WO2012008407A1 - Microinjection device - Google Patents

Microinjection device Download PDF

Info

Publication number
WO2012008407A1
WO2012008407A1 PCT/JP2011/065784 JP2011065784W WO2012008407A1 WO 2012008407 A1 WO2012008407 A1 WO 2012008407A1 JP 2011065784 W JP2011065784 W JP 2011065784W WO 2012008407 A1 WO2012008407 A1 WO 2012008407A1
Authority
WO
WIPO (PCT)
Prior art keywords
injection
container
injection needle
range
visual field
Prior art date
Application number
PCT/JP2011/065784
Other languages
French (fr)
Japanese (ja)
Inventor
尾崎孝美
山田裕之
丸井直樹
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2012008407A1 publication Critical patent/WO2012008407A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M35/00Means for application of stress for stimulating the growth of microorganisms or the generation of fermentation or metabolic products; Means for electroporation or cell fusion

Definitions

  • the present invention relates to a microinjection apparatus for introducing an introduction substance such as a gene regulatory factor into a body to be introduced such as a cell with a minute injection needle under a microscope.
  • Typical methods for introducing substances into cells include electroporation (electrical), lipofection (chemical), vector method (biological), microinjection method (mechanical), and laser injection (optical).
  • electrical method the cell membrane is broken by a large current, so that the cell is greatly damaged.
  • chemical method is limited in the genes that can be introduced, and the introduction efficiency is low.
  • Biological systems have limitations such as the types of genes that can be introduced and safety issues.
  • the microinjection method has an advantage that a substance can be reliably injected into a cell by controlling the injection position with high accuracy.
  • Patent Document 1 describes a method of performing microinjection using a capillary (microneedle).
  • the microinjection method in which a gene is injected into each cell, is the most reliable method. However, the operation requires skill and time, so that the throughput is low.
  • a microcapillary array in which a large number of injection needles are regularly arranged as described in Patent Document 2 has been developed, and a microchamber array having a chamber at a position corresponding to this is used. There is an example of trying batch injection.
  • FIG. 31 shows a conventional example of an apparatus to which the microinjection method is applied.
  • a petri dish 90 containing cells to be introduced is gripped by a container mounting table 91, a local planar image inside the petri dish 90 is captured by an imaging unit 92, and the planar image is image processing unit 93.
  • the position information of the cells is obtained by processing in step (1).
  • the container mounting table 91 By moving the container mounting table 91 by the horizontal biaxial direction container position adjusting means 94 made of an XY stage device, the cells are positioned so that the cells are positioned in the insertion direction of the injection needle 95.
  • the manipulator holding the injection needle 95 is moved in the insertion direction of the injection needle 95 by the injection needle transport means 97 having the Z stage device 96.
  • the injection needle 95 is pierced into the positioned cell, and the introduction substance filled in the injection needle 95 is introduced into the cell.
  • a series of these operations are automatically performed under the control of the control device 98.
  • An ultrasonic motor or a ball screw is used for the injection needle conveying means 97.
  • the microcapillary array system such as Patent Document 2 that collectively controls the position of the injection needle with respect to the cells does not pierce many cells, or many As a result, the cells are destroyed.
  • the method using a microcapillary array requires cells to be arranged at the same position as the microcapillary array, it can only handle floating cells that can move in the culture medium. Cannot be used.
  • the injection speed of the injected substance is improved and the positioning speed of the manipulator (injection needle conveying means) is improved.
  • the manipulator injection needle conveying means
  • the injection process of one cell in less than 1 second.
  • the type of introduced substance is not limited, that introduction efficiency is high, and that a large amount of substance-introduced cells can be supplied. It cannot be satisfied at present.
  • the container position adjusting means 94 that supports the petri dish 90 containing the cells is moved in order to position the cells, and the manipulator equipped with the injection needle 95 is moved to the cells. Since the injection needle 95 is moved only in the insertion direction, it was impossible to position a plurality of cells and insert the injection needle into each cell simultaneously.
  • the Y-axis movement mechanism is arranged to be stacked on the X-axis movement mechanism. It was. Therefore, since the X movement mechanism drives both the injection needle and the Y axis movement mechanism, high-speed movement is difficult.
  • a piezoelectric element laminate as a driving source or using a mechanism for expanding the operation of the piezoelectric element laminate.
  • Japanese Patent Application No. 2010-077677 Japanese Patent Application No. 2010-077677.
  • this proposed example not only the direction of puncturing the injection needle, but also movement in the horizontal plane and movement in the puncturing direction are possible, and parallel injection processing to a plurality of cells is possible.
  • there are other possible miniaturizations of manipulators and the possibility of implementing a plurality of manipulators is increasing.
  • An object of the present invention is to provide a microinjection apparatus that can efficiently and surely introduce a substance to be introduced into an introduced body such as a cell with a plurality of injection needles and can improve the processing efficiency. is there.
  • the microinjection apparatus is a microinjection apparatus that performs an injection process for introducing an introduction substance into the introduction target T by inserting the injection needle 11 filled therein with the introduction substance into the introduction target T.
  • the container position adjusting means 1 for adjusting the position of the container 12 containing the introduction target T, and a plurality of injections with respect to the introduction target T inside the container 12 adjusted by the container position adjusting means 1
  • a plurality of conveying means 4 for individually moving the needles 11 so as to be movable in at least two-dimensional directions, and images inside the container 12 adjusted by the container position adjusting means 1 are transmitted through the microscope 3 to the microscope visual field range V.
  • Position determination for determining the position of each introducer T in the microscope visual field range V from the image obtained by the imaging means 2 and the image obtained by the imaging means 2 Each injection so as to equalize the load on the conveying means 4 of each injection needle 11 from the stage 8 and information on the position of each introduction target T determined by the position determination means 8 in accordance with a predetermined rule R.
  • Position determination means 9 for determining the range E within the microscope visual field V that the needle 11 is in charge of, and for each introducer T in the range E determined by the charge range calculation means 9
  • injection needle movement control means 88 for causing the respective conveying means 4 to move the injection needle 11 from the information on the position of each introduction target T determined by the means 8.
  • the plurality of transfer means 4 for individually moving the plurality of injection needles 11 so as to be movable in at least two-dimensional directions are provided, the plurality of injection needles 11 are operated in parallel to perform the injection process. be able to.
  • the container position adjusting means 1 for adjusting the position of the container 12 containing the introduction target T is provided, and an image inside the container 12 adjusted by the container position adjusting means 1 is taken in the microscope visual field range V through the microscope 3.
  • Imaging means 2 for performing the operation and position determining means 8 for determining the position of each introduced object T in the microscope visual field range V from the image obtained by the imaging means 2 are provided.
  • assigned range calculation means 9 for determining the range E in the microscope visual field V that each injection needle 11 is in charge of is provided, and this means 9 is provided in accordance with a predetermined rule R of the conveying means 4 of each injection needle 11. Since the assigned range is determined so that the load is equalized, the injection process can be performed on the entire introduced target T in the microscope visual field V without the load being unevenly applied to some of the injection needles 11. . For this reason, the time difference for completing the injection process for all the introduction bodies T in charge of each injection needle 11 to be operated in parallel within the microscope visual field V is reduced. Therefore, the introduction of the introduced substance into the introduction target T can be performed efficiently and reliably with the plurality of injection needles 11, and the processing efficiency can be improved.
  • the “load” is a physical quantity that is a factor that affects the operation time and the number of operations of the conveying means of the injection needle 11, and is a physical quantity that is calculated according to an arbitrarily defined rule. Or the number of times the injection needle 11 moves, or a value that takes into account both the distance and the number of times.
  • the assigned range calculation means 9 may divide the region of the microscope visual field range V so that the area of the range E handled by each injection needle 11 is substantially equal. If the area of the range E in charge is substantially equal, the load of the conveying means 4 of each injection needle 11 is equalized, and the time of the injection process by each injection needle 11 is equalized. In addition, since the area of the range E in charge is divided almost evenly, the division calculation process is easy.
  • the assigned range calculation means 9 may divide the region of the microscope visual field range V so that the number of introduced bodies T handled by each injection needle 11 is substantially equal. If the number of introduced objects T in charge is equal, the number of operations for the injection process of the injection needles 11 becomes equal, and therefore the time of the injection process by each injection needle 11 is equalized.
  • the order of the injection process of the introduced body 11 is set so that the total movement distance of the injection needle 11 in the operation of the injection process to each introduced body T in charge is minimized for each injection needle 11.
  • Insertion order determining means 10 for determining may be provided.
  • the injection needle 11 is adjusted and moved so that the injection needle 11 comes to a position facing the introduction target T while the injection needle 11 is in the standby position in the insertion direction, and the injection needle 11 is inserted into the introduction target. The operation in the insertion direction and the operation of returning the introduction target T to the standby position are repeated.
  • the order of processing is less affected by the time of operation in the insertion direction, but the distance of the adjustment movement differs greatly.
  • the sum of travel time changes greatly. Therefore, by determining the order so that the total movement distance of the injection needle 11 is the shortest, the total time for performing the injection processing of all the introduced objects in the assigned range E can be shortened.
  • the assigned range calculation means 9 may be configured as follows. For example, the assigned range calculation means 9 divides the region of the microscope visual field range V so that the total movement distances of the individual injection needles 11 are substantially equal. When the insertion order determining means 10 is provided, the total movement distance of the individual injection needles 11 is determined. By equalizing the total moving distances determined in this way, the time of the injection process that each injection needle 11 takes charge is equalized, and the processing efficiency can be improved.
  • the assigned range calculating means 9 divides the region of the microscope visual field range V so that the product of the total moving distance and the processing number of the individual injection needles 11 is substantially equal. It may be what you do.
  • the time required for the movement of the injection needle 11 for the injection process includes a time for adjusting and moving the injection needle 11 so as to come to a position facing the introduction target T and a time for reciprocating the injection needle 11 in the insertion direction. is there.
  • the time for reciprocating the injection needle 11 in the insertion direction depends on the number of processing.
  • the time for the adjustment movement depends on the total movement distance.
  • the injection processing time assigned to each injection needle is further equalized and the processing efficiency is further improved. Is possible. Further, as described above, the processing time is determined from both the processing number and the total moving distance, but by using the product of both, an appropriate area division reflecting the processing number and the total moving distance can be easily performed.
  • the assigned range calculating means 9 is used for filling the introduction substance while the injection needle 11 is being moved and while the injection needle 11 is being inserted into the introducer T.
  • the region of the microscope field-of-view range V may be divided so that the processing time, which is the sum of the injection time and the movement time, is substantially equal using the injection time to be stopped.
  • the assigned range calculation means 9 has a priority condition that no interference occurs between the injection needles 11 when the injection needles 11 are operated in parallel.
  • the microscope visual field range V The area may be divided.
  • the injection needles 11 interfere with each other when the injection needles 11 are operated in parallel, the injection needles 11 cannot be operated in parallel. Therefore, it is a priority condition that interference does not occur, and within the range where this priority condition is satisfied, other conditions, for example, the area in charge is almost equal, or the number of introduced subjects in charge is almost equal. It is practical to divide the region of the range.
  • interference avoiding means 79 may be provided for determining the order of the injection processing of each injection needle 11 to the introduction target T so that the injection needles 11 do not interfere with each other. Thereby, avoidance of interference between the injection needles 11 is ensured.
  • a visual field range adjusting means 86 for adjusting the microscope visual field range V may be provided according to the size of the introduction target T.
  • the microscope visual field range V is adjusted by changing the magnification of the objective lens of the microscope 3, for example.
  • the accuracy requirement of the insertion position of the injection needle 11 into the body to be introduced T varies. Therefore, when the introducer T is large, the microscope visual field range V is widened to reduce the number of times of changing the container position, and when the introducer T is small, the microscope visual field range V is narrowed to improve accuracy and necessary for introduction. The efficiency of the injection process can be improved without causing a significant decrease in accuracy.
  • the container position adjusting means 1 and the container position adjusting means 1 sequentially move the position of the container 12 according to the microscope visual field range V so that the injection processing of the injection needle 11 is performed in the entire region of the container 12.
  • An in-container full range processing means 100 for controlling the conveying means 4 of each injection needle 11 may be provided. Thereby, the introduction substance can be introduced into all the introduction bodies T in the container 12.
  • the in-container full range processing means 100 performs the injection processing on all the objects to be introduced T in one microscope visual field range V and then moves the container 12 by the container position adjusting means 1 according to the microscope visual field range V. You may make it move sequentially and to perform the injection process with respect to the to-be-introduced object T in the container 12 in the position after each movement. In this case, only one microscope field-of-view range V needs to be stored for the position of the introducer T, and the storage capacity can be reduced.
  • the in-container all-range processing means 100 includes an insertion order determining means 10 that determines the order of the injection processing of each injection needle 11 according to a predetermined rule.
  • the position of the container 12 is sequentially moved by the container position adjusting means 1 in accordance with the microscope visual field range V, and the position of the introduction target T up to each microscope visual field range V of a plurality of movement destinations is set before the injection process.
  • the position determination means 8 may make the determination, and the assigned range calculation means 9 may determine the range E that each injection needle 11 is responsible for, and the insertion order determination means 10 may determine the order of the injection processing. .
  • the movement destination of the injection needle can be calculated in advance during the injection process of the microscope visual field range V.
  • the processing time can be shortened.
  • the in-container full-range processing means 100 is provided with an insertion order determining means 10 that determines the injection processing order of the injection needles 11 according to a predetermined rule.
  • the position of the container 12 is sequentially moved by the container position adjusting means 1 according to the visual field range V, and the positions of all the introduced objects T in the container 12 are determined by the position determining means 8 before the injection process.
  • the range calculation means 9 may determine the range E that each injection needle 11 is responsible for, and the insertion order determination means 10 may determine the order of the injection processing.
  • the in-container full range processing means 100 sequentially moves the position of the container 12 by the container position adjusting means 1 in accordance with the microscope visual field range V, and determines the position of the introducer T in the current microscope visual field range V as a position determination means.
  • the injection process to each introduced object T in the microscope visual field range V a plurality of times before may be performed by the movement of the transfer device 4 by the injection needle movement control means 88.
  • the position of the introducer T can be calculated during the injection process, and the entire injection process can be performed more efficiently.
  • the in-container full range processing means 100 may be moved so as to have a portion Va overlapping the microscope visual field range V when the container position adjusting means 1 sequentially moves the 12 positions of the container.
  • a portion Va overlapping the microscope visual field range V when the container position adjusting means 1 sequentially moves the 12 positions of the container.
  • the entire range processing means 100 in the container may be configured so that the overlapping portions Va have the same area.
  • the process of dividing the range in the container into a large number of microscope visual field ranges V is facilitated.
  • the in-container all-range processing means 100 determines the rule when the container position adjusting means 1 sequentially moves the position of the container 12.
  • the in-container all-range processing means 100 determines the rule when the container position adjusting means 1 sequentially moves the position of the container 12.
  • the introduced object To at the overlapping position is the reference, and the position of the introduced object To becomes clear.
  • the transport means includes a movable body installed so as to be movable forward and backward, and an advance / retreat drive means for moving the movable body, and the advance / retreat drive means includes a plurality of piezoelectric elements stacked as a drive source. It is also possible to have a piezoelectric element laminate that expands and contracts in the lamination direction. When a laminated piezoelectric element is used as a driving source, the conveying means can be further reduced in size, a large number of conveying means can be arranged in a limited space around the container, and a large number of injection needles are used. Thus, the efficiency of the injection process can be improved.
  • the advancing / retreating drive unit using the piezoelectric element laminate as a drive source in the transport unit arranges the piezoelectric element laminate in parallel, and the plurality of piezoelectric element laminates May be connected in series in the expansion and contraction direction via a coupling member.
  • a coupling member e.g. 1 mm or more.
  • the advancing / retracting drive means using the piezoelectric element laminate in the transport means as a drive source has an expansion mechanism that expands and contracts the piezoelectric element laminate to a displacement in a direction perpendicular to the expansion / contraction direction.
  • the enlargement mechanism is, for example, a link mechanism. Having an enlargement mechanism is more effective in securing the amount of movement required for the injection needle. According to the link mechanism, it is possible to provide an expansion mechanism with a simple configuration.
  • the advancing / retreating drive unit using the piezoelectric element laminate as the drive source in the transport unit is configured to extend and contract the piezoelectric element laminate in a direction parallel to the extension / contraction direction. It is good also as what has an expansion mechanism which expands to this displacement.
  • the enlargement mechanism is, for example, a link mechanism. Enlarging the displacement in a direction parallel to the expansion / contraction direction is also more effective in securing the amount of movement necessary for the injection needle.
  • the link mechanism has a crank / slider mechanism including one fixed joint, two movable joints, and two links, and the crank / slider mechanism is configured to change the displacement of the piezoelectric element in the extension direction. It may be possible to change the displacement in an arbitrary direction on the circumference of the fixed joint and further expand the displacement via two movable joints and two links.
  • the link mechanism has such a configuration, the number of parts can be reduced and the size can be reduced.
  • the conveying means has two degrees of freedom in which at least the first moving body and the second moving body can freely advance and retreat in directions orthogonal to each other, and the injection needle is attached to the second moving body.
  • the first moving body is supported on the base so as to be movable in a linear direction via the first guide, and is movable on the first moving body via the second guide.
  • a body is installed so as to be able to advance and retract in a direction orthogonal to the linear direction, and the first advancing / retreating driving means and the second advancing / retreating driving means for advancing and retracting the first moving body and the second moving body, respectively,
  • the output member of the second advancing / retreating drive unit may be connected to or freely contact with a direction perpendicular to a direction in which the second moving body can advance / retreat.
  • the conveying means separates the moving body and the advancing / retreating driving means, and the advancing / retreating driving means for each degree of freedom are installed on the base, so that the conveying means can be reduced in size and the mass of the moving object is reduced. As a result, the conveying means can be driven at high speed.
  • the advancing / retreating driving means for each degree of freedom are all installed on the base, the second advancing / retreating driving means of the second moving body installed on the base via the first moving body is provided.
  • the output member is freely connected to or in contact with the direction orthogonal to the direction in which the advance / retreat movement is possible, the advance / retreat of the second advancing / retreating drive unit is performed regardless of the position of the first moving body.
  • the drive can be transmitted to the second moving body.
  • the conveying means can be reduced in size, it becomes easy to arrange a plurality of conveying means around a container such as a petri dish containing cells or other objects to be introduced. Therefore, the tip of the injection needle can be simultaneously positioned with respect to a plurality of introduced bodies, and injection processing to a large number of introduced bodies can be executed at a time, and high throughput can be achieved.
  • the introduced substance may be a cell, and the introduced substance may be a gene regulatory factor such as DNA or protein.
  • the advantage of being able to efficiently and surely perform with a plurality of injection needles in this invention and improving the processing efficiency is effectively exhibited. .
  • (A) is explanatory drawing of the operation
  • (B) is the operation
  • (A), (B) is explanatory drawing of the form which gives the overlap part of a microscope visual field range, respectively. It is a top view which shows the other arrangement structure of the conveyance means in the same microinjection apparatus. It is a side view of the conveyance means in the microinjection apparatus.
  • (A) is a partially omitted plan view showing an X-axis moving mechanism and a Y-axis moving mechanism of the conveying means in the microinjection device, and (B) is a front view of the same.
  • (A) is a top view which shows the X-axis movement mechanism and Y-axis movement mechanism of the conveyance means
  • (B) is the front view similarly.
  • It is sectional drawing which shows an example of the advance / retreat drive means of the conveyance means.
  • It is an enlarged plan view which shows an example of the contact part of the output member and moving body in the advance / retreat drive means of the conveyance means.
  • FIG. 1 It is an enlarged plan view which shows the other example of the contact part of the output member and moving body in the advance / retreat drive means of the conveyance means.
  • (A) is a top view which shows the other example of the X-axis movement mechanism and Y-axis movement mechanism of the conveyance means in the microinjection apparatus,
  • (B) is the front view similarly.
  • (A) is a top view which shows the further another example of the X-axis movement mechanism of the conveyance means in the microinjection apparatus, and a Y-axis movement mechanism, (B) is the front view similarly.
  • (A) is a top view which shows the further another example of the X-axis movement mechanism of the conveyance means in the microinjection apparatus, and a Y-axis movement mechanism
  • (B) is the front view similarly.
  • (A) is a top view which shows the further another example of the X-axis movement mechanism of the conveyance means in the microinjection apparatus, and a Y-axis movement mechanism
  • (B) is the front view similarly. It is a figure which combines and shows the longitudinal cross-sectional view of an example of the Z-axis moving mechanism in the conveyance means, and the block diagram of the conceptual structure of the control system.
  • FIG. 1 It is a figure which shows the further another example which combined the block diagram of the conceptual structure of the advancing / retreating drive means and its control system in the conveyance means. It is a top view which shows the further another structural example of the link mechanism in the advance / retreat drive means of the conveyance means.
  • (A) is a diagram showing still another example in which the advance / retreat drive means (Y-axis movement mechanism) in the transport means and a block diagram of the conceptual configuration of the control system are combined
  • (B) is the advance / retreat drive means in the transport means.
  • FIGS. 1A to 1C to FIG. 1A to 1C are conceptual diagrams of this microinjection apparatus.
  • This microinjection apparatus is an apparatus for introducing an introduction substance into the introduction target T by inserting a minute injection needle 11 filled with the introduction substance into the introduction target T.
  • the introducer T is, for example, a cell.
  • This cell may be a human body cell or a cell of an organism such as any other animal or plant.
  • the microinjection apparatus includes a container position adjusting unit 1, a plurality of transfer units 4 which are manipulators individually provided for a plurality of injection needles 11, and each of these transfer units 4 between an injection preparation position and a retracted position.
  • a transporting means retracting mechanism 39 that moves forward and backward
  • an imaging means 2 a microscope 3, and a control device 5 that controls the operation of the entire apparatus.
  • the container position adjusting means 1 moves a container mounting table 13 on which a container 12 such as a petri dish that accommodates an introduction body is held in a horizontal state in two horizontal orthogonal directions (X-axis and Y-axis directions). 12 is a means for adjusting the position of the XY stage device 6.
  • X axis, Y axis, and Z axis in this specification represent the respective axes of rectangular coordinates defined as a common coordinate system in the entire microinjection apparatus. May be represented as an axis for each degree of freedom.
  • the imaging means 2 is installed together with the microscope 3 at a fixed position above the container mounting table 13 so as to overlook the container 12.
  • the imaging unit 2 is a camera or the like that captures an image such as a planar view image obtained by locally expanding the inside of the container 12 through the microscope 3, and performs imaging for each field of view range V (FIG. 1B) of the microscope 3.
  • the microscope visual field range V is set to the microscope visual field range V by moving the container 12 by the container position adjusting means 1. For example, each range obtained by dividing the inside of the container 12 as shown in FIG.
  • the captured image is processed by the image processing means 7.
  • the microscope 3 has a drive-type magnification adjusting means (not shown) that can adjust the field of view range by adjusting the magnification of an objective lens (not shown) by an input signal given from the outside.
  • the conveying means 4 is a means composed of an XYZ stage device or the like for moving each injection needle 11 and a plurality of conveying means 4 are provided. As shown in a plan view in FIG. 2, the plurality of transport means 4 are positioned above the container mounting table 13 and are arranged radially with respect to the center of the container 12 so as to surround the container 12. In the example of the figure, a plurality of (for example, two) conveying means 4 are arranged at equal angular intervals on the left and right sides of the container 12, and the left and right conveying means 4 are collinear with respect to the radiation center. Located opposite to each other. As shown in FIG. 9, three conveying means 4 may be arranged such that three on the left and right are arranged at equal angular intervals, or more.
  • the conveying means 4 is a mechanism having three degrees of freedom, and can move the injection needle 11 in a three-dimensional direction.
  • the transport unit 4 includes a mechanism that moves the injection needle 11 in two horizontal orthogonal directions and a mechanism that moves the injection needle 11 back and forth in a linear direction inclined with respect to the horizontal plane. A more specific configuration of the transport unit 4 will be described in detail later.
  • the conveyance means 4 can move in at least two degrees of freedom, that is, in the direction of two orthogonal axes, a plurality of conveying means 4 can be installed and subjected to the injection processing in parallel.
  • the control device 5 is constituted by a computer and a program executed by the computer.
  • the position determination means 8, the assigned range calculation means 9, the insertion order determination means 10, the target position determination means 80, the in-container full range processing command means 100, visual field range adjusting means 86, container movement interval determining means 87, injection needle movement control means 88, and container movement control means 89 are configured. Further, interference avoiding means 79 may be provided.
  • the control device 5 includes input means by manual operation such as a keyboard and a mouse, input means for inputting from a communication line or a recording medium, and display means such as a liquid crystal display device capable of displaying an image (both shown (Not shown) is provided or connected.
  • the position determination means 8 is a means for determining the position of each introduced object T in the visual field range V of the microscope 3 from the image obtained by the imaging means 2.
  • the image obtained by the imaging unit 2 is processed into a binary image or the like by the image processing unit 7, and the position determination unit 8 sets the black spot position of the binary image as the position of the introduction target T, for example.
  • the position of the introducer T is determined as a coordinate position in the orthogonal biaxial direction within the microscope visual field range. From the relationship between the microscope visual field range V and the position of the container 12, the coordinate position of the introducer T with respect to the container 12 and the coordinate position of the introducer T with respect to the reference position of the container position adjusting means 1 are obtained.
  • the position of each introduced object T determined by the position determination unit 8 is stored in the position storage unit 8 a in the position determination unit 8.
  • the assigned range calculation means 9 is a means for determining the range E (FIG. 1C) that each injection needle 11 takes charge in the microscope visual field V, and is determined by the position determination means 8 and stored in the position storage unit 8a. From the information on the position of each introduced object T, the assigned range E is determined according to a predetermined rule R. This rule R is to determine the assigned range E so that the load on the conveying means 4 of each injection needle 11 is equalized.
  • the determination of the assigned range E by the assigned range calculation means 9 is performed as shown in FIG. 3, FIG. 4, FIG. 5, or FIG.
  • the visual field range V is injected by the radial dividing lines L around the radiation center O defined in the visual field range V so that the respective divided ranges are located close to the injection needles 11. It is assumed that the division range is divided into the number of needles 11 and the division range at the close position is set as the assigned range E of the injection needle 11.
  • the radiation center O may be the center of the visual field range V, that is, the centroid, or may be an arbitrarily determined point. Under this assumption, it is determined as shown in each figure.
  • FIG. 3 is an example in which the region of the microscope visual field range V is divided into a plurality of assigned ranges E by a dividing line L around the radiation center O so that the areas handled by the injection needles 11 are almost equal.
  • the radiation center O is the center of the visual field range V, but may be a position deviated from the center of the visual field range V.
  • the region of the microscope visual field range V is divided into a plurality of assigned ranges E by a dividing line L around the radiation center O so that the numbers of the introduction bodies T handled by each injection needle 11 are substantially equal. It is an example.
  • the radiation center O is the center of the visual field range V in the above example, but may be a position deviated from the center of the visual field range V.
  • the region of the microscope visual field range V is divided into a plurality of assigned ranges E by a dividing line L around the radiation center O so that the total movement distances of the individual injection needles 11 by the conveying means 4 are substantially equal.
  • the radiation center O is the center of the visual field range V, but may be a position shifted from the center of the visual field range V.
  • the total movement distance changes if the order of performing the injection process on each introducer T within the assigned range E is different, the total movement when the order of the injection processes that minimizes the total movement distance is taken. Make the distances approximately equal.
  • the order of the injection processing in which the total movement distance is the shortest is calculated by the insertion order determination means 10 (FIG. 1A). In this case, for example, it is possible to calculate the assigned range E in which the total moving distance is almost equal by determining the assigned range E variously and comparing the total moving distance in each case.
  • the assigned range calculation means 9 can employ various methods for determining the assigned range E, which will be described later in the explanation section of the operation of the microinjection apparatus.
  • the insertion order determining means 10 introduces the introduction target in the assigned range E so that the total movement distance of the injection needle 11 in the operation of the injection process to each introduced target T for each injection needle 11 becomes the shortest. It is a means for determining the order of the injection processing of the body T.
  • the target position determining unit 80 is a unit that determines a target coordinate position into which the injection needle 11 is inserted with respect to each of the introduced objects T whose order has been determined by the insertion order determining unit 10. This coordinate position is determined from the coordinate position of the introducer T within the microscope visual field range V and the coordinate position of the microscope visual field range V with respect to the container position.
  • the container position is a position moved by the container position adjusting means 1.
  • the injection needle movement control means 88 is means for controlling the transport means 4 so that the injection needle 11 moves to the target coordinate position determined by the target position determination means 80.
  • the injection needle movement control means 88 is a general term for the individual injection needle control unit 88 a provided for each injection needle 11. These injection needle individual control units 88a are collectively referred to as injection needle movement control means 88.
  • the injection needle individual control unit 88a controls each drive source in the X-axis direction, the Y-axis direction, and the Z-axis direction in the individual transport means 4.
  • the container movement control means 89 is a means for controlling the driving source in each axial direction (X direction, Y direction) which is the horizontal direction of the container position adjusting means 1 so as to be the coordinate position of the input container position in the XY direction. It is.
  • the in-container full range processing command unit 100 sequentially moves the position of the container 12 by the container position adjusting unit 1 according to the microscope visual field range V, and performs the injection processing of the injection needle 11 in the entire region in the container 12. It is a means to control the container position adjusting means 1 and the conveying means 4 of each injection needle 11 so that This control is performed via the injection needle movement control means 88 and the container movement control means 89 by giving a command to the injection needle movement control means 88 and the container movement control means 89.
  • the entire range of the container 12 is divided into regions in which the microscope visual field range V is arranged in a matrix in the vertical and horizontal directions, and sequentially positioned in each of the divided microscope visual field ranges V.
  • the container 12 is moved and positioned by the container position adjusting means 1, and the conveying means 4 of each injection needle 11 is driven with respect to the microscope visual field range V at the stop position of each container 12.
  • an overlapping range may occur as described later.
  • the in-container all-range processing command unit 100 moves the position of the container 12 every time the injection processing in one microscope field-of-view range V is completed, and introduces in the next one microscope field-of-view range V.
  • the operation of determining the position of the body T and performing the injection process is repeated.
  • the determination of the position of the introduction target T in the entire range in the container 12 or in a plurality of microscope field-of-view ranges V may be performed collectively.
  • the visual field range adjusting means 86 is a means for adjusting the microscope visual field range V according to the size of the introduction target T.
  • the size of the introduction target T may be, for example, the average size of the introduction target T determined from the image processed by the image processing unit 7. For example, it is assumed that it has a function of calculating an average size of the introduction target T. Further, the size of the introduction target T may be given to the control device 5 from an input means (not shown).
  • the adjustment of the visual field range by the visual field range adjustment means 86 is performed by giving a command to a drive source of a magnification adjustment mechanism (not shown) of the microscope 3, for example.
  • the magnification adjustment mechanism adjusts the magnification by automatic switching of an objective lens (not shown).
  • the container movement interval determining means 87 is divided into the microscope visual field range V, and when the container position is moved to the adjacent microscope visual field range V, the movement distance is changed to the visual field range adjusting means 86. It is a means which makes it the distance corresponding to the visual field range adjusted by.
  • Interference avoiding means 79 is means for determining the processing order so that the injection needles 11 do not interfere with each other when the insertion order determining means 10 determines the order of the injection processing of each injection needle into the body T to be introduced.
  • the interference avoiding means 79 does not need to be provided.
  • the interference avoiding means 79 is configured to perform the injection process on the introduced objects T at positions separated from each other during the parallel operation so as not to cause unexpected interference.
  • the insertion order determining means 10 may determine the order of the injection processing.
  • the injection process is performed on the entire region in the container 12, but sequentially for each microscope visual field range V.
  • First, the injection process in each microscope field-of-view range V will be described.
  • Positioning of the injection needle 11 for introduction into the introduction target T in the horizontal direction (two orthogonal directions) and the injection direction are all performed by the conveying means 4 provided for each individual injection needle 11. Therefore, the injection process can be performed in parallel by the plurality of injection needles 11 arranged radially around the container 12.
  • the assigned range E within the microscope visual field V that each injection needle 11 is in charge of is assigned by the assigned range calculation means 9 as determined.
  • the assigned range calculation unit 9 is configured so that the load of the transfer unit 4 of each injection needle 11 is equalized, in other words, the operation amount of the transfer unit 3 of each injection needle 11 is equalized.
  • the assigned range E is determined, and the injection processing is performed in parallel with each injection needle 11. Thereby, the total processing time is shortened.
  • the region of the microscope visual field range V is divided into a plurality of assigned ranges E so that the areas handled by the injection needles 11 are substantially equal.
  • the region of the microscope visual field range V may be divided into a plurality of assigned ranges E so that the number of introduction bodies T handled by each injection needle 11 becomes substantially equal.
  • the dividing line L is slightly rotated with reference to the radiation center O in the microscope visual field range V. This is because when the area of the assigned range E becomes large, the moving distance of the transfer device 4 becomes long and a difference occurs in the processing time, so that there is no difference in the area of the assigned range E as much as possible.
  • the example of FIG. 4 does not limit the method of setting the assigned range.
  • the microscope visual field range V may be divided so that the total movement distance in the region (the assigned range E) processed by each injection needle 11 becomes substantially uniform.
  • the insertion order determining means 10 determines the processing order of the introduction target T for each injection needle 11, calculates the total movement distance in that order, and divides the microscope visual field range V so that the total movement distance is substantially uniform. To do.
  • the assigned range calculation means 9 is not limited to the division method described above with reference to FIGS. 3 to 5, so that the product of the number of processes and the total movement distance in the region (the assigned range E) processed by each injection needle 11 becomes as small as possible.
  • the microscope visual field range V may be divided.
  • the processing time is determined from both the number of processing and the moving distance. In order to make a relative comparison of the processing times of the injection needles 11 simple, the product of both is used.
  • the microscope visual field range V may be divided so that the processing time in the assigned range E processed by each injection needle 11 becomes substantially uniform.
  • the assigned range calculation means 9 performs processing time from the waiting time until the injection needle 11 is stopped in the injection target T and the introduction of the introduced substance is completed, and the movement distance of the injection needle 11 in the injection process. And the charge of each injection needle 11 is determined so that the processing time is substantially uniform.
  • the assigned range calculation means 9 has a priority condition that no interference between the injection needles 11 occurs when the injection needles 11 are operated in parallel, and the region of the microscope visual field range V under this priority condition. It is good also as what divides. For example, when the interference part I occurs as shown in FIG. 6, the region of the microscope visual field range V is divided as shown in FIG. When the injection needles 11 interfere with each other when the injection needles 11 are operated in parallel, the injection needles 11 cannot be operated in parallel. Therefore, it is a priority condition that interference does not occur, and within the range where this priority condition is satisfied, other conditions, for example, the area in charge is almost equal, or the number of introduced subjects in charge is almost equal. It is practical to divide the region of the range.
  • the insertion order determining means 10 determines the order of injection into the introduction target T so that the injection needles 11 do not interfere with each other.
  • the microscope visual field range V is a partial region in the container 12, it is necessary to sequentially move the container 12 and perform the injection process in the entire region in the container 12.
  • the container 12 is moved to determine the position of each introducer T within the next microscope field-of-view range V, and the injection process is performed.
  • the introduced object position may be determined collectively as follows.
  • the in-container full range processing command unit 100 when processing the entire region in the container 12, the in-container full range processing command unit 100 first moves the container 12 sequentially according to the microscope visual field range V as shown in FIG.
  • the positions of all the introduced objects T in the container 12 are determined by the position determination means 8 and stored in the position storage unit 8a.
  • the position storage unit 8a stores the position of the introduction target T in association with the microscope visual field range V. Using the information stored in this way, the division of the assigned range E as shown in FIGS. 3 to 6 by the assigned range calculating means 9 and the order of the injection processing by the insertion order determining means 10 are calculated.
  • the positions of all the introduced objects T in the container 12 are determined in a lump, but depending on the storage capacity of the position storage unit 8a and the processing speed of the assigned range calculation means 9, etc.
  • the calculation of the assigned range E of the injection needle 11 of the microscope visual field range V a plurality of times in parallel is performed.
  • the order of the injection processing may be calculated.
  • FIG. 7B shows an example in which the inside of the container 12 is divided into four.
  • a straight line M indicates a boundary line of the division.
  • the overlapping portion may have a constant area as shown by the hatched area in FIG. 8A, and the introduced object T as a reference from the microscope visual field range V as shown in FIG. It may be determined by a predetermined appropriate method, and the movement distance of the introduced object To may be managed as the reference. This also provides the same effect as when the area of the overlapping part is constant.
  • the to-be-introduced object To for example, the to-be-introduced object T at the upper right end in the microscope visual field range V is defined as To.
  • the microscope field-of-view range V is calculated a plurality of times in parallel. It became possible to shorten the operation.
  • FIGS. 10 to 14 show a first specific example of the microinjection apparatus main body.
  • the moving bodies 41 and 42 and the advancing / retreating drive means (power units) 45 and 46 are separated for the movement of the transporting means 4 in the two biaxial directions perpendicular to the X-axis direction and the Y-axis direction.
  • the Y-axis movement mechanism is arranged to be stacked on the X-axis movement mechanism. It was. In this case, since the X moving mechanism drives both the injection needle and the Y-axis moving mechanism, it is difficult to move at high speed. In this embodiment, stacking of such moving mechanisms is avoided, and high-speed movement is realized by weight reduction.
  • the piezoelectric element laminates 19A and 19B are used to move the injection needle 11 in the injection direction (Z-axis direction).
  • the transport device 4 that is a manipulator for driving the injection needle 11 is miniaturized.
  • Piezoelectric actuators have high conversion efficiency for converting electrical energy to mechanical energy, and can change the generated displacement relatively easily by changing the applied voltage, and have excellent controllability.
  • the crank slider mechanism since the crank slider mechanism is used, the displacement of the piezoelectric element laminates 19A and 19B can be enlarged.
  • the transport device 2 has a drive mechanism having at least two degrees of freedom with respect to the introduction target T, so that the tip of the injection needle can be positioned as a single unit.
  • the downsizing of the transfer device 4 makes it possible to arrange a plurality of transfer devices 4 in a limited space around the container 12 containing the introduced object T such as cells.
  • the plurality of transfer devices 4 can simultaneously position the tip of each injection needle 11.
  • the positioning control is performed by the control device 5 (FIG. 1A) as described above, but the assigned range E for each injection needle 11 is determined, and the load on the transfer device 4 of each injection needle 11 is equalized. Therefore, the transport device 4 can be further downsized.
  • the processing time can be shortened. That is, according to this embodiment, the transporting means 4 that is a manipulator can be reduced in size, and a plurality of transporting means 4 are arranged around a container 12 such as a petri dish containing an introduced object T such as a cell. be able to.
  • the tip of the injection needle 11 can be simultaneously positioned with respect to a plurality of introduced bodies T, and injection processing to a large number of introduced bodies T can be executed at a time, thereby enabling high throughput. It becomes.
  • the waiting time by the calculation can be reduced and the time can be shortened.
  • the container position adjusting means 1 moves the container mounting table 13 on which the container 12 such as a petri dish for storing the introduction body is held in the horizontal orthogonal biaxial direction as described above. It is means for adjusting the position of the container 12 by moving it, and is constituted by the XY stage device 6.
  • the XY stage device 6 includes a lower movable table 183 that is installed on a base 181 so as to be movable in the Y-axis direction via a guide 182, and the lower movable table 183.
  • An upper movable base 185 that is movable in the X-axis direction via the guide 184, and movable base drive mechanisms 186 and 187 for the respective axes that move the lower movable base 183 and the upper movable base 185 in the movable direction. Consists of.
  • the movable table driving mechanisms 186 and 187 may be ultrasonic motors or linear motors, or may be composed of a motor and a rotation / linear motion conversion mechanism such as a ball screw.
  • the container mounting table 13 of FIG. 1A is installed on the upper movable table 185, or the upper movable table 185 itself becomes the container mounting table 13.
  • the conveying means 4 has three degrees of freedom.
  • the moving mechanism that bears one degree of freedom is the first shown in FIG. 10 in one direction (X-axis direction) of two directions (X-axis direction and Y-axis direction) orthogonal to the container mounting table 13 in the horizontal direction.
  • the X-axis moving mechanism 14 moves the injection needle 11 together with one moving body 41.
