WO2012008484A1 - Contact state detection device, contact state detection method, computer program for contact state detection, electrical conductivity measurement system provided with contact state detection device, and electrical conductivity measurement method involving contact state detection method - Google Patents

Contact state detection device, contact state detection method, computer program for contact state detection, electrical conductivity measurement system provided with contact state detection device, and electrical conductivity measurement method involving contact state detection method Download PDF

Info

Publication number
WO2012008484A1
WO2012008484A1 PCT/JP2011/065959 JP2011065959W WO2012008484A1 WO 2012008484 A1 WO2012008484 A1 WO 2012008484A1 JP 2011065959 W JP2011065959 W JP 2011065959W WO 2012008484 A1 WO2012008484 A1 WO 2012008484A1
Authority
WO
WIPO (PCT)
Prior art keywords
contact
contact body
state detection
contacted object
contacted
Prior art date
Application number
PCT/JP2011/065959
Other languages
French (fr)
Japanese (ja)
Inventor
太 岩田
俊夫 塩見
康司 鈴木
Original Assignee
国立大学法人静岡大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人静岡大学 filed Critical 国立大学法人静岡大学
Priority to JP2012524575A priority Critical patent/JP5849335B2/en
Publication of WO2012008484A1 publication Critical patent/WO2012008484A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/32Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring the deformation in a solid

