (T, o C) and the reaction pressure (P, bar) are controlled by the following equation.
  • R o / e which is a weight ratio of the organic phase change material, may be greater than 1.
  • the carrier of the catalyst when the carrier of the catalyst is zirconium, it may be zirconium oxide or zirconium phosphate, and when the carrier of the catalyst is titanium, it may be titanium oxide or titanium phosphate, and in the case of aluminum, it may be aluminum oxide or aluminum phosphate, but is not limited thereto.
  • the catalyst used in the present invention uses a catalyst having a high durability and durability in order to obtain a simple process and a weight ratio of the organic phase change material selectively.
  • the catalyst used in the present invention includes an active ingredient in a carrier, and may be any one or a mixture of two or more selected from the group consisting of VIB, VIIB, VIIIB, VIII, IB or IIB metals, and preferably an organic phase change material.
  • Weight ratio R o / e In terms of more selective control of
  • the metal group VIB may be Mo or W, the metal group VIII may be Ni, Pd, or Pt and the group VIIIB may be one or more mixtures selected from the group Fe, Co, Ru, Rh, and Ir, but is not limited thereto. This is not the case.
  • the Group VIB metal of the present invention is included in an amount of 0.1 to 70% by weight based on the carrier.
  • the activity of the catalyst is very low, and thus does not act as a catalyst.
  • the VIB group is supported, it is supported on the catalyst in an oxidized state, but it is difficult to carry at least 70% by weight based on oxide.
  • Group VIB metal is used in an amount of 1 wt% to 40 wt%.
  • the Group VIII metal or the Group VIIB metal of the present invention is 0.1 to It is included in 60% by weight, because when supported by 0.1% by weight or less, the activity of the catalyst is very low, it does not act as a catalyst, it is difficult to support more than 60% by weight.
  • Group VIII metal or Group VIIB metal is preferably used in an amount of 0.1 to 20% by weight.
  • the catalyst Ni used in the present invention in order to obtain the weight of the organic phase change material having an odd carbon number at a higher ratio than the weight of the organic phase change material having an even carbon number is 0.1 to 60 with respect to the carrier. It may be included in the weight percent Mo may be included in 0.1 to 70% by weight based on the carrier, most preferably Ni is included in 0.1 to 20% by weight relative to the carrier and Mo may be included in 1 to 40% by weight relative to the carrier. .
  • the active ingredient of the catalyst is a mixture of Ni and Mo, and Ni is included in an amount of 0.1 to 60% by weight based on the carrier, and Mo is included in an amount of 0.1 to 70% by weight based on the carrier. It is preferable that it is done.
  • the active ingredient of the catalyst is preferably Ni and It is a mixture of Mo and the carrier of the catalyst is zirconium oxide, the reaction temperature is 280 ⁇ 350 o C and the reaction pressure (P, bar) is controlled to 20 ⁇ 80 bar by weight ratio of the organic phase change material defined by the formula 2 R Organic phase change materials with o / e greater than 1 can be obtained.
  • the animal and vegetable oil is not particularly limited, but coconut oil, corn oil, cottonseed oil, peanuts, olive oil, palm oil, palm oil, rapeseed oil, canola oil, sesame oil, soybean oil, sunflower oil, castor oil, linseed oil, safflower oil, jatropha oil It may be one or two or more mixtures selected from the group consisting of fish oil, beef tallow, pork fat, poultry fat and fatty acids or waste oil thereof.
  • the fats and fauna-derived fats are mainly composed of triglycerides, which are fats having 4 to 36 carbon atoms constituting each chain of triglycerides, and fatty acids having 4 to 36 carbon atoms. It is preferable to use but is not limited thereto.
  • triglyceride mainly present in fat by hydrogen may be produced as propane, water, carbon monoxide, carbon dioxide, and the like as normal by-paraffins and by-products.
  • the paraffins produced at this time are C13 to C22, preferably C15 to C18.
  • the method for preparing an organic phase change material according to the present invention controls the reaction temperature, the reaction pressure and the carrier of the catalyst in the presence of a catalyst in the preparation of the organic phase change material through the hydroprocessing reaction of animal and vegetable oils to reduce the weight ratio of the organic phase change material.
  • the weight of the organic phase change material having an odd number of carbon atoms By selectively adjusting the weight of the organic phase change material having an odd number of carbon atoms, the weight of the organic phase change material having an even number of carbon atoms can be produced.
  • the present invention when preparing an organic phase change material through the hydrogenation reaction of animal and vegetable oil, in the presence of a catalyst, by controlling the reaction temperature, the reaction pressure and the carrier of the catalyst, the weight of the organic phase change material having an odd carbon number has an even carbon number
  • an organic phase change material having a characteristic (melting point) required by manufacturing an organic phase change material that is selectively higher than the weight of the organic phase change material can be manufactured more selectively.
  • the organic phase change material prepared according to the present invention is manufactured by inexpensive process while being manufactured by selectively adjusting the weight of the organic phase change material that meets the requirements, so that it can be applied to various industrial fields to achieve the generalization of the organic phase change material. Can be.
  • 1 is a weight ratio of an organic phase change material in the production of an organic phase change material through a hydrogenation reaction of animal and vegetable oil
  • the catalyst carrier includes zirconium
  • the reaction temperature is 250 ⁇ 410 o C
  • the reaction pressure is 10 ⁇ 150 bar region It is a graph showing the reaction temperature and pressure of which R o / e is 1.
  • Figure 2 is a graph of DSC analysis of octadecane (C18) obtained by separating the prepared organic phase change material.
  • a catalyst having 10 wt% Mo and 3 wt% Ni was prepared using 200 g of ZrO 2 having a diameter of 1 mm as a carrier.
  • Ammonium heptamolybdate tetrahydrate (hereinafter referred to as “AHM”) was used as the Mo precursor used in the preparation, and Nickel nitrate hexahydrate (hereinafter referred to as “NNH”) was used as the Ni precursor.
  • AHM Ammonium heptamolybdate tetrahydrate
  • NNH Nickel nitrate hexahydrate
  • various precursors may be used, and the present invention is not limited thereto.
  • NiMo / ZrO2 catalysts were prepared in the following order.
  • an aqueous solution prepared by dissolving AHM in distilled water was impregnated in a ZrO2 carrier, and then dried at 150 ° C. for 2 hours, and subsequently calcined at 500 ° C. for 2 hours to prepare Mo / ZrO2.
  • the Mo / ZrO2 catalyst was impregnated, dried at 150 ° C. for 2 hours, and subsequently calcined at 500 ° C. for 2 hours to prepare a NiMo / ZrO2 catalyst.
  • a catalyst having about 10 wt% Mo and about 3 wt% Ni was prepared using 200 g of TiO 2 having a diameter of 1 mm as a carrier.
  • AHM was used as the Mo precursor used in the preparation and NNH was used as the Ni precursor.
  • a catalyst was prepared and pretreated in the same manner as in Example 1.
  • a catalyst was prepared and pretreated in the same manner as in Example 1.
  • DMDS di-Methyl Disulfide
  • impurities contained in the feed may lower the activity of the catalyst or cause unwanted reactions.
  • a step of removing impurities contained in animal and vegetable oils before the hydrogenation reaction of animal and vegetable oils should be further included. Impurities in animal and vegetable oils were filtered using a filter having a pore size of 0.1-100 ⁇ m. In the case of removing impurities, any conventionally known removal method may be used, and the present invention is not limited thereto.
  • the reaction was carried out in the same manner as in Example 4 except that the reaction pressure was changed to 20, 30, 70, and 100 bar at a reaction temperature of 300 ° C., and the results are shown in Table 2.
  • the reaction was carried out in the same manner as in Example 4 except that the reaction temperature was changed to 280, 290, 300, 310, 320, 350, and 380 ° C. at a reaction pressure of 30 bar. Table 3 shows.
  • the reaction temperature was 300 °C the reaction pressure of about 69bar or more smaller than R o / e is 1, is approximately 69bar or less was confirmed that R is greater than the o / e is 1.
  • Example 6 Control of the weight ratio of organic phase change material according to reaction temperature and reaction pressure under NiMo / TiO2 catalyst
  • Example 7 NiMo / Al 2 O 3 Control of Weight Ratio of Organic Phase Change Materials by Reaction Temperature and Reaction Pressure under Catalyst
  • Example 8 octadecane (C18) having a purity of 99% in each normal-paraffin (C15-C18) prepared and isolated from palm oil was analyzed using DSC, and the results are shown in FIG. 2.
  • DSC experiments were carried out in a nitrogen atmosphere at a temperature of minus 10 degrees to 60 degrees at a rate of 5 K / min and then maintained for 5 minutes, after which the temperature was lowered to the same rate at minus 10 degrees and then maintained for 5 minutes. The same experiment was repeated 10 times in order to evaluate the stability of the phase change material during the temperature change.
  • the octadecane (C18) obtained from palm oil started melting at 27.7 degrees in the case of temperature rise, and the melting proceeded mainly around 30 degrees, and the latent heat absorbed at this time was 212.6 J / g.
  • solidification started at 26.6 ° C, and solidification proceeded mainly at 26 ° C, and the latent heat released at this time was 212.3 J / g. Melting point, freezing point and latent heat amount at that time did not change even in 10 repeated evaluations.
  • phase change material prepared and separated from palm oil has properties suitable for the phase change material such as phase change in a narrow temperature range, high latent heat and high stability.

Abstract

The present invention relates to a method for preparing an organic phase-change material (PCM) by means of a hydrotreating reaction of animal and plant oils. More particularly, the present invention relates to a method for preparing an organic phase-change material, which involves controlling a reaction temperature, a reaction pressure, and a supporting material for a catalyst so as to selectively adjust the weight ratio of the organic phase-change material when the organic phase change material is prepared by a hydrotreating reaction of animal and plant oils, thus obtaining the organic phase-change material in an inexpensive manner.