  • the moving mechanism that bears one other degree of freedom moves the injection needle 11 together with the second moving body 42 shown in FIG. 10 in another direction (Y-axis direction) of the two orthogonal directions in the horizontal direction.
  • Still another moving mechanism that bears one degree of freedom is the Z-axis moving mechanism 16 shown in FIG. 10 that moves the injection needle 11 in the direction of the injection needle central axis, which is a direction inclined toward the inside of the container 12.
  • the first moving body 41 constituting the X-axis moving mechanism 14 moves in the linear direction (X through the first guide 43 to the base 40 of the transport device 4. It is installed so that it can move forward and backward in the axial direction.
  • the second moving body 42 constituting the Y-axis moving mechanism 15 has a linear direction (Y-axis direction) orthogonal to the linear direction (X-axis direction) via the second guide 44 on the first moving body 41. ) Can be moved forward and backward.
  • Each of the first moving body 41 and the second moving body 42 has a rectangular plate shape.
  • the Z-axis moving mechanism 16 (FIG. 10) is mounted on the second moving body 42. The Z-axis moving mechanism 16 is installed so that the injection angle of the injection needle 11 becomes a predetermined angle inclined downward. Further, the base 40 is advanced and retracted by a transport means retracting mechanism 39 (FIG. 1A).
  • first advance / retreat drive means 45 and second advance / retreat drive means 46 for advancing and retreating the first moving body 41 and the second moving body 42 are provided on the base 40, respectively.
  • the output member 45a of the first advancing / retreating drive means 45 is in a direction (Y-axis direction) orthogonal to the direction (X-axis direction) in which the first moving body 41 can move back and forth with respect to the first moving body 41. On the other hand, it can freely move.
  • the output member 46a of the second advance / retreat drive means 46 is in a direction (X axis direction) orthogonal to the direction (Y axis direction) in which the second movable body 42 can move forward and backward with respect to the second movable body 42. On the other hand, it can freely move.
  • the first guide 43 includes a rail 43a installed on the base 40, and a guided body 43b such as a linear motion rolling bearing provided on the lower surface of the first moving body 41 and capable of moving forward and backward along the rail 43a. And two are provided in parallel to each other.
  • the second guide 44 includes a rail 44a installed on the first moving body 41 and a linear motion rolling bearing provided on the lower surface of the second track body 42 and capable of moving forward and backward along the rail 44a. It consists of guided bodies 44b, and two are provided in parallel to each other.
  • the rails 43a of the first and second guides 43 and 44 are provided with guide grooves (not shown) along the length direction, and the guided bodies 43b and 44b made of linear motion rolling bearings are provided with the guides. A rolling element (not shown) fitted into the groove so as not to fall off is provided.
  • the first advance / retreat driving means 45 is means for advancing / retreating the output member 45a in the linear direction by the drive means main body 45b.
  • the drive means main body 45b may be any as long as it can advance and retract the output member 45a.
  • the piezoelectric element laminates 19A and 19B shown in FIG. 13 an ultrasonic motor, or a combination of a motor and a feed screw mechanism such as a ball screw.
  • the piezoelectric element laminates 19A and 19B shown in FIG. 13 are used.
  • the configuration of FIG. 13 will be described later.
  • the second advancing / retreating drive means 46 is a means for advancing / retreating the output member 46a in the linear direction by the drive means main body 46b, and has the same configuration as the first advancing / retreating drive means 45.
  • the output members 45a and 46a of the advancing / retreating drive means 45 and 46 are merely in contact with the moving parts 41 and 42 so as to apply a moving force, but from the opposite side as shown in FIGS. 12 (A) and 12 (B).
  • the elastic body 121 is disposed between the elastic body support portion 40a provided on the base 40 and the first moving body 41 on the side opposite to the installation side of the first advance / retreat driving means 45.
  • the first movable body 41 is pressed against the output member 45 a of the first advance / retreat driving means 45 by the elastic body 121.
  • the elastic bodies 121 and 122 are, for example, coil springs.
  • the elastic bodies 121 and 122 are preferably springs having a spring constant of 1 N / mm or less.
  • the tip of the output member 45a of the first advancing / retreating drive means 45 in contact with the first moving body 41 is hemispherical as shown in FIG.
  • the output member 46 of the second advance / retreat drive means 46 also has a spherical end at the output member 46a, like the first advance / retreat drive means 45.
  • the side surfaces of the first moving body 41 or the second moving body 42 with which the front ends of the output members 45a and 46a are in contact with each other slide. It is good also as a semi-cylinder shape extended in a direction, and the front-end
  • a coating 101 for reducing friction may be applied to one or both of the contact portions between the output members 45 a, 46 a of the advance / retreat driving means 45, 46 and the moving bodies 41, 42. good.
  • the coating 101 is applied to the output members 45a and 46a.
  • the coating 101 is preferably diamond-like carbon, molybdenum disulfide, fluororesin, or graphite.
  • the output members 45a and 46a of the advance / retreat driving means 45 and 16 and the moving bodies 41 and 42 are balls or You may make it contact via rolling elements 49, such as a roller.
  • the rolling element 49 is a ball, and is rotatably accommodated in the holding members 45aa and 46aa provided at the tips of the output members 45a and 46a so as to partially protrude.
  • the position of the container 12 containing the introduction target T is adjusted by the container position adjusting means 1, and a planar view image inside the position-adjusted container 12 is picked up by the imaging means 2,
  • the introduction target T such as a cell in charge of each injection needle 11 is determined.
  • the position of the introducer T can be recognized with high accuracy by locally enlarging the container 12 with an enlargement lens and performing image processing on the position of the introducer T such as cells.
  • the to-be-introduced body T in charge of each injection needle 11 can be determined from the positional relationship in the image of the to-be-introduced body T such as recognized cells.
  • each injecting needle 11 is moved by several separate conveyance means 4, and the injecting needle 11 is inserted in each to-be-introduced body T, respectively. Then, the introduction substance is introduced into each introduction target T.
  • the conveying means 4 Since the conveying means 4 has a drive mechanism with at least two degrees of freedom with respect to the introduction target T, the tip of the injection needle 11 can be positioned as a single unit. Each transport means 4 operates in parallel and repeats the injection operation. After the processing on the cells in the image is completed, the container 12 is moved by the container position adjusting means 1, the cell arrangement at another adjacent position is recognized by image processing, and the injection operation is repeated as described above.
  • the introduction substance can be simultaneously introduced into a plurality of recipients T such as cells, and the efficiency of the injection process can be improved.
  • the transport means 4 separates the moving bodies 41, 42 and the advance / retreat drive means 45, 46, and advances / retreats drive means 45, 45 for each degree of freedom of movement in the X axis and Y axis directions. Since both 46 are installed on the base 40 of the transport means 4, the transport means 4 can be reduced in size, and the mass of the moving bodies 41 and 42 can be reduced, so that the transport means 4 can be driven at high speed.
  • the second moving body 42 installed on the base 40 via the first moving body 41 is Since the output member 46a of the second advance / retreat driving means 46 is in free contact with the direction orthogonal to the direction in which the advance / retreat movement is possible, the second member 41a regardless of the position where the first moving body 41 has moved.
  • the forward / backward drive of the forward / backward drive means 46 can be transmitted to the second moving body 42.
  • conveyance means 4 can be reduced in size, a plurality of conveyance means 4 can be disposed around a container 12 such as a petri dish containing cells to be introduced T as shown in FIGS. it can. Therefore, the tip of the injection needle 11 can be simultaneously positioned with respect to the introducer T, and the injection process to a large number of introducers T can be executed at a time, so that high throughput can be achieved.
  • the piezoelectric element laminates 19A and 19B are used for the advance / retreat driving means 45 and 46 of the moving bodies 41 and 42 of the transport means 4, the following effects can be obtained. That is, conventionally, a ball screw or an ultrasonic motor has been used to drive the injection needle. In this embodiment, however, the conveying means 4 for driving the injection needle 11 is combined with a small actuator using a piezoelectric element. We are trying to make it. Piezoelectric actuators have high conversion efficiency for converting electrical energy to mechanical energy, and can change the generated displacement relatively easily by changing the applied voltage, and have excellent controllability.
  • the elastic bodies 121 and 122 are provided as a configuration for maintaining the contact between the output members 45a and 46a of the advance / retreat driving means 45 and 46 and the moving bodies 41 and 42.
  • FIGS. Permanent magnets 111 to 114 may be provided as shown in FIG. That is, the first and second permanent magnets 111 and 112 are arranged on the base 40 and the first moving body 41 so that the directions of the magnetic poles facing each other are the same, and the first moving body is generated by the magnetic repulsive force. 41 may be pressed against the output member 45a of the first advance / retreat driving means 45.
  • the second and fourth permanent magnets 113 and 114 are arranged on the first moving body 41 and the second moving body 42 so that the directions of the magnetic poles facing each other are the same, and the second repulsive force causes the second movement.
  • the moving body 42 may be pressed against the output member 46 a of the second advance / retreat driving means 46.
  • the permanent magnets 111A to 114A are provided so that the magnetic attractive force acts, contrary to the example of FIGS. 17A and 17B. That is, the first and second permanent magnets 111A and 112A are arranged on the base 40 and the first moving body 41 so that the directions of the magnetic poles facing each other are reversed, and the first moving body is generated by the magnetic attraction force. 41 may be pressed against the output member 45a of the first advance / retreat driving means 45.
  • the second and fourth permanent magnets 113A and 114A are arranged on the first moving body 41 and the second moving body 42 so that the directions of the magnetic poles facing each other are reversed, and the second moving magnet 41 is driven by the magnetic attractive force.
  • the moving body 42 may be pressed against the output member 46 a of the second advance / retreat driving means 46.
  • the output member of the second advance / retreat drive means 46 is used.
  • 46a is connected to the second moving body 42 via a third guide 115 so as to be movable in the moving direction (X-axis direction) of the first moving body 41.
  • the third guide 115 has a rolling element (not shown) fitted into a guide rail 115a provided on the second moving body 41 and a guide groove (not shown) provided on the guide rail 115a.
  • a guided body 115b such as a linear motion rolling bearing which cannot be removed.
  • Other configurations are the same as those shown in FIGS. 12A and 12B.
  • the output member 46a and the moving body 41 can always be connected even during high-speed driving, and the operation is stabilized.
  • the second elastic body 122 provided to face the output member 46a applies a preload to the third guide 115, and ensures further stable operation.
  • a fourth guide 116 may be further provided. That is, the fourth guide 116 is configured so that the output member 46a of the second advance / retreat driving means 46 and the third guide 115 are movable with respect to the moving direction (X-axis direction) of the first moving body 41. Connect through. As with the third guide 115, the fourth guide 116 has a guide rail 116a with a guide groove (not shown) and a rolling element (not shown) fitted into the guide groove of the guide rail 116a. And a guided body 116b such as a linear motion rolling bearing which cannot be removed.
  • the guide rail 116a is attached to the guided body 115b of the third guide 115, and the guided body 116b is attached to the output member 46a.
  • the third guide 115 and the fourth guide 116 are provided in two stages, the operation during high-speed driving or the like is further stabilized.
  • the fifth and the fifth movable members that are movable between the first moving member 41 and the output member 45a of the first driving means 45 in the direction orthogonal to the moving direction of the first moving member 41 are also provided.
  • Six guides 117 and 118 are provided. Similar to the third and fourth guides 115 and 116, the fifth and sixth guides 117 and 118 include a guide rail and a guided body.
  • FIG. 21 shows a configuration example of the Z-axis moving mechanism 16.
  • the Z-axis moving mechanism 16 includes a hollow box-shaped fixing base 17 and a needle support member that is provided so as to protrude upward from the fixing base 17 at one end of the fixing base 17 and that removably supports the injection needle 11. 18 and piezoelectric element laminates 19A, 19B1, and 19B2 disposed in the fixed base 17 and serving as a driving source.
  • the needle support member 18 is configured to detachably support the injection needle 11 and can easily replace the injection needle 11 in order to damage the injection needle 11 or replace the introduced substance.
  • the needle support member 18 has a general T shape having a standing piece portion 18a and a horizontal piece portion 18b, and the horizontal piece portion 18b moves on the fixed base 17 in the protruding direction of the injection needle 11 via the guide mechanism 21.
  • the stand piece 18a is supported on the inwardly facing surface of one end of the fixed base 17 via a spring member 20A made of a leaf spring or the like.
  • Each piezoelectric element laminate 19A, 19B1, 19B2 is a laminated piezoelectric element in which a plurality of piezoelectric elements 19a are laminated in the displacement direction to form a rod-like body.
  • the two piezoelectric element laminates 19B1 and 19B2 are arranged in a straight line and connected to each other in series by a fastening member 47.
  • the laminated body 19B is obtained.
  • the piezoelectric element laminate 19B and the remaining one set of piezoelectric element laminates 19A are arranged in parallel vertically so as to be parallel to each other along the lamination direction, and these two sets of piezoelectric element laminates 19A and 19B are arranged in parallel.
  • the fastening member 48 includes a longitudinal direction portion 48a disposed between the upper and lower piezoelectric element laminates 19A and 19B in parallel with the piezoelectric element laminates 19A and 19B, and the vertical direction at both ends of the longitudinal direction portion 48a.
  • the fastening member 48 are generally Z-shaped with protrusions 48b and 48c projecting in opposite directions.
  • One end of the pair of piezoelectric element laminates 19 ⁇ / b> A is connected to a protrusion 48 b on the one end side of the fixing base 17 in the fastening member 48, and the other end is supported by the other end of the fixing base 17.
  • a spring member 20B such as a leaf spring that preloads the piezoelectric element laminate 19A is interposed.
  • One end of the piezoelectric element laminate 19B that is, the end opposite to the connecting portion by the fastening member 47 in one piezoelectric element laminate 19B1 constituting the piezoelectric element laminate 19B is a standing piece portion of the needle support member 18. 18a.
  • the other end of the piezoelectric element laminate 19B that is, the end of the other piezoelectric element laminate 19B2 constituting the piezoelectric element laminate 19B opposite to the connecting portion by the fastening member 47 is the fixed base 17
  • the other end side is connected to the protrusion 48c of the fastening member 48.
  • the piezoelectric element laminate 19 ⁇ / b> B is preloaded by a spring member 20 ⁇ / b> A such as a leaf spring interposed between the standing piece 18 a of the needle support member 18 and the other end of the fixed base 17.
  • the needle support member 18 can advance and retract in the protruding direction of the injection needle 11 by the displacement in the stacking direction of the two sets of piezoelectric element stacks 19A and 19B.
  • the piezoelectric element laminate 19A and one piezoelectric element laminate 19B2 in the piezoelectric element laminate 19B are used for positioning the needle support member 18, that is, for positioning the injection needle 11. Used as a driving source. That is, these piezoelectric element laminates 19A and 19B2 are displaced by a positioning signal that is a voltage applied from the Z-axis (insertion direction) position control unit 51.
  • the piezoelectric element laminate 19B1 directly connected to the needle support member 18 in the piezoelectric element laminate 19B is a drive source for causing the needle support member 18 to vibrate in the insertion direction of the injection needle 11. Used as.
  • the displacement of the piezoelectric element laminate 19 ⁇ / b> B ⁇ b> 1 for applying vibration is repeatedly changed by a vibration driving signal that is a voltage applied from the vibration driving means 54.
  • the Z-axis position control unit 51 receives a position command from the position command unit 52 to the voltage generator 53, and applies a voltage corresponding to the piezoelectric element laminates 19A and 19B2 from the voltage generator 53 based on the position command. .
  • the Z-axis position control unit 51 is provided in the Z-axis injection needle individual control unit 88a in the injection needle movement control means 88 of FIG.
  • the position command unit 52 uses the target position determined by the assigned introducer determining unit 87 as the position command based on the position information obtained by the position determination unit 3 in FIG.
  • the position command unit 52 may be provided as a part of the assigned introducer determining unit 87.
  • the vibration drive means 54 applies an alternating voltage having a predetermined frequency to the piezoelectric element laminate 19B1 as the vibration drive signal from the voltage generator 56.
  • the frequency of the alternating voltage that is, the frequency of vibration applied to the needle support member 18 can be switched by a command from the frequency variable means 55 to the voltage generator 56.
  • FIG. 21 can be used as the first advance / retreat drive means 45 and the second advance / retreat drive means 46 in the X-axis movement mechanism 14 and the Y-axis movement mechanism 15 shown in FIG.
  • an output member 45a is provided as shown in FIG.
  • FIG. 13 shows a specific example of the first advance / retreat driving means 45 in the example of FIGS. 11 (A) and 11 (B).
  • the example shown in FIG. 13 can also be used for the second advance / retreat driving means 46.
  • the advance / retreat driving means 45 includes a fixed base 25, a movable piece 26, and two sets of piezoelectric element laminates 19C and 19D serving as a drive source.
  • the fixing base 25 includes a main frame portion 25a extending in the X-axis direction, a pair of side frame portions 25b and 25d extending in the width direction (Y-axis direction) from both ends of the main frame portion 25a, and a front end of the side frame portion 25b.
  • a horizontal cross section extending in the X-axis direction in parallel with the main frame portion 25a has a hollow box shape having an L-shaped sub frame portion 25c.
  • the movable piece 26 extends from the tip of the side frame portion 25b at one end of the fixed base 25 toward the side frame portion 25d at the other end, and has a horizontal section as an L-shaped movable piece 26.
  • the movable piece 26 serves as an enlargement mechanism that enlarges the displacement of the piezoelectric element laminates 19C and 19D, and is formed of an elastic material such as metal or synthetic resin together with the fixed base 25.
  • the movable piece 26 includes a main frame parallel piece portion 26a extending substantially parallel to the main frame portion 25a from the side frame portion 25b at one end of the fixed stand 25, and the other end of the fixed stand 25 from the other end of the main frame parallel piece portion 26a.
  • the side frame parallel piece portion 26b extends in parallel to the side frame portion 25d on the inner side of the side frame portion 25d.
  • the connecting portion between the side frame portion 25b of the fixed base 25 and the main frame parallel piece portion 26a of the movable piece 26 and the connecting portion between the main frame parallel piece portion 26a and the side frame parallel piece portion 26b of the movable piece 26 are thin portions 26c. It is said that. Further, the middle portion in the longitudinal direction of the main frame parallel piece portion 26a of the movable piece 26 is also a thin portion 26d. As a result, the side frame parallel piece portion 26b of the movable piece 26 can be swung so as to be bent with the thin-walled portion 26c at the base end as a swing center.
  • the main frame parallel piece portion 26a of the movable piece 26 is bent at the thin portion 26d at the intermediate portion in the longitudinal direction, and the intermediate portion is formed in the direction perpendicular to the longitudinal direction (Y-axis direction) by increasing or decreasing the bending angle. Can be moved forward and backward.
  • the two sets of piezoelectric element laminates 19C and 19D are both laminated piezoelectric elements, and are arranged in parallel in the front-rear direction so as to be parallel to the main frame portion 25a of the fixed base 25 along the lamination direction.
  • These two sets of piezoelectric element laminates 19 ⁇ / b> C and 19 ⁇ / b> D are connected in series via a fastening member 58.
  • the fastening member 58 includes a longitudinal portion 58a disposed in parallel with both the piezoelectric element laminates 19C and 19D between the front and rear piezoelectric element laminates 19C and 19D, and a longitudinal direction at both ends of the longitudinal direction portion 58a.
  • One set of the piezoelectric element laminate 19C is supported at one end by the side frame 25b of the fixed base 25, and the other end is connected to the protrusion 58b of the fastening member 58 facing the fixed base side frame 25d.
  • the other set of piezoelectric element laminates 19D has one end connected to the projection 58c of the fastening member 58 facing the fixed base side frame 25b and the other end connected to the side frame parallel piece of the movable piece 26. 26b.
  • a spring member 27A such as a leaf spring for applying a preload to the piezoelectric element laminate 19C is provided between the side portion 25ca extending in the width direction at the front end of the sub-frame portion 25c of the fixing base 25 and the protruding portion 58b of the fastening member 58.
  • a spring member 27B such as a leaf spring for applying a preload to the piezoelectric element laminate 19D is interposed. Further, a preload is applied to the side frame parallel piece portion 26b of the movable piece 26 between the side portion 25ca extending in the width direction of the tip of the sub frame portion 25c of the fixed base 25 and the side frame parallel piece portion 26b of the movable piece 26.
  • a spring member 27C such as a leaf spring is provided.
  • the side frame parallel piece 26b of the movable piece 26 swings due to the displacement caused by expansion and contraction in the stacking direction of the two sets of piezoelectric element laminates 19C and 19D, and the swing displacement is expanded to expand the main frame parallel piece.
  • the displacement of the portion 26a in the Y-axis direction is obtained.
  • This displacement is transmitted to the second movement 42 (FIG. 10) that supports the Z-axis moving mechanism 16, whereby the injection needle 11 can move in the Y-axis direction.
  • the Y-axis position control unit 59 receives a position command from the position command unit 60 to the voltage generator 61, and applies a voltage corresponding to the piezoelectric element stacks 19C and 19D from the voltage generator 61 based on the position command. To do.
  • the Y-axis position control unit 59 is provided in the Y-axis injection needle individual control unit 88a in the injection needle movement control means 88 of FIG.
  • the position command unit 60 uses the target position determined by the assigned introducer determination unit 87 as the position command based on the position information obtained by the position determination unit 3 in FIG.
  • the position command unit 60 may be provided as a part of the assigned introducer determining unit 87.
  • a sensor (not shown) for measuring the relative displacement between the fixed base 25 and the movable piece 26 is incorporated.
  • the sensor include a strain sensor that detects a strain of the leaf springs 27A and 27B that applies a preload to the piezoelectric element laminates 19C and 19D, a capacitance sensor that measures a gap between the fixed base 25 and the movable piece 26, and a magnetic sensor.
  • a sensor, an optical sensor, or the like can be used.
  • FIG. 23 shows another configuration example that can be used as the first advance / retreat drive means 45 and the second advance / retreat drive means 46.
  • the advance / retreat drive means 45 includes a fixed base 35, a movable piece 36, and two sets of piezoelectric element laminates 19E and 19F serving as drive sources.
  • the fixed base 35 includes a main frame portion 35a extending in the X-axis direction, a pair of side frame portions 35b and 35d extending in the width direction (Y-axis direction) from both ends of the main frame portion 35a, and a front end of the side frame portion 35b.
  • a horizontal box extending in the X-axis direction in parallel with the main frame portion 35a has a hollow box shape having an L-shaped sub-frame portion 35c.
  • the movable piece 36 extends from the tip of the side frame portion 35b at one end of the fixed base 35 toward the side frame portion 35d at the other end, and has a horizontal cross section in an L shape.
  • the movable piece 36 serves as a first enlargement mechanism that enlarges the displacement of the piezoelectric element laminates 19E and 19F, and is integrally formed of an elastic material such as metal or synthetic resin with the fixed base 35.
  • the movable piece 36 includes a main frame parallel piece portion 36a extending substantially parallel to the main frame portion 35a from the side frame portion 35b at one end of the fixed table 35, and the other end of the fixed frame 35 from the other end of the main frame parallel piece portion 36a.
  • a side frame parallel piece portion 36b extending in parallel with the side frame portion 35d is formed inside the side frame portion 35d.
  • the connecting portion between the side frame portion 35b of the fixed base 35 and the main frame parallel piece portion 36a of the movable piece 36 and the connecting portion between the main frame parallel piece portion 36a and the side frame parallel piece portion 36b of the movable piece 36 are thin portions 36c. It is said that. Further, the intermediate portion in the longitudinal direction of the main frame parallel piece portion 36a of the movable piece 36 is also a thin portion 36d. Thereby, the side frame parallel piece portion 36b of the movable piece 36 can be swung with the thin-walled portion 36c at the base end as a swing center.
  • main frame parallel piece portion 36a of the movable piece 36 is bent at a thin portion 36d in the middle portion in the longitudinal direction and can swing in a direction perpendicular to the longitudinal direction (Y-axis direction).
  • the configuration so far is the same as that in the example of FIG.
  • a portion which is a half portion closer to the side frame parallel piece portion 36b than the thin portion 36d in the longitudinal direction intermediate portion of the main frame parallel piece portion 36a of the movable piece 36 extends toward the side frame portion 35d side of the fixed base 35.
  • a movable frame portion 37 having an inverted L-shaped horizontal cross section connected to the vicinity of the base end of the side frame portion 35d is integrally formed.
  • the movable frame portion 37 serves as a second expansion mechanism that expands the displacement of the piezoelectric element laminates 19E and 19FC, and includes a thick frame portion 37a substantially parallel to the main frame parallel piece portion 36a of the movable piece 36.
  • the thin frame portion 37b extends from the thick frame portion 37a to the outside of the side frame portion 35d of the fixed base 35 in parallel with the side frame portion 35d.
  • the connecting portion between the thick frame portion 37a and the thin frame portion 37b of the movable frame portion 37 and the connecting portion between the thin frame portion 37b and the vicinity of the base end of the side frame portion 35b of the fixed base 35 are more than the thin frame portion 37b. Furthermore, it is set as the thin thin part 37c.
  • the intermediate portion in the longitudinal direction of the thin frame portion 37b is also a thinner thin portion 37d. Thereby, the thin frame portion 37b of the movable frame portion 37 is bent at the thin portion 37d of the middle portion in the longitudinal direction so that the intermediate portion can advance and retreat in a direction (X-axis direction) perpendicular to the longitudinal direction.
  • the two sets of piezoelectric element laminates 19E and 19F are both laminated piezoelectric elements, and are arranged back and forth so as to be parallel to the main frame portion 35a of the fixed base 35 along the lamination direction. Arranged in parallel.
  • the two sets of piezoelectric element laminates 19E and 19F are connected in series via a fastening member 62.
  • the fastening member 62 includes a longitudinal direction portion 62a disposed between the front and rear piezoelectric element laminates 19E and 19F in parallel with the piezoelectric element laminates 19E and 19F, and a longitudinal direction at both ends of the longitudinal direction portion 62a. And the projections 62b and 62c projecting so as to be opposite to each other.
  • One set of the piezoelectric element laminates 19E is supported by the side frame portion 35b of the fixed base 35, and the other end is connected to the protrusion 62b of the fastening member 62 facing the fixed base side frame portion 35d.
  • the other set of piezoelectric element laminates 19F has one end connected to the protrusion 62c of the fastening member 62 facing the fixed base side frame 35b and the other end connected to the side frame parallel piece of the movable piece 36. 36b.
  • a spring member 38A such as a leaf spring for applying a preload to the piezoelectric element laminate 19E is provided between the side portion 35ca extending in the width direction at the tip of the sub-frame portion 35c of the fixing base 35 and the protrusion 62b of the fastening member 62. Intervene. Between the side frame portion 35d of the fixed base 35 and the side frame parallel piece portion 36b of the movable piece 36, a spring member 38B such as a leaf spring for applying a preload to the piezoelectric element laminate 19F is interposed.
  • a preload is applied to the side frame parallel piece portion 36b of the movable piece 36 between the side portion 35ca extending in the width direction of the tip of the sub frame portion 35c of the fixed base 35 and the side frame parallel piece portion 36b of the movable piece 36.
  • a spring member 38C such as a leaf spring is provided.
  • the side frame parallel piece portion 36b of the movable piece 36 is swung by the displacement due to expansion and contraction in the stacking direction of the two sets of piezoelectric element laminates 19E and 19F, and the swing displacement is enlarged to enlarge the main frame parallel piece.
  • This displacement is further enlarged and becomes a displacement in the X-axis direction of the thin frame portion 37 b in the movable frame portion 37.
  • This thin frame portion 37b becomes the output member 45a in the example of FIGS. 11 (A) and 11 (B).
  • the two sets of piezoelectric element laminates 19E and 19F are displaced by a positioning signal that is a voltage applied from the X-axis position control unit 63.
  • the X-axis position control unit 63 receives a position command from the position command unit 64 to the voltage generator 65, and applies a voltage corresponding to the piezoelectric element stacks 19E and 19F from the voltage generator 65 based on the position command. Is done.
  • the X-axis position control unit 63 is provided in the X-axis injection needle individual control unit 88a in the injection needle movement control means 88 of FIG. Further, the position command unit 64 uses the target position determined by the assigned introducer determination unit 87 as the position command based on the position information obtained by the position determination unit 3 in FIG.
  • the position command unit 64 may be provided as a part of the assigned introducer determining unit 87.
  • FIG. 24 shows another configuration example that can be used as the first advance / retreat drive means 45 and the second advance / retreat drive means 46.
  • this configuration example also includes a fixed base 73 and two sets of piezoelectric element laminates 19G and 19H serving as a drive source.
  • the fixed base 73 includes a main frame portion 73a extending in the X-axis direction and a pair of side frame portions 73b and 73c extending in the width direction (Y-axis direction) from both ends of the main frame portion 73a.
  • an expansion / contraction direction moving body 74 facing the side frame portion 73c at the other end is supported via a spring member 27D so as to be movable in the X-axis direction.
  • the two piezoelectric element laminates 19G and 19H are both laminated piezoelectric elements, and are arranged in parallel in the front-rear direction so as to be parallel to the main frame portion 73a of the fixed base 73 along the lamination direction. These two sets of piezoelectric element laminates 19G and 19H are connected in series via a fastening member 78.
  • the fastening member 78 includes a longitudinal direction portion 78a arranged in parallel with both the piezoelectric element laminates 19G and 19H between the front and rear piezoelectric element laminates 19G and 19H, and a longitudinal direction at both ends of the longitudinal direction portion 78a. And the projections 78b and 78c projecting so as to be opposite to each other.
  • One set of the piezoelectric element laminates 19G is supported at one end by the side frame portion 73c of the fixed base 73, and the other end is connected to the protrusion 78b of the fastening member 78 facing the movable body 74 in the telescopic direction.
  • the other set of piezoelectric element laminates 19H has one end connected to the protrusion 78c of the fastening member 78 facing the fixed base side frame 73c and the other end connected to the telescopic moving body 74. Yes.
  • the spring member 27D applies a preload to the piezoelectric element laminate 19H. Thereby, the expansion-contraction direction moving body 74 can be displaced in the X-axis direction in accordance with the expansion / contraction displacement of the piezoelectric element laminates 19G, 19H.
  • the link mechanism 75 is provided as an expansion mechanism that expands and contracts the piezoelectric element laminates 19G and 19H to displacement in a direction (Y-axis direction) orthogonal to the expansion / contraction direction (X-axis direction).
  • the link mechanism 75 is connected to the fixed base side frame 73c by one fixed joint 76, and is connected to the telescopic direction moving body 74 by one movable joint 77A.
  • FIG. 25A to 25C show various configuration examples of the link mechanism 75.
  • a link mechanism 75 is configured by one fixed joint 76, two movable joints 77A and 77B, and three links 81A, 81B, and 81C.
  • Each of the fixed joints 76 and the movable joints 77A and 77B is a joint that constitutes a rotatable node, and the center of rotation is the expansion / contraction direction (X-axis direction) of the piezoelectric element laminates 19G and 19H and the expansion / contraction thereof. It is perpendicular to any direction (Y-axis direction) orthogonal to the direction (X-axis direction).
  • the first and second links 81A and 81B have one end connected to the fixed joint 76 and the first movable joint 77A and the other end connected to each other via the second movable joint 77B.
  • the third link 81C has one end connected to the second movable joint 77B, and the other end movable only in the orthogonal direction (Y-axis direction), such as a linear guide, a linear motion bearing, or the like (see FIG. It becomes the movable part 82 restrained by (not shown).
  • the fixed joint 76 is fixed in position with respect to the side frame portion 73c of the fixed base 73 to which the fixed ends of the piezoelectric element laminates 19G and 19H are fixed.
  • the guide mechanism for guiding the movable portion 82 is provided on the fixed base 73.
  • the first movable joint 77A is provided in an expansion / contraction direction moving body 74 that can move integrally with the expansion / contraction side ends of the piezoelectric element laminates 19G and 19H, and is movable together with the expansion / contraction direction moving body 74.
  • the movable portion 82 of the third link 81 ⁇ / b> C serves as a displacement expansion output portion of the link mechanism 75.
  • the first movable joint 77A is displaced in the X-axis direction due to the expansion and contraction of the piezoelectric element laminates 19G and 19H, and this displacement is enlarged, and the second movable joint 77B is displaced in the Y-axis direction.
  • the third link 81C changes the rotation angle, so that the movable portion 82 at the other end is guided in the Y-axis direction by being guided by the guide mechanism such as the linear guide.
  • the guide mechanism such as the linear guide.
  • a link mechanism 75 is configured by one fixed joint 76, three movable joints 77A, 77B, and 77C and three links 81A, 81B, and 81C.
  • the movable joint that connects the base ends of the third links 81C is the third movable joint 77C that is located at a different position from the second movable joint 77B. It is.
  • the third link 81C is connected to the tip of the second link 81B via the third movable joint 77C.
  • the fixed joint 76 and the first movable joint 77A are provided on the fixed base 73 and the expansion / contraction direction moving body 74, respectively, as in the example of FIG.
  • the movable portion 82 at the tip of the third link 81C is the displacement expansion output portion of the link mechanism 75.
  • the second movable joint 77B has, for example, a bearing 122 attached to a connecting pin 121 fixed to one of the first or second links 81A and 81B, as shown in an enlarged cross-sectional view in FIG. Via the other of the first or second link 81A, 81B.
  • the bearing 122 is fitted and attached to a hole provided in one of the links 81A and 81B.
  • the bearing 122 may be either a rolling bearing such as a ball bearing or a sliding bearing.
  • the bearing 122 is a preloadable rolling bearing.
  • the movable joint 77A is displaced in the X-axis direction due to the expansion and contraction of the piezoelectric element laminates 19G and 19H, and this displacement is enlarged so that another movable joint 77C is displaced in the Y-axis direction.
  • the link 81C changes the rotation angle
  • the movable portion 82 at the tip thereof is guided by the guide mechanism and displaced in the Y-axis direction.
  • the angle of the third link 81C can be varied independently even if a dimensional error or thermal deformation of the links 81C, 81B, 81C occurs.
  • the movable part 82 which is absorbed by being present and becomes a displacement expansion output part can move in the linear direction in the Y-axis direction along the guide mechanism such as the linear guide.
  • the link mechanism 75 is configured by one fixed joint 76, two movable joints 77A and 77B, and two links 81A and 81B. That is, the other end of the first link 81A having the base end connected to the fixed joint 76 is connected to the second movable joint 77B in the middle of the second link 81B having the base end connected to the first movable joint 77A.
  • the fixed joint 76 is connected to the side frame portion 73c of the fixed base 73
  • the first movable joint 77A is connected to the expansion / contraction direction moving body 74.
  • the movable portion 82 at the tip of the second link serves as a displacement expansion output portion of the link mechanism 75.
  • the length of the second link 81B is twice that of the first link 81A, and the second movable joint 77B is disposed at the center position of the link 81B.
  • the moving direction is constrained without providing a guide mechanism such as a linear guide.
  • the moving direction is a direction perpendicular to the straight line connecting the centers of the fixed joint 76 and the first movable joint 77A, that is, a direction orthogonal to the expansion / contraction direction (X-axis direction) of the piezoelectric element laminates 19G and 19H (Y It can be displaced in the axial direction).
  • the movable joint 77A is displaced in the X-axis direction due to the expansion and contraction of the piezoelectric element laminates 19G and 19H, and this displacement is expanded to displace the movable part 82 that is the tip of the second link 81B in the Y-axis direction.
  • This configuration example is the most compact. Also in this example, in the movable joint 77B, it is only necessary to provide one bearing in the axial direction, and the thickness dimension can be reduced to 1 ⁇ 2 compared to the case of the configuration example in FIG.
  • the link mechanism 75 of the example of FIG. 25C is provided as an enlargement mechanism.
  • Other configurations are the same as the example shown in FIG.
  • FIG. 26 shows another configuration example that can be used as the first advance / retreat drive means 45 and the second advance / retreat drive means 46.
  • This configuration example also includes a fixed base 83 and two sets of piezoelectric element laminates 19I and 19J serving as a drive source, as in the example of FIG.
  • the fixed base 83 includes a main frame portion 83a extending in the X-axis direction and a pair of side frame portions 83b and 83c extending in the width direction (Y-axis direction) from both ends of the main frame portion 83a.
  • a movable body 84 facing the side frame 83c at the other end is supported by the side frame 83b at one end of the fixed base 83 so as to be movable in the X-axis direction via a spring member 27E.
  • the two sets of piezoelectric element laminates 19I and 19J are both laminated piezoelectric elements, and are arranged in parallel in the front-rear direction so as to be parallel to the main frame portion 83a of the fixed base 83 along the lamination direction.
  • These two sets of piezoelectric element laminates 19 ⁇ / b> I and 19 ⁇ / b> J are connected in series via a fastening member 85.
  • the fastening member 85 includes a longitudinal direction portion 85a disposed in parallel with both the piezoelectric element laminates 19I and 19J between the front and rear piezoelectric element laminates 19I and 19J, and a longitudinal direction at both ends of the longitudinal direction portion 85a.
  • One set of the piezoelectric element laminates 19I is supported at one end by the side frame 83c of the fixed base 83, and the other end is connected to the protrusion 85b of the fastening member 85 facing the movable body 84 side.
  • the other set of piezoelectric element laminates 19 ⁇ / b> J has one end connected to the protrusion 85 c of the fastening member 85 facing the fixed base frame 83 c and the other end connected to the movable body 84.
  • the spring member 27E applies a preload to the piezoelectric element laminate 19J. Thereby, the movable body 84 can be displaced in the X-axis direction in accordance with the expansion and contraction of the piezoelectric element laminates 19I and 19J.
  • the first link mechanism 101 is provided as a first expansion mechanism that expands the expansion and contraction of the piezoelectric element laminates 19I and 19J to a displacement in the direction (Y-axis direction) orthogonal to the expansion / contraction direction (X-axis direction).
  • a second link mechanism 102 is provided as a second expansion mechanism that expands the displacement expanded by the first expansion mechanism (first link mechanism 101) to the displacement in the expansion / contraction direction of the piezoelectric element laminates 19I and 19J. ing.
  • the thing of the same structure as the link mechanism 75 shown to FIG.25 (C) is used here.
  • the second link mechanism 102 is in a posture that is 90-degree changed with respect to the first link mechanism 101.
  • the first link mechanism 101 includes one fixed joint 106, two movable joints 107A and 107B, and two links 108A and 108B. Specifically, one end is displaced in the expansion / contraction direction according to expansion / contraction of the first link 108A connected to the side frame portion 83c of the fixing base 83 by one fixed joint 106 and the piezoelectric element laminates 19I and 19J. One end is connected to the movable body 84 by one movable joint 107A, and the middle part is constituted by the second link 108B connected to the other end of the first link 108A by another one movable joint 107B. The other end of the second link 108B can be displaced in a direction (Y-axis direction) orthogonal to the expansion / contraction direction (X-axis direction) of the piezoelectric element stacks 19I and 19J.
  • the second link mechanism 102 is also composed of one fixed joint 116, two movable joints 117A and 117B, and two links 118A and 118B.
  • the first link 118A one end of which is connected to the side frame 83c of the fixed base 83 by one fixed joint 116, and the expansion / contraction direction of the piezoelectric element laminates 19I and 19J are orthogonal to each other.
  • One end is connected to the other end of the second link 108B of the first link mechanism 101 that is displaced in the Y-axis direction by one movable joint 117A, and the middle portion is connected to the other end of the first link 118A by another one
  • the second link 118B is connected to the movable joint 117B.
  • the first and second link mechanisms 101 and 102 are combined in two stages via the movable joint 117A on the same plane.
  • the distal end of the second link 118B in the second link mechanism 102 becomes a movable portion 119 that is a displacement expansion output portion, and can be displaced in the expansion / contraction direction (X-axis direction) of the piezoelectric element laminates 19I and 19J.
  • the movable joint 107A is displaced in the X-axis direction by the expansion and contraction of the piezoelectric element laminates 19I and 19J, and this displacement is enlarged to expand the movable joint 117A that is the other end of the link 10B. Is displaced in the Y-axis direction.
  • the displacement of the movable joint 117A in the Y-axis direction is enlarged, and the movable portion 119, which is the other end of the link 118B, expands and contracts in the piezoelectric element stacks 19I and 19J (X-axis direction). It is displaced to.
  • Other configurations are the same as the example shown in FIG.
  • the first and second link mechanisms 101 and 102 are combined in two stages via the movable joint 117A with the configuration example shown in FIG. 25C.
  • the present invention is not limited to this, and the configuration example shown in FIG. 25B may be combined in two stages via a movable joint.
  • An example is shown in FIG. In this example, the second link mechanism 102 is turned 90 degrees with respect to the first link mechanism 101.
  • the first link mechanism 101 includes one fixed joint 106, three movable joints 107A, 107B, and 107C, and two links 108A and 108B.
  • the second link mechanism 102 has one fixed joint 116, three movable joints 117A, 117B, and 117C, and two links 118A and 118B.
  • the tip of the second link 118B of the second link mechanism 102 becomes a movable part 119 which is a displacement expansion output part, and can be freely displaced in the expansion / contraction direction (X-axis direction) of the piezoelectric element laminates 19I and 19J.
  • the link mechanism 75 includes one fixed joint 76, two movable joints 77A and 77B, and two links 81A and 81B.
  • the crank / slider mechanism comprises a fixed joint 76 that moves the displacement of the piezoelectric element in the extending direction via the two movable joints 77A and 77B and the two links 81A and 81B. It is also possible to change in an arbitrary direction on the circumference of the circle and further expand the displacement.
  • FIG. 28A shows another configuration example of the Y-axis moving mechanism 15.
  • the Y-axis moving mechanism 15 includes a fixed base 73 and two sets of piezoelectric element laminates 19G and 19H serving as a drive source.
  • the fixed base 73 includes a pair of main frame portions 73a and 73b extending in the X-axis direction, a pair of side frame portions 73c and 73d extending in the width direction (Y-axis direction) from both ends of the main frame portions 73a and 73b, and 4 Side plate 73e which fastens one frame part.
  • an expansion / contraction direction moving body 74 facing the side frame portion 73d at the other end is supported via a spring member 27D so as to be movable in the X-axis direction.
  • the two sets of piezoelectric element laminates 19G and 19H are both laminated piezoelectric elements, and are arranged in parallel in the front-rear direction so as to be parallel to the main frame portions 73a and 73b of the fixed base 73 along the lamination direction. .
  • These two sets of piezoelectric element laminates 19G and 19H are connected in series via a fastening member 78.
  • the fastening member 78 includes a longitudinal direction portion 78a arranged in parallel with both the piezoelectric element laminates 19G and 19H between the front and rear piezoelectric element laminates 19G and 19H, and a longitudinal direction at both ends of the longitudinal direction portion 78a. And the projections 78b and 78c projecting so as to be opposite to each other.
  • One set of the piezoelectric element laminates 19G is supported at one end by the side frame portion 73c of the fixed base 73, and the other end is connected to the protrusion 78b of the fastening member 78 facing the movable body 74 in the telescopic direction.
  • the other set of piezoelectric element laminates 19H has one end connected to the protrusion 78c of the fastening member 78 facing the fixed base side frame 73d side and the other end connected to the telescopic moving body 74. Yes.
  • the spring member 27D applies a preload to the piezoelectric element laminate 19H. Thereby, the expansion-contraction direction moving body 74 can be displaced in the X-axis direction in accordance with the expansion / contraction displacement of the piezoelectric element laminates 19G, 19H.
  • a link mechanism 75 is provided as an enlarging mechanism that expands and contracts the piezoelectric element laminates 19G and 19H to displacement in a direction (Y-axis direction) orthogonal to the expansion / contraction direction (X-axis direction).
  • the link mechanism 75 is connected to the fixed base side frame 73d by one fixed joint 76, and is connected to the telescopic direction moving body 74 by one movable joint 77A.
  • the movable joint 77A is displaced in the X-axis direction due to the expansion and contraction of the piezoelectric element laminates 19G and 19H, and the movable joint 77B rotates about the fixed joint 76. Therefore, the movable part 82 fixed to the first link 81A is displaced in the Y-axis direction. Therefore, by setting the output portion at an arbitrary position on the circumference of the fixed joint 76, the displacement can be expanded in an arbitrary direction. Therefore, the number of parts of the advance / retreat drive means 45 and 46 can be reduced and the size can be reduced.
  • FIG. 28B shows another configuration example of the X-axis moving mechanism 14.
  • the X-axis moving mechanism 14 in FIG. 28B also has the same configuration as that in FIG. 28A, and the position of the movable joint 77B and the movable portion 82 fixed to the link 81A is changed, so that the X-axis moving mechanism 14 in the X-axis direction is changed. Displace. Therefore, by setting the output portion at an arbitrary position on the circumference of the fixed joint 76, the displacement can be increased in an arbitrary direction. Therefore, the number of parts of the Y-axis moving mechanism 15 can be reduced and the size can be reduced. It becomes possible.
  • FIG. 29 shows an enlarged configuration example of the link mechanism 75 shown in FIGS. 28 (A) and 28 (B).
  • one fixed joint 76, two movable joints 77A and 77B, and two links 81A and 81B constitute a link mechanism 75 serving as a crank / slider mechanism.
  • the fixed joints 76 and the movable joints 77A and 77B are joints that respectively constitute rotatable nodes, and the center of rotation is the expansion / contraction direction (X-axis direction) of the piezoelectric element laminates 19G and 19H and It is perpendicular to any direction (Y-axis direction) orthogonal to the expansion / contraction direction (X-axis direction).
  • the first and second links 81A and 81B have one end connected to the fixed joint 76 and the first movable joint 77A and the other end connected to each other via the second movable joint 77B.
  • the first movable joint 77A is provided in an expansion / contraction direction moving body 74 that can move integrally with the expansion / contraction side ends of the piezoelectric element laminates 19G and 19H, and is movable together with the expansion / contraction direction moving body 74.
  • FIG. 30 shows a configuration of an offset crank mechanism in which the fixed joint 76 is not on the extension line in the sliding direction of the first movable joint 77A and has an offset.
  • Second guide 45 ... First forward / backward driving means 45a ... Output member 46 ... Second forward / backward driving means 46a ... output member 54 ... vibration driving means 75 ... link mechanism (enlargement mechanism) 76 ... fixed joints 77A, 77B ... movable joints 81A-81C ... link 79 ... interference avoiding means 86 ... visual field range adjusting means 88 ... injection needle movement control means 89 ... container movement control means 100 ... in-container full range processing means 101 ... first 1 link mechanism (first expansion mechanism) 102 ... Second link mechanism (second enlargement mechanism) 106 ... fixed joints 107A, 107B ... movable joints 108A, 108B ... link 115 ...

