WO2012008243A1 - Illumination device, display device and television receiver - Google Patents

Illumination device, display device and television receiver Download PDF

Info

Publication number
WO2012008243A1
WO2012008243A1 PCT/JP2011/063041 JP2011063041W WO2012008243A1 WO 2012008243 A1 WO2012008243 A1 WO 2012008243A1 JP 2011063041 W JP2011063041 W JP 2011063041W WO 2012008243 A1 WO2012008243 A1 WO 2012008243A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light source
divided
led
guide member
Prior art date
Application number
PCT/JP2011/063041
Other languages
French (fr)
Japanese (ja)
Inventor
張 志芳
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2012008243A1 publication Critical patent/WO2012008243A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/12Scanning systems using multifaceted mirrors
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/024Scrolling of light from the illumination source over the display in combination with the scanning of the display screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3406Control of illumination source
    • G09G3/342Control of illumination source using several illumination sources separately controlled corresponding to different display panel areas, e.g. along one dimension such as lines
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/32Pulse-control circuits
    • H05B45/325Pulse-width modulation [PWM]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/34Voltage stabilisation; Maintaining constant voltage

Definitions

  • the present invention relates to a lighting device, a display device, and a television receiver.
  • the display elements of image display devices such as television receivers are shifting from conventional cathode ray tubes to thin display panels such as liquid crystal panels and plasma display panels, which enables thinning of image display devices.
  • a backlight device is separately required as a lighting device, and the backlight device is roughly classified into a direct type and an edge light type according to the mechanism.
  • an edge light type backlight device it is preferable to use an edge light type backlight device, and an example described in Patent Document 1 below is known.
  • Patent Document 1 includes a large number of light sources arranged in parallel to the end of the backlight device, and a light guide plate that guides light from each light source and emits it toward the liquid crystal panel side. By adjusting the light emission state of each light source individually, the amount of light emitted from each region of the light guide plate divided in correspondence with each light source is controlled. However, in this case, since it is necessary to arrange a large number of light sources in parallel along the light incident surface, there is a problem that the cost related to the light sources tends to be high. It was a problem.
  • the present invention has been completed based on the above circumstances, and aims to reduce costs.
  • the illumination device includes a light source, a light guide member having a light incident surface on which light from the light source is incident, and the light incident surface that reflects light from the light source while being rotated. And the light incident surface is divided into a plurality of regions in the scanning direction by the reflected light from the rotating reflector, and is associated with the scanning period of the reflected light for each region.
  • a control unit that controls the light emission state of the light source in a time-sharing manner.
  • the light emitted from the light source is reflected by the rotating reflector and then enters the light incident surface of the light guide member.
  • the rotating reflector reflects light from the light source while being rotated, the light incident surface can be scanned by the reflected light.
  • the control unit controls the light emission state of the light source in a time-sharing manner in association with the scanning period of the reflected light for each region on the light incident surface divided in the scanning direction by the reflected light, thereby reflecting the reflected light for each region. It is possible to individually adjust the amount of incident light.
  • the present invention it is possible to reduce the number of light sources used, compared to a conventional arrangement in which a large number of light sources are arranged in parallel and the light emission state of each light source is individually adjusted. Costs related to the light source can be reduced.
  • the alignment direction of the light source and the rotating reflector and the alignment direction of the rotating reflector and the light guide member are substantially orthogonal to each other. If it does in this way, compared with the case where a light source, a rotation reflector, and a light guide member are all located in a line, the whole illuminating device can be kept small.
  • the rotating reflector is disposed at a substantially central position of the light incident surface in the scanning direction. In this way, among the light reflected by the rotating reflector, the light path lengths of the light reaching one end of the light incident surface and the light reaching the other end in the scanning direction are substantially equal. Become. Therefore, for example, it is possible to obtain an effect that it is easy to set the scanning period of each region of the light incident surface by the reflected light from the rotating reflector.
  • the light source is disposed on an end side of the light incident surface in the scanning direction. In this case, compared to a case where the light source is arranged on the center side of the light incident surface in the scanning direction, it is possible to obtain an effect such as easy connection of wiring to the light source.
  • the plurality of regions on the light incident surface are partitioned so that the dimensions in the scanning direction are substantially the same. In this way, the scanning period of the reflected light from the rotating reflector for each region can be made substantially the same, so that the control by the control unit becomes easier.
  • the rotating reflector is constituted by a polygon mirror that rotates in one direction. In this way, each region on the light incident surface can be scanned by the reflected light from the polygon mirror rotating in one direction, which is particularly suitable for scanning the light incident surface at high speed.
  • the polygonal mirror has a regular polygonal shape when viewed from the direction along the rotation axis. In this way, the surfaces that reflect the light from the light source are all uniform in size. For example, if the rotation speed of the polygon mirror is constant, the scanning range for the light incident surface per unit time is constant. be able to.
  • the polygonal mirror has a square shape when viewed from the direction along the rotation axis. In this way, it is possible to set the angle range in which light from the light source can be reflected to approximately 180 degrees. Therefore, it is particularly suitable when the light incident surface of the light guide member is large in the scanning direction, and the degree of freedom of arrangement in the polygon mirror in the illumination device is increased.
  • a condensing member that is interposed between the light source and the rotating reflector and condenses light from the light source and emits the light toward the rotating reflector.
  • the light emitted from the light source can be efficiently supplied to the rotating reflector.
  • the light from the light source can be incident on the light incident surface of the light guide member without waste, and the utilization efficiency can be improved, so that the luminance can be improved and the power consumption can be reduced.
  • the light source, the condensing member, and the rotating reflector are arranged in a straight line, the alignment direction of the light source, the condensing member, and the rotating reflector, and the rotating reflection.
  • the body and the arrangement direction of the light guide members are substantially orthogonal to each other. If it does in this way, compared with the case where a light source, a condensing member, a rotation reflector, and a light guide member are all located in a line, the whole illuminating device can be kept small.
  • the light condensing member condenses light from the light source so that a traveling direction of light emitted toward the rotating reflector is parallel to the light incident surface. If it does in this way, the light parallel to a light-incidence surface can be appropriately incident on each area
  • the light condensing member is disposed in a position near the light source relative to the rotating reflector. In this way, the light emitted from the light source can be collected more efficiently.
  • the control unit blinks the light source periodically to change the time ratio between the lighting period and the extinguishing period.
  • the light emission state of the light source is controlled by a so-called PWM (Pulse Width Modulation) method, so that the voltage value applied to the light source can be made constant, and the circuit configuration related to the control can be changed. It can be made simple, and a light control range can be secured sufficiently large, and the light emission state of the light source can be controlled more appropriately.
  • the light guide member includes a plurality of divided light guide members divided for each of the plurality of regions on the light incident surface. If it does in this way, the light which injected into each area
  • a low refractive index layer having a refractive index relatively lower than that of the divided light guide member is interposed between the adjacent divided light guide members. If it does in this way, since it will become difficult to radiate
  • the low refractive index layer is an air layer. This eliminates the need for a special member for forming the low refractive index layer, and thus can cope with low cost.
  • the light source is an LED. In this way, high brightness and low power consumption can be achieved.
  • a display device of the present invention includes the above-described illumination device and a display panel that performs display using light from the illumination device.
  • the lighting device that supplies light to the display panel since the lighting device that supplies light to the display panel has a reduced number of light sources used, it is possible to reduce manufacturing costs.
  • a liquid crystal panel can be exemplified as the display panel.
  • Such a display device can be applied as a liquid crystal display device to various uses such as a display of a television or a personal computer, and is particularly suitable for a large screen.
  • FIG. 1 is an exploded perspective view showing a schematic configuration of a television receiver according to Embodiment 1 of the present invention.
  • the exploded perspective view which shows schematic structure of the liquid crystal display device with which a television receiver is equipped
  • the top view which shows the arrangement structure of the chassis in the backlight apparatus with which a liquid crystal display device is equipped, the light guide member, and the light source unit. Sectional view taken along line iv-iv in FIG. V-v sectional view of FIG.
  • Block diagram for explaining LED drive control The top view for demonstrating operation
  • the top view which shows the arrangement configuration of the chassis in the backlight apparatus which concerns on Embodiment 2 of this invention, the light guide member, and the light source unit.
  • the top view which shows the arrangement configuration of the chassis in the backlight apparatus which concerns on Embodiment 3 of this invention, a light guide member, and a light source unit.
  • the top view which shows the arrangement configuration of the chassis in the backlight apparatus which concerns on Embodiment 4 of this invention, a light guide member, and a light source unit.
  • the top view which shows the arrangement configuration of the light source unit which concerns on Embodiment 5 of this invention.
  • the top view which shows the arrangement configuration of the chassis in the backlight apparatus which concerns on other embodiment (1) of this invention, a light guide member, and a light source unit.
  • the top view which shows the arrangement configuration of the light source unit which concerns on other embodiment (2) of this invention.
  • FIGS. 1 A first embodiment of the present invention will be described with reference to FIGS.
  • the liquid crystal display device 10 is illustrated.
  • a part of each drawing shows an X axis, a Y axis, and a Z axis, and each axis direction is drawn to be a direction shown in each drawing.
  • the upper side shown in FIG.4 and FIG.5 be a front side, and let the lower side of the figure be a back side.
  • the television receiver TV includes a liquid crystal display device 10, front and back cabinets Ca and Cb that are accommodated so as to sandwich the liquid crystal display device 10, a power source P, a tuner T, And a stand S.
  • the liquid crystal display device (display device) 10 has a horizontally long (longitudinal) square shape as a whole and is accommodated in a vertically placed state.
  • the liquid crystal display device 10 includes a liquid crystal panel 11 that is a display panel and a backlight device (illumination device) 12 that is an external light source, which are integrated by a frame-like bezel 13 or the like. Is supposed to be retained.
  • the liquid crystal panel 11 has a horizontally long (longitudinal) rectangular shape in a plan view, and a pair of glass substrates are bonded together with a predetermined gap therebetween, and between the two glass substrates.
  • the liquid crystal is sealed.
  • One glass substrate is provided with a switching element (for example, TFT) connected to a source wiring and a gate wiring orthogonal to each other, a pixel electrode connected to the switching element, an alignment film, and the like.
  • the substrate is provided with a color filter and counter electrodes in which colored portions such as R (red), G (green), and B (blue) are arranged in a predetermined arrangement, and an alignment film.
  • the liquid crystal panel 11 is connected to a control board (not shown) with a liquid crystal driving driver for supplying a driving signal to each source wiring and each gate wiring.
  • the driving is controlled by the liquid crystal panel control unit 26 (FIG. 6).
  • the liquid crystal panel control unit 26 displays, for example, 60 or 120 display images on the liquid crystal panel 11 per second.
  • a polarizing plate is disposed on the outside of both substrates.
  • the backlight device 12 covers a substantially box-shaped chassis 14 having an opening that opens toward the light emission surface side (the liquid crystal panel 11 side), and covers the opening of the chassis 14.
  • the optical member 15 group (diffusing plate (light diffusing member) 15a and a plurality of optical sheets 15b arranged between the diffusing plate 15a and the liquid crystal panel 11) is provided.
  • a light source unit U which will be described in detail later, a light guide member 19 that guides light from the light source unit U and guides it to the optical member 15 (liquid crystal panel 11), and a light guide member 19 are provided.
  • a frame 16 that is pressed from the front side.
  • the backlight device 12 is of a so-called edge light type (side light type) in which the light source unit U is arranged opposite to one end of the light guide member 19 on the long side. Below, each component of the backlight apparatus 12 is demonstrated in detail.
  • the chassis 14 is made of a metal plate material (sheet metal made of iron, aluminum, or the like), and has a shallow box shape as a whole as shown in FIGS. Specifically, the chassis 14 includes a bottom plate 14a that has a horizontally-long rectangular shape like the liquid crystal panel 11, a pair of long side plates 14b that rise from outer ends on the long side of the bottom plate 14a, and a short side of the bottom plate 14a. And a pair of side plates 14c on the short side that rise from the outer ends of the side.
  • the long side direction of the chassis 14 (bottom plate 14a) coincides with the X-axis direction (horizontal direction), and the short side direction coincides with the Y-axis direction (vertical direction).
  • the frame 16 and the bezel 13 can be screwed to the long side plate 14b.
  • the optical member 15 has a horizontally long rectangular shape when viewed in a plane, like the liquid crystal panel 11 and the chassis 14.
  • the optical member 15 is placed on the front side (light emitting side) of the light guide member 19 and is disposed between the liquid crystal panel 11 and the light guide member 19.
  • the optical member 15 includes a diffusion plate 15a disposed on the back side (light guide member 19 side, opposite to the light emitting side) and an optical sheet 15b disposed on the front side (liquid crystal panel 11 side, light emitting side). Composed.
  • the diffusing plate 15a has a structure in which a large number of diffusing particles are dispersed in a substantially transparent resin-made base material having a predetermined thickness, and has a function of diffusing transmitted light.
  • the optical sheet 15b has a sheet shape that is thinner than the diffusion plate 15a, and three optical sheets are laminated.
  • Specific types of the optical sheet 15b include, for example, a diffusion sheet, a lens sheet, a reflective polarizing sheet, and the like, which can be appropriately selected and used.
  • the frame 16 is formed in a frame shape (frame shape) extending along the outer peripheral end portion of the light guide member 19, and the outer peripheral end portion of the light guide member 19 extends over substantially the entire circumference. It can be pressed from the front side.
  • the long side portion on the light source unit U side (left side shown in FIG. 4) is formed wider than the other long side portion as shown in FIG. ing.
  • the frame 16 can receive the outer peripheral end of the liquid crystal panel 11 from the back side.
  • the long side portion on the light source unit U side has a wide shape like the above-described frame 16 (FIGS. 2 and 4).
  • the light guide member 19 is made of a synthetic resin material (for example, acrylic) having a refractive index sufficiently higher than that of air and substantially transparent (exceeding translucency).
  • the light guide member 19 is formed in a plate shape having a horizontally long rectangular shape when viewed in a plane, as in the case of the liquid crystal panel 11 and the chassis 14, and the entire long side direction is the X-axis direction.
  • the entire short side direction coincides with the Y-axis direction
  • the plate thickness direction orthogonal to the main plate surface coincides with the Z-axis direction.
  • the light guide member 19 is disposed in the chassis 14 at a position directly below the liquid crystal panel 11 and the optical member 15, and the light source unit U is opposed to one end thereof. Accordingly, the alignment direction of the optical member 15 (liquid crystal panel 11) and the light guide member 19 matches the Z-axis direction, while the alignment direction of the light source unit U and the light guide member 19 matches the Y-axis direction. Both the alignment directions are orthogonal to each other.
  • the light guide member 19 introduces light from the LED 17 included in the light source unit U, and has a function of rising and emitting the light toward the optical member 15 side (Z-axis direction) while propagating the light inside. .
  • the light guide member 19 has a substantially flat plate shape that extends along the bottom plate 14a of the chassis 14 and the plate surfaces of the optical member 15 as a whole. It is assumed to be parallel to the Y-axis direction.
  • the surface facing the front side is a light emission surface 19 a that emits internal light toward the optical member 15 and the liquid crystal panel 11 as shown in FIG. 4.
  • the end surface on the long side and facing the light source unit U is a light incident surface 19 b on which light from the light source unit U is incident.
  • the light incident surface 19b as a whole is a long surface in which the long side direction coincides with the X-axis direction and the short side direction coincides with the Z-axis direction, and is a surface substantially orthogonal to the light emitting surface 19a.
  • a light guide reflection sheet 20 capable of reflecting the light in the light guide member 19 and rising up to the front side covers the entire area.
  • the light guide reflection sheet 20 is disposed between the bottom plate 14 a of the chassis 14 and the light guide member 19.
  • the light guide reflection sheet 20 has a reflecting portion (not shown) that reflects internal light or a scattering portion that scatters internal light (see FIG. (Not shown) is patterned so as to have a predetermined in-plane distribution, and thereby, the emitted light from the light emitting surface 19a is controlled to have a uniform distribution in the surface.
  • the light guide member 19 having the entire structure as described above is divided into a plurality of parts as shown in FIGS. 3 and 5, and accordingly, the light incident surface 19a and the light emitting surface 19b are also divided into a plurality. It is divided.
  • the divided light guide member 19 is referred to as a “divided light guide member”, and the divided light incident surface 19a and the light output surface 19b are referred to as “divided light incident surface” and “divided light output surface”.
  • the suffix “S” is attached to each symbol. Specifically, each divided light guide member 19S is divided into eight parts in the long side direction (X axis direction) in such a manner that the light guide member 19 is divided along the short side direction (Y axis direction).
  • Each divided light guide member 19 ⁇ / b> S has a long side dimension that coincides with an overall short side dimension of the light guide member 19, whereas a short side dimension (a dimension along a scanning direction described later) has a light guide member 19. About 1/8 of the entire long side dimension. There is a slight gap between the adjacent divided light guide members 19S, which is an air layer AS having a relatively lower refractive index than each of the divided light guide members 19S.
  • the light emitting surface 19a and the light incident surface 19b are divided into a plurality of regions for each divided light guide member 19S in the X-axis direction, and the divided regions are divided light emitting surfaces 19aS and divided light incident surfaces 19bS. It is said.
  • each of the divided light guide members 19S has a divided light emitting surface 19aS and a divided light incident surface 19bS individually, and the divided light emitting surfaces 19aS are arranged in a single plane so that the entire light can be obtained.
  • the exit surface 19a is configured, and the divided light incident surfaces 19bS are arranged in a single plane, so that the entire light incident surface 19b is configured.
  • the divided light exit surfaces 19aS have substantially the same area.
  • the divided light incident surfaces 19bS have substantially the same area.
  • each divided light guide member 19S when distinguishing each divided light guide member 19S, each divided light emitting surface 19aS, and each divided light incident surface 19bS, the one at the left end shown in FIG. 3 (the one closest to the LED 17) is “first”.
  • the subscript “A” is attached to each symbol, and the right side of the symbol is designated as “second”, “third”..., And the subscript “B”, “C”,.
  • Each of the symbols is attached with a suffix “H” as “eighth” with the one at the right end of the figure (the one farthest from the LED 17).
  • the first divided light guide member 19SA to the eighth divided light guide member 19SH respectively include the first divided light incident surface 19aSA to the eighth divided light incident surface 19aSH and the first divided light output surface 19bSA to the eighth.
  • Each has a divided light exit surface 19bSH.
  • segmentation light entrance surface 19bS are named generically without distinguishing, a subscript shall not be attached
  • the light source unit U emits an LED (Light Emitting Diode) 17 as a light source, an LED substrate 18 on which the LED 17 is mounted, and the light from the LED 17 while condensing the light.
  • the LED 17 has a configuration in which an LED chip is sealed with a resin material on a substrate portion fixed to the LED substrate 18.
  • the LED chip mounted on the substrate unit has one main emission wavelength, and specifically, one that emits blue light in a single color is used.
  • the resin material that seals the LED chip is dispersed and blended with a phosphor that emits a predetermined color when excited by the blue light emitted from the LED chip, and generally emits white light as a whole. It is said.
  • the phosphor for example, a yellow phosphor that emits yellow light, a green phosphor that emits green light, and a red phosphor that emits red light are used in appropriate combination, or any one of them is used.
  • the LED 17 is a so-called top type in which a surface opposite to the mounting surface with respect to the LED substrate 18 is a light emitting surface.
  • the LED 17 has a light distribution such that the optical axis of the emitted light, that is, the traveling direction of light having the highest emission intensity coincides with the X-axis direction.
  • the LED substrate 18 has a plate shape made of synthetic resin (such as glass epoxy resin), and has a white surface with excellent light reflectivity. As shown in FIG. 3, the LED board 18 has its main plate surface parallel to the Y-axis direction and the Z-axis direction, that is, orthogonal to the main plate surfaces of the liquid crystal panel 11 and the light guide member 19 (optical member 15). It is accommodated in the chassis 14 in a posture.
  • the LED board 18 is fixed to the left side plate 14b shown in FIG. 3 among the side plates 14c on the short side of the chassis 14 by screws or the like.
  • the LED substrate 18 is disposed at a position spaced apart from the light incident surface 19b of the light guide member 19 in the side plate 14c on the short side.
  • a wiring pattern (not shown) made of a metal film (copper foil or the like) is formed on the mounting surface of the LED 17 on the LED substrate 18, and terminal portions formed at the ends of the wiring pattern will be described later.
  • driving power is supplied to the LED 17.
  • the LED board 18 to the side plate 14c arranged at the end of the chassis 14, it is possible to easily secure a wiring path to the LED driving unit 24.
  • the condenser lens 21 is interposed between the LED 17 and a polygon mirror 22 described below, and is disposed relatively closer to the LED 17 than the polygon mirror 22. Specifically, the condensing lens 21 is arranged at a position facing the first divided light incident surface 19bSA of the first divided light guide member 19SA closest to the LED 17 among the light guide members 19 with a predetermined interval. Has been.
  • the condensing lens 21 as a whole is formed in a semi-doughnut shape in plan view, and the surface on the LED 17 side (surface on the light incident side) forms a concave curved surface and the surface on the polygon mirror 22 side (light emission). Side surface) is a convex curved surface.
  • the condensing lens 21 can emit the light emitted from the LED 17 while condensing the light, and the emitted light travels substantially straight along the X-axis direction (parallel to the light incident surface 19b).
  • the optical design is such that it hits the polygon mirror 22.
  • the light emitted from the LED 17 includes not only those with the highest emission intensity that travel along the X-axis direction, which is the optical axis, but also those that travel in a direction inclined with respect to the optical axis.
  • the light traveling in the direction inclined with respect to the optical axis is refracted or reflected in the process of passing through the condenser lens 21, so that the light travels substantially straight along the optical axis and hits the polygon mirror 22. Can be converted to light.
  • the light having the highest emission intensity that travels along the X-axis direction, which is the optical axis is hardly affected by refraction even when transmitted through the condenser lens 21. It is assumed that the lens travels straight along the optical axis as it is.
  • the polygon mirror 22 has an X-axis direction with respect to the condenser lens 21, that is, in the traveling direction of the emitted light from the condenser lens 21, more than the distance between the condenser lens 21 and the LED 17. They are placed at relatively wide positions. That is, the polygon mirror 22 is arranged linearly along the X-axis direction with respect to the LED 17 and the condenser lens 21.
  • the polygon mirror 22 is disposed at a substantially central position with respect to the light guide member 19 in the entire long side direction (the parallel direction of the divided light guide members 19S, the X-axis direction).
  • the polygon mirror 22 is rotatable in one direction around the rotation axis 22a and reflects the light from the condenser lens 21, thereby scanning the light incident surface 19b of the light guide member 19 with the reflected light. It is possible to do.
  • the polygon mirror 22 has a square shape when viewed from the direction along the rotation axis 22a (Z-axis direction), and four flat reflecting surfaces 22b are formed adjacent to each other on the outer peripheral surface thereof. (FIGS. 7 to 12).
  • the reflecting surfaces 22b are equal in area and dimensions.
  • the angle formed by the adjacent reflecting surfaces 22b is 90 degrees.
  • the polygon mirror 22 is driven by an electromagnetic motor (not shown) so as to rotate at a constant rotational speed (angular speed) in the clockwise direction (arrow line direction) shown in FIG. It has become.
  • the angle of each reflecting surface 22b with respect to the light from the condenser lens 21 toward the polygon mirror 22 changes in a time-division manner, and the light reflected by the reflecting surface 22b
  • the traveling direction changes in a time-sharing manner.
  • the traveling direction of the light (reflected light) reflected by the reflecting surface 22 b is the traveling direction of the light from the condenser lens 21 toward the polygon mirror 22.
  • the angle formed with respect to the angle can be changed in the range of 0 to 180 degrees (angle range of 180 degrees). Accordingly, the reflected light from the polygon mirror 22 is directed from the left side to the right side shown in FIG.
  • the polygon mirror 22 rotates along the long side direction (X-axis direction) of the light incident surface 19b of the light guide member 19 as the polygon mirror 22 rotates. It is possible to scan linearly. Specifically, the reflected light is transmitted from the left end shown in FIG. 3 on the first light incident surface 19bSA of the first divided light guide member 19SA to FIG. 3 on the eighth light incident surface 19bSH of the eighth divided light guide member 19SH. It can be continuously scanned over the entire area up to the right end shown.
  • the rotation speed of the polygon mirror 22 is such that the time it takes for the reflected light to scan from the left end of the first light incident surface 19bSA shown in FIG. 3 to the right end of the eighth light incident surface 19bSH shown in FIG.
  • the display period of one display image on the panel 11 is set to coincide with, for example, 1/60 seconds, 1/120 seconds, or the like. Further, the time for scanning the divided light incident surface 19bS of each divided light guide member 19S with reflected light (one scanning period of reflected light with respect to the divided light incident surface 19bS) is the display period of one display image on the liquid crystal panel 11 ( For example, about 1/8 of 1/60 seconds, 1/120 seconds, etc.).
  • the polygon mirror 22 and the light guide member 19 are arranged along the Y-axis direction, and the arrangement direction is orthogonal to the X-axis direction that is the arrangement direction of the LED 17, the condenser lens 21, and the polygon mirror 22. There is a relationship.
  • the synchronization detection unit 23 is attached to the side plate 14 c of the chassis 14 to which the LED board 18 is attached.