Description

동식물유로부터 유기 상변화 물질의 제조방법Method for preparing organic phase change material from animal and vegetable oils
본 발명은 동식물유의 수소화처리 반응을 통한 유기 상변화 물질의 제조 시, 촉매 존재 하에, 반응 온도, 반응 압력 및 촉매의 담체를 제어하여 홀수 탄소수를 가지는 유기 상변화물질의 중량이 짝수 탄소수를 가지는 유기 상변화물질의 중량보다 선택적으로 높도록 조절하는 유기 상변화물질의 제조방법에 관한 것이다.The present invention, in the production of organic phase change material through the hydrotreating reaction of animal and vegetable oil, in the presence of a catalyst, by controlling the reaction temperature, the reaction pressure and the carrier of the catalyst organic phase change material having an odd carbon number of the organic having an even carbon number The present invention relates to a method for preparing an organic phase change material that is selectively adjusted to be higher than the weight of the phase change material.
상변화물질(phase change material(PCM))은 특정한 온도에서 온도의 변화 없이 상(phase)이 변하면서 많은 열(잠열)을 흡수 또는 방출할 수 있어서 자체적으로 주위의 열을 저장하였다가 필요할 때 방출하는 물질이다. 이러한 잠열은 현열에 비해 수십 배에서 수백 배의 에너지 저장 능력과 방출 능력을 가지기 때문에 기존 현열을 이용하는 에너지 저장 소재들보다 탁월한 기능을 가진다.A phase change material (PCM) can absorb or release a lot of heat (latent heat) as the phase changes at a certain temperature without changing the temperature so that it stores its surrounding heat and releases it when needed It is a substance. These latent heats have tens to hundreds of times more energy storage and release capacity than sensible heat, which is why they are superior to conventional sensible energy storage materials.
이러한 상변화물질은 그 자체의 우수한 특성 때문에 에너지산업 및 친환경 주택시스템(내장재, 냉난방, 공조시스템, 태양열시스템, 저비용 에너지 활용시스템), 스포츠 의류 및 장신구류 (등산화, 등산 배낭, 오토바이복, 인라인 스케이트, 침낭), 기능성 의류(특수 군복), 신발류 (운동화, 구두, 전문화, 특수화, 작업화), 군수 산업 시설 및 군수품, 자동차 산업(내장재, 시트), 각종 디지털 및 전열 기기의 발열 보호시스템, 의료 용구 (장기 입원환자의 욕창방지 침대, 혈액 운반 시스템) 등 여러 다양한 산업에 적용이 가능한 에너지 절약형 친환경 소재이다.Because of its excellent properties, these phase-change materials have an energy industry and eco-friendly housing systems (interior materials, heating and cooling, air conditioning systems, solar systems, low cost energy utilization systems), sports clothing and jewelry (climbing, hiking backpacks, motorcycle clothing, in-line skates). , Sleeping bag), functional clothing (special military uniform), footwear (sneakers, shoes, specialization, specialization, work shoes), military industry facilities and munitions, automotive industry (interior materials, sheet), heat protection system of various digital and electric equipment, medical equipment It is an energy-saving and eco-friendly material that can be applied to various industries such as bed restraint beds for long-term inpatients and blood transportation systems.
상변화물질은 구성 물질에 따라 유기 상변화물질과 무기 상변화물질로 분류되는데, 현재 유기물은 노말-파라핀, 무기물은 염화칼슘이 대표적으로 사용되고 있다. 물성 측면에서, 유기 상변화물질은 부식성이 없고 화학 및 열적으로 안정하며 과랭(sub-cooling)이 없는 장점이 있는 반면에, 단점은 상변화 엔탈피, 밀도 및 열전도율이 낮은 것이다. 그에 반해서, 무기 상변화물질은 상변화 엔탈피와 밀도가 높은 것이 장점이지만, 단점은 과랭, 부식성, 상분리, 사이클 안정성의 결핍 등이다. 결과적으로 물성 측면에서는 유기 상변화물질이 무기 상변화물질에 비해서 우수하다고 알려져 있다.Phase change materials are classified into organic phase change materials and inorganic phase change materials according to constituent materials. Currently, organic materials are normally used as normal-paraffins and inorganic materials are calcium chloride. In terms of physical properties, organic phase change materials are not corrosive, chemically and thermally stable, and have no sub-cooling, while the disadvantages are low phase change enthalpy, density and thermal conductivity. In contrast, inorganic phase change materials have advantages of high phase change enthalpy and density, but disadvantages include overcooling, corrosiveness, phase separation, and lack of cycle stability. As a result, in terms of physical properties, organic phase change materials are known to be superior to inorganic phase change materials.
대표적인 유기 상변화물질인 노말-파라핀은 현재 원유 정제제품의 하나인 등유(kerosene)로부터 생산된다. 등유는 일반적으로 1-5 중량%의 노말-파라핀을 함유하고 있으며, 그 노말-파라핀의 탄소수는 넓은 범위로 존재한다. 등유로부터 노말-파라핀의 제조는 1)끓는점을 이용하여 원하는 탄소수의 혼합물 분리과정 2)후단에 사용되는 흡착제의 독(poison)으로 작용하는 혼합물 내의 황, 질소, 산소 등의 불순물 제거공정 3) 흡착제를 이용하여 혼합물 중 노말-파라핀 흡착공정 4) 탈착물질을 이용한 흡착된 노말-파라핀 탈착공정 5) 끓는점을 이용하여 탈착물질 및 각각의 노말-파라핀 분리공정을 거치는 매우 복잡하고 고가인 공정이다. 더욱이, 등유는 다양한 탄소수를 가진 성분들 및 다양한 노말-파라핀 유도체들을 포함하고 있기 때문에 우리가 필요로 하는 노말-파라핀의 농도가 높지 않으므로, 등유에서 노말-파라핀을 효과적으로 분리하는 것은 쉽지 않은 공정이다. 미국 공개특허 2010/0125162 등에서 이러한 노말-파라핀 분리 공정을 개선하기 위한 방안을 논의하고 있지만, 기본적으로 등유로부터 노말-파라핀을 분리하는 방식은 고가의 공정이기 때문에 유기 상변화물질의 범용화를 가로막고 있는 실정이다.Normal-paraffin, a representative organic phase change material, is produced from kerosene, one of the crude oil refined products. Kerosene generally contains 1-5% by weight of normal-paraffins, and the carbon number of the normal-paraffins is present in a wide range. The production of normal-paraffins from kerosene involves the steps of 1) separating the mixture of the desired carbon number using the boiling point 2) removing impurities such as sulfur, nitrogen, and oxygen in the mixture acting as a poison of the adsorbent used at the end 3) adsorbent Normal-paraffin adsorption process in the mixture using 4) adsorbed normal-paraffin desorption process using desorption material 5) It is a very complicated and expensive process to go through the desorption material and each normal-paraffin separation process using a boiling point. Moreover, since kerosene contains components having various carbon numbers and various normal-paraffin derivatives, the concentration of normal-paraffins that we need is not high, so it is difficult to effectively separate normal-paraffins from kerosene. Although U.S. Patent Application Publication No. 2010/0125162 discusses a method for improving such a normal-paraffin separation process, the method of separating normal-paraffins from kerosene is basically an expensive process, preventing the generalization of organic phase change materials. to be.
한편, 주위에서 흔히 접할 수 있는 식물유로는 코코넛유, 옥수수유, 면실유, 땅콩유, 올리브유, 팜유, 팜핵유, 유채유, 캐놀라유, 참깨유, 대두유, 해바라기유, 피마자유, 아마인유, 홍화유, 자트로파유 등이 있으며 동물유로는 어유, 우지, 돈지, 감금지방 등이 있다. 일반적으로 상기 동식물유는 지방산 3분자가 글리세롤 1분자와 결합하고 있는 트리글리세라이드(triglyceride)로 구성되어 있으며, 한 종류의 동식물유를 구성하는 지방산의 종류는 대체로 단순하여 보통 3가지 종류 내의 지방산이 대부분을 차지한다. 예로, 팜유의 경우에는 C14 지방산 1 중량%, C16 지방산 43 %, C18 지방산 55 중량%로 구성되어, 대부분 C16과 C18의 지방산이 차지하고 있다.On the other hand, commonly encountered vegetable oils include coconut oil, corn oil, cottonseed oil, peanut oil, olive oil, palm oil, palm kernel oil, rapeseed oil, canola oil, sesame oil, soybean oil, sunflower oil, castor oil, linseed oil, safflower oil, Jatropha oil is used, and animal oils include fish oil, tallow, pork and confined fat. In general, the animal and vegetable oil is composed of triglyceride (triglyceride) in which three molecules of fatty acids are combined with one molecule of glycerol. Occupies. For example, palm oil is composed of 1% by weight of C14 fatty acid, 43% of C16 fatty acid, and 55% by weight of C18 fatty acid.
이러한 트리글리세라이드를 수소화 처리를 하게 되면 고농도의 노말-파라핀물질로 구성된 혼합물을 얻게 된다. 트리글리세라이드의 수소화 처리는 1) 트리글리세라이드를 지방산 3분자와 글리세롤 1분자로 분리하는 반응 2) 지방산 내의 올레핀 포화 반응 3) 탈수 반응 및 카르복시이탈 반응을 통해 지방산을 노말-파라핀으로 전환하는 반응을 동시에 수반하므로 결과적으로 트리글리세라이드 내의 지방산과 같은 탄소수를 가진 노말-파라핀 또는 지방산보다 탄소수가 하나 작은 노말-파라핀을 생산하게 된다. 예로, 팜유는 주로 C16과 C18의 지방산으로 구성된 트리글리세라이드 때문에 이러한 팜유를 수소화 처리하는 경우에는 주로 C15, C16, C17, C18의 네 종류의 노말-파라핀을 얻을 수 있다. Hydrogenation of these triglycerides yields a mixture of high concentrations of normal-paraffinic materials. Hydrogenation of triglyceride is performed by 1) separating triglyceride into 3 molecules of fatty acid and 1 molecule of glycerol, 2) olefin saturation reaction in fatty acid, and 3) converting fatty acid into normal-paraffin through dehydration and decarboxylation reaction. This results in the production of normal-paraffins with the same carbon number as the fatty acids in triglycerides or with normal-paraffins with one carbon less than fatty acids. For example, palm oil is mainly triglycerides composed mainly of C16 and C18 fatty acids, so when the palm oil is hydrogenated, four kinds of normal-paraffins, mainly C15, C16, C17 and C18, can be obtained.
노말-파라핀을 상변화 물질의 원료로 사용하는 경우, 특정한 녹는점을 지니는 단일물을 사용하는 것이 다양한 녹는점을 지니는 혼합물 형태를 사용하는 것에 비해서 상변화 물질의 적용에 유리하다. 상변화물질은 노말-파라핀의 응고 및 융해 과정의 잠열을 이용하기 때문에 각 노말-파라핀의 녹는점은 그것을 원료로 만들어지는 상변화물질의 용도를 결정한다. 예로, 녹는점이 인체 활동 영역의 온도와 유사한 C17 (녹는점 21도), C18 (녹는점 28~30도)은 각각의 용도에 맞게 주택 및 의류 용도로 사용되며, C16 (녹는점 18도) 이하의 노말-파라핀은 주로 냉에너지 저장용으로 C19 (녹는점 32~34도) 이상의 노말-파라핀은 주로 열에너지 저장용으로 사용되고 있다. When normal-paraffin is used as a raw material for phase change material, the use of a single substance having a specific melting point is advantageous to the application of the phase change material as compared to the use of a mixture form having various melting points. Since the phase change material utilizes the latent heat of the process of coagulation and melting of normal-paraffins, the melting point of each normal-paraffin determines the use of the phase change material made from it. For example, C17 (melting point 21 degrees) and C18 (melting point 28 to 30 degrees), which have a melting point similar to the temperature of the active area, are used for housing and clothing purposes, and below C16 (18 degrees melting point). Normal-paraffins are mainly used for cold energy storage and C19 (melting point 32 ~ 34 degrees) or more. Normal-paraffins are mainly used for thermal energy storage.