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Cell Biology (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

Disclosed is a microinjection device that can improve processing efficiency and that can efficiently and reliably introduce an introduced substance to a transductant such as cells by means of a plurality of injection needles. The device is provided with: a plurality of conveyance means (4) that can move the plurality of injection needles (11) each individually; an imaging means (2) that captures an image of the inside of a vessel (12) through a microscope (3) at a microscope field of view (V); a position determination means (81) that determines the position of each transductant (T) in the microscope field of view (V) from the image; and an assigned range computation unit (82) that decides the assigned range (E) within the microscope field (V) to which each injection needle (11) is assigned, in a manner so that the load on the conveyance means (4) of each injection needle (11) is equalized according to prescribed rules (R).

Description

マイクロインジェクション装置Microinjection device 関連出願Related applications
 本出願は、2010年7月16日出願の特願2010-161319の優先権を主張するものであり、その全体を参照により本願の一部をなすものとして引用する。 This application claims the priority of Japanese Patent Application No. 2010-161319 filed on July 16, 2010, which is incorporated herein by reference in its entirety.
 この発明は、顕微鏡下で、細胞等の被導入体内に遺伝子制御因子等の導入物質を微小な注入針により導入するマイクロインジェクション装置に関する。 The present invention relates to a microinjection apparatus for introducing an introduction substance such as a gene regulatory factor into a body to be introduced such as a cell with a minute injection needle under a microscope.
 代表的な細胞内への物質導入方法には、エレクトロポレーション(電気的)、リポフェクション(化学的)、ベクター法(生物的)、マイクロインジェクション法(機械的)、レーザインジェクション(光学的)がある。電気的な方式は、大電流によって細胞膜を破るため細胞の損傷が大きい。化学的方式は、導入できる遺伝子に制限があり、導入効率が低い。生物的方式は導入できる遺伝子の種類に制限があり、また安全性の問題といった欠点があった。マイクロインジェクション法はインジェクション位置を高精度で制御することで確実に細胞内に物質を注入することが出来る特長がある。キャピラリ(微小針)を用いてマイクロインジェクションを行う方法が特許文献1に記載されている。 Typical methods for introducing substances into cells include electroporation (electrical), lipofection (chemical), vector method (biological), microinjection method (mechanical), and laser injection (optical). . In the electrical method, the cell membrane is broken by a large current, so that the cell is greatly damaged. The chemical method is limited in the genes that can be introduced, and the introduction efficiency is low. Biological systems have limitations such as the types of genes that can be introduced and safety issues. The microinjection method has an advantage that a substance can be reliably injected into a cell by controlling the injection position with high accuracy. Patent Document 1 describes a method of performing microinjection using a capillary (microneedle).
 細胞内に遺伝子を導入する方法には上記の方式が挙げられるが、確実性と効率性の両方を有した技術はまだ無い。細胞1個1個に遺伝子を注入するマイクロインジェクション法は最も確実な方法であるが、その操作には熟練と時間を要し、そのためスループットが低いことが問題であった。マイクロインジェクション法のスループットを高くする手法として特許文献2に上げられるように多数の注入針を規則的に配列したマイクロキャピラリーアレイを開発し、これに対応した位置にチャンバーを有するマイクロチャンバーアレイを用いて、一括注入を試みた例がある。 Although the above-mentioned method can be cited as a method for introducing a gene into a cell, there is still no technology having both certainty and efficiency. The microinjection method, in which a gene is injected into each cell, is the most reliable method. However, the operation requires skill and time, so that the throughput is low. As a technique for increasing the throughput of the microinjection method, a microcapillary array in which a large number of injection needles are regularly arranged as described in Patent Document 2 has been developed, and a microchamber array having a chamber at a position corresponding to this is used. There is an example of trying batch injection.
 図31に、マイクロインジェクション法を適用した装置の従来例を示す。このマイクロインジェクション装置では、被導入体である細胞を収容したシャーレ90を容器載置台91で把持し、シャーレ90の内部の局部平面画像を撮像手段92で撮像し、その平面画像を画像処理手段93で処理することにより、細胞の位置情報を得る。この容器載置台91を、XYステージ装置からなる水平2軸方向の容器位置調整手段94によって移動させることで、注入針95の挿入方向に細胞が位置するように細胞の位置決めを行う。次に、注入針95を保持したマニピュレータを、Zステージ装置96を有する注入針搬送手段97によって注入針95の挿入方向に移動させる。このように、位置決めされた細胞に対して注入針95を突き刺し、注入針95の内部に充填された導入物質を細胞に導入する。これらの一連の動作は、制御装置98の制御により自動的に行なわれる。注入針搬送手段97には、超音波モータやボールねじが使用される。 FIG. 31 shows a conventional example of an apparatus to which the microinjection method is applied. In this microinjection apparatus, a petri dish 90 containing cells to be introduced is gripped by a container mounting table 91, a local planar image inside the petri dish 90 is captured by an imaging unit 92, and the planar image is image processing unit 93. The position information of the cells is obtained by processing in step (1). By moving the container mounting table 91 by the horizontal biaxial direction container position adjusting means 94 made of an XY stage device, the cells are positioned so that the cells are positioned in the insertion direction of the injection needle 95. Next, the manipulator holding the injection needle 95 is moved in the insertion direction of the injection needle 95 by the injection needle transport means 97 having the Z stage device 96. In this way, the injection needle 95 is pierced into the positioned cell, and the introduction substance filled in the injection needle 95 is introduced into the cell. A series of these operations are automatically performed under the control of the control device 98. An ultrasonic motor or a ball screw is used for the injection needle conveying means 97.
特許第2624719号公報Japanese Patent No. 2624719 特許第3035608号公報Japanese Patent No. 3035608
 細胞の形状、大きさ、弾性力が異なるため、細胞に対する注入針の位置制御を一括で行う特許文献2などのマイクロキャピラリーアレイ方式では、多くの細胞に対して針が刺さらないか、或いは、多くの細胞を破壊するといった結果になっている。また、マイクロキャピラリーアレイを用いる方式は細胞をマイクロキャピラリーアレイと同位置に配列させる必要があるため、培養液内で移動可能な浮遊細胞のみに対応でき、培地やシャーレの底に付着した細胞には使用することができない。 Since the shape, size, and elastic force of the cells are different, the microcapillary array system such as Patent Document 2 that collectively controls the position of the injection needle with respect to the cells does not pierce many cells, or many As a result, the cells are destroyed. In addition, since the method using a microcapillary array requires cells to be arranged at the same position as the microcapillary array, it can only handle floating cells that can move in the culture medium. Cannot be used.
 マイクロインジェクション法のハイスループット化のために注入物質の注入速度の向上やマニピュレータ(注入針の搬送手段)の位置決め速度の向上が図られている。現在1秒以下で1個の細胞の注入処理を実現したものがある。しかし、医療用途の要求では、導入物質の種類を問わないこと、導入効率が高いこと、及び、物質導入細胞を大量に供給できることが要求され、特に重要な物質導入細胞を大量に供給できる要求は現状では満たすことができない。 In order to increase the throughput of the microinjection method, the injection speed of the injected substance is improved and the positioning speed of the manipulator (injection needle conveying means) is improved. There is one that has realized the injection process of one cell in less than 1 second. However, in medical use requirements, it is required that the type of introduced substance is not limited, that introduction efficiency is high, and that a large amount of substance-introduced cells can be supplied. It cannot be satisfied at present.
 複数の注入針を使用したくとも、現状は注入針を装備したマニピュレータの寸法が大きいためマニピュレータの複数配置が出来ないといった問題がある。また、現在のマイクロインジェクション装置では細胞の位置決めには細胞が入ったシャーレステージを稼動し、注入針を装備したマニピュレータは細胞に注入針を穿刺する方向のみに稼動するため、複数の細胞の位置決めを同時に行うことが出来なかった。 Even if it is desired to use a plurality of injection needles, there is a problem in that a plurality of manipulators cannot be arranged because the size of the manipulator equipped with the injection needles is large at present. In addition, in current microinjection devices, a petri dish stage containing cells is operated for cell positioning, and a manipulator equipped with an injection needle operates only in the direction in which the injection needle is inserted into the cell. I couldn't do it at the same time.
 例えば図31と共に前述したような現在のマイクロインジェクション装置では、細胞を位置決めするために細胞を収容したシャーレ90を支持する容器位置調整手段94を移動させ、注入針95を装備したマニピュレータを、細胞に注入針95を挿入する方向にのみ移動させるため、複数の細胞を位置決めして各細胞に注入針を同時に挿入することができなかった。また、注入針95の搬送手段において、注入針95が、直行するX軸方向、Y軸方向の2自由度を移動する場合、例えばX軸移動機構上にY軸移動機構を積み重ねるように配置していた。そのため、X移動機構は注入針とY軸移動機構との両者を駆動することになるため、高速移動が困難であった。 For example, in the current microinjection apparatus as described above with reference to FIG. 31, the container position adjusting means 94 that supports the petri dish 90 containing the cells is moved in order to position the cells, and the manipulator equipped with the injection needle 95 is moved to the cells. Since the injection needle 95 is moved only in the insertion direction, it was impossible to position a plurality of cells and insert the injection needle into each cell simultaneously. In addition, when the injection needle 95 moves in two degrees of freedom in the orthogonal X-axis direction and Y-axis direction in the conveying means of the injection needle 95, for example, the Y-axis movement mechanism is arranged to be stacked on the X-axis movement mechanism. It was. Therefore, since the X movement mechanism drives both the injection needle and the Y axis movement mechanism, high-speed movement is difficult.
 上記マニピュレータの寸法の小型化については、駆動源として圧電素子積層体を用いたり、その圧電素子積層体の動作を拡大する機構を用いることなどで解決したものを、本出願人は先に提案した(例えば、特願2010-077677号)。この提案例では、注入針を穿刺する方向のみではなく、水平面内での移動と、穿刺方向との両方の移動が可能とされており、複数の細胞への並行したインジェクション処理が可能となる。また、マニピュレータの小型化については、他にも考えられ、マニピュレータの複数配置は、実現可能性が高まっている。 The applicant previously proposed a reduction in the size of the manipulator, which was solved by using a piezoelectric element laminate as a driving source or using a mechanism for expanding the operation of the piezoelectric element laminate. (For example, Japanese Patent Application No. 2010-077677). In this proposed example, not only the direction of puncturing the injection needle, but also movement in the horizontal plane and movement in the puncturing direction are possible, and parallel injection processing to a plurality of cells is possible. In addition, there are other possible miniaturizations of manipulators, and the possibility of implementing a plurality of manipulators is increasing.
 しかし、複数配置された各マニピュレータを用いてどの被導入体のインジェクション処理を行うかにつき、未解決であった。複数あるマニピュレータをどのように使い分けるかは、シャーレ内の全ての被導入体にインジェクション処理を行うにつき、処理の総時間に大きく影響する。 However, it has not been solved which injection target is to be injected using each of the manipulators arranged in plural. How to properly use a plurality of manipulators greatly affects the total processing time when injection processing is performed on all the introduced objects in the petri dish.
 この発明の目的は、細胞等の被導入体への導入物質の導入を、複数の注入針で効率良く確実に行うことができて、処理効率の向上が可能なマイクロインジェクション装置を提供することである。 An object of the present invention is to provide a microinjection apparatus that can efficiently and surely introduce a substance to be introduced into an introduced body such as a cell with a plurality of injection needles and can improve the processing efficiency. is there.
 この発明のマイクロインジェクション装置は、内部に導入物質が充填された注入針11を被導入体Tに挿入することにより、被導入体T内に導入物質を導入するインジェクション処理を行うマイクロインジェクション装置であって、前記被導入体Tの入った容器12の位置を調整する容器位置調整手段1と、この容器位置調整手段1で位置調整された容器12の内部の被導入体Tに対して複数の注入針11をそれぞれ個別に少なくとも2次元方向に移動可能に移動させる複数の搬送手段4と、前記容器位置調整手段1により位置調整された前記容器12の内部の画像を、顕微鏡3を通して顕微鏡視野範囲Vで撮像する撮像手段2と、この撮像手段2によって得られた画像から前記顕微鏡視野範囲Vの各被導入体Tの位置を判定する位置判定手段8と、この位置判定手段8で判定された各被導入体Tの位置の情報から、定められた規則Rに従って各注入針11の搬送手段4の負荷が均等化されるように、各注入針11が担当する前記顕微鏡視野V内での範囲Eを決定する担当範囲演算手段9と、この担当範囲演算手段9で決定された担当範囲Eの各被導入体Tに対して、前記位置判定手段8で判定された各被導入体Tの位置の情報から前記各搬送手段4に注入針11の移動を行わせる注入針移動制御手段88とを備える。 The microinjection apparatus according to the present invention is a microinjection apparatus that performs an injection process for introducing an introduction substance into the introduction target T by inserting the injection needle 11 filled therein with the introduction substance into the introduction target T. The container position adjusting means 1 for adjusting the position of the container 12 containing the introduction target T, and a plurality of injections with respect to the introduction target T inside the container 12 adjusted by the container position adjusting means 1 A plurality of conveying means 4 for individually moving the needles 11 so as to be movable in at least two-dimensional directions, and images inside the container 12 adjusted by the container position adjusting means 1 are transmitted through the microscope 3 to the microscope visual field range V. Position determination for determining the position of each introducer T in the microscope visual field range V from the image obtained by the imaging means 2 and the image obtained by the imaging means 2 Each injection so as to equalize the load on the conveying means 4 of each injection needle 11 from the stage 8 and information on the position of each introduction target T determined by the position determination means 8 in accordance with a predetermined rule R. Position determination means 9 for determining the range E within the microscope visual field V that the needle 11 is in charge of, and for each introducer T in the range E determined by the charge range calculation means 9 And injection needle movement control means 88 for causing the respective conveying means 4 to move the injection needle 11 from the information on the position of each introduction target T determined by the means 8.
 この構成によると、複数の注入針11をそれぞれ個別に少なくとも2次元方向に移動可能に移動させる複数の搬送手段4を設けたため、これら複数の注入針11を並行して動作させ、インジェクション処理を行うことができる。被導入体Tの入った容器12の位置を調整する容器位置調整手段1を設け、容器位置調整手段1により位置調整された前記容器12の内部の画像を、顕微鏡3を通して顕微鏡視野範囲Vで撮像する撮像手段2と、この撮像手段2によって得られた画像から前記顕微鏡視野範囲Vの各被導入体Tの位置を判定する位置判定手段8とを設けたため、顕微鏡視野範囲V毎に前記複数の注入針11でインジェクション処理を行って、容器12内の全ての被導入体Tのインジェクション処理を行うことができる。 According to this configuration, since the plurality of transfer means 4 for individually moving the plurality of injection needles 11 so as to be movable in at least two-dimensional directions are provided, the plurality of injection needles 11 are operated in parallel to perform the injection process. be able to. The container position adjusting means 1 for adjusting the position of the container 12 containing the introduction target T is provided, and an image inside the container 12 adjusted by the container position adjusting means 1 is taken in the microscope visual field range V through the microscope 3. Imaging means 2 for performing the operation and position determining means 8 for determining the position of each introduced object T in the microscope visual field range V from the image obtained by the imaging means 2 are provided. By performing the injection process with the injection needle 11, it is possible to perform the injection process for all the introduced objects T in the container 12.
 この場合に、各注入針11が担当する顕微鏡視野V内での範囲Eを決定する担当範囲演算手段9を設け、この手段9は、定められた規則Rに従って各注入針11の搬送手段4の負荷が均等化されるように担当範囲を決定するものとしたため、顕微鏡視野V内の全体の被導入体Tに対して、一部の注入針11に負荷が偏ることなくインジェクション処理することができる。そのため、並行動作させる各注入針11が、顕微鏡視野V内で担当する全ての各被導入体Tへのインジェクション処理を完了する時間の差が少なくなる。したがって、被導入体Tへの導入物質の導入を、複数の注入針11で効率良く確実に行うことができて、処理効率の向上が可能となる。 In this case, assigned range calculation means 9 for determining the range E in the microscope visual field V that each injection needle 11 is in charge of is provided, and this means 9 is provided in accordance with a predetermined rule R of the conveying means 4 of each injection needle 11. Since the assigned range is determined so that the load is equalized, the injection process can be performed on the entire introduced target T in the microscope visual field V without the load being unevenly applied to some of the injection needles 11. . For this reason, the time difference for completing the injection process for all the introduction bodies T in charge of each injection needle 11 to be operated in parallel within the microscope visual field V is reduced. Therefore, the introduction of the introduced substance into the introduction target T can be performed efficiently and reliably with the plurality of injection needles 11, and the processing efficiency can be improved.
 なお、前記の「負荷」は、注入針11の搬送手段の動作時間や動作回数に影響する要因の物理量であって、任意に定められた規則に従って計算される物理量であり、例えば、注入針11の移動する距離であっても、注入針11の移動する回数であっても、またこれらの距離や回数の両方を考慮した値であっても良い。 The “load” is a physical quantity that is a factor that affects the operation time and the number of operations of the conveying means of the injection needle 11, and is a physical quantity that is calculated according to an arbitrarily defined rule. Or the number of times the injection needle 11 moves, or a value that takes into account both the distance and the number of times.
 この発明において、前記担当範囲演算手段9は、各注入針11が担当する範囲Eの面積がほぼ均等となるように、前記顕微鏡視野範囲Vの領域を分割するものであっても良い。担当する範囲Eの面積がほぼ均等であれば、各注入針11の搬送手段4の負荷が均等化され、各注入針11によるインジェクション処理の時間が均等化される。また、担当する範囲Eの面積をほぼ均等に分割するため、分割の演算処理が容易である。 In this invention, the assigned range calculation means 9 may divide the region of the microscope visual field range V so that the area of the range E handled by each injection needle 11 is substantially equal. If the area of the range E in charge is substantially equal, the load of the conveying means 4 of each injection needle 11 is equalized, and the time of the injection process by each injection needle 11 is equalized. In addition, since the area of the range E in charge is divided almost evenly, the division calculation process is easy.
 この発明において、前記担当範囲演算手段9は、各注入針11が担当する被導入体Tの数がほぼ均等となるように前記顕微鏡視野範囲Vの領域を分割するものであっても良い。担当する被導入体Tの数が等しければ、注入針11のインジェクション処理のための動作の回数が均等となるため、各注入針11によるインジェクション処理の時間が均等化される。 In the present invention, the assigned range calculation means 9 may divide the region of the microscope visual field range V so that the number of introduced bodies T handled by each injection needle 11 is substantially equal. If the number of introduced objects T in charge is equal, the number of operations for the injection process of the injection needles 11 becomes equal, and therefore the time of the injection process by each injection needle 11 is equalized.
 この発明において、個々の注入針11毎に、担当する各被導入体Tへのインジェクション処理の動作における注入針11の総移動距離が最短になるように、被導入体11のインジェクション処理の順番を決定する挿入順決定手段10を設けても良い。インジェクション処理の動作では、注入針11を挿入方向の待機位置にある状態で、注入針11が被導入体Tに対向する位置に来るように調整移動させ、注入針11を被導入体に挿入する挿入方向の動作、および被導入体Tを待機位置に戻す動作を繰り返すことになる。担当範囲E内の複数の被導入体Tにインジェクション処理を行う場合に、どの順に処理を行うかは、前記挿入方向の動作の時間への影響は少ないが、前記調整移動の距離が大きく異なり、移動時間の和が大きく変わる。そのため、注入針11の総移動距離が最短になるように順番を定めることで、担当範囲Eの全ての被導入体のインジェクション処理を行う総時間が短縮できる。 In the present invention, the order of the injection process of the introduced body 11 is set so that the total movement distance of the injection needle 11 in the operation of the injection process to each introduced body T in charge is minimized for each injection needle 11. Insertion order determining means 10 for determining may be provided. In the operation of the injection process, the injection needle 11 is adjusted and moved so that the injection needle 11 comes to a position facing the introduction target T while the injection needle 11 is in the standby position in the insertion direction, and the injection needle 11 is inserted into the introduction target. The operation in the insertion direction and the operation of returning the introduction target T to the standby position are repeated. When performing injection processing on a plurality of introducers T within the assigned range E, the order of processing is less affected by the time of operation in the insertion direction, but the distance of the adjustment movement differs greatly. The sum of travel time changes greatly. Therefore, by determining the order so that the total movement distance of the injection needle 11 is the shortest, the total time for performing the injection processing of all the introduced objects in the assigned range E can be shortened.
 前記挿入順決定手段10を設けた場合に、前記担当範囲演算手段9を次の構成としても良い。例えば、前記担当範囲演算手段9は、個々の注入針11の前記総移動距離がほぼ均等となるように前記顕微鏡視野範囲Vの領域を分割するものとする。前記挿入順決定手段10を設けた場合は、個々の注入針11の総移動距離が定まる。このように定まる総移動距離を均等化させることで、各注入針11が担当するインジェクション処理の時間が均等化され、処理効率の向上が可能となる。 When the insertion order determination means 10 is provided, the assigned range calculation means 9 may be configured as follows. For example, the assigned range calculation means 9 divides the region of the microscope visual field range V so that the total movement distances of the individual injection needles 11 are substantially equal. When the insertion order determining means 10 is provided, the total movement distance of the individual injection needles 11 is determined. By equalizing the total moving distances determined in this way, the time of the injection process that each injection needle 11 takes charge is equalized, and the processing efficiency can be improved.
 前記挿入順決定手段10を設けた場合に、前記担当範囲演算手段9は、個々の注入針11の前記総移動距離と処理個数の積がほぼ均等となるように顕微鏡視野範囲Vの領域を分割するものであっても良い。インジェクション処理のための注入針11の移動に要する時間には、注入針11が被導入体Tに対向する位置に来るように調整移動させる時間と、注入針11を挿入方向に往復させる時間とがある。注入針11を挿入方向に往復させる時間は、処理個数に依存する。調整移動させる時間は、前記総移動距離に依存する。そのため、総移動距離と処理個数の積がほぼ均等となるように顕微鏡視野範囲の領域を分割することで、各注入針が担当するインジェクション処理の時間がより一層均等化され、処理効率のさらなる向上が可能となる。また、上記のように処理個数と総移動距離の両者から処理時間が決定されるが、両者の積を用いることで、処理個数と総移動距離を反映させた適切な領域分割が簡単に行える。 In the case where the insertion order determining means 10 is provided, the assigned range calculating means 9 divides the region of the microscope visual field range V so that the product of the total moving distance and the processing number of the individual injection needles 11 is substantially equal. It may be what you do. The time required for the movement of the injection needle 11 for the injection process includes a time for adjusting and moving the injection needle 11 so as to come to a position facing the introduction target T and a time for reciprocating the injection needle 11 in the insertion direction. is there. The time for reciprocating the injection needle 11 in the insertion direction depends on the number of processing. The time for the adjustment movement depends on the total movement distance. Therefore, by dividing the region of the microscope field of view so that the product of the total moving distance and the number of treatments is almost equal, the injection processing time assigned to each injection needle is further equalized and the processing efficiency is further improved. Is possible. Further, as described above, the processing time is determined from both the processing number and the total moving distance, but by using the product of both, an appropriate area division reflecting the processing number and the total moving distance can be easily performed.
 前記挿入順決定手段10を設けた場合に、前記担当範囲演算手段9は、注入針11の移動時間と、注入針11が被導入体Tに挿入されている間に導入物質の充填のために停止させるインジェクション時間とを用い、インジェクション時間と移動時間との和である処理時間がほぼ均等となるように前記顕微鏡視野範囲Vの領域を分割するものとしても良い。移動時間の他に、注入針11が導入物質の充填のために停止しているインジェクション時間を考慮することで、各注入針11が担当するインジェクション処理の時間がより一層均等化され、処理効率のさらなる向上が可能となる。 In the case where the insertion order determining means 10 is provided, the assigned range calculating means 9 is used for filling the introduction substance while the injection needle 11 is being moved and while the injection needle 11 is being inserted into the introducer T. The region of the microscope field-of-view range V may be divided so that the processing time, which is the sum of the injection time and the movement time, is substantially equal using the injection time to be stopped. By considering the injection time when the injection needles 11 are stopped due to the filling of the introduced substance in addition to the movement time, the time of the injection process in which each injection needle 11 is in charge is further equalized and the processing efficiency is improved. Further improvements are possible.
 この発明において、前記担当範囲演算手段9は、各注入針11を並行して動作させたときに注入針11同士の干渉が生じないことを優先条件とし、この優先条件下で前記顕微鏡視野範囲Vの領域を分割するものとしても良い。各注入針11を並行して動作させたときに注入針同士の干渉が生じる場合は、並行動作させることができない。したがって、干渉が生じないことを優先条件し、この優先条件を充足する範囲で、他の条件、例えば担当する面積がほぼ均等、あるいは担当する被導入体の数がほぼ均等となるように顕微鏡視野範囲の領域を分割することが実際的である。 In the present invention, the assigned range calculation means 9 has a priority condition that no interference occurs between the injection needles 11 when the injection needles 11 are operated in parallel. Under this priority condition, the microscope visual field range V The area may be divided. When the injection needles 11 interfere with each other when the injection needles 11 are operated in parallel, the injection needles 11 cannot be operated in parallel. Therefore, it is a priority condition that interference does not occur, and within the range where this priority condition is satisfied, other conditions, for example, the area in charge is almost equal, or the number of introduced subjects in charge is almost equal. It is practical to divide the region of the range.
 この発明において、注入針11同士が干渉しないように、各注入針11の被導入体Tへのインジェクション処理の順番を決定する干渉回避手段79を設けても良い。これにより、注入針11同士の干渉の回避が確実となる。 In the present invention, interference avoiding means 79 may be provided for determining the order of the injection processing of each injection needle 11 to the introduction target T so that the injection needles 11 do not interfere with each other. Thereby, avoidance of interference between the injection needles 11 is ensured.
 被導入体Tの大きさに応じて、顕微鏡視野範囲Vを調整する視野範囲調整手段86を設けても良い。顕微鏡視野範囲Vの調整は、例えば顕微鏡3の対物レンズの倍率変更により行う。被導入体Tの大きさにより、被導入体Tへの注入針11の挿入位置の精度の要求が変わる。そのため、被導入体Tが大きいときは顕微鏡視野範囲Vを広げて容器位置の変更回数を減らし、被導入体Tが小さいときは顕微鏡視野範囲Vを狭めて精度向上を図ることで、導入に必要な精度の低下を生じることなく、インジェクション処理の効率の向上を図ることができる。 A visual field range adjusting means 86 for adjusting the microscope visual field range V may be provided according to the size of the introduction target T. The microscope visual field range V is adjusted by changing the magnification of the objective lens of the microscope 3, for example. Depending on the size of the body to be introduced T, the accuracy requirement of the insertion position of the injection needle 11 into the body to be introduced T varies. Therefore, when the introducer T is large, the microscope visual field range V is widened to reduce the number of times of changing the container position, and when the introducer T is small, the microscope visual field range V is narrowed to improve accuracy and necessary for introduction. The efficiency of the injection process can be improved without causing a significant decrease in accuracy.
 顕微鏡視野範囲Vに応じて前記容器位置調整手段1により容器12の位置を順次移動させ、容器12内の全領域で前記注入針11のインジェクション処理を行わせるように前記容器位置調整手段1および前記各注入針11の搬送手段4を制御する容器内全範囲処理手段100を設けても良い。これにより、容器12内の全ての被導入体Tに導入物質の導入を行うことができる。 The container position adjusting means 1 and the container position adjusting means 1 sequentially move the position of the container 12 according to the microscope visual field range V so that the injection processing of the injection needle 11 is performed in the entire region of the container 12. An in-container full range processing means 100 for controlling the conveying means 4 of each injection needle 11 may be provided. Thereby, the introduction substance can be introduced into all the introduction bodies T in the container 12.
 前記容器内全範囲処理手段100は、一つの顕微鏡視野範囲Vの全ての被導入体Tに対するインジェクション処理が行なわれた後、顕微鏡視野範囲Vに応じて前記容器12を前記容器位置調整手段1により順次移動させ、各回の移動後の位置における容器12内の被導入体Tに対するインジェクション処理を行わせるようにしても良い。この場合、被導入体Tの位置の記憶が、一つの顕微鏡視野範囲Vだけで済み、記憶容量が少なくて済む。 The in-container full range processing means 100 performs the injection processing on all the objects to be introduced T in one microscope visual field range V and then moves the container 12 by the container position adjusting means 1 according to the microscope visual field range V. You may make it move sequentially and to perform the injection process with respect to the to-be-introduced object T in the container 12 in the position after each movement. In this case, only one microscope field-of-view range V needs to be stored for the position of the introducer T, and the storage capacity can be reduced.
 前記容器内全範囲処理手段100を設けた場合に、前記各注入針11のインジェクション処理の順番を、定められた規則より決める挿入順決定手段10を備え、前記容器内全範囲処理手段100は、顕微鏡視野範囲Vに応じて前記容器位置調整手段1により容器12の位置を順次移動させ、複数回の移動先の各顕微鏡視野範囲Vまでの被導入体Tの位置を、インジェクション処理よりも前に、前記位置判定手段8により判定させ、かつ前記担当範囲演算手段9に各注入針11が担当する前記範囲Eを決定させ、前記挿入順決定手段10にインジェクション処理の順番を決定させるものとしても良い。このように先行して移動先の被導入体Tの位置の情報を取得しておくことで、顕微鏡視野範囲Vのインジェクション処理時において、注入針の移動先の計算を先行して行うことができ、処理時間の短縮が図れる。 In the case where the in-container all-range processing means 100 is provided, the in-container all-range processing means 100 includes an insertion order determining means 10 that determines the order of the injection processing of each injection needle 11 according to a predetermined rule. The position of the container 12 is sequentially moved by the container position adjusting means 1 in accordance with the microscope visual field range V, and the position of the introduction target T up to each microscope visual field range V of a plurality of movement destinations is set before the injection process. The position determination means 8 may make the determination, and the assigned range calculation means 9 may determine the range E that each injection needle 11 is responsible for, and the insertion order determination means 10 may determine the order of the injection processing. . By acquiring the information on the position of the target T to be moved ahead in this way, the movement destination of the injection needle can be calculated in advance during the injection process of the microscope visual field range V. The processing time can be shortened.
 前記容器内全範囲処理手段100を設けた場合に、前記各注入針11のインジェクション処理の順番を定められた規則より決める挿入順決定手段10を備え、前記容器内全範囲処理手段100は、顕微鏡視野範囲Vに応じて前記容器位置調整手段1により容器12の位置を順次移動させて前記容器12内の全被導入体Tの位置を、インジェクション処理よりも前に前記位置判定手段8により判定させ、かつ前記担当範囲演算手段9に各注入針11が担当する前記範囲Eを決定させ、前記挿入順決定手段10にインジェクション処理の順番を決定させるものとしても良い。容器12内の全被導入体Tの位置を、インジェクション処理よりも前に前記位置判定手段8により判定させることで、より一層効率の良い領域分割やインジェクション処理順の決定等が行える。 When the in-container full-range processing means 100 is provided, the in-container full-range processing means 100 is provided with an insertion order determining means 10 that determines the injection processing order of the injection needles 11 according to a predetermined rule. The position of the container 12 is sequentially moved by the container position adjusting means 1 according to the visual field range V, and the positions of all the introduced objects T in the container 12 are determined by the position determining means 8 before the injection process. In addition, the range calculation means 9 may determine the range E that each injection needle 11 is responsible for, and the insertion order determination means 10 may determine the order of the injection processing. By determining the positions of all the introduced objects T in the container 12 by the position determining means 8 before the injection process, it is possible to perform more efficient region division, determination of the injection process order, and the like.
 前記容器内全範囲処理手段100は、顕微鏡視野範囲Vに応じて前記容器位置調整手段1により容器12の位置を順次移動させ、現在の顕微鏡視野範囲Vの被導入体Tの位置を位置判定手段8により判定させると同時に、複数回前の顕微鏡視野範囲Vの各被導入体Tへのインジェクション処理を、前記注入針移動制御手段88による搬送装置4の移動によって行わせるようにしても良い。この構成の場合、被導入体Tの位置の演算をインジェクション処理中に行え、より一層効率良く全体のインジェクション処理を行うことができる。 The in-container full range processing means 100 sequentially moves the position of the container 12 by the container position adjusting means 1 in accordance with the microscope visual field range V, and determines the position of the introducer T in the current microscope visual field range V as a position determination means. At the same time as the determination by step 8, the injection process to each introduced object T in the microscope visual field range V a plurality of times before may be performed by the movement of the transfer device 4 by the injection needle movement control means 88. In the case of this configuration, the position of the introducer T can be calculated during the injection process, and the entire injection process can be performed more efficiently.
 前記容器内全範囲処理手段100は、前記容器位置調整手段1により容器の12位置を順次移動させるときに、顕微鏡視野範囲Vに重複する部分Vaを持つように移動させるものとしてもよい。重複する部分Vaを持たせることで、顕微鏡視野範囲Vの境界付近の被導入体Tに対して未処理が生じることを防止できる。 The in-container full range processing means 100 may be moved so as to have a portion Va overlapping the microscope visual field range V when the container position adjusting means 1 sequentially moves the 12 positions of the container. By providing the overlapping portion Va, it is possible to prevent the unprocessed material T from being generated in the vicinity of the boundary of the microscope visual field range V.
 顕微鏡視野範囲Vに重複する部分Vaを持つように前記容器12を移動させる場合に、前記容器内全範囲処理手段100は、前記重複する部分Vaの面積が同じになるようにしても良い。重複する部分Vaの面積を同じとすることで、容器内の範囲を多数の顕微鏡視野範囲Vに区分する処理が容易になる。 When the container 12 is moved so as to have an overlapping portion Va in the microscope field-of-view range V, the entire range processing means 100 in the container may be configured so that the overlapping portions Va have the same area. By making the area of the overlapping portion Va the same, the process of dividing the range in the container into a large number of microscope visual field ranges V is facilitated.
 顕微鏡視野範囲Vに重複する部分Vaを持つように移動させる場合に、前記容器内全範囲処理手段100は、前記容器位置調整手段1により容器12の位置を順次移動させるときに、定められた規則により、顕微鏡視野範囲V内に基準となる被導入体To を決定し、その被導入体To が含まれる領域が重複するように移動させるものとしても良い。この構成の場合、重複する位置にある被導入体Toが基準であり、被導入体Toの位置が明確となる。 When moving so as to have a portion Va overlapping the microscope visual field range V, the in-container all-range processing means 100 determines the rule when the container position adjusting means 1 sequentially moves the position of the container 12. Thus, it is also possible to determine a to-be-introduced object To in the microscope visual field range V and move it so that the regions including the to-be-introduced object To overlap. In the case of this configuration, the introduced object To at the overlapping position is the reference, and the position of the introduced object To becomes clear.
 この発明において、前記搬送手段は、進退自在に設置された移動体と、この移動体を移動させる進退駆動手段とを有し、前記進退駆動手段は、駆動源として、複数の圧電素子が積層されて積層方向に伸縮する圧電素子積層体を有するものとしても良い。駆動源として積層型の圧電素子を用いた場合は、搬送手段をより一層小型化できて、前記容器の周囲の限られたスペースに多数の搬送手段を配置でき、それだけ多数の注入針を使用することができてインジェクション処理の効率向上が可能となる。 In the present invention, the transport means includes a movable body installed so as to be movable forward and backward, and an advance / retreat drive means for moving the movable body, and the advance / retreat drive means includes a plurality of piezoelectric elements stacked as a drive source. It is also possible to have a piezoelectric element laminate that expands and contracts in the lamination direction. When a laminated piezoelectric element is used as a driving source, the conveying means can be further reduced in size, a large number of conveying means can be arranged in a limited space around the container, and a large number of injection needles are used. Thus, the efficiency of the injection process can be improved.
 駆動源として前記圧電素子積層体を用いた場合に、前記搬送手段における前記圧電素子積層体を駆動源とする進退駆動手段は、圧電素子積層体を平行に配置し、これら複数の圧電素子積層体を、結合部材を介して伸縮方向に直列に接続しても良い。このように複数本の圧電素子積層体を平行に配置して直列接続した場合、コンパクトな構成でより一層大きな変位が得られる。注入針の先端が、撮像手段によって得られた画像における所定視野内全域を移動可能にするためには、搬送手段による注入針の移動距離は1mm以上であることが望ましいが、上記の圧電素子積層体の配置,接続構成とすることで、大きなスペースを要することなく、注入針に必要な移動量を十分確保することができる。 When the piezoelectric element laminate is used as a drive source, the advancing / retreating drive unit using the piezoelectric element laminate as a drive source in the transport unit arranges the piezoelectric element laminate in parallel, and the plurality of piezoelectric element laminates May be connected in series in the expansion and contraction direction via a coupling member. Thus, when a plurality of piezoelectric element laminates are arranged in parallel and connected in series, a larger displacement can be obtained with a compact configuration. In order to enable the tip of the injection needle to move within the entire field of view in the image obtained by the imaging means, the movement distance of the injection needle by the conveying means is preferably 1 mm or more. By adopting the arrangement and connection configuration of the body, it is possible to secure a sufficient amount of movement necessary for the injection needle without requiring a large space.
 この構成の場合に、前記搬送手段における前記圧電素子積層体を駆動源とする進退駆動手段は、圧電素子積層体の伸縮をその伸縮方向と直交する方向の変位に拡大する拡大機構を有するものとしても良い。前記拡大機構は、例えばリンク機構とする。拡大機構を有すると、注入針に必要な移動量を確保するうえで、より効果的なものとなる。リンク機構によると、簡単な構成の拡大機構とできる。 In this configuration, the advancing / retracting drive means using the piezoelectric element laminate in the transport means as a drive source has an expansion mechanism that expands and contracts the piezoelectric element laminate to a displacement in a direction perpendicular to the expansion / contraction direction. Also good. The enlargement mechanism is, for example, a link mechanism. Having an enlargement mechanism is more effective in securing the amount of movement required for the injection needle. According to the link mechanism, it is possible to provide an expansion mechanism with a simple configuration.
 また、前記圧電素子積層体を駆動源とする構成の場合に、前記搬送手段における前記圧電素子積層体を駆動源とする進退駆動手段は、圧電素子積層体の伸縮をその伸縮方向と平行な方向の変位に拡大する拡大機構を有するものとしても良い。前記拡大機構は、例えばリンク機構とする。伸縮方向と平行な方向の変位に拡大するようにした場合も、注入針に必要な移動量を確保するうえで、より効果的なものとなる。 In the case where the piezoelectric element laminate is used as a drive source, the advancing / retreating drive unit using the piezoelectric element laminate as the drive source in the transport unit is configured to extend and contract the piezoelectric element laminate in a direction parallel to the extension / contraction direction. It is good also as what has an expansion mechanism which expands to this displacement. The enlargement mechanism is, for example, a link mechanism. Enlarging the displacement in a direction parallel to the expansion / contraction direction is also more effective in securing the amount of movement necessary for the injection needle.
 圧電素子積層体の伸縮をその伸縮方向と直交する方向の変位に拡大する拡大機構を有する場合、および伸縮方向と平行な方向の変位に拡大する拡大機構を有する場合のいずれにおいても、前記リンク機構は、次の構成のものが採用できる。すなわち、前記リンク機構は、1つの固定ジョイントと2つの可動ジョイントと2つのリンクとからなるクランク・スライダ機構を有し、このクランク・スライダ機構は、前記圧電素子の伸長方向の変位を、前記2つの可動ジョイントおよび2つのリンクを介して、固定ジョイントの円周上の任意の方向に変換し更に変位を拡大可能としても良い。リンク機構をこのような構成にした場合、部品点数の削減や寸法の小型化が図れる。 In any of the cases where the piezoelectric element laminate has an expansion mechanism that expands the expansion / contraction of the piezoelectric element laminate to a displacement in a direction perpendicular to the expansion / contraction direction and the expansion mechanism that expands the displacement in a direction parallel to the expansion / contraction direction The following configuration can be adopted. That is, the link mechanism has a crank / slider mechanism including one fixed joint, two movable joints, and two links, and the crank / slider mechanism is configured to change the displacement of the piezoelectric element in the extension direction. It may be possible to change the displacement in an arbitrary direction on the circumference of the fixed joint and further expand the displacement via two movable joints and two links. When the link mechanism has such a configuration, the number of parts can be reduced and the size can be reduced.
 この発明において、前記搬送手段は、少なくとも第1の移動体と第2の移動体とを互いに直交する方向に進退自在とした2自由度を持っていて、第2の移動体に前記注入針を支持し、前記第1の移動体が第1のガイドを介して基台に直線方向に進退自在移動可能に設置され、第1の移動体の上に第2のガイドを介して第2の移動体が、前記直線方向と直交する方向に進退自在に設置され、前記第1の移動体および第2の移動体をそれぞれ進退させる第1の進退駆動手段および第2の進退駆動手段が前記基台に設置され、前記第2の進退駆動手段の出力部材が、第2の移動体に対して進退移動可能な方向と直交する方向に対して移動が自在に連結され、または接触するものとしても良い。 In the present invention, the conveying means has two degrees of freedom in which at least the first moving body and the second moving body can freely advance and retreat in directions orthogonal to each other, and the injection needle is attached to the second moving body. The first moving body is supported on the base so as to be movable in a linear direction via the first guide, and is movable on the first moving body via the second guide. A body is installed so as to be able to advance and retract in a direction orthogonal to the linear direction, and the first advancing / retreating driving means and the second advancing / retreating driving means for advancing and retracting the first moving body and the second moving body, respectively, The output member of the second advancing / retreating drive unit may be connected to or freely contact with a direction perpendicular to a direction in which the second moving body can advance / retreat. .
 この構成の場合、前記搬送手段は、移動体と進退駆動手段を分離し、各自由度に対する進退駆動手段をいずれも基台に設置したため、搬送手段を小型化でき、また移動体の質量を低減できて搬送手段の高速駆動が可能となる。各自由度に対する進退駆動手段をいずれも基台に設置したが、基台に対して第1の移動体を介して設置される第2の移動体に対しては、第2の進退駆動手段の出力部材が、その進退移動可能な方向と直交する方向に対して移動が自在に連結され、または接触するため、第1の移動体の移動した位置に係わらず、第2の進退駆動手段の進退駆動を第2の移動体に伝達することができる。また、搬送手段を小型化できるため、細胞等の被導入体が入ったシャーレ等の容器の周辺に複数の搬送手段を配置することが実現容易となる。そのため複数の被導入体に対して注入針先端の位置決めを同時に行うことが出来、一度に多数の被導入体へのインジェクション処理を実行することが出来、ハイスループット化が可能となる。 In the case of this configuration, the conveying means separates the moving body and the advancing / retreating driving means, and the advancing / retreating driving means for each degree of freedom are installed on the base, so that the conveying means can be reduced in size and the mass of the moving object is reduced. As a result, the conveying means can be driven at high speed. Although the advancing / retreating driving means for each degree of freedom are all installed on the base, the second advancing / retreating driving means of the second moving body installed on the base via the first moving body is provided. Since the output member is freely connected to or in contact with the direction orthogonal to the direction in which the advance / retreat movement is possible, the advance / retreat of the second advancing / retreating drive unit is performed regardless of the position of the first moving body. The drive can be transmitted to the second moving body. Further, since the conveying means can be reduced in size, it becomes easy to arrange a plurality of conveying means around a container such as a petri dish containing cells or other objects to be introduced. Therefore, the tip of the injection needle can be simultaneously positioned with respect to a plurality of introduced bodies, and injection processing to a large number of introduced bodies can be executed at a time, and high throughput can be achieved.
 この発明において、被導入体が細胞であり、導入物質が、DNAおよびタンパク質等の遺伝子制御因子であっても良い。このような細胞への遺伝子制御因子の注入の場合に、この発明における、複数の注入針で効率良く確実に行うことができて、処理効率の向上が可能という利点が、効果的に発揮される。 In the present invention, the introduced substance may be a cell, and the introduced substance may be a gene regulatory factor such as DNA or protein. In the case of injecting a gene regulatory factor into such a cell, the advantage of being able to efficiently and surely perform with a plurality of injection needles in this invention and improving the processing efficiency is effectively exhibited. .
 請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成のどのような組合せも、本発明に含まれる。特に、請求の範囲の各請求項の2つ以上のどのような組合せも、本発明に含まれる。 Any combination of at least two configurations disclosed in the claims and / or the specification and / or drawings is included in the present invention. In particular, any combination of two or more of each claim in the claims is included in the present invention.
 この発明は、添付の図面を参考にした以下の好適な実施形態の説明から、より明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきものではない。この発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の符号は、同一または相当する部分を示す。
(A)はこの発明の一実施形態にかかるマイクロインジェクション装置の概念構成の説明図、(B)はその容器内の顕微鏡視野範囲による分割の説明図、(C)はその顕微鏡視野範囲の担当範囲への分割の説明図である。 同マイクロインジェクション装置における搬送手段の配置構成を示す平面図である。 顕微鏡視野範囲の分割形態の一例を示す説明図である。 顕微鏡視野範囲の分割形態の他の例を示す説明図である。 顕微鏡視野範囲の分割形態のさらに他の例を示す説明図である。 顕微鏡視野範囲の分割形態のさらに他の例を示す説明図である。 (A)は容器内の全ての被導入体の位置をまとめて判定する動作の説明図、(B)は容器内の複数分割された範囲毎に被導入体の位置をまとめて判定する動作の説明図である。 (A),(B)はそれぞれ顕微鏡視野範囲の重複部分を持たせる形態の説明図である。 同マイクロインジェクション装置における搬送手段の他の配置構成を示す平面図である。 同マイクロインジェクション装置における搬送手段の側面図である。 (A)は同マイクロインジェクション装置における搬送手段のX軸移動機構およびY軸移動機構を示す一部省略平面図、(B)は同じくその正面図である。 (A)は同搬送手段のX軸移動機構およびY軸移動機構を示す平面図、(B)は同じくその正面図である。 同搬送手段の進退駆動手段の一例を示す断面図である。 同マイクロインジェクション装置における容器位置調整手段の一例を示す平面図である。 同搬送手段の進退駆動手段における出力部材と移動体との接触部の一例を示す拡大平面図である。 同搬送手段の進退駆動手段における出力部材と移動体との接触部の他の例を示す拡大平面図である。 (A)は同マイクロインジェクション装置における搬送手段のX軸移動機構およびY軸移動機構の他の例を示す平面図、(B)は同じくその正面図である。 (A)は同マイクロインジェクション装置における搬送手段のX軸移動機構およびY軸移動機構のさらに他の例を示す平面図、(B)は同じくその正面図である。 (A)は同マイクロインジェクション装置における搬送手段のX軸移動機構およびY軸移動機構のさらに他の例を示す平面図、(B)は同じくその正面図である。 (A)は同マイクロインジェクション装置における搬送手段のX軸移動機構およびY軸移動機構のさらに他の例を示す平面図、(B)は同じくその正面図である。 同搬送手段におけるZ軸移動機構の一例の縦断面図とその制御系の概念構成のブロック図とを組み合わせて示す図である。 同搬送手段における進退駆動手段とその制御系の概念構成のブロック図とを組み合わせて示す他の例の図である。 同搬送手段における進退駆動手段とその制御系の概念構成のブロック図とを組み合わせたさらに他の例を示す図である。 同搬送手段における進退駆動手段とその制御系の概念構成のブロック図とを組み合わせたさらに他の例を示す図である。 (A)は同進退駆動手段におけるリンク機構の一構成例を示す平面図、(B)は同リンク機構の他の構成例を示す平面図およびその部分拡大断面図、(C)は同リンク機構のさらに他の構成例を示す平面図である。 同搬送手段における進退駆動手段とその制御系の概念構成のブロック図とを組み合わせたさらに他の例を示す図である。 同搬送手段の進退駆動手段におけるリンク機構のさらに他の構成例を示す平面図である。 (A)は同搬送手段における進退駆動手段(Y軸移動機構)とその制御系の概念構成のブロック図とを組み合わせたさらに他の例を示す図、(B)は同搬送手段における進退駆動手段(X軸移動機構)とその制御系の概念構成のブロック図とを組み合わせたさらに他の例を示す図である。 同進退駆動手段のリンク機構の一構成例を示す平面図である。 同リンク機構の他の一構成例を示す平面図である。 従来例の概念図である。
The present invention will be more clearly understood from the following description of preferred embodiments with reference to the accompanying drawings. However, the embodiments and drawings are for illustration and description only and should not be used to define the scope of the present invention. The scope of the invention is defined by the appended claims. In the accompanying drawings, the same reference numerals in a plurality of drawings indicate the same or corresponding parts.