  • the synchronization detection unit 23 is located between the LED substrate 18 and the light guide member 19 and can receive the reflected light from the polygon mirror 22.
  • the synchronization detection unit 23 has a built-in optical sensor (not shown) that can detect light, and can detect reflected light from the polygon mirror 22.
  • the synchronization detection unit 23 is connected to a control unit 25 described below, and can output a detection signal toward the control unit 25 when detecting reflected light from the polygon mirror 22. Subsequently, drive control of the control unit 25 and the LED 17 will be described in detail.
  • the control unit 25 can output a signal to the LED drive unit 24 based on the detection signal from the synchronization detection unit 23 to control the drive of the LED 17. Specifically, when the detection signal is input from the synchronization detection unit 23, the control unit 25 refers to information on the rotation speed of the polygon mirror 22 and outputs a signal related to the control to the LED drive unit 24 to obtain a predetermined signal.
  • the light emission state of the LED 17 can be controlled at the timing. At this time, the control unit 25 can control the light emission state of the LED 17 in a time-sharing manner for each scanning period with respect to each split light incident surface 19bS by reflected light.
  • control unit 25 changes the time ratio between the lighting period and the extinguishing period by periodically blinking the LED 17 while keeping the voltage value applied to the LED 17 constant, so-called PWM (Pulse Width Modulation: pulse).
  • PWM Pulse Width Modulation: pulse.
  • the light emission state of the LED 17 is controlled by the (width modulation) method, and the time ratio between the lighting period and the extinction period in one scanning period with respect to the divided light incident surface 19bS by the reflected light is scanned with respect to each divided light incident surface 19bS. It can be set individually for each period. Note that the amount of light incident on the split light incident surface 19bS during the one scanning period is uniquely determined by the time ratio between the lighting period and the extinguishing period because the voltage value applied to the LED 17 is constant. .
  • the control unit 25 can freely set the amount of incident light on each divided light incident surface 19bS individually.
  • the amount of incident light on each divided light incident surface 19bS can be all the same or different. it can.
  • a signal related to a display image is input to the control unit 25 from a liquid crystal panel control unit 26 that controls driving of the liquid crystal panel 11. Therefore, the control unit 25 can control the light emission state of the LED 17 based on the luminance information of the display image.
  • the control unit 25 divides the display image into eight divided display areas (divided light emission surfaces 19aS) shared by the divided light guide members 19S, and converts the display image into each divided display area. The required luminance is calculated, and based on the calculated luminance information, the light emission state of the LED 17 is controlled in a time-sharing manner for each scanning period with respect to each divided light incident surface 19bS.
  • This embodiment has the structure as described above, and its operation will be described next.
  • the liquid crystal panel control unit 26 controls the driving of the liquid crystal panel 11 and the light from the light source unit U is incident on the light incident surface of the light guide member 19.
  • the light enters the liquid crystal panel 11 by being incident on the liquid crystal panel 11 after being incident on the light 19b and propagating through the optical member 15, and is emitted toward the liquid crystal panel 11.
  • a predetermined image is displayed on the liquid crystal panel 11. Is displayed.
  • the operation of the backlight device 12 will be described in detail.
  • the LED 17 When the power is turned on, the LED 17 is turned on by the LED driving unit 25 based on a signal from the control unit 25 constituting the light source unit U (FIG. 6), and the polygon mirror 22 is driven by driving the electromagnetic motor. It is rotated around the rotation axis 22a at a constant rotation speed. As shown in FIG. 3, the light from the LED 17 is condensed by the condenser lens 21, becomes light that goes straight along the X-axis direction, and is emitted toward the polygon mirror 22. Is reflected in a state where a predetermined angle is given. The light reflected by the polygon mirror 22 can scan the light incident surface 19b of the light guide member 19 over the entire length in the X-axis direction. Specifically, as shown in FIGS.
  • the reflected light from the polygon mirror 22 scanned from the left end to the right end of the first divided light incident surface 19bSA of the first divided light guide member 19SA.
  • the second divided light incident surface 19bSB of the second divided light guide member 19SB on the right side, the third divided light incident surface 19bSC... Of the third divided light guide member 19SC are scanned in this order, and the eighth divided light guide is obtained.
  • the eighth divided light incident surface 19bSH of the optical member 19SH is scanned, the first divided light incident surface 19bSA of the first divided light guide member 19SA is scanned again.
  • the time required for scanning all the divided light incident surfaces 19bS by reflected light by setting the rotational speed of the polygon mirror 22 is the display period of one display image on the liquid crystal panel 11 (for example, 1/60 seconds). , 1/120 seconds, etc.).
  • the light emission state of the LED 17 is controlled by the control unit 25 so as to be synchronized with the rotation state of the polygon mirror 22 and the display image displayed on the liquid crystal panel 11.
  • the light reflected by the reflecting surface 22b of the polygon mirror 22 includes what is irradiated on the synchronization detecting unit 23 as shown in FIG. 11 in addition to the light incident on the light incident surface 19b. Therefore, based on the detection of the reflected light from the polygon mirror 22 by the synchronization detection unit 23 and the output of the detection signal to the control unit 25, the control unit 25 changes the rotation state of the polygon mirror 22.
  • the light emission state of the LED 17 can be synchronized. That is, the control unit 25 scans the light incident surface 19b of the light guide member 19 by the reflected light of the polygon mirror 22 based on the timing at which the detection signal is received from the synchronization detection unit 23 and information on the rotational speed of the polygon mirror 22.
  • this scanning period means the divided light from the scanning start position (indicated by the one-dot chain line in FIG. 12) where the reflected light is applied to the left end of the divided light incident surface 19bS of the divided light guide member 19S. This is the time required to reach the scanning end position (indicated by the two-dot chain line in the figure) irradiated on the right end of the figure on the incident surface 19bS.
  • the control unit 25 it is preferable to perform control such that the LED 17 is turned off during a period in which the reflected light can scan the air layer AS existing between the divided light incident surfaces 19bS.
  • control part 25 is controlling the light emission state of LED17 based on the signal which concerns on the display image from the liquid crystal panel control part 26 which controls the drive of the liquid crystal panel 11, as shown in FIG. Specifically, the control unit 25 determines the luminance required for each divided display region (each divided light emitting surface 19aS) shared by each divided light guide member 19S from the signal related to the display image input from the liquid crystal panel 11. Based on the calculated luminance information, the light emission state of the LED 17 is controlled in a time-sharing manner for each scanning period with respect to each divided light incident surface 19bS. The specific drive control of the LED 17 will be described.
  • the control unit 25 determines the time ratio between the lighting period and the extinguishing period of the LED 17 for each scanning period with respect to each divided light incident surface 19bS, and the luminance of each divided light guide member 19S.
  • the LED 17 is driven and controlled in a time-sharing manner while being determined based on the information. For example, with respect to the scanning period of the divided light incident surface 19bS of the divided light guide member 19S that shares a relatively dark divided display area, the incident light quantity is relatively reduced by relatively shortening the lighting period and lengthening the extinguishing period.
  • the incident light quantity is increased by relatively increasing the lighting period and shortening the extinction period.
  • the light emission state of the LED 17 is controlled in a time-sharing manner for each scanning period so as to relatively increase the number of.
  • each split light incident surface 19bS is reflected by the light guide reflection sheet 20 or totally reflected at the interface with the air layer AS, so that each split can be performed efficiently without leaking to the outside.
  • the light After propagating through the light guide member 19S, the light is emitted from the split light exit surface 19aS.
  • the emitted light from each divided light exit surface 19aS irradiates each divided display area in the liquid crystal panel 11, while the emitted light amount is substantially equal to the incident light amount to each divided light incident surface 19bS. Because of this relationship, the contrast ratio of the display image can be increased.
  • the backlight device (illumination device) 12 of the present embodiment includes the LED (light source) 17, the light guide member 19 having the light incident surface 19 b on which the light from the LED 17 is incident, and the rotation (rotation). ) While reflecting the light from the LED 17 and scanning the light incident surface 19b by the reflected light, and the scanning direction (X) of the light incident surface 19b by the reflected light from the polygon mirror 22 When divided into a plurality of regions (divided light incident surface 19bS) in the axial direction, a control unit 25 is provided that controls the light emission state of the LED 17 in a time-sharing manner in association with the scanning period of the reflected light for each region.
  • the control unit 25 controls the light emission state of the LED 17 in a time-sharing manner in association with the scanning period of the reflected light with respect to each region (divided light incident surface 19bS) on the light incident surface 19b divided in the scanning direction by the reflected light. This makes it possible to individually adjust the amount of reflected light incident on each region.
  • the number of LEDs 17 used can be reduced compared to a conventional arrangement in which a large number of LEDs are arranged in parallel and the light emission state of each LED is individually adjusted. For example, the cost related to the LED 17 can be reduced.
  • the arrangement direction of the LED 17 and the polygon mirror 22 and the arrangement direction of the polygon mirror 22 and the light guide member 19 are substantially orthogonal to each other. In this way, the entire backlight device 12 can be kept small as compared with a case where the LEDs, the polygon mirror, and the light guide member are all linearly arranged.
  • the polygon mirror 22 is disposed at a substantially central position of the light incident surface 19b in the scanning direction. In this way, of the light reflected by the polygon mirror 22, the light path lengths of the light reaching one end of the light incident surface 19 b and the light reaching the other end in the scanning direction are substantially equal. Become. Therefore, for example, it is possible to obtain an effect that it is easy to set the scanning period of each region of the light incident surface 19 b by the reflected light from the polygon mirror 22.
  • the LED 17 is disposed on the end side of the light incident surface 19b in the scanning direction. In this way, compared to the case where the LED is arranged on the center side of the light incident surface 19b in the scanning direction, it is possible to obtain an effect such as easy connection of the wiring to the LED 17, for example.
  • the plurality of regions on the light incident surface 19b are divided so that the dimensions in the scanning direction are substantially the same. In this way, the scanning period of the reflected light from the polygon mirror 22 for each region can be made substantially the same, so that the control by the control unit 25 becomes easier.
  • the rotating reflector is constituted by a polygon mirror 22 that rotates in one direction.
  • each region on the light incident surface 19b can be scanned by the reflected light from the polygon mirror 22 rotating in one direction, which is particularly suitable for scanning the light incident surface 19b at a high speed.
  • the polygon mirror 22 has a regular polygonal shape when viewed from the direction along the rotation axis 22a. In this way, the surfaces (reflecting surfaces 22b) that reflect the light from the LED 17 are all uniform in size. Therefore, for example, if the rotation speed of the polygon mirror 22 is constant, the light incident surface 19b per unit time. The scanning range for can be made constant.
  • the polygonal mirror 22 has a square shape when viewed from the direction along the rotation axis 22a. If it does in this way, it will become possible to make the angle range which can reflect the light from LED17 into about 180 degrees. Therefore, it is suitable particularly when the light incident surface 19b of the light guide member 19 is large in the scanning direction, and the degree of freedom of arrangement in the polygon mirror 22 in the backlight device 12 is increased.
  • a condensing lens (condensing member) 21 is provided between the LED 17 and the polygon mirror 22 and condenses the light from the LED 17 and emits the light toward the polygon mirror 22.
  • the light emitted from the LED 17 can be efficiently supplied to the polygon mirror 22.
  • the light from the LED 17 can be incident on the light incident surface 19b of the light guide member 19 without waste, and the utilization efficiency can be improved. Therefore, the luminance can be improved and the power consumption can be reduced. it can.
  • the LED 17, the condenser lens 21 and the polygon mirror 22 are arranged in a straight line, the arrangement direction of the LED 17, the condenser lens 21 and the polygon mirror 22, and the arrangement direction of the polygon mirror 22 and the light guide member 19. Are substantially orthogonal to each other. In this way, the entire backlight device 12 can be kept small as compared with the case where the LED, the condensing lens, the polygon mirror, and the light guide member are all linearly arranged.
  • the condensing lens 21 condenses the light from the LED 17 so that the traveling direction of the light emitted toward the polygon mirror 22 is parallel to the light incident surface 19b. In this way, the light parallel to the light incident surface 19b is reflected by the polygon mirror 22 and angled, so that it can be appropriately incident on each region on the light incident surface 19b.
  • the condenser lens 21 is disposed at a position near the LED 17 relative to the polygon mirror 22. In this way, the light emitted from the LED 17 can be collected more efficiently.
  • control unit 25 periodically blinks the LED 17 to change the time ratio between the lighting period and the extinguishing period.
  • PWM Pulse Width Modulation
  • the light guide member 19 is composed of a plurality of divided light guide members 19S divided into a plurality of regions on the light incident surface 19b. If it does in this way, the light which injected into each area
  • an air layer (low refractive index layer) AS having a refractive index relatively lower than that of the divided light guide member 19S is interposed between the adjacent divided light guide members 19S. This makes it difficult for the light in the divided light guide member 19S to be emitted toward the air layer AS, so that light can be prevented from passing between the adjacent divided light guide members 19S, and the adjacent divided light guides can be prevented. The optical independence of the member 19S can be ensured. In addition, it is possible to secure a sufficient amount of light emitted from each divided light guide member 19S and improve luminance.
  • the low refractive index layer is an air layer AS. This eliminates the need for a special member for forming the low refractive index layer, and thus can cope with low cost.
  • the light source is the LED 17. In this way, high brightness and low power consumption can be achieved.
  • a pair of light source units 1U are arranged at both ends of the long side of the chassis 114. Specifically, a predetermined interval is provided between the long-side side plates 114b and the light guide member 119 in the chassis 114, and the light source units 1U are arranged in the spaces.
  • the light guide member 119 according to the present embodiment is disposed in a form sandwiched between the pair of light source units 1U, and both side surfaces along the entire long side direction (X-axis direction) are each light source unit 1U. And a pair of light incident surfaces 119b facing each other.
  • each divided light guide member 119S has a pair of divided light incident surfaces 119bS on both side surfaces along the short side direction (X-axis direction), and is scanned by the light from each light source unit 1U facing each other. It has become so.
  • the LED 117, LED board 118, condenser lens 121, polygon mirror 122, and synchronization detection unit 123 that constitute each light source unit 1 ⁇ / b> U are arranged symmetrically with respect to the center position of the light guide member 119.
  • the lower light source unit 1U shown in FIG. 13 is referred to as a “first light source unit”, and a subscript A is added to the reference, whereas the upper light source unit 1U shown in FIG. B shall be attached.
  • the LED board 118 and the synchronization detection unit 123 that form the first light source unit 1UA are attached to the left side plate 114c shown in FIG. 13, whereas the LED board 118 and the synchronization detection that form the second light source unit 1UB.
  • the part 123 is attached to the side plate 114c on the right side of the figure.
  • the condensing lenses 121 forming the light source units 1UA and 1UB are arranged at positions closer to the LED 117 than the polygon mirror 122, respectively.
  • the polygon mirrors 122 forming the light source units 1UA and 1UB are both rotated in the clockwise direction (arrow line direction) shown in FIG.
  • the pair of light source units 1U arranged as described above can be controlled in a plurality of ways as follows by the control unit 25 (see FIG. 6).
  • the divided light guide members 119SA to 119SH constituting the light guide member 119 can be scanned by being shared by the first light source unit 1UA and the second light source unit 1UB.
  • the first light source unit 1UA is used for each divided light incident surface 119bS in each of the divided light guide members 119SA, 119SB, 119SC, and 119SD in the left half shown in FIG. 13 among the divided light guide members 119S.
  • the divided light incident surfaces 119bS in the divided light guide members 119SE, 119SF, 119SG, and 119SH on the right half of the figure are polygons forming the second light source unit 1UB. It is possible to set so as to scan with the reflected light from the mirror 122.
  • the divided light incident surfaces 119bS in the odd-numbered divided light guide members 119SA, 119SC, 119SE, and 119SG among the divided light guide members 119S are from the polygon mirror 122 that forms the first light source unit 1UA.
  • the divided light incident surfaces 119bS of the even-numbered divided light guide members 119SB, 119SD, 119SF, and 119SH are scanned by the reflected light from the polygon mirror 122 that forms the second light source unit 1UB. It is possible to set to In this way, there is a non-scanning period in which the divided light incident surface 119bS is not scanned during the scanning period in which the reflected light from each light source unit 1U scans the divided light incident surface 119bS. Since a slight period (non-scanning period) in which the air layer AS between the adjacent divided light guide members 119S can be scanned can be continued, the light emission state of each LED 117 can be controlled more easily.
  • Embodiment 3 of the present invention will be described with reference to FIG.
  • this Embodiment 3 what changed the arrangement
  • the light source unit 2U is disposed at one end of the chassis 214 on the short side as shown in FIG. Specifically, the light source unit 2U is disposed between the light guide member 219 and the side plate 214c on the right short side shown in FIG.
  • the LED board 218 and the synchronization detection unit 223 forming the light source unit 2U are attached to the lower long side plate 214b shown in FIG.
  • the condenser lens 221 is disposed at a position closer to the LED 217 than the polygon mirror 222.
  • the polygon mirror 222 is disposed at a substantially central position in the entire short side direction of the light guide member 219 (Y-axis direction, scanning direction by reflected light described later). The polygon mirror 222 is assumed to rotate in the clockwise direction (arrow line direction) shown in FIG.
  • the surface facing the light source unit 2U is a light incident surface 219b.
  • the light incident surface 219b is linearly scanned from the lower side to the upper side shown in FIG. 14 along the Y-axis direction by the reflected light from the polygon mirror 222 forming the light source unit 2U.
  • the light guide member 219 is divided into six parts along the long side direction (X-axis direction) in the short side direction (Y-axis direction, the scanning direction by reflected light from the polygon mirror 222). It is divided into optical members 219S, and the divided widths are substantially equal. Light from the LED 217 whose light emission state is controlled in a time-sharing manner is incident on each split light incident surface 219bS of each split light guide member 219S via the polygon mirror 222.
  • a pair of light source units 3 ⁇ / b> U are arranged at both ends on the short side of the chassis 314. Specifically, a predetermined interval is provided between the short-side side plates 314c and the light guide member 319 in the chassis 314, and the light source units 3U are disposed in the spaces.
  • the light guide member 319 according to the present embodiment is arranged in a form sandwiched between the pair of light source units 3U, and both side surfaces along the entire short side direction (Y-axis direction) are respectively light source units 3U. And a pair of light incident surfaces 319b facing each other.
  • each divided light guide member 319S has a pair of divided light incident surfaces 319bS on both side surfaces along the short side direction (X-axis direction), and is scanned by the light from each light source unit 3U facing each other. It has become so.
  • the LED 317, the LED substrate 318, the condenser lens 321, the polygon mirror 322, and the synchronization detection unit 323 constituting each light source unit 3U are arranged in point symmetry with the center position of the light guide member 319 as a symmetric point.
  • the light source unit 3U on the right side shown in FIG. 15 is referred to as a “first light source unit”, and a suffix A is attached to the reference numeral, whereas the light source unit 3U on the left side in FIG.
  • the LED substrate 318 and the synchronization detection unit 323 that form the first light source unit 3UA are attached to the lower side plate 314b shown in FIG. 15, whereas the LED substrate 318 that forms the second light source unit 3UB and the synchronization.
  • the detector 323 is attached to the upper side plate 314b in the figure.
  • the condensing lenses 321 forming the light source units 3UA and 3UB are arranged at positions closer to the LED 317 than the polygon mirror 322, respectively. Both the polygon mirrors 322 forming the light source units 3UA and 3UB rotate in the clockwise direction (arrow line direction) shown in FIG.
  • the pair of light source units 3U arranged as described above can be controlled in a plurality of ways by the control unit 25 (see FIG. 6), details of which are described in the second embodiment. Since it is the same as what was described, the overlapping description is omitted.
  • a fifth embodiment of the present invention will be described with reference to FIG.
  • a galvanometer mirror 27 is used in place of the polygon mirror 22 described in the first embodiment.
  • the galvanometer mirror 27 has a horizontally long plate shape and a surface facing the light guide member 19 side as a reflection surface 27b, and is rotatable about a rotation shaft 27a. . Specifically, the galvanometer mirror 27 is reciprocally swung around the rotation shaft 27a in the direction of the arrow shown in FIG. 16, and accordingly, the light from the condenser lens 21 toward the galvanometer mirror 27 is detected. The angle of the reflection surface 27b is changed in a time division manner, and the traveling direction of the light reflected by the reflection surface 27b is changed in a time division manner.
  • the reflected light from the galvano mirror 27 moves along the long side direction (X) of the light incident surface 19b (divided light incident surface 19bS) of the light guide member 19 (divided light guide member 19S) as the galvano mirror 27 rotates. It is possible to scan linearly from the left side to the right side shown in FIG.
  • a resonant mirror can be cited, which can be used in place of the galvanometer mirror 27 described above.
  • the present invention is not limited to the embodiments described with reference to the above description and drawings.
  • the following embodiments are also included in the technical scope of the present invention.
  • the light guide member is divided into a plurality of parts.
  • the present invention includes a structure in which the light guide member is not divided. Specifically, as shown in FIG. 17, the number of the light guide member 19 'can be one, and even in that case, each region separated by the one-dot chain line in the light incident surface 19b'.
  • the light emission state of the LED 17 may be controlled in a time-sharing manner for each scanning period of the reflected light from the polygon mirror 22.
  • the polygon mirror is shown to be square when viewed from the direction along the rotation axis.
  • the polygon mirror 22 ′ that is a regular hexagon when viewed from the direction.
  • the shape of the polygon mirror viewed from the direction along the rotation axis may be other regular polygons such as a regular triangle, a regular pentagon, a regular heptagon, and a regular octagon. It is.
  • the shape of the polygon mirror viewed from the direction along the rotation axis may be a non-regular polygon such as an isosceles triangle or a trapezoid.
  • a polygon mirror, a galvano mirror, and a resonant mirror are exemplified as the rotating reflector.
  • MEMS Micro Electro Mechanical System
  • control unit performs PWM control of the light emission state of the LED, but it is of course possible to control the light emission state of the LED by other methods.
  • the light emission state of the LED can be controlled in a time-sharing manner by changing the drive voltage for driving the LED in a time-sharing manner.
  • the division width in the light guide member that is, the case where the dimensions in the scanning direction in each division light guide member are substantially equalized, but the division width in the light guide member is set to be different. It is also possible.
  • the lower side plate shown in FIG. 14 is attached with the LED substrate and the synchronization detection unit.
  • the LED board and the synchronization detection unit may be attached to the upper side plate shown in FIG.
  • the LED board is attached to the side plate of the chassis.
  • a heat sink having an L-shaped cross section is prepared, the LED board is attached to the heat sink, and the heat sink is attached to the chassis. It may be attached to the bottom plate.
  • one or two light source units are arranged in the chassis, but three or four light source units are arranged in the chassis. included.
  • the polygon mirror (galvano mirror) is arranged at the substantially central position in the scanning direction on the light incident surface. However, the polygon mirror (galvano mirror) is displaced from the central position. What was made into the arrangement
  • the LED is arranged at the position that is the end in the scanning direction on the light incident surface. Those arranged close to each other are also included in the present invention.
  • the synchronization detection unit is attached to the same side plate as the LED substrate and arranged at a position between the LED and the light guide member.
  • the air layer is used as the low refractive index layer interposed between the adjacent divided light guide members.
  • a low refractive index layer made of a low refractive index material may be used. Is possible.
  • the air layer is interposed between the adjacent divided light guide members, but a reflective layer made of a reflective sheet or the like having excellent light reflectivity is used instead of the air layer. It is also possible.
  • the LED is used as the light source.
  • other types of light sources can of course be used.
  • the LED substrate and synchronization detection unit forming the first light source unit and the LED substrate and synchronization detection unit forming the second light source unit are attached to different side plates of the chassis.
  • the LED substrate and the synchronization detection unit forming the first light source unit and the LED substrate and the synchronization detection unit forming the second light source unit are attached to the same side plate. It is also possible to arrange them (arranged on the same side).
  • the polygon mirror forming the first light source unit and the polygon mirror forming the second light source unit may be set so that the rotation directions are opposite.
  • the liquid crystal panel is illustrated in a vertically placed state in which the short side direction coincides with the vertical direction, but the liquid crystal panel matches the long side direction with the vertical direction. What is set in a vertical state is also included in the present invention.
  • the TFT is used as the switching element of the liquid crystal display device.
  • the present invention can also be applied to a liquid crystal display device using a switching element other than TFT (for example, a thin film diode (TFD)), and color display.
  • a switching element other than TFT for example, a thin film diode (TFD)
  • color display for example, a liquid crystal display device
  • the present invention can be applied to a liquid crystal display device that displays black and white.
  • the liquid crystal display device using the liquid crystal panel as the display panel has been exemplified.
  • the present invention can also be applied to a display device using another type of display panel.
  • the television receiver provided with the tuner is exemplified.
  • the present invention can be applied to a display device not provided with the tuner.
  • SYMBOLS 10 Liquid crystal display device (display device), 11 ... Liquid crystal panel (display panel), 12 ... Backlight device (illumination device), 17, 117, 217, 317 ... LED (light source), 19, 119, 219, 319 ... Light guide member, 19S, 119S, 219S, 319S ... split light guide member, 19b, 119b, 219b, 319b ... light incident surface, 19bS, 119bS, 219bS, 319bS ... split light entrance surface (region), 21, 121, 221 , 321 ... Condensing lens (condensing member) 22, 122, 222, 322 ...
  • Polygon mirror (rotating reflector), 22a ... Rotating shaft, 22b ... Reflecting surface (surface), 25 ... Control unit, 27 ... Galvano Mirror (rotating reflector), AS ... Air layer (low refractive index layer), TV ... TV receiver