최근에 상변화 물질의 주택 용도로의 응용이 가장 큰 각광을 받고 있으며, 향후 가장 큰 시장을 형성할 것으로 예측되고 있다. 주택용도로의 응용을 위한 상변화물질의 사용은 수동적 (Passive) 방식과 능동적 (Active) 방식으로 나눌 수 있다. 용어 그대로, 수동적 방식은 다른 냉난방 장치의 도움을 받지 않고 상변화물질만을 가지고 주택의 온도를 조절하는 방식이고, 반면에 능동적 방식은 현재 사용되고 있는 냉난방기의 보조 역할을 하여 냉난방기의 에너지를 저감하는 방식이다. 이론적으로는 수동적 방식이 가장 이상적인 방법이겠지만, 계절에 따른 기온 변차, 상변화물질의 잠열용량의 한계 및 고객 편의성을 고려했을 때 능동적 방식으로의 상변화물질 사용이 가장 적합할 것으로 판단된다. 이러한 관점에서, 상변화물질 응용을 위한 노말-파라핀 중 C17의 수요가 가장 클 것으로 예상된다. 또한, 녹는점이 10도인 C15 노말-파라핀은 냉에너지 저장용으로 가장 적합하여 수요가 클 것으로 예상된다. 그러므로 반응 온도, 반응 압력 및 촉매의 담체와 같이 비교적 조절이 용이한 인자를 제어하여 C15 및 C17과 같은 홀수 탄소수를 가지는 유기 상변화물질의 중량비를 극대화할 수 있다면 상업적으로 매우 유용할 것이다.Recently, the application of phase change materials to housing applications has been the most popular and is expected to form the largest market in the future. The use of phase change materials for residential applications can be divided into passive and active methods. As the term suggests, the passive method is a method of controlling the temperature of a house with only phase change material without the help of other air-conditioning devices, while the active method is a method of reducing the energy of the air conditioner by acting as a supplement to the air conditioners currently used. . Theoretically, the passive method would be the ideal method, but considering the seasonal temperature fluctuations, the limit of latent heat capacity of phase change materials, and customer convenience, the use of phase change materials in an active manner would be most appropriate. In this respect, C17 is expected to be the largest among normal-paraffins for phase change material applications. In addition, C15 normal-paraffin with a melting point of 10 degrees is expected to be in high demand because it is most suitable for cold energy storage. Therefore, it would be very commercially useful if the weight ratio of the organic phase change material having an odd carbon number such as C15 and C17 can be maximized by controlling relatively easy factors such as reaction temperature, reaction pressure and catalyst carrier.
본 발명은 동식물유의 수소화처리 반응을 통한 유기 상변화물질을 제조 시, 촉매 존재 하에, 반응 온도, 반응 압력 및 촉매의 담체를 제어하여 홀수 탄소수를 가지는 유기 상변화물질의 중량이 짝수 탄소수를 가지는 유기 상변화물질의 중량보다 선택적으로 높은 유기 상변화물질을 제조하는 방법을 제공한다.The present invention is an organic phase change material having an odd number of carbon atoms in the presence of a catalyst in the presence of a catalyst in the production of an organic phase change material through a hydrotreating reaction of animal and vegetable oil having an even carbon number It provides a method for producing an organic phase change material that is selectively higher than the weight of the phase change material.
본 발명의 유기 상변화 물질의 제조방법은 수소화 처리 반응 시, 반응 온도, 반응 압력 및 촉매의 담체를 제어 인자로 하여 상기 유기 상변화 물질의 중량비를 보다 효과적으로 조절되게 하는 특징이 있다. 보다 상세하게, 본 발명에 따른 동식물유의 수소화처리 반응을 통한 유기 상변화물질의 제조 방법은 상업적으로 적용이 보다 유리하도록 촉매 존재 하에, 반응 온도, 반응 압력 및 촉매의 담체를 제어하여 하기식 1에 의해 규정되는 유기 상변화물질의 중량비인 Ro/e이 1보다 큰 것을 특징으로 한다. The method for preparing an organic phase change material according to the present invention is characterized in that the weight ratio of the organic phase change material is more effectively controlled by controlling the reaction temperature, the reaction pressure, and the carrier of the catalyst as a control factor during the hydrogenation reaction. More specifically, the method for producing an organic phase change material through the hydrotreating reaction of animal and vegetable oil according to the present invention is controlled by the reaction temperature, reaction pressure and the carrier of the catalyst in the presence of a catalyst to commercially more advantageously It is characterized in that the weight ratio R o / e of the organic phase change material defined by is greater than one.
Figure PCTKR2011005229-appb-I000001
(1)
Figure PCTKR2011005229-appb-I000001
(One)
식1에서, 상기 n은 13 내지 21의 홀수이며, m(n)은 탄소수가 n인 유기 상변화 물질의 중량이며 m(n+1)은 탄소수가 (n+1)인 유기 상변화물질의 중량이다. In Formula 1, n is an odd number of 13 to 21, m (n) is the weight of the organic phase change material having n carbon atoms and m (n + 1) is of the organic phase change material having (n + 1) It is weight.
또한 본 발명에 따른 동식물유의 수소화처리 반응을 통한 유기 상변화 물질의 제조방법은 상기 촉매의 담체가 지르코늄을 포함하며 상기 반응 온도(T, oC) 및 반응 압력(P, bar)을 제어하여 하기 식2를 만족하도록 조절하여 유기 상변화 물질의 중량비인 Ro/e이 1보다 클 수 있다.In addition, the method for preparing an organic phase change material through a hydrotreating reaction of animal and vegetable oil according to the present invention includes a carrier of the catalyst including zirconium and controlling the reaction temperature (T, o C) and reaction pressure (P, bar) By adjusting to satisfy Equation 2, the weight ratio R o / e of the organic phase change material may be greater than one.
P < (704.3)*e-0.008T (2)P <(704.3) * e -0.008T (2)
250℃ ≤ T ≤ 410℃ 10bar ≤ P ≤ 150bar      250 ℃ ≤ T ≤ 410 ℃ 10bar ≤ P ≤ 150bar
촉매의 담체가 지르코늄을 포함하며 반응온도(T, oC)는 250~410 oC이며 반응 압력(P, bar)은 10~150 bar로 제어하여 상기 식2를 만족할 경우, 유기 상변화물질의 중량비인 Ro/e이 1보다 클 수 있다. 즉, Ro/e이 1보다 크다는 것은 상기와 같은 범위로 반응 온도와 반응 압력을 제어하면 홀수 탄소수를 가진 유기 상변화물질의 중량비를 짝수 탄소수를 가진 유기 상변화물질의 중량비보다 높은 비율로 얻을 수 있다는 것을 뜻한다.The carrier of the catalyst contains zirconium, the reaction temperature (T, o C) is 250 ~ 410 o C and the reaction pressure (P, bar) is controlled to 10 ~ 150 bar to satisfy the above formula 2, the organic phase change material The weight ratio R o / e may be greater than one. That is, if R o / e is greater than 1, the weight ratio of the organic phase change material having an odd carbon number is obtained at a higher ratio than the weight ratio of the organic phase change material having an even carbon number by controlling the reaction temperature and the reaction pressure within the above range. It means you can.
상기 촉매의 담체가 지르코늄을 포함하며 반응 온도 및 반응 압력을 제어하여 상기 식2를 만족하도록 조절할 때 상기 식2에서 반응 온도(T, oC)는 280℃ ≤ T ≤ 350℃이며 반응 압력은 20bar ≤ P ≤ 80bar인 것이 보다 바람직하다.When the carrier of the catalyst contains zirconium and is adjusted to satisfy the equation 2 by controlling the reaction temperature and the reaction pressure, the reaction temperature (T, o C) in Equation 2 is 280 ℃ ≤ T ≤ 350 ℃ and the reaction pressure is 20bar It is more preferable that ≦ P ≦ 80 bar.
또한 본 발명에 따른 동식물유의 수소화처리 반응을 통한 유기 상변화 물질의 제조방법은 상기 촉매의 담체가 티타늄을 포함하며 상기 반응 온도(T, oC) 및 반응 압력(P, bar)을 제어하여 하기 식3을 만족하는 경우, 유기 상변화 물질의 중량비인 Ro/e이 1보다 클 수 있다.In addition, the method for producing an organic phase change material through the hydrotreating reaction of animal and vegetable oil according to the present invention includes a titanium of the catalyst and the reaction temperature (T, o C) and the reaction pressure (P, bar) by controlling the When Equation 3 is satisfied, R o / e, which is a weight ratio of the organic phase change material, may be greater than one.
P < (30070)*e-0.023T (3)P <(30070) * e -0.023T (3)
250℃ ≤ T ≤ 410℃ 10bar ≤ P ≤ 150bar     250 ℃ ≤ T ≤ 410 ℃ 10bar ≤ P ≤ 150bar
본 발명에 따른 동식물유의 수소화처리 반응을 통한 유기 상변화 물질의 제조방법은 상기 촉매의 담체가 알루미늄을 포함하며 상기 반응 온도(T, oC) 및 반응 압력(P, bar)을 제어하여 하기 식4를 만족하는 경우, 유기 상변화 물질의 중량비인 Ro/e이 1보다 클 수 있다.In the method for preparing an organic phase change material through a hydrogenation reaction of animal and vegetable oil according to the present invention, the catalyst carrier includes aluminum, and the reaction temperature (T, o C) and the reaction pressure (P, bar) are controlled by the following equation. When 4 is satisfied, R o / e, which is a weight ratio of the organic phase change material, may be greater than 1.
P < (927.9)*e-0.009T (4)P <(927.9) * e -0.009T (4)
250℃ ≤ T ≤ 410℃ 10bar ≤ P ≤ 150bar   250 ℃ ≤ T ≤ 410 ℃ 10bar ≤ P ≤ 150bar
상기 촉매의 담체가 지르코늄일 때 지르코늄 산화물 또는 지르코늄 포스페이트일 수 있으며 상기 촉매의 담체가 티타늄일 때 티타늄 산화물 또는 티타늄 포스페이트일 수 있으며 알루미늄일 경우 알루미늄 산화물 또는 알루미늄 포스페이트일 수 있으나 이에 한정이 있는 것은 아니다.When the carrier of the catalyst is zirconium, it may be zirconium oxide or zirconium phosphate, and when the carrier of the catalyst is titanium, it may be titanium oxide or titanium phosphate, and in the case of aluminum, it may be aluminum oxide or aluminum phosphate, but is not limited thereto.
한편 본 발명에 사용되는 촉매는 간단한 공정과 유기 상변화물질의 중량비를 선택적으로 얻기 위해 내구성 및 높은 활성을 가지는 촉매를 사용한다. 본 발명에 사용되는 촉매는 담체에 활성성분이 포함되어 사용되는데 VIB, VIIB, VIIIB, VIII, IB 또는 IIB족 금속으로 이루어진 군으로부터 선택되는 어느 하나 또는 둘이상의 혼합물일 수 있으며 바람직하게 유기 상변화물질의 중량비 Ro/e을 보다 선택적으로 조절할 수 있는 측면에서 금속 VIB족은 Mo 또는 W 일 수 있으며 금속 VIII족은 Ni, Pd, 또는 Pt일 수 있고 VIIIB족은 Fe, Co, Ru, Rh, 및 Ir군에서 선택되는 하나 또는 둘이상의 혼합물일 수 있으나 이에 한정이 있는 것은 아니다. On the other hand, the catalyst used in the present invention uses a catalyst having a high durability and durability in order to obtain a simple process and a weight ratio of the organic phase change material selectively. The catalyst used in the present invention includes an active ingredient in a carrier, and may be any one or a mixture of two or more selected from the group consisting of VIB, VIIB, VIIIB, VIII, IB or IIB metals, and preferably an organic phase change material. Weight ratio Ro / eIn terms of more selective control of The metal group VIB may be Mo or W, the metal group VIII may be Ni, Pd, or Pt and the group VIIIB may be one or more mixtures selected from the group Fe, Co, Ru, Rh, and Ir, but is not limited thereto. This is not the case.
본 발명에서 홀수 탄소수를 가진 유기 상변화물질의 중량을 짝수 탄소수를 가진 유기 상변화물질의 중량보다 선택적으로 높은 비율로 얻기 위해서 본 발명의 VIB족 금속은 담체에 대하여 0.1~70중량%로 포함되는 데, 0.1 중량% 이하로 담지 될 경우 촉매의 활성이 매우 낮아 촉매로서 작용을 하지 못하고, VIB 족이 담지 되었을 때, 산화상태로 촉매에 담지 되는데 산화물 기준으로 70 중량% 이상으로 담지하기 어렵다. 바람직하게는 VIB족 금속은 1 중량%~40 중량% 사용한다. 지 , 본 발명에서 홀수 탄소수를 가진 유기 상변화물질의 중량을 짝수 탄소수를 가진 유기 상변화물질의 중량보다 선택적으로 높은 비율로 얻기 위해서 본 발명의 VIII족 금속 또는 VIIB족 금속은 담체에 대하여 0.1~60중량%로 포함되는 데, 0.1 중량% 이하로 담지 될 경우 촉매의 활성이 매우 낮아 촉매로서 작용을 하지 못하고, 60 중량%를 초과하여 담지하기 어렵기 때문이다. VIII족 금속 또는 VIIB족 금속은 바람직하게는 0.1~20 중량%로 사용한다. In order to obtain the weight of the organic phase change material having an odd number of carbon atoms in the present invention selectively higher than the weight of the organic phase change material having an even number of carbon atoms, the Group VIB metal of the present invention is included in an amount of 0.1 to 70% by weight based on the carrier. However, when supported at less than 0.1% by weight, the activity of the catalyst is very low, and thus does not act as a catalyst. When the VIB group is supported, it is supported on the catalyst in an oxidized state, but it is difficult to carry at least 70% by weight based on oxide. Preferably, Group VIB metal is used in an amount of 1 wt% to 40 wt%. In order to obtain the weight of the organic phase change material having an odd number of carbon atoms in the present invention selectively higher than the weight of the organic phase change material having an even number of carbon atoms, the Group VIII metal or the Group VIIB metal of the present invention is 0.1 to It is included in 60% by weight, because when supported by 0.1% by weight or less, the activity of the catalyst is very low, it does not act as a catalyst, it is difficult to support more than 60% by weight. Group VIII metal or Group VIIB metal is preferably used in an amount of 0.1 to 20% by weight.
이와 같은 이유로 본 발명에서 홀수 탄소수를 가진 유기 상변화물질의 중량을 짝수 탄소수를 가진 유기 상변화물질의 중량보다 선택적으로 높은 비율로 얻기 위해서 본 발명에 사용되는 촉매인 Ni이 담체에 대하여 0.1~60 중량%로 포함되며 Mo이 담체에 대하여 0.1~70 중량%로 포함될 수 있으며 가장 바람직하게는 Ni이 담체에 대하여 0.1~20 중량%로 포함되고 Mo이 담체에 대하여 1~40 중량%로 포함될 수 있다. For this reason, the catalyst Ni used in the present invention in order to obtain the weight of the organic phase change material having an odd carbon number at a higher ratio than the weight of the organic phase change material having an even carbon number is 0.1 to 60 with respect to the carrier. It may be included in the weight percent Mo may be included in 0.1 to 70% by weight based on the carrier, most preferably Ni is included in 0.1 to 20% by weight relative to the carrier and Mo may be included in 1 to 40% by weight relative to the carrier. .
따라서 본 발명에 따른 유기 상변화물질의 제조방법에 있어서 촉매의 활성성분은 Ni과 Mo의 혼합물이며 Ni은 담체에 대하여 0.1~60 중량%로 포함되고 Mo이 담체에 대하여 0.1~70 중량%로 포함되어 있는 것이 바람직하다.Therefore, in the method for preparing an organic phase change material according to the present invention, the active ingredient of the catalyst is a mixture of Ni and Mo, and Ni is included in an amount of 0.1 to 60% by weight based on the carrier, and Mo is included in an amount of 0.1 to 70% by weight based on the carrier. It is preferable that it is done.
본 발명의 홀수 탄소수를 가진 유기 상변화물질의 중량을 짝수 탄소수를 가진 유기 상변화물질의 중량보다 선택적으로 높은 비율로 제조하는 유기 상변화물질의 제조방법에서 바람직하게 상기 촉매의 활성성분은 Ni과 Mo의 혼합물이며 촉매의 담체는 지르코늄 산화물이며 반응온도는 280~350 oC이며 반응 압력(P, bar)은 20~80 bar로 제어하여 상기 식2에 의해 규정되는 유기 상변화물질의 중량비인 Ro/e이 1보다 큰 유기 상변화물질을 얻을 수 있다.In the method for preparing an organic phase change material in which the weight of the organic phase change material having an odd carbon number is selectively higher than the weight of the organic phase change material having an even carbon number, the active ingredient of the catalyst is preferably Ni and It is a mixture of Mo and the carrier of the catalyst is zirconium oxide, the reaction temperature is 280 ~ 350 o C and the reaction pressure (P, bar) is controlled to 20 ~ 80 bar by weight ratio of the organic phase change material defined by the formula 2 R Organic phase change materials with o / e greater than 1 can be obtained.
상기 동식물유는 각별히 한정이 있는 것은 아니나 코코넛유, 옥수수유, 면실유, 땅콩류, 올리브유, 팜유, 팜액유, 유채유, 캐놀라유, 참깨유, 대두유, 해바라기유, 피마자유, 아마인유, 홍화유, 자트로파유, 어유, 우지, 돈지, 가금지방 및 이들의 지방산 또는 폐유로 이루어진 군으로부터 선택되는 하나 또는 둘이상의 혼합물일 수 있다.The animal and vegetable oil is not particularly limited, but coconut oil, corn oil, cottonseed oil, peanuts, olive oil, palm oil, palm oil, rapeseed oil, canola oil, sesame oil, soybean oil, sunflower oil, castor oil, linseed oil, safflower oil, jatropha oil It may be one or two or more mixtures selected from the group consisting of fish oil, beef tallow, pork fat, poultry fat and fatty acids or waste oil thereof.
동식물 유래 지방은 주로 트리글리세라이드(Triglyceride)로 구성되는데 상기 지방의 경우 트리글리세라이드의 각 체인을 구성하는 탄소의 개수가 4 내지 36개인 지방이고, 상기 지방산의 경우, 탄소의 개수가 4 내지 36개인 지방산을 사용하는 것이 바람직하지만 이에 한정되는 것은 아니다.The fats and fauna-derived fats are mainly composed of triglycerides, which are fats having 4 to 36 carbon atoms constituting each chain of triglycerides, and fatty acids having 4 to 36 carbon atoms. It is preferable to use but is not limited thereto.
본 발명의 유기 상변화물질의 제조방법에 따른 동식물유의 수소화처리 반응에서 수소에 의해 지방에 주로 존재하는 트리글리세라이드가 노말-파라핀과 부산물로서 프로판, 물, 일산화탄소 및 이산화탄소등이 생성될 수 있다. 또한 이때 생성되는 파라핀은 C13~C22이며 바람직하게 C15~C18이다.In the hydrogenation reaction of animal and vegetable oil according to the method for preparing an organic phase change material of the present invention, triglyceride mainly present in fat by hydrogen may be produced as propane, water, carbon monoxide, carbon dioxide, and the like as normal by-paraffins and by-products. In addition, the paraffins produced at this time are C13 to C22, preferably C15 to C18.
본 발명에 따른 유기 상변화물질의 제조방법은 동식물유의 수소화처리 반응을 통한 유기 상변화 물질의 제조 시, 촉매 존재 하에, 반응 온도, 반응 압력 및 촉매의 담체를 제어하여 유기 상변화물질의 중량비를 선택적으로 조절하여 홀수 탄소수를 가진 유기 상변화물질의 중량을 짝수 탄소수를 가진 유기 상변화 물질의 중량보다 높은 비율로 제조할 수 있는 장점이 있다. The method for preparing an organic phase change material according to the present invention controls the reaction temperature, the reaction pressure and the carrier of the catalyst in the presence of a catalyst in the preparation of the organic phase change material through the hydroprocessing reaction of animal and vegetable oils to reduce the weight ratio of the organic phase change material. By selectively adjusting the weight of the organic phase change material having an odd number of carbon atoms, the weight of the organic phase change material having an even number of carbon atoms can be produced.
또한 본 발명은 동식물유의 수소화처리 반응을 통한 유기 상변화물질을 제조 시, 촉매 존재 하에, 반응 온도, 반응 압력 및 촉매의 담체를 제어하여 홀수 탄소수를 가지는 유기 상변화물질의 중량이 짝수 탄소수를 가지는 유기 상변화물질의 중량보다 선택적으로 높은 유기 상변화물질을 제조해 필요로 하는 특성(융점)의 유기 상변화물질을 보다 선택적으로 제조할 수 있는 장점이 있다.In addition, the present invention, when preparing an organic phase change material through the hydrogenation reaction of animal and vegetable oil, in the presence of a catalyst, by controlling the reaction temperature, the reaction pressure and the carrier of the catalyst, the weight of the organic phase change material having an odd carbon number has an even carbon number There is an advantage in that an organic phase change material having a characteristic (melting point) required by manufacturing an organic phase change material that is selectively higher than the weight of the organic phase change material can be manufactured more selectively.
또한 본 발명에 따라 제조된 유기 상변화물질은 요구에 부응하는 유기 상변화물질의 중량을 선택적으로 높게 조절하여 제조하면서도 저가의 공정으로 제조되므로 다양한 산업 분야에 적용되어 유기 상변화물질의 범용화를 이룰 수 있다.In addition, the organic phase change material prepared according to the present invention is manufactured by inexpensive process while being manufactured by selectively adjusting the weight of the organic phase change material that meets the requirements, so that it can be applied to various industrial fields to achieve the generalization of the organic phase change material. Can be.
도 1은 동식물유의 수소화처리 반응을 통한 유기 상변화 물질의 제조 시, 촉매의 담체가 지르코늄을 포함하며 반응온도가 250~410 oC 및 반응 압력이 10~150 bar 영역에서 유기 상변화 물질의 중량비인 Ro/e이 1인 반응온도와 반응압력을 나타낸 그래프이다. 1 is a weight ratio of an organic phase change material in the production of an organic phase change material through a hydrogenation reaction of animal and vegetable oil, the catalyst carrier includes zirconium, the reaction temperature is 250 ~ 410 o C and the reaction pressure is 10 ~ 150 bar region It is a graph showing the reaction temperature and pressure of which R o / e is 1.
도 2는 제조된 유기 상변화 물질을 분리하여 얻어진 옥타데칸(C18)을 DSC로 분석한 그래프이다.Figure 2 is a graph of DSC analysis of octadecane (C18) obtained by separating the prepared organic phase change material.