(A) is explanatory drawing of the conceptual structure of the microinjection apparatus concerning one Embodiment of this invention, (B) is explanatory drawing of the division | segmentation by the microscope visual field range in the container, (C) is the charge range of the microscope visual field range. It is explanatory drawing of the division | segmentation into. It is a top view which shows the arrangement structure of the conveyance means in the microinjection apparatus. It is explanatory drawing which shows an example of the division | segmentation form of a microscope visual field range. It is explanatory drawing which shows the other example of the division | segmentation form of a microscope visual field range. It is explanatory drawing which shows the further another example of the division | segmentation form of a microscope visual field range. It is explanatory drawing which shows the further another example of the division | segmentation form of a microscope visual field range. (A) is explanatory drawing of the operation | movement which judges the position of all the to-be-introduced bodies in a container collectively, (B) is the operation | movement which judges the position of a to-be-introduced body collectively for every several divided | segmented range in a container. It is explanatory drawing. (A), (B) is explanatory drawing of the form which gives the overlap part of a microscope visual field range, respectively. It is a top view which shows the other arrangement structure of the conveyance means in the same microinjection apparatus. It is a side view of the conveyance means in the microinjection apparatus. (A) is a partially omitted plan view showing an X-axis moving mechanism and a Y-axis moving mechanism of the conveying means in the microinjection device, and (B) is a front view of the same. (A) is a top view which shows the X-axis movement mechanism and Y-axis movement mechanism of the conveyance means, (B) is the front view similarly. It is sectional drawing which shows an example of the advance / retreat drive means of the conveyance means. It is a top view which shows an example of the container position adjustment means in the microinjection apparatus. It is an enlarged plan view which shows an example of the contact part of the output member and moving body in the advance / retreat drive means of the conveyance means. It is an enlarged plan view which shows the other example of the contact part of the output member and moving body in the advance / retreat drive means of the conveyance means. (A) is a top view which shows the other example of the X-axis movement mechanism and Y-axis movement mechanism of the conveyance means in the microinjection apparatus, (B) is the front view similarly. (A) is a top view which shows the further another example of the X-axis movement mechanism of the conveyance means in the microinjection apparatus, and a Y-axis movement mechanism, (B) is the front view similarly. (A) is a top view which shows the further another example of the X-axis movement mechanism of the conveyance means in the microinjection apparatus, and a Y-axis movement mechanism, (B) is the front view similarly. (A) is a top view which shows the further another example of the X-axis movement mechanism of the conveyance means in the microinjection apparatus, and a Y-axis movement mechanism, (B) is the front view similarly. It is a figure which combines and shows the longitudinal cross-sectional view of an example of the Z-axis moving mechanism in the conveyance means, and the block diagram of the conceptual structure of the control system. It is a figure of the other example shown combining the advance / retreat drive means in the conveyance means, and the block diagram of the conceptual structure of the control system. It is a figure which shows the further another example which combined the block diagram of the conceptual structure of the advancing / retreating drive means and its control system in the conveyance means. It is a figure which shows the further another example which combined the block diagram of the conceptual structure of the advancing / retreating drive means and its control system in the conveyance means. (A) is a plan view showing one configuration example of a link mechanism in the reciprocating drive means, (B) is a plan view showing another configuration example of the link mechanism and a partially enlarged sectional view thereof, and (C) is the link mechanism. It is a top view which shows the further another structural example. It is a figure which shows the further another example which combined the block diagram of the conceptual structure of the advancing / retreating drive means and its control system in the conveyance means. It is a top view which shows the further another structural example of the link mechanism in the advance / retreat drive means of the conveyance means. (A) is a diagram showing still another example in which the advance / retreat drive means (Y-axis movement mechanism) in the transport means and a block diagram of the conceptual configuration of the control system are combined, and (B) is the advance / retreat drive means in the transport means. It is a figure which shows the further another example which combined the block diagram of the conceptual structure of (X-axis movement mechanism) and its control system. It is a top view which shows one structural example of the link mechanism of advancing / retreating drive means. It is a top view which shows another structural example of the link mechanism. It is a conceptual diagram of a prior art example.
 この発明の第1実施形態を図1(A)~(C)ないし図8と共に説明する。図1(A)~(C)は、このマイクロインジェクション装置の概念図を示す。このマイクロインジェクション装置は、内部に導入物質の充填された微小な注入針11を被導入体Tに挿入することにより、被導入体T内に導入物質を導入する装置である。被導入体Tは、例えば細胞である。この細胞は、人体の細胞であっても、他の任意の動物や植物等の生物の細胞であっても良い。このマイクロインジェクション装置は、容器位置調整手段1と、複数の注入針11に対して個別に設けたマニピュレータである複数の搬送手段4と、これら各搬送手段4を注入準備位置と退避位置との間で進退させる搬送手段退避機構39と、撮像手段2と、顕微鏡3と、装置全体の動作を制御する制御装置5とを備える。 A first embodiment of the present invention will be described with reference to FIGS. 1A to 1C to FIG. 1A to 1C are conceptual diagrams of this microinjection apparatus. This microinjection apparatus is an apparatus for introducing an introduction substance into the introduction target T by inserting a minute injection needle 11 filled with the introduction substance into the introduction target T. The introducer T is, for example, a cell. This cell may be a human body cell or a cell of an organism such as any other animal or plant. The microinjection apparatus includes a container position adjusting unit 1, a plurality of transfer units 4 which are manipulators individually provided for a plurality of injection needles 11, and each of these transfer units 4 between an injection preparation position and a retracted position. Are provided with a transporting means retracting mechanism 39 that moves forward and backward, an imaging means 2, a microscope 3, and a control device 5 that controls the operation of the entire apparatus.
 容器位置調整手段1は、被導入体を収容するシャーレ等の容器12が載置状態に保持された容器載置台13を水平な直交2軸方向(X軸,Y軸方向)に移動させて容器12の位置を調整する手段であり、XYステージ装置6により構成される。なお、この明細書でいうX軸、Y軸、Z軸は、マイクロインジェクション装置の全体における共通の座標系として定められる直角座標の各軸を表すが、搬送手段4については、それぞれ個別の装置説明での各自由度に対する軸として表す場合がある。 The container position adjusting means 1 moves a container mounting table 13 on which a container 12 such as a petri dish that accommodates an introduction body is held in a horizontal state in two horizontal orthogonal directions (X-axis and Y-axis directions). 12 is a means for adjusting the position of the XY stage device 6. Note that the X axis, Y axis, and Z axis in this specification represent the respective axes of rectangular coordinates defined as a common coordinate system in the entire microinjection apparatus. May be represented as an axis for each degree of freedom.
 撮像手段2は、顕微鏡3と共に、容器載置台13の上方の固定位置に、容器12を俯瞰するように1台だけ設置される。撮像手段2は、容器12の内部を局部的に拡大した平面視画像等の画像を、顕微鏡3を通して撮像するカメラなどであり、顕微鏡3の視野範囲V(図1(B))毎の撮像を行う。顕微鏡視野範囲Vは、容器位置調整手段1により容器12を移動させることで、容器12内の任意の位置が顕微鏡視野範囲Vとされる。例えば、図1(B)のように容器12内を区分した各範囲が顕微鏡視野範囲Vとされる。撮像した画像は、画像処理手段7によって処理される。顕微鏡3は、外部から与えられる入力信号によって対物レンズ(図示せず)の倍率などを調整することで、視野範囲の調整が可能な駆動式の倍率調整手段(図示せず)を有する。 The imaging means 2 is installed together with the microscope 3 at a fixed position above the container mounting table 13 so as to overlook the container 12. The imaging unit 2 is a camera or the like that captures an image such as a planar view image obtained by locally expanding the inside of the container 12 through the microscope 3, and performs imaging for each field of view range V (FIG. 1B) of the microscope 3. Do. The microscope visual field range V is set to the microscope visual field range V by moving the container 12 by the container position adjusting means 1. For example, each range obtained by dividing the inside of the container 12 as shown in FIG. The captured image is processed by the image processing means 7. The microscope 3 has a drive-type magnification adjusting means (not shown) that can adjust the field of view range by adjusting the magnification of an objective lens (not shown) by an input signal given from the outside.
 搬送手段4は、個々の注入針11をそれぞれ移動させるXYZステージ装置等からなる手段であり、複数設けられる。これら複数の搬送手段4は、図2に平面図で示すように、容器載置台13の上方に位置して、容器12を囲むように、容器12の中心に対して放射状に配置される。同図の例では、搬送手段4は、容器12の左右にそれぞれ複数個(例えば2個)ずつが等角度間隔で配置され、左右の搬送手段4は、互いに放射中心に対して同一直線上に対向して位置している。搬送手段4は、図9のように左右に3つが等角度間隔で並ぶように配置しても、さらに多数設けても良い。 The conveying means 4 is a means composed of an XYZ stage device or the like for moving each injection needle 11 and a plurality of conveying means 4 are provided. As shown in a plan view in FIG. 2, the plurality of transport means 4 are positioned above the container mounting table 13 and are arranged radially with respect to the center of the container 12 so as to surround the container 12. In the example of the figure, a plurality of (for example, two) conveying means 4 are arranged at equal angular intervals on the left and right sides of the container 12, and the left and right conveying means 4 are collinear with respect to the radiation center. Located opposite to each other. As shown in FIG. 9, three conveying means 4 may be arranged such that three on the left and right are arranged at equal angular intervals, or more.
 図1(A)において搬送手段4は、3自由度を有する機構であり、注入針11を3次元方向に移動可能である。具体的には、搬送手段4は、注入針11を水平な直交2軸方向に移動させる機構と、注入針11を水平面に対して傾斜した直線方向に進退させる機構とからなる。搬送手段4のより具体的な構成は、後に詳しく説明する。なお、搬送手段4は、少なくとも2自由度、すなわち直交2軸方向の移動が可能であれば、複数設置して並行してインジェクション処理させることができる。 1A, the conveying means 4 is a mechanism having three degrees of freedom, and can move the injection needle 11 in a three-dimensional direction. Specifically, the transport unit 4 includes a mechanism that moves the injection needle 11 in two horizontal orthogonal directions and a mechanism that moves the injection needle 11 back and forth in a linear direction inclined with respect to the horizontal plane. A more specific configuration of the transport unit 4 will be described in detail later. In addition, as long as the conveyance means 4 can move in at least two degrees of freedom, that is, in the direction of two orthogonal axes, a plurality of conveying means 4 can be installed and subjected to the injection processing in parallel.
 制御装置5は、コンピュータおよびこれに実行されるプログラムにより構成され、これらによって、位置判定手段8、担当範囲演算手段9、挿入順決定手段10、目標位置決定手段80、容器内全範囲処理指令手段100、視野範囲調整手段86、容器移動間隔決定手段87、注入針移動制御手段88、および容器移動制御手段89が構成されている。さらに、干渉回避手段79を設けても良い。制御装置5は、この他に、キーボードやマウス等の手操作による入力手段や、通信回線や記録媒体から入力する入力手段、および画像の表示が可能な液晶表示装置等の表示手段(いずれも図示せず)が備えられ、または接続されている。 The control device 5 is constituted by a computer and a program executed by the computer. By these, the position determination means 8, the assigned range calculation means 9, the insertion order determination means 10, the target position determination means 80, the in-container full range processing command means 100, visual field range adjusting means 86, container movement interval determining means 87, injection needle movement control means 88, and container movement control means 89 are configured. Further, interference avoiding means 79 may be provided. In addition to this, the control device 5 includes input means by manual operation such as a keyboard and a mouse, input means for inputting from a communication line or a recording medium, and display means such as a liquid crystal display device capable of displaying an image (both shown (Not shown) is provided or connected.
 位置判定手段8は、撮像手段2によって得られた画像から、顕微鏡3の視野範囲Vの各被導入体Tの位置を判定する手段である。撮像手段2によって得られた画像は、画像処理手段7によって2値画像等に処理され、位置判定手段8は、例えばその2値画像の黒点位置が被導入体Tの位置とする。被導入体Tの位置は、顕微鏡視野範囲内の直交2軸方向の座標位置として判定する。顕微鏡視野範囲Vと、容器12の位置との関係から、被導入体Tの容器12に対する座標位置や、容器位置調整手段1の基準位置に対する被導入体Tの座標位置が求まる。位置判定手段8で判定された各被導入体Tの位置は、位置判定手段8における位置記憶部8aに記憶される。 The position determination means 8 is a means for determining the position of each introduced object T in the visual field range V of the microscope 3 from the image obtained by the imaging means 2. The image obtained by the imaging unit 2 is processed into a binary image or the like by the image processing unit 7, and the position determination unit 8 sets the black spot position of the binary image as the position of the introduction target T, for example. The position of the introducer T is determined as a coordinate position in the orthogonal biaxial direction within the microscope visual field range. From the relationship between the microscope visual field range V and the position of the container 12, the coordinate position of the introducer T with respect to the container 12 and the coordinate position of the introducer T with respect to the reference position of the container position adjusting means 1 are obtained. The position of each introduced object T determined by the position determination unit 8 is stored in the position storage unit 8 a in the position determination unit 8.
 担当範囲演算手段9は、顕微鏡視野V内における各注入針11が担当する範囲E(図1(C))を決定する手段であり、位置判定手段8で判定されて位置記憶部8aに記憶された各被導入体Tの位置の情報から、定められた規則Rに従って担当範囲Eを決定する。この規則Rは各注入針11の搬送手段4の負荷が均等化されるように担当範囲Eを決定するものとされる。 The assigned range calculation means 9 is a means for determining the range E (FIG. 1C) that each injection needle 11 takes charge in the microscope visual field V, and is determined by the position determination means 8 and stored in the position storage unit 8a. From the information on the position of each introduced object T, the assigned range E is determined according to a predetermined rule R. This rule R is to determine the assigned range E so that the load on the conveying means 4 of each injection needle 11 is equalized.
 担当範囲演算手段9による担当範囲Eの決定は、例えば、図3、図4、図5、または図6に示すように行う。いずれの例においても、視野範囲Vを、この視野範囲V内に定めた放射中心Oの回りに、それぞれの分割範囲が各注入針11に近い位置となるように、放射状の分割線Lにより注入針11の個数分の分割範囲に分割し、その近い位置の分割範囲をその注入針11の担当範囲Eとすることを前提とする。放射中心Oは、視野範囲Vの中心、つまり図心としても良く、また任意に定めた点であっても良い。この前提下で各図のように定める。 The determination of the assigned range E by the assigned range calculation means 9 is performed as shown in FIG. 3, FIG. 4, FIG. 5, or FIG. In any example, the visual field range V is injected by the radial dividing lines L around the radiation center O defined in the visual field range V so that the respective divided ranges are located close to the injection needles 11. It is assumed that the division range is divided into the number of needles 11 and the division range at the close position is set as the assigned range E of the injection needle 11. The radiation center O may be the center of the visual field range V, that is, the centroid, or may be an arbitrarily determined point. Under this assumption, it is determined as shown in each figure.
 図3は、各注入針11が担当する面積がほぼ均等となるように、顕微鏡視野範囲Vの領域を、放射中心O回りの分割線Lで複数の担当範囲Eに分割する例である。放射中心Oは、視野範囲Vの中心としたが、視野範囲Vの中心から偏った位置としても良い。 FIG. 3 is an example in which the region of the microscope visual field range V is divided into a plurality of assigned ranges E by a dividing line L around the radiation center O so that the areas handled by the injection needles 11 are almost equal. The radiation center O is the center of the visual field range V, but may be a position deviated from the center of the visual field range V.
 図4は、各注入針11が担当する被導入体Tの数がほぼ均等となるように、顕微鏡視野範囲Vの領域を、放射中心O回りの分割線Lで複数の担当範囲Eに分割する例である。放射中心Oは、上記の例で視野範囲Vの中心としたが、視野範囲Vの中心から偏った位置としても良い。 In FIG. 4, the region of the microscope visual field range V is divided into a plurality of assigned ranges E by a dividing line L around the radiation center O so that the numbers of the introduction bodies T handled by each injection needle 11 are substantially equal. It is an example. The radiation center O is the center of the visual field range V in the above example, but may be a position deviated from the center of the visual field range V.
 図5は、個々の注入針11の搬送手段4による総移動距離がほぼ均等となるように、顕微鏡視野範囲Vの領域を、放射中心O回りの分割線Lで複数の担当範囲Eに分割する例である。この例も、放射中心Oは、視野範囲Vの中心としたが、視野範囲Vの中心からずれた位置としても良い。なお、総移動距離は、担当範囲E内の各被導入体Tへのインジョクション処理を行う順番が異なれば変わるため、総移動距離が最短となるインジョクション処理順をとる場合の総移動距離がほぼ均等となるようにする。総移動距離が最短となるインジョクション処理順は、挿入順決定手段10(図1(A))により演算される。この場合に、例えば、担当範囲Eを種々仮に定め、その各場合の総移動距離を比較することで、総移動距離がほぼ均等となる担当範囲Eを計算することができる。 In FIG. 5, the region of the microscope visual field range V is divided into a plurality of assigned ranges E by a dividing line L around the radiation center O so that the total movement distances of the individual injection needles 11 by the conveying means 4 are substantially equal. It is an example. In this example as well, the radiation center O is the center of the visual field range V, but may be a position shifted from the center of the visual field range V. In addition, since the total movement distance changes if the order of performing the injection process on each introducer T within the assigned range E is different, the total movement when the order of the injection processes that minimizes the total movement distance is taken. Make the distances approximately equal. The order of the injection processing in which the total movement distance is the shortest is calculated by the insertion order determination means 10 (FIG. 1A). In this case, for example, it is possible to calculate the assigned range E in which the total moving distance is almost equal by determining the assigned range E variously and comparing the total moving distance in each case.
 担当範囲演算手段9は、上記各例の他にも、種々の担当範囲Eを定める手法が採用できるが、これらについては、後にこのマイクロインジェクション装置の動作の説明欄で説明する。 In addition to the above examples, the assigned range calculation means 9 can employ various methods for determining the assigned range E, which will be described later in the explanation section of the operation of the microinjection apparatus.
 挿入順決定手段10は、個々の注入針11毎に、担当する各被導入体Tへのインジェクション処理の動作における注入針11の総移動距離が最短になるように、担当範囲E内における被導入体Tのインジェクション処理の順番を決定する手段である。 The insertion order determining means 10 introduces the introduction target in the assigned range E so that the total movement distance of the injection needle 11 in the operation of the injection process to each introduced target T for each injection needle 11 becomes the shortest. It is a means for determining the order of the injection processing of the body T.
 目標位置決定手段80は、挿入順決定手段10で順番が決定された個々の被導入体Tに対し、注入針11を挿入する目標となる座標位置を決定する手段である。この座標位置は、被導入体Tの顕微鏡視野範囲V内での座標位置と、その顕微鏡視野範囲Vの容器位置に対する座標位置から定められる。容器位置は、容器位置調整手段1によって移動させられた位置である。 The target position determining unit 80 is a unit that determines a target coordinate position into which the injection needle 11 is inserted with respect to each of the introduced objects T whose order has been determined by the insertion order determining unit 10. This coordinate position is determined from the coordinate position of the introducer T within the microscope visual field range V and the coordinate position of the microscope visual field range V with respect to the container position. The container position is a position moved by the container position adjusting means 1.
 注入針移動制御手段88は、目標位置決定手段80によって決定された目標の座標位置へ注入針11が移動するように搬送手段4を制御する手段である。注入針移動制御手段88は、個々の注入針11毎に設けた注入針個別制御部88aの総称である。これら注入針個別制御部88aを総称して注入針移動制御手段88と称する。注入針個別制御部88aは、個々の搬送手段4における、X軸方向、Y軸方向、およびZ軸方向の各駆動源の制御を行う。 The injection needle movement control means 88 is means for controlling the transport means 4 so that the injection needle 11 moves to the target coordinate position determined by the target position determination means 80. The injection needle movement control means 88 is a general term for the individual injection needle control unit 88 a provided for each injection needle 11. These injection needle individual control units 88a are collectively referred to as injection needle movement control means 88. The injection needle individual control unit 88a controls each drive source in the X-axis direction, the Y-axis direction, and the Z-axis direction in the individual transport means 4.
 容器移動制御手段89は、入力された容器位置のXY方向の座標位置となるように、容器位置調整手段1の水平方向となる各軸方向(X方向,Y方向)の駆動源を制御する手段である。 The container movement control means 89 is a means for controlling the driving source in each axial direction (X direction, Y direction) which is the horizontal direction of the container position adjusting means 1 so as to be the coordinate position of the input container position in the XY direction. It is.
 容器内全範囲処理指令手段100は、顕微鏡視野範囲Vに応じて、容器位置調整手段1により容器12の位置を順次移動させ、容器12内の全領域で注入針11のインジョクション処理を行わせるように容器位置調整手段1および各注入針11の搬送手段4を制御する手段である。この制御は、注入針移動制御手段88および容器移動制御手段89に指令を与えることで、注入針移動制御手段88および容器移動制御手段89を介して行う。例えば、図1(B)のように、容器12の全範囲を、顕微鏡視野範囲Vが縦横にマトリクス状に並ぶ領域に区分し、その区分された各顕微鏡視野範囲Vに順次位置するように、容器位置調整手段1で容器12を移動させて位置決めし、各容器12の停止位置でそのときの顕微鏡視野範囲Vに対して、各注入針11の搬送手段4を駆動させる。なお、容器12の範囲に顕微鏡視野範囲Vを配列にする場合に、後述のように重複範囲が生じても良い。 The in-container full range processing command unit 100 sequentially moves the position of the container 12 by the container position adjusting unit 1 according to the microscope visual field range V, and performs the injection processing of the injection needle 11 in the entire region in the container 12. It is a means to control the container position adjusting means 1 and the conveying means 4 of each injection needle 11 so that This control is performed via the injection needle movement control means 88 and the container movement control means 89 by giving a command to the injection needle movement control means 88 and the container movement control means 89. For example, as shown in FIG. 1B, the entire range of the container 12 is divided into regions in which the microscope visual field range V is arranged in a matrix in the vertical and horizontal directions, and sequentially positioned in each of the divided microscope visual field ranges V. The container 12 is moved and positioned by the container position adjusting means 1, and the conveying means 4 of each injection needle 11 is driven with respect to the microscope visual field range V at the stop position of each container 12. In addition, when arranging the microscope visual field range V in the range of the container 12, an overlapping range may occur as described later.
 容器内全範囲処理指令手段100は、この例では、一つの顕微鏡視野範囲Vにおけるインジョクション処理が終了するごとに、容器12の位置を移動させ、次の一つの顕微鏡視野範囲Vにおける被導入体Tの位置の判定、およびインジェクション処理を行う動作を繰り返すようにしている。この他に、後述の例のように、容器12内の全範囲や、その一部となる複数の顕微鏡視野範囲Vにおける被導入体Tの位置の判定をまとめて行うようにしても良い。 In this example, the in-container all-range processing command unit 100 moves the position of the container 12 every time the injection processing in one microscope field-of-view range V is completed, and introduces in the next one microscope field-of-view range V. The operation of determining the position of the body T and performing the injection process is repeated. In addition, as in the example described later, the determination of the position of the introduction target T in the entire range in the container 12 or in a plurality of microscope field-of-view ranges V may be performed collectively.
 視野範囲調整手段86は、被導入体Tの大きさに応じて、顕微鏡視野範囲Vを調整する手段である。被導入体Tの大きさは、例えば、画像処理手段7により処理された画像から判別される被導入体Tの平均的な大きさであっても良く、その場合、視野範囲調整手段86は、例えば前記被導入体Tの平均的な大きさを計算する機能を有するものとする。また被導入体Tの大きさは、制御装置5に対して入力手段(図示せず)から与えるようにしても良い。視野範囲調整手段86による視野範囲の調整は、例えば、顕微鏡3の有する倍率調整機構(図示せず)の駆動源に指令を与えることで行う。倍率調整機構は、対物レンズ(図示せず)の自動切替等によって倍率を調整する。 The visual field range adjusting means 86 is a means for adjusting the microscope visual field range V according to the size of the introduction target T. The size of the introduction target T may be, for example, the average size of the introduction target T determined from the image processed by the image processing unit 7. For example, it is assumed that it has a function of calculating an average size of the introduction target T. Further, the size of the introduction target T may be given to the control device 5 from an input means (not shown). The adjustment of the visual field range by the visual field range adjustment means 86 is performed by giving a command to a drive source of a magnification adjustment mechanism (not shown) of the microscope 3, for example. The magnification adjustment mechanism adjusts the magnification by automatic switching of an objective lens (not shown).
 容器移動間隔決定手段87は、図1(B)のように顕微鏡視野範囲Vで区分して、容器位置を隣の顕微鏡視野範囲Vに移動させるときに、その移動距離を、視野範囲調整手段86で調整された視野範囲に対応する距離とする手段である。 As shown in FIG. 1B, the container movement interval determining means 87 is divided into the microscope visual field range V, and when the container position is moved to the adjacent microscope visual field range V, the movement distance is changed to the visual field range adjusting means 86. It is a means which makes it the distance corresponding to the visual field range adjusted by.
 干渉回避手段79は、挿入順決定手段10で各注入針の被導入体Tへのインジェクション処理の順番を決定するにつき、注入針11同士が干渉しないように処理順を決定させる手段である。なお、各注入針11の搬送装置4が、注入針11の相互の干渉が生じることがないように配置されている場合は、干渉回避手段79は設ける必要がない。しかし、微小な範囲で複数の注入針11を並行動作させるため、不測の干渉が生じないように、並行動作時に互いに離れた位置の被導入体Tにインジェクション処理を行うように、干渉回避手段79によって、挿入順決定手段10にインジェクション処理の順番を決定させるようにしても良い。 Interference avoiding means 79 is means for determining the processing order so that the injection needles 11 do not interfere with each other when the insertion order determining means 10 determines the order of the injection processing of each injection needle into the body T to be introduced. In addition, when the conveyance device 4 of each injection needle 11 is arranged so that mutual interference between the injection needles 11 does not occur, the interference avoiding means 79 does not need to be provided. However, since the plurality of injection needles 11 are operated in parallel within a minute range, the interference avoiding means 79 is configured to perform the injection process on the introduced objects T at positions separated from each other during the parallel operation so as not to cause unexpected interference. Thus, the insertion order determining means 10 may determine the order of the injection processing.
 次の上記構成のマイクロインジェクション装置の動作を説明する。インジェクション処理は、容器12内の全領域に対し行うが、顕微鏡視野範囲V毎に順次行う。まず、個々の顕微鏡視野範囲Vでのインジェクション処理について説明する。被導入体Tへの導入のための注入針11の水平方向(直交2軸方向)および注入方向の位置決めは、全て、個々の注入針11毎に設けられた搬送手段4で行う。そのため、容器12の周りに放射状に配置された複数の注入針11により、並行してインジェクション処理を行うことができる。 Next, the operation of the microinjection apparatus having the above configuration will be described. The injection process is performed on the entire region in the container 12, but sequentially for each microscope visual field range V. First, the injection process in each microscope field-of-view range V will be described. Positioning of the injection needle 11 for introduction into the introduction target T in the horizontal direction (two orthogonal directions) and the injection direction are all performed by the conveying means 4 provided for each individual injection needle 11. Therefore, the injection process can be performed in parallel by the plurality of injection needles 11 arranged radially around the container 12.
 処理に際して、まず、顕微鏡視野範囲Vの全ての被導入体Tに対し、撮像手段2で撮像し、画像処理手段7による画像処理を行って位置判定手段8により位置を判定し、位置記憶部8aに記憶する。なお、この位置判定は、後述のように容器12内の全領域についてまとめて行っても良いが、この実施形態では、顕微鏡視野範囲V内の全被導入体Tへのインジェクション処理が終了した後、容器12を容器位置調整手段1で近接した別の位置へ移動させ、その位置で被導入体Tの位置を画像処理よって認識し、インジェクション処理を行う動作を繰り返す。 At the time of processing, first, all the introduced objects T in the microscope visual field range V are imaged by the imaging means 2, image processing by the image processing means 7 is performed, the position is determined by the position determination means 8, and the position storage unit 8a. To remember. In addition, although this position determination may be performed collectively for all regions in the container 12 as described later, in this embodiment, after the injection processing to all the introduced objects T in the microscope visual field range V is completed. The container 12 is moved to another close position by the container position adjusting means 1, the position of the introduction target T is recognized by image processing at that position, and the operation of performing the injection process is repeated.
 各注入針11が担当する顕微鏡視野V内での担当範囲Eは、担当範囲演算手段9によって、定められたように割り振る。この場合に、担当範囲演算手段9は、各注入針11の搬送手段4の負荷が均等化されるように、換言すれば、各注入針11の搬送手段3による動作量が均一化されるように担当範囲Eを決定し、各注入針11で並行にインジェクション処理を行う。これにより、総処理時間が短縮される。 The assigned range E within the microscope visual field V that each injection needle 11 is in charge of is assigned by the assigned range calculation means 9 as determined. In this case, the assigned range calculation unit 9 is configured so that the load of the transfer unit 4 of each injection needle 11 is equalized, in other words, the operation amount of the transfer unit 3 of each injection needle 11 is equalized. The assigned range E is determined, and the injection processing is performed in parallel with each injection needle 11. Thereby, the total processing time is shortened.
 担当範囲Eの割り振りについては、例えば図3のように、各注入針11が担当する面積がほぼ均等となるように、顕微鏡視野範囲Vの領域を複数の担当範囲Eに分割する。図4のように、各注入針11が担当する被導入体Tの数がほぼ均等となるように、顕微鏡視野範囲Vの領域を複数の担当範囲Eに分割しても良い。図4では、分割線Lを顕微鏡視野範囲Vの放射中心Oを基準として僅かに回転させている。これは、担当範囲Eの面積が大きくなると搬送装置4の移動距離が長くなり処理時間に差が生じてしまうため、出来るだけ担当範囲Eの面積の差が無いようにするためである。ただし、図4の例は担当範囲の設定方法を限定するものではない。 Regarding the allocation of the assigned range E, for example, as shown in FIG. 3, the region of the microscope visual field range V is divided into a plurality of assigned ranges E so that the areas handled by the injection needles 11 are substantially equal. As shown in FIG. 4, the region of the microscope visual field range V may be divided into a plurality of assigned ranges E so that the number of introduction bodies T handled by each injection needle 11 becomes substantially equal. In FIG. 4, the dividing line L is slightly rotated with reference to the radiation center O in the microscope visual field range V. This is because when the area of the assigned range E becomes large, the moving distance of the transfer device 4 becomes long and a difference occurs in the processing time, so that there is no difference in the area of the assigned range E as much as possible. However, the example of FIG. 4 does not limit the method of setting the assigned range.
 また、図5のように各注入針11の処理する領域(担当範囲E)における総移動距離がほぼ均一になるように、顕微鏡視野範囲V内を分割してもよい。図4と同様に、被導入体Tへの処理において、各注入針11の搬送手段4の移動距離に差が生じると、処理時間に差が生じてしまうため、位置記憶部8aの内容から、挿入順決定手段10は各注入針11につき、被導入体Tの処理順を決定し、その順番において総移動距離を計算し、総移動距離がほぼ均一になるように顕微鏡視野範囲V内を分割する。 Further, as shown in FIG. 5, the microscope visual field range V may be divided so that the total movement distance in the region (the assigned range E) processed by each injection needle 11 becomes substantially uniform. As in FIG. 4, in the processing to the body to be introduced T, if a difference occurs in the moving distance of the conveying means 4 of each injection needle 11, a difference occurs in the processing time. The insertion order determining means 10 determines the processing order of the introduction target T for each injection needle 11, calculates the total movement distance in that order, and divides the microscope visual field range V so that the total movement distance is substantially uniform. To do.
 また、担当範囲演算手段9は、図3~5と共に前述した分割方法に限らず、各注入針11の処理する領域(担当範囲E)における処理個数と総移動距離の積ができるだけ小さくなるように、顕微鏡視野範囲V内を分割してもよい。処理個数と移動距離の両者から処理時間は決定される。各注入針11の処理時間の相対的な比較を簡易的に行うために、両者の積を用いている。 Further, the assigned range calculation means 9 is not limited to the division method described above with reference to FIGS. 3 to 5, so that the product of the number of processes and the total movement distance in the region (the assigned range E) processed by each injection needle 11 becomes as small as possible. The microscope visual field range V may be divided. The processing time is determined from both the number of processing and the moving distance. In order to make a relative comparison of the processing times of the injection needles 11 simple, the product of both is used.
 また、各注入針11の処理する担当範囲Eにおける処理時間がほぼ均一になるように、顕微鏡視野範囲V内を分割してもよい。この場合、担当範囲演算手段9により、インジェクション処理における、注入針11が被導入体T内にあって停止して導入物質の導入が完了するまで待つ時間と、注入針11の移動距離から処理時間を計算し、処理時間がほぼ均一になるように各注入針11の担当を決定する。 Further, the microscope visual field range V may be divided so that the processing time in the assigned range E processed by each injection needle 11 becomes substantially uniform. In this case, the assigned range calculation means 9 performs processing time from the waiting time until the injection needle 11 is stopped in the injection target T and the introduction of the introduced substance is completed, and the movement distance of the injection needle 11 in the injection process. And the charge of each injection needle 11 is determined so that the processing time is substantially uniform.
 また、前記担当範囲演算手段9は、各注入針11を並行して動作させたときに注入針11同士の干渉が生じないことを優先条件とし、この優先条件下で前記顕微鏡視野範囲Vの領域を分割するものとしても良い。例えば、図6に示すように干渉部分Iが生じる場合、前記顕微鏡視野範囲Vの領域を同図のように分割する。各注入針11を並行して動作させたときに注入針同士の干渉が生じる場合は、並行動作させることができない。したがって、干渉が生じないことを優先条件し、この優先条件を充足する範囲で、他の条件、例えば担当する面積がほぼ均等、あるいは担当する被導入体の数がほぼ均等となるように顕微鏡視野範囲の領域を分割することが実際的である。その際、重複する領域を設けてもよいが、重複する領域ができるだけ小さくなるようにした方がよい。重複部分を設ける際、挿入順決定手段10は、注入針11同士が干渉しないように、被導入体Tへのインジェクションの順番を決定する。 In addition, the assigned range calculation means 9 has a priority condition that no interference between the injection needles 11 occurs when the injection needles 11 are operated in parallel, and the region of the microscope visual field range V under this priority condition. It is good also as what divides. For example, when the interference part I occurs as shown in FIG. 6, the region of the microscope visual field range V is divided as shown in FIG. When the injection needles 11 interfere with each other when the injection needles 11 are operated in parallel, the injection needles 11 cannot be operated in parallel. Therefore, it is a priority condition that interference does not occur, and within the range where this priority condition is satisfied, other conditions, for example, the area in charge is almost equal, or the number of introduced subjects in charge is almost equal. It is practical to divide the region of the range. In that case, an overlapping area may be provided, but it is preferable to make the overlapping area as small as possible. When providing the overlapping portion, the insertion order determining means 10 determines the order of injection into the introduction target T so that the injection needles 11 do not interfere with each other.
 つぎに、容器12内の全領域へのインジェクション処理について説明する。顕微鏡視野範囲Vは、容器12内の一部の領域であるため、容器12を順次移動させ、容器12内の全領域においてインジェクション処理を行う必要がある。前述の例では、一つの顕微鏡視野範囲V内のインジェクション処理が終了する毎に、容器12を移動させて次の顕微鏡視野範囲V内の各被導入体Tの位置を判定し、インジェクション処理を行う動作を繰り返すようにしたが、次のようにまとめて被導入体位置の判定を行うようにしても良い。 Next, the injection process to the entire area in the container 12 will be described. Since the microscope visual field range V is a partial region in the container 12, it is necessary to sequentially move the container 12 and perform the injection process in the entire region in the container 12. In the above-described example, every time the injection process within one microscope field-of-view range V is completed, the container 12 is moved to determine the position of each introducer T within the next microscope field-of-view range V, and the injection process is performed. Although the operation is repeated, the introduced object position may be determined collectively as follows.
 例えば、容器12内の全領域の処理を行うにあたって、容器内全範囲処理指令手段100は、先ず、図7(A)のように、最初に容器12を顕微鏡視野範囲Vに応じて順次移動させ、容器12内の全ての被導入体Tの位置を、位置判定手段8に判定させて位置記憶部8aに記憶させる。位置記憶部8aには、顕微鏡視野範囲Vと対応させて被導入体Tの位置を記憶させる。このように記憶させた情報を用い、担当範囲演算手段9による図3~6のような担当範囲Eの分割、挿入順決定手段10によるインジェクション処理の順番を計算する。 For example, when processing the entire region in the container 12, the in-container full range processing command unit 100 first moves the container 12 sequentially according to the microscope visual field range V as shown in FIG. The positions of all the introduced objects T in the container 12 are determined by the position determination means 8 and stored in the position storage unit 8a. The position storage unit 8a stores the position of the introduction target T in association with the microscope visual field range V. Using the information stored in this way, the division of the assigned range E as shown in FIGS. 3 to 6 by the assigned range calculating means 9 and the order of the injection processing by the insertion order determining means 10 are calculated.
 ここで、一括で容器12内の全ての被導入体Tの位置を判定するようにしたが、位置記憶部8aの記憶容量や、担当範囲演算手段9等の処理速度に応じて、複数回先の被導入体Tの位置までを判定して記憶しておき、顕微鏡視野範囲Vのインジョクション処理中に、並行して複数回先の顕微鏡視野範囲Vの注入針11の担当範囲Eの計算、インジェクション処理の順番の計算を行うようにしても良い。図7(B)では、容器12内を4分割した例を示す。直線Mはその分割の境界線を示す。この様に、先行して移動先の被導入体Tの位置の情報を取得しておくことで、顕微鏡視野範囲Vのインジェクション処理中において移動先の計算を先行して行うことができ、処理時間の短縮が図れる。 Here, the positions of all the introduced objects T in the container 12 are determined in a lump, but depending on the storage capacity of the position storage unit 8a and the processing speed of the assigned range calculation means 9, etc. Up to the position of the object T to be introduced and stored, and during the injection process of the microscope visual field range V, the calculation of the assigned range E of the injection needle 11 of the microscope visual field range V a plurality of times in parallel is performed. The order of the injection processing may be calculated. FIG. 7B shows an example in which the inside of the container 12 is divided into four. A straight line M indicates a boundary line of the division. In this way, by acquiring information on the position of the transfer target T at the movement destination in advance, the calculation of the movement destination can be performed in advance during the injection process of the microscope visual field range V. Can be shortened.
 また、容器12を移動させる際には、図8(A),(B)に示すように、今回の顕微鏡視野範囲Vと次回の顕微鏡視野範囲Vとに重複する部分Vaを設けても良く、これにより、顕微鏡視野範囲Vの境界付近の被導入体Tへの未処理が生じることを回避できる。ここで、重複する部分は、図8(A)に斜線範囲で示すように一定の面積としても良く、また図8(B)のように顕微鏡視野範囲Vから基準とする被導入体Tを、定められた適宜の方法で決定しておき、その基準とした被導入体To の移動距離を管理しても良い。これによっても、上記の重複する部分の面積を一定とする場合と同等の効果が得られる。なお、基準とする被導入体To は、例えば、顕微鏡視野範囲Vにおいて、もっとも右上の端にある被導入体TをToと定める。 When the container 12 is moved, as shown in FIGS. 8A and 8B, a portion Va overlapping the current microscope field of view V and the next microscope field of view V may be provided. Thereby, it can avoid that the unprocessed to the to-be-introduced body T near the boundary of the microscope visual field range V arises. Here, the overlapping portion may have a constant area as shown by the hatched area in FIG. 8A, and the introduced object T as a reference from the microscope visual field range V as shown in FIG. It may be determined by a predetermined appropriate method, and the movement distance of the introduced object To may be managed as the reference. This also provides the same effect as when the area of the overlapping part is constant. In addition, for the to-be-introduced object To, for example, the to-be-introduced object T at the upper right end in the microscope visual field range V is defined as To.
 上記のように、容器12内の被導入体Tの位置の情報を取得しておき、インジェクション処理と同時に、並行して複数回先の顕微鏡視野範囲Vの計算を行うことで、総合的にインジェクション動作を短縮することが可能になった。 As described above, the information on the position of the introducer T in the container 12 is obtained, and simultaneously with the injection process, the microscope field-of-view range V is calculated a plurality of times in parallel. It became possible to shorten the operation.
 次に、このマイクロインジェクション装置における前記制御装置5を除く部分であるマイクロインジェクション装置本体の各具体例を、図10~図30と共に説明する。図10~図14は、マイクロインジェクション装置本体の第1の具体例を示す。第1の具体例につき、全体の構成の詳細な説明に先立って、特徴となる構成および作用効果を説明する。この具体例では、搬送手段4のX軸方向とY軸方向の直交2軸方向の移動につき、移動体41,42と進退駆動手段(動力部)45,46とを分離し、進退駆動手段(動力部)45,46を固定部に設置することで移動体の質量を低減でき、搬送手段の高速駆動を可能としている。従来では、注入針の搬送手段において、注入針が、直行するX軸方向、Y軸方向の2自由度を移動する場合、例えばX軸移動機構上にY軸移動機構を積み重ねるように配置していた。この場合X移動機構は注入針とY軸移動機構との両者を駆動するため高速移動が困難であった。この実施形態では、このような移動機構の積み重ねを回避し、軽量化による高速移動を実現している。 Next, specific examples of the microinjection device main body, which is a portion excluding the control device 5 in the microinjection device, will be described with reference to FIGS. 10 to 14 show a first specific example of the microinjection apparatus main body. Prior to detailed description of the overall configuration of the first specific example, the characteristic configuration and operational effects will be described. In this specific example, the moving bodies 41 and 42 and the advancing / retreating drive means (power units) 45 and 46 are separated for the movement of the transporting means 4 in the two biaxial directions perpendicular to the X-axis direction and the Y-axis direction. By installing the power units 45 and 46 in the fixed part, the mass of the moving body can be reduced, and the conveying means can be driven at high speed. Conventionally, when the injection needle moves in two degrees of freedom in the orthogonal X-axis direction and Y-axis direction in the injection needle transport means, for example, the Y-axis movement mechanism is arranged to be stacked on the X-axis movement mechanism. It was. In this case, since the X moving mechanism drives both the injection needle and the Y-axis moving mechanism, it is difficult to move at high speed. In this embodiment, stacking of such moving mechanisms is avoided, and high-speed movement is realized by weight reduction.
 また、従来では、注入針の駆動には、ボールネジや超音波モータが使用されていたが、この例では、注入針11の注入方向(Z軸方向)の移動に、圧電素子積層体19A,19B(図13)を用いた小型アクチュエータを組み合わせることによって、注入針11を駆動するマニピュレータである搬送装置4の小型化を図っている。圧電アクチュエータは、電気エネルギから機械エネルギに変換する変換効率が高く、印加する電圧を変えることにより、発生する変位を比較的簡単に可変することができ、制御性に優れた特徴がある。また、この例では、クランク・スライダ機構を用いているため、圧電素子積層体19A,19Bの変位を拡大することができる。搬送装置2は、被導入体Tに対して少なくとも2自由度の駆動機構を持つことにより、注入針先端の位置決めが搬送装置2の単体で可能となる。搬送装置4の小型化により、細胞等の被導入体Tの入った容器12の周辺の限られたスペースに複数の搬送装置4配置することを可能とした。複数の搬送装置4は、同時に各注入針11の先端の位置決めを行うことを可能としている。 Conventionally, a ball screw or an ultrasonic motor has been used to drive the injection needle, but in this example, the piezoelectric element laminates 19A and 19B are used to move the injection needle 11 in the injection direction (Z-axis direction). By combining a small actuator using (FIG. 13), the transport device 4 that is a manipulator for driving the injection needle 11 is miniaturized. Piezoelectric actuators have high conversion efficiency for converting electrical energy to mechanical energy, and can change the generated displacement relatively easily by changing the applied voltage, and have excellent controllability. In this example, since the crank slider mechanism is used, the displacement of the piezoelectric element laminates 19A and 19B can be enlarged. The transport device 2 has a drive mechanism having at least two degrees of freedom with respect to the introduction target T, so that the tip of the injection needle can be positioned as a single unit. The downsizing of the transfer device 4 makes it possible to arrange a plurality of transfer devices 4 in a limited space around the container 12 containing the introduced object T such as cells. The plurality of transfer devices 4 can simultaneously position the tip of each injection needle 11.
 また、位置決め制御は前記のように制御装置5(図1(A))で行うが、各注入針11が担当する担当範囲Eを決定し、各注入針11の搬送装置4の負荷を均等化させるようにしたため、より搬送装置4のより一層の小型化が可能になる。 In addition, the positioning control is performed by the control device 5 (FIG. 1A) as described above, but the assigned range E for each injection needle 11 is determined, and the load on the transfer device 4 of each injection needle 11 is equalized. Therefore, the transport device 4 can be further downsized.
 これらのマイクロインジェクション装置本体における搬送装置4の小型化の工夫と、複数の搬送装置4を、負荷を均等化して用いる制御上の工夫との組合せにより、容器12内の全ての被導入体Tにインジョクション処理を行うにつき、その処理時間の短縮を実現することができる。すなわち、この実施形態によれば、マニピュレータである搬送手段4を小型化することが出来、細胞等の被導入体Tが入ったシャーレ等の容器12の周辺に、複数の搬送手段4を配置することができる。また、複数の被導入体Tに対して注入針11の先端の位置決めを同時に行うことが出来、一度に多数の被導入体Tへのインジェクション処理を実行することが出来て、ハイスループット化が可能となる。また、インジェクション処理を行うにあたって、各注入針11の担当範囲Eやインジェクション順番の計算を先行して行っておくことで、計算による待ち時間を減らし、時間短縮が図れる。 By combining a device for reducing the size of the transfer device 4 in the microinjection device main body and a control device for using the plurality of transfer devices 4 with equal loads, all the introduced objects T in the container 12 are provided. In performing the injection process, the processing time can be shortened. That is, according to this embodiment, the transporting means 4 that is a manipulator can be reduced in size, and a plurality of transporting means 4 are arranged around a container 12 such as a petri dish containing an introduced object T such as a cell. be able to. In addition, the tip of the injection needle 11 can be simultaneously positioned with respect to a plurality of introduced bodies T, and injection processing to a large number of introduced bodies T can be executed at a time, thereby enabling high throughput. It becomes. In addition, when performing the injection process, by calculating the assigned range E of each injection needle 11 and the injection order in advance, the waiting time by the calculation can be reduced and the time can be shortened.