Abstract

Disclosed is a backlighting device (illumination device) (12) comprising: an LED (light source) (17); a light guide member (19) which has an optical input face (19b) onto which light is input from the LED (17); a polygonal mirror (turning reflection body) (22) which reflects light from the LED (17) while rotating (turning), and scans the optical input face (19b) by means of the reflected light; and a control section (25) which, when the optical input face (19b) is divided into a plurality of regions (divided optical input faces (19bS)) in the scanning direction (X-axis direction) of the reflected light from the polygonal mirror (22), controls the light emission state of the LED (17) in a time-divided manner corresponding to the scanning period of the reflected light for each region.

Description

照明装置、表示装置、及びテレビ受信装置Lighting device, display device, and television receiver
 本発明は、照明装置、表示装置、及びテレビ受信装置に関する。 The present invention relates to a lighting device, a display device, and a television receiver.
 近年、テレビ受信装置をはじめとする画像表示装置の表示素子は、従来のブラウン管から液晶パネルやプラズマディスプレイパネルなどの薄型の表示パネルに移行しつつあり、画像表示装置の薄型化を可能としている。液晶表示装置は、これに用いる液晶パネルが自発光しないため、別途に照明装置としてバックライト装置を必要としており、バックライト装置はその機構によって直下型とエッジライト型とに大別されている。液晶表示装置の一層の薄型化を実現するには、エッジライト型のバックライト装置を用いるのが好ましく、その一例として下記特許文献1に記載されたものが知られている。 In recent years, the display elements of image display devices such as television receivers are shifting from conventional cathode ray tubes to thin display panels such as liquid crystal panels and plasma display panels, which enables thinning of image display devices. Since the liquid crystal panel used for the liquid crystal display device does not emit light by itself, a backlight device is separately required as a lighting device, and the backlight device is roughly classified into a direct type and an edge light type according to the mechanism. In order to further reduce the thickness of the liquid crystal display device, it is preferable to use an edge light type backlight device, and an example described in Patent Document 1 below is known.
特開2001-92370号公報JP 2001-92370 A
(発明が解決しようとする課題)
 上記した特許文献1に記載されたものは、バックライト装置の端部に並列して配された多数の光源と、各光源からの光を導光して液晶パネル側に向けて出射させる導光板とを備えており、各光源の発光状態を個別に調整することで、各光源に対応して区分される導光板の各領域からの出射光量を制御するようにしている。しかしながら、このものでは、光入射面に沿って多数の光源を並列配置する必要があるため、光源に係るコストが高くなりがちとなる、といった問題が生じており、低コスト化などを図る上で問題となっていた。
(Problems to be solved by the invention)
What is described in the above-mentioned Patent Document 1 includes a large number of light sources arranged in parallel to the end of the backlight device, and a light guide plate that guides light from each light source and emits it toward the liquid crystal panel side. By adjusting the light emission state of each light source individually, the amount of light emitted from each region of the light guide plate divided in correspondence with each light source is controlled. However, in this case, since it is necessary to arrange a large number of light sources in parallel along the light incident surface, there is a problem that the cost related to the light sources tends to be high. It was a problem.
 本発明は上記のような事情に基づいて完成されたものであって、低コスト化などを図ることを目的とする。 The present invention has been completed based on the above circumstances, and aims to reduce costs.
(課題を解決するための手段)
 本発明の照明装置は、光源と、前記光源からの光が入射される光入射面を有する導光部材と、回動されつつ前記光源からの光を反射し、その反射光により前記光入射面を走査する回動反射体と、前記光入射面を前記回動反射体からの前記反射光による走査方向について複数の領域に区分したとき、各領域に対する前記反射光の走査期間に対応付けて前記光源の発光状態を時分割して制御する制御部とを備える。
(Means for solving problems)
The illumination device according to the present invention includes a light source, a light guide member having a light incident surface on which light from the light source is incident, and the light incident surface that reflects light from the light source while being rotated. And the light incident surface is divided into a plurality of regions in the scanning direction by the reflected light from the rotating reflector, and is associated with the scanning period of the reflected light for each region. A control unit that controls the light emission state of the light source in a time-sharing manner.
 このようにすれば、光源から発せられた光は、回動反射体によって反射されてから、導光部材の光入射面に入射される。ここで、回動反射体は、回動されつつ光源からの光を反射するので、その反射光によって光入射面を走査することができる。そして、制御部は、反射光による走査方向について区分された光入射面における各領域に対する反射光の走査期間に対応付けて光源の発光状態を時分割して制御することで、各領域に対する反射光の入射光量を個別に調整することが可能とされる。従って、本発明によれば、従来のように多数の光源を並列配置して各光源の発光状態を個別に調整するようにしたものに比べると、光源の使用数を削減することができ、例えば光源に係るコストの低減を図ることができる。 In this way, the light emitted from the light source is reflected by the rotating reflector and then enters the light incident surface of the light guide member. Here, since the rotating reflector reflects light from the light source while being rotated, the light incident surface can be scanned by the reflected light. Then, the control unit controls the light emission state of the light source in a time-sharing manner in association with the scanning period of the reflected light for each region on the light incident surface divided in the scanning direction by the reflected light, thereby reflecting the reflected light for each region. It is possible to individually adjust the amount of incident light. Therefore, according to the present invention, it is possible to reduce the number of light sources used, compared to a conventional arrangement in which a large number of light sources are arranged in parallel and the light emission state of each light source is individually adjusted. Costs related to the light source can be reduced.
 本発明の実施態様として、次の構成が好ましい。
(1)前記光源及び前記回動反射体の並び方向と、前記回動反射体及び前記導光部材の並び方向とが互いに略直交するものとされる。このようにすれば、仮に光源、回動反射体及び導光部材が全て直線的に並んだ場合に比べると、照明装置全体を小型に保つことができる。
The following configuration is preferable as an embodiment of the present invention.
(1) The alignment direction of the light source and the rotating reflector and the alignment direction of the rotating reflector and the light guide member are substantially orthogonal to each other. If it does in this way, compared with the case where a light source, a rotation reflector, and a light guide member are all located in a line, the whole illuminating device can be kept small.
(2)前記回動反射体は、前記走査方向について前記光入射面のほぼ中央位置に配されている。このようにすれば、回動反射体にて反射された光のうち、走査方向について光入射面の一方の端部に至る光と、他方の端部に至る光とで光路長がほぼ同等となる。従って、例えば回動反射体からの反射光による光入射面の各領域の走査期間を設定するのが簡便となる、などの効果を得ることができる。 (2) The rotating reflector is disposed at a substantially central position of the light incident surface in the scanning direction. In this way, among the light reflected by the rotating reflector, the light path lengths of the light reaching one end of the light incident surface and the light reaching the other end in the scanning direction are substantially equal. Become. Therefore, for example, it is possible to obtain an effect that it is easy to set the scanning period of each region of the light incident surface by the reflected light from the rotating reflector.
(3)前記光源は、前記走査方向について前記光入射面の端側に配されている。このようにすれば、仮に光源を走査方向について光入射面の中央側に配した場合に比べると、例えば光源に対する配線の接続が容易になるなどの効果を得ることができる。 (3) The light source is disposed on an end side of the light incident surface in the scanning direction. In this case, compared to a case where the light source is arranged on the center side of the light incident surface in the scanning direction, it is possible to obtain an effect such as easy connection of wiring to the light source.
(4)前記光入射面における前記複数の領域は、前記走査方向についての寸法が互いにほぼ同じとなるよう区分されている。このようにすれば、各領域に対する回動反射体からの反射光による走査期間をほぼ同じとすることができるから、制御部による制御がより容易なものとなる。 (4) The plurality of regions on the light incident surface are partitioned so that the dimensions in the scanning direction are substantially the same. In this way, the scanning period of the reflected light from the rotating reflector for each region can be made substantially the same, so that the control by the control unit becomes easier.
(5)前記回動反射体は、一方向に回転するポリゴンミラーにより構成されている。このようにすれば、一方向に回転するポリゴンミラーによる反射光により光入射面における各領域を走査することができるから、特に光入射面を高速で走査する場合に好適となる。 (5) The rotating reflector is constituted by a polygon mirror that rotates in one direction. In this way, each region on the light incident surface can be scanned by the reflected light from the polygon mirror rotating in one direction, which is particularly suitable for scanning the light incident surface at high speed.
(6)前記ポリゴンミラーは、その回転軸に沿う方向から視た平面形状が正多角形とされる。このようにすれば、光源からの光を反射する面が全て均一な大きさとされるから、例えばポリゴンミラーにおける回転速度を一定とすれば、単位時間当たりの光入射面に対する走査範囲を一定とすることができる。 (6) The polygonal mirror has a regular polygonal shape when viewed from the direction along the rotation axis. In this way, the surfaces that reflect the light from the light source are all uniform in size. For example, if the rotation speed of the polygon mirror is constant, the scanning range for the light incident surface per unit time is constant. be able to.
(7)前記ポリゴンミラーは、その回転軸に沿う方向から視た平面形状が正方形とされる。このようにすれば、光源からの光を反射可能な角度範囲をほぼ180度とすることが可能となる。従って、特に導光部材における光入射面が走査方向について大きな場合に好適となり、また当該照明装置におけるポリゴンミラーにおける配置の自由度が高くなる。 (7) The polygonal mirror has a square shape when viewed from the direction along the rotation axis. In this way, it is possible to set the angle range in which light from the light source can be reflected to approximately 180 degrees. Therefore, it is particularly suitable when the light incident surface of the light guide member is large in the scanning direction, and the degree of freedom of arrangement in the polygon mirror in the illumination device is increased.
(8)前記光源と前記回動反射体との間に介在し、前記光源からの光を集光して前記回動反射体に向けて出射させる集光部材を備える。このようにすれば、光源から発せられた光を回動反射体に対して効率的に供給することができる。これにより、導光部材の光入射面に対して光源からの光を無駄なく入射させることができて利用効率を向上させることができるので、輝度の向上や低消費電力化を図ることができる。 (8) A condensing member that is interposed between the light source and the rotating reflector and condenses light from the light source and emits the light toward the rotating reflector. In this way, the light emitted from the light source can be efficiently supplied to the rotating reflector. Thereby, the light from the light source can be incident on the light incident surface of the light guide member without waste, and the utilization efficiency can be improved, so that the luminance can be improved and the power consumption can be reduced.
(9)前記光源、前記集光部材及び前記回動反射体が直線的に並んで配されており、これら前記光源、前記集光部材及び前記回動反射体の並び方向と、前記回動反射体及び前記導光部材の並び方向とが互いに略直交するものとされる。このようにすれば、仮に光源、集光部材、回動反射体及び導光部材が全て直線的に並んだ場合に比べると、照明装置全体を小型に保つことができる。 (9) The light source, the condensing member, and the rotating reflector are arranged in a straight line, the alignment direction of the light source, the condensing member, and the rotating reflector, and the rotating reflection. The body and the arrangement direction of the light guide members are substantially orthogonal to each other. If it does in this way, compared with the case where a light source, a condensing member, a rotation reflector, and a light guide member are all located in a line, the whole illuminating device can be kept small.
(10)前記集光部材は、前記回動反射体に向けて出射させる光の進行方向が、前記光入射面に並行するよう、前記光源からの光を集光するものとされる。このようにすれば、光入射面に並行する光を回動反射体によって反射して角度付けすることで、光入射面における各領域に適切に入射させることができる。 (10) The light condensing member condenses light from the light source so that a traveling direction of light emitted toward the rotating reflector is parallel to the light incident surface. If it does in this way, the light parallel to a light-incidence surface can be appropriately incident on each area | region in a light-incidence surface by reflecting and turning an angle | corner with a rotation reflector.
(11)前記集光部材は、前記回動反射体よりも相対的に前記光源の近傍位置に配されている。このようにすれば、光源から発せられた光をより効率的に集光することができる。 (11) The light condensing member is disposed in a position near the light source relative to the rotating reflector. In this way, the light emitted from the light source can be collected more efficiently.
(12)前記制御部は、前記光源を周期的に点滅させ、点灯期間と消灯期間との時間比率を変化させるようにしている。このように、光源の発光状態を、いわゆるPWM(Pulse Width Modulation:パルス幅変調)方式により制御しているので、光源に付与する電圧値を一定にすることができてその制御に係る回路構成を簡単なものとすることができ、また調光範囲を十分に大きく確保できて光源の発光状態をより適切に制御することができる。 (12) The control unit blinks the light source periodically to change the time ratio between the lighting period and the extinguishing period. In this way, the light emission state of the light source is controlled by a so-called PWM (Pulse Width Modulation) method, so that the voltage value applied to the light source can be made constant, and the circuit configuration related to the control can be changed. It can be made simple, and a light control range can be secured sufficiently large, and the light emission state of the light source can be controlled more appropriately.
(13)前記導光部材は、前記光入射面における前記複数の領域毎に分割された複数の分割導光部材から構成される。このようにすれば、光入射面における各領域に入射した光を、各分割導光部材により個別に導光させてから出射させることができる。 (13) The light guide member includes a plurality of divided light guide members divided for each of the plurality of regions on the light incident surface. If it does in this way, the light which injected into each area | region in a light-incidence surface can be made to radiate | emit, after being individually guided by each division | segmentation light guide member.
(14)隣り合う前記分割導光部材の間には、前記分割導光部材よりも相対的に屈折率が低い低屈折率層が介在している。このようにすれば、分割導光部材内の光が低屈折率層側に出射し難くなるから、隣り合う分割導光部材間で光が行き交うのを防ぐことができ、隣り合う分割導光部材の光学的な独立性を担保することができる。また、各分割導光部材からの出射光量を十分に確保できて輝度の向上を図ることができる。 (14) A low refractive index layer having a refractive index relatively lower than that of the divided light guide member is interposed between the adjacent divided light guide members. If it does in this way, since it will become difficult to radiate | emit the light in a division | segmentation light guide member to the low-refractive-index layer side, it can prevent that light crosses between adjacent division | segmentation light guide members, and an adjacent division | segmentation light guide member The optical independence can be ensured. In addition, it is possible to secure a sufficient amount of light emitted from each divided light guide member and improve luminance.
(15)前記低屈折率層は、空気層とされる。このようにすれば、低屈折率層を形成するための格別な部材が不要となるので、低コストで対応することができる。 (15) The low refractive index layer is an air layer. This eliminates the need for a special member for forming the low refractive index layer, and thus can cope with low cost.
(16)前記光源は、LEDとされる。このようにすれば、高輝度化及び低消費電力化などを図ることができる。 (16) The light source is an LED. In this way, high brightness and low power consumption can be achieved.
 次に、上記課題を解決するために、本発明の表示装置は、上記記載の照明装置と、前記照明装置からの光を利用して表示を行う表示パネルとを備える。 Next, in order to solve the above problem, a display device of the present invention includes the above-described illumination device and a display panel that performs display using light from the illumination device.
 このような表示装置によると、表示パネルに対して光を供給する照明装置が、光源の使用数を削減されたものであるため、製造コストの低減などを図ることが可能となる。 According to such a display device, since the lighting device that supplies light to the display panel has a reduced number of light sources used, it is possible to reduce manufacturing costs.
 前記表示パネルとしては液晶パネルを例示することができる。このような表示装置は液晶表示装置として、種々の用途、例えばテレビやパソコンのディスプレイ等に適用でき、特に大型画面用として好適である。 A liquid crystal panel can be exemplified as the display panel. Such a display device can be applied as a liquid crystal display device to various uses such as a display of a television or a personal computer, and is particularly suitable for a large screen.
(発明の効果)
 本発明によれば、低コスト化などを図ることができる。
(The invention's effect)
According to the present invention, cost reduction and the like can be achieved.
本発明の実施形態1に係るテレビ受信装置の概略構成を示す分解斜視図1 is an exploded perspective view showing a schematic configuration of a television receiver according to Embodiment 1 of the present invention. テレビ受信装置が備える液晶表示装置の概略構成を示す分解斜視図The exploded perspective view which shows schematic structure of the liquid crystal display device with which a television receiver is equipped 液晶表示装置に備わるバックライト装置におけるシャーシと導光部材と光源ユニットとの配置構成を示す平面図The top view which shows the arrangement structure of the chassis in the backlight apparatus with which a liquid crystal display device is equipped, the light guide member, and the light source unit. 図3のiv-iv線断面図Sectional view taken along line iv-iv in FIG. 図3のv-v線断面図V-v sectional view of FIG. LEDの駆動制御について説明するためのブロック図Block diagram for explaining LED drive control 光源ユニットの動作を説明するためのものであって、反射光が第1分割光入射面に入射した状態を示す平面図The top view for demonstrating operation | movement of a light source unit, Comprising: The reflected light injects into the 1st division | segmentation light incident surface 光源ユニットの動作を説明するためのものであって、反射光が第3分割光入射面に入射した状態を示す平面図The top view for demonstrating operation | movement of a light source unit, Comprising: The reflected light injects into the 3rd division | segmentation light incident surface 光源ユニットの動作を説明するためのものであって、反射光が第6分割光入射面に入射した状態を示す平面図The top view for demonstrating operation | movement of a light source unit, Comprising: The reflected light injects into the 6th division | segmentation light entrance surface 光源ユニットの動作を説明するためのものであって、反射光が第8分割光入射面に入射した状態を示す平面図The top view for demonstrating operation | movement of a light source unit, Comprising: The reflected light injects into the 8th division | segmentation light incident surface 光源ユニットの動作を説明するためのものであって、反射光が同期検知部に照射された状態を示す平面図The top view for demonstrating operation | movement of a light source unit, Comprising: The reflected light is irradiated to the synchronous detection part 光源ユニットの動作を説明するためのものであって、反射光が第4分割光入射面を走査する過程を示す拡大平面図An enlarged plan view for explaining an operation of the light source unit and showing a process in which the reflected light scans the fourth split light incident surface. 本発明の実施形態2に係るバックライト装置におけるシャーシと導光部材と光源ユニットとの配置構成を示す平面図The top view which shows the arrangement configuration of the chassis in the backlight apparatus which concerns on Embodiment 2 of this invention, the light guide member, and the light source unit. 本発明の実施形態3に係るバックライト装置におけるシャーシと導光部材と光源ユニットとの配置構成を示す平面図The top view which shows the arrangement configuration of the chassis in the backlight apparatus which concerns on Embodiment 3 of this invention, a light guide member, and a light source unit. 本発明の実施形態4に係るバックライト装置におけるシャーシと導光部材と光源ユニットとの配置構成を示す平面図The top view which shows the arrangement configuration of the chassis in the backlight apparatus which concerns on Embodiment 4 of this invention, a light guide member, and a light source unit. 本発明の実施形態5に係る光源ユニットの配置構成を示す平面図The top view which shows the arrangement configuration of the light source unit which concerns on Embodiment 5 of this invention. 本発明の他の実施形態(1)に係るバックライト装置におけるシャーシと導光部材と光源ユニットとの配置構成を示す平面図The top view which shows the arrangement configuration of the chassis in the backlight apparatus which concerns on other embodiment (1) of this invention, a light guide member, and a light source unit. 本発明の他の実施形態(2)に係る光源ユニットの配置構成を示す平面図The top view which shows the arrangement configuration of the light source unit which concerns on other embodiment (2) of this invention.
 <実施形態1>
 本発明の実施形態1を図1から図12によって説明する。本実施形態では、液晶表示装置10について例示する。なお、各図面の一部にはX軸、Y軸及びZ軸を示しており、各軸方向が各図面で示した方向となるように描かれている。また、図4及び図5に示す上側を表側とし、同図下側を裏側とする。
<Embodiment 1>
A first embodiment of the present invention will be described with reference to FIGS. In this embodiment, the liquid crystal display device 10 is illustrated. In addition, a part of each drawing shows an X axis, a Y axis, and a Z axis, and each axis direction is drawn to be a direction shown in each drawing. Moreover, let the upper side shown in FIG.4 and FIG.5 be a front side, and let the lower side of the figure be a back side.
 本実施形態に係るテレビ受信装置TVは、図1に示すように、液晶表示装置10と、当該液晶表示装置10を挟むようにして収容する表裏両キャビネットCa,Cbと、電源Pと、チューナーTと、スタンドSとを備えて構成される。液晶表示装置(表示装置)10は、全体として横長(長手)の方形状をなし、縦置き状態で収容されている。この液晶表示装置10は、図2に示すように、表示パネルである液晶パネル11と、外部光源であるバックライト装置(照明装置)12とを備え、これらが枠状のベゼル13などにより一体的に保持されるようになっている。 As shown in FIG. 1, the television receiver TV according to the present embodiment includes a liquid crystal display device 10, front and back cabinets Ca and Cb that are accommodated so as to sandwich the liquid crystal display device 10, a power source P, a tuner T, And a stand S. The liquid crystal display device (display device) 10 has a horizontally long (longitudinal) square shape as a whole and is accommodated in a vertically placed state. As shown in FIG. 2, the liquid crystal display device 10 includes a liquid crystal panel 11 that is a display panel and a backlight device (illumination device) 12 that is an external light source, which are integrated by a frame-like bezel 13 or the like. Is supposed to be retained.
 液晶パネル11は、図2に示すように、平面に視て横長(長手)の方形状をなしており、一対のガラス基板が所定のギャップを隔てた状態で貼り合わせられるとともに、両ガラス基板間に液晶が封入された構成とされる。一方のガラス基板には、互いに直交するソース配線とゲート配線とに接続されたスイッチング素子(例えばTFT)と、そのスイッチング素子に接続された画素電極、さらには配向膜等が設けられ、他方のガラス基板には、R(赤色),G(緑色),B(青色)等の各着色部が所定配列で配置されたカラーフィルタや対向電極、さらには配向膜等が設けられている。この液晶パネル11には、各ソース配線及び各ゲート配線に駆動信号を供給する液晶駆動用ドライバを介してコントロール基板(液晶駆動用ドライバ共々図示せず)が接続されており、このコントロール基板に備えられた液晶パネル制御部26によって駆動が制御されるようになっている(図6)。なお、液晶パネル制御部26により液晶パネル11には、1秒間に例えば60枚、120枚などの枚数の表示画像が表示されるようになっている。なお、両基板の外側には偏光板が配されている。 As shown in FIG. 2, the liquid crystal panel 11 has a horizontally long (longitudinal) rectangular shape in a plan view, and a pair of glass substrates are bonded together with a predetermined gap therebetween, and between the two glass substrates. The liquid crystal is sealed. One glass substrate is provided with a switching element (for example, TFT) connected to a source wiring and a gate wiring orthogonal to each other, a pixel electrode connected to the switching element, an alignment film, and the like. The substrate is provided with a color filter and counter electrodes in which colored portions such as R (red), G (green), and B (blue) are arranged in a predetermined arrangement, and an alignment film. The liquid crystal panel 11 is connected to a control board (not shown) with a liquid crystal driving driver for supplying a driving signal to each source wiring and each gate wiring. The driving is controlled by the liquid crystal panel control unit 26 (FIG. 6). The liquid crystal panel control unit 26 displays, for example, 60 or 120 display images on the liquid crystal panel 11 per second. A polarizing plate is disposed on the outside of both substrates.
 バックライト装置12は、図2に示すように、光出射面側(液晶パネル11側)に向けて開口する開口部を有した略箱型をなすシャーシ14と、シャーシ14の開口部を覆うようにして配される光学部材15群(拡散板(光拡散部材)15aと、拡散板15aと液晶パネル11との間に配される複数の光学シート15b)とを備える。さらに、シャーシ14内には、後に詳しく説明する光源ユニットUと、光源ユニットUからの光を導光して光学部材15(液晶パネル11)へと導く導光部材19と、導光部材19を表側から押さえるフレーム16とが備えられる。そして、このバックライト装置12は、導光部材19における長辺側の一端部に対して光源ユニットUが対向状に配されてなる、いわゆるエッジライト型(サイドライト型)とされている。以下では、バックライト装置12の各構成部品について詳しく説明する。 As shown in FIG. 2, the backlight device 12 covers a substantially box-shaped chassis 14 having an opening that opens toward the light emission surface side (the liquid crystal panel 11 side), and covers the opening of the chassis 14. The optical member 15 group (diffusing plate (light diffusing member) 15a and a plurality of optical sheets 15b arranged between the diffusing plate 15a and the liquid crystal panel 11) is provided. Further, in the chassis 14, a light source unit U, which will be described in detail later, a light guide member 19 that guides light from the light source unit U and guides it to the optical member 15 (liquid crystal panel 11), and a light guide member 19 are provided. And a frame 16 that is pressed from the front side. The backlight device 12 is of a so-called edge light type (side light type) in which the light source unit U is arranged opposite to one end of the light guide member 19 on the long side. Below, each component of the backlight apparatus 12 is demonstrated in detail.
 シャーシ14は、金属板材(鉄、アルミニウムなどを材料とした板金)からなり、図2及び図3に示すように、全体として浅い箱型をなしている。詳しくは、シャーシ14は、液晶パネル11と同様に横長の方形状をなす底板14aと、底板14aにおける長辺側の各外端から立ち上がる一対の長辺側の側板14bと、底板14aにおける短辺側の各外端から立ち上がる一対の短辺側の側板14cとから構成されている。シャーシ14(底板14a)は、その長辺方向がX軸方向(水平方向)と一致し、短辺方向がY軸方向(鉛直方向)と一致している。また、長辺側の側板14bには、フレーム16及びベゼル13がねじ止め可能とされる。 The chassis 14 is made of a metal plate material (sheet metal made of iron, aluminum, or the like), and has a shallow box shape as a whole as shown in FIGS. Specifically, the chassis 14 includes a bottom plate 14a that has a horizontally-long rectangular shape like the liquid crystal panel 11, a pair of long side plates 14b that rise from outer ends on the long side of the bottom plate 14a, and a short side of the bottom plate 14a. And a pair of side plates 14c on the short side that rise from the outer ends of the side. The long side direction of the chassis 14 (bottom plate 14a) coincides with the X-axis direction (horizontal direction), and the short side direction coincides with the Y-axis direction (vertical direction). The frame 16 and the bezel 13 can be screwed to the long side plate 14b.
 光学部材15は、図2に示すように、液晶パネル11及びシャーシ14と同様に平面に視て横長の方形状をなしている。光学部材15は、導光部材19の表側(光出射側)に載せられていて液晶パネル11と導光部材19との間に介在して配される。光学部材15は、裏側(導光部材19側、光出射側とは反対側)に配される拡散板15aと、表側(液晶パネル11側、光出射側)に配される光学シート15bとから構成される。拡散板15aは、所定の厚みを持つほぼ透明な樹脂製で板状をなす基材内に拡散粒子を多数分散して設けた構成とされ、透過する光を拡散させる機能を有する。光学シート15bは、拡散板15aと比べると板厚が薄いシート状をなしており、3枚が積層して配されている。具体的な光学シート15bの種類としては、例えば拡散シート、レンズシート、反射型偏光シートなどがあり、これらの中から適宜に選択して使用することが可能である。 As shown in FIG. 2, the optical member 15 has a horizontally long rectangular shape when viewed in a plane, like the liquid crystal panel 11 and the chassis 14. The optical member 15 is placed on the front side (light emitting side) of the light guide member 19 and is disposed between the liquid crystal panel 11 and the light guide member 19. The optical member 15 includes a diffusion plate 15a disposed on the back side (light guide member 19 side, opposite to the light emitting side) and an optical sheet 15b disposed on the front side (liquid crystal panel 11 side, light emitting side). Composed. The diffusing plate 15a has a structure in which a large number of diffusing particles are dispersed in a substantially transparent resin-made base material having a predetermined thickness, and has a function of diffusing transmitted light. The optical sheet 15b has a sheet shape that is thinner than the diffusion plate 15a, and three optical sheets are laminated. Specific types of the optical sheet 15b include, for example, a diffusion sheet, a lens sheet, a reflective polarizing sheet, and the like, which can be appropriately selected and used.