Definitions

  • the present invention provides a contact state detection device, a contact state detection method, a contact state detection program, and a contact state detection device for detecting that a contact body that is deformed by contact with the contacted object contacts the contacted object.
  • the present invention relates to an electrical conductivity measurement method including a conductivity measurement system and a contact state detection method.
  • micro four-terminal electric conductivity measurement is to measure the volume resistivity of the part by bringing four very small probes of several ⁇ m to several tens of ⁇ m into contact with the part to be measured and flowing current.
  • a tunnel current detection method or an optical lever method is used to detect contact between the four probes and the portion to be measured.
  • the tunnel current detection method a tunnel current generated when a probe is brought close to a measured part to about 1 nm with a bias voltage applied between the probe and the measured part is detected. A contact is detected.
  • the optical lever method as shown in Patent Document 1 below, for example, the back surface of the contact portion of the cantilever (corresponding to a probe) is irradiated with laser light and the reflected light from the back surface of the cantilever is divided into two (or 4 (Division) The light is received by a photodetector and the contact between the probe and the part to be measured is detected using the change in the light receiving position.
  • the tunnel current detection method there is a case where an insulating region is formed by a natural oxide film or the like generated in the measured part and the current cannot be detected accurately, and the probe is strongly pressed against the measured part and the probe and the measured object The part may be damaged.
  • the optical lever method requires positioning of the laser beam on the cantilever and optical components and alignment adjustment for positioning the reflected light from the cantilever on the photodetector, complicating the device configuration and detecting accuracy. There has been a problem that maintenance work for maintenance is extremely complicated.
  • the present invention has been made to address the above problems, and its purpose is to accurately detect the contact state of the contact body with the contact object with a simple configuration without damaging the contact body such as a probe or the contact object.
  • An object of the present invention is to provide a contact state detection device, a contact state detection method, and a contact state detection computer program.
  • a feature of the present invention described in claim 1 is that light irradiation means for irradiating light to a region including a deformed portion due to the contact in a contact body that deforms by contacting an object to be contacted, An imaging unit disposed outside the optical path of the reflected light from the surface of the contacted object among the light irradiated from the light irradiation unit, imaging the deformed portion of the contact body, and outputting contact body captured image information; and contact Contact state detecting means for detecting a pressing state of the contact body against the contacted object using a region change of the reflected light from the deformed portion represented by the body captured image information.
  • the detection of the pressing state detects the degree (degree) of the contact body pressing against the contacted object, and does not necessarily detect the magnitude (amount) of the pressing force itself.
  • the contact state detection device emits light in a region including a deformed portion of the contact body that is deformed by being displaced toward the object to be contacted. , And the pressed state of the contact body against the contacted object is detected using the region change of the reflected light represented by the contact body captured image information obtained by imaging the deformed portion. That is, the contact state detection device detects a change in the region of reflected light from the deformed portion due to the contact body being deformed in contact with the contact object by detecting a change in the contact object captured image information, thereby detecting the contact object of the contact object. The pressing state is detected.
  • the deformed portion of the contact body to which the light irradiation means irradiates light is a portion whose shape or direction has changed from before the contact due to the contact body coming into contact with the contacted object. This corresponds to the range from the contact portion of the body to the contacted object to the deformed portion due to the contact.
  • the region change of the reflected light is a change in the two-dimensional plane of the reflected light represented by the contact body captured image information, for example, a change in area, position, shape, and the like.
  • detection of reflected light from the contact body is also performed by imaging the region including the deformed portion of the contact body with various imaging elements such as a CCD (Charge-Coupled Device) image sensor and a CMOS (Complementary Metal-Oxide Semiconductor) image sensor. Is done. That is, it is not necessary to strictly adjust the irradiation position of the irradiated light and the light receiving position of the reflected light. This makes it possible to reduce the number of optical parts and alignment adjustment work required for positioning the light irradiation position on the contact body and positioning the reflected light from the contact body with respect to the light receiving element, thereby simplifying the device configuration. In addition, the burden of maintenance work for maintaining detection accuracy can be reduced.
  • CCD Charge-Coupled Device
  • CMOS Complementary Metal-Oxide Semiconductor
  • the contact state detecting means detects the area change of the deformed portion on the surface of the contacted object. Can be detected accurately without being affected by the reflected light from the light.
  • the contact state detection device detects the pressing state of the contact body based on the mechanical deformation of the contact body, an insulating region such as an oxide film is formed on the contacted portion of the contacted object that the contact body contacts. Even if it is formed, the pressed state of the contact body can be detected with high accuracy.
  • the contact state detecting means uses the change in the area of the reflected light represented by the contact body captured image information to cover the contact body. It is to detect the pressing state against the contact object.
  • the contact state detection device can also detect the pressed state of the contact body using a change in the amount of reflected light represented by the contact body captured image information instead of or in addition to the area change.
  • the contact state detection device detects the pressing state of the contact body using the area change of the reflected light represented by the contact body captured image information. ing. Thereby, the contact state detection apparatus can detect the contact state of a contact body easily from the area change of reflected light.
  • the contact body in a direction in which the contact body is brought into contact with the contacted object while holding the contact body that is deformed by contacting the contacted object.
  • a contact body displacing means for relatively displacing the contact object with respect to the contacted object, a light irradiating means for irradiating light to a region including a deformed portion due to contact with the contacted object in the contact body, and a light irradiating means
  • An imaging unit that is arranged outside the optical path of the reflected light from the surface of the contacted object, images the deformed portion of the contact body, and outputs contact body captured image information; and contact body captured image information output by the imaging unit It is good to provide the picked-up image display means which displays a picked-up image based on this.
  • the contact state detection device emits light in a region including a deformed portion of the contact body that is deformed by being displaced and contacted toward the contacted object.
  • the contact body captured image obtained by imaging the deformed portion is displayed by the captured image display means.
  • the imaging means for imaging the deformed portion of the contact body is disposed outside the optical path of the reflected light from the surface of the contacted object, the operator can display the area of the deformed portion displayed on the captured image display means.
  • the change can be accurately detected without being affected by the reflected light from the surface of the contacted object. That is, also by the contact state detection device according to the eleventh aspect, the same effect as that of the contact state detection device can be expected.
  • the contact state detection means uses a part of the deformed portion represented by the contact body captured image information. The purpose is to detect the pressing state of the contacted object.
  • the contact state detection device uses a part of the deformed portion of the contact body represented by the contact body captured image information to contact the contact body.
  • a pressing state against an object is detected.
  • the influence of the noise in the captured image information can be removed to detect the pressed state with high accuracy (improvement of the SN ratio), and the detection of the pressed state can be performed by setting the region used for detecting the pressed state. It is possible to arbitrarily set the position, the range, the detection sensitivity of the pressed state, and the pressing force of the contact body on the contacted object WK.
  • the contact state detection means binarizes the contact body captured image information according to the amount of light, and binarizes the contact body image information. It is to detect the pressing state of the contact body against the contacted object in accordance with the contact body captured image information.
  • the contact state detection device uses the contact body captured image information obtained by capturing the contact body in accordance with a predetermined light amount (also referred to as luminance or brightness).
  • the pressed state of the contact body is detected using the binarized contact body captured image information. According to this, it is possible to quickly detect the pressed state of the contact body against the contacted object with a small calculation processing load using the contact body imaging information representing the captured image of the contact body.
  • the imaging means is disposed on a reflection angle of light applied to an area including the deformed portion of the contact body.
  • the image pickup means in the contact state detection device is disposed on the reflection angle of the light applied to the deformed portion of the contact body,
  • the reflected light from the body can be imaged with high accuracy.
  • the detection precision of the press state of the contact body by a contact state detection apparatus can be improved.
  • light with high directivity for example, LED
  • reflected light can be efficiently guided by the imaging means, and the detection accuracy of the pressed state of the contact body by the contact state detection device can be further improved.
  • the contact body in each of the contact state detection devices, is held while being held in a posture that intersects the surface including the contacted portion of the contacted object with the contacted body.
  • the object is to provide contact body displacing means for displacing the contact object.
  • the contact state detection device holds the contact body in a posture that intersects the surface of the contacted object including the contacted part with the contacted object.
  • contact body displacing means for displacing toward the contacted object is provided. That is, the light irradiation portion of the contact body and the surface including the contacted portion on the contacted object with which the contact body contacts are not parallel. For this reason, even when a part of the light irradiated from the contact body irradiation means is irradiated onto the contacted object, both the reflected light from the contact body and the reflected light from the contacted object are both in the imaging means. Incident light is prevented. Thereby, only the reflected light from a contact body can be imaged accurately, and the detection accuracy of the press state of the contact body by a contact state detection apparatus can be improved.
  • the contact body displacing means in each of the contact state detecting devices, includes a contact body along a surface including a contacted portion of the contacted object with the contacted body. The relative displacement is to be made with respect to the contacted object.
  • the contact state detection device can displace the contact body along the surface of the contacted object by the contact body displacement means.
  • the contact state detection apparatus can detect the pressed state of the contact body at an arbitrary position on the contacted object, and can expand the application and application range of the contact state detection apparatus.
  • the contact state detecting device further includes contacted object irradiating means for irradiating the contacted object with light, and the imaging means detects the contacted object.
  • the object is to take an image and output image information of the contacted object.
  • the contact state detection device includes contacted object irradiating means for irradiating the contacted object with light, and the imaging means detects the contacted object.
  • the captured object captured image information is output.
  • the contact state detection apparatus can specify the position of the contact body on the contacted object using the contacted object captured image information, and can expand the application and application range of the contact state detection apparatus.
  • each of the contact state detection devices further includes captured image display means for displaying a captured image captured by the imaging means.
  • the contact state detection device includes captured image display means for displaying a captured image captured by the imaging means.
  • captured image display means for displaying a captured image captured by the imaging means.
  • an electrical contact for detecting an electrical contact between a contact object and a contact body each made of a conductor. It is in providing a detection means.
  • the electrical contact detection means applies a voltage between the contacted object and the contact body to detect a current value flowing between the contacted object and the contact body. Forming two contacts to which voltage can be applied and detecting the electrical value between the two contacts and the contacted object by detecting the current value flowing through the contacted object. can do.
  • a contact state detection apparatus is an electrical contact which each detects the electrical contact with the to-be-contacted object comprised with the conductor, and a contact body.
  • a detection means is provided.
  • the contact state detection apparatus can perform the contact detection of the contact body with respect to a to-be-contacted object by detecting a physical contact and an electrical contact, respectively.
  • the contact body comes into contact with the contact object.
  • the contact detection of the body can be performed, and the use and application range of the contact state detection device can be expanded.
  • the present invention can be implemented not only as an invention of a contact state detection device, but also a contact state detection method and a computer program for contact state detection used in the contact state detection device, an electrical conductivity measurement system including the contact state detection device, and a contact It can also be implemented as an invention of an electrical conductivity measurement method including a state detection method.
  • the contact body is changed to the contact object in a direction in which the contact body is deformed by being in contact with the contact object in a state of holding the contact body.
  • Contact body displacement means for relative displacement
  • light irradiation means for irradiating light to a region including a deformed portion due to contact with a contacted object in the contact body, and the contact among the light irradiated from the light irradiation means
  • An image pickup means arranged outside the optical path of the reflected light from the surface of the object and imaging the deformed portion of the contact body and outputting contact body imaged image information to detect a contact state of the contact body with the contacted object
  • a contact state detection program for use in a contact state detection device, wherein the computer includes the contact state detection device in a state in which light is irradiated to a region including the deformed portion of the contact body by light irradiation means.
  • the held contact body is displaced relative to the contacted object in a direction in which the held contact body is brought into contact with the contacted object by the displacing means, and the deformed portion of the contacted body is imaged by the imaging means to output the contacted body captured image information. It is preferable to detect the pressing state of the contact body against the contacted object using the region change of the reflected light from the deformed portion represented by the contact body captured image information.
  • the contact state detection device according to any one of claims 1 to 10 and a contact body in the contact state detection device are connected.
  • Electrical conductivity measurement provided with electrical conductivity measuring means for measuring electrical conductivity of the contacted object by bringing the contacted body into contact with the contacted object that is a contact state detection target in the contact state detection device It is a system, Comprising: An electrical conductivity measurement means is good to perform the electrical conductivity measurement of a to-be-contacted object according to the detection result of the press state to the to-be-contacted object of a contact body by a contact state detection apparatus. According to this, the electrical conductivity of the contacted object can be measured while obtaining the same effect as that of the contact state detecting device.
  • a voltage that is further connected to the contact body and causes dielectric breakdown between the contact body and the contacted object is set. It is good to provide the voltage application means to apply. According to this, when the insulating film is formed on the surface of the contacted object and the contact body is physically in contact with the contacted object but not in electrical contact, the insulating film is broken by the voltage applying means. Thus, an electrical contact state between the contact body and the contacted object can be ensured.
  • each step in the contact state detection method according to claim 12 is connected to the contact body in the contact state detection method, and the contact body is in the contact state.
  • An electrical conductivity measurement method comprising: an electrical conductivity measurement step for measuring electrical conductivity of an object to be contacted by bringing the object into contact with the object to be contacted in the detection method.
  • the electrical conductivity of the contacted object may be measured in accordance with the detection result of the pressed state of the contact body against the contacted object by the contact state detecting device. According to this, the electrical conductivity of the contacted object can be measured while obtaining the same effect as that of the contact state detection method.
  • FIG. 1 It is the block diagram which showed typically the structure of the electrical conductivity measuring system containing the contact state detection apparatus which concerns on this invention. It is a bottom view which shows typically the contact body hold
  • FIG. 1 shows an optical path of light irradiated to a contact body.
  • FIG. 2B is a schematic diagram illustrating an optical path of light irradiated on an object to be contacted
  • FIG. 3C is an explanatory diagram illustrating a display image of a display device when light is irradiated from a probe light source.
  • (B) is a figure for demonstrating the process of the contact detection of the contact body in the contact state detection apparatus shown in FIG.
  • (A) begins to contact the surface of a to-be-contacted object.
  • (B) is an explanatory view showing a display image of the display device when the contact body starts to contact the surface of the contacted object.
  • (A), (B) is a figure for demonstrating the process of the contact detection of the contact body in the contact state detection apparatus shown in FIG. 1
  • (A) is the contact to the surface of the to-be-contacted object of a contact body.
  • It is a schematic diagram which shows the advanced state
  • (B) is explanatory drawing which shows the display image of a display apparatus when the contact to the surface of the to-be-contacted object of a contact body advances.
  • (A), (B) is a figure for demonstrating the state at the time of irradiating light from a probe light source in the contact state detection apparatus which concerns on the modification of this invention
  • (A) is the light irradiated to the contact body. It is a schematic diagram which shows the optical path of this
  • (B) is a schematic diagram which shows the optical path of the light when a contact body contacts the to-be-contacted object. It is the block diagram which showed typically the structure of the electrical conductivity measuring system containing the contact state detection apparatus which concerns on the other modification of this invention.
  • FIG. 1 is a block diagram schematically showing a configuration of an electrical conductivity measurement system 100 including a contact state detection device according to the present invention.
  • the electrical conductivity measurement system 100 is an inspection apparatus that measures the volume resistivity (electric conductivity) of the surface of the contacted object WK that is a measurement target using a four-probe measurement method.
  • the four-probe measurement method is to measure the original volume resistivity (electric conductivity) of a sample by bringing four needle-shaped probes arranged in a line into contact with the sample. More specifically, a constant current is passed between the two outer probes of the four probes, and the voltage is measured by the inner two probes inside the two probes, so-called wiring resistance or The original volume resistivity (electrical conductivity) of the sample excluding contact resistance is measured.
  • the electrical conductivity measurement system 100 holds the contact object WK that is a volume resistivity measurement target by the electrical conductivity measurement system 100 and also holds an approach stage device 120 that holds the contact body 110 that is in contact with the contact object WK. It has.
  • the contacted object WK is a sample capable of measuring the electrical conductivity of the surface (for example, various layers such as ingots, wafers, ion implantation layers and diffusion layers made of various materials, metal thin films, silicon thin films, etc.
  • the thin film is not particularly limited.
  • a sample in which a metal thin film is formed on a plate-like semiconductor is used as the contacted object WK.
  • the contact body 110 is appropriately formed according to the purpose of bringing the contact body 110 into contact with the contacted object WK, but is in contact with the contacted object WK and a pressed state (hereinafter simply referred to as “pressed state”). ) Is made of a material that deforms by contacting the contacted object WK.
  • the contact body 110 is composed of a probe for measuring the volume resistivity of the contacted object WK by a four-probe measurement method. More specifically, as shown in FIG. 2, the contact body 110 is formed by projecting four thin plate-like probes 113 on the left end of the substrate 112 on which the electronic circuit wiring 111 is formed. Has been.
  • These four probes 113 are formed by applying a titanium coating to a silicon oxide cantilever having a protruding amount from the substrate 112 of about 50 ⁇ m, a width of about 6 ⁇ m, and a thickness of about 1 ⁇ m.
  • Each probe 113 is connected to the electronic circuit wiring 111 at the front end portion of the substrate 112 in the width direction at a pitch of about 10 ⁇ m.
  • FIG. 2 shows a state in which the contact body 110 is viewed from the bottom, and each probe 113 is exaggerated.
  • the approach stage device 120 mainly includes a work stage part 121, a drive base part 122, and a contact body approach part 123.
  • the work stage unit 121 is a plate-like mounting table that holds the contacted object WK in a detachable manner.
  • the work stage unit 121 is supported by the drive base unit 122 in a posture in which the upper surface is horizontal.
  • the drive base portion 122 is a drive device that displaces in the illustrated X axis direction and the Y axis direction orthogonal to the X axis direction in a state where the work stage unit 121 is supported.
  • the drive base unit 122 includes an X-axis direction actuator and a Y-axis direction actuator (not shown) whose operation is controlled by a computer device 140 to be described later, and the workpiece is controlled by operating the actuator for each axis direction.
  • the stage unit 121 is displaced in the illustrated X-axis direction and Y-axis direction, respectively.
  • These X-axis direction actuator and Y-axis direction actuator are each composed of an electric motor for coarse driving and a piezoelectric element made of PZT (lead zirconate titanate) for fine driving. Coarse feed (mm / s) and fine feed (nm / s) can be performed for each axial direction.
  • the contact body approach portion 123 is a driving device that displaces in the Z-axis direction (vertical direction in the figure) perpendicular to the illustrated X-axis direction and the Y-axis direction while holding one end of the contact body 110 to be brought into contact with the contacted object WK. Yes, it is mainly composed of the contact body holding portion 123a and the support column 123b.
  • the contact body holding portion 123 a is formed to extend in the horizontal direction in the figure, and is in a posture where the contact body 110 intersects the upper surface of the work stage portion 121, that is, the contacted object WK placed on the work stage portion 121. This is a member that is detachably held in a slanting posture with respect to the upper surface.
  • pillar 123b is a drive device which displaces to the Z-axis direction (illustrated up-down direction) of the illustration in the state which supported the one end part (illustration right-side end part) of the contact body holding
  • the column 123b is provided with a Z-axis direction actuator (not shown) whose operation is controlled by the computer device 140, and the contact body holding portion 123a is moved in the Z-axis direction by the operation control of the Z-axis direction actuator. Displace.
  • This Z-axis direction actuator is composed of an electric motor for coarse driving and a piezoelectric element made of PZT (lead zirconate titanate) for fine driving, similar to the X-axis direction actuator and Y-axis direction actuator.
  • PZT lead zirconate titanate
  • the 4-probe measurement circuit 124 is provided on the support 123b of the contact body approach portion 123.
  • the four-probe measurement circuit 124 includes an electric circuit for detecting contact of the contact body 110 and measuring the electric conductivity of the contacted object WK. Specifically, a DC power source for flowing current to the two outer probes 113 in the four probes 113, an ammeter for measuring the current value flowing in the two probes 113 on the same, and the two probes 113 on the inner side. And a voltmeter for measuring a potential difference therebetween.
  • the operation of the four-probe measurement circuit 124 is controlled by the computer device 140 and outputs each measurement value to the computer device 140.
  • a probe light source 131 and a beam splitter 132 are provided above the work stage 121 of the approach stage device 120, respectively.
  • the probe light source 131 is an illuminating device for illuminating the contact body 110 by irradiating light toward the probe 113 that is displaced toward the surface of the contact object WK on the work stage unit 121, and is operated by the computer device 140. Be controlled.
  • the probe light source 131 is configured by an LED.
  • the probe light source 131 is supported obliquely above the work stage unit 121 by a probe light source support mechanism (not shown) that can change the light irradiation position to an arbitrary position by changing the orientation and posture of the probe light source 131.
  • the beam splitter 132 is an optical component that transmits a part of the incident light and reflects another part of the incident light in a direction orthogonal to the incident direction.
  • a work light source 133 is provided on the optical axis of the beam splitter 132 in the Z-axis direction shown in the figure.
  • the work light source 133 is a lighting fixture for illuminating the surface of the contacted object WK placed on the work stage unit 121, and its operation is controlled by the computer device 140.
  • the work light source 133 is configured by an incandescent light bulb.
  • a condensing lens 134 and an image sensor 135 are provided on the optical axis in the X-axis direction of the beam splitter 132 in the figure.
  • the condensing lens 134 is an optical element for condensing the light guided through the beam splitter 132 on the image sensor 135.
  • the imaging element 135 is an optical element that is disposed at the condensing position of the condensing lens 134 and outputs an electrical signal corresponding to the image formed on the light receiving surface to the computer device 140.
  • the image sensor 132 is constituted by a CCD image sensor.
  • the beam splitter 132, the work light source 133, the condenser lens 134, and the imaging element 135 can be integrally displaced to arbitrary positions on the work stage unit 121 by an imaging optical system support mechanism (not shown). Is supported above.
  • the computer device 140 is configured by a microcomputer including a CPU, a ROM, a RAM, a hard disk, and the like.
  • the approach stage device 120 is executed by executing a control program (not shown) according to instructions from the input device 141 including a keyboard and a mouse.
  • the operations of the four-probe measurement circuit 124, the probe light source 131, the work light source 133, and the image sensor 135 are controlled.
  • the computer device 140 includes a display device 142 formed of a liquid crystal display, and appropriately displays an operation state of the computer device 140, an execution state of the control program, an image captured by the image sensor 135, and the like. That is, in the present embodiment, the computer apparatus 140 is assumed to be a personal computer for personal use (so-called personal computer).
  • the computer apparatus 140 executes the approach program shown in FIG. 5 to displace the contact body 110 held by the contact body holding section 123a of the contact body approach section 123 toward the contacted object WK.
  • the computer device 140 can display the captured image output from the image sensor 135 on the display device 142 as it is, and the captured image information representing the captured image has a luminance (lightness) corresponding to the amount of received light for each pixel.
  • binarization is performed, specifically, a portion where the luminance of the captured image information for each pixel is a predetermined value or more is converted into a white image and a portion where the luminance is less than the predetermined value is converted into a black and white image.
  • the control program including this approach program is stored in the hard disk in advance by an operator.
  • the computer device 140 may be any type of computer device as long as it can control the operation of the approach stage device 120, the four-probe measurement circuit 124, the probe light source 131, the work light source 133, and the image sensor 135. Good.
  • the operator sets the contact object WK to be measured for electrical conductivity on the work stage unit 121 in the approach stage device 120, and the contact body 110 on the contact body holding unit 123a of the contact body approach unit 123. Hold.
  • the operator sets the contacted object WK on the work stage unit 121 with the surface on the side to measure the electrical conductivity of the contacted object WK facing the contact body holding unit 123a.
  • the operator holds the contact body in a state where the probe 113 of the contact body 110 is opposed to the contact object WK set on the work stage unit 121 in an oblique posture in the figure so as to cross the upper surface of the contact object WK. Held in the part 123a.
  • the operator positions the tip of the probe 113 of the contact body 110 held by the contact body holding part 123a above the measurement position of the electrical conductivity on the contacted object WK. Specifically, the operator turns on the work light source 133 by operating the input device 141 of the computer device 140 and starts the operation of the image sensor 135 to display the captured image on the display device 142. In this case, the operator instructs the computer device 140 to display the image captured by the image sensor 135 on the display device 142 as it is. Thereby, on the display screen of the display device 142, the images of the contact body 110 and the contacted object WK existing in the field of view of the image sensor 135 are displayed.
  • the worker positions the image of the probe 113 of the contact body 110 held by the contact body holding section 123a at a substantially central portion of the display screen of the display device 142.
  • the operator manually adjusts the positions of the beam splitter 132, the work light source 133, the condenser lens 134, and the imaging element 135 by manually operating an imaging optical system support mechanism (not shown).
  • the light emitted from the work light source 133 irradiates the contact body 110 and the contacted object WK via the beam splitter 132, respectively.
  • the light WL applied to the contact body 110 is inclined with respect to the central axis of the work light source 133, as shown in FIG. Most of the irradiated light WL is reflected in a direction different from that of the beam splitter 132.
  • the light WL irradiated to the contacted object WK is orthogonal to the central axis of the work light source 133, as shown in FIG.
  • the operator directly looks at the contact body 110 held by the contact body holding portion 123a and also looks at the display screen of the display device 142, and the image of the probe 113 of the contact body 110 at the substantially central portion of the display screen.
  • the position of the beam splitter 132, the work light source 133, the condensing lens 134, and the image sensor 135 is integrally positioned by operating an imaging optical system support mechanism (not shown) so that is positioned.
  • the worker positions the contact body 110 with respect to the contacted object WK.
  • the operator illustrates the work stage unit 121 by directly viewing the contact body 110 held by the contact body holding unit 123a and operating the input device 141 while viewing the display screen of the display device 142.
  • the position of the tip of the probe 113 of the contact body 110 is positioned by displacing in the X-axis direction and the Y-axis direction. Thereby, the tip part of the probe 113 of the contact body 110 held by the contact body holding part 123a is positioned above the measurement position of the electrical conductivity on the contacted object WK.
  • the worker positions the probe light source 131.
  • the probe light source 131 is positioned by irradiating most of the emitted light PL from the probe light source 131 to the probe 113 of the contact body 110 and reflecting light from the probe 113.
  • the probe light source 131 is positioned at a position guided to the beam splitter 132.
  • the operator operates the input device 141 of the computer device 140 to turn off the work light source 133 and turn on the probe light source 131.
  • the operator operates the input device 141 of the computer device 140 to switch the captured image display on the display device 142 to black and white binary image display.
  • the image sensor 135 outputs captured image information corresponding to the guided reflected light to the computer device 140.
  • the computer device 140 binarizes the input captured image information according to the luminance of each pixel.
  • the display screen of the display device 142 light of a predetermined amount or more out of the light guided to the image sensor 135 is displayed in white. Therefore, the operator operates the probe support mechanism (not shown) so that the shape of the probe 113 is displayed as a white image on the display screen while visually observing the display screen of the display device 142. Adjust the position.
  • the probe is arranged such that the beam splitter 132 is positioned at a reflection angle equal to the incident angle of the light PL emitted from the probe light source 131 and applied to the contact body 110.
  • the position of the light source 131 is adjusted.
  • an object other than the contact body 110 emitted from the probe light source 131 specifically, the light PL mainly irradiated on the surface of the contacted object WK, as shown in FIG. Since most of the irradiated light PL is reflected in a direction different from that of the beam splitter 132, the surface is non-parallel to the probe 113 of the contact body 110. That is, the image sensor 135 is disposed at a position where the reflected light from the surface of the contacted object WK does not directly enter the light PL emitted from the probe light source 131, in other words, outside the optical path of the reflected light. Therefore, on the display screen of the display device 142, as shown in FIG.
  • the portion of the probe 113 of the contact body 110 is displayed in white, and the portion other than the probe 113, specifically, The surface portion of the contact object WK is displayed in black.
  • the probe 113 is indicated by a broken line for convenience of explanation.
  • reference numerals of the substrate 112, the probe 113, and the contacted object WK are attached to the display image portions corresponding to the substrate 112, the probe 113, and the contacted object WK, respectively.
  • the worker performs a contact operation of the contact body 110 to the contacted object WK.
  • the operator operates the input device 141 of the computer device 140 to cause the computer device 140 to perform the contact process of the contact body 110 with the contacted object WK.
  • the computer apparatus 140 starts an approach program for bringing the contact body 110 shown in FIG. 5 into contact with the contacted object WK in step S100, and sets the contact detection area SE in step S102. Encourage workers.
  • the setting of the contact detection area SE is output from the image sensor 135 in order to define the detection sensitivity of the pressed state of the contact body 110 against the contacted object WK and the pressing force of the contact body 110 on the contacted object WK.
  • the picked-up image information used for contact detection of the contact body 110 is selected from the picked-up image information. That is, the setting of the contact detection area SE is to set which part of the deformed parts of the contact body 110 due to contact with the contacted object WK is used to detect the pressed state of the contact body 110.
  • the worker displays the position and size of the frame-shaped contact detection area SE displayed on the display screen of the display device 142 on a white image of the contact body 110 (not shown). Adjust and set using (pointing device).
  • a white portion of about half from the tip portion of the white probe 113 displayed on the display screen of the display device 142 is included in the region.
  • An area with a selectivity of about 50% is set as the contact detection area SE.
  • the computer device 140 applies a contact detection voltage to the probe 113 of the contact body 110 in step S104. Specifically, the computer device 140 applies a predetermined voltage to the two outer probes 113 of the four probes 113 of the contact body 110 by controlling the operation of the four-probe measurement circuit 124.
  • the 4-probe measurement circuit 124 starts the operation of the built-in ammeter and outputs a current measurement value to the computer device 140.
  • step S ⁇ b> 106 the computer device 140 controls the operation of the image sensor 135 to start the image capturing process by the image sensor 135.
  • the image sensor 135 outputs contact body imaged image information representing a captured image obtained by imaging the surface of the contact body 110 illuminated by the probe light source 131.
  • the contact body captured image information includes the target object other than the probe 113 of the contact body 110.
  • a captured image of the surface of the contact object WK is also included.
  • the contact body captured image information includes a portion in which the contact body 110 represents the surface of the contacted object WK. It is expressed with higher brightness.
  • step S108 the computer apparatus 140 starts binarization processing of the contact body captured image information.
  • the computer device 140 binarizes the contact body captured image information input from the image sensor 135 according to the amount of received light (brightness) for each pixel, and more specifically, captured image information for each pixel. Is converted into a monochrome image in which a portion where the luminance is greater than or equal to a predetermined value is white and a portion where the luminance is less than the predetermined value is black.
  • the contact body captured image information the contact body captured image information corresponding to the contact body 110 is represented in white, and the contact body captured image information representing the other part (mainly the surface of the contacted object WK) is black. (See FIG. 4C and FIG. 6).
  • step S110 the computer device 140 displaces the contact body 110 toward the contacted object WK. Specifically, the computer device 140 starts the operation of a Z-axis direction actuator (not shown), and moves the contact body holding portion 123a along the column 123b in the lower portion of the drawing, that is, on the work stage portion 121. Displace toward WK.
  • a Z-axis direction actuator not shown
  • the computer device 140 detects the pressing state of the contact body 110 against the contacted object WK. Specifically, the computer device 140 monitors the current measurement value output from the four-probe measurement circuit 124, and when the current measurement value becomes larger than 0 A (ampere), or is output from the image sensor 135. The contact body 110 is contacted when substantially all of the imaged image information in the contact detection area SE (in the present embodiment, about 90% of the entire image) of the binarized contact body imaged image information becomes black. It determines with having contacted the thing WK and having been in the press state.
  • the computer device 140 monitors the current measurement value output from the four-probe measurement circuit 124, and when the current measurement value becomes larger than 0 A (ampere), or is output from the image sensor 135.
  • the contact body 110 is contacted when substantially all of the imaged image information in the contact detection area SE (in the present embodiment, about 90% of the entire image) of the binarized contact body imaged image information becomes black. It determines with having contacted the thing WK and
  • the current measurement value output from the four-probe measurement circuit 124 is greater than 0A
  • the current is due to the electrical contact between the two outer probes 113.
  • the two outer probes 113 are in contact with the surface of the contacted object WK, respectively.
  • the image sensor 135 reflects from the probe 113 of the contact body 110. This means that the light is no longer incident. This is because the probe 113 is in contact with the surface of the contacted object WK and presses the surface to bend and deform to change the traveling direction of the reflected light. I mean.
  • the process in which the captured image information in the contact detection area SE of the contact body captured image information changes to black will be described in more detail.
  • the overall shape of the probe 113 is displayed on the display screen of the display device 142 as shown in FIGS. Displayed as a white image. This is because most of the reflected light reflected by the probe 113 of the contact body 110 is guided to the image sensor 135.
  • the probe 113 presses the surface of the contacted object WK as shown in FIG.
  • the contact portion deformed parallel to the surface of the surface increases.
  • the reflected light guided from the probe 113 to the image sensor 135 is further reduced, and as shown in FIG. 8B, the white portion of the captured image of the probe 113 in the contact detection area SE displayed on the display device 142 is displayed.
  • Most of the color turns black. That is, the computer device 140 detects the pressing state of the contact body 110 using the area change of the light receiving portion (region) of the reflected light represented by the contact body captured image information.
  • the computer device 140 determines that the current measurement value output from the four-probe measurement circuit 124 is greater than 0 A or the contact body captured image information output from the image sensor 135 in the determination process of step S112. Until substantially all of the captured image information in the contact detection area SE becomes black, the determination process of step S112 is repeatedly performed while determining “No”. While the determination process in step S112 is repeatedly performed, the computer apparatus 140 detects the current measurement value output from the 4-probe measurement circuit 124 and the contact body imaging for each pitch at which the contact body 110 is sent to the contacted object WK side. Image information monitoring processing is executed.
  • the computer device 140 indicates the contact object captured image information output from the image sensor 135.
  • the contact detection area SE is black
  • the operator can detect the abnormal contact of the contact body 110 by monitoring the display screen of the display apparatus 142.
  • FIG. For example, when only one probe 113 of the four probes 113 changes to black, it is considered that the same probe 113 is in contact with something and is deformed.
  • the contact operation of the contact body 110 to the contacted object WK can be interrupted immediately by operating the. That is, the contact state detection device according to the present invention can detect not only the presence / absence of the contact of the contacted object WK of the contact body 110 but also the state of the contact.
  • step S114 the computer device 140 executes an interruption process for detecting the pressed state of the contact body 110.
  • the computer 140 stops the operations of the Z-axis direction actuator (not shown), the four-probe measurement circuit 124, and the image sensor 135, respectively.
  • the displacement of the contact body holding part 123a, the voltage application to the two outer probes 113, and the imaging process of the contact body 113 are interrupted.
  • the computer device 140 interrupts the binarization processing of the contact body captured image information and displays on the display device 142 that the probe 113 of the contact body 110 is in contact with the surface of the contacted object WK and is in a pressed state. .
  • the computer device 140 detects the cause of detection of the pressing state of the contact body 110 against the contacted object WK, that is, whether the pressing state of the contact body 110 is detected by a change in the current measurement value, or the contact body captured image information.
  • the display device 142 displays whether it has been detected by the change. Then, the computer apparatus 140 ends the execution of this approach program in step S116.
  • the worker After confirming the display content displayed on the display device 142, the worker performs work according to the cause of detection of the pressed state of the contact body 110. That is, when the pressing state of the contact body 110 to the contacted object WK is detected by a change in the current measurement value, the probe 113 of the contact body 110 and the contacted object WK are in electrical contact with each other. The operator operates the input device 141 of the computer device 140 and continues to measure the electrical conductivity of the contacted object WK. On the other hand, when the pressing state of the contact body 110 against the contacted object WK is detected by a change in the contact body captured image information, the probe 113 of the contact body 110 and the contacted object WK are in physical contact.
  • the operator identifies the cause of the contact body 110 not being in electrical contact with the contacted object WK and performs a countermeasure, and then executes the approach program again. This prevents the contact body 110 and the contacted object WK from being damaged by the probe 113 being strongly pressed against the contacted object WK in a state where the electrical connection state between the probe 113 and the contacted object WK is not detected. be able to.
  • the contact detection device applied to the electrical conductivity measurement system 100 is applied to the deformed portion of the contact body 110 that is deformed by contacting the contacted object WK.
  • a pressing state of the contact body 110 to the contacted object WK using a change in reflected light represented by contact body captured image information obtained by irradiating the light PL and capturing the contact body 110 that is displaced toward the contacted object WK. Is detected. That is, the contact state detection device detects the change in the reflected light from the deformed portion due to the deformation of the contact body 110 in contact with the contacted object WK by the change in the contact object captured image information, thereby detecting the object to be contacted of the contact body 110.
  • the pressing state to the contact object WK is detected.
  • the detection of the reflected light from the contact body 110 is performed by imaging an area including the deformed portion of the contact body 110 with the image sensor 135 formed of a CCD image sensor. That is, it is not necessary to strictly adjust the irradiation position of the irradiated light PL and the light receiving position of the reflected light. Thereby, it is possible to reduce the number of optical parts necessary for positioning the irradiation position of the light PL on the contact body 110 and positioning the reflected light from the contact body 110 with respect to the light receiving element, and the alignment adjustment work man-hour. And the burden of maintenance work for maintaining detection accuracy can be reduced.
  • the contact state detection device detects the pressed state of the contact body 110 based on the mechanical deformation of the contact body 110, an oxide film or the like is formed on the contacted portion of the contacted object WK that the contact body 110 contacts. Even when the insulating region is formed, the pressed state of the contact body can be detected with high accuracy. Thereby, damage to the contact body 110 and the to-be-contacted object WK by the contact body 110 being strongly pressed on the to-be-contacted object WK can be prevented. As a result, it is possible to accurately detect the pressing state of the contact body 110 against the contacted object WK with a simple configuration without damaging the contact body 110 and the contacted object WK.
  • the contact body 110 is configured to detect the pressed state of the contact body 110 by setting the contact detection area SE with a selection rate of about 50% in the contact body captured image information obtained by imaging the contact body 110.
  • the size and position of the contact detection area SE can be appropriately set according to the purpose of detecting the pressed state of the contact body 110. For example, by increasing the size of the contact detection area SE (increasing the selection rate), the white portion used for detecting the pressed state of the contact body 110 increases, so that the sensitivity of detecting the pressed state can be reduced. This also means that the force with which the contact body 110 presses the contacted object WK when the pressed state of the contact body 110 is detected can be increased.
  • the pressing force with which the contact body 110 presses the contacted object WK can be defined, and the pressing force of the contact body 110 based on the contact body captured image information. Can also be specified. Then, by reducing the size of the contact detection area SE (decreasing the selection rate), the white portion used for detecting the pressed state of the contact body 110 is reduced and the S / N ratio is improved, so the sensitivity of detecting the pressed state is increased. Can be sharpened.
  • the sensitivity of detection of the pressed state of the contact body 110 can be sharpened by positioning the position of the contact detection area SE at the tip of the contact body 110 (probe 113), while the position of the contact detection area SE is touched.
  • the body 110 (probe 113) By positioning the body 110 (probe 113) on the rear end side, the sensitivity of detecting the pressed state of the contact body 110 can be reduced.
  • a part of the contact body 110 for example, only one probe 113) can be used for detecting the pressed state.
  • two or more contact detection areas SE can be provided, and the position and size can be set respectively.
  • the pressing state can be detected for each of the four probes 113 by setting the contact detection region SE for each of the four probes 113. That is, by appropriately setting the size, position, and number of the contact detection area SE on the deformed portion of the contact body 110 represented by the contact body captured image information, the detection range of the pressed state, the sensitivity of the contact detection, and the contact
  • the pressing force of the body 110 on the contacted object WK can be arbitrarily set.
  • the pressed state of the contact body 110 is detected using a part of contact body captured image information obtained by imaging by the image sensor 135 (selection rate of about 50% in the above embodiment). It was configured as follows. However, as a matter of course, it is possible to detect the pressed state of the contact body 110 using all of the contact body captured image information output from the image sensor 135 without providing the contact detection area SE.
  • substantially all of the captured image information in the contact detection area SE (approximately 90% of the whole in the above embodiment) of the contact body captured image information output from the image sensor 135 is black.
  • the contact state detection device detects the pressed state of the contact body using the area change of the reflected light represented by the contact body captured image information.
  • the rate of change (amount) from the white image to the black image in the contact body captured image information which is a criterion for determining the detection of the pressed state of the contact body 110, is appropriately determined according to the pressed state detection accuracy of the contact body 110.
  • the present invention is not necessarily limited to the above embodiment. That is, if a small change rate (amount) is used as a criterion for determination of detection of the pressed state of the contact body 110, the pressed state detection accuracy of the contact body 110 is increased, and if a large change rate (amount) is used, the pressed state detection accuracy is decreased. Become.
  • the detection of the pressed state of the contact body can use a change in position and shape in addition to a change in the area of reflected light represented by the contact body captured image information. That is, the contact state detection device uses a change in the reflected light area such as the area, position, and shape of the reflected light represented by the contact body captured image information, in other words, a change in a two-dimensional plane occupied by the reflected light. Thus, the pressed state of the contact body can be detected. The contact state detection device can also detect the pressed state of the contact body using a change in the amount of reflected light represented by the contact body captured image information.
  • an LED is used as the probe light source 131 and an incandescent bulb is used as the work light source 133.
  • the light sources of the probe light source 131 and the work light source 133 are light sources that emit light PL and WL that can capture the captured image information by capturing the contact body 110 and the contact object WK with the image sensor 135. It is not limited.
  • a light source of the probe light source 131 and the work light source 133 an LED, an incandescent bulb, a fluorescent lamp, a halogen lamp, an HID lamp, or a laser beam can be used.
  • the probe light source 131 only needs to be able to irradiate at least the contact body 110 with the light PL, and thus a light source with high directivity (for example, LED or laser light) is preferable.
  • the work light source 133 is only required to illuminate the contact area of the contacted object WK with the contact body 110, and a wide range of light sources can be used.
  • the contact light W 133 is irradiated with the light WL and the contact W W irradiated with the light WL is imaged by the image sensor 135 and the contact object captured image information is captured. Acquired. However, when there is no need to confirm the position of the contact object WK itself or the positional relationship of the contact body 110 on the contact object WK, the acquisition process of the contact object captured image information by the work light source 133 and the image sensor 135 is performed. , Not always necessary.
  • the configuration of the contact state detection apparatus can be simplified by omitting the acquisition process of the contact object captured image information by the work light source 133 and the image sensor 135.
  • the beam splitter 132 is disposed on the contact body 110 at a reflection angle equal to the incident angle of the light PL emitted from the probe light source 131. That is, the imaging element 135 is disposed substantially at a reflection angle equal to the incident angle of the light PL emitted from the probe light source 131 and incident on the contact body 110.
  • the image sensor 135 can efficiently receive the reflected light emitted from a light source (for example, LED) having a particularly high directivity and reflected by the contact body 110, and the contact body captured image information with high accuracy. Can be obtained.
  • the arrangement position of the image sensor 135 does not necessarily have to be on the reflection angle as long as it is a position where the contact body 110 can be imaged to acquire contact body captured image information.
  • the image sensor 135 can be arranged relatively freely in a range in which the reflected light from the contact body 110 can be received.
  • a CCD image sensor is used as the image sensor 135.
  • the image sensor 135 may be an image sensor other than a CCD image sensor, for example, various image sensors such as a CMOS image sensor, as long as the image of the contact body 110 can be captured to acquire contact body captured image information.
  • the present invention can reduce the number of necessary optical elements and alignment (optical axis adjustment) man-hours by detecting the pressed state of the contact body 110 using contact body captured image information obtained by imaging the contact body 110 in a relatively wide range. Is one of the features.
  • the computer device 140 detects the pressed state of the contact body 110 using the contact body captured image information obtained by binarizing the contact body captured image information input from the image sensor 135.
  • the contact body captured image information does not necessarily need to be binarized, and the pressed state of the contact body 110 can be detected using the contact body captured image information input from the image sensor 135 as it is.
  • the pressing state of the contact body 110 can be detected using a change in luminance (also referred to as lightness) corresponding to the received light amount of the contact body captured image information input from the image sensor 135.
  • the contact body 110 is held by the contact body holding section 123a of the contact body approach section 123 in a posture that intersects the surface including the contacted portion of the contacted object WK. For this reason, even when the light emitted from the probe light source 131 is irradiated on the surface of the contacted object WK, the reflected light from the contact body 110 and the reflected light from the contacted object WK are both applied to the image sensor 135. It is prevented from being guided. Thereby, the image sensor 135 can accurately capture only the reflected light from the contact body 110, and as a result, the contact detection accuracy of the contact body 110 can be improved.
  • the image sensor 135 is disposed at a position where the reflected light from the surface of the contacted object WK does not directly enter in the light PL irradiated from the probe light source 131, in other words, outside the optical path of the reflected light. That's fine.
  • maintains the contact body 110 and approaches the to-be-contacted object WK is a component which comprises the electrical conductivity measuring system 100, and is a structure essential to a contact state detection apparatus. It is not an element. However, by using the contact body approach portion 123 as a constituent element of the contact state detection device, the above-described effects can be exhibited in the contact state detection device.
  • the work stage unit 121 and the drive base unit 122 that hold the contacted object WK and displace the contact body 110 in the X-axis direction and the Y-axis direction with respect to the contact body 110 also have electrical conductivity similar to the contact body approach section 123. It is a component which comprises the measurement system 100, and is not an essential component for a contact state detection apparatus.
  • the approach stage device 120 corresponds to the contact body displacement means according to the present invention.
  • the approach stage device 120 only needs to relatively displace the contact body 110 and the contacted object WK, and does not necessarily need to be configured to displace only one of them. That is, the approach stage device 120 may displace one or both of the contact body 110 and the contacted object WK.
  • the pressed state of the contact body 110 can be detected even when the posture of holding the contact body 110 is parallel to the surface including the contacted portion of the contacted object WK.
  • the contact body 110 is mainly irradiated with light and the contacted object WK is not irradiated with light as much as possible.
  • the display device 142 is used to display a captured image captured by the image sensor 135. That is, the display device 142 corresponds to the captured image display unit according to the present invention. Thereby, the operator can work while visually confirming the contact state of the contact body 110 and the state around the contacted portion of the contacted object WK. Therefore, when it is not necessary to visually recognize these, the display device 142 is unnecessary. That is, since the detection of the pressed state of the contact body 110 is performed by a calculation process by the computer device 140, the pressed state of the contact body 110 can be detected without necessarily displaying the pressed state of the contact body 110. .
  • the operator detects the pressed state of the contact body 110
  • some display means is necessary for the operator to confirm the pressed state of the contact body 110.
  • the calculation process by the computer device 140 for detecting the pressed state that is, the contact state detecting means is not necessary.
  • the operator visually checks the change in the white image of the contact body 110 displayed on the display device 142, and the contact body 110 is pressed against the contacted object WK in an appropriate change state of the white image.
  • the displacement of the contact body 110 is stopped by operating the input device 141 after determining that the contact has occurred. Also by this, the pressing state of the contact body 110 can be detected.
  • the current measurement value output from the four-probe measurement circuit 124 and the contact body captured image information output from the image sensor 135 are used to detect the pressed state of the contact body 110.
  • the contact body 110 when the contact body 110 is physically or electrically in contact with the contacted object WK, the contact body can be detected as being in contact with the contacted object. It is also possible to detect the pressed state of the contact body assuming that the contact body is pressed against the contacted object when 110 is physically and electrically in contact with the contacted object WK.
  • the use and application range of the contact state detection device can be expanded. However, it is natural that the pressed state of the contact body 110 can be detected using only the contact body captured image information output from the image sensor 135.
  • the contact body 110 of the contact body 110 is utilized by utilizing the fact that the reflected light from the contact body 110 is not guided to the image sensor 135 when the contact body 110 is pressed and deformed against the contacted object WK. It was comprised so that a press state might be detected. However, if the present invention is configured to detect the contact of the contact body 110 using the change in the traveling direction of the reflected light caused by the contact body 110 being pressed and deformed against the contacted object WK, It is not limited to the embodiment.
  • the probe light source 131 can be configured to irradiate the light PL in a direction orthogonal to the surface of the contact body 110.
  • FIG. 9B when the probe 113 comes into contact with the contacted object WK and is buckled, a part of the reflected light from the probe 113 is not guided to the image sensor 135. . Therefore, the computer device 140 detects the pressing state of the contact body 110 by detecting a black portion generated by buckling deformation of the probe 113 on the side surface portion of the contact body 110 represented in white in the contact body captured image information. be able to.
  • the probe light source 131 irradiates the contact body 110 with the light PL to a region including a portion before deformation or a portion after deformation due to contact with the contacted object WK, that is, a region including a deformation portion due to contact in the contact body 110. What is necessary is just to be comprised.
  • the probe 113 in place of or in addition to the beam splitter 132, the condenser lens 134, and the image sensor 135, the probe 113 is in contact with the contacted object WK.
  • An imaging element 136 (indicated by a two-dot chain line in the drawing) similar to the imaging element 135 can be provided in the traveling direction of the reflected light reflected from the buckled deformation part. According to this, a part of the reflected light from the probe 113 is guided to the image sensor 136 by the probe 113 coming into contact with the contacted object WK and being buckled and deformed. Therefore, the computer device 140 detects the pressing state of the contact body 110 by detecting a white portion generated by buckling deformation of the probe 113 on the side surface portion of the contact body 110 represented in black in the contact body captured image information. be able to.
  • the electrical conductivity measurement system 100 includes a voltage application device 137 that applies a voltage for causing dielectric breakdown between the contact body 110 and the contacted object WK, as shown in FIG. It is good to provide in the state connected to the contact body 110.
  • the electrical conductivity measurement system 100 or the operator operates the voltage application device 137 when the pressing state of the contact body 110 against the contacted object WK is detected by the change in the contact body captured image information.
  • the insulating film formed on the surface of the contacted object WK can be destroyed, and a state where the probe 113 of the contact body 110 and the contacted object WK are in electrical contact can be ensured. Therefore, the electrical conductivity measurement system 100 or the operator can perform the work of measuring the electrical conductivity of the contacted object WK as it is after destroying the insulating film formed on the surface of the contacted object WK.
  • the electrical conductivity measurement system 100 continues the measurement of the electrical conductivity of the contacted object WK as it is according to the detection result of the pressed state of the contact body 110 against the contacted object WK by the contact state detection device.
  • the measurement of the electric conductivity can be temporarily interrupted.
  • the contact state detection device is applied to the electrical conductivity measurement system 100.
  • the contact state detection device can be widely applied as a contact state detection device that detects that a contact body that is displaced toward and comes into contact with the contacted object contacts the contacted object.
  • the present invention can be applied to probe control in a probe microscope, contact control in a stylus type roughness meter, contact control in a micromanipulator, measurement of contact force of a MEMS component, mechanical property evaluation, contact detection of a micro switch, and the like. it can.
  • the contact state detection device can be applied to a stylus roughness meter 200.
  • a control device (not shown) in the stylus roughness meter 200 (corresponding to the computer device 140) is connected to the probe 113 in a state where the tip of the probe 113 is pressed against the surface of the contacted object WK with a predetermined pressing force.
  • the object to be measured WK is relatively displaced in the X-axis direction in the figure.
  • the control device in the stylus roughness meter 200 can measure the surface roughness of the contacted object WK using the contact body captured image information output from the image sensor 135.
  • the contact state detection device can be applied to the micromanipulator 300.
  • the probe 113 is configured by a plate-like body having a substantially triangular shape in plan view with a sharp tip.
  • a control device (not shown) (not shown) in the micromanipulator 300 moves the tip of the probe 113 to the contacted object WK (corresponding to the operation of the input device (not shown) shown by the operator). For example, pressing the surface of the cell tissue on the preparation) with a predetermined pressing force, or relatively displacing the probe 113 and the object WK to be measured in the X-axis direction and the Y-axis direction shown in the drawing.
  • the contacted object WK can be processed or displaced.
  • control device or the operator in the micromanipulator 300 uses the contact body captured image information output from the image sensor 135 or the display content of the probe 113 by the display content on the display device (not shown) (corresponding to the display device 142).
  • the pressing state against the contact object WK can be recognized and the pressing state can be appropriately adjusted.
  • the pressing state of the probe 113 against the contacted object WK widely includes a pressing state due to a pressing force acting on the probe 113 from all directions.
  • the probe 113 in the pressing state of the probe 113 against the contacted object WK, for example, the probe 113 is not in the state of pressing the surface of the contacted object WK in the Z-axis direction in the figure, but the probe 113 is touched by the contacted object WK.
  • This includes a twisted state generated in the probe 113 when the surface is displaced in the X-axis direction and / or the Y-axis direction (that is, in the XY axis plane) while being pressed in the Z-axis direction.