 マイクロインジェクション装置本体の各具体例の詳細な構成を説明する。図1(A)において、容器位置調整手段1は、前述のように、被導入体を収容するシャーレ等の容器12が載置状態に保持された容器載置台13を水平な直交2軸方向に移動させて容器12の位置を調整する手段であり、XYステージ装置6により構成される。 The detailed configuration of each specific example of the microinjection apparatus main body will be described. In FIG. 1 (A), the container position adjusting means 1 moves the container mounting table 13 on which the container 12 such as a petri dish for storing the introduction body is held in the horizontal orthogonal biaxial direction as described above. It is means for adjusting the position of the container 12 by moving it, and is constituted by the XY stage device 6.
 XYステージ装置6は、例えば図14に平面図で示すように、基台181にガイド182を介してY軸方向に移動自在に設置された下側可動台183と、この下側可動台183上のガイド184を介してX軸方向に移動自在に設置された上側可動台185と、上記下側可動台183および上側可動台185を可動方向に進退させる各軸の可動台駆動機構186,187とで構成される。可動台駆動機構186,187は、超音波モータやリニアモータであっても、モータとボールねじ等の回転・直線運動変換機構とでなるものであっても良い。上側可動台185に、図1(A)の上記容器載置台13が設置され、または上側可動台185自体が、上記容器載置台13となる。 For example, as shown in a plan view in FIG. 14, the XY stage device 6 includes a lower movable table 183 that is installed on a base 181 so as to be movable in the Y-axis direction via a guide 182, and the lower movable table 183. An upper movable base 185 that is movable in the X-axis direction via the guide 184, and movable base drive mechanisms 186 and 187 for the respective axes that move the lower movable base 183 and the upper movable base 185 in the movable direction. Consists of. The movable table driving mechanisms 186 and 187 may be ultrasonic motors or linear motors, or may be composed of a motor and a rotation / linear motion conversion mechanism such as a ball screw. The container mounting table 13 of FIG. 1A is installed on the upper movable table 185, or the upper movable table 185 itself becomes the container mounting table 13.
 図1(A)において搬送手段4は3自由度を有する。そのうちの1自由度を担う移動機構は、容器載置台13に対して水平方向の直交する2方向(X軸方向,Y軸方向)のうち一方向(X軸方向)に、図10に示す第1の移動体41共に注入針11を移動させるX軸移動機構14である。他の1つの自由度を担う移動機構は、水平方向の直交する2方向のうちの他の一方向(Y軸方向)に、図10に示す第2の移動体42と共に注入針11を移動させるY軸移動機構15である。さらに他の1つの自由度を担う移動機構は、容器12の内部に向けて傾斜する方向となる注入針中心軸方向に注入針11を移動させる図10に示すZ軸移動機構16である。 In FIG. 1 (A), the conveying means 4 has three degrees of freedom. The moving mechanism that bears one degree of freedom is the first shown in FIG. 10 in one direction (X-axis direction) of two directions (X-axis direction and Y-axis direction) orthogonal to the container mounting table 13 in the horizontal direction. The X-axis moving mechanism 14 moves the injection needle 11 together with one moving body 41. The moving mechanism that bears one other degree of freedom moves the injection needle 11 together with the second moving body 42 shown in FIG. 10 in another direction (Y-axis direction) of the two orthogonal directions in the horizontal direction. This is a Y-axis moving mechanism 15. Still another moving mechanism that bears one degree of freedom is the Z-axis moving mechanism 16 shown in FIG. 10 that moves the injection needle 11 in the direction of the injection needle central axis, which is a direction inclined toward the inside of the container 12.
 図11(A),(B)に示すように、X軸移動機構14を構成する第1の移動体41は、搬送装置4の基台40に第1のガイド43を介して直線方向(X軸方向)に進退自在移動可能に設置されている。Y軸移動機構15を構成する第2の移動体42は、第1の移動体41の上に第2のガイド44を介して前記直線方向(X軸方向)と直交する直線方向(Y軸方向)に進退自在に設置されている。第1の移動体41および第2の移動体42は、それぞれ矩形の板状とされている。図10のように、第2の移動体42の上に、Z軸移動機構16(図10)が搭載されている。Z軸移動機構16は、注入針11の注入角度が下向きに傾斜した所定角度となるように設置される。また、基台40は、搬送手段退避機構39(図1(A))により進退させられる。 As shown in FIGS. 11A and 11B, the first moving body 41 constituting the X-axis moving mechanism 14 moves in the linear direction (X through the first guide 43 to the base 40 of the transport device 4. It is installed so that it can move forward and backward in the axial direction. The second moving body 42 constituting the Y-axis moving mechanism 15 has a linear direction (Y-axis direction) orthogonal to the linear direction (X-axis direction) via the second guide 44 on the first moving body 41. ) Can be moved forward and backward. Each of the first moving body 41 and the second moving body 42 has a rectangular plate shape. As shown in FIG. 10, the Z-axis moving mechanism 16 (FIG. 10) is mounted on the second moving body 42. The Z-axis moving mechanism 16 is installed so that the injection angle of the injection needle 11 becomes a predetermined angle inclined downward. Further, the base 40 is advanced and retracted by a transport means retracting mechanism 39 (FIG. 1A).
 図11(A),(B)において、第1の移動体41および第2の移動体42をそれぞれ進退させる第1の進退駆動手段45および第2の進退駆動手段46は、前記基台40に設置されている。第1の進退駆動手段45の出力部材45aは、第1の移動体41に対してこの第1の移動体41が進退移動可能な方向(X軸方向)と直交する方向(Y軸方向)に対して移動が自在に接触している。第2の進退駆動手段46の出力部材46aは、第2の移動体42に対してこの第2の移動体42が進退移動可能な方向(Y軸方向)と直交する方向(X軸方向)に対して移動が自在に接触している。 11A and 11B, first advance / retreat drive means 45 and second advance / retreat drive means 46 for advancing and retreating the first moving body 41 and the second moving body 42 are provided on the base 40, respectively. is set up. The output member 45a of the first advancing / retreating drive means 45 is in a direction (Y-axis direction) orthogonal to the direction (X-axis direction) in which the first moving body 41 can move back and forth with respect to the first moving body 41. On the other hand, it can freely move. The output member 46a of the second advance / retreat drive means 46 is in a direction (X axis direction) orthogonal to the direction (Y axis direction) in which the second movable body 42 can move forward and backward with respect to the second movable body 42. On the other hand, it can freely move.
 第1のガイド43は、基台40上に設置されたレール43aと、第1の移動体41の下面に設けられて前記レール43aに沿って進退自在な直動転がり軸受等の被案内体43bとでなり、2個が互いに平行に設けられている。第2のガイド44は、第1の移動体41の上に設置されたレール44aと、第2の軌道体42の下面に設けられて前記レール44aに沿って進退自在な直動転がり軸受等の被案内体44bとでなり、2個が互いに平行に設けられている。第1,第2のガイド43,44のレール43aは、長さ方向に沿って案内溝(図示せず)が設けられており、直動転がり軸受からなる被案内体43b,44bは、前記案内溝に脱落不能に嵌まり込んだ転動体(図示せず)を有する。 The first guide 43 includes a rail 43a installed on the base 40, and a guided body 43b such as a linear motion rolling bearing provided on the lower surface of the first moving body 41 and capable of moving forward and backward along the rail 43a. And two are provided in parallel to each other. The second guide 44 includes a rail 44a installed on the first moving body 41 and a linear motion rolling bearing provided on the lower surface of the second track body 42 and capable of moving forward and backward along the rail 44a. It consists of guided bodies 44b, and two are provided in parallel to each other. The rails 43a of the first and second guides 43 and 44 are provided with guide grooves (not shown) along the length direction, and the guided bodies 43b and 44b made of linear motion rolling bearings are provided with the guides. A rolling element (not shown) fitted into the groove so as not to fall off is provided.
 第1の進退駆動手段45は、出力部材45aを駆動手段本体45bで直線方向に進退させる手段である。駆動手段本体45bは、出力部材45aを進退させることができるものであれば良く、例えば、図13に示す圧電素子積層体19A,19B、超音波モータ、またはモータとボールねじ等送りねじ機構の組み合わせ等とされるが、この実施形態では図13の圧電素子積層体19A,19Bが用いられる。図13の構成については後に説明する。第2の進退駆動手段46は、出力部材46aを駆動手段本体46bで直線方向に進退させる手段であり、第1の進退駆動手段45と同様な構成とされる。 The first advance / retreat driving means 45 is means for advancing / retreating the output member 45a in the linear direction by the drive means main body 45b. The drive means main body 45b may be any as long as it can advance and retract the output member 45a. For example, the piezoelectric element laminates 19A and 19B shown in FIG. 13, an ultrasonic motor, or a combination of a motor and a feed screw mechanism such as a ball screw. In this embodiment, the piezoelectric element laminates 19A and 19B shown in FIG. 13 are used. The configuration of FIG. 13 will be described later. The second advancing / retreating drive means 46 is a means for advancing / retreating the output member 46a in the linear direction by the drive means main body 46b, and has the same configuration as the first advancing / retreating drive means 45.
 進退駆動手段45,46の出力部材45a,46aは、移動部体41,42に単に接して移動力を与えるようにしているが、図12(A),(B)に示すように反対側から弾性体121,122によって押し付ける構造とすることで、正逆両方向に自在に駆動可能となる。具体的には、第1の進退駆動手段45の設置側とは反対側で、基台40に設けられた弾性体支持部40aと第1の移動体41との間に弾性体121を配置し、この弾性体121によって、第1の移動体41を第1の進退駆動手段45の出力部材45aに押し付けている。第2の移動体42に対しても、第2の進退駆動手段46の設置側とは反対側で、第1の移動体41に設けられた弾性体支持部41aと第2の移動体42との間に弾性体122を配置し、この弾性体122によって、第2の移動体42を第2の進退駆動手段46の出力部材46aに押し付けている。前記弾性体121,122は、例えばコイルばねとする。弾性体121,122は、ばね定数1N/ mm以下のばねを用いることが良い。 The output members 45a and 46a of the advancing / retreating drive means 45 and 46 are merely in contact with the moving parts 41 and 42 so as to apply a moving force, but from the opposite side as shown in FIGS. 12 (A) and 12 (B). By adopting a structure that is pressed by the elastic bodies 121 and 122, it can be freely driven in both forward and reverse directions. Specifically, the elastic body 121 is disposed between the elastic body support portion 40a provided on the base 40 and the first moving body 41 on the side opposite to the installation side of the first advance / retreat driving means 45. The first movable body 41 is pressed against the output member 45 a of the first advance / retreat driving means 45 by the elastic body 121. Also with respect to the second moving body 42, on the side opposite to the installation side of the second advancing / retreating drive means 46, the elastic body support portion 41a provided on the first moving body 41, the second moving body 42, The elastic body 122 is disposed between the second moving body 42 and the second moving body 42 against the output member 46 a of the second advancing / retreating drive unit 46. The elastic bodies 121 and 122 are, for example, coil springs. The elastic bodies 121 and 122 are preferably springs having a spring constant of 1 N / mm or less.
 ここで移動体41,42と進退駆動手段45,46の出力部材45a,45bの接触位置では移動方向と直角をなす面のどの方向にも移動自在となるように摩擦係数を低下させる施策を講じることが望ましい。その施策として、この例では、第1の進退駆動手段45の出力部材45aにおける、第1の移動体41と接する先端部は、図15に示すように半球状とされている。図示は省略するが、第2の進退駆動手段46の出力部材46についても、第1の進退駆動手段45と同様に、出力部材46aの先端部が球面状とされている。なお、出力部材45a,46aの先端部を球面状とする代わりに、これら出力部材45a,46aの先端部が接する第1の移動体41または第2の移動体42の側面を、互いの摺動方向に延びる半円柱状とし、出力部材45a,46aの先端部は平坦面としても良い。 Here, measures are taken to reduce the coefficient of friction so that the movable bodies 41, 42 and the output members 45a, 45b of the advancing / retracting drive means 45, 46 can move in any direction on the surface perpendicular to the moving direction. It is desirable. As a measure for this, in this example, the tip of the output member 45a of the first advancing / retreating drive means 45 in contact with the first moving body 41 is hemispherical as shown in FIG. Although not shown, the output member 46 of the second advance / retreat drive means 46 also has a spherical end at the output member 46a, like the first advance / retreat drive means 45. Instead of making the front ends of the output members 45a and 46a spherical, the side surfaces of the first moving body 41 or the second moving body 42 with which the front ends of the output members 45a and 46a are in contact with each other slide. It is good also as a semi-cylinder shape extended in a direction, and the front-end | tip part of output member 45a, 46a is good also as a flat surface.
 また、図15に示すように、進退駆動手段45,46の出力部材45a,46aと移動体41,42との接触部のいずれか一方または両方に、低摩擦化用のコーティング101を施しても良い。図示の例では、出力部材45a,46aにコーティング101を施している。このコーティング101としては、ダイヤモンドライクカーボン、二硫化モリブデン、フッ素樹脂、およびグラファイトのいずれかとすることが好ましい。 Further, as shown in FIG. 15, a coating 101 for reducing friction may be applied to one or both of the contact portions between the output members 45 a, 46 a of the advance / retreat driving means 45, 46 and the moving bodies 41, 42. good. In the illustrated example, the coating 101 is applied to the output members 45a and 46a. The coating 101 is preferably diamond-like carbon, molybdenum disulfide, fluororesin, or graphite.
 図15の例のように前記半球状または半円柱状とする代わりに、図16に示すように、進退駆動手段45,16の出力部材45a,46aと、移動体41,42とが、ボールまたはローラ等の転動体49を介して接触するようにしても良い。図16の例では、転動体49はボールであり、出力部材45a,46aの先端に設けられた保持部材45aa,46aa内に、一部が突出するように回転自在に収容されている。 In place of the hemispherical or semi-cylindrical shape as in the example of FIG. 15, as shown in FIG. 16, the output members 45a and 46a of the advance / retreat driving means 45 and 16 and the moving bodies 41 and 42 are balls or You may make it contact via rolling elements 49, such as a roller. In the example of FIG. 16, the rolling element 49 is a ball, and is rotatably accommodated in the holding members 45aa and 46aa provided at the tips of the output members 45a and 46a so as to partially protrude.
 図10のZ軸移動機構16の具体的構成例については、後に図21等と共に説明する。 A specific configuration example of the Z-axis moving mechanism 16 in FIG. 10 will be described later together with FIG.
 この構成のマイクロインジェクション装置によると、被導入体Tを収容した容器12の位置を容器位置調整手段1で調整し、位置調整された容器12の内部の平面視画像を撮像手段2で撮像し、その画像から細胞位置を位置判定手段3で判定することで各注入針11の担当する細胞等の被導入体Tを決定する。このとき、拡大用のレンズにより前記容器12を局部的に拡大し、細胞等の被導入体Tの位置を画像処理することで、被導入体Tの位置を精度良く認識できる。また、例えば、認識した細胞等の被導入体Tの画像内での位置関係から、各注入針11で担当する被導入体Tを決定することができる。このように各注入針11の担当する被導入体Tを決定した後、各注入針11を個別の複数の搬送手段4で移動させて各被導入体Tに注入針11をそれぞれ挿入することにより、各被導入体Tに導入物質を導入する。 According to the microinjection apparatus having this configuration, the position of the container 12 containing the introduction target T is adjusted by the container position adjusting means 1, and a planar view image inside the position-adjusted container 12 is picked up by the imaging means 2, By determining the cell position from the image by the position determination means 3, the introduction target T such as a cell in charge of each injection needle 11 is determined. At this time, the position of the introducer T can be recognized with high accuracy by locally enlarging the container 12 with an enlargement lens and performing image processing on the position of the introducer T such as cells. Further, for example, the to-be-introduced body T in charge of each injection needle 11 can be determined from the positional relationship in the image of the to-be-introduced body T such as recognized cells. Thus, after determining the to-be-introduced body T which each injecting needle 11 takes charge of, each injecting needle 11 is moved by several separate conveyance means 4, and the injecting needle 11 is inserted in each to-be-introduced body T, respectively. Then, the introduction substance is introduced into each introduction target T.
 搬送手段4は、被導入体Tに対して少なくとも2自由度の駆動機構を持つため、注入針11の先端の位置決めが搬送手段4の単体で可能である。各々の搬送手段4が並行して動作しインジェクション動作を繰り返す。画像内の細胞への処理が終了した後、容器位置調整手段1により容器12を移動させ、近接した別の位置での細胞配置を画像処理によって認識し、前述のようにインジェクション動作を繰り返す。 Since the conveying means 4 has a drive mechanism with at least two degrees of freedom with respect to the introduction target T, the tip of the injection needle 11 can be positioned as a single unit. Each transport means 4 operates in parallel and repeats the injection operation. After the processing on the cells in the image is completed, the container 12 is moved by the container position adjusting means 1, the cell arrangement at another adjacent position is recognized by image processing, and the injection operation is repeated as described above.
 このように、細胞等の複数の被導入体Tへの導入物質の導入を同時に行うことができ、インジェクション処理の効率向上が可能となる。また、少なくとも2種類以上の種類の異なる注入物質を注入針毎に充填しておき、同じ被導入体Tに順次導入することにより、被導入体Tに複数種の導入物質のあらかた同時導入が可能となる。よって、注入針11の注入物質の入れ替えなく複数種の導入物質の導入ができ、インジェクション処理の効率向上が可能となる。 Thus, the introduction substance can be simultaneously introduced into a plurality of recipients T such as cells, and the efficiency of the injection process can be improved. In addition, it is possible to simultaneously introduce a plurality of kinds of introduction substances into the introduction target T by filling at least two kinds of different injection substances for each injection needle and sequentially introducing them into the same introduction target T. It becomes. Therefore, a plurality of types of introduction substances can be introduced without replacing the injection substance in the injection needle 11, and the efficiency of the injection process can be improved.
 特に、前記搬送手段4は、図11~12に示すように、移動体41,42と進退駆動手段45,46を分離し、X軸,Y軸方向移動の各自由度に対する進退駆動手段45,46をいずれも搬送手段4の基台40に設置したため、搬送手段4を小型化でき、また移動体41,42の質量を低減できて搬送手段4の高速駆動が可能となる。各自由度に対する進退駆動手段45,46をいずれも基台40に設置したが、基台40に対して第1の移動体41を介して設置される第2の移動体42に対しては、第2の進退駆動手段46の出力部材46aが、その進退移動可能な方向と直交する方向に対して移動が自在に接触するため、第1の移動体41の移動した位置に係わらず、第2の進退駆動手段46の進退駆動を第2の移動体42に伝達することができる。 In particular, as shown in FIGS. 11 to 12, the transport means 4 separates the moving bodies 41, 42 and the advance / retreat drive means 45, 46, and advances / retreats drive means 45, 45 for each degree of freedom of movement in the X axis and Y axis directions. Since both 46 are installed on the base 40 of the transport means 4, the transport means 4 can be reduced in size, and the mass of the moving bodies 41 and 42 can be reduced, so that the transport means 4 can be driven at high speed. Although the advancing / retreating drive means 45 and 46 for each degree of freedom are both installed on the base 40, the second moving body 42 installed on the base 40 via the first moving body 41 is Since the output member 46a of the second advance / retreat driving means 46 is in free contact with the direction orthogonal to the direction in which the advance / retreat movement is possible, the second member 41a regardless of the position where the first moving body 41 has moved. The forward / backward drive of the forward / backward drive means 46 can be transmitted to the second moving body 42.
 また、搬送手段4を小型化できるため、細胞等の被導入体Tが入ったシャーレ等の容器12の周辺に、図2や図9に示すように、複数の搬送手段4を配置することができる。そのため被導入体Tに対して注入針11の先端の位置決めを同時に行うことが出来、一度に多数の被導入体Tへのインジェクション処理を実行することが出来、ハイスループット化が可能となる。 Moreover, since the conveyance means 4 can be reduced in size, a plurality of conveyance means 4 can be disposed around a container 12 such as a petri dish containing cells to be introduced T as shown in FIGS. it can. Therefore, the tip of the injection needle 11 can be simultaneously positioned with respect to the introducer T, and the injection process to a large number of introducers T can be executed at a time, so that high throughput can be achieved.
 また、搬送手段4の各移動体41,42の進退駆動手段45,46につき、圧電素子積層体19A,19Bとした場合は、次の効果が得られる。すなわち、従来は注入針の駆動には、ボールネジや超音波モータが使用されていたが、この実施形態では、圧電素子を用いた小型アクチュエータを組み合わせることによって注入針11を駆動する搬送手段4の小型化を図っている。圧電アクチュエータは、電気エネルギから機械エネルギに変換する変換効率が高く、印加する電圧を変えることにより、発生する変位を比較的簡単に可変することができ、制御性に優れた特徴がある。 Further, when the piezoelectric element laminates 19A and 19B are used for the advance / retreat driving means 45 and 46 of the moving bodies 41 and 42 of the transport means 4, the following effects can be obtained. That is, conventionally, a ball screw or an ultrasonic motor has been used to drive the injection needle. In this embodiment, however, the conveying means 4 for driving the injection needle 11 is combined with a small actuator using a piezoelectric element. We are trying to make it. Piezoelectric actuators have high conversion efficiency for converting electrical energy to mechanical energy, and can change the generated displacement relatively easily by changing the applied voltage, and have excellent controllability.
 上記実施形態では、進退駆動手段45,46の出力部材45a,46aと移動体41,42の接触を維持する構成として、弾性体121,122を設けたが、図17(A),(B)に示すように永久磁石111~114を設けても良い。すなわち、基台40と第1の移動体41とに、互いに向き合う磁極の向きが同じになるように第1,第2の永久磁石111,112を配置し、磁気反発力により第1の移動体41を第1の進退駆動手段45の出力部材45aに押し付けてもよい。また、第1の移動体41と第2の移動体42とに、互いに向き合う磁極の向きが同じになるように第2,第4の永久磁石113,114を配置し、磁気反発力により第2の移動体42を第2の進退駆動手段46の出力部材46aに押し付けてもよい。 In the above embodiment, the elastic bodies 121 and 122 are provided as a configuration for maintaining the contact between the output members 45a and 46a of the advance / retreat driving means 45 and 46 and the moving bodies 41 and 42. However, FIGS. Permanent magnets 111 to 114 may be provided as shown in FIG. That is, the first and second permanent magnets 111 and 112 are arranged on the base 40 and the first moving body 41 so that the directions of the magnetic poles facing each other are the same, and the first moving body is generated by the magnetic repulsive force. 41 may be pressed against the output member 45a of the first advance / retreat driving means 45. In addition, the second and fourth permanent magnets 113 and 114 are arranged on the first moving body 41 and the second moving body 42 so that the directions of the magnetic poles facing each other are the same, and the second repulsive force causes the second movement. The moving body 42 may be pressed against the output member 46 a of the second advance / retreat driving means 46.
 図18(A),(B)の例では、図17(A),(B)の例とは逆に、磁気吸引力が作用するように永久磁石111A~114Aを設けている。すなわち、基台40と第1の移動体41とに、互いに向き合う磁極の向きが逆となるように第1,第2の永久磁石111A,112Aを配置し、磁気吸引力により第1の移動体41を第1の進退駆動手段45の出力部材45aに押し付けてもよい。また、第1の移動体41と第2の移動体42とに、互いに向き合う磁極の向きが逆になるように第2,第4の永久磁石113A,114Aを配置し、磁気吸引力により第2の移動体42を第2の進退駆動手段46の出力部材46aに押し付けてもよい。 In the example of FIGS. 18A and 18B, the permanent magnets 111A to 114A are provided so that the magnetic attractive force acts, contrary to the example of FIGS. 17A and 17B. That is, the first and second permanent magnets 111A and 112A are arranged on the base 40 and the first moving body 41 so that the directions of the magnetic poles facing each other are reversed, and the first moving body is generated by the magnetic attraction force. 41 may be pressed against the output member 45a of the first advance / retreat driving means 45. In addition, the second and fourth permanent magnets 113A and 114A are arranged on the first moving body 41 and the second moving body 42 so that the directions of the magnetic poles facing each other are reversed, and the second moving magnet 41 is driven by the magnetic attractive force. The moving body 42 may be pressed against the output member 46 a of the second advance / retreat driving means 46.
 図19(A),(B)の例は、第2の進退駆動手段46の出力部材46aを第2の移動体42に対して単に接触させる代わりに、第2の進退駆動手段46の出力部材46aを第2の移動体42に対して、第1の移動体41の移動方向(X軸方向)に対し移動自在になるように第3のガイド115を介して連結している。第3のガイド115は、第2の移動体41に設けられたガイドレール115aと、このガイドレール115aに設けられた案内溝(図示せず)に対して転動体(図示せず)が嵌まり込んで脱落不能となった直動転がり軸受等の被案内体115bとからなる。その他の構成は、図12(A),(B)に示した例と同様である。このように第3のガイド115によって連結した場合、高速駆動時においても出力部材46aと移動体41が常に連結された状態を維持することができ、動作が安定する。出力部材46aと対向して設けられた第2の弾性体122は、第3のガイド115に対して予圧を与え、より一層の動作の安定を確保する。 In the example of FIGS. 19A and 19B, instead of simply contacting the output member 46a of the second advance / retreat drive means 46 with the second moving body 42, the output member of the second advance / retreat drive means 46 is used. 46a is connected to the second moving body 42 via a third guide 115 so as to be movable in the moving direction (X-axis direction) of the first moving body 41. The third guide 115 has a rolling element (not shown) fitted into a guide rail 115a provided on the second moving body 41 and a guide groove (not shown) provided on the guide rail 115a. And a guided body 115b such as a linear motion rolling bearing which cannot be removed. Other configurations are the same as those shown in FIGS. 12A and 12B. When the third guide 115 is connected in this way, the output member 46a and the moving body 41 can always be connected even during high-speed driving, and the operation is stabilized. The second elastic body 122 provided to face the output member 46a applies a preload to the third guide 115, and ensures further stable operation.
 図20(A),(B)に示すように、さらに第4のガイド116を設けても良い。すなわち、第2の進退駆動手段46の出力部材46aと第3のガイド115とを、第1の移動体41の移動方向(X軸方向)に対し移動自在になるように、第4のガイド116を介して連結する。第4のガイド116は、第3のガイド115と同様に、案内溝(図示せず)付きのガイドレール116aと、このガイドレール116aの案内溝に対して転動体(図示せず)が嵌まり込んで脱落不能となった直動転がり軸受等の被案内体116bとからなる。ガイドレール116aは第3のガイド115の被案内体115bに取付けられ、被案内体116bが出力部材46aに取付けられる。このように第3のガイド115と第4のガイド116とを2段に設けた場合は、高速駆動時等における動作がより一層安定する。なお、この例では、第1の移動体41と第1の駆動手段45の出力部材45aとの間にも、第1の移動体41の移動方向に対し直交方向に移動自在な第5および第6のガイド117,118が設けられている。これら第5および第6のガイド117,118は、第3,第4のガイド115,116と同様にガイドレールと被案内体とからなる。 As shown in FIGS. 20A and 20B, a fourth guide 116 may be further provided. That is, the fourth guide 116 is configured so that the output member 46a of the second advance / retreat driving means 46 and the third guide 115 are movable with respect to the moving direction (X-axis direction) of the first moving body 41. Connect through. As with the third guide 115, the fourth guide 116 has a guide rail 116a with a guide groove (not shown) and a rolling element (not shown) fitted into the guide groove of the guide rail 116a. And a guided body 116b such as a linear motion rolling bearing which cannot be removed. The guide rail 116a is attached to the guided body 115b of the third guide 115, and the guided body 116b is attached to the output member 46a. As described above, when the third guide 115 and the fourth guide 116 are provided in two stages, the operation during high-speed driving or the like is further stabilized. In this example, the fifth and the fifth movable members that are movable between the first moving member 41 and the output member 45a of the first driving means 45 in the direction orthogonal to the moving direction of the first moving member 41 are also provided. Six guides 117 and 118 are provided. Similar to the third and fourth guides 115 and 116, the fifth and sixth guides 117 and 118 include a guide rail and a guided body.
 図21は、Z軸移動機構16の一構成例を示す。このZ軸移動機構16は、中空箱形の固定台17と、この固定台17の一端部において固定台17内から上方に突出するように設けられ注入針11を着脱自在に支持する針支持部材18と、前記固定台17内に配置され駆動源となる圧電素子積層体19A,19B1,19B2とを備える。針支持部材18は、注入針11を着脱自在に支持する構成とされ、注入針11の損傷や導入物質の交換等のために、注入針11を簡単に交換することができる。針支持部材18は、立片部18aおよび横片部18bを有する概形T字状で、その横片部18bが案内機構21を介して固定台17の上に注入針11の突出方向に移動自在に支持され、立片部18aが固定台17の一端部内向き面に板ばね等からなるばね部材20Aを介して支持されている。 FIG. 21 shows a configuration example of the Z-axis moving mechanism 16. The Z-axis moving mechanism 16 includes a hollow box-shaped fixing base 17 and a needle support member that is provided so as to protrude upward from the fixing base 17 at one end of the fixing base 17 and that removably supports the injection needle 11. 18 and piezoelectric element laminates 19A, 19B1, and 19B2 disposed in the fixed base 17 and serving as a driving source. The needle support member 18 is configured to detachably support the injection needle 11 and can easily replace the injection needle 11 in order to damage the injection needle 11 or replace the introduced substance. The needle support member 18 has a general T shape having a standing piece portion 18a and a horizontal piece portion 18b, and the horizontal piece portion 18b moves on the fixed base 17 in the protruding direction of the injection needle 11 via the guide mechanism 21. The stand piece 18a is supported on the inwardly facing surface of one end of the fixed base 17 via a spring member 20A made of a leaf spring or the like.
 各圧電素子積層体19A,19B1,19B2は、複数の圧電素子19aを、それらの変位方向に積層して棒状体とした積層型圧電素子である。これら圧電素子積層体19A,19B1,19B2のうち、2つの圧電素子積層体19B1,19B2は、互いに直線上に配置されると共に締結部材47で直列に接続された連結体からなる1組の圧電素子積層体19Bとされる。この圧電素子積層体19Bと残る1組の圧電素子積層体19Aとは、前記積層方向に沿って互いに平行となるように上下に並列に配置され、これら2組の圧電素子積層体19A,19Bが締結部材48を介して直列に接続される。締結部材48は、上下の両圧電素子積層体19A,19Bの間にこれら両圧電素子積層体19A,19Bと平行に配置される長手方向部48aと、この長手方向部48aの両端において、上下方向に互いに逆方向となるように突出する各突部48b,48cと有する概形Z字状である。 Each piezoelectric element laminate 19A, 19B1, 19B2 is a laminated piezoelectric element in which a plurality of piezoelectric elements 19a are laminated in the displacement direction to form a rod-like body. Of these piezoelectric element laminates 19A, 19B1 and 19B2, the two piezoelectric element laminates 19B1 and 19B2 are arranged in a straight line and connected to each other in series by a fastening member 47. The laminated body 19B is obtained. The piezoelectric element laminate 19B and the remaining one set of piezoelectric element laminates 19A are arranged in parallel vertically so as to be parallel to each other along the lamination direction, and these two sets of piezoelectric element laminates 19A and 19B are arranged in parallel. They are connected in series via the fastening member 48. The fastening member 48 includes a longitudinal direction portion 48a disposed between the upper and lower piezoelectric element laminates 19A and 19B in parallel with the piezoelectric element laminates 19A and 19B, and the vertical direction at both ends of the longitudinal direction portion 48a. Are generally Z-shaped with protrusions 48b and 48c projecting in opposite directions.
 1組の圧電素子積層体19Aは、その一端が、前記締結部材48における固定台17の一端部側の突部48bに連結され、他端が固定台17の他端部に支持されている。締結部材48の突部48bと固定台17の一端部との間には、圧電素子積層体19Aに予圧を与える板ばね等のばね部材20Bが介在している。圧電素子積層体19Bの一端部、つまり圧電素子積層体19Bを構成する1つの圧電素子積層体19B1における締結部材47による連結部とは反対側の端部は、前記針支持部材18の立片部18aに連結されている。また、圧電素子積層体19Bの他端部、つまり圧電素子積層体19Bを構成する他の1つの圧電素子積層体19B2における締結部材47による連結部とは反対側の端部は、固定台17の他端部側に向く、前記締結部材48の突部48cに連結されている。圧電素子積層体19Bには、針支持部材18の立片部18aと固定台17の他端部との間に介装される板ばね等のばね部材20Aによって予圧が与えられる。これにより、2組の圧電素子積層体19A,19Bの積層方向への変位で、針支持部材18が注入針11の突出方向に進退可能である。 One end of the pair of piezoelectric element laminates 19 </ b> A is connected to a protrusion 48 b on the one end side of the fixing base 17 in the fastening member 48, and the other end is supported by the other end of the fixing base 17. Between the protrusion 48b of the fastening member 48 and one end of the fixed base 17, a spring member 20B such as a leaf spring that preloads the piezoelectric element laminate 19A is interposed. One end of the piezoelectric element laminate 19B, that is, the end opposite to the connecting portion by the fastening member 47 in one piezoelectric element laminate 19B1 constituting the piezoelectric element laminate 19B is a standing piece portion of the needle support member 18. 18a. Further, the other end of the piezoelectric element laminate 19B, that is, the end of the other piezoelectric element laminate 19B2 constituting the piezoelectric element laminate 19B opposite to the connecting portion by the fastening member 47 is the fixed base 17 The other end side is connected to the protrusion 48c of the fastening member 48. The piezoelectric element laminate 19 </ b> B is preloaded by a spring member 20 </ b> A such as a leaf spring interposed between the standing piece 18 a of the needle support member 18 and the other end of the fixed base 17. Thereby, the needle support member 18 can advance and retract in the protruding direction of the injection needle 11 by the displacement in the stacking direction of the two sets of piezoelectric element stacks 19A and 19B.
 前記圧電素子積層体19A,19Bのうち、圧電素子積層体19Aと、圧電素子積層体19Bにおける1つの圧電素子積層体19B2とは、針支持部材18の位置決め、つまり注入針11の位置決めのための駆動源として使用される。すなわち、これらの圧電素子積層体19A,19B2は、Z軸(挿入方向)位置制御部51から印加される電圧である位置決め信号によって変位する。圧電素子積層体19A,19Bのうち、圧電素子積層体19Bにおける針支持部材18に直接連結される圧電素子積層体19B1は、針支持部材18を注入針11の挿入方向に振動させるための駆動源として使用される。振動付与用の圧電素子積層体19B1は、振動駆動手段54から印加される電圧である振動駆動信号によって、その変位が繰り返し変化する。 Of the piezoelectric element laminates 19A and 19B, the piezoelectric element laminate 19A and one piezoelectric element laminate 19B2 in the piezoelectric element laminate 19B are used for positioning the needle support member 18, that is, for positioning the injection needle 11. Used as a driving source. That is, these piezoelectric element laminates 19A and 19B2 are displaced by a positioning signal that is a voltage applied from the Z-axis (insertion direction) position control unit 51. Of the piezoelectric element laminates 19A and 19B, the piezoelectric element laminate 19B1 directly connected to the needle support member 18 in the piezoelectric element laminate 19B is a drive source for causing the needle support member 18 to vibrate in the insertion direction of the injection needle 11. Used as. The displacement of the piezoelectric element laminate 19 </ b> B <b> 1 for applying vibration is repeatedly changed by a vibration driving signal that is a voltage applied from the vibration driving means 54.
 Z軸位置制御部51は、位置指令部52から位置指令が電圧発生器53に与えられ、その位置指令に基づいて、電圧発生器53から圧電素子積層体19A,19B2に対応する電圧を印加する。Z軸位置制御部51は、図1(A)の注入針移動制御手段88におけるZ軸の注入針個別制御部88aに設けられる。また、その位置指令部52は、図1(A)の位置判定手段3によって得られた位置情報に基づいて、担当被導入体決定部87で定められる目標位置を前記位置指令とする。位置指令部52は、担当被導入体決定部87の一部として設けられたものであっても良い。 The Z-axis position control unit 51 receives a position command from the position command unit 52 to the voltage generator 53, and applies a voltage corresponding to the piezoelectric element laminates 19A and 19B2 from the voltage generator 53 based on the position command. . The Z-axis position control unit 51 is provided in the Z-axis injection needle individual control unit 88a in the injection needle movement control means 88 of FIG. Further, the position command unit 52 uses the target position determined by the assigned introducer determining unit 87 as the position command based on the position information obtained by the position determination unit 3 in FIG. The position command unit 52 may be provided as a part of the assigned introducer determining unit 87.
 振動駆動手段54は、電圧発生器56から前記振動駆動信号として所定周波数の交番電圧を前記圧電素子積層体19B1に印加する。その交番電圧の周波数つまり針支持部材18に付与する振動の周波数は、周波数可変手段55から電圧発生器56への指令により切り換え可能とされている。 The vibration drive means 54 applies an alternating voltage having a predetermined frequency to the piezoelectric element laminate 19B1 as the vibration drive signal from the voltage generator 56. The frequency of the alternating voltage, that is, the frequency of vibration applied to the needle support member 18 can be switched by a command from the frequency variable means 55 to the voltage generator 56.
 図21のZ軸移動機構16は、図11(A)のX軸移動機構14およびY軸移動機構15における第1の進退駆動手段45および第2の進退駆動手段46として使用することができる。その場合、針支持部材18の代わりに、図13のように出力部材45aを設ける。図13は、図11(A),(B)の例の第1の進退駆動手段45の具体例を示す。第2の進退駆動手段46についても、図13に示す例を用いることができる。 21 can be used as the first advance / retreat drive means 45 and the second advance / retreat drive means 46 in the X-axis movement mechanism 14 and the Y-axis movement mechanism 15 shown in FIG. In that case, instead of the needle support member 18, an output member 45a is provided as shown in FIG. FIG. 13 shows a specific example of the first advance / retreat driving means 45 in the example of FIGS. 11 (A) and 11 (B). The example shown in FIG. 13 can also be used for the second advance / retreat driving means 46.
 次に、図11(A),(B)の例の第1の進退駆動手段45および第2の進退駆動手段46として使用可能な圧電素子利用の各構成例を、図22~図30と共に説明する。 Next, each configuration example using piezoelectric elements that can be used as the first advance / retreat drive means 45 and the second advance / retreat drive means 46 in the example of FIGS. 11A and 11B will be described with reference to FIGS. To do.
 図22において、進退駆動手段45は、固定台25と、可動片26と、駆動源となる2組の圧電素子積層体19C,19Dとを備える。固定台25は、X軸方向に延びる主枠部25aと、この主枠部25aの両端から幅方向(Y軸方向)に延びる一対の側枠部25b,25dと、側枠部25bの先端から主枠部25aと平行にX軸方向に延びる水平断面がL字状の副枠部25cとを有する中空箱形とされている。 22, the advance / retreat driving means 45 includes a fixed base 25, a movable piece 26, and two sets of piezoelectric element laminates 19C and 19D serving as a drive source. The fixing base 25 includes a main frame portion 25a extending in the X-axis direction, a pair of side frame portions 25b and 25d extending in the width direction (Y-axis direction) from both ends of the main frame portion 25a, and a front end of the side frame portion 25b. A horizontal cross section extending in the X-axis direction in parallel with the main frame portion 25a has a hollow box shape having an L-shaped sub frame portion 25c.
 可動片26は、固定台25の一端の側枠部25bの先端から他端の側枠部25d側に向けて延び、水平断面がL字状の可動片26とされている。可動片26は、圧電素子積層体19C,19Dの変位を拡大する拡大機構となるものであって、固定台25と共に、金属や合成樹脂等の弾性材で形成されている。可動片26は、固定台25の一端の側枠部25bから主枠部25aと略平行に延びる主枠平行片部26aと、この主枠平行片部26aの他端から固定台25の他端の側枠部25dの内側に側枠部25dと平行に延びる側枠平行片部26bとでなる。固定台25の側枠部25bと可動片26の主枠平行片部26aとの接続部、および可動片26の主枠平行片部26aと側枠平行片部26bとの接続部は薄肉部26cとされている。また、可動片26の主枠平行片部26aの長手方向中間部も薄肉部26dとされている。これにより、可動片26の側枠平行片部26bは、その基端の薄肉部26cを揺動中心として屈曲するように揺動可能とされる。また、可動片26の主枠平行片部26aは、その長手方向中間部の薄肉部26dで折れ曲がっていて、その折れ曲がり角度の増減により、長手方向と直交する方向(Y軸方向)に、中間部が進退可能とされる。 The movable piece 26 extends from the tip of the side frame portion 25b at one end of the fixed base 25 toward the side frame portion 25d at the other end, and has a horizontal section as an L-shaped movable piece 26. The movable piece 26 serves as an enlargement mechanism that enlarges the displacement of the piezoelectric element laminates 19C and 19D, and is formed of an elastic material such as metal or synthetic resin together with the fixed base 25. The movable piece 26 includes a main frame parallel piece portion 26a extending substantially parallel to the main frame portion 25a from the side frame portion 25b at one end of the fixed stand 25, and the other end of the fixed stand 25 from the other end of the main frame parallel piece portion 26a. The side frame parallel piece portion 26b extends in parallel to the side frame portion 25d on the inner side of the side frame portion 25d. The connecting portion between the side frame portion 25b of the fixed base 25 and the main frame parallel piece portion 26a of the movable piece 26 and the connecting portion between the main frame parallel piece portion 26a and the side frame parallel piece portion 26b of the movable piece 26 are thin portions 26c. It is said that. Further, the middle portion in the longitudinal direction of the main frame parallel piece portion 26a of the movable piece 26 is also a thin portion 26d. As a result, the side frame parallel piece portion 26b of the movable piece 26 can be swung so as to be bent with the thin-walled portion 26c at the base end as a swing center. Further, the main frame parallel piece portion 26a of the movable piece 26 is bent at the thin portion 26d at the intermediate portion in the longitudinal direction, and the intermediate portion is formed in the direction perpendicular to the longitudinal direction (Y-axis direction) by increasing or decreasing the bending angle. Can be moved forward and backward.
 2組の圧電素子積層体19C,19Dは、共に積層型圧電素子であって、積層方向に沿って前記固定台25の主枠部25aと平行となるように前後に並列に配置される。これら2組の圧電素子積層体19C,19Dは、締結部材58を介して直列に接続される。締結部材58は、前後の両圧電素子積層体19C,19Dの間にこれら両圧電素子積層体19C,19Dと平行に配置される長手方向部58aと、この長手方向部58aの両端において、前後方向に互いに逆方向となるように突出する各突部58b,58cとを有する概形Z字状である。 The two sets of piezoelectric element laminates 19C and 19D are both laminated piezoelectric elements, and are arranged in parallel in the front-rear direction so as to be parallel to the main frame portion 25a of the fixed base 25 along the lamination direction. These two sets of piezoelectric element laminates 19 </ b> C and 19 </ b> D are connected in series via a fastening member 58. The fastening member 58 includes a longitudinal portion 58a disposed in parallel with both the piezoelectric element laminates 19C and 19D between the front and rear piezoelectric element laminates 19C and 19D, and a longitudinal direction at both ends of the longitudinal direction portion 58a. Are generally Z-shaped having protrusions 58b and 58c protruding in opposite directions.
 1組の圧電素子積層体19Cは、その一端が固定台25の側枠部25bに支持され、他端が固定台側枠部25d側に向く前記締結部材58の突部58bに連結されている。また、他の1組の圧電素子積層体19Dは、その一端が固定台側枠部25b側に向く前記締結部材58の突部58cに連結され、他端が可動片26の側枠平行片部26bに連結されている。固定台25の副枠部25cの先端の幅方向に延びる側部25caと前記締結部材58の突部58bとの間には、圧電素子積層体19Cに予圧を与える板ばね等のばね部材27Aが介在する。 One set of the piezoelectric element laminate 19C is supported at one end by the side frame 25b of the fixed base 25, and the other end is connected to the protrusion 58b of the fastening member 58 facing the fixed base side frame 25d. . The other set of piezoelectric element laminates 19D has one end connected to the projection 58c of the fastening member 58 facing the fixed base side frame 25b and the other end connected to the side frame parallel piece of the movable piece 26. 26b. A spring member 27A such as a leaf spring for applying a preload to the piezoelectric element laminate 19C is provided between the side portion 25ca extending in the width direction at the front end of the sub-frame portion 25c of the fixing base 25 and the protruding portion 58b of the fastening member 58. Intervene.
 固定台25の側枠部25dと可動片26の側枠平行片部26bとの間には、圧電素子積層体19Dに予圧を与える板ばね等のばね部材27Bが介在する。また、固定台25の副枠部25cの先端の幅方向に延びる側部25caと可動片26の側枠平行片部26bとの間には、可動片26の側枠平行片部26bに予圧を与える板ばね等のばね部材27Cが介在する。これにより、2組の圧電素子積層体19C,19Dの積層方向への伸縮による変位で、可動片26の側枠平行片部26bが揺動し、その揺動変位が拡大されて主枠平行片部26aのY軸方向への変位となる。この変位はZ軸移動機構16を支持する第2の移動42(図10)に伝達され、これにより注入針11がY軸方向に移動可能である。 Between the side frame portion 25d of the fixed base 25 and the side frame parallel piece portion 26b of the movable piece 26, a spring member 27B such as a leaf spring for applying a preload to the piezoelectric element laminate 19D is interposed. Further, a preload is applied to the side frame parallel piece portion 26b of the movable piece 26 between the side portion 25ca extending in the width direction of the tip of the sub frame portion 25c of the fixed base 25 and the side frame parallel piece portion 26b of the movable piece 26. A spring member 27C such as a leaf spring is provided. As a result, the side frame parallel piece 26b of the movable piece 26 swings due to the displacement caused by expansion and contraction in the stacking direction of the two sets of piezoelectric element laminates 19C and 19D, and the swing displacement is expanded to expand the main frame parallel piece. The displacement of the portion 26a in the Y-axis direction is obtained. This displacement is transmitted to the second movement 42 (FIG. 10) that supports the Z-axis moving mechanism 16, whereby the injection needle 11 can move in the Y-axis direction.
 同図の構成を第2の進退駆動手段46に適用した場合、2組の圧電素子積層体19C,19Dは、Y軸位置制御部59から印加される電圧である位置決め信号によって変位する。Y軸位置制御部59は、位置指令部60から位置指令が電圧発生器61に与えられ、その位置指令に基づいて、電圧発生器61から前記圧電素子積層体19C,19Dに対応する電圧を印加する。Y軸位置制御部59は、図1(A)の注入針移動制御手段88におけるY軸の注入針個別制御部88aに設けられる。また、その位置指令部60は、図1(A)の位置判定手段3によって得られた位置情報に基づいて、担当被導入体決定部87で定められる目標位置を前記位置指令とする。位置指令部60は、担当被導入体決定部87の一部として設けられたものであっても良い。 2 is applied to the second advancing / retreating drive means 46, the two piezoelectric element laminates 19C and 19D are displaced by a positioning signal which is a voltage applied from the Y-axis position control unit 59. The Y-axis position control unit 59 receives a position command from the position command unit 60 to the voltage generator 61, and applies a voltage corresponding to the piezoelectric element stacks 19C and 19D from the voltage generator 61 based on the position command. To do. The Y-axis position control unit 59 is provided in the Y-axis injection needle individual control unit 88a in the injection needle movement control means 88 of FIG. Further, the position command unit 60 uses the target position determined by the assigned introducer determination unit 87 as the position command based on the position information obtained by the position determination unit 3 in FIG. The position command unit 60 may be provided as a part of the assigned introducer determining unit 87.
 第2の進退駆動手段46に適用する場合も、固定台25と可動片26との相対変位を測定するための図示しないセンサが内蔵される。このセンサとしては、前記圧電素子積層体19C,19Dに予圧を与える板ばね27A,27Bの歪みを検出する歪みセンサや、固定台25と可動片26とのギャップを測定する静電容量センサ、磁気センサ、光学式センサなどを用いることができる。 When applied to the second advance / retreat driving means 46, a sensor (not shown) for measuring the relative displacement between the fixed base 25 and the movable piece 26 is incorporated. Examples of the sensor include a strain sensor that detects a strain of the leaf springs 27A and 27B that applies a preload to the piezoelectric element laminates 19C and 19D, a capacitance sensor that measures a gap between the fixed base 25 and the movable piece 26, and a magnetic sensor. A sensor, an optical sensor, or the like can be used.
 図23は、第1の進退駆動手段45および第2の進退駆動手段46として使用可能な他の構成例を示す。第1の進退駆動手段45に適用した場合につき説明すると、この進退駆動手段45は、固定台35と、可動片36と、駆動源となる2組の圧電素子積層体19E,19Fとを備える。固定台35は、X軸方向に延びる主枠部35aと、この主枠部35aの両端から幅方向(Y軸方向)に延びる一対の側枠部35b,35dと、側枠部35bの先端から前記主枠部35aと平行にX軸方向に延びる水平断面がL字状の副枠部35cとを有する中空箱形とされている。 FIG. 23 shows another configuration example that can be used as the first advance / retreat drive means 45 and the second advance / retreat drive means 46. The case of applying to the first advance / retreat drive means 45 will be described. The advance / retreat drive means 45 includes a fixed base 35, a movable piece 36, and two sets of piezoelectric element laminates 19E and 19F serving as drive sources. The fixed base 35 includes a main frame portion 35a extending in the X-axis direction, a pair of side frame portions 35b and 35d extending in the width direction (Y-axis direction) from both ends of the main frame portion 35a, and a front end of the side frame portion 35b. A horizontal box extending in the X-axis direction in parallel with the main frame portion 35a has a hollow box shape having an L-shaped sub-frame portion 35c.