 フレーム16は、図2に示すように、導光部材19の外周端部に沿って延在する枠状(額縁状)に形成されており、導光部材19の外周端部をほぼ全周にわたって表側から押さえることが可能とされる。フレーム16における一対の長辺側部分のうち、光源ユニットU側(図4に示す左側)の長辺側部分は、図4に示すように、もう片方の長辺側部分よりも幅広に形成されている。また、フレーム16は、液晶パネル11における外周端部を裏側から受けることができる。なお、ベゼル13に関しても、光源ユニットU側の長辺側部分が、上記したフレーム16と同様に幅広形状とされている(図2及び図4)。 As shown in FIG. 2, the frame 16 is formed in a frame shape (frame shape) extending along the outer peripheral end portion of the light guide member 19, and the outer peripheral end portion of the light guide member 19 extends over substantially the entire circumference. It can be pressed from the front side. Of the pair of long side portions in the frame 16, the long side portion on the light source unit U side (left side shown in FIG. 4) is formed wider than the other long side portion as shown in FIG. ing. Further, the frame 16 can receive the outer peripheral end of the liquid crystal panel 11 from the back side. As for the bezel 13, the long side portion on the light source unit U side has a wide shape like the above-described frame 16 (FIGS. 2 and 4).
 導光部材19の全体構造について説明する。導光部材19は、屈折率が空気よりも十分に高く且つほぼ透明な(透光性に優れた)合成樹脂材料(例えばアクリルなど)からなる。導光部材19は、図2に示すように、全体として液晶パネル11やシャーシ14と同様に平面に視て横長の方形状をなす板状とされており、全体の長辺方向がX軸方向と、全体の短辺方向がY軸方向と、主板面と直交する板厚方向がZ軸方向とそれぞれ一致している。導光部材19は、図4に示すように、シャーシ14内において液晶パネル11及び光学部材15の直下位置に配されており、その一端部に対して光源ユニットUが対向状をなしている。従って、光学部材15(液晶パネル11)と導光部材19との並び方向がZ軸方向と一致するのに対して、光源ユニットUと導光部材19との並び方向がY軸方向と一致しており、両並び方向が互いに直交するものとされる。そして、導光部材19は、光源ユニットUが有するLED17からの光を導入するとともに、その光を内部で伝播させつつ光学部材15側(Z軸方向)へ向くよう立ち上げて出射させる機能を有する。 The overall structure of the light guide member 19 will be described. The light guide member 19 is made of a synthetic resin material (for example, acrylic) having a refractive index sufficiently higher than that of air and substantially transparent (exceeding translucency). As shown in FIG. 2, the light guide member 19 is formed in a plate shape having a horizontally long rectangular shape when viewed in a plane, as in the case of the liquid crystal panel 11 and the chassis 14, and the entire long side direction is the X-axis direction. In addition, the entire short side direction coincides with the Y-axis direction, and the plate thickness direction orthogonal to the main plate surface coincides with the Z-axis direction. As shown in FIG. 4, the light guide member 19 is disposed in the chassis 14 at a position directly below the liquid crystal panel 11 and the optical member 15, and the light source unit U is opposed to one end thereof. Accordingly, the alignment direction of the optical member 15 (liquid crystal panel 11) and the light guide member 19 matches the Z-axis direction, while the alignment direction of the light source unit U and the light guide member 19 matches the Y-axis direction. Both the alignment directions are orthogonal to each other. The light guide member 19 introduces light from the LED 17 included in the light source unit U, and has a function of rising and emitting the light toward the optical member 15 side (Z-axis direction) while propagating the light inside. .
 導光部材19は、図2に示すように、全体としてシャーシ14の底板14a及び光学部材15の各板面に沿って延在する略平板状をなしており、その主板面がX軸方向及びY軸方向に並行するものとされる。導光部材19の主板面のうち、表側を向いた面が、図4に示すように、内部の光を光学部材15及び液晶パネル11に向けて出射させる光出射面19aとなっている。導光部材19における主板面に対して隣り合う外周端面のうち、長辺側で且つ光源ユニットUと対向する端面が、光源ユニットUからの光が入射される光入射面19bとなっている。光入射面19bは、全体として長辺方向がX軸方向と、短辺方向がZ軸方向とそれぞれ一致する長手状の面とされており、光出射面19aに対して略直交する面とされる。 As shown in FIG. 2, the light guide member 19 has a substantially flat plate shape that extends along the bottom plate 14a of the chassis 14 and the plate surfaces of the optical member 15 as a whole. It is assumed to be parallel to the Y-axis direction. Of the main plate surface of the light guide member 19, the surface facing the front side is a light emission surface 19 a that emits internal light toward the optical member 15 and the liquid crystal panel 11 as shown in FIG. 4. Of the outer peripheral end surfaces adjacent to the main plate surface of the light guide member 19, the end surface on the long side and facing the light source unit U is a light incident surface 19 b on which light from the light source unit U is incident. The light incident surface 19b as a whole is a long surface in which the long side direction coincides with the X-axis direction and the short side direction coincides with the Z-axis direction, and is a surface substantially orthogonal to the light emitting surface 19a. The
 導光部材19における光出射面19aとは反対側の面19cには、導光部材19内の光を反射して表側へ立ち上げることが可能な導光反射シート20がその全域を覆う形で設けられている。言い換えると、導光反射シート20は、シャーシ14の底板14aと導光部材19との間に挟まれた形で配されている。なお、導光部材19における光出射面19aまたはその反対側の面19cの少なくともいずれか一方には、内部の光を反射させる反射部(図示せず)または内部の光を散乱させる散乱部(図示せず)が所定の面内分布を持つようパターニングされており、それにより光出射面19aからの出射光が面内において均一な分布となるよう制御されている。 On the surface 19c opposite to the light exit surface 19a of the light guide member 19, a light guide reflection sheet 20 capable of reflecting the light in the light guide member 19 and rising up to the front side covers the entire area. Is provided. In other words, the light guide reflection sheet 20 is disposed between the bottom plate 14 a of the chassis 14 and the light guide member 19. Note that at least one of the light exit surface 19a and the opposite surface 19c of the light guide member 19 has a reflecting portion (not shown) that reflects internal light or a scattering portion that scatters internal light (see FIG. (Not shown) is patterned so as to have a predetermined in-plane distribution, and thereby, the emitted light from the light emitting surface 19a is controlled to have a uniform distribution in the surface.
 上記のような全体構造を有している導光部材19は、図3及び図5に示すように、複数に分割されており、それに伴って光入射面19a及び光出射面19bについても複数に分割されている。以下、導光部材19の分割されたものを「分割導光部材」とするとともに、光入射面19a及び光出射面19bの分割されたものを「分割光入射面」及び「分割光出射面」とし、それぞれの符号に添え字「S」を付すものとする。詳しくは、各分割導光部材19Sは、導光部材19をその短辺方向(Y軸方向)に沿って分断するような形で、長辺方向(X軸方向)について8つに分割してなり、その分割幅(後述する走査方向に沿った寸法)はほぼ等しいものとされる。各分割導光部材19Sは、その長辺寸法が導光部材19における全体の短辺寸法と一致しているのに対し、短辺寸法(後述する走査方向に沿った寸法)が導光部材19における全体の長辺寸法の約1/8程度とされる。隣り合う分割導光部材19S間には、僅かながらも隙間が保有されており、そこが各分割導光部材19Sよりも相対的に屈折率が低い空気層ASとされる。光出射面19a及び光入射面19bは、X軸方向について各分割導光部材19S毎に複数の領域に区分されており、その区分された各領域が分割光出射面19aS及び分割光入射面19bSとされる。言い換えると、各分割導光部材19Sは、それぞれが分割光出射面19aS及び分割光入射面19bSを個別に有しており、各分割光出射面19aSが面一状に並べられることで全体の光出射面19aが構成されるとともに、各分割光入射面19bSが面一状に並べられることで、全体の光入射面19bが構成されている。各分割光出射面19aSは、互いにほぼ同じ面積を有するものとされる。同様に各分割光入射面19bSは、互いにほぼ同じ面積を有するものとされる。 The light guide member 19 having the entire structure as described above is divided into a plurality of parts as shown in FIGS. 3 and 5, and accordingly, the light incident surface 19a and the light emitting surface 19b are also divided into a plurality. It is divided. Hereinafter, the divided light guide member 19 is referred to as a “divided light guide member”, and the divided light incident surface 19a and the light output surface 19b are referred to as “divided light incident surface” and “divided light output surface”. And the suffix “S” is attached to each symbol. Specifically, each divided light guide member 19S is divided into eight parts in the long side direction (X axis direction) in such a manner that the light guide member 19 is divided along the short side direction (Y axis direction). Therefore, the divided widths (dimensions along the scanning direction to be described later) are substantially equal. Each divided light guide member 19 </ b> S has a long side dimension that coincides with an overall short side dimension of the light guide member 19, whereas a short side dimension (a dimension along a scanning direction described later) has a light guide member 19. About 1/8 of the entire long side dimension. There is a slight gap between the adjacent divided light guide members 19S, which is an air layer AS having a relatively lower refractive index than each of the divided light guide members 19S. The light emitting surface 19a and the light incident surface 19b are divided into a plurality of regions for each divided light guide member 19S in the X-axis direction, and the divided regions are divided light emitting surfaces 19aS and divided light incident surfaces 19bS. It is said. In other words, each of the divided light guide members 19S has a divided light emitting surface 19aS and a divided light incident surface 19bS individually, and the divided light emitting surfaces 19aS are arranged in a single plane so that the entire light can be obtained. The exit surface 19a is configured, and the divided light incident surfaces 19bS are arranged in a single plane, so that the entire light incident surface 19b is configured. The divided light exit surfaces 19aS have substantially the same area. Similarly, the divided light incident surfaces 19bS have substantially the same area.
 なお、以下では、各分割導光部材19S、各分割光出射面19aS及び各分割光入射面19bSについて区別する場合は、図3に示す左端のもの(最もLED17に近いもの)を「第1」として各符号に添え字「A」を付し、そこから同図右側のものを順に「第2」、「第3」・・・として、各符号に添え字「B」、「C」・・・をそれぞれ付し、そして同図右端のもの(最もLED17から遠いもの)を「第8」として各符号に添え字「H」を付すものとする。具体的には、第1分割導光部材19SA~第8分割導光部材19SHは、それぞれ第1分割光入射面19aSA~第8分割光入射面19aSH、及び第1分割光出射面19bSA~第8分割光出射面19bSHをそれぞれ有していることになる。なお、各分割導光部材19S、各分割光出射面19aS及び各分割光入射面19bSを区別せずに総称する場合には、各符号に添え字を付さないものとする。 In the following, when distinguishing each divided light guide member 19S, each divided light emitting surface 19aS, and each divided light incident surface 19bS, the one at the left end shown in FIG. 3 (the one closest to the LED 17) is “first”. The subscript “A” is attached to each symbol, and the right side of the symbol is designated as “second”, “third”..., And the subscript “B”, “C”,. Each of the symbols is attached with a suffix “H” as “eighth” with the one at the right end of the figure (the one farthest from the LED 17). Specifically, the first divided light guide member 19SA to the eighth divided light guide member 19SH respectively include the first divided light incident surface 19aSA to the eighth divided light incident surface 19aSH and the first divided light output surface 19bSA to the eighth. Each has a divided light exit surface 19bSH. In addition, when each division | segmentation light guide member 19S, each division | segmentation light emission surface 19aS, and each division | segmentation light entrance surface 19bS are named generically without distinguishing, a subscript shall not be attached | subjected to each code | symbol.
 続いて、光源ユニットUについて詳しく説明する。光源ユニットUは、図2及び図3に示すように、光源であるLED(Light Emitting Diode:発光ダイオード)17と、LED17が実装されたLED基板18と、LED17からの光を集光しつつ出射させる集光レンズ21と、集光レンズ21からの光を導光部材19に向けて反射させるポリゴンミラー22と、ポリゴンミラー22の回転状態にLED17の発光状態を同期させるための同期検知部23とから構成されている。 Subsequently, the light source unit U will be described in detail. 2 and 3, the light source unit U emits an LED (Light Emitting Diode) 17 as a light source, an LED substrate 18 on which the LED 17 is mounted, and the light from the LED 17 while condensing the light. A condenser lens 21 to be reflected, a polygon mirror 22 that reflects light from the condenser lens 21 toward the light guide member 19, and a synchronization detection unit 23 that synchronizes the light emission state of the LED 17 with the rotation state of the polygon mirror 22. It is composed of
 LED17は、図3及び図4に示すように、LED基板18に固着される基板部上にLEDチップを樹脂材により封止した構成とされる。基板部に実装されるLEDチップは、主発光波長が1種類とされ、具体的には、青色を単色発光するものが用いられている。その一方、LEDチップを封止する樹脂材には、LEDチップから発せられた青色の光により励起されて所定の色を発光する蛍光体が分散配合されており、全体として概ね白色光を発するものとされる。なお、蛍光体としては、例えば黄色光を発光する黄色蛍光体、緑色光を発光する緑色蛍光体、及び赤色光を発光する赤色蛍光体の中から適宜組み合わせて用いたり、またはいずれか1つを単独で用いることができる。このLED17は、LED基板18に対する実装面とは反対側の面が発光面となる、いわゆるトップ型とされている。LED17は、その発光光の光軸、つまり発光強度が最も高い光の進行方向がX軸方向と一致するような配光分布を有している。 3 and 4, the LED 17 has a configuration in which an LED chip is sealed with a resin material on a substrate portion fixed to the LED substrate 18. The LED chip mounted on the substrate unit has one main emission wavelength, and specifically, one that emits blue light in a single color is used. On the other hand, the resin material that seals the LED chip is dispersed and blended with a phosphor that emits a predetermined color when excited by the blue light emitted from the LED chip, and generally emits white light as a whole. It is said. In addition, as the phosphor, for example, a yellow phosphor that emits yellow light, a green phosphor that emits green light, and a red phosphor that emits red light are used in appropriate combination, or any one of them is used. It can be used alone. The LED 17 is a so-called top type in which a surface opposite to the mounting surface with respect to the LED substrate 18 is a light emitting surface. The LED 17 has a light distribution such that the optical axis of the emitted light, that is, the traveling direction of light having the highest emission intensity coincides with the X-axis direction.
 LED基板18は、合成樹脂製(ガラスエポキシ樹脂製など)の板状とされ、表面が光の反射性に優れた白色を呈するものとされる。LED基板18は、図3に示すように、その主板面をY軸方向及びZ軸方向に並行させた姿勢、すなわち液晶パネル11及び導光部材19(光学部材15)の主板面と直交させた姿勢でシャーシ14内に収容されている。LED基板18は、シャーシ14における短辺側の両側板14cのうち、図3に示す左側の側板14bに対してねじなどによって取付状態に固定されている。LED基板18は、短辺側の側板14cのうち導光部材19における光入射面19bとの間に所定の間隔を空けた位置に配されている。このLED基板18におけるLED17の実装面には、金属膜(銅箔など)からなる配線パターン(図示せず)が形成されており、この配線パターンの端部に形成された端子部が、後述する外部のLED駆動部24に接続されることで、駆動電力がLED17に供給されるようになっている。なお、LED基板18をシャーシ14における端部に配された側板14cに取り付けることで、LED駆動部24への配線経路を容易に確保することが可能とされる。 The LED substrate 18 has a plate shape made of synthetic resin (such as glass epoxy resin), and has a white surface with excellent light reflectivity. As shown in FIG. 3, the LED board 18 has its main plate surface parallel to the Y-axis direction and the Z-axis direction, that is, orthogonal to the main plate surfaces of the liquid crystal panel 11 and the light guide member 19 (optical member 15). It is accommodated in the chassis 14 in a posture. The LED board 18 is fixed to the left side plate 14b shown in FIG. 3 among the side plates 14c on the short side of the chassis 14 by screws or the like. The LED substrate 18 is disposed at a position spaced apart from the light incident surface 19b of the light guide member 19 in the side plate 14c on the short side. A wiring pattern (not shown) made of a metal film (copper foil or the like) is formed on the mounting surface of the LED 17 on the LED substrate 18, and terminal portions formed at the ends of the wiring pattern will be described later. By being connected to the external LED driving unit 24, driving power is supplied to the LED 17. In addition, by attaching the LED board 18 to the side plate 14c arranged at the end of the chassis 14, it is possible to easily secure a wiring path to the LED driving unit 24.
 集光レンズ21は、図3に示すように、LED17と次述するポリゴンミラー22との間に介在するものとされ、相対的にポリゴンミラー22よりもLED17の近くに配されている。具体的には、集光レンズ21は、導光部材19のうち最もLED17に近い第1分割導光部材19SAの第1分割光入射面19bSAと所定の間隔を空けつつ対向状をなす位置に配されている。集光レンズ21は、全体として平面に視て半ドーナツ状に形成されており、LED17側の面(光入射側の面)が凹型の湾曲面をなすとともに、ポリゴンミラー22側の面(光出射側の面)が凸型の湾曲面をなしている。集光レンズ21は、LED17から発せられた光に集光作用を付与しつつ出射させることが可能とされ、その出射光がX軸方向に沿ってほぼ直進する(光入射面19bに並行する)とともにポリゴンミラー22に当たるような光学設計とされる。詳しくは、LED17から発せられる光には、光軸であるX軸方向に沿って進行する最も発光強度が高いものの他にも、光軸に対して傾いた方向に進行するものも少なからず存在しているが、そのような光軸に対して傾いた方向に進行する光について集光レンズ21を透過する過程で屈折や反射などさせることで、光軸に沿ってほぼ直進し且つポリゴンミラー22に当たる光に変換することができる。なお、LED17から発せられる光のうち、光軸であるX軸方向に沿って進行する最も発光強度が高いものについては、集光レンズ21を透過しても、屈折などの作用を殆ど受けることなく、そのまま光軸に沿ってほぼ直進するものとされる。 As shown in FIG. 3, the condenser lens 21 is interposed between the LED 17 and a polygon mirror 22 described below, and is disposed relatively closer to the LED 17 than the polygon mirror 22. Specifically, the condensing lens 21 is arranged at a position facing the first divided light incident surface 19bSA of the first divided light guide member 19SA closest to the LED 17 among the light guide members 19 with a predetermined interval. Has been. The condensing lens 21 as a whole is formed in a semi-doughnut shape in plan view, and the surface on the LED 17 side (surface on the light incident side) forms a concave curved surface and the surface on the polygon mirror 22 side (light emission). Side surface) is a convex curved surface. The condensing lens 21 can emit the light emitted from the LED 17 while condensing the light, and the emitted light travels substantially straight along the X-axis direction (parallel to the light incident surface 19b). At the same time, the optical design is such that it hits the polygon mirror 22. Specifically, the light emitted from the LED 17 includes not only those with the highest emission intensity that travel along the X-axis direction, which is the optical axis, but also those that travel in a direction inclined with respect to the optical axis. However, the light traveling in the direction inclined with respect to the optical axis is refracted or reflected in the process of passing through the condenser lens 21, so that the light travels substantially straight along the optical axis and hits the polygon mirror 22. Can be converted to light. Of the light emitted from the LED 17, the light having the highest emission intensity that travels along the X-axis direction, which is the optical axis, is hardly affected by refraction even when transmitted through the condenser lens 21. It is assumed that the lens travels straight along the optical axis as it is.
 ポリゴンミラー22は、図3に示すように、集光レンズ21に対してX軸方向、すなわち集光レンズ21からの出射光の進行方向について、集光レンズ21とLED17との間の間隔よりも相対的に広い間隔を空けた位置に配されている。つまり、ポリゴンミラー22は、LED17及び集光レンズ21に対してX軸方向に沿って直線的に並んで配されている。ポリゴンミラー22は、導光部材19に対してその全体の長辺方向(分割導光部材19Sの並列方向、X軸方向)についてほぼ中央位置に配されている。そして、ポリゴンミラー22は、回転軸22a周りに一方向に回転可能とされるとともに、集光レンズ21からの光を反射することで、その反射光によって導光部材19の光入射面19bを走査することが可能とされる。 As shown in FIG. 3, the polygon mirror 22 has an X-axis direction with respect to the condenser lens 21, that is, in the traveling direction of the emitted light from the condenser lens 21, more than the distance between the condenser lens 21 and the LED 17. They are placed at relatively wide positions. That is, the polygon mirror 22 is arranged linearly along the X-axis direction with respect to the LED 17 and the condenser lens 21. The polygon mirror 22 is disposed at a substantially central position with respect to the light guide member 19 in the entire long side direction (the parallel direction of the divided light guide members 19S, the X-axis direction). The polygon mirror 22 is rotatable in one direction around the rotation axis 22a and reflects the light from the condenser lens 21, thereby scanning the light incident surface 19b of the light guide member 19 with the reflected light. It is possible to do.
 詳しくは、ポリゴンミラー22は、その回転軸22aに沿う方向(Z軸方向)から視た平面形状が正方形とされており、その外周面に4つの平坦な反射面22bが互いに隣り合う形で形成されている(図7から図12)。各反射面22bは、互いに面積及び各寸法が等しいものとされている。隣り合う反射面22bがなす角度は、90度とされる。このポリゴンミラー22は、図示しない電磁モータによって駆動されることで、回転軸22a周りに図3に示す時計回り方向(矢線方向)に向けて一定の回転速度(角速度)でもって回転されるようになっている。そして、ポリゴンミラー22の回転に伴って、集光レンズ21からポリゴンミラー22に向かう光に対してなす各反射面22bの角度が時分割的に変化するとともに、反射面22bによって反射された光の進行方向が時分割的に変化するものとされる。具体的には、ポリゴンミラー22の平面形状が正方形であるから、反射面22bにて反射された光(反射光)の進行方向が、集光レンズ21からポリゴンミラー22に向かう光の進行方向に対してなす角度は、0度から180度の範囲(180度の角度範囲)で変化し得るものとされる。従って、ポリゴンミラー22による反射光は、ポリゴンミラー22の回転に伴って、導光部材19の光入射面19bをその長辺方向(X軸方向)に沿って図3に示す左側から右側へ向けて直線的に走査することが可能とされる。具体的には、上記反射光は、第1分割導光部材19SAの第1光入射面19bSAにおける図3に示す左端から、第8分割導光部材19SHの第8光入射面19bSHにおける図3に示す右端までを全域わたって連続的に走査できるものとされる。このポリゴンミラー22の回転速度は、反射光が第1光入射面19bSAの図3に示す左端から第8光入射面19bSHの図3に示す右端まで、一通り走査するのにかかる時間が、液晶パネル11における1枚の表示画像の表示期間、具体的には例えば1/60秒、1/120秒などと一致するように設定されている。また、各分割導光部材19Sにおける分割光入射面19bSを反射光により走査する時間(分割光入射面19bSに対する反射光の一走査期間)は、液晶パネル11における1枚の表示画像の表示期間(例えば1/60秒、1/120秒など)の約1/8程度とされる。また、ポリゴンミラー22と導光部材19とは、Y軸方向に沿って並んでおり、その並び方向は、LED17、集光レンズ21及びポリゴンミラー22の並び方向であるX軸方向とは直交する関係にある。 Specifically, the polygon mirror 22 has a square shape when viewed from the direction along the rotation axis 22a (Z-axis direction), and four flat reflecting surfaces 22b are formed adjacent to each other on the outer peripheral surface thereof. (FIGS. 7 to 12). The reflecting surfaces 22b are equal in area and dimensions. The angle formed by the adjacent reflecting surfaces 22b is 90 degrees. The polygon mirror 22 is driven by an electromagnetic motor (not shown) so as to rotate at a constant rotational speed (angular speed) in the clockwise direction (arrow line direction) shown in FIG. It has become. As the polygon mirror 22 rotates, the angle of each reflecting surface 22b with respect to the light from the condenser lens 21 toward the polygon mirror 22 changes in a time-division manner, and the light reflected by the reflecting surface 22b The traveling direction changes in a time-sharing manner. Specifically, since the polygonal mirror 22 has a square planar shape, the traveling direction of the light (reflected light) reflected by the reflecting surface 22 b is the traveling direction of the light from the condenser lens 21 toward the polygon mirror 22. The angle formed with respect to the angle can be changed in the range of 0 to 180 degrees (angle range of 180 degrees). Accordingly, the reflected light from the polygon mirror 22 is directed from the left side to the right side shown in FIG. 3 along the long side direction (X-axis direction) of the light incident surface 19b of the light guide member 19 as the polygon mirror 22 rotates. It is possible to scan linearly. Specifically, the reflected light is transmitted from the left end shown in FIG. 3 on the first light incident surface 19bSA of the first divided light guide member 19SA to FIG. 3 on the eighth light incident surface 19bSH of the eighth divided light guide member 19SH. It can be continuously scanned over the entire area up to the right end shown. The rotation speed of the polygon mirror 22 is such that the time it takes for the reflected light to scan from the left end of the first light incident surface 19bSA shown in FIG. 3 to the right end of the eighth light incident surface 19bSH shown in FIG. The display period of one display image on the panel 11 is set to coincide with, for example, 1/60 seconds, 1/120 seconds, or the like. Further, the time for scanning the divided light incident surface 19bS of each divided light guide member 19S with reflected light (one scanning period of reflected light with respect to the divided light incident surface 19bS) is the display period of one display image on the liquid crystal panel 11 ( For example, about 1/8 of 1/60 seconds, 1/120 seconds, etc.). The polygon mirror 22 and the light guide member 19 are arranged along the Y-axis direction, and the arrangement direction is orthogonal to the X-axis direction that is the arrangement direction of the LED 17, the condenser lens 21, and the polygon mirror 22. There is a relationship.
 同期検知部23は、図3に示すように、シャーシ14のうちLED基板18が取り付けられた側板14cに取り付けられている。同期検知部23は、LED基板18と導光部材19との間に位置しており、ポリゴンミラー22からの反射光を受光することが可能とされる。同期検知部23は、光を検出可能な光センサ(図示せず)を内蔵しており、ポリゴンミラー22からの反射光を検知することができる。この同期検知部23は、次述する制御部25に接続されるとともに、ポリゴンミラー22からの反射光を検知すると、検知信号を制御部25に向けて出力することが可能とされる。続いて、制御部25及びLED17の駆動制御について詳しく説明する。 As shown in FIG. 3, the synchronization detection unit 23 is attached to the side plate 14 c of the chassis 14 to which the LED board 18 is attached. The synchronization detection unit 23 is located between the LED substrate 18 and the light guide member 19 and can receive the reflected light from the polygon mirror 22. The synchronization detection unit 23 has a built-in optical sensor (not shown) that can detect light, and can detect reflected light from the polygon mirror 22. The synchronization detection unit 23 is connected to a control unit 25 described below, and can output a detection signal toward the control unit 25 when detecting reflected light from the polygon mirror 22. Subsequently, drive control of the control unit 25 and the LED 17 will be described in detail.
 制御部25は、図6に示すように、同期検知部23からの検知信号に基づいてLED駆動部24に信号を出力し、LED17の駆動を制御することが可能とされる。詳しくは、制御部25は、同期検知部23から検知信号が入力されると、ポリゴンミラー22の回転速度に関する情報を参照しつつ、LED駆動部24に制御に係る信号を出力することで、所定のタイミングでLED17の発光状態を制御することができる。このとき、制御部25は、LED17の発光状態を、反射光による各分割光入射面19bSに対する走査期間毎に時分割して制御することが可能とされる。 As shown in FIG. 6, the control unit 25 can output a signal to the LED drive unit 24 based on the detection signal from the synchronization detection unit 23 to control the drive of the LED 17. Specifically, when the detection signal is input from the synchronization detection unit 23, the control unit 25 refers to information on the rotation speed of the polygon mirror 22 and outputs a signal related to the control to the LED drive unit 24 to obtain a predetermined signal. The light emission state of the LED 17 can be controlled at the timing. At this time, the control unit 25 can control the light emission state of the LED 17 in a time-sharing manner for each scanning period with respect to each split light incident surface 19bS by reflected light.
 具体的には、制御部25は、LED17に印加する電圧値を一定としつつLED17を周期的に点滅させることで点灯期間と消灯期間との時間比率を変化させる、いわゆるPWM(Pulse Width Modulation:パルス幅変調)方式でもってLED17の発光状態を制御しており、反射光による分割光入射面19bSに対する一走査期間中での点灯期間と消灯期間との時間比率を、各分割光入射面19bSに対する走査期間毎に個別に設定することが可能とされる。なお、上記一走査期間中における分割光入射面19bSに対する入射光量は、LED17に印加される電圧値が一定であることから、点灯期間と消灯期間との時間比率によって一義的に定まるものとされる。従って、制御部25によって各分割光入射面19bSに対する入射光量を個別に自由に設定することができ、例えば各分割光入射面19bSに対する入射光量を全て同一とすることもできれば、全て異ならせることもできる。そして、この制御部25には、液晶パネル11の駆動を制御する液晶パネル制御部26から表示画像に係る信号が入力されるようになっている。従って、制御部25は、表示画像の輝度情報などに基づいて、LED17の発光状態を制御することができる。具体的には、制御部25は、表示画像を各分割導光部材19Sが分担する8つの分割表示領域(分割光出射面19aS)に区分するとともに、表示画像に係る信号から各分割表示領域に必要とされる輝度を算出し、その算出した輝度情報に基づいて、LED17の発光状態を、各分割光入射面19bSに対する走査期間毎に時分割して制御している。 Specifically, the control unit 25 changes the time ratio between the lighting period and the extinguishing period by periodically blinking the LED 17 while keeping the voltage value applied to the LED 17 constant, so-called PWM (Pulse Width Modulation: pulse). The light emission state of the LED 17 is controlled by the (width modulation) method, and the time ratio between the lighting period and the extinction period in one scanning period with respect to the divided light incident surface 19bS by the reflected light is scanned with respect to each divided light incident surface 19bS. It can be set individually for each period. Note that the amount of light incident on the split light incident surface 19bS during the one scanning period is uniquely determined by the time ratio between the lighting period and the extinguishing period because the voltage value applied to the LED 17 is constant. . Therefore, the control unit 25 can freely set the amount of incident light on each divided light incident surface 19bS individually. For example, the amount of incident light on each divided light incident surface 19bS can be all the same or different. it can. A signal related to a display image is input to the control unit 25 from a liquid crystal panel control unit 26 that controls driving of the liquid crystal panel 11. Therefore, the control unit 25 can control the light emission state of the LED 17 based on the luminance information of the display image. Specifically, the control unit 25 divides the display image into eight divided display areas (divided light emission surfaces 19aS) shared by the divided light guide members 19S, and converts the display image into each divided display area. The required luminance is calculated, and based on the calculated luminance information, the light emission state of the LED 17 is controlled in a time-sharing manner for each scanning period with respect to each divided light incident surface 19bS.