이하 본 발명의 구체적인 예를 설명하고자 하나 이는 본 발명의 범위를 이 있는 것은 아니다.Hereinafter, specific examples of the present invention will be described, but this is not intended to limit the scope of the present invention.
실시예 1: NiMo/ZrO₂촉매의 제조Example 1 Preparation of NiMo / ZrO 2 Catalyst
지름 1mm 크기의 ZrO₂200 g을 담체로 사용하여 Mo이 10 중량%, Ni이 3 중량%인 촉매를 제조하였다. 제조에 사용된 Mo 전구체로는 Ammonium heptamolybdate tetrahydrate (이후 “AHM”)를 사용하였으며, Ni 전구체로는 Nickel nitrate hexahydrate (이후 “NNH”)를 사용하였다. Mo, Ni 금속의 경우 다양한 전구체를 사용할 수 있으며, 상기 전구체로만 한정하는 것은 아니다. A catalyst having 10 wt% Mo and 3 wt% Ni was prepared using 200 g of ZrO 2 having a diameter of 1 mm as a carrier. Ammonium heptamolybdate tetrahydrate (hereinafter referred to as “AHM”) was used as the Mo precursor used in the preparation, and Nickel nitrate hexahydrate (hereinafter referred to as “NNH”) was used as the Ni precursor. In the case of Mo and Ni metals, various precursors may be used, and the present invention is not limited thereto.
NiMo/ZrO₂ 촉매는 다음과 같은 순서로 제조되었다. NiMo / ZrO₂ catalysts were prepared in the following order.
먼저 AHM을 증류수에 녹여 제조한 수용액을 ZrO₂담체에 함침 시킨 다음, 150 ℃ 2시간 동안 건조한 뒤, 500 ℃에서 2시간 동안 연속으로 소성하여 Mo/ZrO₂를 제조하였다. First, an aqueous solution prepared by dissolving AHM in distilled water was impregnated in a ZrO₂ carrier, and then dried at 150 ° C. for 2 hours, and subsequently calcined at 500 ° C. for 2 hours to prepare Mo / ZrO₂.
NNH을 증류수에 녹인 다음, 상기 Mo/ZrO₂촉매를 함침 시킨 다음, 150 ℃ 2시간 동안 건조한 뒤, 500 ℃에서 2시간 동안 연속으로 소성하여 NiMo/ZrO₂촉매를 제조하였다. After NNH was dissolved in distilled water, the Mo / ZrO₂ catalyst was impregnated, dried at 150 ° C. for 2 hours, and subsequently calcined at 500 ° C. for 2 hours to prepare a NiMo / ZrO₂ catalyst.
상기 절차에 따라 제조한 촉매 6 cc를 원통형 반응기에 충진한 다음, 상온 조건에서 R-LGO를 feed로 하여, 0.08 cc/min의 속도로 도입하고, 압력 45 bar, H₂ flow를 16 cc/min의 속도로 흘리면서 320 ℃까지 승온하고 320 ℃ 에서 도달하면 3시간 동안 전처리 하였다.  6 cc of catalyst prepared according to the above procedure was charged to a cylindrical reactor, and then fed at a rate of 0.08 cc / min using R-LGO as a feed at room temperature, and a pressure of 45 bar and a H 2 flow of 16 cc / min. The temperature was raised to 320 ° C. while flowing at a rate, and pretreated for 3 hours when reached at 320 ° C.
실시예 2: NiMo/TiO₂촉매의 제조 Example 2: Preparation of NiMo / TiO 2 Catalyst
지름 1mm 크기의 TiO₂200 g 을 담체로 사용하여 Mo가 약 10 중량%, Ni이 약 3중량%인 촉매를 제조하였다. 제조에 사용된 Mo전구체로는 AHM를, Ni 전구체로는 NNH를 사용하였다.  A catalyst having about 10 wt% Mo and about 3 wt% Ni was prepared using 200 g of TiO 2 having a diameter of 1 mm as a carrier. AHM was used as the Mo precursor used in the preparation and NNH was used as the Ni precursor.
Mo, Ni 금속의 경우 다양한 전구체를 사용할 수 있으며, 상기 전구체로만 한정하는 것은 아니다. 이외에는 실시예 1과 동일한 방법으로 촉매를 제조하고 전처리 하였다. In the case of Mo and Ni metals, various precursors may be used, and the present invention is not limited thereto. A catalyst was prepared and pretreated in the same manner as in Example 1.
실시예 3: NiMo/AlExample 3: NiMo / Al 22 OO 33 촉매의 제조  Preparation of the catalyst
지름 1mm 크기의 Al2O3 200 g을 담체로 사용하여 Mo가 약 10 중량%, Ni이 약 3중량%인 촉매를 제조하였다. 제조에 사용된 Mo전구체로는 AHM를, Ni 전구체로는 NNH를 사용하였다. 200 g of Al 2 O 3 having a diameter of 1 mm was used as a carrier to prepare a catalyst having about 10 wt% Mo and about 3 wt% Ni. AHM was used as the Mo precursor used in the preparation and NNH was used as the Ni precursor.
Mo, Ni 금속의 경우 다양한 전구체를 사용할 수 있으며, 상기 전구체로만 한정하는 것은 아니다. 이외에는 실시예 1과 동일한 방법으로 촉매를 제조하고 전처리 하였다. In the case of Mo and Ni metals, various precursors may be used, and the present invention is not limited thereto. A catalyst was prepared and pretreated in the same manner as in Example 1.
실시예 4: 팜유 수소화처리 반응을 통한 유기 상변화물질 혼합물의 제조Example 4 Preparation of Organic Phase Change Material Mixture through Palm Oil Hydrotreating
실시예 1에서 제조한 NiMo/ZrO₂촉매, 실시예 2에서 제조한 NiMo/TiO₂촉매 또는 실시예 3에서 제조한 NiMo/Al2O3 촉매를 반응온도 300 ℃, 반응압력 30 bar, 수소 100 cc/min의 도입 조건에서, feed인, 1 중량% DMDS(di-Methyl Disulfide)가 포함된 팜유를 0.1 cc/min (LHSV = 1)의 속도로 각각 반응시켰다. 피드의 경우, 모든 동식물유 및 이들의 지방산 또는 폐유 중 어느 하나 또는 둘이상의 혼합물을 사용할 수 있으며, 상기 팜유로만 한정하는 것은 아니다.NiMo / ZrO₂ catalyst prepared in Example 1, NiMo / TiO₂ catalyst prepared in Example 2, or NiMo / Al 2 O 3 catalyst prepared in Example 3 were reacted at a reaction temperature of 300 ° C., reaction pressure of 30 bar, and hydrogen of 100 cc / Under the condition of the introduction of min, palm oil containing 1% by weight of di-Methyl Disulfide (DMDS) was reacted at a rate of 0.1 cc / min (LHSV = 1). In the case of a feed, all animal and vegetable oils and fatty acids or waste oils thereof may be used, or a mixture of two or more thereof, but is not limited thereto.
피드로서 정제 전의 동식물유나 특히 폐유를 사용하는 경우에는 피드 내에 포함된 불순물이 촉매의 활성을 저하 시키거나 혹은 원하지 않은 반응을 야기할 수가 있다. 이러한 문제를 해결하기 위해서는 동식물유의 수소화 처리 반응 전에 동식물유에 함유된 불순물을 제거하는 단계를 더 포함하여야 한다. 기공크기가 0.1-100 μm인 필터를 사용하여 동식물유 내의 불순물을 걸러 주었다. 불순물을 제거의 경우, 통상적으로 알려진 모든 제거 방법을 사용할 수 있으며, 상기 필터링 방법으로만 한정하는 것은 아니다.  In the case of using animal or vegetable oil before purification or particularly waste oil as a feed, impurities contained in the feed may lower the activity of the catalyst or cause unwanted reactions. In order to solve this problem, a step of removing impurities contained in animal and vegetable oils before the hydrogenation reaction of animal and vegetable oils should be further included. Impurities in animal and vegetable oils were filtered using a filter having a pore size of 0.1-100 μm. In the case of removing impurities, any conventionally known removal method may be used, and the present invention is not limited thereto.
원유 정제를 목적으로 하는 수소화처리 반응의 경우, 피드 자체에 황이 포함되어 있기 때문에 따로 황화합물을 혼합하지 않아도 촉매의 활성이 유지된다. 그러나 동식물유의 수소화처리 반응의 경우, 피드로 사용하는 동식물유에는 황이 포함되어 있지 않고, 오히려 황과 같은 족인 산소가 포함되어 있어 촉매가 산소와의 반응으로 쉽게 비활성화 되는 단점이 있었다. 이를 극복하기 위해서, 1 중량%의 DMDS(di-Methyl Disulfide) 황화합물을 피드와 혼합하여 처리하였다.  In the hydrotreating reaction for the purpose of refining crude oil, since the sulfur itself is contained in the feed itself, the activity of the catalyst is maintained without mixing sulfur compounds separately. However, in the case of the hydroprocessing reaction of animal and vegetable oils, animal and vegetable oils used as feeds do not contain sulfur, but rather have oxygen, which is a sulfur-like group, so that the catalyst is easily deactivated by reaction with oxygen. To overcome this, 1% by weight of di-Methyl Disulfide (DMDS) sulfur compound was mixed with the feed and treated.
8시간마다 시료 채취(sampling)를 하였고, 얻어진 생성물(product)의 반응 성상은 simdist 분석을 통해 확인하였으며, 그 결과는 표 1에 도시하였다.  Sampling was performed every 8 hours, and the reaction properties of the obtained product were confirmed by simdist analysis, and the results are shown in Table 1.
표 1
Figure PCTKR2011005229-appb-T000001
Table 1
Figure PCTKR2011005229-appb-T000001
표 1에 나타난 결과를 보면, NiMo/ZrO₂및 NiMo/TiO₂및 NiMo/Al2O3 촉매들 모두에 대해서 팜유 내 트리글리세라이드의 노말-파라핀(C15-C18)으로의 전환율은 97~98%이었다. 또한, NiMo/ZrO2, NiMo/Al2O3, NiMo/TNiM 촉매 순으로 카르복시 이탈 반응이 탈수 반응에 비해 우세하여 C15와 C17 성분이 C16과 C18 성분에 비해서 상대적으로 많이 생성된다는 것을 알 수 있었다. The results shown in Table 1 show that the conversion of triglycerides to normal-paraffins (C15-C18) in palm oil was 97-98% for both NiMo / ZrO₂ and NiMo / TiO₂ and NiMo / Al 2 O 3 catalysts. In addition, in the order of NiMo / ZrO 2 , NiMo / Al 2 O 3 , and NiMo / TNi M catalysts, the decarboxylation reaction was superior to the dehydration reaction. there was.
실시예 5: NiMo/ZrO₂촉매 하에서의 반응온도 및 반응 압력에 따른 유기 상변화물질의 중량비 조절Example 5 Control of the Weight Ratio of Organic Phase Change Materials According to Reaction Temperature and Reaction Pressure Under NiMo / ZrO 2 Catalyst
반응온도 300 ℃에서 반응압력을 20, 30, 70, 100 bar로 변경하는 것을 제외하고는, NiMo/ZrO₂촉매에 대해서 실시예 4와 동일하게 반응을 실시하였으며, 그 결과는 표 2에 도시하였다. The reaction was carried out in the same manner as in Example 4 except that the reaction pressure was changed to 20, 30, 70, and 100 bar at a reaction temperature of 300 ° C., and the results are shown in Table 2.
표 2
Figure PCTKR2011005229-appb-T000002
TABLE 2
Figure PCTKR2011005229-appb-T000002
표 2에 나타난 결과를 보면, NiMo/ZrO₂촉매 하에서 동일한 반응온도에서 반응압력이 높을수록 탈수 반응이 카르복시 이탈 반응에 비해 우세하여 C16과 C18 성분이 C15와 C17 성분에 비해서 상대적으로 많이 생성된다는 것을 알 수 있었다.The results shown in Table 2 show that the higher the reaction pressure at the same reaction temperature under the NiMo / ZrO₂ catalyst, the more dehydration reaction is superior to the decarboxylation reaction, resulting in more C16 and C18 components than C15 and C17 components. Could.
반응압력 30 bar에서 반응온도를 280, 290, 300, 310, 320, 350, 380 ℃로 변경하는 것을 제외하고는, NiMo/ZrO₂촉매에 대해서 실시예 4와 동일하게 반응을 실시하였으며, 그 결과는 표 3에 도시하였다.The reaction was carried out in the same manner as in Example 4 except that the reaction temperature was changed to 280, 290, 300, 310, 320, 350, and 380 ° C. at a reaction pressure of 30 bar. Table 3 shows.
표 3
Figure PCTKR2011005229-appb-T000003
TABLE 3
Figure PCTKR2011005229-appb-T000003
표 3에 나타난 결과를 보면, NiMo/ZrO₂촉매 하에서 동일한 반응압력에서 반응온도가 높을수록 탈수 반응이 카르복시 이탈 반응에 비해 우세하여 C16과 C18 성분이 C15와 C17 성분에 비해서 상대적으로 많이 생성된다는 것을 알 수 있었다.The results shown in Table 3 show that the higher the reaction temperature at the same reaction pressure under the NiMo / ZrO₂ catalyst, the more dehydrated reactions are superior to the carboxyl leaving reactions, resulting in more C16 and C18 components than C15 and C17 components. Could.