 可動片36は、固定台35の一端の側枠部35bの先端から他端の側枠部35d側に向けて延び、水平断面がL字状とされている。可動片36は、圧電素子積層体19E,19Fの変位を拡大する第1の拡大機構となるものであって、固定台35と一体に金属や合成樹脂等の弾性材で形成されている。可動片36は、固定台35の一端の側枠部35bから主枠部35aと略平行に延びる主枠平行片部36aと、この主枠平行片部36aの他端から固定台35の他端の側枠部35dの内側に側枠部35dと平行に延びる側枠平行片部36bとでなる。固定台35の側枠部35bと可動片36の主枠平行片部36aとの接続部、および可動片36の主枠平行片部36aと側枠平行片部36bとの接続部は薄肉部36cとされている。また、可動片36の主枠平行片部36aの長手方向中間部も薄肉部36dとされている。これにより、可動片36の側枠平行片部36bは、その基端の薄肉部36cを揺動中心として揺動可能とされる。また、可動片36の主枠平行片部36aは、その長手方向中間部の薄肉部36dで折れ曲がって長手方向と直交する方向(Y軸方向)に揺動可能とされる。ここまでの構成は、図22の例の場合と同様である。 The movable piece 36 extends from the tip of the side frame portion 35b at one end of the fixed base 35 toward the side frame portion 35d at the other end, and has a horizontal cross section in an L shape. The movable piece 36 serves as a first enlargement mechanism that enlarges the displacement of the piezoelectric element laminates 19E and 19F, and is integrally formed of an elastic material such as metal or synthetic resin with the fixed base 35. The movable piece 36 includes a main frame parallel piece portion 36a extending substantially parallel to the main frame portion 35a from the side frame portion 35b at one end of the fixed table 35, and the other end of the fixed frame 35 from the other end of the main frame parallel piece portion 36a. A side frame parallel piece portion 36b extending in parallel with the side frame portion 35d is formed inside the side frame portion 35d. The connecting portion between the side frame portion 35b of the fixed base 35 and the main frame parallel piece portion 36a of the movable piece 36 and the connecting portion between the main frame parallel piece portion 36a and the side frame parallel piece portion 36b of the movable piece 36 are thin portions 36c. It is said that. Further, the intermediate portion in the longitudinal direction of the main frame parallel piece portion 36a of the movable piece 36 is also a thin portion 36d. Thereby, the side frame parallel piece portion 36b of the movable piece 36 can be swung with the thin-walled portion 36c at the base end as a swing center. Further, the main frame parallel piece portion 36a of the movable piece 36 is bent at a thin portion 36d in the middle portion in the longitudinal direction and can swing in a direction perpendicular to the longitudinal direction (Y-axis direction). The configuration so far is the same as that in the example of FIG.
 また、可動片36の主枠平行片部36aの長手方向中間部の薄肉部36dよりも側枠平行片部36b寄りの半部となる部分には、固定台35の側枠部35d側に延びて側枠部35dの基端近傍に連結される水平断面が逆L字状の可動枠部37が一体形成されている。この可動枠部37は圧電素子積層体19E,19FCの変位を拡大する第2の拡大機構となるものであって、可動片36の主枠平行片部36aと略平行な厚肉枠部37aと、この厚肉枠部37aから固定台35の側枠部35dの外側を側枠部35dと平行に延びる薄肉枠部37bとでなる。可動枠部37の厚肉枠部37aと薄肉枠部37bとの接続部、および薄肉枠部37bと固定台35の側枠部35bの基端近傍との接続部は、薄肉枠部37bよりもさらに薄い薄肉部37cとされている。また薄肉枠部37bの長手方向中間部も、さらに薄い薄肉部37dとされている。これにより、可動枠部37の薄肉枠部37bは、その長手方向中間部の薄肉部37dで折れ曲がって、中間部が長手方向と直交する方向(X軸方向)に進退可能とされている。 Further, a portion which is a half portion closer to the side frame parallel piece portion 36b than the thin portion 36d in the longitudinal direction intermediate portion of the main frame parallel piece portion 36a of the movable piece 36 extends toward the side frame portion 35d side of the fixed base 35. A movable frame portion 37 having an inverted L-shaped horizontal cross section connected to the vicinity of the base end of the side frame portion 35d is integrally formed. The movable frame portion 37 serves as a second expansion mechanism that expands the displacement of the piezoelectric element laminates 19E and 19FC, and includes a thick frame portion 37a substantially parallel to the main frame parallel piece portion 36a of the movable piece 36. The thin frame portion 37b extends from the thick frame portion 37a to the outside of the side frame portion 35d of the fixed base 35 in parallel with the side frame portion 35d. The connecting portion between the thick frame portion 37a and the thin frame portion 37b of the movable frame portion 37 and the connecting portion between the thin frame portion 37b and the vicinity of the base end of the side frame portion 35b of the fixed base 35 are more than the thin frame portion 37b. Furthermore, it is set as the thin thin part 37c. Further, the intermediate portion in the longitudinal direction of the thin frame portion 37b is also a thinner thin portion 37d. Thereby, the thin frame portion 37b of the movable frame portion 37 is bent at the thin portion 37d of the middle portion in the longitudinal direction so that the intermediate portion can advance and retreat in a direction (X-axis direction) perpendicular to the longitudinal direction.
 図22の例と同様に、2組の圧電素子積層体19E、19Fは共に積層型圧電素子であって、積層方向に沿って前記固定台35の主枠部35aと平行となるように前後に並列に配置される。これら2組の圧電素子積層体19E,19Fは、締結部材62を介して直列に接続される。締結部材62は、前後の両圧電素子積層体19E,19Fの間にこれら両圧電素子積層体19E,19Fと平行に配置される長手方向部62aと、この長手方向部62aの両端において、前後方向に互いに逆方向となるように突出する各突部62b,62cとを有する概形Z字状である。 As in the example of FIG. 22, the two sets of piezoelectric element laminates 19E and 19F are both laminated piezoelectric elements, and are arranged back and forth so as to be parallel to the main frame portion 35a of the fixed base 35 along the lamination direction. Arranged in parallel. The two sets of piezoelectric element laminates 19E and 19F are connected in series via a fastening member 62. The fastening member 62 includes a longitudinal direction portion 62a disposed between the front and rear piezoelectric element laminates 19E and 19F in parallel with the piezoelectric element laminates 19E and 19F, and a longitudinal direction at both ends of the longitudinal direction portion 62a. And the projections 62b and 62c projecting so as to be opposite to each other.
 1組の圧電素子積層体19Eは、その一端が固定台35の側枠部35bに支持され、他端が固定台側枠部35d側に向く前記締結部材62の突部62bに連結されている。また、他の1組の圧電素子積層体19Fは、その一端が固定台側枠部35b側に向く前記締結部材62の突部62cに連結され、他端が可動片36の側枠平行片部36bに連結されている。固定台35の副枠部35cの先端の幅方向に延びる側部35caと前記締結部材62の突部62bとの間には、圧電素子積層体19Eに予圧を与える板ばね等のばね部材38Aが介在する。固定台35の側枠部35dと可動片36の側枠平行片部36bとの間には、圧電素子積層体19Fに予圧を与える板ばね等のばね部材38Bが介在する。また、固定台35の副枠部35cの先端の幅方向に延びる側部35caと可動片36の側枠平行片部36bとの間には、可動片36の側枠平行片部36bに予圧を与える板ばね等のばね部材38Cが介在する。 One set of the piezoelectric element laminates 19E is supported by the side frame portion 35b of the fixed base 35, and the other end is connected to the protrusion 62b of the fastening member 62 facing the fixed base side frame portion 35d. . The other set of piezoelectric element laminates 19F has one end connected to the protrusion 62c of the fastening member 62 facing the fixed base side frame 35b and the other end connected to the side frame parallel piece of the movable piece 36. 36b. A spring member 38A such as a leaf spring for applying a preload to the piezoelectric element laminate 19E is provided between the side portion 35ca extending in the width direction at the tip of the sub-frame portion 35c of the fixing base 35 and the protrusion 62b of the fastening member 62. Intervene. Between the side frame portion 35d of the fixed base 35 and the side frame parallel piece portion 36b of the movable piece 36, a spring member 38B such as a leaf spring for applying a preload to the piezoelectric element laminate 19F is interposed. Further, a preload is applied to the side frame parallel piece portion 36b of the movable piece 36 between the side portion 35ca extending in the width direction of the tip of the sub frame portion 35c of the fixed base 35 and the side frame parallel piece portion 36b of the movable piece 36. A spring member 38C such as a leaf spring is provided.
 これにより、2組の圧電素子積層体19E,19Fの積層方向への伸縮による変位で、可動片36の側枠平行片部36bが揺動し、その揺動変位が拡大されて主枠平行片部36aのY軸方向への変位となる。この変位はさらに拡大されて可動枠部37における薄枠肉部37bのX軸方向への変位となる。この薄枠肉部37bが、図11(A),(B)の例における出力部材45aとなる。 As a result, the side frame parallel piece portion 36b of the movable piece 36 is swung by the displacement due to expansion and contraction in the stacking direction of the two sets of piezoelectric element laminates 19E and 19F, and the swing displacement is enlarged to enlarge the main frame parallel piece. This is the displacement of the portion 36a in the Y-axis direction. This displacement is further enlarged and becomes a displacement in the X-axis direction of the thin frame portion 37 b in the movable frame portion 37. This thin frame portion 37b becomes the output member 45a in the example of FIGS. 11 (A) and 11 (B).
 2組の圧電素子積層体19E,19Fは、X軸位置制御部63から印加される電圧である位置決め信号によって変位する。X軸位置制御部63は、位置指令部64から位置指令が電圧発生器65に与えられ、その位置指令に基づいて、電圧発生器65から前記圧電素子積層体19E,19Fに対応する電圧が印加される。X軸位置制御部63は、図1(A)の注入針移動制御手段88におけるX軸の注入針個別制御部88aに設けられる。また、その位置指令部64は、図1(A)の位置判定手段3によって得られた位置情報に基づいて、担当被導入体決定部87で定められる目標位置を前記位置指令とする。位置指令部64は、担当被導入体決定部87の一部として設けられたものであっても良い。 The two sets of piezoelectric element laminates 19E and 19F are displaced by a positioning signal that is a voltage applied from the X-axis position control unit 63. The X-axis position control unit 63 receives a position command from the position command unit 64 to the voltage generator 65, and applies a voltage corresponding to the piezoelectric element stacks 19E and 19F from the voltage generator 65 based on the position command. Is done. The X-axis position control unit 63 is provided in the X-axis injection needle individual control unit 88a in the injection needle movement control means 88 of FIG. Further, the position command unit 64 uses the target position determined by the assigned introducer determination unit 87 as the position command based on the position information obtained by the position determination unit 3 in FIG. The position command unit 64 may be provided as a part of the assigned introducer determining unit 87.
 図24は、第1の進退駆動手段45および第2の進退駆動手段46として使用可能な他の構成例を示す。ここでは、第2の進退駆動手段46に適用した場合につき説明する。この構成例でも、図22の構成例と同様に、固定台73と、駆動源となる2組の圧電素子積層体19G,19Hとを備える。固定台73は、X軸方向に延びる主枠部73aと、この主枠部73aの両端から幅方向(Y軸方向)に延びる一対の側枠部73b,73cとでなる。固定台73の一端の側枠部73bには、他端の側枠部73cに対向する伸縮方向移動体74がばね部材27Dを介してX軸方向に移動自在に支持されている。 FIG. 24 shows another configuration example that can be used as the first advance / retreat drive means 45 and the second advance / retreat drive means 46. Here, a case where the present invention is applied to the second advance / retreat driving means 46 will be described. Similarly to the configuration example of FIG. 22, this configuration example also includes a fixed base 73 and two sets of piezoelectric element laminates 19G and 19H serving as a drive source. The fixed base 73 includes a main frame portion 73a extending in the X-axis direction and a pair of side frame portions 73b and 73c extending in the width direction (Y-axis direction) from both ends of the main frame portion 73a. On the side frame portion 73b at one end of the fixed base 73, an expansion / contraction direction moving body 74 facing the side frame portion 73c at the other end is supported via a spring member 27D so as to be movable in the X-axis direction.
 2組の圧電素子積層体19G,19Hは、共に積層型圧電素子であって、積層方向に沿って前記固定台73の主枠部73aと平行となるように前後に並列に配置される。これら2組の圧電素子積層体19G,19Hは、締結部材78を介して直列に接続される。締結部材78は、前後の両圧電素子積層体19G,19Hの間にこれら両圧電素子積層体19G,19Hと平行に配置される長手方向部78aと、この長手方向部78aの両端において、前後方向に互いに逆方向となるように突出する各突部78b,78cとを有する概形Z字状である。1組の圧電素子積層体19Gは、その一端が固定台73の側枠部73cに支持され、他端が前記伸縮方向移動体74側に向く締結部材78の突部78bに連結されている。また、他の1組の圧電素子積層体19Hは、その一端が固定台側枠部73c側に向く前記締結部材78の突部78cに連結され、他端が伸縮方向移動体74に連結されている。前記ばね部材27Dは、圧電素子積層体19Hに予圧を与える。これにより、圧電素子積層体19G,19Hの伸縮変位に応じて伸縮方向移動体74がX軸方向に変位可能である。 The two piezoelectric element laminates 19G and 19H are both laminated piezoelectric elements, and are arranged in parallel in the front-rear direction so as to be parallel to the main frame portion 73a of the fixed base 73 along the lamination direction. These two sets of piezoelectric element laminates 19G and 19H are connected in series via a fastening member 78. The fastening member 78 includes a longitudinal direction portion 78a arranged in parallel with both the piezoelectric element laminates 19G and 19H between the front and rear piezoelectric element laminates 19G and 19H, and a longitudinal direction at both ends of the longitudinal direction portion 78a. And the projections 78b and 78c projecting so as to be opposite to each other. One set of the piezoelectric element laminates 19G is supported at one end by the side frame portion 73c of the fixed base 73, and the other end is connected to the protrusion 78b of the fastening member 78 facing the movable body 74 in the telescopic direction. The other set of piezoelectric element laminates 19H has one end connected to the protrusion 78c of the fastening member 78 facing the fixed base side frame 73c and the other end connected to the telescopic moving body 74. Yes. The spring member 27D applies a preload to the piezoelectric element laminate 19H. Thereby, the expansion-contraction direction moving body 74 can be displaced in the X-axis direction in accordance with the expansion / contraction displacement of the piezoelectric element laminates 19G, 19H.
 この構成例では、圧電素子積層体19G,19Hの伸縮をその伸縮方向(X軸方向)と直交する方向(Y軸方向)の変位に拡大する拡大機構としてリンク機構75を設けている。このリンク機構75は、1つの固定ジョイント76で固定台側枠部73cに連結され、1つの可動ジョイント77Aで前記伸縮方向移動体74に連結される。 In this configuration example, the link mechanism 75 is provided as an expansion mechanism that expands and contracts the piezoelectric element laminates 19G and 19H to displacement in a direction (Y-axis direction) orthogonal to the expansion / contraction direction (X-axis direction). The link mechanism 75 is connected to the fixed base side frame 73c by one fixed joint 76, and is connected to the telescopic direction moving body 74 by one movable joint 77A.
 図25(A)~(C)には、前記リンク機構75の各種構成例を示す。図25(A)の構成例では、1つの固定ジョイント76と、2つの可動ジョイント77A,77Bと、3つのリンク81A,81B,81Cとでリンク機構75が構成される。各固定ジョイント76および可動ジョイント77A,77Bは、それぞれ回動自在な節点を構成するジョイントであって、その回動中心が、圧電素子積層体19G,19Hの伸縮方向(X軸方向)およびその伸縮方向(X軸方向)と直交する方向(Y軸方向)のいずれに対しても垂直である。これについては、図25(B),(C)の各ジョイント76,77A,77B,77Cについても同様である。 25A to 25C show various configuration examples of the link mechanism 75. FIG. In the configuration example of FIG. 25A, a link mechanism 75 is configured by one fixed joint 76, two movable joints 77A and 77B, and three links 81A, 81B, and 81C. Each of the fixed joints 76 and the movable joints 77A and 77B is a joint that constitutes a rotatable node, and the center of rotation is the expansion / contraction direction (X-axis direction) of the piezoelectric element laminates 19G and 19H and the expansion / contraction thereof. It is perpendicular to any direction (Y-axis direction) orthogonal to the direction (X-axis direction). The same applies to the joints 76, 77A, 77B, and 77C in FIGS. 25 (B) and 25 (C).
 第1および第2のリンク81A,81Bは、それぞれ一端が前記固定ジョイント76および第1の可動ジョイント77Aに連結されて他端が第2の可動ジョイント77Bで互いに連結される。第3のリンク81Cは、一端が第2の可動ジョイント77Bに連結され、他端が、前記直交する方向(Y軸方向)にのみ移動自在に、リニアガイド,直動軸受等の案内機構(図示せず)により拘束された可動部82となる。固定ジョイント76は、前記圧電素子積層体19G,19Hの固定側の端部が固定された固定台73の側枠部73cに対して位置固定とする。可動部82を案内する前記案内機構は、この固定台73に設けられている。第1の可動ジョイント77Aは、前記圧電素子積層体19G,19Hの伸縮側の端部と一体に移動可能な伸縮方向移動体74に設けられ、この伸縮方向移動体74と共に移動可能とする。前記第3のリンク81Cの可動部82が、このリンク機構75の変位拡大出力部となる。 The first and second links 81A and 81B have one end connected to the fixed joint 76 and the first movable joint 77A and the other end connected to each other via the second movable joint 77B. The third link 81C has one end connected to the second movable joint 77B, and the other end movable only in the orthogonal direction (Y-axis direction), such as a linear guide, a linear motion bearing, or the like (see FIG. It becomes the movable part 82 restrained by (not shown). The fixed joint 76 is fixed in position with respect to the side frame portion 73c of the fixed base 73 to which the fixed ends of the piezoelectric element laminates 19G and 19H are fixed. The guide mechanism for guiding the movable portion 82 is provided on the fixed base 73. The first movable joint 77A is provided in an expansion / contraction direction moving body 74 that can move integrally with the expansion / contraction side ends of the piezoelectric element laminates 19G and 19H, and is movable together with the expansion / contraction direction moving body 74. The movable portion 82 of the third link 81 </ b> C serves as a displacement expansion output portion of the link mechanism 75.
 この構成によると、圧電素子積層体19G,19Hの伸縮により第1の可動ジョイント77AがX軸方向に変位し、この変位を拡大して第2の可動ジョイント77BがY軸方向に変位する。これに伴い第3のリンク81Cが回動角度を変えることで、その他端の可動部82が、前記リニアガイドなどの案内機構に案内されてY軸方向に変位する。この場合に、固定ジョイント76や可動ジョイント77A,77Bに、転がり軸受を用いることで摩擦抵抗を低減し、その転がり軸受に適正予圧を与えることでガタツキを抑制して、精密な位置決めを実現できる。また、弾性変形部がないので設計が容易である。 According to this configuration, the first movable joint 77A is displaced in the X-axis direction due to the expansion and contraction of the piezoelectric element laminates 19G and 19H, and this displacement is enlarged, and the second movable joint 77B is displaced in the Y-axis direction. Accordingly, the third link 81C changes the rotation angle, so that the movable portion 82 at the other end is guided in the Y-axis direction by being guided by the guide mechanism such as the linear guide. In this case, by using a rolling bearing for the fixed joint 76 and the movable joints 77A and 77B, the frictional resistance is reduced, and by providing an appropriate preload to the rolling bearing, rattling can be suppressed and precise positioning can be realized. Moreover, since there is no elastic deformation part, design is easy.
 図25(B)の構成例では、1つの固定ジョイント76と、3つの可動ジョイント77A,77B,77Cと、3つのリンク81A,81B,81Cとでリンク機構75が構成される。この例は、図25(A)の構成例において、第3のリンク81Cの基端を連結する可動ジョイントを、第2の可動ジョイント77Bとは別位置である第3の可動ジョイント77Cとしたものである。 25B, a link mechanism 75 is configured by one fixed joint 76, three movable joints 77A, 77B, and 77C and three links 81A, 81B, and 81C. In this example, in the configuration example of FIG. 25A, the movable joint that connects the base ends of the third links 81C is the third movable joint 77C that is located at a different position from the second movable joint 77B. It is.
 すなわち、固定ジョイント76に基端が連結された第1のリンク81Aの他端を、第1の可動ジョイント77Aに基端が連結された第2のリンク81Bの中間に第2の可動ジョイント77Bを介して連結する。第2のリンク81Bの先端に、第3の可動ジョイント77Cを介して第3のリンク81Cを連結する。第3のリンク81の先端を、伸縮方向(X軸方向)と直交する方向(Y軸方向)にのみ移動自在に、前記と同様な案内機構(図示せず)により拘束された可動部82とする。固定ジョイント76および第1の可動ジョイント77Aは、図25(A)の例と同様に、固定台73および伸縮方向移動体74にそれぞれ設けられる。図25(B)の例では、第3のリンク81Cの先端の可動部82が、リンク機構75の変位拡大出力部となる。 That is, the other end of the first link 81A having the base end connected to the fixed joint 76 is connected to the second movable joint 77B in the middle of the second link 81B having the base end connected to the first movable joint 77A. Connect through. The third link 81C is connected to the tip of the second link 81B via the third movable joint 77C. A movable portion 82 constrained by a guide mechanism (not shown) similar to the above so that the tip of the third link 81 is movable only in a direction (Y-axis direction) orthogonal to the expansion / contraction direction (X-axis direction); To do. The fixed joint 76 and the first movable joint 77A are provided on the fixed base 73 and the expansion / contraction direction moving body 74, respectively, as in the example of FIG. In the example of FIG. 25B, the movable portion 82 at the tip of the third link 81C is the displacement expansion output portion of the link mechanism 75.
 なお、第2の可動ジョイント77Bは、例えば、同図に断面を拡大して示すように、第1または第2のリンク81A,81Bのいずれか一方に固定された連結ピン121に、軸受122を介して第1または第2のリンク81A,81Bの他方に連結された構成とされる。軸受122は、いずれかのリンク81A,81Bに設けられた孔に嵌合して取付けられる。軸受122は、玉軸受等の転がり軸受および滑り軸受のいずれでも良いが、例えば予圧可能な転がり軸受とされる。 The second movable joint 77B has, for example, a bearing 122 attached to a connecting pin 121 fixed to one of the first or second links 81A and 81B, as shown in an enlarged cross-sectional view in FIG. Via the other of the first or second link 81A, 81B. The bearing 122 is fitted and attached to a hole provided in one of the links 81A and 81B. The bearing 122 may be either a rolling bearing such as a ball bearing or a sliding bearing. For example, the bearing 122 is a preloadable rolling bearing.
 この構成によると、圧電素子積層体19G,19Hの伸縮により可動ジョイント77AがX軸方向に変位し、この変位を拡大して別の可動ジョイント77CがY軸方向に変位し、これに伴い第3のリンク81Cが回動角度を変えることで、その先端の可動部82が、前記案内機構に案内されてY軸方向に変位する。 According to this configuration, the movable joint 77A is displaced in the X-axis direction due to the expansion and contraction of the piezoelectric element laminates 19G and 19H, and this displacement is enlarged so that another movable joint 77C is displaced in the Y-axis direction. When the link 81C changes the rotation angle, the movable portion 82 at the tip thereof is guided by the guide mechanism and displaced in the Y-axis direction.
 図25(A),(B)の構成例は、いずれも、各リンク81C,81B,81Cの寸法誤差や熱変形の影響が生じても、第3のリンク81Cの角度が独立して可変であることで吸収され、変位拡大出力部となる可動部82は、前記リニアガイド等の案内機構に沿ってY軸方向に直線方向に移動することができる。 In the configuration examples of FIGS. 25A and 25B, the angle of the third link 81C can be varied independently even if a dimensional error or thermal deformation of the links 81C, 81B, 81C occurs. The movable part 82 which is absorbed by being present and becomes a displacement expansion output part can move in the linear direction in the Y-axis direction along the guide mechanism such as the linear guide.
 なお、図25(A)の構成例では、第2の可動ジョイント77Bの位置で3つのリンク81A,81B,81Cが連結されるので、その軸方向に2つの軸受を並べて設けることが必要であり厚み方向の寸法が増大する。しかし、図25(B)の構成例の場合、可動ジョイント77B,77Cでは、その軸方向に1つの軸受122を設けるだけで良く、図25(A)の構成例の場合に比べて厚み寸法を1/2に低減できる。 In the configuration example of FIG. 25A, since the three links 81A, 81B, 81C are connected at the position of the second movable joint 77B, it is necessary to provide two bearings side by side in the axial direction thereof. The dimension in the thickness direction increases. However, in the case of the configuration example in FIG. 25B, the movable joints 77B and 77C only need to be provided with one bearing 122 in the axial direction, and the thickness dimension is larger than that in the configuration example in FIG. It can be reduced to 1/2.
 図25(C)の構成例では、1つの固定ジョイント76と、2つの可動ジョイント77A,77Bと、2つのリンク81A,81Bとでリンク機構75が構成される。すなわち、固定ジョイント76に基端が連結された第1のリンク81Aの他端を、第1の可動ジョイント77Aに基端が連結された第2のリンク81Bの中間に第2の可動ジョイント77Bを介して連結する。図23(A),(B)の例と同様に、固定ジョイント76は固定台73の側枠部73cに連結され、第1の可動ジョイント77Aは伸縮方向移動体74に連結される。この構成例では、第2のリンクの先端の可動部82が、リンク機構75の変位拡大出力部となる。 25C, the link mechanism 75 is configured by one fixed joint 76, two movable joints 77A and 77B, and two links 81A and 81B. That is, the other end of the first link 81A having the base end connected to the fixed joint 76 is connected to the second movable joint 77B in the middle of the second link 81B having the base end connected to the first movable joint 77A. Connect through. 23A and 23B, the fixed joint 76 is connected to the side frame portion 73c of the fixed base 73, and the first movable joint 77A is connected to the expansion / contraction direction moving body 74. In this configuration example, the movable portion 82 at the tip of the second link serves as a displacement expansion output portion of the link mechanism 75.
 この構成の場合、第2のリンク81Bの長さが第1のリンク81Aの2倍であって、リンク81Bの中央位置に第2の可動ジョイント77Bが配置されているため、可動部82は、リニアガイドなどの案内機構を設けることなく、移動方向が拘束される。その移動方向は、固定ジョイント76と第1の可動ジョイント77Aの中心を結んだ直線に対して直角の方向、つまり圧電素子積層体19G,19Hの伸縮方向(X軸方向)と直交する方向(Y軸方向)に変位自在とされる。 In the case of this configuration, the length of the second link 81B is twice that of the first link 81A, and the second movable joint 77B is disposed at the center position of the link 81B. The moving direction is constrained without providing a guide mechanism such as a linear guide. The moving direction is a direction perpendicular to the straight line connecting the centers of the fixed joint 76 and the first movable joint 77A, that is, a direction orthogonal to the expansion / contraction direction (X-axis direction) of the piezoelectric element laminates 19G and 19H (Y It can be displaced in the axial direction).
 この構成によると、圧電素子積層体19G,19Hの伸縮により可動ジョイント77AがX軸方向に変位し、この変位を拡大して第2のリンク81Bの先端である可動部82がY軸方向に変位する。この構成例は最もコンパクトなものとなる。この例の場合も、可動ジョイント77Bでは、その軸方向に1つの軸受を設けるだけで良く、図25(A)の構成例の場合に比べて厚み寸法を1/2に低減できる。 According to this configuration, the movable joint 77A is displaced in the X-axis direction due to the expansion and contraction of the piezoelectric element laminates 19G and 19H, and this displacement is expanded to displace the movable part 82 that is the tip of the second link 81B in the Y-axis direction. To do. This configuration example is the most compact. Also in this example, in the movable joint 77B, it is only necessary to provide one bearing in the axial direction, and the thickness dimension can be reduced to ½ compared to the case of the configuration example in FIG.
 図24の例では、図25(C)の例のリンク機構75が拡大機構として設けられている。その他の構成は、図22で示した例と同様である。 24, the link mechanism 75 of the example of FIG. 25C is provided as an enlargement mechanism. Other configurations are the same as the example shown in FIG.
 図26は、第1の進退駆動手段45および第2の進退駆動手段46として使用可能な他の構成例を示す。ここでは、第1の進退駆動手段45に適用した場合につき説明する。この構成例でも、図24の例と同様に、固定台83と、駆動源となる2組の圧電素子積層体19I,19Jとを備える。固定台83は、X軸方向に延びる主枠部83aと、この主枠部83aの両端から幅方向(Y軸方向)に延びる一対の側枠部83b,83cとでなる。固定台83の一端の側枠部83bには、他端の側枠部83cに対向する可動体84がばね部材27Eを介してX軸方向に移動自在に支持されている。 FIG. 26 shows another configuration example that can be used as the first advance / retreat drive means 45 and the second advance / retreat drive means 46. Here, the case where it applies to the 1st advance / retreat drive means 45 is demonstrated. This configuration example also includes a fixed base 83 and two sets of piezoelectric element laminates 19I and 19J serving as a drive source, as in the example of FIG. The fixed base 83 includes a main frame portion 83a extending in the X-axis direction and a pair of side frame portions 83b and 83c extending in the width direction (Y-axis direction) from both ends of the main frame portion 83a. A movable body 84 facing the side frame 83c at the other end is supported by the side frame 83b at one end of the fixed base 83 so as to be movable in the X-axis direction via a spring member 27E.
 2組の圧電素子積層体19I,19Jは、共に積層型圧電素子であって、積層方向に沿って前記固定台83の主枠部83aと平行となるように前後に並列に配置される。これら2組の圧電素子積層体19I,19Jは、締結部材85を介して直列に接続される。締結部材85は、前後の両圧電素子積層体19I,19Jの間にこれら両圧電素子積層体19I,19Jと平行に配置される長手方向部85aと、この長手方向部85aの両端において、前後方向に互いに逆方向となるように突出する各突部85b,85cとを有する概形Z字状である。1組の圧電素子積層体19Iは、その一端が固定台83の側枠部83cに支持され、他端が前記可動体84側に向く締結部材85の突部85bに連結されている。また、他の1組の圧電素子積層体19Jは、その一端が固定台側枠部83c側に向く前記締結部材85の突部85cに連結され、他端が可動体84に連結されている。前記ばね部材27Eは、圧電素子積層体19Jに予圧を与える。これにより、圧電素子積層体19I,19Jの伸縮変位に応じて可動体84がX軸方向に変位可能である。 The two sets of piezoelectric element laminates 19I and 19J are both laminated piezoelectric elements, and are arranged in parallel in the front-rear direction so as to be parallel to the main frame portion 83a of the fixed base 83 along the lamination direction. These two sets of piezoelectric element laminates 19 </ b> I and 19 </ b> J are connected in series via a fastening member 85. The fastening member 85 includes a longitudinal direction portion 85a disposed in parallel with both the piezoelectric element laminates 19I and 19J between the front and rear piezoelectric element laminates 19I and 19J, and a longitudinal direction at both ends of the longitudinal direction portion 85a. Are generally Z-shaped having protrusions 85b and 85c protruding in opposite directions. One set of the piezoelectric element laminates 19I is supported at one end by the side frame 83c of the fixed base 83, and the other end is connected to the protrusion 85b of the fastening member 85 facing the movable body 84 side. The other set of piezoelectric element laminates 19 </ b> J has one end connected to the protrusion 85 c of the fastening member 85 facing the fixed base frame 83 c and the other end connected to the movable body 84. The spring member 27E applies a preload to the piezoelectric element laminate 19J. Thereby, the movable body 84 can be displaced in the X-axis direction in accordance with the expansion and contraction of the piezoelectric element laminates 19I and 19J.
 この例では、圧電素子積層体19I,19Jの伸縮をその伸縮方向(X軸方向)と直交する方向(Y軸方向)の変位に拡大する第1の拡大機構として第1のリンク機構101を設けると共に、第1の拡大機構(第1のリンク機構101)により拡大された変位を圧電素子積層体19I,19Jの伸縮方向の変位に拡大する第2の拡大機構として第2のリンク機構102を設けている。これら両リンク機構101,102として、ここでは図25(C)に示したリンク機構75と同じ構成のものを用いている。なお、第2のリンク機構102は、第1のリンク機構101に対して、90°方向変換された姿勢とされる。 In this example, the first link mechanism 101 is provided as a first expansion mechanism that expands the expansion and contraction of the piezoelectric element laminates 19I and 19J to a displacement in the direction (Y-axis direction) orthogonal to the expansion / contraction direction (X-axis direction). In addition, a second link mechanism 102 is provided as a second expansion mechanism that expands the displacement expanded by the first expansion mechanism (first link mechanism 101) to the displacement in the expansion / contraction direction of the piezoelectric element laminates 19I and 19J. ing. As these both link mechanisms 101 and 102, the thing of the same structure as the link mechanism 75 shown to FIG.25 (C) is used here. Note that the second link mechanism 102 is in a posture that is 90-degree changed with respect to the first link mechanism 101.
 すなわち、第1のリンク機構101は、1つの固定ジョイント106と、2つの可動ジョイント107A,107Bと、2つのリンク108A,108Bとで構成される。具体的には、一端が1つの固定ジョイント106で固定台83の側枠部83cに連結される第1のリンク108Aと、圧電素子積層体19I,19Jの伸縮に応じてその伸縮方向に変位する可動体84に一端が1つの可動ジョイント107Aで連結され、中間部が第1のリンク108Aの他端に他の1つの可動ジョイント107Bで連結される第2のリンク108Bとで構成される。第2のリンク108Bの他端が、圧電素子積層体19I,19Jの伸縮方向(X軸方向)と直交する方向(Y軸方向)に変位自在とされる。 That is, the first link mechanism 101 includes one fixed joint 106, two movable joints 107A and 107B, and two links 108A and 108B. Specifically, one end is displaced in the expansion / contraction direction according to expansion / contraction of the first link 108A connected to the side frame portion 83c of the fixing base 83 by one fixed joint 106 and the piezoelectric element laminates 19I and 19J. One end is connected to the movable body 84 by one movable joint 107A, and the middle part is constituted by the second link 108B connected to the other end of the first link 108A by another one movable joint 107B. The other end of the second link 108B can be displaced in a direction (Y-axis direction) orthogonal to the expansion / contraction direction (X-axis direction) of the piezoelectric element stacks 19I and 19J.
 第2のリンク機構102も、1つの固定ジョイント116と、2つの可動ジョイント117A,117Bと、2つのリンク118A,118Bとで構成される。具体的には、一端が1つの固定ジョイント116で固定台83の側枠部83cに連結される第1のリンク118Aと、圧電素子積層体19I,19Jの伸縮に応じてその伸縮方向と直交するY軸方向に変位する前記第1のリンク機構101の第2のリンク108Bの他端に一端が1つの可動ジョイント117Aで連結され、中間部が第1のリンク118Aの他端に他の1つの可動ジョイント117Bで連結される第2のリンク118Bとで構成される。これにより、第1および第2のリンク機構101,102は、同一平面上で前記可動ジョイント117Aを介して2段に組み合わされる。この場合、第2のリンク機構102における第2のリンク118Bの先端が、変位拡大出力部である可動部119となり、圧電素子積層体19I,19Jの伸縮方向(X軸方向)に変位自在とされる。 The second link mechanism 102 is also composed of one fixed joint 116, two movable joints 117A and 117B, and two links 118A and 118B. Specifically, the first link 118A, one end of which is connected to the side frame 83c of the fixed base 83 by one fixed joint 116, and the expansion / contraction direction of the piezoelectric element laminates 19I and 19J are orthogonal to each other. One end is connected to the other end of the second link 108B of the first link mechanism 101 that is displaced in the Y-axis direction by one movable joint 117A, and the middle portion is connected to the other end of the first link 118A by another one The second link 118B is connected to the movable joint 117B. Thus, the first and second link mechanisms 101 and 102 are combined in two stages via the movable joint 117A on the same plane. In this case, the distal end of the second link 118B in the second link mechanism 102 becomes a movable portion 119 that is a displacement expansion output portion, and can be displaced in the expansion / contraction direction (X-axis direction) of the piezoelectric element laminates 19I and 19J. The
 この構成によると、第1のリンク機構101において、圧電素子積層体19I,19Jの伸縮により可動ジョイント107AがX軸方向に変位し、この変位を拡大してリンク10Bの他端である可動ジョイント117AがY軸方向に変位する。また、第2のリンク機構102では、前記可動ジョイント117AのY軸方向の変位を拡大してリンク118Bの他端である可動部119が圧電素子積層体19I,19Jの伸縮方向(X軸方向)に変位する。その他の構成は、図23で示した例と同様である。 According to this configuration, in the first link mechanism 101, the movable joint 107A is displaced in the X-axis direction by the expansion and contraction of the piezoelectric element laminates 19I and 19J, and this displacement is enlarged to expand the movable joint 117A that is the other end of the link 10B. Is displaced in the Y-axis direction. In the second link mechanism 102, the displacement of the movable joint 117A in the Y-axis direction is enlarged, and the movable portion 119, which is the other end of the link 118B, expands and contracts in the piezoelectric element stacks 19I and 19J (X-axis direction). It is displaced to. Other configurations are the same as the example shown in FIG.
 なお、図26のX軸移動機構14では、第1および第2のリンク機構101,102として、図25(C)に示した構成例のものを可動ジョイント117Aを介して2段に組み合わせた場合を示したが、これに限らず図25(B)に示した構成例のものを可動ジョイントを介して2段に組み合わせても良い。その例を図27に示す。この例では、第2のリンク機構102は、第1のリンク機構101に対して、90°方向転換された姿勢となっている。 In the X-axis moving mechanism 14 of FIG. 26, the first and second link mechanisms 101 and 102 are combined in two stages via the movable joint 117A with the configuration example shown in FIG. 25C. However, the present invention is not limited to this, and the configuration example shown in FIG. 25B may be combined in two stages via a movable joint. An example is shown in FIG. In this example, the second link mechanism 102 is turned 90 degrees with respect to the first link mechanism 101.
 図27の例では、第1のリンク機構101は、1つの固定ジョイント106と、3つの可動ジョイント107A,107B,107Cと、2つのリンク108A,108Bとを有するものとなる。第2のリンク機構102は、1つの固定ジョイント116と、3つの可動ジョイント117A,117B,117Cと、2つのリンク118A,118Bとを有するものとなる。第1のリンク機構101における可動部82と、第2のリンク機構102における第2のリンク118Bの基端とを可動ジョイント117Aで連結することにより、同一平面上で第1および第2のリンク機構101,102が2段に組み合わされる。第2のリンク機構102の第2のリンク118Bの先端が、変位拡大出力部である可動部119となり、圧電素子積層体19I,19Jの伸縮方向(X軸方向)に変位自在とされる。 27, the first link mechanism 101 includes one fixed joint 106, three movable joints 107A, 107B, and 107C, and two links 108A and 108B. The second link mechanism 102 has one fixed joint 116, three movable joints 117A, 117B, and 117C, and two links 118A and 118B. By connecting the movable portion 82 in the first link mechanism 101 and the base end of the second link 118B in the second link mechanism 102 with a movable joint 117A, the first and second link mechanisms on the same plane. 101 and 102 are combined in two stages. The tip of the second link 118B of the second link mechanism 102 becomes a movable part 119 which is a displacement expansion output part, and can be freely displaced in the expansion / contraction direction (X-axis direction) of the piezoelectric element laminates 19I and 19J.
 前記リンク機構75の他の構成例として、図28(A),(B)に示すように、リンク機構75は、1つの固定ジョイント76と2つの可動ジョイント77A,77Bと2つのリンク81A,81Bとからなるクランク・スライダ機構を有し、このクランク・スライダ機構は、前記圧電素子の伸長方向の変位を、前記2つの可動ジョイント77A,77Bおよび2つのリンク81A,81Bを介して、固定ジョイント76の円周上の任意の方向に変換し更に変位を拡大可能としても良い。 As another configuration example of the link mechanism 75, as shown in FIGS. 28A and 28B, the link mechanism 75 includes one fixed joint 76, two movable joints 77A and 77B, and two links 81A and 81B. The crank / slider mechanism comprises a fixed joint 76 that moves the displacement of the piezoelectric element in the extending direction via the two movable joints 77A and 77B and the two links 81A and 81B. It is also possible to change in an arbitrary direction on the circumference of the circle and further expand the displacement.
 図28(A)は、Y軸移動機構15の他の構成例を示す。この構成例にかかるY軸移動機構15も、図24の構成例と同様に、固定台73と、駆動源となる2組の圧電素子積層体19G,19Hとを備える。固定台73は、X軸方向に延びる一対の主枠部73a、73bと、この主枠部73a、73bの両端から幅方向(Y軸方向)に延びる一対の側枠部73c,73dと、4つの枠部を締結する側板73e とを有する。固定台73の一端の側枠部73cには、他端の側枠部73dに対向する伸縮方向移動体74がばね部材27Dを介してX軸方向に移動自在に支持されている。 FIG. 28A shows another configuration example of the Y-axis moving mechanism 15. Similarly to the configuration example of FIG. 24, the Y-axis moving mechanism 15 according to this configuration example includes a fixed base 73 and two sets of piezoelectric element laminates 19G and 19H serving as a drive source. The fixed base 73 includes a pair of main frame portions 73a and 73b extending in the X-axis direction, a pair of side frame portions 73c and 73d extending in the width direction (Y-axis direction) from both ends of the main frame portions 73a and 73b, and 4 Side plate 73e which fastens one frame part. On the side frame portion 73c at one end of the fixed base 73, an expansion / contraction direction moving body 74 facing the side frame portion 73d at the other end is supported via a spring member 27D so as to be movable in the X-axis direction.
 2組の圧電素子積層体19G,19Hは、共に積層型圧電素子であって、積層方向に沿って前記固定台73の主枠部73a、73bと平行となるように前後に並列に配置される。これら2組の圧電素子積層体19G,19Hは、締結部材78を介して直列に接続される。締結部材78は、前後の両圧電素子積層体19G,19Hの間にこれら両圧電素子積層体19G,19Hと平行に配置される長手方向部78aと、この長手方向部78aの両端において、前後方向に互いに逆方向となるように突出する各突部78b,78cとを有する概形Z字状である。1組の圧電素子積層体19Gは、その一端が固定台73の側枠部73cに支持され、他端が前記伸縮方向移動体74側に向く締結部材78の突部78bに連結されている。また、他の1組の圧電素子積層体19Hは、その一端が固定台側枠部73d側に向く前記締結部材78の突部78cに連結され、他端が伸縮方向移動体74に連結されている。前記ばね部材27Dは、圧電素子積層体19Hに予圧を与える。これにより、圧電素子積層体19G,19Hの伸縮変位に応じて伸縮方向移動体74がX軸方向に変位可能である。 The two sets of piezoelectric element laminates 19G and 19H are both laminated piezoelectric elements, and are arranged in parallel in the front-rear direction so as to be parallel to the main frame portions 73a and 73b of the fixed base 73 along the lamination direction. . These two sets of piezoelectric element laminates 19G and 19H are connected in series via a fastening member 78. The fastening member 78 includes a longitudinal direction portion 78a arranged in parallel with both the piezoelectric element laminates 19G and 19H between the front and rear piezoelectric element laminates 19G and 19H, and a longitudinal direction at both ends of the longitudinal direction portion 78a. And the projections 78b and 78c projecting so as to be opposite to each other. One set of the piezoelectric element laminates 19G is supported at one end by the side frame portion 73c of the fixed base 73, and the other end is connected to the protrusion 78b of the fastening member 78 facing the movable body 74 in the telescopic direction. The other set of piezoelectric element laminates 19H has one end connected to the protrusion 78c of the fastening member 78 facing the fixed base side frame 73d side and the other end connected to the telescopic moving body 74. Yes. The spring member 27D applies a preload to the piezoelectric element laminate 19H. Thereby, the expansion-contraction direction moving body 74 can be displaced in the X-axis direction in accordance with the expansion / contraction displacement of the piezoelectric element laminates 19G, 19H.
 この例では、圧電素子積層体19G,19Hの伸縮をその伸縮方向(X軸方向)と直交する方向(Y軸方向)の変位に拡大する拡大機構としてリンク機構75を設けている。このリンク機構75は、1つの固定ジョイント76で固定台側枠部73dに連結され、1つの可動ジョイント77Aで前記伸縮方向移動体74に連結される。 In this example, a link mechanism 75 is provided as an enlarging mechanism that expands and contracts the piezoelectric element laminates 19G and 19H to displacement in a direction (Y-axis direction) orthogonal to the expansion / contraction direction (X-axis direction). The link mechanism 75 is connected to the fixed base side frame 73d by one fixed joint 76, and is connected to the telescopic direction moving body 74 by one movable joint 77A.
 この構成によると、圧電素子積層体19G,19Hの伸縮により可動ジョイント77AがX軸方向に変位し、可動ジョイント77Bが固定ジョイント76を中心にして回転運動する。よって第1のリンク81Aに固定された可動部82がY軸方向に変位する。したがって、固定ジョイント76の円周上の任意の位置に出力部を設定することで任意の方向に変位拡大することができる。よって、進退駆動手段45,46の部品点数の削減や寸法の小型化が可能になる。 According to this configuration, the movable joint 77A is displaced in the X-axis direction due to the expansion and contraction of the piezoelectric element laminates 19G and 19H, and the movable joint 77B rotates about the fixed joint 76. Therefore, the movable part 82 fixed to the first link 81A is displaced in the Y-axis direction. Therefore, by setting the output portion at an arbitrary position on the circumference of the fixed joint 76, the displacement can be expanded in an arbitrary direction. Therefore, the number of parts of the advance / retreat drive means 45 and 46 can be reduced and the size can be reduced.
 図28(B)は、X軸移動機構14の他の構成例を示す。この図28(B)のX軸移動機構14も図28(A)と同じ構成を有し、リンク81Aに固定された可動ジョイント77Bと可動部82の位置を変更することで、X軸方向に変位する。したがって、固定ジョイント76の円周上の任意の位置に出力部を設定することで任意の方向に変位拡大することができ、よって、Y軸移動機構15の部品点数の削減や寸法の小型化が可能になる。 FIG. 28B shows another configuration example of the X-axis moving mechanism 14. The X-axis moving mechanism 14 in FIG. 28B also has the same configuration as that in FIG. 28A, and the position of the movable joint 77B and the movable portion 82 fixed to the link 81A is changed, so that the X-axis moving mechanism 14 in the X-axis direction is changed. Displace. Therefore, by setting the output portion at an arbitrary position on the circumference of the fixed joint 76, the displacement can be increased in an arbitrary direction. Therefore, the number of parts of the Y-axis moving mechanism 15 can be reduced and the size can be reduced. It becomes possible.
 図29は、図28(A)、(B)で示す前記リンク機構75の構成例を拡大して示す。図28(A)、(B)の構成例では、1つの固定ジョイント76と、2つの可動ジョイント77A,77Bと、2つのリンク81A、81Bとでクランク・スライダ機構となるリンク機構75が構成される各固定ジョイント76および可動ジョイント77A,77Bは、それぞれ回動自在な節点を構成するジョイントであって、その回動中心が、圧電素子積層体19G,19Hの伸縮方向(X軸方向)およびその伸縮方向(X軸方向)と直交する方向(Y軸方向)のいずれに対しても垂直である。 FIG. 29 shows an enlarged configuration example of the link mechanism 75 shown in FIGS. 28 (A) and 28 (B). In the configuration example shown in FIGS. 28A and 28B, one fixed joint 76, two movable joints 77A and 77B, and two links 81A and 81B constitute a link mechanism 75 serving as a crank / slider mechanism. The fixed joints 76 and the movable joints 77A and 77B are joints that respectively constitute rotatable nodes, and the center of rotation is the expansion / contraction direction (X-axis direction) of the piezoelectric element laminates 19G and 19H and It is perpendicular to any direction (Y-axis direction) orthogonal to the expansion / contraction direction (X-axis direction).
 第1および第2のリンク81A,81Bは、それぞれ一端が前記固定ジョイント76および第1の可動ジョイント77Aに連結されて他端が第2の可動ジョイント77Bで互いに連結される。第1の可動ジョイント77Aは、前記圧電素子積層体19G,19Hの伸縮側の端部と一体に移動可能な伸縮方向移動体74に設けられ、この伸縮方向移動体74と共に移動可能とする。 The first and second links 81A and 81B have one end connected to the fixed joint 76 and the first movable joint 77A and the other end connected to each other via the second movable joint 77B. The first movable joint 77A is provided in an expansion / contraction direction moving body 74 that can move integrally with the expansion / contraction side ends of the piezoelectric element laminates 19G and 19H, and is movable together with the expansion / contraction direction moving body 74.
 図30は、前記固定ジョイント76が第1の可動ジョイント77Aのスライド方向延長線上になく、オフセットを持っているオフセットクランク機構の構成を示す。 FIG. 30 shows a configuration of an offset crank mechanism in which the fixed joint 76 is not on the extension line in the sliding direction of the first movable joint 77A and has an offset.
 以上のとおり、図面を参照しながら好適な実施形態を説明したが、当業者であれば、本件明細書を見て、自明な範囲内で種々の変更および修正を容易に想定するであろう。したがって、そのような変更および修正は、請求の範囲から定まる発明の範囲内のものと解釈される。 As described above, the preferred embodiments have been described with reference to the drawings. However, those skilled in the art will readily assume various changes and modifications within the obvious scope by looking at the present specification. Accordingly, such changes and modifications are to be construed as within the scope of the invention as defined by the appended claims.
1…容器位置調整手段
2…撮像手段
3…顕微鏡
4…搬送手段
5…制御装置
7…画像処理手段
8…位置判定手段
8a…位置記憶部
9…担当範囲演算手段
10…挿入順決定手段
11…注入針
12…容器
14…X軸移動機構
15…Y軸移動機構
16…Z軸移動機構
19A~19J…圧電素子積層体
26…可動片(拡大機構)
36…可動片(第1の拡大機構)
37…可動枠部(第2の拡大機構)
40…基台
41…第1の移動体
42…第2の移動体
43…第1のガイド
44…第2のガイド
45…第1の進退駆動手段
45a…出力部材
46…第2の進退駆動手段
46a…出力部材
54…振動駆動手段
75…リンク機構(拡大機構)
76…固定ジョイント
77A,77B…可動ジョイント
81A~81C…リンク
79…干渉回避手段
86…視野範囲調整手段
88…注入針移動制御手段
89…容器移動制御手段
100…容器内全範囲処理手段
101…第1のリンク機構(第1の拡大機構)
102…第2のリンク機構(第2の拡大機構)
106…固定ジョイント
107A,107B…可動ジョイント
108A,108B…リンク
115…第3のガイド
114…第4のガイド
121…第1の弾性体
122…第2の弾性体
E…担当範囲
V…顕微鏡視野範囲
Va…重複する部分
T…被導入体
To …基準となる被導入体
M…容器内の分割の境界線
L…顕微鏡視野範囲における分割線
O…顕微鏡視野範囲における中心
DESCRIPTION OF SYMBOLS 1 ... Container position adjustment means 2 ... Imaging means 3 ... Microscope 4 ... Conveyance means 5 ... Control apparatus 7 ... Image processing means 8 ... Position determination means 8a ... Position storage part 9 ... Assigned range calculation means 10 ... Insertion order determination means 11 ... Injection needle 12 ... container 14 ... X-axis moving mechanism 15 ... Y-axis moving mechanism 16 ... Z-axis moving mechanism 19A-19J ... Piezoelectric element laminate 26 ... movable piece (enlargement mechanism)
36 ... movable piece (first enlargement mechanism)
37 ... Movable frame (second enlargement mechanism)
40 ... Base 41 ... First moving body 42 ... Second moving body 43 ... First guide 44 ... Second guide 45 ... First forward / backward driving means 45a ... Output member 46 ... Second forward / backward driving means 46a ... output member 54 ... vibration driving means 75 ... link mechanism (enlargement mechanism)
76 ... fixed joints 77A, 77B ... movable joints 81A-81C ... link 79 ... interference avoiding means 86 ... visual field range adjusting means 88 ... injection needle movement control means 89 ... container movement control means 100 ... in-container full range processing means 101 ... first 1 link mechanism (first expansion mechanism)
102 ... Second link mechanism (second enlargement mechanism)
106 ... fixed joints 107A, 107B ... movable joints 108A, 108B ... link 115 ... third guide 114 ... fourth guide 121 ... first elastic body 122 ... second elastic body E ... responsible range V ... microscope field of view range Va ... overlapping portion T ... introduced object To ... standard introduced object M ... division boundary L in container ... dividing line O in microscope field of view range ... center in microscope field of view