 本実施形態は以上のような構造であり、続いてその作用を説明する。上記のような構成の液晶表示装置10の電源がONされると、液晶パネル制御部26により液晶パネル11の駆動が制御されるとともに、光源ユニットUからの光が導光部材19の光入射面19bに入射してその内部を伝播してから光学部材15に向けて立ち上げられつつ光出射面19aから出射されることで液晶パネル11に向けて照射され、もって液晶パネル11に所定の画像が表示される。以下、バックライト装置12に係る作用について詳しく説明する。 This embodiment has the structure as described above, and its operation will be described next. When the power supply of the liquid crystal display device 10 configured as described above is turned on, the liquid crystal panel control unit 26 controls the driving of the liquid crystal panel 11 and the light from the light source unit U is incident on the light incident surface of the light guide member 19. The light enters the liquid crystal panel 11 by being incident on the liquid crystal panel 11 after being incident on the light 19b and propagating through the optical member 15, and is emitted toward the liquid crystal panel 11. Thus, a predetermined image is displayed on the liquid crystal panel 11. Is displayed. Hereinafter, the operation of the backlight device 12 will be described in detail.
 電源がONされると、光源ユニットUを構成する制御部25からの信号に基づいてLED駆動部25によりLED17が点灯されるとともに(図6)、電磁モータが駆動されることでポリゴンミラー22が回転軸22a周りに一定の回転速度でもって回転される。LED17からの光は、図3に示すように、集光レンズ21によって集光されることでX軸方向に沿って直進する光となってポリゴンミラー22に向けて出射された後、ポリゴンミラー22の反射面22bに当たることで、所定の角度付けがなされた状態で反射される。ポリゴンミラー22による反射光は、導光部材19における光入射面19bをX軸方向について全長にわたって網羅的に走査することができるものとされる。具体的には、ポリゴンミラー22による反射光は、図7から図10に示すように、第1分割導光部材19SAの第1分割光入射面19bSAにおける同図左端から同図右端までを走査した後、その右隣の第2分割導光部材19SBの第2分割光入射面19bSB、第3分割導光部材19SCの第3分割光入射面19bSC・・・の順で走査し、第8分割導光部材19SHの第8分割光入射面19bSHを走査してから、再び第1分割導光部材19SAの第1分割光入射面19bSAを走査するものとされる。なお、ポリゴンミラー22の回転速度の設定により、反射光により全ての分割光入射面19bSが走査されるのにかかる時間は、液晶パネル11における1枚の表示画像の表示期間(例えば1/60秒、1/120秒など)とほぼ等しいものとされている。そして、LED17の発光状態は、ポリゴンミラー22の回転状態及び液晶パネル11に表示される表示画像に同期されるよう制御部25により制御されている。 When the power is turned on, the LED 17 is turned on by the LED driving unit 25 based on a signal from the control unit 25 constituting the light source unit U (FIG. 6), and the polygon mirror 22 is driven by driving the electromagnetic motor. It is rotated around the rotation axis 22a at a constant rotation speed. As shown in FIG. 3, the light from the LED 17 is condensed by the condenser lens 21, becomes light that goes straight along the X-axis direction, and is emitted toward the polygon mirror 22. Is reflected in a state where a predetermined angle is given. The light reflected by the polygon mirror 22 can scan the light incident surface 19b of the light guide member 19 over the entire length in the X-axis direction. Specifically, as shown in FIGS. 7 to 10, the reflected light from the polygon mirror 22 scanned from the left end to the right end of the first divided light incident surface 19bSA of the first divided light guide member 19SA. Thereafter, the second divided light incident surface 19bSB of the second divided light guide member 19SB on the right side, the third divided light incident surface 19bSC... Of the third divided light guide member 19SC are scanned in this order, and the eighth divided light guide is obtained. After the eighth divided light incident surface 19bSH of the optical member 19SH is scanned, the first divided light incident surface 19bSA of the first divided light guide member 19SA is scanned again. Note that the time required for scanning all the divided light incident surfaces 19bS by reflected light by setting the rotational speed of the polygon mirror 22 is the display period of one display image on the liquid crystal panel 11 (for example, 1/60 seconds). , 1/120 seconds, etc.). The light emission state of the LED 17 is controlled by the control unit 25 so as to be synchronized with the rotation state of the polygon mirror 22 and the display image displayed on the liquid crystal panel 11.
 具体的には、ポリゴンミラー22の反射面22bによって反射された光には、光入射面19bに入射するものの他にも、図11に示すように、同期検知部23に照射されるものが存在しているので、この同期検知部23によってポリゴンミラー22からの反射光を検知し、その検知信号が制御部25に出力されるのに基づいて、制御部25は、ポリゴンミラー22の回転状態にLED17の発光状態を同期させることができる。つまり、制御部25は、同期検知部23から検知信号を受けたタイミングと、ポリゴンミラー22の回転速度に関する情報とから、ポリゴンミラー22の反射光による導光部材19の光入射面19bに対する走査位置を正確に算出することができるので、反射光が各分割光入射面19bSを走査する走査期間毎に、LED17の発光状態を時分割して制御することができるのである。この走査期間とは、図12に示すように、反射光が分割導光部材19Sの分割光入射面19bSにおける同図左端に照射された走査開始位置(同図一点鎖線に示す)から、分割光入射面19bSにおける同図右端に照射された走査終了位置(同図二点鎖線に示す)に至るまでに要した時間のことである。なお、制御部25においては、各分割光入射面19bS間に存在する空気層ASを反射光が走査し得る期間においては、LED17を消灯するような制御を行うのが好ましい。 Specifically, the light reflected by the reflecting surface 22b of the polygon mirror 22 includes what is irradiated on the synchronization detecting unit 23 as shown in FIG. 11 in addition to the light incident on the light incident surface 19b. Therefore, based on the detection of the reflected light from the polygon mirror 22 by the synchronization detection unit 23 and the output of the detection signal to the control unit 25, the control unit 25 changes the rotation state of the polygon mirror 22. The light emission state of the LED 17 can be synchronized. That is, the control unit 25 scans the light incident surface 19b of the light guide member 19 by the reflected light of the polygon mirror 22 based on the timing at which the detection signal is received from the synchronization detection unit 23 and information on the rotational speed of the polygon mirror 22. Therefore, the light emission state of the LED 17 can be controlled in a time-sharing manner for each scanning period in which the reflected light scans each split light incident surface 19bS. As shown in FIG. 12, this scanning period means the divided light from the scanning start position (indicated by the one-dot chain line in FIG. 12) where the reflected light is applied to the left end of the divided light incident surface 19bS of the divided light guide member 19S. This is the time required to reach the scanning end position (indicated by the two-dot chain line in the figure) irradiated on the right end of the figure on the incident surface 19bS. In the control unit 25, it is preferable to perform control such that the LED 17 is turned off during a period in which the reflected light can scan the air layer AS existing between the divided light incident surfaces 19bS.
 そして、制御部25は、図6に示すように、液晶パネル11の駆動を制御する液晶パネル制御部26からの表示画像に係る信号に基づいて、LED17の発光状態を制御している。詳しくは、制御部25は、液晶パネル11から入力される表示画像に係る信号から、各分割導光部材19Sが分担する各分割表示領域(各分割光出射面19aS)に必要とされる輝度を算出し、その算出した輝度情報に基づいて、LED17の発光状態を、各分割光入射面19bSに対する走査期間毎に時分割して制御している。具体的なLED17の駆動制御について説明すると、制御部25は、各分割光入射面19bSに対する走査期間毎にLED17の点灯期間と消灯期間との時間比率を、上記した各分割導光部材19Sの輝度情報に基づいて決定しつつLED17を時分割で駆動制御している。例えば、相対的に暗い分割表示領域を分担する分割導光部材19Sの分割光入射面19bSの走査期間については、相対的に点灯期間を短くし消灯期間を長くすることで入射光量を相対的に少なくするのに対し、相対的に明るい分割表示領域を分担する分割導光部材19Sの分割光入射面19bSの走査期間については、相対的に点灯期間を長くし消灯期間を短くすることで入射光量を相対的に多くするよう、LED17の発光状態を走査期間毎に時分割して制御するのである。これにより、各分割導光部材19Sの分割光入射面19bSへの入射光量を個別に調整することができ、且つその入射光量を表示画像の輝度情報に基づいた適切なものとすることができる。各分割光入射面19bSに入射した光は、導光反射シート20にて反射されたり、空気層ASとの界面にて全反射されることで、殆ど外部に漏れ出すことなく効率的に各分割導光部材19S内を伝播した後、分割光出射面19aSから出射される。そして、各分割光出射面19aSからの出射光は、液晶パネル11における各分割表示領域をそれぞれ分担して照射するのに対し、その出射光量は各分割光入射面19bSへの入射光量と概ね等しい関係にあることから、表示画像のコントラスト比を高めることができるのである。 And the control part 25 is controlling the light emission state of LED17 based on the signal which concerns on the display image from the liquid crystal panel control part 26 which controls the drive of the liquid crystal panel 11, as shown in FIG. Specifically, the control unit 25 determines the luminance required for each divided display region (each divided light emitting surface 19aS) shared by each divided light guide member 19S from the signal related to the display image input from the liquid crystal panel 11. Based on the calculated luminance information, the light emission state of the LED 17 is controlled in a time-sharing manner for each scanning period with respect to each divided light incident surface 19bS. The specific drive control of the LED 17 will be described. The control unit 25 determines the time ratio between the lighting period and the extinguishing period of the LED 17 for each scanning period with respect to each divided light incident surface 19bS, and the luminance of each divided light guide member 19S. The LED 17 is driven and controlled in a time-sharing manner while being determined based on the information. For example, with respect to the scanning period of the divided light incident surface 19bS of the divided light guide member 19S that shares a relatively dark divided display area, the incident light quantity is relatively reduced by relatively shortening the lighting period and lengthening the extinguishing period. On the other hand, with respect to the scanning period of the divided light incident surface 19bS of the divided light guide member 19S that shares a relatively bright divided display area, the incident light quantity is increased by relatively increasing the lighting period and shortening the extinction period. The light emission state of the LED 17 is controlled in a time-sharing manner for each scanning period so as to relatively increase the number of. As a result, the amount of incident light on the divided light incident surface 19bS of each divided light guide member 19S can be individually adjusted, and the amount of incident light can be made appropriate based on the luminance information of the display image. The light incident on each split light incident surface 19bS is reflected by the light guide reflection sheet 20 or totally reflected at the interface with the air layer AS, so that each split can be performed efficiently without leaking to the outside. After propagating through the light guide member 19S, the light is emitted from the split light exit surface 19aS. The emitted light from each divided light exit surface 19aS irradiates each divided display area in the liquid crystal panel 11, while the emitted light amount is substantially equal to the incident light amount to each divided light incident surface 19bS. Because of this relationship, the contrast ratio of the display image can be increased.
 以上説明したように本実施形態のバックライト装置(照明装置)12は、LED(光源)17と、LED17からの光が入射される光入射面19bを有する導光部材19と、回転(回動)されつつLED17からの光を反射し、その反射光により光入射面19bを走査するポリゴンミラー(回動反射体)22と、光入射面19bをポリゴンミラー22からの反射光による走査方向(X軸方向)について複数の領域(分割光入射面19bS)に区分したとき、各領域に対する反射光の走査期間に対応付けてLED17の発光状態を時分割して制御する制御部25とを備える。 As described above, the backlight device (illumination device) 12 of the present embodiment includes the LED (light source) 17, the light guide member 19 having the light incident surface 19 b on which the light from the LED 17 is incident, and the rotation (rotation). ) While reflecting the light from the LED 17 and scanning the light incident surface 19b by the reflected light, and the scanning direction (X) of the light incident surface 19b by the reflected light from the polygon mirror 22 When divided into a plurality of regions (divided light incident surface 19bS) in the axial direction, a control unit 25 is provided that controls the light emission state of the LED 17 in a time-sharing manner in association with the scanning period of the reflected light for each region.
 このようにすれば、LED17から発せられた光は、ポリゴンミラー22によって反射されてから、導光部材19の光入射面19bに入射される。ここで、ポリゴンミラー22は、回転(回動)されつつLED17からの光を反射するので、その反射光によって光入射面19bを走査することができる。そして、制御部25は、反射光による走査方向について区分された光入射面19bにおける各領域(分割光入射面19bS)に対する反射光の走査期間に対応付けてLED17の発光状態を時分割して制御することで、各領域に対する反射光の入射光量を個別に調整することが可能とされる。従って、本実施形態によれば、従来のように多数のLEDを並列配置して各LEDの発光状態を個別に調整するようにしたものに比べると、LED17の使用数を削減することができ、例えばLED17に係るコストの低減を図ることができる。 In this way, the light emitted from the LED 17 is reflected by the polygon mirror 22 and then enters the light incident surface 19 b of the light guide member 19. Here, since the polygon mirror 22 reflects the light from the LED 17 while being rotated (turned), the light incident surface 19b can be scanned by the reflected light. Then, the control unit 25 controls the light emission state of the LED 17 in a time-sharing manner in association with the scanning period of the reflected light with respect to each region (divided light incident surface 19bS) on the light incident surface 19b divided in the scanning direction by the reflected light. This makes it possible to individually adjust the amount of reflected light incident on each region. Therefore, according to the present embodiment, the number of LEDs 17 used can be reduced compared to a conventional arrangement in which a large number of LEDs are arranged in parallel and the light emission state of each LED is individually adjusted. For example, the cost related to the LED 17 can be reduced.
 また、LED17及びポリゴンミラー22の並び方向と、ポリゴンミラー22及び導光部材19の並び方向とが互いに略直交するものとされる。このようにすれば、仮にLED、ポリゴンミラー及び導光部材が全て直線的に並んだ場合に比べると、バックライト装置12全体を小型に保つことができる。 Also, the arrangement direction of the LED 17 and the polygon mirror 22 and the arrangement direction of the polygon mirror 22 and the light guide member 19 are substantially orthogonal to each other. In this way, the entire backlight device 12 can be kept small as compared with a case where the LEDs, the polygon mirror, and the light guide member are all linearly arranged.
 また、ポリゴンミラー22は、走査方向について光入射面19bのほぼ中央位置に配されている。このようにすれば、ポリゴンミラー22にて反射された光のうち、走査方向について光入射面19bの一方の端部に至る光と、他方の端部に至る光とで光路長がほぼ同等となる。従って、例えばポリゴンミラー22からの反射光による光入射面19bの各領域の走査期間を設定するのが簡便となる、などの効果を得ることができる。 Further, the polygon mirror 22 is disposed at a substantially central position of the light incident surface 19b in the scanning direction. In this way, of the light reflected by the polygon mirror 22, the light path lengths of the light reaching one end of the light incident surface 19 b and the light reaching the other end in the scanning direction are substantially equal. Become. Therefore, for example, it is possible to obtain an effect that it is easy to set the scanning period of each region of the light incident surface 19 b by the reflected light from the polygon mirror 22.
 また、LED17は、走査方向について光入射面19bの端側に配されている。このようにすれば、仮にLEDを走査方向について光入射面19bの中央側に配した場合に比べると、例えばLED17に対する配線の接続が容易になるなどの効果を得ることができる。 The LED 17 is disposed on the end side of the light incident surface 19b in the scanning direction. In this way, compared to the case where the LED is arranged on the center side of the light incident surface 19b in the scanning direction, it is possible to obtain an effect such as easy connection of the wiring to the LED 17, for example.
 また、光入射面19bにおける複数の領域は、走査方向についての寸法が互いにほぼ同じとなるよう区分されている。このようにすれば、各領域に対するポリゴンミラー22からの反射光による走査期間をほぼ同じとすることができるから、制御部25による制御がより容易なものとなる。 Further, the plurality of regions on the light incident surface 19b are divided so that the dimensions in the scanning direction are substantially the same. In this way, the scanning period of the reflected light from the polygon mirror 22 for each region can be made substantially the same, so that the control by the control unit 25 becomes easier.
 また、回動反射体は、一方向に回転するポリゴンミラー22により構成されている。このようにすれば、一方向に回転するポリゴンミラー22による反射光により光入射面19bにおける各領域を走査することができるから、特に光入射面19bを高速で走査する場合に好適となる。 Further, the rotating reflector is constituted by a polygon mirror 22 that rotates in one direction. In this way, each region on the light incident surface 19b can be scanned by the reflected light from the polygon mirror 22 rotating in one direction, which is particularly suitable for scanning the light incident surface 19b at a high speed.
 また、ポリゴンミラー22は、その回転軸22aに沿う方向から視た平面形状が正多角形とされる。このようにすれば、LED17からの光を反射する面(反射面22b)が全て均一な大きさとされるから、例えばポリゴンミラー22における回転速度を一定とすれば、単位時間当たりの光入射面19bに対する走査範囲を一定とすることができる。 The polygon mirror 22 has a regular polygonal shape when viewed from the direction along the rotation axis 22a. In this way, the surfaces (reflecting surfaces 22b) that reflect the light from the LED 17 are all uniform in size. Therefore, for example, if the rotation speed of the polygon mirror 22 is constant, the light incident surface 19b per unit time. The scanning range for can be made constant.
 また、ポリゴンミラー22は、その回転軸22aに沿う方向から視た平面形状が正方形とされる。このようにすれば、LED17からの光を反射可能な角度範囲をほぼ180度とすることが可能となる。従って、特に導光部材19における光入射面19bが走査方向について大きな場合に好適となり、また当該バックライト装置12におけるポリゴンミラー22における配置の自由度が高くなる。 Further, the polygonal mirror 22 has a square shape when viewed from the direction along the rotation axis 22a. If it does in this way, it will become possible to make the angle range which can reflect the light from LED17 into about 180 degrees. Therefore, it is suitable particularly when the light incident surface 19b of the light guide member 19 is large in the scanning direction, and the degree of freedom of arrangement in the polygon mirror 22 in the backlight device 12 is increased.
 また、LED17とポリゴンミラー22との間に介在し、LED17からの光を集光してポリゴンミラー22に向けて出射させる集光レンズ(集光部材)21を備える。このようにすれば、LED17から発せられた光をポリゴンミラー22に対して効率的に供給することができる。これにより、導光部材19の光入射面19bに対してLED17からの光を無駄なく入射させることができて利用効率を向上させることができるので、輝度の向上や低消費電力化を図ることができる。 Further, a condensing lens (condensing member) 21 is provided between the LED 17 and the polygon mirror 22 and condenses the light from the LED 17 and emits the light toward the polygon mirror 22. In this way, the light emitted from the LED 17 can be efficiently supplied to the polygon mirror 22. As a result, the light from the LED 17 can be incident on the light incident surface 19b of the light guide member 19 without waste, and the utilization efficiency can be improved. Therefore, the luminance can be improved and the power consumption can be reduced. it can.
 また、LED17、集光レンズ21及びポリゴンミラー22が直線的に並んで配されており、これらLED17、集光レンズ21及びポリゴンミラー22の並び方向と、ポリゴンミラー22及び導光部材19の並び方向とが互いに略直交するものとされる。このようにすれば、仮にLED、集光レンズ、ポリゴンミラー及び導光部材が全て直線的に並んだ場合に比べると、バックライト装置12全体を小型に保つことができる。 Further, the LED 17, the condenser lens 21 and the polygon mirror 22 are arranged in a straight line, the arrangement direction of the LED 17, the condenser lens 21 and the polygon mirror 22, and the arrangement direction of the polygon mirror 22 and the light guide member 19. Are substantially orthogonal to each other. In this way, the entire backlight device 12 can be kept small as compared with the case where the LED, the condensing lens, the polygon mirror, and the light guide member are all linearly arranged.
 また、集光レンズ21は、ポリゴンミラー22に向けて出射させる光の進行方向が、光入射面19bに並行するよう、LED17からの光を集光するものとされる。このようにすれば、光入射面19bに並行する光をポリゴンミラー22によって反射して角度付けすることで、光入射面19bにおける各領域に適切に入射させることができる。 Further, the condensing lens 21 condenses the light from the LED 17 so that the traveling direction of the light emitted toward the polygon mirror 22 is parallel to the light incident surface 19b. In this way, the light parallel to the light incident surface 19b is reflected by the polygon mirror 22 and angled, so that it can be appropriately incident on each region on the light incident surface 19b.
 また、集光レンズ21は、ポリゴンミラー22よりも相対的にLED17の近傍位置に配されている。このようにすれば、LED17から発せられた光をより効率的に集光することができる。 In addition, the condenser lens 21 is disposed at a position near the LED 17 relative to the polygon mirror 22. In this way, the light emitted from the LED 17 can be collected more efficiently.
 また、制御部25は、LED17を周期的に点滅させ、点灯期間と消灯期間との時間比率を変化させるようにしている。このように、LED17の発光状態を、いわゆるPWM(Pulse Width Modulation:パルス幅変調)方式により制御しているので、LED17に付与する電圧値を一定にすることができてその制御に係る回路構成を簡単なものとすることができ、また調光範囲を十分に大きく確保できてLED17の発光状態をより適切に制御することができる。 Further, the control unit 25 periodically blinks the LED 17 to change the time ratio between the lighting period and the extinguishing period. Thus, since the light emission state of the LED 17 is controlled by a so-called PWM (Pulse Width Modulation) method, the voltage value applied to the LED 17 can be made constant, and a circuit configuration related to the control can be obtained. It can be made simple, and the dimming range can be secured sufficiently large, and the light emission state of the LED 17 can be controlled more appropriately.
 また、導光部材19は、光入射面19bにおける複数の領域毎に分割された複数の分割導光部材19Sから構成される。このようにすれば、光入射面19bにおける各領域に入射した光を、各分割導光部材19Sにより個別に導光させてから出射させることができる。 The light guide member 19 is composed of a plurality of divided light guide members 19S divided into a plurality of regions on the light incident surface 19b. If it does in this way, the light which injected into each area | region in the light-incidence surface 19b can be radiate | emitted after light-guided separately by each division | segmentation light guide member 19S.
 また、隣り合う分割導光部材19Sの間には、分割導光部材19Sよりも相対的に屈折率が低い空気層(低屈折率層)ASが介在している。このようにすれば、分割導光部材19S内の光が空気層AS側に出射し難くなるから、隣り合う分割導光部材19S間で光が行き交うのを防ぐことができ、隣り合う分割導光部材19Sの光学的な独立性を担保することができる。また、各分割導光部材19Sからの出射光量を十分に確保できて輝度の向上を図ることができる。 Further, an air layer (low refractive index layer) AS having a refractive index relatively lower than that of the divided light guide member 19S is interposed between the adjacent divided light guide members 19S. This makes it difficult for the light in the divided light guide member 19S to be emitted toward the air layer AS, so that light can be prevented from passing between the adjacent divided light guide members 19S, and the adjacent divided light guides can be prevented. The optical independence of the member 19S can be ensured. In addition, it is possible to secure a sufficient amount of light emitted from each divided light guide member 19S and improve luminance.
 また、低屈折率層は、空気層ASとされる。このようにすれば、低屈折率層を形成するための格別な部材が不要となるので、低コストで対応することができる。 Also, the low refractive index layer is an air layer AS. This eliminates the need for a special member for forming the low refractive index layer, and thus can cope with low cost.
 また、光源は、LED17とされる。このようにすれば、高輝度化及び低消費電力化などを図ることができる。 Further, the light source is the LED 17. In this way, high brightness and low power consumption can be achieved.
 <実施形態2>
 本発明の実施形態2を図13によって説明する。この実施形態2では、光源ユニット1Uを一対設けたものを示す。なお、上記した実施形態1と同様の構造、作用及び効果について重複する説明は省略する。
<Embodiment 2>
A second embodiment of the present invention will be described with reference to FIG. In the second embodiment, a pair of light source units 1U is provided. In addition, the overlapping description about the same structure, an effect | action, and effect as above-mentioned Embodiment 1 is abbreviate | omitted.
 光源ユニット1Uは、図13に示すように、シャーシ114における長辺側の両端部に一対配されている。詳しくは、シャーシ114における長辺側の両側板114bと導光部材119との間には、それぞれ所定の間隔が空けられており、その空間にそれぞれ光源ユニット1Uが配されている。つまり、本実施形態に係る導光部材119は、一対の光源ユニット1U間に挟み込まれる形で配されており、全体の長辺方向(X軸方向)に沿った両側面がそれぞれ各光源ユニット1Uと対向状をなす一対の光入射面119bとされている。従って、各分割導光部材119Sは、その短辺方向(X軸方向)に沿った両側面が一対の分割光入射面119bSとされており、それぞれ対向する各光源ユニット1Uからの光によって走査されるようになっている。各光源ユニット1Uを構成するLED117、LED基板118、集光レンズ121、ポリゴンミラー122及び同期検知部123は、導光部材119の中心位置を対称点とした点対称となる配置とされている。以下、図13に示す下側の光源ユニット1Uを「第1光源ユニット」として符号に添え字Aを付すのに対し、同図上側の光源ユニット1Uを「第2光源ユニット」として符号に添え字Bを付すものとする。詳しくは、第1光源ユニット1UAをなすLED基板118及び同期検知部123は、図13に示す左側の側板114cに取り付けられているのに対し、第2光源ユニット1UBをなすLED基板118及び同期検知部123は、同図右側の側板114cに取り付けられている。各光源ユニット1UA,1UBをなす集光レンズ121は、それぞれポリゴンミラー122よりもLED117に近くなる位置に配されている。各光源ユニット1UA,1UBをなすポリゴンミラー122は、共に図13に示す時計回り方向(矢線方向)に回転するものとされる。 As shown in FIG. 13, a pair of light source units 1U are arranged at both ends of the long side of the chassis 114. Specifically, a predetermined interval is provided between the long-side side plates 114b and the light guide member 119 in the chassis 114, and the light source units 1U are arranged in the spaces. In other words, the light guide member 119 according to the present embodiment is disposed in a form sandwiched between the pair of light source units 1U, and both side surfaces along the entire long side direction (X-axis direction) are each light source unit 1U. And a pair of light incident surfaces 119b facing each other. Accordingly, each divided light guide member 119S has a pair of divided light incident surfaces 119bS on both side surfaces along the short side direction (X-axis direction), and is scanned by the light from each light source unit 1U facing each other. It has become so. The LED 117, LED board 118, condenser lens 121, polygon mirror 122, and synchronization detection unit 123 that constitute each light source unit 1 </ b> U are arranged symmetrically with respect to the center position of the light guide member 119. In the following, the lower light source unit 1U shown in FIG. 13 is referred to as a “first light source unit”, and a subscript A is added to the reference, whereas the upper light source unit 1U shown in FIG. B shall be attached. Specifically, the LED board 118 and the synchronization detection unit 123 that form the first light source unit 1UA are attached to the left side plate 114c shown in FIG. 13, whereas the LED board 118 and the synchronization detection that form the second light source unit 1UB. The part 123 is attached to the side plate 114c on the right side of the figure. The condensing lenses 121 forming the light source units 1UA and 1UB are arranged at positions closer to the LED 117 than the polygon mirror 122, respectively. The polygon mirrors 122 forming the light source units 1UA and 1UB are both rotated in the clockwise direction (arrow line direction) shown in FIG.