Abstract

Disclosed are a contact state detection device with a simple structure capable of accurately detecting, without damaging a contact body (such as a probe) or a contacted body, the pressing state of the contact body pressing on the contacted body; also disclosed is an electrical conductivity measurement system provided with the contact state detection device. The contact detection device suitable for an electrical conductivity measurement system (100) is provided with a contact body approach unit (123), a probe light source (131), an imaging element (135), and a computer device (140). The contact body approach unit (123) is displaced towards the contacted body (WK) while holding the contact body (110) oriented so as to intersect the contacted surface of the contacted body (WK). The probe light source (131) irradiates light towards the contact body (110) which is displaced towards the contacted body (WK). The imaging element (135) images the illuminated contact body (110) and outputs to the computer device (140) contact body captured image information. The computer device (140) detects the pressing state of the contact body (110) pressing on the contacted body (WK) on the basis of changes in the contact body captured image information.

Description

接触状態検出装置、接触状態検出方法、接触状態検出用コンピュータプログラム、接触状態検出装置を備える電気伝導度測定システムおよび接触状態検出方法を含む電気伝導度測定方法Contact state detection device, contact state detection method, computer program for contact state detection, electrical conductivity measurement system provided with contact state detection device, and electrical conductivity measurement method including contact state detection method
 本発明は、被接触物に接触することにより変形する接触体が同被接触物に接触したことを検出する接触状態検出装置、接触状態検出方法、接触状態検出プログラム、接触状態検出装置を備える電気伝導度測定システムおよび接触状態検出方法を含む電気伝導度測定方法に関する。 The present invention provides a contact state detection device, a contact state detection method, a contact state detection program, and a contact state detection device for detecting that a contact body that is deformed by contact with the contacted object contacts the contacted object. The present invention relates to an electrical conductivity measurement method including a conductivity measurement system and a contact state detection method.
 従来から、電子デバイスなどの薄膜表面の体積抵抗率(電気伝導度)を測定するためにマイクロ4端子電気伝導測定が行なわれている。マイクロ4端子電気伝導測定は、数μm~数十μmの極めて微小な4つのプローブを被測定部分にそれぞれ接触させて電流を流すことにより同部分の体積抵抗率を測定するものである。この場合、4つのプローブと被測定部分との接触を検出するためにトンネル電流検出法や光テコ法が用いられている。 Conventionally, in order to measure the volume resistivity (electric conductivity) of the surface of a thin film such as an electronic device, micro four-terminal electric conductivity measurement has been performed. The micro four-terminal electric conductivity measurement is to measure the volume resistivity of the part by bringing four very small probes of several μm to several tens of μm into contact with the part to be measured and flowing current. In this case, a tunnel current detection method or an optical lever method is used to detect contact between the four probes and the portion to be measured.
 トンネル電流検出法は、プローブと被測定部分との間にバイアス電圧を印加した状態でプローブを1nm程度まで被測定部分に近づけた際に生じるトンネル電流を検出することによりプローブと被測定部分との接触を検出するものである。一方、光テコ法は、例えば、下記特許文献1に示すように、カンチレバー(プローブに相当)における接触部の背面にレーザ光を照射するとともに同カンチレバーの背面からの反射光を2分割(または4分割)フォトディテクタで受光して同受光位置の変化を用いてプローブと被測定部分との接触を検出するものである。 In the tunnel current detection method, a tunnel current generated when a probe is brought close to a measured part to about 1 nm with a bias voltage applied between the probe and the measured part is detected. A contact is detected. On the other hand, in the optical lever method, as shown in Patent Document 1 below, for example, the back surface of the contact portion of the cantilever (corresponding to a probe) is irradiated with laser light and the reflected light from the back surface of the cantilever is divided into two (or 4 (Division) The light is received by a photodetector and the contact between the probe and the part to be measured is detected using the change in the light receiving position.
特開平06-258068号公報Japanese Patent Laid-Open No. 06-258068
 しかしながら、トンネル電流検出法においては、被測定部分に生じた自然酸化膜などによって絶縁領域が形成されて精度良く電流を検出できない場合があり、プローブが被測定部分に強く押し付けられてプローブおよび被測定部分を損傷することがある。また、光テコ法においては、レーザ光をカンチレバー上に位置決めするとともに同カンチレバーからの反射光をフォトディテクタ上に位置決めするための光学部品やアライメント調整が必要であり、装置構成が複雑化するとともに検出精度維持のためのメンテナンス作業が極めて煩雑であるという問題があった。 However, in the tunnel current detection method, there is a case where an insulating region is formed by a natural oxide film or the like generated in the measured part and the current cannot be detected accurately, and the probe is strongly pressed against the measured part and the probe and the measured object The part may be damaged. The optical lever method requires positioning of the laser beam on the cantilever and optical components and alignment adjustment for positioning the reflected light from the cantilever on the photodetector, complicating the device configuration and detecting accuracy. There has been a problem that maintenance work for maintenance is extremely complicated.
 本発明は上記問題に対処するためなされたもので、その目的は、プローブなどの接触体や被接触物を損傷することなく簡単な構成で精度良く接触体の被接触物への接触状態を検出することができる接触状態検出装置、接触状態検出方法および接触状態検出用コンピュータプログラムを提供することにある。 The present invention has been made to address the above problems, and its purpose is to accurately detect the contact state of the contact body with the contact object with a simple configuration without damaging the contact body such as a probe or the contact object. An object of the present invention is to provide a contact state detection device, a contact state detection method, and a contact state detection computer program.
 上記目的を達成するため、請求項1に記載した本発明の特徴は、被接触物に接触することにより変形する接触体における前記接触による変形部分を含む領域に光を照射する光照射手段と、光照射手段から照射された光のうちの被接触物の表面からの反射光の光路外に配置され、接触体における前記変形部分を撮像して接触体撮像画像情報を出力する撮像手段と、接触体撮像画像情報によって表される前記変形部分からの反射光の領域変化を用いて接触体の被接触物への押圧状態を検出する接触状態検出手段とを備えたことにある。この場合、押圧状態の検出とは、接触体が被接触物に接して押圧する程度(度合い)を検出するのであって、必ずしも押圧力の大きさ(量)自体を検出することを意味しない。 In order to achieve the above object, a feature of the present invention described in claim 1 is that light irradiation means for irradiating light to a region including a deformed portion due to the contact in a contact body that deforms by contacting an object to be contacted, An imaging unit disposed outside the optical path of the reflected light from the surface of the contacted object among the light irradiated from the light irradiation unit, imaging the deformed portion of the contact body, and outputting contact body captured image information; and contact Contact state detecting means for detecting a pressing state of the contact body against the contacted object using a region change of the reflected light from the deformed portion represented by the body captured image information. In this case, the detection of the pressing state detects the degree (degree) of the contact body pressing against the contacted object, and does not necessarily detect the magnitude (amount) of the pressing force itself.
 このように構成した請求項1に記載した本発明の特徴によれば、接触状態検出装置は、被接触物に向って変位して接触することにより変形する接触体における変形部分を含む領域に光を照射するとともに、同変形部分を撮像した接触体撮像画像情報によって表わされる反射光の領域変化を用いて接触体の被接触物への押圧状態を検出している。すなわち、接触状態検出装置は、接触体が被接触物に接触して変形したことによる変形部分からの反射光の領域変化を接触体撮像画像情報の変化によって検出することにより接触体の被接触物への押圧状態を検出している。この場合、光照射手段が光を照射する接触体における変形部分とは、接触体が被接触物に接触することにより、接触する前と比べて形や向きが変わった部分であり、例えば、接触体における前記被接触物への接触部分から前記接触による変形部分までの範囲が相当する。また、この場合、反射光の領域変化とは、接触体撮像画像情報によって表わされる反射光の2次元平面内での変化、例えば、面積、位置および形状などの変化である。また、接触体からの反射光の検出も接触体における前記変形部分を含む領域を、例えば、CCD(Charge Coupled Device)イメージセンサやCMOS(Complementary Metal Oxide Semiconductor)イメージセンサなどの各種撮像素子で撮像することにより行なわれる。すなわち、照射する光の照射位置および反射光の受光位置を厳密に調整する必要がない。これにより、接触体への光の照射位置の位置決めおよび接触体からの反射光の受光素子に対する位置決めに必要な光学部品の部品点数やアライメント調整作業工数を低減することができ、装置構成を単純化できるとともに検出精度維持のためのメンテナンス作業の作業負担が軽減される。また、接触体における前記変形部分を撮像する撮像手段が被接触物の表面からの反射光の光路外に配置されているため、接触状態検出手段は前記変形部分の領域変化を被接触物の表面からの反射光の影響を受けることなく精度良く検出することができる。また、接触状態検出装置は、接触体の機械的変形に基づいて接触体の押圧状態の検出を行なっているため、接触体が接触する被接触物の被接触部分に酸化膜などの絶縁領域が形成された場合であっても精度良く接触体の押圧状態の検出を行なうことができる。これにより、接触体が被接触物に強く押し付けられることによる接触体および被接触物の損傷を防止することができる。これらの結果、接触体や被接触物を損傷することなく簡単な構成で精度良く接触体の被接触物への押圧状態を検出することができる。 According to the characteristic of the present invention described in claim 1 configured as described above, the contact state detection device emits light in a region including a deformed portion of the contact body that is deformed by being displaced toward the object to be contacted. , And the pressed state of the contact body against the contacted object is detected using the region change of the reflected light represented by the contact body captured image information obtained by imaging the deformed portion. That is, the contact state detection device detects a change in the region of reflected light from the deformed portion due to the contact body being deformed in contact with the contact object by detecting a change in the contact object captured image information, thereby detecting the contact object of the contact object. The pressing state is detected. In this case, the deformed portion of the contact body to which the light irradiation means irradiates light is a portion whose shape or direction has changed from before the contact due to the contact body coming into contact with the contacted object. This corresponds to the range from the contact portion of the body to the contacted object to the deformed portion due to the contact. In this case, the region change of the reflected light is a change in the two-dimensional plane of the reflected light represented by the contact body captured image information, for example, a change in area, position, shape, and the like. In addition, detection of reflected light from the contact body is also performed by imaging the region including the deformed portion of the contact body with various imaging elements such as a CCD (Charge-Coupled Device) image sensor and a CMOS (Complementary Metal-Oxide Semiconductor) image sensor. Is done. That is, it is not necessary to strictly adjust the irradiation position of the irradiated light and the light receiving position of the reflected light. This makes it possible to reduce the number of optical parts and alignment adjustment work required for positioning the light irradiation position on the contact body and positioning the reflected light from the contact body with respect to the light receiving element, thereby simplifying the device configuration. In addition, the burden of maintenance work for maintaining detection accuracy can be reduced. Further, since the imaging means for imaging the deformed portion of the contact body is disposed outside the optical path of the reflected light from the surface of the contacted object, the contact state detecting means detects the area change of the deformed portion on the surface of the contacted object. Can be detected accurately without being affected by the reflected light from the light. In addition, since the contact state detection device detects the pressing state of the contact body based on the mechanical deformation of the contact body, an insulating region such as an oxide film is formed on the contacted portion of the contacted object that the contact body contacts. Even if it is formed, the pressed state of the contact body can be detected with high accuracy. Thereby, damage to a contact body and a to-be-contacted object by a contact body being strongly pressed on a to-be-contacted object can be prevented. As a result, it is possible to accurately detect the pressing state of the contact body against the contacted object with a simple configuration without damaging the contact body or the contacted object.
 また、請求項2に記載した本発明の他の特徴は、前記各接触状態検出装置において、接触状態検出手段は、接触体撮像画像情報によって表わされる反射光の面積変化を用いて接触体の被接触物への押圧状態を検出することにある。この場合、接触状態検出装置は、面積変化に代えてまたは加えて、接触体撮像画像情報によって表わされる反射光の光量の変化を用いて接触体の押圧状態を検出することもできる。 According to another aspect of the present invention as set forth in claim 2, in each of the contact state detecting devices, the contact state detecting means uses the change in the area of the reflected light represented by the contact body captured image information to cover the contact body. It is to detect the pressing state against the contact object. In this case, the contact state detection device can also detect the pressed state of the contact body using a change in the amount of reflected light represented by the contact body captured image information instead of or in addition to the area change.
 このように構成した請求項2に係る本発明の他の特徴によれば、接触状態検出装置は、接触体撮像画像情報によって表わされる反射光の面積変化を用いて接触体の押圧状態を検出している。これにより、接触状態検出装置は、反射光の面積変化から簡単に接触体の接触状態を検出することができる。 According to another aspect of the present invention according to claim 2 configured as described above, the contact state detection device detects the pressing state of the contact body using the area change of the reflected light represented by the contact body captured image information. ing. Thereby, the contact state detection apparatus can detect the contact state of a contact body easily from the area change of reflected light.
 また、請求項1に係る接触状態検出装置に代えて、請求項11に示すように、被接触物に接触することにより変形する接触体を保持した状態で被接触物に接触させる方向に接触体を被接触物に対して相対変位させる接触体変位手段と、接触体における被接触物への接触による変形部分を含む領域に光を照射する光照射手段と、光照射手段から照射された光のうちの被接触物の表面からの反射光の光路外に配置され、接触体における前記変形部分を撮像して接触体撮像画像情報を出力する撮像手段と、撮像手段が出力した接触体撮像画像情報に基づいて撮像画像を表示する撮像画像表示手段とを備えるとよい。 Further, in place of the contact state detection device according to claim 1, as shown in claim 11, the contact body in a direction in which the contact body is brought into contact with the contacted object while holding the contact body that is deformed by contacting the contacted object. A contact body displacing means for relatively displacing the contact object with respect to the contacted object, a light irradiating means for irradiating light to a region including a deformed portion due to contact with the contacted object in the contact body, and a light irradiating means An imaging unit that is arranged outside the optical path of the reflected light from the surface of the contacted object, images the deformed portion of the contact body, and outputs contact body captured image information; and contact body captured image information output by the imaging unit It is good to provide the picked-up image display means which displays a picked-up image based on this.
 このように構成した請求項11に記載した本発明の特徴によれば、接触状態検出装置は、被接触物に向って変位して接触することにより変形する接触体における変形部分を含む領域に光を照射するとともに、同変形部分を撮像した接触体撮像画像を撮像画像表示手段によって表示している。これにより、接触状態検出装置を用いて接触体の被接触物への接触を検出する作業者は、撮像画像表示手段を視認することにより接触体の被接触物への押圧状態を視覚で確認することができ、検出結果に基づいて接触体の被接触物への変位を直ちに停止させることなどができる。この場合、接触体における前記変形部分を撮像する撮像手段が被接触物の表面からの反射光の光路外に配置されているため、作業者は撮像画像表示手段に表示される前記変形部分の領域変化を被接触物の表面からの反射光の影響を受けることなく精度良く検出することができる。すなわち、請求項11に係る接触状態検出装置によっても、上記接触状態検出装置と同様の作用効果を期待することができる。 According to the characteristic of the present invention described in claim 11 configured as described above, the contact state detection device emits light in a region including a deformed portion of the contact body that is deformed by being displaced and contacted toward the contacted object. The contact body captured image obtained by imaging the deformed portion is displayed by the captured image display means. Thereby, the operator who detects the contact of the contact body with the contacted object using the contact state detection device visually confirms the pressed state of the contact body against the contacted object by visually recognizing the captured image display means. And the displacement of the contact body to the contacted object can be immediately stopped based on the detection result. In this case, since the imaging means for imaging the deformed portion of the contact body is disposed outside the optical path of the reflected light from the surface of the contacted object, the operator can display the area of the deformed portion displayed on the captured image display means. The change can be accurately detected without being affected by the reflected light from the surface of the contacted object. That is, also by the contact state detection device according to the eleventh aspect, the same effect as that of the contact state detection device can be expected.
 また、請求項3に記載した本発明の他の特徴は、前記各接触状態検出装置において、接触状態検出手段は、接触体撮像画像情報によって表わされる前記変形部分の一部を用いて接触体の被接触物への押圧状態を検出することにある。 According to another aspect of the present invention as set forth in claim 3, in each of the contact state detection devices, the contact state detection means uses a part of the deformed portion represented by the contact body captured image information. The purpose is to detect the pressing state of the contacted object.
 このように構成した請求項3に係る本発明の他の特徴によれば、接触状態検出装置は、接触体撮像画像情報によって表わされる接触体の変形部分の一部を用いて接触体の被接触物への押圧状態を検出している。これにより、撮像画像情報中のノイズの影響を除去して高精度に押圧状態の検出を行なうことができる(SN比の向上)とともに、押圧状態の検出に用いる領域の設定によって押圧状態の検出の位置や範囲、押圧状態の検出の感度および接触体の被接触物WKへの押圧力を任意に設定することができる。 According to another aspect of the present invention according to claim 3 configured as described above, the contact state detection device uses a part of the deformed portion of the contact body represented by the contact body captured image information to contact the contact body. A pressing state against an object is detected. Thereby, the influence of the noise in the captured image information can be removed to detect the pressed state with high accuracy (improvement of the SN ratio), and the detection of the pressed state can be performed by setting the region used for detecting the pressed state. It is possible to arbitrarily set the position, the range, the detection sensitivity of the pressed state, and the pressing force of the contact body on the contacted object WK.
 また、請求項4に記載した本発明の他の特徴は、前記各接触状態検出装置において、接触状態検出手段は、接触体撮像画像情報を光量に応じて二値化するとともに、同二値化した接触体撮像画像情報に応じて接触体の被接触物への押圧状態を検出することにある。 According to another aspect of the present invention as set forth in claim 4, in each of the contact state detection devices, the contact state detection means binarizes the contact body captured image information according to the amount of light, and binarizes the contact body image information. It is to detect the pressing state of the contact body against the contacted object in accordance with the contact body captured image information.
 このように構成した請求項4に係る本発明の他の特徴によれば、接触状態検出装置は、接触体を撮像した接触体撮像画像情報を所定の光量(輝度または明度ともいう)に応じて二値化した接触体撮像画像情報を用いて接触体の押圧状態の検出を行なっている。これによれば、接触体の撮像画像を表す接触体撮像情報を用いて少ない計算処理負担で迅速に接触体の被接触物への押圧状態を検出することができる。 According to another aspect of the present invention according to claim 4 configured as described above, the contact state detection device uses the contact body captured image information obtained by capturing the contact body in accordance with a predetermined light amount (also referred to as luminance or brightness). The pressed state of the contact body is detected using the binarized contact body captured image information. According to this, it is possible to quickly detect the pressed state of the contact body against the contacted object with a small calculation processing load using the contact body imaging information representing the captured image of the contact body.
 また、請求項5に記載した本発明の他の特徴は、前記各接触状態検出装置において、撮像手段は、接触体における前記変形部分を含む領域に照射される光の反射角上に配置されることにある。 According to another aspect of the present invention as set forth in claim 5, in each of the contact state detection devices, the imaging means is disposed on a reflection angle of light applied to an area including the deformed portion of the contact body. There is.
 このように構成した請求項5に係る本発明の他の特徴によれば、接触状態検出装置における撮像手段は、接触体の変形部分に照射される光の反射角上に配置されるため、接触体からの反射光を精度良く撮像することができる。これにより、接触状態検出装置による接触体の押圧状態の検出精度を向上させることができる。また、指向性の高い光(例えば、LED)を用いることにより反射光を撮像手段により効率的に導くことができ、接触状態検出装置による接触体の押圧状態の検出精度をより向上させることができる。 According to another aspect of the present invention according to claim 5 configured as described above, the image pickup means in the contact state detection device is disposed on the reflection angle of the light applied to the deformed portion of the contact body, The reflected light from the body can be imaged with high accuracy. Thereby, the detection precision of the press state of the contact body by a contact state detection apparatus can be improved. Moreover, by using light with high directivity (for example, LED), reflected light can be efficiently guided by the imaging means, and the detection accuracy of the pressed state of the contact body by the contact state detection device can be further improved. .
 また、請求項6に記載した本発明の他の特徴は、前記各接触状態検出装置において、接触体を、被接触物における接触体との被接触部分を含む表面に交わる姿勢で保持しながら被接触物に向かって変位させる接触体変位手段を備えることにある。 According to another aspect of the present invention as set forth in claim 6, in each of the contact state detection devices, the contact body is held while being held in a posture that intersects the surface including the contacted portion of the contacted object with the contacted body. The object is to provide contact body displacing means for displacing the contact object.
 このように構成した請求項6に係る本発明の他の特徴によれば、接触状態検出装置は、接触体を、被接触物における接触体との被接触部分を含む表面に交わる姿勢で保持しながら被接触物に向かって変位させる接触体変位手段を備えている。すなわち、接触体における光の照射部分と接触体が接触する被接触物上の被接触部分を含む面とが平行でない。このため、接触体照射手段から照射された光の一部が被接触物上に照射された場合であっても、接触体からの反射光と被接触物からの反射光とが共に撮像手段に入射することが防止される。これにより、接触体からの反射光のみを精度良く撮像することができ、接触状態検出装置による接触体の押圧状態の検出精度を向上させることができる。 According to another aspect of the present invention according to claim 6 configured as described above, the contact state detection device holds the contact body in a posture that intersects the surface of the contacted object including the contacted part with the contacted object. However, contact body displacing means for displacing toward the contacted object is provided. That is, the light irradiation portion of the contact body and the surface including the contacted portion on the contacted object with which the contact body contacts are not parallel. For this reason, even when a part of the light irradiated from the contact body irradiation means is irradiated onto the contacted object, both the reflected light from the contact body and the reflected light from the contacted object are both in the imaging means. Incident light is prevented. Thereby, only the reflected light from a contact body can be imaged accurately, and the detection accuracy of the press state of the contact body by a contact state detection apparatus can be improved.
 また、請求項7に記載した本発明の他の特徴は、前記各接触状態検出装置において、接触体変位手段は、被接触物における接触体との被接触部分を含む表面に沿って接触体を被接触物に対して相対変位させることにある。 According to another aspect of the present invention as set forth in claim 7, in each of the contact state detecting devices, the contact body displacing means includes a contact body along a surface including a contacted portion of the contacted object with the contacted body. The relative displacement is to be made with respect to the contacted object.
 このように構成した請求項7に係る本発明の他の特徴によれば、接触状態検出装置は、接触体変位手段により接触体を被接触物の表面に沿って変位させることができる。これにより、接触状態検出装置は、被接触物上の任意の位置で接触体の押圧状態の検出を行なうことができ、接触状態検出装置の用途や適用範囲を拡げることができる。 According to another feature of the present invention according to claim 7 configured as described above, the contact state detection device can displace the contact body along the surface of the contacted object by the contact body displacement means. Thereby, the contact state detection apparatus can detect the pressed state of the contact body at an arbitrary position on the contacted object, and can expand the application and application range of the contact state detection apparatus.
 また、請求項8に記載した本発明の他の特徴は、前記各接触状態検出装置において、さらに、被接触物に光を照射する被接触物照射手段を備え、撮像手段は、被接触物を撮像して被接触物撮像画像情報を出力することにある。 According to another aspect of the present invention, the contact state detecting device further includes contacted object irradiating means for irradiating the contacted object with light, and the imaging means detects the contacted object. The object is to take an image and output image information of the contacted object.
 このように構成した請求項8に係る本発明の他の特徴によれば、接触状態検出装置は、被接触物に光を照射する被接触物照射手段を備えるとともに、撮像手段は被接触物を撮像した被接触物撮像画像情報を出力する。これにより、接触状態検出装置は、被接触物撮像画像情報を用いて被接触物上における接触体の位置を特定することができ、接触状態検出装置の用途や適用範囲を拡げることができる。 According to another aspect of the present invention according to claim 8 configured as described above, the contact state detection device includes contacted object irradiating means for irradiating the contacted object with light, and the imaging means detects the contacted object. The captured object captured image information is output. Thereby, the contact state detection apparatus can specify the position of the contact body on the contacted object using the contacted object captured image information, and can expand the application and application range of the contact state detection apparatus.
 また、請求項9に記載した本発明の他の特徴は、前記各接触状態検出装置において、さらに、撮像手段が撮像した撮像画像を表示する撮像画像表示手段を備えることにある。 Further, another feature of the present invention described in claim 9 resides in that each of the contact state detection devices further includes captured image display means for displaying a captured image captured by the imaging means.
 このように構成した請求項9に係る本発明の他の特徴によれば、接触状態検出装置は、撮像手段が撮像した撮像画像を表示する撮像画像表示手段を備えている。これにより、接触状態検出装置を用いて接触体の接触検出を行なう作業者は、被接触物に対する接触体の押圧状態や、被接触物に対する接触物の位置関係を視覚によって確認することができ接触状態検出装置の使い勝手が向上する。 According to another aspect of the present invention according to claim 9 configured as described above, the contact state detection device includes captured image display means for displaying a captured image captured by the imaging means. Thus, an operator who performs contact detection of the contact body using the contact state detection device can visually check the pressing state of the contact body against the contacted object and the positional relationship of the contact object against the contacted object. Usability of the state detection device is improved.
 また、請求項10に記載した本発明の他の特徴は、前記各接触状態検出装置において、さらに、それぞれ導体で構成された被接触物と接触体との電気的な接触を検出する電気的接触検出手段を備えることにある。この場合、電気的接触検出手段は、例えば、被接触物と接触体との間に電圧を印加して被接触物と接触体との間に流れる電流値を検出するほか、例えば、接触体に電圧を印加可能な2つの接触子を形成しておいてこれら2つの接触子間に被接触物を介して流れる電流値を検出することで被接触物と接触体との電気的な接触を検出することができる。 According to another aspect of the present invention as set forth in claim 10, in each of the contact state detection devices, an electrical contact for detecting an electrical contact between a contact object and a contact body each made of a conductor. It is in providing a detection means. In this case, the electrical contact detection means, for example, applies a voltage between the contacted object and the contact body to detect a current value flowing between the contacted object and the contact body. Forming two contacts to which voltage can be applied and detecting the electrical value between the two contacts and the contacted object by detecting the current value flowing through the contacted object. can do.
 このように構成した請求項10に係る本発明の他の特徴によれば、接触状態検出装置は、それぞれ導体で構成された被接触物と接触体との電気的な接触を検出する電気的接触検出手段を備えている。これにより、接触状態検出装置は、被接触物に対する接触体の接触検出を物理的な接触および電気的な接触をそれぞれ検出することによって行なうことができる。これにより、接触体が被接触物に物理的または電気的に接触したとき、または接触体が被接触物に物理的および電気的に接触したときに接触体が被接触物に接触したものとして接触体の接触検出を行なうことができ、接触状態検出装置の用途や適用範囲を拡げることができる。 According to the other characteristic of this invention which concerns on Claim 10 comprised in this way, a contact state detection apparatus is an electrical contact which each detects the electrical contact with the to-be-contacted object comprised with the conductor, and a contact body. A detection means is provided. Thereby, the contact state detection apparatus can perform the contact detection of the contact body with respect to a to-be-contacted object by detecting a physical contact and an electrical contact, respectively. As a result, when the contact body comes into physical or electrical contact with the contact object, or when the contact body comes into physical and electrical contact with the contact object, the contact body comes into contact with the contact object. The contact detection of the body can be performed, and the use and application range of the contact state detection device can be expanded.
 また、本発明は接触状態検出装置の発明として実施できるばかりでなく、接触状態検出方法および接触状態検出装置に用いられる接触状態検出用コンピュータプログラム、接触状態検出装置を備える電気伝導度測定システムおよび接触状態検出方法を含む電気伝導度測定方法の発明としても実施できるものである。 Further, the present invention can be implemented not only as an invention of a contact state detection device, but also a contact state detection method and a computer program for contact state detection used in the contact state detection device, an electrical conductivity measurement system including the contact state detection device, and a contact It can also be implemented as an invention of an electrical conductivity measurement method including a state detection method.
 具体的には、請求項12に示すように、例えば、被接触物に接触することにより変形する接触体における前記接触による変形部分を含む領域に光を照射する光照射ステップと、光照射手段から照射された光のうちの前記被接触物の表面からの反射光の光路外の位置から接触体における前記変形部分を撮像して接触体撮像画像情報を出力する撮像ステップと、接触体撮像画像情報によって表される前記変形部分からの反射光の領域変化を用いて接触体の被接触物への押圧状態を検出する接触状態検出ステップとを備えるとよい。 Specifically, as shown in claim 12, for example, from a light irradiation step of irradiating light to a region including a deformed portion due to the contact in a contact body that is deformed by contact with an object to be contacted; An imaging step of imaging the deformed portion of the contact body from a position outside the optical path of the reflected light from the surface of the contacted object of the irradiated light and outputting contact body captured image information, and contact body captured image information It is good to provide the contact state detection step which detects the press state to the to-be-contacted object of a contact body using the area | region change of the reflected light from the said deformation | transformation part represented by these.
 また、請求項13に示すように、より具体的には、例えば、被接触物に接触することにより変形する接触体を保持した状態で被接触物に接触させる方向に接触体を被接触物に対して相対変位させる接触体変位手段と、接触体における被接触物への接触による変形部分を含む領域に光を照射する光照射手段と、光照射手段から照射された光のうちの前記被接触物の表面からの反射光の光路外に配置され、接触体における前記変形部分を撮像して接触体撮像画像情報を出力する撮像手段とを備え、接触体の被接触物への接触状態を検出する接触状態検出装置に用いられる接触状態検出プログラムであって、光照射手段によって、接触体における前記変形部分を含む領域に光を照射させた状態で、接触状態検出装置が備えるコンピュータに、接触体変位手段によって、前記保持した接触体を被接触物に接触させる方向に同被接触物に対して相対変位させ、撮像手段によって、接触体における前記変形部分を撮像して接触体撮像画像情報を出力させ、接触体撮像画像情報によって表される前記変形部分からの反射光の領域変化を用いて接触体の被接触物への押圧状態を検出させるとよい。 Further, as shown in claim 13, more specifically, for example, the contact body is changed to the contact object in a direction in which the contact body is deformed by being in contact with the contact object in a state of holding the contact body. Contact body displacement means for relative displacement, light irradiation means for irradiating light to a region including a deformed portion due to contact with a contacted object in the contact body, and the contact among the light irradiated from the light irradiation means An image pickup means arranged outside the optical path of the reflected light from the surface of the object and imaging the deformed portion of the contact body and outputting contact body imaged image information to detect a contact state of the contact body with the contacted object A contact state detection program for use in a contact state detection device, wherein the computer includes the contact state detection device in a state in which light is irradiated to a region including the deformed portion of the contact body by light irradiation means. The held contact body is displaced relative to the contacted object in a direction in which the held contact body is brought into contact with the contacted object by the displacing means, and the deformed portion of the contacted body is imaged by the imaging means to output the contacted body captured image information. It is preferable to detect the pressing state of the contact body against the contacted object using the region change of the reflected light from the deformed portion represented by the contact body captured image information.
 また、請求項14に示すように、より具体的には、例えば、請求項1ないし請求項10のうちのいずれか1つに記載した接触状態検出装置と、接触状態検出装置における接触体に接続され、同接触体を接触状態検出装置における接触状態の検出対象である被接触物に接触させることにより同被接触物の電気伝導度を測定する電気伝導度測定手段とを備えた電気伝導度測定システムであって、電気伝導度測定手段は、接触状態検出装置による接触体の被接触物への押圧状態の検出結果に応じて被接触物の電気伝導度測定を実行するとよい。これによれば、前記接触状態検出装置と同様の作用効果を得ながら被接触物の電気伝導度の測定を行うことができる。 Further, as shown in claim 14, more specifically, for example, the contact state detection device according to any one of claims 1 to 10 and a contact body in the contact state detection device are connected. Electrical conductivity measurement provided with electrical conductivity measuring means for measuring electrical conductivity of the contacted object by bringing the contacted body into contact with the contacted object that is a contact state detection target in the contact state detection device It is a system, Comprising: An electrical conductivity measurement means is good to perform the electrical conductivity measurement of a to-be-contacted object according to the detection result of the press state to the to-be-contacted object of a contact body by a contact state detection apparatus. According to this, the electrical conductivity of the contacted object can be measured while obtaining the same effect as that of the contact state detecting device.
 また、この場合、請求項15に示すように、例えば、前記電気伝導度測定システムにおいて、さらに、接触体に接続され、接触体と被接触物との間で絶縁破壊を生じさせるための電圧を印加する電圧印加手段を備えるとよい。これによれば、被接触物の表面に絶縁被膜が形成されて接触体が物理的に被接触物に接触しても電気的に接触していない場合において、電圧印加手段により絶縁被膜を破壊して接触体と被接触物との電気的な接触状態を確保することができる。 In this case, as shown in claim 15, for example, in the electrical conductivity measurement system, a voltage that is further connected to the contact body and causes dielectric breakdown between the contact body and the contacted object is set. It is good to provide the voltage application means to apply. According to this, when the insulating film is formed on the surface of the contacted object and the contact body is physically in contact with the contacted object but not in electrical contact, the insulating film is broken by the voltage applying means. Thus, an electrical contact state between the contact body and the contacted object can be ensured.
 また、請求項16に示すように、より具体的には、例えば、請求項12に記載した接触状態検出方法における各ステップと、接触状態検出方法における接触体に接続され、同接触体を接触状態検出方法における接触状態の検出対象である被接触物に接触させることにより同被接触物の電気伝導度を測定する電気伝導度測定ステップとを含む電気伝導度測定方法であって、電気伝導度測定ステップは、接触状態検出装置による接触体の被接触物への押圧状態の検出結果に応じて被接触物の電気伝導度測定を実行するとよい。これによれば、前記接触状態検出方法と同様の作用効果を得ながら被接触物の電気伝導度の測定を行うことができる。 Further, as shown in claim 16, more specifically, for example, each step in the contact state detection method according to claim 12 is connected to the contact body in the contact state detection method, and the contact body is in the contact state. An electrical conductivity measurement method comprising: an electrical conductivity measurement step for measuring electrical conductivity of an object to be contacted by bringing the object into contact with the object to be contacted in the detection method. In the step, the electrical conductivity of the contacted object may be measured in accordance with the detection result of the pressed state of the contact body against the contacted object by the contact state detecting device. According to this, the electrical conductivity of the contacted object can be measured while obtaining the same effect as that of the contact state detection method.
本発明に係る接触状態検出装置を含む電気伝導度測定システムの構成を模式的に示したブロック図である。It is the block diagram which showed typically the structure of the electrical conductivity measuring system containing the contact state detection apparatus which concerns on this invention. 図1に示す接触状態検出装置に保持される接触体を模式的に示す底面図である。It is a bottom view which shows typically the contact body hold | maintained at the contact state detection apparatus shown in FIG. (A),(B)は、図1に示す接触状態検出装置においてワーク光源から照射した光の光路を示しており、(A)は接触体に照射した光の光路を示す模式図であり、(B)は被接触物に照射した光の光路を示す模式図である。(A), (B) has shown the optical path of the light irradiated from the workpiece | work light source in the contact state detection apparatus shown in FIG. 1, (A) is a schematic diagram which shows the optical path of the light irradiated to the contact body, (B) is a schematic diagram which shows the optical path of the light irradiated to the to-be-contacted object. (A)~(C)は、図1に示す接触状態検出装置においてプローブ光源から光を照射した際の状態を説明するための図であり、(A)は接触体に照射した光の光路を示す模式図であり、(B)は被接触物に照射した光の光路を示す模式図であり、(C)はプローブ光源から光を照射した際における表示装置の表示画像を示す説明図である。(A) to (C) are diagrams for explaining a state when light is irradiated from a probe light source in the contact state detection apparatus shown in FIG. 1, and (A) shows an optical path of light irradiated to a contact body. FIG. 2B is a schematic diagram illustrating an optical path of light irradiated on an object to be contacted, and FIG. 3C is an explanatory diagram illustrating a display image of a display device when light is irradiated from a probe light source. . 図1に示す接触状態検出装置を構成するコンピュータ装置が実行するアプローチプログラムのフローチャートである。It is a flowchart of the approach program which the computer apparatus which comprises the contact state detection apparatus shown in FIG. 1 performs. 図1に示す接触状態検出装置を構成する表示装置上での接触検出領域の設定を説明するための説明図である。It is explanatory drawing for demonstrating the setting of the contact detection area | region on the display apparatus which comprises the contact state detection apparatus shown in FIG. (A),(B)は、図1に示す接触状態検出装置における接触体の接触検出の過程を説明するための図であり、(A)は接触体が被接触物の表面に接触し始めた状態を示す模式図であり、(B)は接触体が被接触物の表面に接触し始めた際の表示装置の表示画像を示す説明図である。(A), (B) is a figure for demonstrating the process of the contact detection of the contact body in the contact state detection apparatus shown in FIG. 1, (A) begins to contact the surface of a to-be-contacted object. (B) is an explanatory view showing a display image of the display device when the contact body starts to contact the surface of the contacted object. (A),(B)は、図1に示す接触状態検出装置における接触体の接触検出の過程を説明するための図であり、(A)は接触体の被接触物の表面への接触が進んだ状態を示す模式図であり、(B)は接触体の被接触物の表面への接触が進んだ際の表示装置の表示画像を示す説明図である。(A), (B) is a figure for demonstrating the process of the contact detection of the contact body in the contact state detection apparatus shown in FIG. 1, (A) is the contact to the surface of the to-be-contacted object of a contact body. It is a schematic diagram which shows the advanced state, (B) is explanatory drawing which shows the display image of a display apparatus when the contact to the surface of the to-be-contacted object of a contact body advances. (A),(B)は、本発明の変形例に係る接触状態検出装置においてプローブ光源から光を照射した際の状態を説明するための図であり、(A)は接触体に照射した光の光路を示す模式図であり、(B)は接触体が被接触物に接触した際の光の光路を示す模式図である。(A), (B) is a figure for demonstrating the state at the time of irradiating light from a probe light source in the contact state detection apparatus which concerns on the modification of this invention, (A) is the light irradiated to the contact body. It is a schematic diagram which shows the optical path of this, and (B) is a schematic diagram which shows the optical path of the light when a contact body contacts the to-be-contacted object. 本発明の他の変形例に係る接触状態検出装置を含む電気伝導度測定システムの構成を模式的に示したブロック図である。It is the block diagram which showed typically the structure of the electrical conductivity measuring system containing the contact state detection apparatus which concerns on the other modification of this invention. 本発明の他の変形例に係る接触状態検出装置を含む触針式粗さ計においてプローブ光源から光を照射した際の使用状態を説明するための模式図である。It is a schematic diagram for demonstrating the use condition at the time of irradiating light from a probe light source in the stylus type roughness meter containing the contact state detection apparatus which concerns on the other modification of this invention. 本発明の他の変形例に係る接触状態検出装置を含むマイクロマニピュレータにおいてプローブ光源から光を照射した際の使用状態を説明するための模式図である。It is a schematic diagram for demonstrating the use condition at the time of irradiating light from a probe light source in the micromanipulator containing the contact state detection apparatus which concerns on the other modification of this invention.
 以下、本発明に係る接触状態検出装置の一実施形態について図面を参照しながら説明する。図1は、本発明に係る接触状態検出装置を含む電気伝導度測定システム100の構成を模式的に示したブロック図である。なお、本明細書において参照する図は、本発明の理解を容易にするために一部の構成要素を誇張して表わすなど模式的に表している。このため、各構成要素間の寸法や比率などは異なっていることがある。この電気伝導度測定システム100は、測定対象である被接触物WKの表面の体積抵抗率(電気伝導度)を4探針測定法を用いて測定する検査装置である。ここで4探針測定法とは、一列に並んだ4つの針状の探針を試料に接触させて試料本来の体積抵抗率(電気伝導度)を測定するものである。より具体的には、4つの探針のうち外側2つの探針間で一定電流を流すとともに、同2つの探針間の内側において内側2つの探針で電圧を測定することにより所謂配線抵抗や接触抵抗を除外した試料本来の体積抵抗率(電気伝導度)を測定する。 Hereinafter, an embodiment of a contact state detection apparatus according to the present invention will be described with reference to the drawings. FIG. 1 is a block diagram schematically showing a configuration of an electrical conductivity measurement system 100 including a contact state detection device according to the present invention. Note that the drawings referred to in this specification are schematically shown by exaggerating some of the components in order to facilitate understanding of the present invention. For this reason, the dimension, ratio, etc. between each component may differ. The electrical conductivity measurement system 100 is an inspection apparatus that measures the volume resistivity (electric conductivity) of the surface of the contacted object WK that is a measurement target using a four-probe measurement method. Here, the four-probe measurement method is to measure the original volume resistivity (electric conductivity) of a sample by bringing four needle-shaped probes arranged in a line into contact with the sample. More specifically, a constant current is passed between the two outer probes of the four probes, and the voltage is measured by the inner two probes inside the two probes, so-called wiring resistance or The original volume resistivity (electrical conductivity) of the sample excluding contact resistance is measured.
(接触状態検出装置の構成)
 電気伝導度測定システム100は、電気伝導度測定システム100による体積抵抗率の測定対象である被接触物WKを保持するとともに、同被接触物WKに接触させる接触体110を保持するアプローチステージ装置120を備えている。この場合、被接触物WKは、表面の電気伝導度の測定が可能な試料(例えば、各種材料からなるインゴット、ウエハ、イオン注入層や拡散層などの各種層、金属薄膜やシリコン薄膜などの各種薄膜)であれば特に限定されるものではない。本実施形態においては、板状の半導体上に金属薄膜が形成された試料を被接触物WKとしている。
(Configuration of contact state detection device)
The electrical conductivity measurement system 100 holds the contact object WK that is a volume resistivity measurement target by the electrical conductivity measurement system 100 and also holds an approach stage device 120 that holds the contact body 110 that is in contact with the contact object WK. It has. In this case, the contacted object WK is a sample capable of measuring the electrical conductivity of the surface (for example, various layers such as ingots, wafers, ion implantation layers and diffusion layers made of various materials, metal thin films, silicon thin films, etc. The thin film is not particularly limited. In the present embodiment, a sample in which a metal thin film is formed on a plate-like semiconductor is used as the contacted object WK.
 また、接触体110は、被接触物WKに接触体110を接触させる目的に応じて適宜形成されるものであるが、被接触物WKへの接触および押圧状態(以下、単に「押圧状態」という)の検出のために被接触物WKに接触することにより変形する素材で構成されている。本実施形態においては、接触体110は被接触物WKの体積抵抗率を4探針測定法で測定するための測定子で構成されている。より具体的には、接触体110は、図2に示すように、電子回路配線111が形成された基板112の図示左側先端部に4つの薄板針状のプローブ113がそれぞれ張り出して形成されて構成されている。これら4つのプローブ113は、基板112からの突出量が約50μm、幅が約6μm、厚さが約1μmの酸化シリコンカンチレバーにチタンコーティングが施されて形成されている。そして、各プローブ113は、約10μmのピッチで幅方向に並んで基板112の先端部にて電子回路配線111に接続されている。なお、図2は、接触体110を底面から見た状態を示しており、各プローブ113は誇張して示している。 Further, the contact body 110 is appropriately formed according to the purpose of bringing the contact body 110 into contact with the contacted object WK, but is in contact with the contacted object WK and a pressed state (hereinafter simply referred to as “pressed state”). ) Is made of a material that deforms by contacting the contacted object WK. In the present embodiment, the contact body 110 is composed of a probe for measuring the volume resistivity of the contacted object WK by a four-probe measurement method. More specifically, as shown in FIG. 2, the contact body 110 is formed by projecting four thin plate-like probes 113 on the left end of the substrate 112 on which the electronic circuit wiring 111 is formed. Has been. These four probes 113 are formed by applying a titanium coating to a silicon oxide cantilever having a protruding amount from the substrate 112 of about 50 μm, a width of about 6 μm, and a thickness of about 1 μm. Each probe 113 is connected to the electronic circuit wiring 111 at the front end portion of the substrate 112 in the width direction at a pitch of about 10 μm. FIG. 2 shows a state in which the contact body 110 is viewed from the bottom, and each probe 113 is exaggerated.
 アプローチステージ装置120は、主として、ワークステージ部121、駆動ベース部122および接触体アプローチ部123を備えて構成されている。ワークステージ部121は、被接触物WKを載置した状態で着脱自在に保持する板状の載置台である。このワークステージ部121は、上面が水平となる姿勢で駆動ベース部122によって支持されている。駆動ベース部122は、ワークステージ部121を支持した状態で図示X軸方向および同X軸方向に直交するY軸方向に変位させる駆動装置である。 The approach stage device 120 mainly includes a work stage part 121, a drive base part 122, and a contact body approach part 123. The work stage unit 121 is a plate-like mounting table that holds the contacted object WK in a detachable manner. The work stage unit 121 is supported by the drive base unit 122 in a posture in which the upper surface is horizontal. The drive base portion 122 is a drive device that displaces in the illustrated X axis direction and the Y axis direction orthogonal to the X axis direction in a state where the work stage unit 121 is supported.
 具体的には、駆動ベース部122は、後述するコンピュータ装置140によって作動が制御される図示しないX軸方向アクチュエータおよびY軸方向アクチュエータを備えており、これら各軸方向ごとのアクチュエータの作動制御によってワークステージ部121を図示X軸方向およびY軸方向にそれぞれ変位させる。これらのX軸方向アクチュエータおよびY軸方向アクチュエータは、それぞれ粗駆動用の電動モータと微駆動用のPZT(チタン酸ジルコ酸鉛)などからなる圧電素子とによって構成されており、ワークステージ111を各軸方向ごとに粗送り(mm/s)および精密送り(nm/s)することができる。 Specifically, the drive base unit 122 includes an X-axis direction actuator and a Y-axis direction actuator (not shown) whose operation is controlled by a computer device 140 to be described later, and the workpiece is controlled by operating the actuator for each axis direction. The stage unit 121 is displaced in the illustrated X-axis direction and Y-axis direction, respectively. These X-axis direction actuator and Y-axis direction actuator are each composed of an electric motor for coarse driving and a piezoelectric element made of PZT (lead zirconate titanate) for fine driving. Coarse feed (mm / s) and fine feed (nm / s) can be performed for each axial direction.
 接触体アプローチ部123は、被接触物WKに接触させる接触体110の一端部を保持した状態で図示X軸方向およびY軸方向に直交するZ軸方向(図示上下方向)に変位させる駆動装置であり、主として、接触体保持部123aおよび支柱123bによって構成されている。接触体保持部123aは、図示水平方向に延びて形成されており、接触体110をワークステージ部121の上面に対して交わる姿勢、すなわち、ワークステージ部121上に載置される被接触物WKの上面に対して斜めの姿勢で着脱自在に保持する部材である。また、支柱123bは、接触体保持部123aの一端部(図示右側端部)を支持した状態で図示Z軸方向(図示上下方向)に変位させる駆動装置である。 The contact body approach portion 123 is a driving device that displaces in the Z-axis direction (vertical direction in the figure) perpendicular to the illustrated X-axis direction and the Y-axis direction while holding one end of the contact body 110 to be brought into contact with the contacted object WK. Yes, it is mainly composed of the contact body holding portion 123a and the support column 123b. The contact body holding portion 123 a is formed to extend in the horizontal direction in the figure, and is in a posture where the contact body 110 intersects the upper surface of the work stage portion 121, that is, the contacted object WK placed on the work stage portion 121. This is a member that is detachably held in a slanting posture with respect to the upper surface. Moreover, the support | pillar 123b is a drive device which displaces to the Z-axis direction (illustrated up-down direction) of the illustration in the state which supported the one end part (illustration right-side end part) of the contact body holding | maintenance part 123a.
 具体的には、支柱123bは、前記コンピュータ装置140によって作動が制御される図示しないZ軸方向アクチュエータを備えており、このZ軸方向アクチュエータの作動制御によって接触体保持部123aを図示Z軸方向に変位させる。このZ軸方向アクチュエータは、前記X軸方向アクチュエータおよびY軸方向アクチュエータと同様に、粗駆動用の電動モータと微駆動用のPZT(チタン酸ジルコ酸鉛)などからなる圧電素子とによって構成されており、接触体保持部123aを図示Z軸方向に粗送り(mm/s)および精密送り(nm/s)することができる。 Specifically, the column 123b is provided with a Z-axis direction actuator (not shown) whose operation is controlled by the computer device 140, and the contact body holding portion 123a is moved in the Z-axis direction by the operation control of the Z-axis direction actuator. Displace. This Z-axis direction actuator is composed of an electric motor for coarse driving and a piezoelectric element made of PZT (lead zirconate titanate) for fine driving, similar to the X-axis direction actuator and Y-axis direction actuator. Thus, the contact body holding portion 123a can be coarsely fed (mm / s) and precisely fed (nm / s) in the Z-axis direction shown in the figure.
 接触体アプローチ部123の支柱123bには、4探針測定回路124が設けられている。4探針測定回路124は、接触体110の接触検出および被接触物WKの電気伝導度を測定するための電気回路で構成されている。具体的には、4つのプローブ113における外側2つのプローブ113に電流を流すための直流電源および同外側2つのプローブ113に流れている電流値を測定するための電流計と、内側2つのプローブ113間の電位差を測定するための電圧計とを備えている。この4探針測定回路124は、コンピュータ装置140によって作動が制御されるとともに、各測定値をコンピュータ装置140に出力する。 The 4-probe measurement circuit 124 is provided on the support 123b of the contact body approach portion 123. The four-probe measurement circuit 124 includes an electric circuit for detecting contact of the contact body 110 and measuring the electric conductivity of the contacted object WK. Specifically, a DC power source for flowing current to the two outer probes 113 in the four probes 113, an ammeter for measuring the current value flowing in the two probes 113 on the same, and the two probes 113 on the inner side. And a voltmeter for measuring a potential difference therebetween. The operation of the four-probe measurement circuit 124 is controlled by the computer device 140 and outputs each measurement value to the computer device 140.
 アプローチステージ装置120のワークステージ部121の上方には、プローブ光源131およびビームスプリッタ132がそれぞれ設けられている。プローブ光源131は、ワークステージ部121上の被接触物WKの表面に向って変位するプローブ113に向かって光を照射して接触体110を照らすための照明器具であり、コンピュータ装置140によって作動が制御される。本実施形態においては、プローブ光源131は、LEDによって構成されている。このプローブ光源131は、プローブ光源131の向きや姿勢を変化させて光の照射位置を任意の位置に変更できる図示しないプローブ光源支持機構によってワークステージ部121の斜め上方に支持されている。 A probe light source 131 and a beam splitter 132 are provided above the work stage 121 of the approach stage device 120, respectively. The probe light source 131 is an illuminating device for illuminating the contact body 110 by irradiating light toward the probe 113 that is displaced toward the surface of the contact object WK on the work stage unit 121, and is operated by the computer device 140. Be controlled. In the present embodiment, the probe light source 131 is configured by an LED. The probe light source 131 is supported obliquely above the work stage unit 121 by a probe light source support mechanism (not shown) that can change the light irradiation position to an arbitrary position by changing the orientation and posture of the probe light source 131.
 ビームスプリッタ132は、入射した光の一部を透過させるとともに、同入射した光の他の一部を入射方向と直交する方向に反射させる光学部品である。このビームスプリッタ132における図示Z軸方向の光軸上には、ワーク光源133が設けられている。ワーク光源133は、ワークステージ部121上に載置される被接触物WKの表面を照らすための照明器具であり、コンピュータ装置140によって作動が制御される。本実施形態においては、ワーク光源133は白熱電球によって構成されている。 The beam splitter 132 is an optical component that transmits a part of the incident light and reflects another part of the incident light in a direction orthogonal to the incident direction. A work light source 133 is provided on the optical axis of the beam splitter 132 in the Z-axis direction shown in the figure. The work light source 133 is a lighting fixture for illuminating the surface of the contacted object WK placed on the work stage unit 121, and its operation is controlled by the computer device 140. In the present embodiment, the work light source 133 is configured by an incandescent light bulb.
 一方、ビームスプリッタ132における図示X軸方向の光軸上には、集光レンズ134および撮像素子135がそれぞれ設けられている。集光レンズ134は、ビームスプリッタ132を介して導かれる光を撮像素子135上に集光させるための光学素子である。また、撮像素子135は、集光レンズ134の集光位置に配置され、受光面に結像した像に応じた電気信号をコンピュータ装置140に出力する光学素子である。本実施形態においては、撮像素子132をCCDイメージセンサで構成した。これらのビームスプリッタ132、ワーク光源133、集光レンズ134および撮像素子135は、ワークステージ部121上における任意の位置に一体的に変位させることができる図示しない撮像光学系支持機構によってワークステージ部121の上方に支持されている。 On the other hand, a condensing lens 134 and an image sensor 135 are provided on the optical axis in the X-axis direction of the beam splitter 132 in the figure. The condensing lens 134 is an optical element for condensing the light guided through the beam splitter 132 on the image sensor 135. The imaging element 135 is an optical element that is disposed at the condensing position of the condensing lens 134 and outputs an electrical signal corresponding to the image formed on the light receiving surface to the computer device 140. In the present embodiment, the image sensor 132 is constituted by a CCD image sensor. The beam splitter 132, the work light source 133, the condenser lens 134, and the imaging element 135 can be integrally displaced to arbitrary positions on the work stage unit 121 by an imaging optical system support mechanism (not shown). Is supported above.
 コンピュータ装置140は、CPU、ROM、RAM、ハードディスクなどからなるマイクロコンピュータによって構成されており、キーボードおよびマウスからなる入力装置141からの指示に従って、図示しない制御プログラムを実行することによりアプローチステージ装置120、4探針測定回路124、プローブ光源131、ワーク光源133および撮像素子135の作動をそれぞれ制御する。また、コンピュータ装置140は、液晶ディスプレイからなる表示装置142を備えており、コンピュータ装置140の作動状態、前記制御プログラムの実行状態および撮像素子135による撮像画像などを適宜表示させる。すなわち、本実施形態においてコンピュータ装置140は、個人向けパーソナルコンピュータ(所謂パソコン)を想定している。 The computer device 140 is configured by a microcomputer including a CPU, a ROM, a RAM, a hard disk, and the like. The approach stage device 120 is executed by executing a control program (not shown) according to instructions from the input device 141 including a keyboard and a mouse. The operations of the four-probe measurement circuit 124, the probe light source 131, the work light source 133, and the image sensor 135 are controlled. In addition, the computer device 140 includes a display device 142 formed of a liquid crystal display, and appropriately displays an operation state of the computer device 140, an execution state of the control program, an image captured by the image sensor 135, and the like. That is, in the present embodiment, the computer apparatus 140 is assumed to be a personal computer for personal use (so-called personal computer).
 また、コンピュータ装置140は、図5に示すアプローチプログラムを実行することにより、接触体アプローチ部123の接触体保持部123aに保持した接触体110を被接触物WKに向って変位させて接触させる。この場合、コンピュータ装置140は、撮像素子135から出力される撮像画像をそのまま表示装置142に表示させることができるとともに、同撮像画像を表す撮像画像情報をピクセルごとに受光光量に対応する輝度(明度ともいう)に応じて二値化、具体的には、各ピクセルごとの撮像画像情報の輝度が所定値以上の部分を白色とするとともに同所定値未満の部分を黒色としたモノクロ画像に変換して表示する。このアプローチプログラムを含む前記制御プログラムは、作業者により予め前記ハードディスクに記憶されている。なお、コンピュータ装置140は、アプローチステージ装置120、4探針測定回路124、プローブ光源131、ワーク光源133および撮像素子135の作動を制御することができれば、どのような形式のコンピュータ装置であってもよい。 Further, the computer apparatus 140 executes the approach program shown in FIG. 5 to displace the contact body 110 held by the contact body holding section 123a of the contact body approach section 123 toward the contacted object WK. In this case, the computer device 140 can display the captured image output from the image sensor 135 on the display device 142 as it is, and the captured image information representing the captured image has a luminance (lightness) corresponding to the amount of received light for each pixel. In other words, binarization is performed, specifically, a portion where the luminance of the captured image information for each pixel is a predetermined value or more is converted into a white image and a portion where the luminance is less than the predetermined value is converted into a black and white image. To display. The control program including this approach program is stored in the hard disk in advance by an operator. The computer device 140 may be any type of computer device as long as it can control the operation of the approach stage device 120, the four-probe measurement circuit 124, the probe light source 131, the work light source 133, and the image sensor 135. Good.
 (接触状態検出装置の作動)
 次に、上記のように構成した接触状態検出装置を含む電気伝導度測定システム100の作動について説明する。なお、この作動説明においては、本発明に直接関わる部分である被接触物WKに対して接触体110のプローブ113を接触させる過程について作動説明を行い、被接触物WKの電気伝導度測定に関する作動については一般的な4探針法による電気伝導度測定技術であるため、その説明は適宜省略する。
(Operation of contact state detection device)
Next, the operation of the electrical conductivity measurement system 100 including the contact state detection device configured as described above will be described. In this description of the operation, an operation is described for the process of bringing the probe 113 of the contact body 110 into contact with the contacted object WK, which is a part directly related to the present invention, and the operation related to measuring the electrical conductivity of the contacted object WK. Since is an electric conductivity measurement technique by a general four-probe method, description thereof will be omitted as appropriate.
 まず、作業者は、電気伝導度測定の対象となる被接触物WKをアプローチステージ装置120におけるワークステージ部121上にセットするとともに、接触体110を接触体アプローチ部123の接触体保持部123aに保持させる。この場合、作業者は、被接触物WKを、被接触物WKにおける電気伝導度を測定する側の表面を接触体保持部123a側に向けてワークステージ部121上にセットする。また、作業者は、ワークステージ部121上にセットされた被接触物WKに接触体110のプローブ113を被接触物WKの上面に対して交わる図示斜めの姿勢で対向させた状態で接触体保持部123aに保持させる。 First, the operator sets the contact object WK to be measured for electrical conductivity on the work stage unit 121 in the approach stage device 120, and the contact body 110 on the contact body holding unit 123a of the contact body approach unit 123. Hold. In this case, the operator sets the contacted object WK on the work stage unit 121 with the surface on the side to measure the electrical conductivity of the contacted object WK facing the contact body holding unit 123a. In addition, the operator holds the contact body in a state where the probe 113 of the contact body 110 is opposed to the contact object WK set on the work stage unit 121 in an oblique posture in the figure so as to cross the upper surface of the contact object WK. Held in the part 123a.
 次に、作業者は、被接触物WK上における電気伝導度の測定位置の上方に接触体保持部123aに保持された接触体110のプローブ113の先端部を位置決めする。具体的には、作業者は、コンピュータ装置140の入力装置141を操作することによりワーク光源133を点灯させるとともに撮像素子135の作動を開始させて表示装置142に撮像画像を表示させる。この場合、作業者は、撮像素子135が撮像した画像をそのまま表示装置142に表示するようにコンピュータ装置140に指示する。これにより、表示装置142の表示画面には、撮像素子135の視野内に存在する接触体110および被接触物WKの画像が表示される。次いで、作業者は、表示装置142の表示画面の略中央部に接触体保持部123aに保持された接触体110のプローブ113の画像を位置させる。具体的には、作業者は、撮像光学系支持機構(図示せず)を手動操作することによりビームスプリッタ132、ワーク光源133、集光レンズ134および撮像素子135の位置を一体的に調節する。 Next, the operator positions the tip of the probe 113 of the contact body 110 held by the contact body holding part 123a above the measurement position of the electrical conductivity on the contacted object WK. Specifically, the operator turns on the work light source 133 by operating the input device 141 of the computer device 140 and starts the operation of the image sensor 135 to display the captured image on the display device 142. In this case, the operator instructs the computer device 140 to display the image captured by the image sensor 135 on the display device 142 as it is. Thereby, on the display screen of the display device 142, the images of the contact body 110 and the contacted object WK existing in the field of view of the image sensor 135 are displayed. Next, the worker positions the image of the probe 113 of the contact body 110 held by the contact body holding section 123a at a substantially central portion of the display screen of the display device 142. Specifically, the operator manually adjusts the positions of the beam splitter 132, the work light source 133, the condenser lens 134, and the imaging element 135 by manually operating an imaging optical system support mechanism (not shown).
 この位置決め作業においては、ワーク光源133から出射した光は、ビームスプリッタ132を介して接触体110および被接触物WKをそれぞれ照射する。これらのうち、接触体110に照射された光WLは、図3(A)に示すように、接触体110における光WLの照射面がワーク光源133の中心軸に対して傾斜しているため、照射された光WLの大部分がビームスプリッタ132とは異なる方向に反射する。一方、被接触物WKに照射された光WLは、図3(B)に示すように、被接触物WKにおける光WLの照射面がワーク光源133の中心軸に対して直交しているため、照射された光WLの大部分がビームスプリッタ132に向かって反射して撮像素子135に導かれる。これにより、表示装置142の表示画面には、被接触物WKの表面が明るく表示されるとともに、接触体110が暗い影状に表示される。すなわち、ワーク光源133によって照らされた被接触物WKを撮像素子135で撮像した撮像画像を表す撮像画像情報が、本発明に係る被接触物撮像画像情報に相当する。なお、図3(B)において、プローブ113は説明の便宜上破線で示している。 In this positioning operation, the light emitted from the work light source 133 irradiates the contact body 110 and the contacted object WK via the beam splitter 132, respectively. Among these, as shown in FIG. 3A, the light WL applied to the contact body 110 is inclined with respect to the central axis of the work light source 133, as shown in FIG. Most of the irradiated light WL is reflected in a direction different from that of the beam splitter 132. On the other hand, as shown in FIG. 3B, the light WL irradiated to the contacted object WK is orthogonal to the central axis of the work light source 133, as shown in FIG. Most of the irradiated light WL is reflected toward the beam splitter 132 and guided to the image sensor 135. Thereby, on the display screen of the display device 142, the surface of the contacted object WK is displayed brightly, and the contact body 110 is displayed in a dark shadow shape. That is, captured image information representing a captured image obtained by capturing the contact object WK illuminated by the work light source 133 with the image sensor 135 corresponds to the contact object captured image information according to the present invention. In FIG. 3B, the probe 113 is shown by a broken line for convenience of explanation.
 そして、作業者は、接触体保持部123aに保持された接触体110を直接目視するとともに表示装置142の表示画面を目視しながら、同表示画面の略中央部に接触体110のプローブ113の画像が位置するように撮像光学系支持機構(図示せず)を操作してビームスプリッタ132、ワーク光源133、集光レンズ134および撮像素子135の位置を一体的に位置決めする。次いで、作業者は、被接触物WKに対する接触体110の位置決めを行なう。具体的には、作業者は、接触体保持部123aに保持された接触体110を直接目視するとともに表示装置142の表示画面を目視しながら入力装置141を操作することによりワークステージ部121を図示X軸方向およびY軸方向に変位させて接触体110のプローブ113の先端部の位置を位置決めする。これにより、被接触物WK上における電気伝導度の測定位置の上方に接触体保持部123aに保持された接触体110のプローブ113の先端部が位置決めされる。 Then, the operator directly looks at the contact body 110 held by the contact body holding portion 123a and also looks at the display screen of the display device 142, and the image of the probe 113 of the contact body 110 at the substantially central portion of the display screen. The position of the beam splitter 132, the work light source 133, the condensing lens 134, and the image sensor 135 is integrally positioned by operating an imaging optical system support mechanism (not shown) so that is positioned. Next, the worker positions the contact body 110 with respect to the contacted object WK. Specifically, the operator illustrates the work stage unit 121 by directly viewing the contact body 110 held by the contact body holding unit 123a and operating the input device 141 while viewing the display screen of the display device 142. The position of the tip of the probe 113 of the contact body 110 is positioned by displacing in the X-axis direction and the Y-axis direction. Thereby, the tip part of the probe 113 of the contact body 110 held by the contact body holding part 123a is positioned above the measurement position of the electrical conductivity on the contacted object WK.
 次に、作業者は、プローブ光源131の位置決めを行う。このプローブ光源131の位置決めは、図4(A)に示すように、プローブ光源131からの出射光PLの大部分が接触体110のプローブ113に照射されるとともに、同プローブ113からの反射光がビームスプリッタ132に導かれる位置にプローブ光源131を位置決めするものである。作業者は、コンピュータ装置140の入力装置141を操作することによりワーク光源133を消灯するとともにプローブ光源131を点灯させる。また、作業者は、コンピュータ装置140の入力装置141を操作して表示装置142による撮像画像表示を白黒のニ値画像表示に切り替える。 Next, the worker positions the probe light source 131. As shown in FIG. 4A, the probe light source 131 is positioned by irradiating most of the emitted light PL from the probe light source 131 to the probe 113 of the contact body 110 and reflecting light from the probe 113. The probe light source 131 is positioned at a position guided to the beam splitter 132. The operator operates the input device 141 of the computer device 140 to turn off the work light source 133 and turn on the probe light source 131. In addition, the operator operates the input device 141 of the computer device 140 to switch the captured image display on the display device 142 to black and white binary image display.
 これにより、プローブ光源131から出射され被接触物WKおよび/または接触体110に反射された反射光が撮像素子135に導かれる。したがって、撮像素子135は、導かれた反射光に対応する撮像画像情報をコンピュータ装置140に出力する。コンピュータ装置140は、入力した撮像画像情報を各ピクセルごとの輝度に応じて二値化する。これにより、表示装置142の表示画面には、撮像素子135に導かれた光のうち所定の光量以上の光が白色で表示される。したがって、作業者は、表示装置142の表示画面を目視しながら、表示画面にプローブ113の形状が白色の画像で表示されるようにプローブ支持機構(図示せず)を操作してプローブ光源131の位置を調節する。これにより、結果として、図4(A)に示すように、プローブ光源131から出射されて接触体110に照射される光PLの入射角と等しい反射角上にビームスプリッタ132が位置するようにプローブ光源131の位置が調節される。 Thereby, the reflected light emitted from the probe light source 131 and reflected by the contacted object WK and / or the contact body 110 is guided to the image sensor 135. Therefore, the image sensor 135 outputs captured image information corresponding to the guided reflected light to the computer device 140. The computer device 140 binarizes the input captured image information according to the luminance of each pixel. As a result, on the display screen of the display device 142, light of a predetermined amount or more out of the light guided to the image sensor 135 is displayed in white. Therefore, the operator operates the probe support mechanism (not shown) so that the shape of the probe 113 is displayed as a white image on the display screen while visually observing the display screen of the display device 142. Adjust the position. As a result, as shown in FIG. 4A, as a result, the probe is arranged such that the beam splitter 132 is positioned at a reflection angle equal to the incident angle of the light PL emitted from the probe light source 131 and applied to the contact body 110. The position of the light source 131 is adjusted.
 一方、プローブ光源131から出射され接触体110以外の物体、具体的には、主に被接触物WKの表面に照射された光PLは、図4(B)に示すように、被接触物WKの表面が接触体110のプローブ113に対して非平行であるため、照射された光PLの大部分がビームスプリッタ132とは異なる方向に反射される。すなわち、撮像素子135は、プローブ光源131から照射された光PLのうちの被接触物WKの表面からの反射光が直接入らない位置、換言すれば、同反射光の光路外に配置される。このため、表示装置142の表示画面には、図4(C)に示すように、接触体110のプローブ113の部分が白色で表示されるとともに、プローブ113以外の部分、具体的には、被接触物WKの表面部分が黒色で表示される。なお、図4(B)において、プローブ113は説明の都合上破線で示している。また、図4(C)においては、基板112、プローブ113、被接触物WKに対応する表示画像部分にそれぞれ基板112、プローブ113、被接触物WKの符号を付す。 On the other hand, an object other than the contact body 110 emitted from the probe light source 131, specifically, the light PL mainly irradiated on the surface of the contacted object WK, as shown in FIG. Since most of the irradiated light PL is reflected in a direction different from that of the beam splitter 132, the surface is non-parallel to the probe 113 of the contact body 110. That is, the image sensor 135 is disposed at a position where the reflected light from the surface of the contacted object WK does not directly enter the light PL emitted from the probe light source 131, in other words, outside the optical path of the reflected light. Therefore, on the display screen of the display device 142, as shown in FIG. 4C, the portion of the probe 113 of the contact body 110 is displayed in white, and the portion other than the probe 113, specifically, The surface portion of the contact object WK is displayed in black. In FIG. 4B, the probe 113 is indicated by a broken line for convenience of explanation. In FIG. 4C, reference numerals of the substrate 112, the probe 113, and the contacted object WK are attached to the display image portions corresponding to the substrate 112, the probe 113, and the contacted object WK, respectively.
 次に、作業者は、接触体110の被接触物WKへの接触作業を行う。具体的には、作業者は、コンピュータ装置140の入力装置141を操作することにより、コンピュータ装置140に接触体110の被接触物WKへの接触処理を実行させる。この指示に応答してコンピュータ装置140は、図5に示す接触体110を被接触物WKに接触させるためのアプローチプログラムをステップS100にて開始して、ステップS102にて接触検出領域SEの設定を作業者に促す。 Next, the worker performs a contact operation of the contact body 110 to the contacted object WK. Specifically, the operator operates the input device 141 of the computer device 140 to cause the computer device 140 to perform the contact process of the contact body 110 with the contacted object WK. In response to this instruction, the computer apparatus 140 starts an approach program for bringing the contact body 110 shown in FIG. 5 into contact with the contacted object WK in step S100, and sets the contact detection area SE in step S102. Encourage workers.
 この接触検出領域SEの設定とは、被接触物WKに対する接触体110の押圧状態の検出感度および接触体110の被接触物WKへの押圧力を規定するために、撮像素子135から出力される撮像画像情報の中から接触体110の接触検出に用いる撮像画像情報を選択するものである。すなわち、接触検出領域SEの設定は、被接触物WKへの接触による接触体110の変形部分のうちどの部分を用いて、接触体110の押圧状態の検出を行なうかを設定するものである。具体的には、作業者は、図6に示すように、表示装置142の表示画面に表示される枠状の接触検出領域SEの位置および大きさを接触体110の白色画像上において図示しないマウス(ポインティングデバイス)などを用いて調整し設定する。本実施形態においては、4つのプローブ113の各先端部を含んだ状態で、表示装置142の表示画面に表示された白色のプローブ113のうち先端部から約半分の白色部分を領域内に含めた選択率約50%の領域を接触検出領域SEとして設定する。 The setting of the contact detection area SE is output from the image sensor 135 in order to define the detection sensitivity of the pressed state of the contact body 110 against the contacted object WK and the pressing force of the contact body 110 on the contacted object WK. The picked-up image information used for contact detection of the contact body 110 is selected from the picked-up image information. That is, the setting of the contact detection area SE is to set which part of the deformed parts of the contact body 110 due to contact with the contacted object WK is used to detect the pressed state of the contact body 110. Specifically, as shown in FIG. 6, the worker displays the position and size of the frame-shaped contact detection area SE displayed on the display screen of the display device 142 on a white image of the contact body 110 (not shown). Adjust and set using (pointing device). In the present embodiment, in a state including the tip portions of the four probes 113, a white portion of about half from the tip portion of the white probe 113 displayed on the display screen of the display device 142 is included in the region. An area with a selectivity of about 50% is set as the contact detection area SE.
 次に、コンピュータ装置140は、ステップS104にて、接触体110のプローブ113に接触検出用の電圧を印加する。具体的には、コンピュータ装置140は、4探針測定回路124の作動を制御することにより、接触体110の4つのプローブ113のうち外側2つのプローブ113に所定の電圧を印加する。また、4探針測定回路124は、内蔵する電流計の作動を開始させて電流計測値をコンピュータ装置140に出力する。 Next, the computer device 140 applies a contact detection voltage to the probe 113 of the contact body 110 in step S104. Specifically, the computer device 140 applies a predetermined voltage to the two outer probes 113 of the four probes 113 of the contact body 110 by controlling the operation of the four-probe measurement circuit 124. The 4-probe measurement circuit 124 starts the operation of the built-in ammeter and outputs a current measurement value to the computer device 140.
 次に、コンピュータ装置140は、ステップS106にて、撮像素子135の作動を制御して撮像素子135による撮像処理を開始させる。これにより、撮像素子135は、プローブ光源131によって照らされた接触体110の表面を撮像した撮像画像を表す接触体撮像画像情報を出力する。この場合、プローブ光源131から出射された光は接触体110のプローブ113の他に被接触物WKにも照射されるため、接触体撮像画像情報には、接触体110のプローブ113の他に被接触物WKの表面の撮像画像も含まれる。但し、撮像素子135には、主として接触体110のプローブ113に照射された光の反射光が導かれるため、接触体撮像画像情報は接触体110を表わす部分が被接触物WKの表面を表わす部分より高輝度で表わされる。 Next, in step S <b> 106, the computer device 140 controls the operation of the image sensor 135 to start the image capturing process by the image sensor 135. Thereby, the image sensor 135 outputs contact body imaged image information representing a captured image obtained by imaging the surface of the contact body 110 illuminated by the probe light source 131. In this case, since the light emitted from the probe light source 131 is irradiated not only on the probe 113 of the contact body 110 but also on the contact object WK, the contact body captured image information includes the target object other than the probe 113 of the contact body 110. A captured image of the surface of the contact object WK is also included. However, since the reflected light of the light irradiated to the probe 113 of the contact body 110 is mainly guided to the image sensor 135, the contact body captured image information includes a portion in which the contact body 110 represents the surface of the contacted object WK. It is expressed with higher brightness.
 次に、コンピュータ装置140は、ステップS108にて、接触体撮像画像情報の二値化処理を開始する。具体的には、コンピュータ装置140は、撮像素子135から入力した接触体撮像画像情報をピクセルごとに受光光量(輝度)に応じて二値化、より具体的には、各ピクセルごとの撮像画像情報の輝度が所定値以上の部分を白色とするとともに同所定値未満の部分を黒色としたモノクロ画像に変換する。これにより、接触体撮像画像情報のうち、接触体110に相当する接触体撮像画像情報が白色で表わされるとともに、その他の部分(主として被接触物WKの表面)を表わす接触体撮像画像情報が黒色で表わされる(図4(C)、図6参照)。 Next, in step S108, the computer apparatus 140 starts binarization processing of the contact body captured image information. Specifically, the computer device 140 binarizes the contact body captured image information input from the image sensor 135 according to the amount of received light (brightness) for each pixel, and more specifically, captured image information for each pixel. Is converted into a monochrome image in which a portion where the luminance is greater than or equal to a predetermined value is white and a portion where the luminance is less than the predetermined value is black. As a result, of the contact body captured image information, the contact body captured image information corresponding to the contact body 110 is represented in white, and the contact body captured image information representing the other part (mainly the surface of the contacted object WK) is black. (See FIG. 4C and FIG. 6).
 次に、コンピュータ装置140は、ステップS110にて、接触体110を被接触物WKに向けて変位させる。具体的には、コンピュータ装置140は、Z軸方向アクチュエータ(図示せず)の作動を開始させて接触体保持部123aを支柱123bに沿って図示下方、すなわち、ワークステージ部121上の被接触物WKに向って変位させる。 Next, in step S110, the computer device 140 displaces the contact body 110 toward the contacted object WK. Specifically, the computer device 140 starts the operation of a Z-axis direction actuator (not shown), and moves the contact body holding portion 123a along the column 123b in the lower portion of the drawing, that is, on the work stage portion 121. Displace toward WK.
 次に、コンピュータ装置140は、ステップS112にて、接触体110の被接触物WKへの押圧状態を検出する。具体的には、コンピュータ装置140は、4探針計測回路124から出力される電流計測値を監視して同電流計測値が0A(アンペア)より大きくなったとき、または撮像素子135から出力されて二値化された接触体撮像画像情報のうち接触検出領域SE内の撮像画像情報の略すべて(本実施形態においては、全体の略90%)が黒色となったときに接触体110が被接触物WKに接触して押圧状態となったと判定する。 Next, in step S112, the computer device 140 detects the pressing state of the contact body 110 against the contacted object WK. Specifically, the computer device 140 monitors the current measurement value output from the four-probe measurement circuit 124, and when the current measurement value becomes larger than 0 A (ampere), or is output from the image sensor 135. The contact body 110 is contacted when substantially all of the imaged image information in the contact detection area SE (in the present embodiment, about 90% of the entire image) of the binarized contact body imaged image information becomes black. It determines with having contacted the thing WK and having been in the press state.
 この接触体110の押圧状態検出処理において、4探針計測回路124から出力される電流計測値が0Aより大きくなった場合とは、2つの外側のプローブ113間が電気的に接触したことにより電流が流れたことを意味しており、これは、2つの外側のプローブ113が被接触物WKの表面にそれぞれ接触したことを意味している。また、撮像素子135から出力された接触体撮像画像情報のうち接触検出領域SE内の撮像画像情報の略すべてが黒色となった場合とは、撮像素子135に接触体110のプローブ113からの反射光が入射しなくなったことを意味しており、これは、プローブ113が被接触物WKの表面に接触して同表面を押圧することにより撓み変形して反射光の進行方向が変化したことを意味している。 In the pressed state detection processing of the contact body 110, when the current measurement value output from the four-probe measurement circuit 124 is greater than 0A, the current is due to the electrical contact between the two outer probes 113. This means that the two outer probes 113 are in contact with the surface of the contacted object WK, respectively. In addition, when almost all of the captured image information in the contact detection area SE among the contact body captured image information output from the image sensor 135 is black, the image sensor 135 reflects from the probe 113 of the contact body 110. This means that the light is no longer incident. This is because the probe 113 is in contact with the surface of the contacted object WK and presses the surface to bend and deform to change the traveling direction of the reflected light. I mean.
 この接触体撮像画像情報のうち接触検出領域SE内の撮像画像情報が黒色に変化する過程について、より詳しく説明する。接触体110のプローブ113が被接触物WKの表面に接触してない場合には、前記図4(C)および図6に示すように、表示装置142の表示画面にはプローブ113の全体形状が白色画像として表示される。これは、接触体110のプローブ113によって反射された反射光の多くが撮像素子135に導かれるためである。 The process in which the captured image information in the contact detection area SE of the contact body captured image information changes to black will be described in more detail. When the probe 113 of the contact body 110 is not in contact with the surface of the contacted object WK, the overall shape of the probe 113 is displayed on the display screen of the display device 142 as shown in FIGS. Displayed as a white image. This is because most of the reflected light reflected by the probe 113 of the contact body 110 is guided to the image sensor 135.
 その後、プローブ113が被接触物WKに向って変位することにより同プローブ113の先端部が被接触物WKの表面に接触し始めると、図7(A)に示すように、プローブ113における被接触物WKの表面への接触部分が撓み変形する。これにより、プローブ113における変形部分からの反射光の進行方向が変化してビームスプリッタ133に導かれなくなるため、図7(B)に示すように、表示装置142に表示される前記変形部分(プローブ113の先端部分)に対応する撮像画像が黒色に変化する。 Thereafter, when the probe 113 is displaced toward the contacted object WK and the tip of the probe 113 starts to contact the surface of the contacted object WK, as shown in FIG. A contact portion with the surface of the object WK is bent and deformed. As a result, the traveling direction of reflected light from the deformed portion of the probe 113 is changed and is not guided to the beam splitter 133. Therefore, as shown in FIG. 7B, the deformed portion (probe) displayed on the display device 142 is displayed. The captured image corresponding to the tip portion 113 of 113 changes to black.
 そして、プローブ113が更に被接触物WKの表面に向って変位することにより、図8(A)に示すように、プローブ113が被接触物WKの表面を押圧してプローブ113における被接触物WKの表面と平行に変形した接触部分が増加する。これにより、プローブ113から撮像素子135に導かれる反射光が更に少なくなり、図8(B)に示すように、表示装置142の表示される接触検出領域SE内のプローブ113の撮像画像の白色部分の殆どが黒色に変化する。すなわち、コンピュータ装置140は、接触体撮像画像情報によって表わされる反射光の受光部分(領域)の面積変化を用いて接触体110の押圧状態を検出する。 Then, when the probe 113 is further displaced toward the surface of the contacted object WK, the probe 113 presses the surface of the contacted object WK as shown in FIG. The contact portion deformed parallel to the surface of the surface increases. Thereby, the reflected light guided from the probe 113 to the image sensor 135 is further reduced, and as shown in FIG. 8B, the white portion of the captured image of the probe 113 in the contact detection area SE displayed on the display device 142 is displayed. Most of the color turns black. That is, the computer device 140 detects the pressing state of the contact body 110 using the area change of the light receiving portion (region) of the reflected light represented by the contact body captured image information.
 したがって、コンピュータ装置140は、ステップS112の判定処理にて、4探針計測回路124から出力される電流計測値が0Aより大きくなるまで、または撮像素子135から出力される接触体撮像画像情報のうち接触検出領域SEの撮像画像情報の略すべてが黒色となるまでの間、「No」と判定し続けてステップS112の判定処理を繰り返し実行する。このステップS112による判定処理を繰り返し実行している間、コンピュータ装置140は、接触体110を被接触物WK側に送るピッチごとに4探針計測回路124から出力される電流計測値および接触体撮像画像情報の監視処理を実行する。 Therefore, the computer device 140 determines that the current measurement value output from the four-probe measurement circuit 124 is greater than 0 A or the contact body captured image information output from the image sensor 135 in the determination process of step S112. Until substantially all of the captured image information in the contact detection area SE becomes black, the determination process of step S112 is repeatedly performed while determining “No”. While the determination process in step S112 is repeatedly performed, the computer apparatus 140 detects the current measurement value output from the 4-probe measurement circuit 124 and the contact body imaging for each pitch at which the contact body 110 is sent to the contacted object WK side. Image information monitoring processing is executed.
 一方、コンピュータ装置140は、ステップS112の判定処理にて、4探針計測回路124から出力される電流計測値が0Aより大きくなったとき、または撮像素子135から出力される接触体撮像画像情報のうち接触検出領域SEの撮像画像情報の略すべてが黒色となったとき、接触体110が被接触物WKに接触して押圧状態となったとして「Yes」と判定してステップS114に進む。なお、このステップS112による押圧状態判定処理を実行している間、作業者は、表示装置142の表示画面を監視することにより接触体110の異常な接触を検出することができる。例えば、4つのプローブ113のうち1つのプローブ113のみが黒色に変化した場合には、同1つのプローブ113が何らかのものに接触して変形していると考えられるため、作業者は、入力装置141を操作し直ちに接触体110の被接触物WKへの接触作業を中断することができる。すなわち、本発明に係る接触状態検出装置は、接触体110の被接触物WKの接触の有無のみならず、の状態も検出することができる。 On the other hand, when the current measurement value output from the four-probe measurement circuit 124 becomes larger than 0 A in the determination process of step S112, the computer device 140 indicates the contact object captured image information output from the image sensor 135. When substantially all of the captured image information in the contact detection area SE is black, it is determined that the contact body 110 has come into contact with the contact object WK and is in a pressed state, and the process proceeds to step S114. In addition, while performing the press state determination process by this step S112, the operator can detect the abnormal contact of the contact body 110 by monitoring the display screen of the display apparatus 142. FIG. For example, when only one probe 113 of the four probes 113 changes to black, it is considered that the same probe 113 is in contact with something and is deformed. The contact operation of the contact body 110 to the contacted object WK can be interrupted immediately by operating the. That is, the contact state detection device according to the present invention can detect not only the presence / absence of the contact of the contacted object WK of the contact body 110 but also the state of the contact.
 次に、コンピュータ装置140は、ステップS114にて、接触体110の押圧状態の検出の中断処理を実行する。具体的には、コンピュータ140は、Z軸方向アクチュエータ(図示せず)、4探針測定回路124および撮像素子135の作動をそれぞれ停止させる。これにより、接触体保持部123aの変位、2つの外側のプローブ113への電圧印加および接触体113の撮像処理がそれぞれ中断される。また、コンピュータ装置140は、接触体撮像画像情報の二値化処理を中断するとともに、表示装置142に接触体110のプローブ113が被接触物WKの表面に接触し押圧状態にある旨を表示する。この場合、コンピュータ装置140は、接触体110の被接触物WKへの押圧状態の検出の原因、すなわち、接触体110の押圧状態を電流計測値の変化によって検出したのか、接触体撮像画像情報の変化によって検出したのかを表示装置142に表示させる。そして、コンピュータ装置140は、ステップS116にて、このアプローチプログラムの実行を終了する。 Next, in step S114, the computer device 140 executes an interruption process for detecting the pressed state of the contact body 110. Specifically, the computer 140 stops the operations of the Z-axis direction actuator (not shown), the four-probe measurement circuit 124, and the image sensor 135, respectively. Thereby, the displacement of the contact body holding part 123a, the voltage application to the two outer probes 113, and the imaging process of the contact body 113 are interrupted. Further, the computer device 140 interrupts the binarization processing of the contact body captured image information and displays on the display device 142 that the probe 113 of the contact body 110 is in contact with the surface of the contacted object WK and is in a pressed state. . In this case, the computer device 140 detects the cause of detection of the pressing state of the contact body 110 against the contacted object WK, that is, whether the pressing state of the contact body 110 is detected by a change in the current measurement value, or the contact body captured image information. The display device 142 displays whether it has been detected by the change. Then, the computer apparatus 140 ends the execution of this approach program in step S116.
 作業者は、表示装置142に表示された表示内容を確認した後、接触体110の押圧状態の検出の原因に応じた作業を行う。すなわち、接触体110の被接触物WKへの押圧状態が電流計測値の変化によって検出された場合には、接触体110のプローブ113と被接触物WKとが電気的に接触しているため、作業者はコンピュータ装置140の入力装置141を操作して引き続き被接触物WKの電気伝導度の測定作業を行う。一方、接触体110の被接触物WKへの押圧状態が接触体撮像画像情報の変化によって検出された場合には、接触体110のプローブ113と被接触物WKとが物理的に接触していても電気的に接触していないと考えられるため、被接触物WKの電気伝導度の測定作業を行うことができない。このため、作業者は、接触体110が被接触物WKに電気的に接触しない原因を特定するとともに対応処置を施した後、再度アプローチプログラムを実行する。これにより、従来、プローブ113と被接触物WKとの電気的な接続状態が検出されない状態でプローブ113が被接触物WKに強く押し付けられることによる接触体110および被接触物WKの破損を防止することができる。 After confirming the display content displayed on the display device 142, the worker performs work according to the cause of detection of the pressed state of the contact body 110. That is, when the pressing state of the contact body 110 to the contacted object WK is detected by a change in the current measurement value, the probe 113 of the contact body 110 and the contacted object WK are in electrical contact with each other. The operator operates the input device 141 of the computer device 140 and continues to measure the electrical conductivity of the contacted object WK. On the other hand, when the pressing state of the contact body 110 against the contacted object WK is detected by a change in the contact body captured image information, the probe 113 of the contact body 110 and the contacted object WK are in physical contact. Since it is considered that they are not in electrical contact with each other, the work of measuring the electrical conductivity of the contacted object WK cannot be performed. For this reason, the operator identifies the cause of the contact body 110 not being in electrical contact with the contacted object WK and performs a countermeasure, and then executes the approach program again. This prevents the contact body 110 and the contacted object WK from being damaged by the probe 113 being strongly pressed against the contacted object WK in a state where the electrical connection state between the probe 113 and the contacted object WK is not detected. be able to.
 上記作動説明からも理解できるように、上記実施形態によれば、電気伝導度測定システム100に適用された接触検出装置は、被接触物WKに接触することにより変形する接触体110の変形部分に光PLを照射するとともに、同被接触物WKに向って変位する接触体110を撮像した接触体撮像画像情報によって表わされる反射光の変化を用いて接触体110の被接触物WKへの押圧状態を検出している。すなわち、接触状態検出装置は、接触体110が被接触物WKに接触して変形したことによる変形部分からの反射光の変化を接触体撮像画像情報の変化によって検出することにより接触体110の被接触物WKへの押圧状態を検出している。そして、この場合、接触体110からの反射光の検出は、接触体110における前記変形部分を含む領域をCCDイメージセンサからなる撮像素子135で撮像することにより行なわれる。すなわち、照射する光PLの照射位置および反射光の受光位置を厳密に調整する必要がない。これにより、接触体110への光PLの照射位置の位置決めおよび接触体110からの反射光の受光素子に対する位置決めに必要な光学部品の部品点数やアライメント調整作業工数を低減することができ、装置構成を単純化できるとともに検出精度維持のためのメンテナンス作業の作業負担が軽減される。また、接触状態検出装置は、接触体110の機械的変形に基づいて接触体110の押圧状態の検出を行なっているため、接触体110が接触する被接触物WKの被接触部分に酸化膜などの絶縁領域が形成された場合であっても精度良く接触体の押圧状態の検出を行なうことができる。これにより、接触体110が被接触物WKに強く押し付けられることによる接触体110および被接触物WKの損傷を防止することができる。これらの結果、接触体110や被接触物WKを損傷することなく簡単な構成で精度良く接触体110の被接触物WKへの押圧状態を検出することができる。 As can be understood from the above operation description, according to the above embodiment, the contact detection device applied to the electrical conductivity measurement system 100 is applied to the deformed portion of the contact body 110 that is deformed by contacting the contacted object WK. A pressing state of the contact body 110 to the contacted object WK using a change in reflected light represented by contact body captured image information obtained by irradiating the light PL and capturing the contact body 110 that is displaced toward the contacted object WK. Is detected. That is, the contact state detection device detects the change in the reflected light from the deformed portion due to the deformation of the contact body 110 in contact with the contacted object WK by the change in the contact object captured image information, thereby detecting the object to be contacted of the contact body 110. The pressing state to the contact object WK is detected. In this case, the detection of the reflected light from the contact body 110 is performed by imaging an area including the deformed portion of the contact body 110 with the image sensor 135 formed of a CCD image sensor. That is, it is not necessary to strictly adjust the irradiation position of the irradiated light PL and the light receiving position of the reflected light. Thereby, it is possible to reduce the number of optical parts necessary for positioning the irradiation position of the light PL on the contact body 110 and positioning the reflected light from the contact body 110 with respect to the light receiving element, and the alignment adjustment work man-hour. And the burden of maintenance work for maintaining detection accuracy can be reduced. Further, since the contact state detection device detects the pressed state of the contact body 110 based on the mechanical deformation of the contact body 110, an oxide film or the like is formed on the contacted portion of the contacted object WK that the contact body 110 contacts. Even when the insulating region is formed, the pressed state of the contact body can be detected with high accuracy. Thereby, damage to the contact body 110 and the to-be-contacted object WK by the contact body 110 being strongly pressed on the to-be-contacted object WK can be prevented. As a result, it is possible to accurately detect the pressing state of the contact body 110 against the contacted object WK with a simple configuration without damaging the contact body 110 and the contacted object WK.
(各種変形例)
 さらに、本発明の実施にあたっては、上記実施形態に限定されるものではなく、本発明の目的を逸脱しない限りにおいて種々の変更が可能である。なお、下記変形例の説明においては、参照する各図における上記実施形態と同様の構成部分に同じ符号または対応する符号を付して、その説明は省略する。
(Various modifications)
Furthermore, in carrying out the present invention, the present invention is not limited to the above embodiment, and various modifications can be made without departing from the object of the present invention. In the following description of the modification, the same or corresponding reference numerals are given to the same components as those in the above-described embodiments in each of the referenced drawings, and description thereof will be omitted.
 例えば、上記実施形態においては、接触体110を撮像した接触体撮像画像情報に選択率約50%の接触検出領域SEを設定することにより、接触体110の押圧状態の検出を行なうように構成した。しかし、接触検出領域SEの大きさや位置は、接触体110の押圧状態の検出の目的に応じて適宜設定することができる。例えば、接触検出領域SEの大きさを大きく(選択率を増加)することにより、接触体110の押圧状態の検出に用いる白色部分が増加するため押圧状態の検出の感度を鈍くすることができる。これは、接触体110の押圧状態の検出時における接触体110が被接触物WKを押し付ける力を大きくすることができることも意味している。したがって、接触体110を構成する素材のバネ定数を用いることにより接触体110が被接触物WKを押し付ける押圧力も規定することができるとともに、接触体撮像画像情報に基づいて接触体110の押圧力を特定することもできる。そして、接触検出領域SEの大きさを小さく(選択率を減少)することにより接触体110の押圧状態の検出に用いる白色部分が少なくなるとともにS/N比が向上するため押圧状態の検出の感度を鋭くすることができる。 For example, in the above-described embodiment, the contact body 110 is configured to detect the pressed state of the contact body 110 by setting the contact detection area SE with a selection rate of about 50% in the contact body captured image information obtained by imaging the contact body 110. . However, the size and position of the contact detection area SE can be appropriately set according to the purpose of detecting the pressed state of the contact body 110. For example, by increasing the size of the contact detection area SE (increasing the selection rate), the white portion used for detecting the pressed state of the contact body 110 increases, so that the sensitivity of detecting the pressed state can be reduced. This also means that the force with which the contact body 110 presses the contacted object WK when the pressed state of the contact body 110 is detected can be increased. Therefore, by using the spring constant of the material constituting the contact body 110, the pressing force with which the contact body 110 presses the contacted object WK can be defined, and the pressing force of the contact body 110 based on the contact body captured image information. Can also be specified. Then, by reducing the size of the contact detection area SE (decreasing the selection rate), the white portion used for detecting the pressed state of the contact body 110 is reduced and the S / N ratio is improved, so the sensitivity of detecting the pressed state is increased. Can be sharpened.
 一方、接触検出領域SEの位置を接触体110(プローブ113)の先端部に位置させることにより接触体110の押圧状態の検出の感度を鋭くすることができる一方、接触検出領域SEの位置を接触体110(プローブ113)の後端部側に位置させることにより接触体110の押圧状態の検出の感度を鈍くすることができる。さらに、接触検出領域SEの大きさおよび位置を調節して接触体110の一部(例えば、1つのプローブ113のみ)を押圧状態の検出に用いることもできる。また、さらには、2つ以上の接触検出領域SEを設けてそれぞれ位置や大きさを設定することもできる。例えば、4つのプローブ113ごとにそれぞれ接触検出領域SEを設定することにより、4つのプローブ113ごとに押圧状態の検出を行なうことができる。すなわち、接触体撮像画像情報によって表わされる接触体110の変形部分上での接触検出領域SEの大きさ、位置および数を適宜設定することにより、押圧状態の検出の範囲、接触検出の感度および接触体110の被接触物WKへの押圧力を任意に設定することができる。 On the other hand, the sensitivity of detection of the pressed state of the contact body 110 can be sharpened by positioning the position of the contact detection area SE at the tip of the contact body 110 (probe 113), while the position of the contact detection area SE is touched. By positioning the body 110 (probe 113) on the rear end side, the sensitivity of detecting the pressed state of the contact body 110 can be reduced. Furthermore, by adjusting the size and position of the contact detection region SE, a part of the contact body 110 (for example, only one probe 113) can be used for detecting the pressed state. Furthermore, two or more contact detection areas SE can be provided, and the position and size can be set respectively. For example, the pressing state can be detected for each of the four probes 113 by setting the contact detection region SE for each of the four probes 113. That is, by appropriately setting the size, position, and number of the contact detection area SE on the deformed portion of the contact body 110 represented by the contact body captured image information, the detection range of the pressed state, the sensitivity of the contact detection, and the contact The pressing force of the body 110 on the contacted object WK can be arbitrarily set.
 また、上記実施形態においては、撮像素子135が撮像して得た接触体撮像画像情報の一部(上記実施形態においては選択率約50%)を用いて接触体110の押圧状態の検出を行なうように構成した。しかし、接触検出領域SEを設けることなく撮像素子135が出力した接触体撮像画像情報のすべてを用いて接触体110の押圧状態の検出を行なうこともできることは当然である。 Further, in the above embodiment, the pressed state of the contact body 110 is detected using a part of contact body captured image information obtained by imaging by the image sensor 135 (selection rate of about 50% in the above embodiment). It was configured as follows. However, as a matter of course, it is possible to detect the pressed state of the contact body 110 using all of the contact body captured image information output from the image sensor 135 without providing the contact detection area SE.
 また、上記実施形態においては、撮像素子135から出力された接触体撮像画像情報のうち接触検出領域SE内の撮像画像情報の略すべて(上記実施形態においては、全体の略90%)が黒色となったときに接触体110が被接触物WKに対して押圧状態となったと判定した。すなわち、接触状態検出装置は、接触体撮像画像情報によって表わされる反射光の面積変化を用いて接触体の押圧状態を検出した。しかし、接触体110の押圧状態検出の判定の基準となる接触体撮像画像情報における白色画像から黒色画像への変化率(量)は、接触体110の押圧状態検出精度に応じて適宜決定されるものであり、必ずしも上記実施形態に限定されるものではない。すなわち、接触体110の押圧状態検出の判定の基準として小さい変化率(量)を用いれば接触体110の押圧状態検出精度が高くなり、大きい変化率(量)を用いれば押圧状態検出精度が低くなる。 In the above embodiment, substantially all of the captured image information in the contact detection area SE (approximately 90% of the whole in the above embodiment) of the contact body captured image information output from the image sensor 135 is black. When it became, it determined with the contact body 110 having been in the press state with respect to the to-be-contacted object WK. That is, the contact state detection device detects the pressed state of the contact body using the area change of the reflected light represented by the contact body captured image information. However, the rate of change (amount) from the white image to the black image in the contact body captured image information, which is a criterion for determining the detection of the pressed state of the contact body 110, is appropriately determined according to the pressed state detection accuracy of the contact body 110. However, the present invention is not necessarily limited to the above embodiment. That is, if a small change rate (amount) is used as a criterion for determination of detection of the pressed state of the contact body 110, the pressed state detection accuracy of the contact body 110 is increased, and if a large change rate (amount) is used, the pressed state detection accuracy is decreased. Become.
 また、接触体の押圧状態の検出は、接触体撮像画像情報によって表わされる反射光の面積変化の他に位置や形状の変化を用いることもできる。すなわち、接触状態検出装置は、接触体撮像画像情報によって表わされる反射光の面積、位置および形状などの反射光領域の変化、換言すれは反射光が占める部分の2次元平面内での変化を用いて接触体の押圧状態を検出することができる。また、接触状態検出装置は、接触体撮像画像情報によって表わされる反射光の光量の変化を用いて接触体の押圧状態を検出することもできる。 Also, the detection of the pressed state of the contact body can use a change in position and shape in addition to a change in the area of reflected light represented by the contact body captured image information. That is, the contact state detection device uses a change in the reflected light area such as the area, position, and shape of the reflected light represented by the contact body captured image information, in other words, a change in a two-dimensional plane occupied by the reflected light. Thus, the pressed state of the contact body can be detected. The contact state detection device can also detect the pressed state of the contact body using a change in the amount of reflected light represented by the contact body captured image information.
 また、上記実施形態においては、プローブ光源131としてLEDを用いるとともにワーク光源133として白熱電球を用いた。しかし、プローブ光源131およびワーク光源133の光源は、接触体110および被接触物WKを撮像素子135によって撮像して撮像画像情報を取得可能な光PL,WLを発する光源であれば上記実施形態に限定されるものではない。例えば、プローブ光源131およびワーク光源133の光源として、LED、白熱電球、蛍光灯、ハロゲンランプ、HIDランプまたはレーザ光などを用いることができる。なお、プローブ光源131は、少なくとも接触体110に光PLを照射できれば良いため、指向性の高い光源(例えば、LEDやレーザ光)が好ましい。一方、ワーク光源133は、被接触物WKにおける接触体110との接触領域を照らすことができれば良く、幅広い光源を用いることができる。 In the above embodiment, an LED is used as the probe light source 131 and an incandescent bulb is used as the work light source 133. However, the light sources of the probe light source 131 and the work light source 133 are light sources that emit light PL and WL that can capture the captured image information by capturing the contact body 110 and the contact object WK with the image sensor 135. It is not limited. For example, as a light source of the probe light source 131 and the work light source 133, an LED, an incandescent bulb, a fluorescent lamp, a halogen lamp, an HID lamp, or a laser beam can be used. The probe light source 131 only needs to be able to irradiate at least the contact body 110 with the light PL, and thus a light source with high directivity (for example, LED or laser light) is preferable. On the other hand, the work light source 133 is only required to illuminate the contact area of the contacted object WK with the contact body 110, and a wide range of light sources can be used.
 また、上記実施形態においては、ワーク光源133を用いて被接触物WKに光WLを照射するとともに同光WLが照射された被接触物WKを撮像素子135で撮像して被接触物撮像画像情報を取得した。しかし、被接触物WK自体の位置や被接触物WK上における接触体110の位置関係を確認する必要がない場合には、ワーク光源133および撮像素子135による被接触物撮像画像情報の取得処理は、必ずしも必要ではない。これらのワーク光源133および撮像素子135による被接触物撮像画像情報の取得処理を省略することにより接触状態検出装置の構成を簡単にすることができる。 In the above-described embodiment, the contact light W 133 is irradiated with the light WL and the contact W W irradiated with the light WL is imaged by the image sensor 135 and the contact object captured image information is captured. Acquired. However, when there is no need to confirm the position of the contact object WK itself or the positional relationship of the contact body 110 on the contact object WK, the acquisition process of the contact object captured image information by the work light source 133 and the image sensor 135 is performed. , Not always necessary. The configuration of the contact state detection apparatus can be simplified by omitting the acquisition process of the contact object captured image information by the work light source 133 and the image sensor 135.
 また、上記実施形態においては、接触体110にプローブ光源131から出射される光PLの入射角に等しい反射角上にビームスプリッタ132を配置した。すなわち、プローブ光源131から出射されて接触体110に入射する光PLの入射角に等しい反射角上に実質的に撮像素子135を配置した。これにより、撮像素子135は、特に指向性が高い光源(例えば、LED)から出射されて接触体110によって反射された反射光を効率的に受光することができ、精度の良い接触体撮像画像情報を取得することができる。しかし、撮像素子135の配置位置は、接触体110を撮像して接触体撮像画像情報を取得できる位置であれば、必ずしも前記反射角上である必要はない。特に、プローブ光源131として指向性の低い光源を用いた場合には、接触体110からの反射光を受光可能な範囲に比較的自由に撮像素子135を配置することができる。 In the above embodiment, the beam splitter 132 is disposed on the contact body 110 at a reflection angle equal to the incident angle of the light PL emitted from the probe light source 131. That is, the imaging element 135 is disposed substantially at a reflection angle equal to the incident angle of the light PL emitted from the probe light source 131 and incident on the contact body 110. Thereby, the image sensor 135 can efficiently receive the reflected light emitted from a light source (for example, LED) having a particularly high directivity and reflected by the contact body 110, and the contact body captured image information with high accuracy. Can be obtained. However, the arrangement position of the image sensor 135 does not necessarily have to be on the reflection angle as long as it is a position where the contact body 110 can be imaged to acquire contact body captured image information. In particular, when a light source with low directivity is used as the probe light source 131, the image sensor 135 can be arranged relatively freely in a range in which the reflected light from the contact body 110 can be received.
 また、上記実施形態においては、撮像素子135としてCCDイメージセンサを用いた。しかし、撮像素子135は、接触体110を撮像して接触体撮像画像情報を取得できるものであればCCDイメージセンサ以外のイメージセンサ、例えばCMOSイメージセンサなどの各種イメージセンサを用いることもできる。本発明は、接触体110を比較的広範囲で撮像した接触体撮像画像情報を用いて接触体110の押圧状態の検出を行なうことにより、必要な光学素子およびアライメント(光軸調整)工数を低減できることが特徴の1つである。 In the above embodiment, a CCD image sensor is used as the image sensor 135. However, the image sensor 135 may be an image sensor other than a CCD image sensor, for example, various image sensors such as a CMOS image sensor, as long as the image of the contact body 110 can be captured to acquire contact body captured image information. The present invention can reduce the number of necessary optical elements and alignment (optical axis adjustment) man-hours by detecting the pressed state of the contact body 110 using contact body captured image information obtained by imaging the contact body 110 in a relatively wide range. Is one of the features.
 また、上記実施形態においては、コンピュータ装置140は、撮像素子135から入力した接触体撮像画像情報を二値化した接触体撮像画像情報を用いて接触体110の押圧状態を検出した。しかし、接触体撮像画像情報は必ずしも二値化する必要はなく、撮像素子135から入力した接触体撮像画像情報をそのまま用いて接触体110の押圧状態を検出することもできる。例えば、撮像素子135から入力した接触体撮像画像情報の受光光量に対応する輝度(明度ともいう)の変化を用いて接触体110の押圧状態を検出することもできる。 In the above embodiment, the computer device 140 detects the pressed state of the contact body 110 using the contact body captured image information obtained by binarizing the contact body captured image information input from the image sensor 135. However, the contact body captured image information does not necessarily need to be binarized, and the pressed state of the contact body 110 can be detected using the contact body captured image information input from the image sensor 135 as it is. For example, the pressing state of the contact body 110 can be detected using a change in luminance (also referred to as lightness) corresponding to the received light amount of the contact body captured image information input from the image sensor 135.
 また、上記実施形態においては、接触体110は、接触体アプローチ部123の接触体保持部123aによって被接触物WKにおける被接触部分を含む表面に対して交わる姿勢で保持されている。このため、プローブ光源131からの出射光が被接触物WKの表面に照射された場合であっても、接触体110からの反射光と被接触物WKからの反射光とが共に撮像素子135に導かれることが防止される。これにより、撮像素子135は接触体110からの反射光のみを精度良く撮像することができ、結果として接触体110の接触検出精度を向上させることができる。すなわち、撮像素子135は、プローブ光源131から照射された光PLのうちの被接触物WKの表面からの反射光が直接入らない位置、換言すれば、同反射光の光路外に配置されていればよい。 In the above embodiment, the contact body 110 is held by the contact body holding section 123a of the contact body approach section 123 in a posture that intersects the surface including the contacted portion of the contacted object WK. For this reason, even when the light emitted from the probe light source 131 is irradiated on the surface of the contacted object WK, the reflected light from the contact body 110 and the reflected light from the contacted object WK are both applied to the image sensor 135. It is prevented from being guided. Thereby, the image sensor 135 can accurately capture only the reflected light from the contact body 110, and as a result, the contact detection accuracy of the contact body 110 can be improved. That is, the image sensor 135 is disposed at a position where the reflected light from the surface of the contacted object WK does not directly enter in the light PL irradiated from the probe light source 131, in other words, outside the optical path of the reflected light. That's fine.
 また、上記実施形態においては、接触体110を保持して被接触物WKに接近させる接触体アプローチ部123は電気伝導度測定システム100を構成する構成要素であり、接触状態検出装置に必須の構成要素ではない。しかし、接触体アプローチ部123を接触状態検出装置の構成要素とすることにより接触状態検出装置において前記作用効果を発揮させることができる。また、被接触物WKを保持して接触体110に対して図示X軸方向およびY軸方向に変位させるワークステージ部121および駆動ベース部122も前記接触体アプローチ部123と同様に、電気伝導度測定システム100を構成する構成要素であり、接触状態検出装置に必須の構成要素ではない。 Moreover, in the said embodiment, the contact body approach part 123 which hold | maintains the contact body 110 and approaches the to-be-contacted object WK is a component which comprises the electrical conductivity measuring system 100, and is a structure essential to a contact state detection apparatus. It is not an element. However, by using the contact body approach portion 123 as a constituent element of the contact state detection device, the above-described effects can be exhibited in the contact state detection device. In addition, the work stage unit 121 and the drive base unit 122 that hold the contacted object WK and displace the contact body 110 in the X-axis direction and the Y-axis direction with respect to the contact body 110 also have electrical conductivity similar to the contact body approach section 123. It is a component which comprises the measurement system 100, and is not an essential component for a contact state detection apparatus.
 しかし、ワークステージ部121および駆動ベース部122を接触状態検出装置の構成要素とすることにより、被接触物WK上の任意の位置で接触体110の押圧状態の検出を行なうことができ、接触状態検出装置の用途や適用範囲を拡げることができるものである。すなわち、アプローチステージ装置120が、本発明に係る接触体変位手段に相当する。この場合、アプローチステージ装置120は、接触体110と被接触物WKとを相対変位させれば良く、必ずしもどちらか一方のみを変位させる構成である必要はない。すなわち、アプローチステージ装置120は、接触体110および被接触物WKのどちらか一方をまたは両方を変位させてもよい。また、接触体110を保持する姿勢も被接触物WKにおける被接触部分を含む表面に対して平行であっても接触体110の押圧状態の検出は可能である。この場合、主として接触体110に光が照射され被接触物WKにはできるだけ光が照射されないように構成することが好ましい。 However, by using the work stage unit 121 and the drive base unit 122 as components of the contact state detection device, the pressed state of the contact body 110 can be detected at an arbitrary position on the contacted object WK. The application and application range of the detection device can be expanded. That is, the approach stage device 120 corresponds to the contact body displacement means according to the present invention. In this case, the approach stage device 120 only needs to relatively displace the contact body 110 and the contacted object WK, and does not necessarily need to be configured to displace only one of them. That is, the approach stage device 120 may displace one or both of the contact body 110 and the contacted object WK. Further, the pressed state of the contact body 110 can be detected even when the posture of holding the contact body 110 is parallel to the surface including the contacted portion of the contacted object WK. In this case, it is preferable that the contact body 110 is mainly irradiated with light and the contacted object WK is not irradiated with light as much as possible.
 また、上記実施形態においては、撮像素子135が撮像した撮像画像を表示させるために表示装置142を用いた。すなわち、表示装置142は、本発明に係る撮像画像表示手段に相当する。これにより、作業者は、接触体110の接触状態や被接触物WKにおける被接触部分周辺の状態を視認により確認しながら作業を行なうことができる。したがって、これらを視認する必要がない場合には、表示装置142は不要である。すなわち、接触体110の押圧状態の検出は、コンピュータ装置140による演算処理によって行われているため、接触体110の押圧状態を必ずしも表示させなくても接触体110の押圧状態の検出は可能である。 In the above embodiment, the display device 142 is used to display a captured image captured by the image sensor 135. That is, the display device 142 corresponds to the captured image display unit according to the present invention. Thereby, the operator can work while visually confirming the contact state of the contact body 110 and the state around the contacted portion of the contacted object WK. Therefore, when it is not necessary to visually recognize these, the display device 142 is unnecessary. That is, since the detection of the pressed state of the contact body 110 is performed by a calculation process by the computer device 140, the pressed state of the contact body 110 can be detected without necessarily displaying the pressed state of the contact body 110. .
 一方、接触体110の押圧状態の検出を作業者が行なう場合には、接触体110の押圧状態を作業者が確認できる何らかの表示手段が必要である。この場合、接触体110の押圧状態の検出自体は作業者が行なうため、押圧状態の検出のためのコンピュータ装置140による演算処理、すなわち、接触状態検出手段は不要である。具体的には、作業者は、表示装置142の表示される接触体110の白色画像の変化を目視しながら、白色画像の適当な変化状態において接触体110が被接触物WKに押圧状態になったと判定して入力装置141を操作することにより接触体110の変位を停止させる。これによっても、接触体110の押圧状態を検出することができる。 On the other hand, when the operator detects the pressed state of the contact body 110, some display means is necessary for the operator to confirm the pressed state of the contact body 110. In this case, since the operator itself detects the pressed state of the contact body 110, the calculation process by the computer device 140 for detecting the pressed state, that is, the contact state detecting means is not necessary. Specifically, the operator visually checks the change in the white image of the contact body 110 displayed on the display device 142, and the contact body 110 is pressed against the contacted object WK in an appropriate change state of the white image. The displacement of the contact body 110 is stopped by operating the input device 141 after determining that the contact has occurred. Also by this, the pressing state of the contact body 110 can be detected.
 また、上記実施形態においては、接触体110の押圧状態の検出に4探針計測回路124から出力される電流計測値と撮像素子135から出力された接触体撮像画像情報とを用いた。これにより、接触体110が被接触物WKに物理的または電気的に接触したときに接触体が被接触物に接触したものとして接触体の押圧状態の検出を行なうことができる他に、接触体110が被接触物WKに物理的および電気的に接触したときに接触体が被接触物に押圧状態になったものとして接触体の押圧状態の検出を行なうこともできる。この結果、接触状態検出装置の用途や適用範囲を拡げることができる。しかし、接触体110の押圧状態の検出は、撮像素子135から出力された接触体撮像画像情報のみで行なうことができることは当然である。 In the above-described embodiment, the current measurement value output from the four-probe measurement circuit 124 and the contact body captured image information output from the image sensor 135 are used to detect the pressed state of the contact body 110. Thereby, when the contact body 110 is physically or electrically in contact with the contacted object WK, the contact body can be detected as being in contact with the contacted object. It is also possible to detect the pressed state of the contact body assuming that the contact body is pressed against the contacted object when 110 is physically and electrically in contact with the contacted object WK. As a result, the use and application range of the contact state detection device can be expanded. However, it is natural that the pressed state of the contact body 110 can be detected using only the contact body captured image information output from the image sensor 135.
 また、上記実施形態においては、接触体110が被接触物WKに押圧状態となって変形することにより接触体110からの反射光が撮像素子135に導かれなくなることを利用して接触体110の押圧状態を検出するように構成した。しかし、本発明は、接触体110が被接触物WKに押圧状態となって変形することによる反射光の進行方向の変化を利用して接触体110の接触を検出するように構成すれば、上記実施形態に限定されるものではない。 Further, in the above-described embodiment, the contact body 110 of the contact body 110 is utilized by utilizing the fact that the reflected light from the contact body 110 is not guided to the image sensor 135 when the contact body 110 is pressed and deformed against the contacted object WK. It was comprised so that a press state might be detected. However, if the present invention is configured to detect the contact of the contact body 110 using the change in the traveling direction of the reflected light caused by the contact body 110 being pressed and deformed against the contacted object WK, It is not limited to the embodiment.
 例えば、図9(A)に示すように、プローブ光源131は、接触体110の表面に向って直交する向きで光PLを照射するように構成することもできる。これによれば、図9(B)に示すように、プローブ113が被接触物WKに接触して座屈変形することにより、プローブ113からの反射光の一部が撮像素子135に導かれなくなる。したがって、コンピュータ装置140は、接触体撮像画像情報における白色で表わされた接触体110の側面部分にプローブ113の座屈変形により生じる黒色部分を検出することにより接触体110の押圧状態を検出することができる。つまり、プローブ光源131は、接触体110に対して被接触物WKへの接触による変形前の部分または変形後の部分、すなわち、接触体110における接触による変形部分を含む領域に光PLを照射するように構成されていればよい。 For example, as shown in FIG. 9A, the probe light source 131 can be configured to irradiate the light PL in a direction orthogonal to the surface of the contact body 110. According to this, as shown in FIG. 9B, when the probe 113 comes into contact with the contacted object WK and is buckled, a part of the reflected light from the probe 113 is not guided to the image sensor 135. . Therefore, the computer device 140 detects the pressing state of the contact body 110 by detecting a black portion generated by buckling deformation of the probe 113 on the side surface portion of the contact body 110 represented in white in the contact body captured image information. be able to. That is, the probe light source 131 irradiates the contact body 110 with the light PL to a region including a portion before deformation or a portion after deformation due to contact with the contacted object WK, that is, a region including a deformation portion due to contact in the contact body 110. What is necessary is just to be comprised.
 また、図9(A),(B)に示す接触状態検出装置において、ビームスプリッタ132、集光レンズ134および撮像素子135に代えてまたは加えて、プローブ113が被接触物WKに接触して座屈変形した座屈部分から反射する反射光の進行方向上に撮像素子135と同様の撮像素子136(図において二点鎖線で示す)を設けることもできる。これによれば、プローブ113が被接触物WKに接触して座屈変形することにより、プローブ113からの反射光の一部が撮像素子136に導かれる。したがって、コンピュータ装置140は、接触体撮像画像情報における黒色で表わされた接触体110の側面部分にプローブ113の座屈変形による生じる白色部分を検出することにより接触体110の押圧状態を検出することができる。 9A and 9B, in place of or in addition to the beam splitter 132, the condenser lens 134, and the image sensor 135, the probe 113 is in contact with the contacted object WK. An imaging element 136 (indicated by a two-dot chain line in the drawing) similar to the imaging element 135 can be provided in the traveling direction of the reflected light reflected from the buckled deformation part. According to this, a part of the reflected light from the probe 113 is guided to the image sensor 136 by the probe 113 coming into contact with the contacted object WK and being buckled and deformed. Therefore, the computer device 140 detects the pressing state of the contact body 110 by detecting a white portion generated by buckling deformation of the probe 113 on the side surface portion of the contact body 110 represented in black in the contact body captured image information. be able to.
 また、上記実施形態においては、接触体110の被接触物WKへの押圧状態が接触体撮像画像情報の変化によって検出された場合には、被接触物WKの電気伝導度の測定作業を行わないように構成した。これは、被接触物WKの表面に絶縁膜が形成されて接触体110のプローブ113と被接触物WKとが電気的に接触していないと考えられるためである。したがって、このような場合、電気伝導度測定システム100は、図10に示すように、接触体110と被接触物WKとの間で絶縁破壊を生じさせるための電圧を印加する電圧印加装置137を接触体110に接続した状態で設けるようにするとよい。これによれば、電気伝導度測定システム100または作業者は、接触体110の被接触物WKへの押圧状態が接触体撮像画像情報の変化によって検出された場合には、電圧印加装置137を作動させることにより被接触物WKの表面に形成された絶縁膜を破壊して接触体110のプローブ113と被接触物WKとが電気的に接触した状態を確保することができる。したがって、電気伝導度測定システム100または作業者は、被接触物WKの表面に形成された絶縁膜を破壊した後、そのまま被接触物WKの電気伝導度の測定作業を行うことができる。このように、電気伝導度測定システム100は、接触状態検出装置による接触体110の被接触物WKへの押圧状態の検出結果に応じて被接触物WKの電気伝導度の測定をそのまま続行したり、同電気伝導度の測定を一旦中断したりするように構成することができる。 Moreover, in the said embodiment, when the press state to the to-be-contacted object WK of the contact body 110 is detected by the change of contact body picked-up image information, the measurement operation | work of the electrical conductivity of the to-be-contacted object WK is not performed. It was configured as follows. This is because it is considered that the insulating film is formed on the surface of the contacted object WK and the probe 113 of the contact body 110 and the contacted object WK are not in electrical contact. Therefore, in such a case, the electrical conductivity measurement system 100 includes a voltage application device 137 that applies a voltage for causing dielectric breakdown between the contact body 110 and the contacted object WK, as shown in FIG. It is good to provide in the state connected to the contact body 110. FIG. According to this, the electrical conductivity measurement system 100 or the operator operates the voltage application device 137 when the pressing state of the contact body 110 against the contacted object WK is detected by the change in the contact body captured image information. By doing so, the insulating film formed on the surface of the contacted object WK can be destroyed, and a state where the probe 113 of the contact body 110 and the contacted object WK are in electrical contact can be ensured. Therefore, the electrical conductivity measurement system 100 or the operator can perform the work of measuring the electrical conductivity of the contacted object WK as it is after destroying the insulating film formed on the surface of the contacted object WK. As described above, the electrical conductivity measurement system 100 continues the measurement of the electrical conductivity of the contacted object WK as it is according to the detection result of the pressed state of the contact body 110 against the contacted object WK by the contact state detection device. The measurement of the electric conductivity can be temporarily interrupted.
 また、上記実施形態においては、接触状態検出装置を電気伝導度測定システム100に適用した。しかし、接触状態検出装置は、被接触物に向って変位して接触する接触体が同被接触物に接触したことを検出する接触状態検出装置として広く適用できるものである。例えば、プローブ顕微鏡におけるプローブ制御、触針式粗さ計における接触制御、マイクロマニピュレータにおける接触制御、MEMS部品などの接触力測定や機械物性評価、マイクロスイッチの接触検出などに本発明を適用することができる。 In the above embodiment, the contact state detection device is applied to the electrical conductivity measurement system 100. However, the contact state detection device can be widely applied as a contact state detection device that detects that a contact body that is displaced toward and comes into contact with the contacted object contacts the contacted object. For example, the present invention can be applied to probe control in a probe microscope, contact control in a stylus type roughness meter, contact control in a micromanipulator, measurement of contact force of a MEMS component, mechanical property evaluation, contact detection of a micro switch, and the like. it can.
 例えば、図11に示すように、接触状態検出装置を触針式粗さ計200に適用することもできる。この場合、触針式粗さ計200における図示しない制御装置(コンピュータ装置140に相当)は、プローブ113の先端部を被接触物WKの表面に所定の押圧力で押圧した状態において、プローブ113と被測定物WKとを図示X軸方向に相対変位させる。そして、触針式粗さ計200における制御装置は、撮像素子135から出力された接触体撮像画像情報を用いて被接触物WKの表面粗さを測定することができる。 For example, as shown in FIG. 11, the contact state detection device can be applied to a stylus roughness meter 200. In this case, a control device (not shown) in the stylus roughness meter 200 (corresponding to the computer device 140) is connected to the probe 113 in a state where the tip of the probe 113 is pressed against the surface of the contacted object WK with a predetermined pressing force. The object to be measured WK is relatively displaced in the X-axis direction in the figure. The control device in the stylus roughness meter 200 can measure the surface roughness of the contacted object WK using the contact body captured image information output from the image sensor 135.
 また、例えば、図12に示すように、接触状態検出装置をマイクロマニピュレータ300に適用することもできる。この場合、プローブ113は、先端が尖った平面視略三角形状の板状体で構成されている。そして、マイクロマニピュレータ300における図示しない制御装置(コンピュータ装置140に相当)は、作業者による図示しない入力装置(入力装置141に相当)の操作に応じて、プローブ113の先端部を被接触物WK(例えば、プレパラート上の細胞組織)の表面に所定の押圧力で押圧したり、同押圧した状態でプローブ113と被測定物WKとを図示X軸方向および図示Y軸方向に相対変位させたりすることにより被接触物WKに加工を施したり位置を変位させたりすることができる。この場合、マイクロマニピュレータ300における制御装置または作業者は、撮像素子135から出力された接触体撮像画像情報を用いて、または図示しない表示装置(表示装置142に相当)における表示内容によってプローブ113の被接触物WKへの押圧状態を認識できるとともに同押圧状態を適宜調整することができる。 For example, as shown in FIG. 12, the contact state detection device can be applied to the micromanipulator 300. In this case, the probe 113 is configured by a plate-like body having a substantially triangular shape in plan view with a sharp tip. Then, a control device (not shown) (not shown) in the micromanipulator 300 moves the tip of the probe 113 to the contacted object WK (corresponding to the operation of the input device (not shown) shown by the operator). For example, pressing the surface of the cell tissue on the preparation) with a predetermined pressing force, or relatively displacing the probe 113 and the object WK to be measured in the X-axis direction and the Y-axis direction shown in the drawing. Thus, the contacted object WK can be processed or displaced. In this case, the control device or the operator in the micromanipulator 300 uses the contact body captured image information output from the image sensor 135 or the display content of the probe 113 by the display content on the display device (not shown) (corresponding to the display device 142). The pressing state against the contact object WK can be recognized and the pressing state can be appropriately adjusted.
 なお、この場合、プローブ113の被接触物WKへの押圧状態には、プローブ113にあらゆる方向から作用する押圧力による押圧状態を広く含むものである。具体的には、プローブ113の被接触物WKへの押圧状態には、プローブ113が被接触物WKの表面を図示Z軸方向に押圧する状態の他に、例えば、プローブ113が被接触物WKの表面を図示Z軸方向に押圧した状態で図示X軸方向および/またはY軸方向(すなわち、X-Y軸平面内)に変位させた際にプローブ113に生じるねじりの状態も含むものである。 In this case, the pressing state of the probe 113 against the contacted object WK widely includes a pressing state due to a pressing force acting on the probe 113 from all directions. Specifically, in the pressing state of the probe 113 against the contacted object WK, for example, the probe 113 is not in the state of pressing the surface of the contacted object WK in the Z-axis direction in the figure, but the probe 113 is touched by the contacted object WK. This includes a twisted state generated in the probe 113 when the surface is displaced in the X-axis direction and / or the Y-axis direction (that is, in the XY axis plane) while being pressed in the Z-axis direction.
100…電気伝導度測定システム、
110…接触体、111…電気回路、112…基板、113…プローブ、
120…アプローチステージ装置、121…ワークステージ部、122…駆動ベース部、123…接触体アプローチ部、123a…接触体保持部、123b…支柱、124…4探針測定回路、
131…プローブ光源、132…ビームスプリッタ、133…ワーク光源、134…集光レンズ、135,136…撮像素子、137…電圧印加装置、
140…コンピュータ装置、141…入力装置、142…表示装置、
200…触針式粗さ計、
300…マイクロマニピュレータ。
100 ... Electric conductivity measurement system,
110 ... Contact body, 111 ... Electric circuit, 112 ... Substrate, 113 ... Probe,
DESCRIPTION OF SYMBOLS 120 ... Approach stage apparatus, 121 ... Work stage part, 122 ... Drive base part, 123 ... Contact body approach part, 123a ... Contact body holding part, 123b ... Support | pillar, 124 ... 4 probe measuring circuit,
131 ... Probe light source, 132 ... Beam splitter, 133 ... Work light source, 134 ... Condensing lens, 135, 136 ... Image sensor, 137 ... Voltage application device,
140 ... Computer device, 141 ... Input device, 142 ... Display device,
200 ... stylus roughness meter,
300: Micromanipulator.

Claims (16)

  1.  被接触物に接触することにより変形する接触体における前記接触による変形部分を含む領域に光を照射する光照射手段と、
     前記光照射手段から照射された光のうちの前記被接触物の表面からの反射光の光路外に配置され、前記接触体における前記変形部分を撮像して接触体撮像画像情報を出力する撮像手段と、
     前記接触体撮像画像情報によって表される前記変形部分からの反射光の領域変化を用いて前記接触体の前記被接触物への押圧状態を検出する接触状態検出手段とを備えたことを特徴とする接触状態検出装置。
    A light irradiating means for irradiating light to a region including a deformed portion due to the contact in the contact body that is deformed by contacting the contacted object;
    Imaging means arranged outside the optical path of the reflected light from the surface of the contacted object among the light irradiated from the light irradiating means, imaging the deformed portion of the contact body, and outputting contact body captured image information When,
    Contact state detecting means for detecting a pressing state of the contact body against the object to be contacted using a region change of reflected light from the deformed portion represented by the contact body captured image information. To detect contact state.
  2.  請求項1に記載した接触状態検出装置において、
     前記接触状態検出手段は、前記接触体撮像画像情報によって表わされる前記反射光の面積変化を用いて前記接触体の前記被接触物への押圧状態を検出することを特徴とする接触状態検出装置。
    In the contact state detection device according to claim 1,
    The contact state detection unit detects a pressing state of the contact body against the contacted object using an area change of the reflected light represented by the contact body captured image information.
  3.  請求項1または請求項2に記載した接触状態検出装置において、
     前記接触状態検出手段は、前記接触体撮像画像情報によって表わされる前記変形部分の一部を用いて前記接触体の前記被接触物への押圧状態を検出することを特徴とする接触状態検出装置。
    In the contact state detection device according to claim 1 or 2,
    The contact state detection device detects a pressing state of the contact body against the contacted object using a part of the deformed portion represented by the contact body captured image information.
  4.  請求項1ないし請求項3のうちのいずれか1つに記載した接触状態検出装置において、
     前記接触状態検出手段は、
     前記接触体撮像画像情報を光量に応じて二値化するとともに、同二値化した接触体撮像画像情報に応じて前記接触体の前記被接触物への押圧状態を検出することを特徴とする接触状態検出装置。
    In the contact state detection device according to any one of claims 1 to 3,
    The contact state detecting means includes
    The contact body captured image information is binarized according to the amount of light, and the pressing state of the contact body against the contacted object is detected according to the binarized contact body captured image information. Contact state detection device.
  5.  請求項1ないし請求項4のうちのいずれか1つに記載した接触状態検出装置において、
     前記撮像手段は、前記接触体における前記変形部分を含む領域に照射される前記光の反射角上に配置されることを特徴とする接触状態検出装置。
    In the contact state detection device according to any one of claims 1 to 4,
    The contact state detection apparatus, wherein the imaging unit is disposed on a reflection angle of the light irradiated to an area including the deformed portion of the contact body.
  6.  請求項1ないし請求項5のうちのいずれか1つに記載した接触状態検出装置において、
     前記接触体を、前記被接触物における前記接触体との被接触部分を含む表面に交わる姿勢で保持しながら前記被接触物に向かって変位させる接触体変位手段を備えることを特徴とする接触状態検出装置。
    In the contact state detection device according to any one of claims 1 to 5,
    Contact state characterized by comprising contact body displacing means for displacing the contact body toward the contacted object while holding the contacted body in a posture that intersects a surface including the contacted part of the contacted object with the contacted body. Detection device.
  7.  請求項6に記載した接触状態検出装置において、
     前記接触体変位手段は、前記被接触物における前記接触体との被接触部分を含む表面に沿って前記接触体を前記被接触物に対して相対変位させることを特徴とする接触状態検出装置。
    In the contact state detection apparatus according to claim 6,
    The contact body displacement means relatively displaces the contact body with respect to the contacted object along a surface including a contacted portion of the contacted object with the contacted body.
  8.  請求項1ないし請求項7のうちのいずれか1つに記載した接触状態検出装置において、さらに、
     前記被接触物に光を照射する被接触物照射手段を備え、
     前記撮像手段は、前記被接触物を撮像して被接触物撮像画像情報を出力することを特徴とする接触状態検出装置。
    The contact state detection device according to any one of claims 1 to 7, further comprising:
    A contact object irradiation means for irradiating the contact object with light;
    The contact state detection device, wherein the imaging means images the contacted object and outputs contacted object captured image information.
  9.  請求項1ないし請求項8のうちのいずれか1つに記載した接触状態検出装置において、さらに、
     前記撮像手段が撮像した撮像画像を表示する撮像画像表示手段を備えることを特徴とする接触状態検出装置。
    The contact state detection device according to any one of claims 1 to 8, further comprising:
    A contact state detection apparatus comprising: a captured image display unit that displays a captured image captured by the imaging unit.
  10.  請求項1ないし請求項9のうちのいずれか1つに記載した接触状態検出装置において、さらに、
     それぞれ導体で構成された前記被接触物と前記接触体との電気的な接触を検出する電気的接触検出手段を備えることを特徴とする接触状態検出装置。
    The contact state detection device according to any one of claims 1 to 9, further comprising:
    A contact state detection device comprising an electrical contact detection means for detecting electrical contact between the contacted object and the contact body, each of which is made of a conductor.
  11.  被接触物に接触することにより変形する接触体を保持した状態で前記被接触物に接触させる方向に前記接触体を前記被接触物に対して相対変位させる接触体変位手段と、
     前記接触体における前記被接触物への接触による変形部分を含む領域に光を照射する光照射手段と、
     前記光照射手段から照射された光のうちの前記被接触物の表面からの反射光の光路外に配置され、前記接触体における前記変形部分を撮像して接触体撮像画像情報を出力する撮像手段と、
     前記撮像手段が出力した前記接触体撮像画像情報に基づいて撮像画像を表示する撮像画像表示手段とを備えたことを特徴とする接触状態検出装置。
    Contact body displacing means for relatively displacing the contact body with respect to the contacted object in a direction in which the contacted object is brought into contact with the contacted object in a state in which the contact body deformed by contacting the contacted object is held;
    A light irradiating means for irradiating light to a region including a deformed portion due to contact with the contacted object in the contact body;
    Imaging means arranged outside the optical path of the reflected light from the surface of the contacted object among the light irradiated from the light irradiating means, imaging the deformed portion of the contact body, and outputting contact body captured image information When,
    A contact state detection apparatus comprising: a captured image display unit configured to display a captured image based on the contact body captured image information output by the imaging unit.
  12.  被接触物に接触することにより変形する接触体における前記接触による変形部分を含む領域に光を照射する光照射ステップと、
     前記光照射手段から照射された光のうちの前記被接触物の表面からの反射光の光路外の位置から前記接触体における前記変形部分を撮像して接触体撮像画像情報を出力する撮像ステップと、
     前記接触体撮像画像情報によって表される前記変形部分からの反射光の領域変化を用いて前記接触体の前記被接触物への押圧状態を検出する接触状態検出ステップとを備えたことを特徴とする接触状態検出方法。
    A light irradiation step of irradiating light to a region including a deformed portion due to the contact in a contact body that is deformed by contacting a contacted object; and
    An imaging step of imaging the deformed portion of the contact body from a position outside the optical path of the reflected light from the surface of the contacted object out of the light emitted from the light irradiation means and outputting contact body captured image information; ,
    A contact state detecting step of detecting a pressing state of the contact body against the contacted object using a region change of reflected light from the deformed portion represented by the contact body captured image information. To detect contact state.
  13.  被接触物に接触することにより変形する接触体を保持した状態で前記被接触物に接触させる方向に前記接触体を前記被接触物に対して相対変位させる接触体変位手段と、
     前記接触体における前記被接触物への接触による変形部分を含む領域に光を照射する光照射手段と、
     前記光照射手段から照射された光のうちの前記被接触物の表面からの反射光の光路外に配置され、前記接触体における前記変形部分を撮像して接触体撮像画像情報を出力する撮像手段とを備え、前記接触体の前記被接触物への接触状態を検出する接触状態検出装置に用いられる接触状態検出プログラムであって、
     前記光照射手段によって、前記接触体における前記変形部分を含む領域に光を照射させた状態で、前記接触状態検出装置が備えるコンピュータに、
     前記接触体変位手段によって、前記保持した接触体を前記被接触物に接触させる方向に同被接触物に対して相対変位させ、
     前記撮像手段によって、前記接触体における前記変形部分を撮像して接触体撮像画像情報を出力させ、
     前記接触体撮像画像情報によって表される前記変形部分からの反射光の領域変化を用いて前記接触体の前記被接触物への押圧状態を検出させることを特徴とする接触状態検出プログラム。
    Contact body displacing means for relatively displacing the contact body with respect to the contacted object in a direction in which the contacted object is brought into contact with the contacted object in a state in which the contact body deformed by contacting the contacted object is held;
    A light irradiating means for irradiating light to a region including a deformed portion due to contact with the contacted object in the contact body;
    Imaging means arranged outside the optical path of the reflected light from the surface of the contacted object among the light irradiated from the light irradiating means, imaging the deformed portion of the contact body, and outputting contact body captured image information A contact state detection program for use in a contact state detection device for detecting a contact state of the contact body to the contacted object,
    A computer provided in the contact state detection device in a state where light is irradiated to a region including the deformed portion of the contact body by the light irradiation unit,
    By the contact body displacing means, the held contact body is relatively displaced with respect to the contacted object in a direction to contact the contacted object,
    The imaging means images the deformed portion of the contact body and outputs contact body captured image information,
    A contact state detection program for detecting a pressing state of the contact body against the contacted object using a region change of reflected light from the deformed portion represented by the contact body captured image information.
  14.  前記請求項1ないし前記請求項10のうちのいずれか1つに記載した接触状態検出装置と、
     前記接触状態検出装置における接触体に接続され、同接触体を前記接触状態検出装置における接触状態の検出対象である被接触物に接触させることにより同被接触物の電気伝導度を測定する電気伝導度測定手段とを備えた電気伝導度測定システムであって、
     前記電気伝導度測定手段は、
     前記接触状態検出装置による前記接触体の前記被接触物への押圧状態の検出結果に応じて前記被接触物の電気伝導度測定を実行することを特徴とする電気伝導度測定システム。
    The contact state detection device according to any one of claims 1 to 10,
    Electrical conduction connected to a contact body in the contact state detection device and measuring the electrical conductivity of the contact object by bringing the contact body into contact with the contact object that is a contact state detection target in the contact state detection device An electrical conductivity measuring system comprising a degree measuring means,
    The electrical conductivity measuring means includes
    An electrical conductivity measurement system that performs electrical conductivity measurement of the contacted object according to a detection result of a pressing state of the contact body against the contacted object by the contact state detecting device.
  15.  請求項14に記載した電気伝導度測定システムにおいて、さらに、
     前記接触体に接続され、前記接触体と前記被接触物との間で絶縁破壊を生じさせるための電圧を印加する電圧印加手段を備えることを特徴とする電気伝導度測定システム。
    The electrical conductivity measurement system according to claim 14, further comprising:
    An electrical conductivity measurement system comprising voltage applying means for applying a voltage connected to the contact body and causing dielectric breakdown between the contact body and the contacted object.
  16.  前記請求項12に記載した接触状態検出方法における各ステップと、
     前記接触状態検出方法における接触体に接続され、同接触体を前記接触状態検出方法における接触状態の検出対象である被接触物に接触させることにより同被接触物の電気伝導度を測定する電気伝導度測定ステップとを含む電気伝導度測定方法であって、
     前記電気伝導度測定ステップは、
     前記接触状態検出装置による前記接触体の前記被接触物への押圧状態の検出結果に応じて前記被接触物の電気伝導度測定を実行することを特徴とする電気伝導度測定方法。
    Each step in the contact state detection method according to claim 12,
    Electrical conduction that is connected to the contact body in the contact state detection method and measures the electrical conductivity of the contact object by bringing the contact body into contact with the contact object that is a contact state detection target in the contact state detection method An electrical conductivity measurement method including a degree measurement step,
    The electrical conductivity measuring step includes
    An electrical conductivity measurement method, comprising: measuring electrical conductivity of the contacted object according to a detection result of a pressing state of the contact body against the contacted object by the contact state detecting device.
PCT/JP2011/065959 2010-07-14 2011-07-13 Contact state detection device, contact state detection method, computer program for contact state detection, electrical conductivity measurement system provided with contact state detection device, and electrical conductivity measurement method involving contact state detection method WO2012008484A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012524575A JP5849335B2 (en) 2010-07-14 2011-07-13 Contact state detection device, contact state detection method, computer program for contact state detection, electrical conductivity measurement system provided with contact state detection device, and electrical conductivity measurement method including contact state detection method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-159971 2010-07-14
JP2010159971 2010-07-14