Claims (28)

  1.  内部に導入物質が充填された注入針を被導入体に挿入することにより、被導入体内に導入物質を導入するインジェクション処理を行うマイクロインジェクション装置であって、
     前記被導入体の入った容器の位置を調整する容器位置調整手段と、
     この容器位置調整手段で位置調整された容器の内部の被導入体に対して、複数の注入針をそれぞれ個別に少なくとも2次元方向に移動可能な複数の搬送手段と、
     前記容器位置調整手段により位置調整された前記容器の内部を、顕微鏡を通して顕微鏡視野範囲で撮像する撮像手段と、
     この撮像手段によって得られた画像から前記顕微鏡視野範囲の各被導入体の位置を判定する位置判定手段と、
     この位置判定手段で判定された各被導入体の位置の情報から、定められた規則に従って各注入針の搬送手段の負荷が均等化されるように、各注入針が担当する前記顕微鏡視野内での範囲を決定する担当範囲演算手段と、
     この担当範囲演算手段で決定された担当範囲の各被導入体に対して、前記位置判定手段で判定された各被導入体の位置の情報から前記各搬送手段に注入針の移動を行わせる注入針移動制御手段と、を備えるマイクロインジェクション装置。
    A microinjection apparatus for performing an injection process for introducing an introduction substance into an introduction body by inserting an injection needle filled with the introduction substance into the introduction body,
    Container position adjusting means for adjusting the position of the container containing the introduced body;
    A plurality of conveying means capable of individually moving a plurality of injection needles in at least a two-dimensional direction with respect to the introduction body inside the container whose position is adjusted by the container position adjusting means;
    Imaging means for imaging the inside of the container whose position is adjusted by the container position adjusting means through a microscope in a microscope visual field range;
    Position determining means for determining the position of each introduced object in the microscope visual field range from the image obtained by the imaging means;
    From the information on the position of each introducer determined by the position determination means, the load on the conveying means of each injection needle is equalized in accordance with a predetermined rule within the microscope field of view that each injection needle is responsible for. Responsible range calculation means for determining the range of
    For each introducer in the assigned range determined by the assigned range calculating means, an injection for causing the respective conveying means to move the injection needle from the information on the position of each introduced object determined by the position determining means A microinjection device comprising needle movement control means.
  2.  請求項1において、前記担当範囲演算手段は、各注入針が担当する面積がほぼ均等となるように、前記顕微鏡視野範囲の領域を分割するマイクロインジェクション装置。 2. The microinjection apparatus according to claim 1, wherein the assigned range calculation means divides the region of the microscope visual field range so that the areas handled by the injection needles are substantially equal.
  3.  請求項1において、前記担当範囲演算手段は、各注入針が担当する被導入体の数がほぼ均等となるように前記顕微鏡視野範囲の領域を分割するマイクロインジェクション装置。 2. The microinjection apparatus according to claim 1, wherein the assigned range calculation means divides the region of the microscope visual field range so that the number of introduced objects handled by each injection needle is substantially equal.
  4.  請求項1において、前記注入針移動制御手段に、個々の注入針毎に、担当する各被導入体へのインジェクション処理の動作における注入針の総移動距離が最短になるように、被導入体のインジェクション処理の順番を決定する挿入順決定手段を設けたマイクロインジェクション装置。 The injection needle movement control means according to claim 1, wherein the injection needle movement control means is configured so that the total movement distance of the injection needle in the operation of the injection processing to each of the introduction bodies in charge is minimized for each injection needle. A microinjection apparatus provided with an insertion order determining means for determining the order of injection processing.
  5.  請求項1において、個々の注入針毎に、担当する各被導入体へのインジェクション処理の動作における注入針の総移動距離が最短になるように、被導入体のインジェクション処理の順番を決定する挿入順決定手段を設け、前記担当範囲演算手段は、個々の注入針の前記総移動距離がほぼ均等となるように前記顕微鏡視野範囲の領域を分割するマイクロインジェクション装置。 In Claim 1, for each individual injection needle, the insertion for determining the order of the injection process of the introduction body so that the total movement distance of the injection needle in the operation of the injection process to each introduction body in charge is the shortest A microinjection apparatus provided with order determination means, wherein the assigned range calculation means divides the region of the microscope visual field range so that the total movement distances of the individual injection needles are substantially equal.
  6.  請求項1において、前記注入針移動制御手段に、個々の注入針毎に、担当する各被導入体へのインジェクション処理の動作における注入針の総移動距離が最短になるように、被導入体のインジェクション処理の順番を決定する挿入順決定手段を設け、前記担当範囲演算手段は、個々の注入針の前記総移動距離と処理個数の積がほぼ均等となるように顕微鏡視野範囲の領域を分割するマイクロインジェクション装置。 The injection needle movement control means according to claim 1, wherein the injection needle movement control means is configured so that the total movement distance of the injection needle in the operation of the injection processing to each of the introduction bodies in charge is minimized for each injection needle. An insertion order determining means for determining the order of the injection processing is provided, and the assigned range calculating means divides the region of the microscope visual field range so that the product of the total moving distance and the number of processed individual injection needles is substantially equal. Microinjection device.
  7.  請求項1において、前記注入針移動制御手段に、個々の注入針毎に、担当する各被導入体へのインジェクション処理の動作における注入針の総移動距離が最短になるように、被導入体のインジェクション処理の順番を決定する挿入順決定手段を設け、前記担当範囲演算手段は、注入針の移動時間と、注入針が被導入体に挿入されている間に導入物質の導入のために停止させるインジェクション時間とを算出し、インジェクション時間と移動時間の和である処理時間がほぼ均等となるように前記顕微鏡視野範囲の領域を分割するマイクロインジェクション装置。 The injection needle movement control means according to claim 1, wherein the injection needle movement control means is configured so that the total movement distance of the injection needle in the operation of the injection processing to each of the introduction bodies in charge is minimized for each injection needle. An insertion order determining means for determining the order of the injection processing is provided, and the assigned range calculating means stops the introduction time of the injection needle and introduction of the introduction substance while the injection needle is inserted into the introducer. A microinjection apparatus that calculates an injection time and divides the region of the microscope visual field range so that a processing time that is the sum of the injection time and the movement time is substantially equal.
  8.  請求項1において、前記担当範囲演算手段は、各注入針を並行して動作させたときに注入針同士の干渉が生じないことを優先条件とし、この優先条件下で前記顕微鏡視野範囲の領域を分割するマイクロインジェクション装置。 In Claim 1, the said charge range calculating means makes it a priority condition that interference between injection needles does not occur when each injection needle is operated in parallel, and the region of the microscope visual field range under this priority condition. Microinjection device to divide.
  9.  請求項1において、注入針同士が干渉しないように、各注入針の被導入体へのインジェクション処理の順番を決定する干渉回避手段を設けたマイクロインジェクション装置。 2. The microinjection apparatus according to claim 1, further comprising interference avoiding means for determining an order of injection processing of each injection needle to the introduction target so that the injection needles do not interfere with each other.
  10.  請求項1において、被導入体の大きさに応じて、顕微鏡視野範囲を調整する視野範囲調整手段を設けたマイクロインジェクション装置。 2. The microinjection apparatus according to claim 1, further comprising a field-of-view range adjusting unit that adjusts the microscope field-of-view range in accordance with the size of the introduction target.
  11.  請求項1において、顕微鏡視野範囲に応じて前記容器位置調整手段により容器の位置を順次移動させ、容器内の全領域で前記注入針のインジェクション処理を行わせるように前記容器位置調整手段および前記各注入針の搬送手段を制御する容器内全範囲処理手段を設けたマイクロインジェクション装置。 2. The container position adjusting means according to claim 1, wherein the container position adjusting means sequentially moves the position of the container in accordance with a microscope visual field range, and performs the injection processing of the injection needle in the entire region in the container. A microinjection apparatus provided with a full range processing means in a container for controlling a transport means of an injection needle.
  12.  請求項11において、前記容器内全範囲処理手段は、顕微鏡視野範囲の全ての被導入体に対するインジェクション処理が行なわれた後、顕微鏡視野範囲に応じて前記容器を前記容器位置調整手段により順次移動させ、各回の移動後の位置における容器内の被導入体に対してインジェクション処理を行わせるマイクロインジェクション装置。 12. The in-container full range processing means according to claim 11, wherein after the injection processing is performed on all the introduction objects in the microscope visual field range, the container is sequentially moved by the container position adjusting means in accordance with the microscope visual field range. A microinjection device that performs an injection process on an introduced object in a container at a position after each movement.
  13.  請求項11において、前記容器内全範囲処理手段を設けた場合に、前記各注入針のインジェクション処理の順番を定められた規則より決める挿入順決定手段を備え、前記容器内全範囲処理手段は、顕微鏡視野範囲に応じて前記容器位置調整手段により容器の位置を順次移動させ、複数回の移動先の各顕微鏡視野範囲の被導入体の位置を、インジェクション処理よりも前に、前記位置判定手段により判定させ、かつ前記担当範囲演算手段に各注入針が担当する前記範囲を決定させ、前記挿入順決定手段にインジェクション処理の順番を決定させるマイクロインジェクション装置。 In Claim 11, when providing the in-container full range processing means, it comprises an insertion order determining means for determining the order of the injection processing of each injection needle from a predetermined rule, the in-container full range processing means, The position of the container is sequentially moved by the container position adjusting means according to the microscope visual field range, and the position of the introduced object in each microscope visual field range of the plurality of movement destinations is determined by the position determining means before the injection process. A microinjection apparatus that makes a determination, causes the assigned range calculation means to determine the range assigned to each injection needle, and causes the insertion order determination means to determine the order of injection processing.
  14.  請求項11において、前記各注入針のインジェクション処理の順番を定められた規則より決める挿入順決定手段を備え、前記容器内全範囲処理手段は、顕微鏡視野範囲に応じて前記容器位置調整手段により容器の位置を順次移動させて前記容器内の全被導入体の位置を、インジェクション処理よりも前に、前記位置判定手段により判定させ、かつ前記担当範囲演算手段に各注入針が担当する前記範囲を決定させ、前記挿入順決定手段にインジェクション処理の順番を決定させるマイクロインジェクション装置。 12. The method according to claim 11, further comprising insertion order determining means for determining the order of injection processing of each injection needle from a predetermined rule, wherein the entire range processing means in the container is controlled by the container position adjusting means according to the microscope visual field range. The positions of all the introduced objects in the container are sequentially moved by the position determination means before the injection process, and the range for each injection needle is assigned to the assigned range calculation means. A microinjection apparatus that determines the order of injection processing by the insertion order determination means.
  15.  請求項11において、前記容器内全範囲処理手段は、顕微鏡視野範囲に応じて前記容器位置調整手段により容器の位置を順次移動させ、現在の顕微鏡視野範囲の被導入体の位置を位置判定手段により判定させると同時に、複数回前の顕微鏡視野範囲の各被導入体へのインジェクション処理を、前記注入針移動制御手段による搬送装置の移動によって行わせるマイクロインジェクション装置。 In Claim 11, the said whole range processing means in a container moves the position of a container sequentially by the said container position adjustment means according to a microscope visual field range, and the position of the introduce | transduced body of the present microscope visual field range by a position determination means. A microinjection apparatus that causes the injection process to the injection target movement control means to perform the injection process to each introduced object in the microscope visual field range a plurality of times before the determination.
  16.  請求項11において、前記容器内全範囲処理手段は、前記容器位置調整手段により容器の位置を順次移動させるときに、顕微鏡視野範囲に重複する部分を持つように移動させるマイクロインジェクション装置。 12. The microinjection apparatus according to claim 11, wherein when the container position adjusting means sequentially moves the position of the container, the entire range processing means in the container moves so as to have an overlapping portion in the microscope visual field range.
  17.  請求項16において、前記容器内全範囲処理手段は、前記重複する部分の面積が同じになるようにするマイクロインジェクション装置。 17. The microinjection apparatus according to claim 16, wherein the in-container full range processing means makes the overlapping portions have the same area.
  18.  請求項16において、前記容器内全範囲処理手段は、前記容器位置調整手段により容器の位置を順次移動させるときに、定められた規則により、顕微鏡視野範囲内に基準となる被導入体を決定し、その被導入体が含まれる領域が重複するように移動させるマイクロインジェクション装置。 17. The entire range processing means in a container according to claim 16, wherein when the position of the container is sequentially moved by the container position adjusting means, an object to be introduced is determined as a reference within the microscope visual field range according to a predetermined rule. And a microinjection apparatus for moving the region including the introduced body so as to overlap each other.
  19.  請求項1において、前記搬送手段は、進退自在に設置された移動体と、この移動体を移動させる進退駆動手段とを有し、前記進退駆動手段は、駆動源として、複数の圧電素子が積層されて積層方向に伸縮する圧電素子積層体を有するマイクロインジェクション装置。 2. The conveying means according to claim 1, further comprising: a moving body that is installed so as to be movable forward and backward; and an advancing / retreating driving means that moves the moving body, and the advancing / retreating driving means includes a plurality of piezoelectric elements stacked as a drive source. And a microinjection device having a piezoelectric element laminate that expands and contracts in the lamination direction.
  20.  請求項19において、前記搬送手段における前記圧電素子積層体を駆動源とする進退駆動手段は、圧電素子積層体を平行に配置し、これら複数の圧電素子積層体を、結合部材を介して伸縮方向に直列に接続したマイクロインジェクション装置。 20. The advancing / retreating drive means using the piezoelectric element laminate in the transport means as a drive source according to claim 19, wherein the piezoelectric element laminates are arranged in parallel, and the plurality of piezoelectric element laminates are stretched in the extension direction via a coupling member. Microinjection device connected in series.
  21.  請求項20において、前記搬送手段における前記圧電素子積層体を駆動源とする進退駆動手段は、圧電素子積層体の伸縮をその伸縮方向と直交する方向の変位に拡大する拡大機構を有するマイクロインジェクション装置。 21. The microinjection apparatus according to claim 20, wherein the advancing / retreating drive unit using the piezoelectric element laminate in the transport unit as a drive source has an expansion mechanism that expands and contracts the piezoelectric element laminate to a displacement in a direction perpendicular to the expansion / contraction direction. .
  22.  請求項21において、前記拡大機構がリンク機構からなるマイクロインジェクション装置。 The microinjection device according to claim 21, wherein the expansion mechanism is a link mechanism.
  23.  請求項20において、前記搬送手段における前記圧電素子積層体を駆動源とする進退駆動手段は、圧電素子積層体の伸縮をその伸縮方向と平行な方向の変位に拡大する拡大機構を有するマイクロインジェクション装置。 21. The microinjection apparatus according to claim 20, wherein the advancing / retreating drive unit using the piezoelectric element laminate in the transport unit as a drive source has an expansion mechanism that expands and contracts the piezoelectric element laminate to displacement in a direction parallel to the expansion / contraction direction. .
  24.  請求項23において、前記拡大機構がリンク機構からなるマイクロインジェクション装置。 24. The microinjection device according to claim 23, wherein the expansion mechanism is a link mechanism.
  25.  請求項22において、前記リンク機構は、1つの固定ジョイントと2つの可動ジョイントと2つのリンクとからなるクランク・スライダ機構を有し、このクランク・スライダ機構は、前記圧電素子の伸長方向の変位を、前記2つの可動ジョイントおよび2つのリンクを介して、固定ジョイントの円周上の任意の方向に変換し更に変位を拡大可能としたマイクロインジェクション装置。 23. The link mechanism according to claim 22, wherein the link mechanism includes a crank / slider mechanism including one fixed joint, two movable joints, and two links. A microinjection device that can be converted into an arbitrary direction on the circumference of the fixed joint and further expand the displacement through the two movable joints and the two links.
  26.  請求項24において、前記リンク機構は、1つの固定ジョイントと2つの可動ジョイントと2つのリンクとからなるクランク・スライダ機構を有し、このクランク・スライダ機構は、前記圧電素子の伸長方向の変位を、前記2つの可動ジョイントおよび2つのリンクを介して、固定ジョイントの円周上の任意の方向に変換し更に変位を拡大可能としたマイクロインジェクション装置。 25. The link mechanism according to claim 24, wherein the link mechanism has a crank-slider mechanism including one fixed joint, two movable joints, and two links, and the crank-slider mechanism is configured to reduce displacement in the extension direction of the piezoelectric element. A microinjection device that can be converted into an arbitrary direction on the circumference of the fixed joint and further expand the displacement through the two movable joints and the two links.
  27.  請求項1において、前記搬送手段は、少なくとも第1の移動体と第2の移動体とを互いに直交する方向に進退自在とした2自由度を持っていて、第2の移動体に前記注入針を支持し、前記第1の移動体が第1のガイドを介して基台に直線方向に進退自在移動可能に設置され、第1の移動体の上に第2のガイドを介して第2の移動体が、前記直線方向と直交する方向に進退自在に設置され、前記第1の移動体および第2の移動体をそれぞれ進退させる第1の進退駆動手段および第2の進退駆動手段が前記基台に設置され、前記第2の進退駆動手段の出力部材が、第2の移動体に対して進退移動可能な方向と直交する方向に対して移動が自在に連結され、または接触するマイクロインジェクション装置。 2. The conveying means according to claim 1, having at least two degrees of freedom in which at least the first moving body and the second moving body can advance and retreat in directions orthogonal to each other, and the injection needle is attached to the second moving body. The first moving body is installed on the base through the first guide so as to be movable forward and backward in a linear direction, and the second moving body is disposed on the first moving body via the second guide. A moving body is installed so as to be able to advance and retreat in a direction orthogonal to the linear direction, and the first advancing / retreating driving means and the second advancing / retreating driving means for advancing and retracting the first moving body and the second moving body, respectively, A microinjection device installed on a table and in which the output member of the second advancing / retreating drive unit is movably connected to or in contact with a direction perpendicular to the direction in which the second moving body can move back and forth. .
  28.  請求項1において、被導入体が細胞であり、導入物質が遺伝子制御因子であるマイクロインジェクション装置。 2. The microinjection apparatus according to claim 1, wherein the introducer is a cell and the introduced substance is a gene regulatory factor.
PCT/JP2011/065784 2010-07-16 2011-07-11 Microinjection device WO2012008407A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010161319A JP2012019754A (en) 2010-07-16 2010-07-16 Microinjection device
JP2010-161319 2010-07-16

Publications (1)

Publication Number Publication Date
WO2012008407A1 true WO2012008407A1 (en) 2012-01-19

Family

ID=45469406

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/065784 WO2012008407A1 (en) 2010-07-16 2011-07-11 Microinjection device

Country Status (2)

Country Link
JP (1) JP2012019754A (en)
WO (1) WO2012008407A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018117106A1 (en) * 2016-12-21 2018-06-28 オリンパス株式会社 Sample observation device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007175026A (en) * 2005-12-28 2007-07-12 Fujitsu Ltd Injection apparatus and injection method
JP2007175045A (en) * 2006-03-10 2007-07-12 Fujitsu Ltd Injection apparatus and injection method
JP2007175047A (en) * 2006-03-10 2007-07-12 Fujitsu Ltd Injection apparatus and injection method
JP2007175046A (en) * 2006-03-10 2007-07-12 Fujitsu Ltd Injection apparatus and injection method
JP2008029266A (en) * 2006-07-28 2008-02-14 Fujitsu Ltd Apparatus for microinjection and method for microinjection
JP2008233545A (en) * 2007-03-20 2008-10-02 Nsk Ltd Manipulator
JP2009232710A (en) * 2008-03-26 2009-10-15 Fujitsu Ltd Microinjection apparatus, microinjection method, intermittently photographing apparatus, and intermittetly photographing method
WO2010079580A1 (en) * 2009-01-09 2010-07-15 Ntn株式会社 Microinjection apparatus and microinjection method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007175026A (en) * 2005-12-28 2007-07-12 Fujitsu Ltd Injection apparatus and injection method
JP2007175045A (en) * 2006-03-10 2007-07-12 Fujitsu Ltd Injection apparatus and injection method
JP2007175047A (en) * 2006-03-10 2007-07-12 Fujitsu Ltd Injection apparatus and injection method
JP2007175046A (en) * 2006-03-10 2007-07-12 Fujitsu Ltd Injection apparatus and injection method
JP2008029266A (en) * 2006-07-28 2008-02-14 Fujitsu Ltd Apparatus for microinjection and method for microinjection
JP2008233545A (en) * 2007-03-20 2008-10-02 Nsk Ltd Manipulator
JP2009232710A (en) * 2008-03-26 2009-10-15 Fujitsu Ltd Microinjection apparatus, microinjection method, intermittently photographing apparatus, and intermittetly photographing method
WO2010079580A1 (en) * 2009-01-09 2010-07-15 Ntn株式会社 Microinjection apparatus and microinjection method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018117106A1 (en) * 2016-12-21 2018-06-28 オリンパス株式会社 Sample observation device

Also Published As

Publication number Publication date
JP2012019754A (en) 2012-02-02

Similar Documents

Publication Publication Date Title
WO2010079580A1 (en) Microinjection apparatus and microinjection method
Wu et al. Survey on recent designs of compliant micro-/nano-positioning stages
US20210003778A1 (en) Multi-axis positioner
US11342864B2 (en) Three-degrees-of-freedom angle adjustment device driven by piezoelectric ceramics and adjusting method thereof
US7948337B2 (en) Simultaneous rotational control using offset linear actuators
CN102540442B (en) Plane parallel three-degree-of-freedom precise operating platform
Al-Jodah et al. Development and control of a large range XYΘ micropositioning stage
Liu et al. Design and analysis of an X–Y parallel nanopositioner supporting large-stroke servomechanism
WO2015113998A1 (en) Positioning motor and method of operation
Chen et al. Design of a compliant mechanism based four-stage amplification piezoelectric-driven asymmetric microgripper
Zhang et al. Design, modeling, and testing of a novel XY piezo-actuated compliant micro-positioning stage
Han et al. Kinematics analysis and testing of novel 6-P-RR-R-RR parallel platform with offset RR-joints
WO2012008407A1 (en) Microinjection device
Shi et al. Investigation on a linear piezoelectric actuator based on stick-slip/scan excitation
Lu et al. A stiffness modeling approach for multi-leaf spring mechanism supporting coupling error analysis of nano-stages
Ling et al. Enhancing dynamic bandwidth of amplified piezoelectric actuators by a hybrid lever and bridge-type compliant mechanism
JP2010261929A (en) Microinjection apparatus
WO2011122436A1 (en) Microinjection device
Tanabe et al. Precise Position Control of Holonomic Inchworm Robot Using Four Optical Encoders
Wang et al. Design and performance of a spatial 6-R RRR compliant parallel nanopositioning stage
Zhang et al. Design of a parallel XYθ micro-manipulating system with large stroke
US20240019634A1 (en) Multi-axis positioner
Lv et al. Research on a 3-DOF motion device based on the flexible mechanism driven by the piezoelectric actuators
Yang et al. Design and performance research of a precision micro-drive reduction system without additional motion
Yang et al. A novel design of compact tilt stage with spatially distributed anti-symmetric compliant mechanism

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11806737

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11806737

Country of ref document: EP

Kind code of ref document: A1