 上記のような配置とされた一対の光源ユニット1Uは、制御部25(図6参照)によって以下のように複数通りの制御をすることが可能とされる。例えば、導光部材119を構成する各分割導光部材119SA~119SHを、第1光源ユニット1UAと第2光源ユニット1UBとに分担して走査させるようにすることができる。具体的には、例えば各分割導光部材119Sのうち、図13に示す左側半分の各分割導光部材119SA,119SB,119SC,119SDにおける各分割光入射面119bSについては、第1光源ユニット1UAをなすポリゴンミラー122からの反射光により走査するのに対し、同図右側半分の各分割導光部材119SE,119SF,119SG,119SHにおける各分割光入射面119bSについては、第2光源ユニット1UBをなすポリゴンミラー122からの反射光により走査するような設定が可能である。上記以外にも、例えば各分割導光部材119Sのうち、奇数番目の分割導光部材119SA,119SC,119SE,119SGにおける各分割光入射面119bSについては、第1光源ユニット1UAをなすポリゴンミラー122からの反射光により走査するのに対し、偶数番目の分割導光部材119SB,119SD,119SF,119SHにおける各分割光入射面119bSについては、第2光源ユニット1UBをなすポリゴンミラー122からの反射光により走査するような設定が可能である。このようにすれば、各光源ユニット1Uによる反射光が分割光入射面119bSを走査する走査期間の間に、分割光入射面119bSを走査しない非走査期間を有することになり、その非走査期間に、隣り合う分割導光部材119S間の空気層ASを走査し得る僅かな期間(非走査期間)を連続させることができるので、各LED117の発光状態をより容易に制御することができる。 The pair of light source units 1U arranged as described above can be controlled in a plurality of ways as follows by the control unit 25 (see FIG. 6). For example, the divided light guide members 119SA to 119SH constituting the light guide member 119 can be scanned by being shared by the first light source unit 1UA and the second light source unit 1UB. Specifically, for example, for each divided light incident surface 119bS in each of the divided light guide members 119SA, 119SB, 119SC, and 119SD in the left half shown in FIG. 13 among the divided light guide members 119S, the first light source unit 1UA is used. While the scanning is performed by the reflected light from the polygon mirror 122, the divided light incident surfaces 119bS in the divided light guide members 119SE, 119SF, 119SG, and 119SH on the right half of the figure are polygons forming the second light source unit 1UB. It is possible to set so as to scan with the reflected light from the mirror 122. In addition to the above, for example, the divided light incident surfaces 119bS in the odd-numbered divided light guide members 119SA, 119SC, 119SE, and 119SG among the divided light guide members 119S are from the polygon mirror 122 that forms the first light source unit 1UA. The divided light incident surfaces 119bS of the even-numbered divided light guide members 119SB, 119SD, 119SF, and 119SH are scanned by the reflected light from the polygon mirror 122 that forms the second light source unit 1UB. It is possible to set to In this way, there is a non-scanning period in which the divided light incident surface 119bS is not scanned during the scanning period in which the reflected light from each light source unit 1U scans the divided light incident surface 119bS. Since a slight period (non-scanning period) in which the air layer AS between the adjacent divided light guide members 119S can be scanned can be continued, the light emission state of each LED 117 can be controlled more easily.
 さらには、例えば、制御部25により一対の光源ユニット1Uをなす各LED117の点灯状態を同一のタイミングで時分割制御することも勿論可能であり、そのようにすれば、導光部材119における上下一対の光入射面119bに対して同じタイミングで光が入射することになるので、導光部材119からの出射光における面内の輝度分布にムラが生じ難くなるなどの効果を得ることができる。 Furthermore, for example, it is of course possible to perform time-division control of the lighting states of the LEDs 117 constituting the pair of light source units 1U at the same timing by the control unit 25, and in this way, a pair of upper and lower light guide members 119 Since the light is incident on the light incident surface 119b at the same timing, it is possible to obtain an effect that unevenness in the in-plane luminance distribution of the light emitted from the light guide member 119 is less likely to occur.
 <実施形態3>
 本発明の実施形態3を図14によって説明する。この実施形態3では、上記した実施形態1から、光源ユニット2Uの配置及び導光部材219の分割態様を変更したものを示す。なお、上記した実施形態1と同様の構造、作用及び効果について重複する説明は省略する。
<Embodiment 3>
Embodiment 3 of the present invention will be described with reference to FIG. In this Embodiment 3, what changed the arrangement | positioning of the light source unit 2U and the division | segmentation aspect of the light guide member 219 from above-mentioned Embodiment 1 is shown. In addition, the overlapping description about the same structure, an effect | action, and effect as above-mentioned Embodiment 1 is abbreviate | omitted.
 光源ユニット2Uは、図14に示すように、シャーシ214における短辺側の一端部に配されている。詳しくは、光源ユニット2Uは、シャーシ214における図14に示す右側の短辺側の側板214cと導光部材219との間に配されている。光源ユニット2UをなすLED基板218及び同期検知部223は、図14に示す下側の長辺側の側板214bに取り付けられている。集光レンズ221は、ポリゴンミラー222よりもLED217に近くなる位置に配されている。ポリゴンミラー222は、導光部材219における全体の短辺方向(Y軸方向、後述する反射光による走査方向)についてほぼ中央位置に配されている。ポリゴンミラー222は、図14に示す時計回り方向(矢線方向)に回転するものとされる。 The light source unit 2U is disposed at one end of the chassis 214 on the short side as shown in FIG. Specifically, the light source unit 2U is disposed between the light guide member 219 and the side plate 214c on the right short side shown in FIG. The LED board 218 and the synchronization detection unit 223 forming the light source unit 2U are attached to the lower long side plate 214b shown in FIG. The condenser lens 221 is disposed at a position closer to the LED 217 than the polygon mirror 222. The polygon mirror 222 is disposed at a substantially central position in the entire short side direction of the light guide member 219 (Y-axis direction, scanning direction by reflected light described later). The polygon mirror 222 is assumed to rotate in the clockwise direction (arrow line direction) shown in FIG.
 導光部材219のうち、全体の短辺方向(Y軸方向)に沿った両側面のうち、上記した光源ユニット2Uとの対向面が光入射面219bとされている。光入射面219bは、光源ユニット2Uをなすポリゴンミラー222からの反射光によってY軸方向に沿って図14に示す下側から上側へ向けて直線的に走査されるようになっている。導光部材219は、全体の長辺方向(X軸方向)に沿って分断するような形で、短辺方向(Y軸方向、ポリゴンミラー222からの反射光による走査方向)について6つの分割導光部材219Sに分割されており、その分割幅はほぼ等しいものとされる。各分割導光部材219Sが有する各分割光入射面219bSには、発光状態が時分割制御されたLED217からの光がポリゴンミラー222を介してそれぞれ入射されるようになっている。 Of the light guide member 219, of the both side surfaces along the entire short side direction (Y-axis direction), the surface facing the light source unit 2U is a light incident surface 219b. The light incident surface 219b is linearly scanned from the lower side to the upper side shown in FIG. 14 along the Y-axis direction by the reflected light from the polygon mirror 222 forming the light source unit 2U. The light guide member 219 is divided into six parts along the long side direction (X-axis direction) in the short side direction (Y-axis direction, the scanning direction by reflected light from the polygon mirror 222). It is divided into optical members 219S, and the divided widths are substantially equal. Light from the LED 217 whose light emission state is controlled in a time-sharing manner is incident on each split light incident surface 219bS of each split light guide member 219S via the polygon mirror 222.
 <実施形態4>
 本発明の実施形態4を図15によって説明する。この実施形態4では、上記した実施形態3に記載した光源ユニット3Uを一対設けたものを示す。なお、上記した実施形態3と同様の構造、作用及び効果について重複する説明は省略する。
<Embodiment 4>
A fourth embodiment of the present invention will be described with reference to FIG. In the fourth embodiment, a pair of light source units 3U described in the third embodiment is provided. In addition, the overlapping description about the same structure, effect | action, and effect as above-mentioned Embodiment 3 is abbreviate | omitted.
 光源ユニット3Uは、図15に示すように、シャーシ314における短辺側の両端部に一対配されている。詳しくは、シャーシ314における短辺側の両側板314cと導光部材319との間には、それぞれ所定の間隔が空けられており、その空間にそれぞれ光源ユニット3Uが配されている。つまり、本実施形態に係る導光部材319は、一対の光源ユニット3U間に挟み込まれる形で配されており、全体の短辺方向(Y軸方向)に沿った両側面がそれぞれ各光源ユニット3Uと対向状をなす一対の光入射面319bとされている。従って、各分割導光部材319Sは、その短辺方向(X軸方向)に沿った両側面が一対の分割光入射面319bSとされており、それぞれ対向する各光源ユニット3Uからの光によって走査されるようになっている。各光源ユニット3Uを構成するLED317、LED基板318、集光レンズ321、ポリゴンミラー322及び同期検知部323は、導光部材319の中心位置を対称点とした点対称となる配置とされている。以下、図15に示す右側の光源ユニット3Uを「第1光源ユニット」として符号に添え字Aを付すのに対し、同図左側の光源ユニット3Uを「第2光源ユニット」として符号に添え字Bを付すものとする。詳しくは、第1光源ユニット3UAをなすLED基板318及び同期検知部323は、図15に示す下側の側板314bに取り付けられているのに対し、第2光源ユニット3UBをなすLED基板318及び同期検知部323は、同図上側の側板314bに取り付けられている。各光源ユニット3UA,3UBをなす集光レンズ321は、それぞれポリゴンミラー322よりもLED317に近くなる位置に配されている。各光源ユニット3UA,3UBをなすポリゴンミラー322は、共に図15に示す時計回り方向(矢線方向)に回転するものとされる。
 なお、上記のような配置とされた一対の光源ユニット3Uは、制御部25(図6参照)によって複数通りの制御をすることが可能とされているが、その詳細は上記した実施形態2に記載したものと同様であるため、重複する説明については割愛する。
As shown in FIG. 15, a pair of light source units 3 </ b> U are arranged at both ends on the short side of the chassis 314. Specifically, a predetermined interval is provided between the short-side side plates 314c and the light guide member 319 in the chassis 314, and the light source units 3U are disposed in the spaces. In other words, the light guide member 319 according to the present embodiment is arranged in a form sandwiched between the pair of light source units 3U, and both side surfaces along the entire short side direction (Y-axis direction) are respectively light source units 3U. And a pair of light incident surfaces 319b facing each other. Therefore, each divided light guide member 319S has a pair of divided light incident surfaces 319bS on both side surfaces along the short side direction (X-axis direction), and is scanned by the light from each light source unit 3U facing each other. It has become so. The LED 317, the LED substrate 318, the condenser lens 321, the polygon mirror 322, and the synchronization detection unit 323 constituting each light source unit 3U are arranged in point symmetry with the center position of the light guide member 319 as a symmetric point. Hereinafter, the light source unit 3U on the right side shown in FIG. 15 is referred to as a “first light source unit”, and a suffix A is attached to the reference numeral, whereas the light source unit 3U on the left side in FIG. Shall be attached. Specifically, the LED substrate 318 and the synchronization detection unit 323 that form the first light source unit 3UA are attached to the lower side plate 314b shown in FIG. 15, whereas the LED substrate 318 that forms the second light source unit 3UB and the synchronization. The detector 323 is attached to the upper side plate 314b in the figure. The condensing lenses 321 forming the light source units 3UA and 3UB are arranged at positions closer to the LED 317 than the polygon mirror 322, respectively. Both the polygon mirrors 322 forming the light source units 3UA and 3UB rotate in the clockwise direction (arrow line direction) shown in FIG.
The pair of light source units 3U arranged as described above can be controlled in a plurality of ways by the control unit 25 (see FIG. 6), details of which are described in the second embodiment. Since it is the same as what was described, the overlapping description is omitted.
 <実施形態5>
 本発明の実施形態5を図16によって説明する。この実施形態5では、上記した実施形態1に記載したポリゴンミラー22に代えてガルバノミラー27を用いたものを示す。なお、上記した実施形態1と同様の構造、作用及び効果について重複する説明は省略する。
<Embodiment 5>
A fifth embodiment of the present invention will be described with reference to FIG. In the fifth embodiment, a galvanometer mirror 27 is used in place of the polygon mirror 22 described in the first embodiment. In addition, the overlapping description about the same structure, an effect | action, and effect as above-mentioned Embodiment 1 is abbreviate | omitted.
 ガルバノミラー27は、図16に示すように、横長な板状をなすとともに導光部材19側を向いた面が反射面27bとされており、回動軸27a周りに回動可能とされている。詳しくは、ガルバノミラー27は、回動軸27a周りに図16に示す矢線方向に往復揺動されるようになっており、それに伴って集光レンズ21からガルバノミラー27に向かう光に対してなす反射面27bの角度が時分割的に変化されるとともに、反射面27bによって反射された光の進行方向が時分割的に変化するものとされる。そして、ガルバノミラー27による反射光は、ガルバノミラー27の回動に伴って、導光部材19(分割導光部材19S)の光入射面19b(分割光入射面19bS)をその長辺方向(X軸方向)に沿って図16に示す左側から右側へ向けて直線的に走査することが可能とされる。
 なお、往復揺動する回動反射体の他の例としては、レゾナントミラーを挙げることができ、これを上記したガルバノミラー27に代えて用いることも可能である。
As shown in FIG. 16, the galvanometer mirror 27 has a horizontally long plate shape and a surface facing the light guide member 19 side as a reflection surface 27b, and is rotatable about a rotation shaft 27a. . Specifically, the galvanometer mirror 27 is reciprocally swung around the rotation shaft 27a in the direction of the arrow shown in FIG. 16, and accordingly, the light from the condenser lens 21 toward the galvanometer mirror 27 is detected. The angle of the reflection surface 27b is changed in a time division manner, and the traveling direction of the light reflected by the reflection surface 27b is changed in a time division manner. Then, the reflected light from the galvano mirror 27 moves along the long side direction (X) of the light incident surface 19b (divided light incident surface 19bS) of the light guide member 19 (divided light guide member 19S) as the galvano mirror 27 rotates. It is possible to scan linearly from the left side to the right side shown in FIG.
In addition, as another example of the rotating reflector that reciprocally swings, a resonant mirror can be cited, which can be used in place of the galvanometer mirror 27 described above.
 <他の実施形態>
 本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれる。
 (1)上記した各実施形態では、導光部材が複数に分割されたものを示したが、導光部材を分割しない構成としたものも本発明に含まれる。具体的には、図17に示すように、導光部材19′を1枚ものとすることが可能であり、その場合でも、光入射面19b′のうち同図一点鎖線にて区分した各領域に対するポリゴンミラー22からの反射光の走査期間毎に、LED17の発光状態を時分割して制御するようにすればよい。
<Other embodiments>
The present invention is not limited to the embodiments described with reference to the above description and drawings. For example, the following embodiments are also included in the technical scope of the present invention.
(1) In the above-described embodiments, the light guide member is divided into a plurality of parts. However, the present invention includes a structure in which the light guide member is not divided. Specifically, as shown in FIG. 17, the number of the light guide member 19 'can be one, and even in that case, each region separated by the one-dot chain line in the light incident surface 19b'. The light emission state of the LED 17 may be controlled in a time-sharing manner for each scanning period of the reflected light from the polygon mirror 22.
 (2)上記した実施形態1から実施形態4では、ポリゴンミラーが回転軸に沿う方向から視て正方形とされたものを示したが、例えば、図18に示すように、回転軸22a′に沿う方向から視て正六角形とされるポリゴンミラー22′を用いることも可能である。 (2) In the first to fourth embodiments described above, the polygon mirror is shown to be square when viewed from the direction along the rotation axis. For example, as shown in FIG. 18, along the rotation axis 22a ′. It is also possible to use a polygon mirror 22 ′ that is a regular hexagon when viewed from the direction.
 (3)上記した(2)以外にも、ポリゴンミラーにおける回転軸に沿う方向から視た形状は、例えば正三角形、正五角形、正七角形、正八角形などの他の正多角形とすることも可能である。 (3) In addition to the above (2), the shape of the polygon mirror viewed from the direction along the rotation axis may be other regular polygons such as a regular triangle, a regular pentagon, a regular heptagon, and a regular octagon. It is.
 (4)上記した(3)以外にも、ポリゴンミラーにおける回転軸に沿う方向から視た形状は、例えば二等辺三角形や台形などの非正多角形とすることも可能である。 (4) In addition to the above (3), the shape of the polygon mirror viewed from the direction along the rotation axis may be a non-regular polygon such as an isosceles triangle or a trapezoid.
 (5)上記した各実施形態では、回動反射体としてポリゴンミラー、ガルバノミラー、レゾナントミラーを例示したが、これら以外の、MEMS(Micro Electro Mechanical System)技術を用いた回動反射体を用いることも可能である。 (5) In each embodiment described above, a polygon mirror, a galvano mirror, and a resonant mirror are exemplified as the rotating reflector. However, other rotating reflectors using MEMS (Micro Electro Mechanical System) technology are used. Is also possible.
 (6)上記した各実施形態では、制御部によりLEDの発光状態をPWM制御するものを示したが、他の手法によりLEDの発光状態を制御することも勿論可能である。例えば、LEDを駆動する駆動電圧を時分割的に変動させることで、LEDの発光状態を時分割制御することも可能である。 (6) In each of the above embodiments, the control unit performs PWM control of the light emission state of the LED, but it is of course possible to control the light emission state of the LED by other methods. For example, the light emission state of the LED can be controlled in a time-sharing manner by changing the drive voltage for driving the LED in a time-sharing manner.
 (7)上記した各実施形態では、同期検知部によってポリゴンミラー(ガルバノミラー)の回転状態(回動状態)にLEDの発光状態を同期させるようにした場合を示したが、この同期検知部を省略することも可能である。その場合、例えばポリゴンミラーを回転駆動するための電磁モータにセンサを設けてその回転状態を直接検出するようにし、その検出信号に基づいてLEDの発光状態を制御部により制御するようにすればよい。 (7) In each of the above-described embodiments, the case where the light emission state of the LED is synchronized with the rotation state (rotation state) of the polygon mirror (galvano mirror) by the synchronization detection unit has been described. It can be omitted. In that case, for example, a sensor is provided in an electromagnetic motor for rotationally driving the polygon mirror so that the rotation state is directly detected, and the light emission state of the LED is controlled by the control unit based on the detection signal. .
 (8)上記した各実施形態では、導光部材における分割幅、つまり各分割導光部材における走査方向についての寸法をほぼ均等にした場合を示したが、導光部材における分割幅を異ならせる設定とすることも可能である。 (8) In each of the above-described embodiments, the division width in the light guide member, that is, the case where the dimensions in the scanning direction in each division light guide member are substantially equalized, but the division width in the light guide member is set to be different. It is also possible.
 (9)上記した実施形態1では、シャーシの短辺側の両側板のうち、図3に示す左側の側板にLED基板及び同期検知部を取り付けたものを示したが、その反対側(図3に示す右側)の側板にLED基板及び同期検知部を取り付けるようにしても勿論構わない。 (9) In the first embodiment described above, among the side plates on the short side of the chassis, the left side plate shown in FIG. 3 is attached with the LED substrate and the synchronization detection unit, but the opposite side (FIG. 3 Of course, it does not matter if the LED substrate and the synchronization detection unit are attached to the side plate on the right side.
 (10)上記した実施形態3では、シャーシの長辺側の両側板のうち、図14に示す下側の側板にLED基板及び同期検知部を取り付けたものを示したが、その反対側(図14に示す上側)の側板にLED基板及び同期検知部を取り付けるようにしても勿論構わない。 (10) In the above-described third embodiment, among the long side plates of the chassis, the lower side plate shown in FIG. 14 is attached with the LED substrate and the synchronization detection unit. Needless to say, the LED board and the synchronization detection unit may be attached to the upper side plate shown in FIG.
 (11)上記した各実施形態では、LED基板をシャーシの側板に取り付けるものを示したが、例えば断面L字型をなす放熱板を用意し、その放熱板にLED基板を取り付けるとともに放熱板をシャーシの底板に取り付けるようにしても構わない。 (11) In the above-described embodiments, the LED board is attached to the side plate of the chassis. For example, a heat sink having an L-shaped cross section is prepared, the LED board is attached to the heat sink, and the heat sink is attached to the chassis. It may be attached to the bottom plate.
 (12)上記した各実施形態では、シャーシ内に光源ユニットを1つまたは2つ配したものを示したが、シャーシ内に光源ユニットを3つまたは4つ配するようにしたものも本発明に含まれる。 (12) In each of the above-described embodiments, one or two light source units are arranged in the chassis, but three or four light source units are arranged in the chassis. included.
 (13)上記した各実施形態では、LED、集光レンズ及びポリゴンミラー(ガルバノミラー)の並び方向と、ポリゴンミラー(ガルバノミラー)及び導光部材の並び方向とが直交する配置とされたものを例示したが、上記した両並び方向が90度以上の角度(鈍角)をなす設定や、90度以下の角度(鋭角)をなす設定とすることも可能である。その場合でも、集光レンズによって集光された光の進行方向は、LED及びポリゴンミラー(ガルバノミラー)の並び方向と一致する設定とするのが好ましい。 (13) In each of the above-described embodiments, an arrangement in which the arrangement direction of the LED, the condenser lens and the polygon mirror (galvano mirror) and the arrangement direction of the polygon mirror (galvano mirror) and the light guide member are orthogonal to each other. Although illustrated, it is also possible to set the above-described two alignment directions to make an angle of 90 degrees or more (obtuse angle) or to make an angle of 90 degrees or less (acute angle). Even in that case, it is preferable that the traveling direction of the light condensed by the condenser lens is set to coincide with the arrangement direction of the LED and the polygon mirror (galvano mirror).
 (14)上記した各実施形態では、ポリゴンミラー(ガルバノミラー)が光入射面における走査方向についてのほぼ中央位置に配されたものを示したが、ポリゴンミラー(ガルバノミラー)が上記中央位置からずれた配置とされたものも本発明に含まれる。 (14) In each of the above-described embodiments, the polygon mirror (galvano mirror) is arranged at the substantially central position in the scanning direction on the light incident surface. However, the polygon mirror (galvano mirror) is displaced from the central position. What was made into the arrangement | positioning was also included in this invention.
 (15)上記した各実施形態では、LEDが光入射面における走査方向についての端となる位置に配されたものを示したが、LEDが光入射面における走査方向における端となる位置よりも中央寄りに配置されたものも本発明に含まれる。 (15) In each of the above-described embodiments, the LED is arranged at the position that is the end in the scanning direction on the light incident surface. Those arranged close to each other are also included in the present invention.
 (16)上記した各実施形態では、同期検知部が、LED基板と同じ側板に取り付けられるとともに、LEDと導光部材との間となる位置に配されたものを示したが、例えば同期検知部をLED基板とは異なる側板(例えば反対側の側板)に取り付けることも可能である。さらには、同期検知部をLED基板と同じ側板に取り付けつつも、導光部材との間でLEDを挟むような位置に配することも可能である。 (16) In each of the above-described embodiments, the synchronization detection unit is attached to the same side plate as the LED substrate and arranged at a position between the LED and the light guide member. Can be attached to a side plate (for example, the opposite side plate) different from the LED substrate. Furthermore, it is also possible to place the synchronization detection unit on the same side plate as the LED substrate, and arrange the LED between the light guide member and the LED.
 (17)上記した各実施形態では、隣り合う分割導光部材間に介在する低屈折率層として空気層を利用したものを示したが、低屈折率材料からなる低屈折率層を用いることも可能である。 (17) In the above-described embodiments, the air layer is used as the low refractive index layer interposed between the adjacent divided light guide members. However, a low refractive index layer made of a low refractive index material may be used. Is possible.
 (18)上記した各実施形態では、隣り合う分割導光部材間に空気層を介在させたものを示したが、空気層に代えて光反射性に優れた反射シートなどからなる反射層を用いることも可能である。 (18) In each of the embodiments described above, the air layer is interposed between the adjacent divided light guide members, but a reflective layer made of a reflective sheet or the like having excellent light reflectivity is used instead of the air layer. It is also possible.
 (19)上記した各実施形態では、集光部材として集光レンズを用いた場合を示したが、レンズ以外の集光部材を用いることも可能である。 (19) In each of the above-described embodiments, the case where the condensing lens is used as the condensing member is shown, but a condensing member other than the lens can also be used.
 (20)上記した各実施形態では、光源としてLEDを用いた場合を示したが、他の種類の光源(冷陰極管、熱陰極管、レーザー光源など)を用いることも勿論可能である。 (20) In each of the above-described embodiments, the LED is used as the light source. However, other types of light sources (cold cathode tube, hot cathode tube, laser light source, etc.) can of course be used.
 (21)上記した各実施形態では、液晶パネルにおける1枚の表示画像の表示期間の具体例として、1/60秒や1/120秒としたものを示したが、1/180秒や1/240秒などに変更することも可能であり、それに応じて回動反射体の反射光による光入射面に対する走査期間を変更すればよい。なお、上記した表示期間の具体的な数値は上記以外にも適宜変更可能である。 (21) In each of the above-described embodiments, a specific example of the display period of one display image on the liquid crystal panel is shown as 1/60 seconds or 1/120 seconds. It is also possible to change to 240 seconds or the like, and the scanning period for the light incident surface by the reflected light of the rotating reflector may be changed accordingly. In addition, the specific numerical value of the above-described display period can be appropriately changed in addition to the above.
 (22)上記した実施形態2及び実施形態4では、第1光源ユニットをなすLED基板及び同期検知部と、第2光源ユニットをなすLED基板及び同期検知部とについて、シャーシのうち異なる側板に取り付けるようにした場合(互いに逆側に配した場合)を示したが、第1光源ユニットをなすLED基板及び同期検知部と、第2光源ユニットをなすLED基板及び同期検知部とを同じ側板に取り付けるようにする(互いに同じ側に配する)ことも可能である。その場合、第1光源ユニットをなすポリゴンミラーと、第2光源ユニットをなすポリゴンミラーとで回転方向が逆向きになるよう設定すればよい。 (22) In Embodiment 2 and Embodiment 4 described above, the LED substrate and synchronization detection unit forming the first light source unit and the LED substrate and synchronization detection unit forming the second light source unit are attached to different side plates of the chassis. In this case, the LED substrate and the synchronization detection unit forming the first light source unit and the LED substrate and the synchronization detection unit forming the second light source unit are attached to the same side plate. It is also possible to arrange them (arranged on the same side). In that case, the polygon mirror forming the first light source unit and the polygon mirror forming the second light source unit may be set so that the rotation directions are opposite.
 (23)上記した各実施形態では、液晶パネルがその短辺方向を鉛直方向と一致させた縦置き状態とされるものを例示したが、液晶パネルがその長辺方向を鉛直方向と一致させた縦置き状態とされるものも本発明に含まれる。 (23) In each of the above-described embodiments, the liquid crystal panel is illustrated in a vertically placed state in which the short side direction coincides with the vertical direction, but the liquid crystal panel matches the long side direction with the vertical direction. What is set in a vertical state is also included in the present invention.
 (24)上記した実施形態では、液晶表示装置のスイッチング素子としてTFTを用いたが、TFT以外のスイッチング素子(例えば薄膜ダイオード(TFD))を用いた液晶表示装置にも適用可能であり、カラー表示する液晶表示装置以外にも、白黒表示する液晶表示装置にも適用可能である。 (24) In the above-described embodiment, the TFT is used as the switching element of the liquid crystal display device. However, the present invention can also be applied to a liquid crystal display device using a switching element other than TFT (for example, a thin film diode (TFD)), and color display. In addition to the liquid crystal display device, the present invention can be applied to a liquid crystal display device that displays black and white.
 (25)上記した各実施形態では、表示パネルとして液晶パネルを用いた液晶表示装置を例示したが、他の種類の表示パネルを用いた表示装置にも本発明は適用可能である。 (25) In each of the above-described embodiments, the liquid crystal display device using the liquid crystal panel as the display panel has been exemplified. However, the present invention can also be applied to a display device using another type of display panel.
 (26)上記した各実施形態では、チューナーを備えたテレビ受信装置を例示したが、チューナーを備えない表示装置にも本発明は適用可能である。 (26) In each of the above-described embodiments, the television receiver provided with the tuner is exemplified. However, the present invention can be applied to a display device not provided with the tuner.
 10…液晶表示装置(表示装置)、11…液晶パネル(表示パネル)、12…バックライト装置(照明装置)、17,117,217,317…LED(光源)、19,119,219,319…導光部材、19S,119S,219S,319S…分割導光部材、19b,119b,219b,319b…光入射面、19bS,119bS,219bS,319bS…分割光入射面(領域)、21,121,221,321…集光レンズ(集光部材)、22,122,222,322…ポリゴンミラー(回動反射体)、22a…回転軸、22b…反射面(面)、25…制御部、27…ガルバノミラー(回動反射体)、AS…空気層(低屈折率層)、TV…テレビ受信装置 DESCRIPTION OF SYMBOLS 10 ... Liquid crystal display device (display device), 11 ... Liquid crystal panel (display panel), 12 ... Backlight device (illumination device), 17, 117, 217, 317 ... LED (light source), 19, 119, 219, 319 ... Light guide member, 19S, 119S, 219S, 319S ... split light guide member, 19b, 119b, 219b, 319b ... light incident surface, 19bS, 119bS, 219bS, 319bS ... split light entrance surface (region), 21, 121, 221 , 321 ... Condensing lens (condensing member) 22, 122, 222, 322 ... Polygon mirror (rotating reflector), 22a ... Rotating shaft, 22b ... Reflecting surface (surface), 25 ... Control unit, 27 ... Galvano Mirror (rotating reflector), AS ... Air layer (low refractive index layer), TV ... TV receiver