Publications (1)

Publication Number Publication Date
WO2012008484A1 true WO2012008484A1 (en) 2012-01-19

Family

ID=45469481

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/065959 WO2012008484A1 (en) 2010-07-14 2011-07-13 Contact state detection device, contact state detection method, computer program for contact state detection, electrical conductivity measurement system provided with contact state detection device, and electrical conductivity measurement method involving contact state detection method

Country Status (2)

Country Link
JP (1) JP5849335B2 (en)
WO (1) WO2012008484A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3031729A1 (en) 2014-12-10 2016-06-15 Airbus Operations GmbH Evacuation slide with a guidance marking
EP3031727A1 (en) 2014-12-10 2016-06-15 Airbus Operations GmbH Evacuation slide comprising a lighting system
EP3031728A1 (en) 2014-12-10 2016-06-15 Airbus Operations GmbH Evacuation slide with a lighting system for illuminating an escape route
JP2017505438A (en) * 2014-01-24 2017-02-16 東京エレクトロン株式会社 System and method for generating a texture map of a back side of a substrate that determines front side patterning adjustments
WO2018158994A1 (en) * 2017-02-28 2018-09-07 パナソニックIpマネジメント株式会社 Displacement measuring apparatus and displacement measuring method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10206433A (en) * 1997-01-23 1998-08-07 Olympus Optical Co Ltd Scanning-type probe microscope
JPH11183160A (en) * 1997-12-25 1999-07-09 Fuji Xerox Co Ltd Form measuring equipment and form measuring method
JPH11248800A (en) * 1998-03-04 1999-09-17 Nec Corp Probing device and method
JP2004301548A (en) * 2003-03-28 2004-10-28 Sii Nanotechnology Inc Electric characteristic evaluating apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10213597A (en) * 1997-01-31 1998-08-11 Hitachi Ltd Probe card
JP4526626B2 (en) * 1999-12-20 2010-08-18 独立行政法人科学技術振興機構 Electrical property evaluation equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10206433A (en) * 1997-01-23 1998-08-07 Olympus Optical Co Ltd Scanning-type probe microscope
JPH11183160A (en) * 1997-12-25 1999-07-09 Fuji Xerox Co Ltd Form measuring equipment and form measuring method
JPH11248800A (en) * 1998-03-04 1999-09-17 Nec Corp Probing device and method
JP2004301548A (en) * 2003-03-28 2004-10-28 Sii Nanotechnology Inc Electric characteristic evaluating apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017505438A (en) * 2014-01-24 2017-02-16 東京エレクトロン株式会社 System and method for generating a texture map of a back side of a substrate that determines front side patterning adjustments
EP3031729A1 (en) 2014-12-10 2016-06-15 Airbus Operations GmbH Evacuation slide with a guidance marking
EP3031727A1 (en) 2014-12-10 2016-06-15 Airbus Operations GmbH Evacuation slide comprising a lighting system
EP3031728A1 (en) 2014-12-10 2016-06-15 Airbus Operations GmbH Evacuation slide with a lighting system for illuminating an escape route
WO2018158994A1 (en) * 2017-02-28 2018-09-07 パナソニックIpマネジメント株式会社 Displacement measuring apparatus and displacement measuring method
JPWO2018158994A1 (en) * 2017-02-28 2020-01-09 パナソニックIpマネジメント株式会社 Displacement measuring device and displacement measuring method
US10914572B2 (en) 2017-02-28 2021-02-09 Panasonic Intellectual Property Management Co., Ltd. Displacement measuring apparatus and displacement measuring method

Also Published As

Publication number Publication date
JPWO2012008484A1 (en) 2013-09-09
JP5849335B2 (en) 2016-01-27

Similar Documents

Publication Publication Date Title
JP5849335B2 (en) Contact state detection device, contact state detection method, computer program for contact state detection, electrical conductivity measurement system provided with contact state detection device, and electrical conductivity measurement method including contact state detection method
EP1335209A1 (en) Probe driving method, and probe apparatus
JP2006105960A (en) Sample inspection method and device
US10147174B2 (en) Substrate inspection device and method thereof
TW201631678A (en) Positional precision inspection method, positional precision inspection device, and position inspection unit
US8536540B2 (en) Charged particle beam apparatus and method for stably obtaining charged particle beam image
JP5001533B2 (en) Probe approach
KR100997415B1 (en) Image binarizing method, image proccessing device and recording medium having a computer program
JP5075393B2 (en) Scanning electron microscope
TW201023285A (en) Probe tip to device pad alignment in obscured view probing applications
JP2010044999A (en) Sample holder and sample analyzer using the same
JP2009282010A (en) Apparatus and method for indentation inspection
JP4199629B2 (en) Internal structure observation method and apparatus
US9118331B2 (en) Contact state detection apparatus
US7991219B2 (en) Method and apparatus for detecting positions of electrode pads
JP2007189113A (en) Probe needle contact detecting method and device thereof
JP2017101923A (en) Scanning probe microscope and sample measurement method using the microscope
JP5455957B2 (en) Semiconductor element failure analysis method and failure analysis apparatus
US11704786B2 (en) Stress luminescence measurement method and stress luminescence measurement device
JP5436527B2 (en) Charged particle beam equipment
JPH09266238A (en) Defect inspection apparatus for electronic circuit
JP4795308B2 (en) Sample holder for internal structure observation and electron microscope
JP2020143953A (en) Scanning probe microscope
TW555964B (en) An apparatus of checking lamp and a method of checking lamp
US20130088585A1 (en) Surface imaging with materials identified by color

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11806814

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012524575

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11806814

Country of ref document: EP

Kind code of ref document: A1