표 2의 결과들을 내삽한 결과, 반응온도 300 ℃에서는 반응압력 약 69bar 이상에서는 Ro/e이 1보다 작았으며, 약 69bar 이하에서는 Ro/e 이 1보다 크다는 것을 확인할 수 있었다. 동일한 방법으로 280, 290, 310, 320, 350, 380 ℃의 각 반응 온도에서의 Ro/e = 1이 되는 반응압력을 구하였으며, 그 결과를 도 1에 도시 하였다. 또한, 도 1에서 보이는 것과 같이 각 온도에서의 Ro/e = 1이 되는 반응압력 값들의 추세를 통해 Ro/e = 1이 될 때의 반응온도 (T, oC)와 반응압력(P, bar)의 관계를 아래와 같이 구할 수 있었다.After interpolating the results of Table 2, the reaction temperature was 300 ℃ the reaction pressure of about 69bar or more smaller than R o / e is 1, is approximately 69bar or less was confirmed that R is greater than the o / e is 1. In the same way, a reaction pressure of R o / e = 1 at each reaction temperature of 280, 290, 310, 320, 350, and 380 ° C. was obtained, and the results are shown in FIG. 1. In addition, as shown in FIG. 1, the reaction temperature (T, o C) and the reaction pressure (P) when R o / e = 1 through the trend of the reaction pressure values R o / e = 1 at each temperature , bar) can be obtained as follows.
P = (704.3)*e-0.008T P = (704.3) * e -0.008T
그러므로 P < (704.3)*e-0.008T 인 경우는 Ro/e 이 1보다 컸으며, 반대로 P > (704.3)*e-0.008T 인 경우는 Ro/e이 1보다 작다는 것을 알 수 있었으며 이러한 결과로부터 반응 온도, 반응 압력 및 촉매의 담체를 제어하여 홀수 탄소수를 가진 유기 상변화물의 중량을 짝수를 가진 유기 상변화물질의 중량보다 선택적으로 높은 중량으로 얻을 수 있음을 또한 알 수 있었다.Therefore, when P <(704.3) * e -0.008T , R o / e is greater than 1, and conversely, when P> (704.3) * e -0.008T , R o / e is less than 1. From these results, it was also found that by controlling the reaction temperature, the reaction pressure, and the carrier of the catalyst, the weight of the organic phase change material having an odd carbon number can be selectively obtained at a weight higher than that of the organic phase change material having an even number.
그러므로 인 경우는 Ro/e이 1보다 컸으며, 반대로 인 경우는 Ro/e이 1보다 작다는 것을 알 수 있었으며 이러한 결과로부터 반응 온도, 반응 압력 및 촉매의 담체를 제어하여 홀수 탄소수를 가진 유기 상변화물의 중량을 짝수를 가진 유기 상변화물질의 중량보다 선택적으로 높은 중량으로 얻을 수 있음을 또한 알 수 있었다.Therefore, R o / e was larger than 1 in the case of, whereas R o / e was smaller than 1 in the case of. From these results, the reaction temperature, reaction pressure and the carrier of the catalyst were It was also found that the weight of the organic phase change material can be selectively obtained at a weight higher than that of the even numbered organic phase change material.
실시예 6: NiMo/TiO₂촉매 하에서의 반응온도 및 반응 압력에 따른 유기 상변화물질의 중량비 조절Example 6: Control of the weight ratio of organic phase change material according to reaction temperature and reaction pressure under NiMo / TiO₂ catalyst
NiMo/ZrO₂촉매 대신에 NiMo/TiO₂촉매를 사용한 것을 제외하고는 실시예 5와 동일하게 반응을 실시하여, 각 온도에서의 Ro/e = 1이 되는 반응압력 값들의 추세를 통해, Ro/e = 1이 될 때의 반응온도 (T, oC)와 반응압력(P, bar)의 관계를 아래와 같이 구할 수 있었다.The reaction was carried out in the same manner as in Example 5 except that the NiMo / TiO₂ catalyst was used instead of the NiMo / ZrO₂ catalyst, and through the trend of the reaction pressure values R o / e = 1 at each temperature, R o / The relationship between reaction temperature (T, o C) and reaction pressure (P, bar) when e = 1 was obtained as follows.
P = (30070)*e-0.023T P = (30070) * e -0.023T
그러므로 P < (30070)*e-0.023T인 경우는 Ro/e이 1보다 컸으며, 반대로 P > (30070)*e-0.023T인 경우는 Ro/e이 1보다 작다는 것을 알 수 있었다.Therefore, when P <(30070) * e -0.023T , R o / e is greater than 1. On the contrary, when P> (30070) * e -0.023T , R o / e is less than 1. there was.
실시예 7: NiMo/AlExample 7: NiMo / Al 22 OO 33 촉매 하에서의 반응온도 및 반응 압력에 따른 유기 상변화물질의 중량비 조절 Control of Weight Ratio of Organic Phase Change Materials by Reaction Temperature and Reaction Pressure under Catalyst
NiMo/ZrO₂촉매 대신에 NiMo/Al2O3 촉매를 사용한 것을 제외하고는 실시예 5와 동일하게 반응을 실시하여, 각 온도에서의 Ro/e = 1이 되는 반응압력 값들의 추세를 통해, Ro/e = 1이 될 때의 반응온도 (T, oC)와 반응압력(P, bar)의 관계를 아래와 같이 구할 수 있었다.The reaction was carried out in the same manner as in Example 5 except that the NiMo / Al 2 O 3 catalyst was used instead of the NiMo / ZrO₂ catalyst, and through the trend of reaction pressure values such that R o / e = 1 at each temperature, The relation between reaction temperature (T, o C) and reaction pressure (P, bar) when R o / e = 1 was obtained as follows.
P = (927.9)*e-0.009T P = (927.9) * e -0.009T
그러므로 P < (927.9)*e-0.009T인 경우는 Ro/e이 1보다 컸으며, 반대로 P < (927.9)*e-0.009T 인 경우는 Ro/e 이 1보다 작다는 것을 알 수 있었다.Therefore, when P <(927.9) * e -0.009T , R o / e is greater than 1. On the contrary, when P <(927.9) * e -0.009T , R o / e is less than 1. there was.
이상에서 동식물유의 수소화처리 반응을 통한 유기 상변화 물질의 제조 시, 반응 온도, 반응 압력 및 촉매의 담체를 제어하여 유기 상변화물질의 중량비를 선택적으로 조절하는 것이 가능하다는 것을 알 수 있었다. As described above, when the organic phase change material was prepared through the hydroprocessing reaction of animal and vegetable oil, it was found that it is possible to selectively control the weight ratio of the organic phase change material by controlling the reaction temperature, the reaction pressure, and the carrier of the catalyst.
실시예 8: 중량비가 선택적으로 제어된 유기 상변화 물질의 분리Example 8 Separation of Organic Phase Change Materials with Selectively Controlled Weight Ratio
실시예 1에서 제조한 NiMo/ZrO촉매를 사용하여 실시예 4와 동일한 반응을 실시하여 얻은, 1 중량% C14, 24 중량% C15, 19 중량% C16, 31 중량% C17, 23 중량% C18 및 2 중량% 미전환유의 조성을 가지는 상변화물질 혼합물을 증류 방법을 통해 각각의 상변화물질로 분리를 실시하였다.  1 wt% C14, 24 wt% C15, 19 wt% C16, 31 wt% C17, 23 wt% C18 and 2, obtained by carrying out the same reaction as in Example 4 using the NiMo / ZrO catalyst prepared in Example 1 A phase change material mixture having a composition by weight of unconverted oil was separated into each phase change material through a distillation method.
피드10,000 kg/hr 조건에서, 각 성분을 93% 순도로 분리한 경우의 결과를 표 4에 나타내었고, 99% 순도로 분리한 경우의 결과를 표 5에 각각 나타내었다. In the case of a feed of 10,000 kg / hr, the results of the separation of each component in 93% purity is shown in Table 4, and the results of the separation in 99% purity is shown in Table 5, respectively.
생성물 분리의 경우, 통상적으로 알려진 모든 분리 방법을 사용할 수 있으며, 상기 증류 방법으로만 한정하는 것은 아니다.In the case of product separation, all conventionally known separation methods can be used and are not limited to the above distillation methods.
표 4
Figure PCTKR2011005229-appb-T000004
Table 4
Figure PCTKR2011005229-appb-T000004
[규칙 제26조에 의한 보정 11.08.2011] 
표 5
Figure WO-DOC-MATHS-5
[Revision 11.08.2011 under Rule 26]
Table 5
Figure WO-DOC-MATHS-5
반응온도, 반응 압력 및 촉매의 담체를 제어하여 유기 상변화 물질의 중량비를 이미 선택적으로 조절하여 얻어진 유기 상변화 물질의 혼합물을 분리한 표 4 내지 5의 결과를 보면, 93% 순도로 분리한 경우에는 4개의 증류탑을 이용하고 99% 순도로 분리한 경우에는 5개의 증류탑을 이용하여, 비교적 간단한 방법으로 고순도의 상변화물질을 제조할 수 있다는 것을 알 수 있었다. When the mixture of the organic phase change material obtained by selectively controlling the weight ratio of the organic phase change material by controlling the reaction temperature, the reaction pressure and the carrier of the catalyst is separated in 93% purity, In the case of using four distillation towers and separating them with 99% purity, it was found that high purity phase change materials could be prepared by using a relatively simple method.
실시예 9: 유기 상변화물질의 특성 분석Example 9 Characterization of Organic Phase Change Materials
실시예 8에서 팜유로부터 제조, 분리한 각각의 노말-파라핀(C15-C18) 중 순도 99%의 옥타데칸 (C18)을 DSC를 이용하여 분석하였으며 그 결과를 도 2에 나타내었다. DSC 실험은 질소 분위기 하에서 영하 10도부터 60도까지 5 K/min 속도로 온도 상승한 후 5분간 유지하였으며 그 후 영하 10도까지 동일한 속도로 온도 하강한 후 5분간 유지하는 방법으로 수행되었다. 온도 변화 동안 상변화물질의 안정성을 평가하기 위해서 위와 동일한 실험을 10회 반복 실시하였다. In Example 8, octadecane (C18) having a purity of 99% in each normal-paraffin (C15-C18) prepared and isolated from palm oil was analyzed using DSC, and the results are shown in FIG. 2. DSC experiments were carried out in a nitrogen atmosphere at a temperature of minus 10 degrees to 60 degrees at a rate of 5 K / min and then maintained for 5 minutes, after which the temperature was lowered to the same rate at minus 10 degrees and then maintained for 5 minutes. The same experiment was repeated 10 times in order to evaluate the stability of the phase change material during the temperature change.
도 2의 결과를 보면, 팜유로부터 얻어진 옥타데칸(C18)은 온도 상승의 경우에 27.7도부터 용융을 시작하여 주로 30도 부근에서 용융이 진행되었으며 이 때 흡수한 잠열량은 212.6 J/g 이었다. 반면에, 온도 하강의 경우에는 26.6도부터 응고를 시작하여 주로 26도 부근에서 응고가 진행되었으며 이 때 방출한 잠열량은 212.3 J/g 이었다. 10회 반복 평가에서도 녹는점, 어는점 및 그 때의 잠열량은 변화가 없었다. 2, the octadecane (C18) obtained from palm oil started melting at 27.7 degrees in the case of temperature rise, and the melting proceeded mainly around 30 degrees, and the latent heat absorbed at this time was 212.6 J / g. On the other hand, in the case of temperature drop, solidification started at 26.6 ° C, and solidification proceeded mainly at 26 ° C, and the latent heat released at this time was 212.3 J / g. Melting point, freezing point and latent heat amount at that time did not change even in 10 repeated evaluations.
이상에서 팜유로부터 제조, 분리한 상변화물질은 좁은 온도 영역에서의 상변화, 높은 잠열량 및 높은 안정성 등과 같이 상변화물질에 적합한 물성들을 지니고 있다는 것을 확인하였다.As described above, it was confirmed that the phase change material prepared and separated from palm oil has properties suitable for the phase change material such as phase change in a narrow temperature range, high latent heat and high stability.

Claims (12)

  1. 동식물유의 수소화처리 반응을 통한 유기 상변화물질의 제조 시,In the preparation of organic phase change material through hydrogenation of animal and vegetable oils,
    촉매의 존재 하에, 반응 온도, 반응 압력 및 촉매의 담체를 제어하여 하기식 1에 의해 규정되는 유기 상변화물질의 중량비인 Ro/e이 1보다 큰 것을 특징으로 하는 유기 상변화물질의 제조방법.In the presence of a catalyst, a method for producing an organic phase change material, characterized in that, by controlling the reaction temperature, the reaction pressure, and the carrier of the catalyst, R o / e, which is a weight ratio of the organic phase change material defined by Equation 1 below, is greater than one: .
    (1) (One)
    식1에서, 상기 n은 13 내지 21의 홀수이며, m(n)은 탄소수가 n인 유기 상변화물질의 중량이며 m(n+1)은 탄소수가 (n+1)인 유기 상변화물질의 중량이다.In formula 1, n is an odd number of 13 to 21, m (n) is the weight of the organic phase change material having a carbon number n and m (n + 1) is of the organic phase change material having a carbon number (n + 1) It is weight.
  2. 제1항에 있어서,The method of claim 1,
    상기 촉매의 담체가 지르코늄을 포함하며 상기 반응 온도(T, oC) 및 반응 압력(P, bar)을 제어하여 하기 식2를 만족하는 경우, 유기 상변화물질의 중량비인 Ro/e이 1보다 큰 것을 특징으로 하는 유기 상변화물질의 제조방법.When the carrier of the catalyst includes zirconium and satisfies Equation 2 by controlling the reaction temperature (T, o C) and the reaction pressure (P, bar), the weight ratio of the organic phase change material R o / e is 1 Method for producing an organic phase change material, characterized in that larger.
    P < (704.3)*e-0.008T (2)P <(704.3) * e -0.008T (2)
    250℃ ≤ T ≤ 410℃ 10bar ≤ P ≤ 150bar      250 ℃ ≤ T ≤ 410 ℃ 10bar ≤ P ≤ 150bar
  3. 제1항에 있어서,The method of claim 1,
    상기 촉매의 담체가 티타늄을 포함하며 상기 반응 온도(T, oC) 및 반응 압력(P, bar)을 제어하여 하기 식3을 만족하는 경우, 유기 상변화물질의 중량비인 Ro/e이 1보다 큰 것을 특징으로 하는 유기 상변화물질의 제조방법.When the carrier of the catalyst comprises titanium and controls the reaction temperature (T, o C) and the reaction pressure (P, bar) to satisfy the following formula 3, the weight ratio of the organic phase change material R o / e is 1 Method for producing an organic phase change material, characterized in that larger.
    P < (30070)*e-0.023T (3)P <(30070) * e -0.023T (3)
    250℃ ≤ T ≤ 410℃ 10bar ≤ P ≤ 150bar      250 ℃ ≤ T ≤ 410 ℃ 10bar ≤ P ≤ 150bar
  4. 제1항에 있어서,The method of claim 1,
    상기 촉매의 담체가 알루미늄을 포함하며 상기 반응 온도(T, oC) 및 반응 압력(P, bar)을 제어하여 하기 식4를 만족하는 경우, 유기 상변화물질의 중량비인 Ro/e이 1보다 큰 것을 특징으로 하는 유기 상변화물질의 제조방법.When the catalyst carrier includes aluminum and the reaction temperature (T, o C) and the reaction pressure (P, bar) to satisfy the following formula 4, the weight ratio of the organic phase change material R o / e is 1 Method for producing an organic phase change material, characterized in that larger.
    P < (927.9)*e-0.009T (4)P <(927.9) * e -0.009T (4)
    250℃ ≤ T ≤ 410℃ 10bar ≤ P ≤ 150bar      250 ℃ ≤ T ≤ 410 ℃ 10bar ≤ P ≤ 150bar
  5. 제2항에 있어서,The method of claim 2,
    지르코늄은 지르코늄 산화물 또는 지르코늄 포스페이트인 것을 특징으로 하는 유기 상변화물질의 제조방법.Zirconium is a method for producing an organic phase change material, characterized in that the zirconium oxide or zirconium phosphate.
  6. 제3항에 있어서,The method of claim 3,
    티타늄은 티타늄 산화물 또는 티타늄 포스페이트인 것을 특징으로 하는 유기 상변화물질의 제조방법.Titanium is a method for producing an organic phase change material, characterized in that the titanium oxide or titanium phosphate.
  7. 제4항에 있어서,The method of claim 4, wherein
    알루미늄은 알루미늄 산화물 또는 알루미늄 포스페이트인 것을 특징으로 하는 유기 상변화물질의 제조방법.Aluminum is an aluminum oxide or aluminum phosphate method for producing an organic phase change material, characterized in that.
  8. 제1항에 있어서,  The method of claim 1,
    상기 촉매는 담체에 활성성분으로 VIB, VIIB, VIIIB, VIII, IB 또는 IIB족 금속으로 이루어진 군으로부터 선택되는 어느 하나 또는 둘 이상의 혼합물을 포함하는 것을 특징으로 하는 유기 상변화 물질의 제조방법. The catalyst is a method for producing an organic phase change material, characterized in that it comprises any one or a mixture of two or more selected from the group consisting of VIB, VIIB, VIIIB, VIII, IB or Group IIB metal as an active ingredient in the carrier.
  9. 제8항에 있어서, The method of claim 8,
    상기 금속 VIB족은 Mo 또는 W이며, 금속 VIII족은 Ni, Pd, 또는 Pt이며, 금속 VIIIB족은 Fe, Co, Ru, Rh, 또는 Ir인 것을 특징으로 하는 유기 상변화물질의 제조방법.  The metal group VIB is Mo or W, the metal group VIII is Ni, Pd, or Pt, the metal group VIIIB is Fe, Co, Ru, Rh, or Ir manufacturing method of an organic phase change material.
  10. 제1항에 있어서, The method of claim 1,
    상기 촉매는 담체에 대하여 Ni이 0.1~60 중량%로 포함되고 Mo이 담체에 대하여 0.1~70 중량%로 포함되는 것을 특징으로 하는 유기 상변화물질의 제조방법.The catalyst is a method for producing an organic phase change material, characterized in that Ni is contained in 0.1 to 60% by weight based on the carrier and Mo is 0.1 to 70% by weight relative to the carrier.
  11. 제1항에 있어서, The method of claim 1,
    상기 촉매의 활성성분은 Ni과 Mo의 혼합물이며 촉매의 담체는 지르코늄 산화물이며 하기식 2에 의해 규정되는 유기 상변화물질의 중량비인 Ro/e이 1보다 큰 것을 특징으로 하는 유기 상변화물질의 제조방법.The active component of the catalyst is an organic phase change material of Ni and a mixture of Mo and characterized in that the R o / e ratio of the organic phase change material which is defined by the following is a carrier of the catalyst is zirconium oxide type 2 is greater than 1 Manufacturing method.
    P < (704.3)*e-0.008T (2)P <(704.3) * e -0.008T (2)
    280℃ ≤ T ≤ 350℃ 20bar ≤ P ≤ 80bar      280 ℃ ≤ T ≤ 350 ℃ 20bar ≤ P ≤ 80bar
  12. 제1항에 있어서, The method of claim 1,
    상기 동식물유는 코코넛유, 옥수수유, 면실유, 땅콩류, 올리브유, 팜유, 팜액유, 유채유, 캐놀라유, 참깨유, 대두유, 해바라기유, 피마자유, 아마인유, 홍화유, 자트로파유, 어유, 우지, 돈지, 가금지방 및 이들의 지방산 또는 폐유로 이루어진 군으로부터 선택되는 하나 또는 둘이상의 혼합물인 것을 특징으로 하는 상변화물질의 제조방법.The animal and vegetable oils include coconut oil, corn oil, cottonseed oil, peanuts, olive oil, palm oil, palm oil, rapeseed oil, canola oil, sesame oil, soybean oil, sunflower oil, castor oil, linseed oil, safflower oil, jatropha oil, fish oil, tallow oil, pork Method for producing a phase change material, characterized in that one or more mixtures selected from the group consisting of poultry fat and fatty acids or waste oil thereof.
PCT/KR2011/005229 2010-07-16 2011-07-15 Method for preparing an organic phase-change material from animal and plant oils WO2012008795A2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2010-0069128 2010-07-16
KR20100069128 2010-07-16
KR10-2011-0070245 2011-07-15
KR1020110070245A KR20120008460A (en) 2010-07-16 2011-07-15 Preparing method of organic phase change material through hydroprocessing reaction of animal and vegetable oil

Publications (2)

Publication Number Publication Date
WO2012008795A2 true WO2012008795A2 (en) 2012-01-19
WO2012008795A3 WO2012008795A3 (en) 2012-05-18

Family

ID=45469953

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/005229 WO2012008795A2 (en) 2010-07-16 2011-07-15 Method for preparing an organic phase-change material from animal and plant oils

Country Status (1)

Country Link
WO (1) WO2012008795A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102795805A (en) * 2012-08-02 2012-11-28 成都新柯力化工科技有限公司 Energy-saving phase-change constant-temperature building material and preparation method thereof
CN112341305A (en) * 2020-11-10 2021-02-09 海南贝朗生物科技有限公司 Method for producing phase-change material by vegetable oil hydrogenation

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020011587A1 (en) * 2000-07-03 2002-01-31 Suppes Galen J. Fatty-acid thermal storage devices, cycle, and chemicals
US20060161032A1 (en) * 2005-01-14 2006-07-20 Fortum Oyj Method for the manufacture of hydrocarbons
US20060207166A1 (en) * 2005-03-21 2006-09-21 Ben-Gurion University Of The Negev Research & Development Authority Production of diesel fuel from vegetable and animal oils
US20070010682A1 (en) * 2005-07-05 2007-01-11 Neste Oil Oyj Process for the manufacture of diesel range hydrocarbons
US20070260102A1 (en) * 2006-04-17 2007-11-08 Petroleo Brasileiro S.A.-Petrobras Process to obtain N-paraffins from vegetable oil
US20080308457A1 (en) * 2007-06-15 2008-12-18 E. I. Du Pont De Nemours And Company Catalytic process for converting renewable resources into paraffins for use as diesel blending stocks
US20100145114A1 (en) * 2008-12-10 2010-06-10 Ramin Abhari Even carbon number paraffin composition and method of manufacturing same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020011587A1 (en) * 2000-07-03 2002-01-31 Suppes Galen J. Fatty-acid thermal storage devices, cycle, and chemicals
US20060161032A1 (en) * 2005-01-14 2006-07-20 Fortum Oyj Method for the manufacture of hydrocarbons
US20060207166A1 (en) * 2005-03-21 2006-09-21 Ben-Gurion University Of The Negev Research & Development Authority Production of diesel fuel from vegetable and animal oils
US20070010682A1 (en) * 2005-07-05 2007-01-11 Neste Oil Oyj Process for the manufacture of diesel range hydrocarbons
US20070260102A1 (en) * 2006-04-17 2007-11-08 Petroleo Brasileiro S.A.-Petrobras Process to obtain N-paraffins from vegetable oil
US20080308457A1 (en) * 2007-06-15 2008-12-18 E. I. Du Pont De Nemours And Company Catalytic process for converting renewable resources into paraffins for use as diesel blending stocks
US20100145114A1 (en) * 2008-12-10 2010-06-10 Ramin Abhari Even carbon number paraffin composition and method of manufacturing same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102795805A (en) * 2012-08-02 2012-11-28 成都新柯力化工科技有限公司 Energy-saving phase-change constant-temperature building material and preparation method thereof
CN112341305A (en) * 2020-11-10 2021-02-09 海南贝朗生物科技有限公司 Method for producing phase-change material by vegetable oil hydrogenation

Also Published As

Publication number Publication date
WO2012008795A3 (en) 2012-05-18

Similar Documents

Publication Publication Date Title
Dehkordi et al. Transesterification of waste cooking oil to biodiesel using Ca and Zr mixed oxides as heterogeneous base catalysts
CN106925349B (en) A kind of solid supported type metal porphyrin catalyst and its application in terms of preparing maleic acid
KR101742749B1 (en) Process for producing fatty alcohols by hydrogenation of fatty acid triglycerides on a copper-containing heterogeneous catalyst
CN101143328A (en) Catalyst used for preparing tetrachloroethylene and its preparation method and use
CN102001951A (en) Method for preparing high-purity p-phenylenediamine
CN102459066A (en) Method for electrochemically removing hydrogen from a reaction mixture
EP2200959A2 (en) Method for producing 1,2-propandiol by hydrogenating glycerine in at least three successive reactors
KR101234121B1 (en) Preparing method of organic phase change material from animal and vegetable oil
WO2012008795A2 (en) Method for preparing an organic phase-change material from animal and plant oils
CN108906120A (en) A kind of Ni/SAPO-11 bifunctional catalyst and its preparation method and application
Luo et al. Thermal decompositions and heat capacities study of a co-based zeolitic imidazolate framework
BRPI0815971B1 (en) METHOD FOR PREPARING 1,2-PROPANODIOL
CN101376101B (en) Bitter earth nano-catalyst material capable of being used for high-energy solid propellant and synthetic method thereof
CN105228991A (en) The manufacture method of tetrahydrofuran (THF)
CN104084232B (en) A kind of preparation method of catalyst of biological fatty alcohol deoxidation
WO2012008797A2 (en) Method for preparing an organic phase change material by means of a hydrotreating reaction of animal and plant oils
CN114621097B (en) Method for preparing 2, 4-difluoroaniline by catalytic hydrogenation of 2, 4-difluoronitrobenzene
CN109261204B (en) Application of functionalized UiO-66(Zr)
CN107353237B (en) Preparation method of pyrrolidone derivative
CN110105188A (en) A kind of double cage hydrocarbon compounds and its preparation method and application
WO2023128467A1 (en) Hydrogen storage material using naphthalene-based derivative and manufacturing method therefor
CN100460068C (en) Hydrocarbons of carbon nano-tube loaded nickel-stannum and method of manufacturing the same and use thereof
CN101550357A (en) Method for phase-change wax decoloring
CN104788324A (en) Synthetic method of aminofluorene compounds
CN115850717B (en) Sm-MOF, catalyst containing Sm-MOF and use thereof in preparing base oil from coal tar tail oil

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11807080

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11807080

Country of ref document: EP

Kind code of ref document: A2