Claims (20)

  1.  光源と、
     前記光源からの光が入射される光入射面を有する導光部材と、
     回動されつつ前記光源からの光を反射し、その反射光により前記光入射面を走査する回動反射体と、
     前記光入射面を前記回動反射体からの前記反射光による走査方向について複数の領域に区分したとき、各領域に対する前記反射光の走査期間に対応付けて前記光源の発光状態を時分割して制御する制御部とを備える照明装置。
    A light source;
    A light guide member having a light incident surface on which light from the light source is incident;
    A rotating reflector that reflects the light from the light source while being rotated and scans the light incident surface with the reflected light; and
    When the light incident surface is divided into a plurality of regions in the scanning direction by the reflected light from the rotating reflector, the light emission state of the light source is time-divided in association with the reflected light scanning period for each region. An illuminating device provided with the control part to control.
  2.  前記光源及び前記回動反射体の並び方向と、前記回動反射体及び前記導光部材の並び方向とが互いに略直交するものとされる請求項1記載の照明装置。 The lighting device according to claim 1, wherein the alignment direction of the light source and the rotating reflector and the alignment direction of the rotating reflector and the light guide member are substantially orthogonal to each other.
  3.  前記回動反射体は、前記走査方向について前記光入射面のほぼ中央位置に配されている請求項1または請求項2記載の照明装置。 The lighting device according to claim 1 or 2, wherein the rotating reflector is disposed at a substantially central position of the light incident surface in the scanning direction.
  4.  前記光源は、前記走査方向について前記光入射面の端側に配されている請求項1から請求項3のいずれか1項に記載の照明装置。 The illuminating device according to any one of claims 1 to 3, wherein the light source is disposed on an end side of the light incident surface in the scanning direction.
  5.  前記光入射面における前記複数の領域は、前記走査方向についての寸法が互いにほぼ同じとなるよう区分されている請求項1から請求項4のいずれか1項に記載の照明装置。 The illumination device according to any one of claims 1 to 4, wherein the plurality of regions on the light incident surface are partitioned so that dimensions in the scanning direction are substantially the same.
  6.  前記回動反射体は、一方向に回転するポリゴンミラーにより構成されている請求項1から請求項5のいずれか1項に記載の照明装置。 The illumination device according to any one of claims 1 to 5, wherein the rotating reflector is configured by a polygon mirror that rotates in one direction.
  7.  前記ポリゴンミラーは、その回転軸に沿う方向から視た平面形状が正多角形とされる請求項6記載の照明装置。 The lighting device according to claim 6, wherein the polygon mirror has a regular polygonal shape when viewed from a direction along the rotation axis.
  8.  前記ポリゴンミラーは、その回転軸に沿う方向から視た平面形状が正方形とされる請求項7記載の照明装置。 The lighting device according to claim 7, wherein the polygonal mirror has a square shape when viewed from a direction along a rotation axis thereof.
  9.  前記光源と前記回動反射体との間に介在し、前記光源からの光を集光して前記回動反射体に向けて出射させる集光部材を備える請求項1から請求項8のいずれか1項に記載の照明装置。 9. The light emitting device according to claim 1, further comprising a light collecting member that is interposed between the light source and the rotating reflector and collects light from the light source and emits the light toward the rotating reflector. The lighting device according to item 1.
  10.  前記光源、前記集光部材及び前記回動反射体が直線的に並んで配されており、これら前記光源、前記集光部材及び前記回動反射体の並び方向と、前記回動反射体及び前記導光部材の並び方向とが互いに略直交するものとされる請求項9記載の照明装置。 The light source, the light condensing member, and the rotating reflector are arranged in a straight line, the alignment direction of the light source, the condensing member, and the rotating reflector, the rotating reflector, and the rotating reflector The lighting device according to claim 9, wherein the alignment direction of the light guide members is substantially orthogonal to each other.
  11.  前記集光部材は、前記回動反射体に向けて出射させる光の進行方向が、前記光入射面に並行するよう、前記光源からの光を集光するものとされる請求項9または請求項10記載の照明装置。 The said condensing member condenses the light from the said light source so that the advancing direction of the light radiate | emitted toward the said rotation reflector may be parallel to the said light-incidence surface. 10. The lighting device according to 10.
  12.  前記集光部材は、前記回動反射体よりも相対的に前記光源の近傍位置に配されている請求項9から請求項11のいずれか1項に記載の照明装置。 The lighting device according to any one of claims 9 to 11, wherein the light condensing member is disposed in a position near the light source relative to the rotating reflector.
  13.  前記制御部は、前記光源を周期的に点滅させ、点灯期間と消灯期間との時間比率を変化させるようにしている請求項1から請求項12のいずれか1項に記載の照明装置。 The lighting device according to any one of claims 1 to 12, wherein the control unit periodically blinks the light source to change a time ratio between a lighting period and a light-off period.
  14.  前記導光部材は、前記光入射面における前記複数の領域毎に分割された複数の分割導光部材から構成される請求項1から請求項13のいずれか1項に記載の照明装置。 The lighting device according to any one of claims 1 to 13, wherein the light guide member includes a plurality of divided light guide members divided for each of the plurality of regions on the light incident surface.
  15.  隣り合う前記分割導光部材の間には、前記分割導光部材よりも相対的に屈折率が低い低屈折率層が介在している請求項14記載の照明装置。 The lighting device according to claim 14, wherein a low refractive index layer having a refractive index relatively lower than that of the divided light guide member is interposed between the adjacent divided light guide members.
  16.  前記低屈折率層は、空気層とされる請求項15記載の照明装置。 The lighting device according to claim 15, wherein the low refractive index layer is an air layer.
  17.  前記光源は、LEDとされる請求項1から請求項16のいずれか1項に記載の照明装置。 The lighting device according to any one of claims 1 to 16, wherein the light source is an LED.
  18.  請求項1から請求項17のいずれか1項に記載の照明装置と、前記照明装置からの光を利用して表示を行う表示パネルとを備える表示装置。 A display device comprising: the lighting device according to any one of claims 1 to 17; and a display panel that performs display using light from the lighting device.
  19.  前記表示パネルは、一対の基板間に液晶を封入してなる液晶パネルとされる請求項18記載の表示装置。 The display device according to claim 18, wherein the display panel is a liquid crystal panel in which liquid crystal is sealed between a pair of substrates.
  20.  請求項18または請求項19に記載された表示装置を備えるテレビ受信装置。 A television receiver comprising the display device according to claim 18 or 19.
PCT/JP2011/063041 2010-07-14 2011-06-07 Illumination device, display device and television receiver WO2012008243A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-159806 2010-07-14
JP2010159806 2010-07-14

Publications (1)

Publication Number Publication Date
WO2012008243A1 true WO2012008243A1 (en) 2012-01-19

Family

ID=45469253

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/063041 WO2012008243A1 (en) 2010-07-14 2011-06-07 Illumination device, display device and television receiver

Country Status (1)

Country Link
WO (1) WO2012008243A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008013146A1 (en) * 2006-07-24 2008-01-31 Panasonic Corporation Planar illumination device and liquid crystal display device using same
WO2008099581A1 (en) * 2007-02-08 2008-08-21 Panasonic Corporation Planar lighting apparatus and liquid crystal display device using the same
JP2008218018A (en) * 2007-02-28 2008-09-18 Sony Corp Light source device and liquid-crystal display device
JP2008216911A (en) * 2007-03-07 2008-09-18 Ricoh Co Ltd Optical scanner/image forming apparatus
JP2009175470A (en) * 2008-01-25 2009-08-06 Kyocera Mita Corp Optical scanner and image forming apparatus equipped with the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008013146A1 (en) * 2006-07-24 2008-01-31 Panasonic Corporation Planar illumination device and liquid crystal display device using same
WO2008099581A1 (en) * 2007-02-08 2008-08-21 Panasonic Corporation Planar lighting apparatus and liquid crystal display device using the same
JP2008218018A (en) * 2007-02-28 2008-09-18 Sony Corp Light source device and liquid-crystal display device
JP2008216911A (en) * 2007-03-07 2008-09-18 Ricoh Co Ltd Optical scanner/image forming apparatus
JP2009175470A (en) * 2008-01-25 2009-08-06 Kyocera Mita Corp Optical scanner and image forming apparatus equipped with the same

Similar Documents

Publication Publication Date Title
US8520150B2 (en) Lighting device, display device and television receiver
US8023074B2 (en) Liquid crystal display unit
KR101094772B1 (en) Tiled display device
KR101287636B1 (en) Backlight unit and liquid crystal display device having the same
CN106932958B (en) Backlight unit and liquid crystal display device including the same
TW201142422A (en) Liquid crystal display
KR20140098045A (en) Liquid crystal display device
JP5337882B2 (en) Lighting device, display device, and television receiver
US8823902B2 (en) Liquid crystal display device
WO2023160643A1 (en) Display module and display device
JP5138813B2 (en) Lighting device, display device, and television receiver
KR100595306B1 (en) Backlight Device
JP2012150366A (en) Light guide member and multi-display device including the same
WO2011077864A1 (en) Illumination device, display device, and television receiver
US20210132285A1 (en) Lighting device and display device
WO2015046158A1 (en) Display device
KR20120050171A (en) Dual panel type liquid crystal display device
WO2012008243A1 (en) Illumination device, display device and television receiver
WO2012011327A1 (en) Illuminating device, display device and television receiver
KR102078020B1 (en) Liquid crystal display device
WO2012014591A1 (en) Illumination apparatus, display apparatus, and television receiver apparatus
WO2012063698A1 (en) Lighting device, display device and television receiving device
KR20150027972A (en) Backlight unit and liquid crystal display device comprising the same
US8251532B2 (en) Back light module and flat display device using the same
WO2011083642A1 (en) Lighting device, display device, and television receiver device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11806574

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11806574

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP